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Review

Principles and Properties of Eukaryotic mRNPs
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The proper processing, export, localization, translation, and degradation of mRNAs are necessary for regu-
lation of gene expression. These processes are controlled by mRNA-specific regulatory proteins, noncoding
RNAs, and core machineries common to most mRNAs. These factors bind the mRNA in large complexes
known as messenger ribonucleoprotein particles (mRNPs). Herein, we review the components of mRNPs,
how they assemble and rearrange, and howmRNP composition differentially affectsmRNA biogenesis, func-
tion, and degradation. We also describe how properties of the mRNP ‘‘interactome’’ lead to emergent prin-
ciples affecting the control of gene expression.

Introduction
mRNA is the intermediate between information and action and is

consequently a highly regulated molecule subject to a diversity

of RNA-processing reactions in eukaryotic cells. Moreover,

recent studies have indicated that mRNA concentrations have

little correlation with protein concentrations and that much of

the regulation of gene expression occurs at the level of protein

synthesis (Schwanhäusser et al., 2011; Sonenberg and Hinne-

busch, 2009). These observations highlight the importance of

understanding the mechanisms and regulation of mRNA biogen-

esis and function.

The control of mRNA function is modulated through interac-

tions between individual mRNAs and proteins or noncoding

RNAs (ncRNAs). These assemblies form complex structures

referred to as messenger ribonucleoprotein particles (mRNPs).

Formation of each mRNP follows the same general steps

(Figure 1). mRNPs are first assembled during transcription and

remodeled by cotranscriptional RNA-processing reactions. After

export from the nucleus, some mRNPs are transported to spe-

cific regions of subcellular localization. Cytoplasmic mRNPs un-

dergo structural rearrangements in order for translation to occur.

Ultimately, all mRNPs are disassembled by mRNA degradation.

The components of each mRNP play a significant role in control-

ling each step of biogenesis and function. Thus, understanding

the composition, assembly, remodeling events, and function of

mRNPs is fundamental to an understanding of the control of

eukaryotic mRNAs. Herein, we review the components and prin-

ciples that determine mRNP composition, the general manners

by which mRNPs regulate gene expression, and emergent

mRNP ‘‘interactome’’ properties that affect gene expression

(Castello et al., 2012).

Components of Eukaryotic mRNPs
Three types of cellular molecules bind to mRNAs to make up the

components of mRNPs. These include proteins, small ncRNAs

(such as miRNA and PIWI-interacting RNAs), and large ncRNAs

(Fabian et al., 2010; Juliano et al., 2011; Yoon et al., 2013).

mRNA-Binding Proteins

Historically, mRNA-binding proteins were identified from the

study of RNA processing, translation, or degradation. A number

of mRNA-binding proteins were also identified by the presence

of known RNA-binding domains. One useful approach has

been to purify mRNPs under denaturing conditions after cross-

linking in vivo and then identify the crosslinked proteins. This

method was used for identifying the hnRNP proteins (Dreyfuss

et al., 1984). Recently, such approaches combined with mass

spectroscopy techniques have allowed for the identification of

hundreds of new mRNA-binding proteins in both yeast and

mammals (Baltz et al., 2012; Castello et al., 2012; Kwon et al.,

2013; Mitchell et al., 2013).

mRNA-binding proteins commonly contain a set of previously

identified RNA-binding domains. For example, 40%–50% of

yeast and mammalian mRNA-binding proteins contain a known

RNA-binding domain (Castello et al., 2012; Mitchell et al.,

2013). Interestingly, as determined by sequence analysis,

many mRNP proteins contain multiple RNA-binding domains.

To illustrate this point, we analyzed 120 known yeast RNA-bind-

ing proteins with one or more canonical RNA-binding domains

(RRM, KH, S1, zinc-finger, Pumilio, or DEAD-box domain;

SMART domain website, http://smart.embl-heidelberg.de/) for

their domain architecture. These 120 proteins have an average

of 1.9 RNA-binding domains, and one-third (41) have more

than one. This is a lower limit of RNA-binding domains per pro-

tein, since over 50% of the proteins that crosslink to mRNAs

do not contain canonical RNA-binding domains (Castello et al.,

2012; Mitchell et al., 2013).

RNA-binding proteins contain multiple RNA-binding domains

for several reasons. First, RNA-binding domains are frequently

combined to create a larger binding site for a single RNA ligand,

leading to increased affinity and specificity. For example, the

Drosophila protein Sex-lethal, involved in gender determination,

extends its recognition site to nine bases by aligning two RRM

domains (Handa et al., 1999). Consistent with this usage, the

number of RNA-binding domains per protein is generally

inversely correlated with the length of the RNA binding site per

domain (RNA-binding proteins with multiple domain types were

included in this analysis; Figure 2). For example, the Pumilio

domain, recognizing eight bases, is often the sole RNA-binding

domain. In contrast, zinc-finger domains contact as few as two

bases, and proteins with this domain have multiple RNA-binding
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domains in 80% of cases for yeast RNA-binding proteins (Hall,

2005). For instance, seven zinc fingers are found in the

S. cerevisiae polysome-associated protein Gis2.

Multiple RNA-binding domains in a single protein can also

be used in more complex manners. For example, PARN,

(poly(A)-specific ribonuclease) is a processive, tight-binding,

and poly(A)-specific exonuclease. Its R3H RNA-binding domain

is responsible for the high affinity of PARN for RNA but does not

have specificity for poly(A) or contribute to its processivity (He

et al., 2013). In contrast, the RRM and catalytic domains have

lower affinity for RNA but bind to poly(A) preferentially. In princi-

ple, proteins with multiple RNA-binding domains could also be

used to link together multiple mRNAs into a higher-order struc-

ture and thereby potentially affect the subcellular organization

of mRNPs (see below).

The large repertoire of mRNA-binding proteins raises the

question of the functional significance of these protein-mRNA in-

teractions. In principle, new mRNA-binding proteins could func-

tion akin to many of the well-understood mRNA-binding proteins

and control key steps in mRNA biogenesis and function

(Figure 3A). However, there are precedents for additional roles

of protein-mRNA interaction. For instance, mRNA binding may

regulate the activity of the bound protein, modulating either

enzymatic or nonenzymatic activities such as protein or ncRNA

binding (Figure 3B). This possibility is suggested by the observa-

tion that many newRNA-binding proteins are enzymes, including

kinases, ubiquitin proteases, and ligases, as well as metabolic

enzymes (Baltz et al., 2012; Castello et al., 2012; Kwon et al.,

2013; Mitchell et al., 2013). In addition, proof of principle for

RNA modulating enzymatic activity comes from the fact that ki-

nases PKR and GCN2 are activated by binding RNA (Dabo and

Meurs, 2012; Wek et al., 1995). Such RNA-dependent activation

of kinases or other protein-modification enzymes could lead to

local modification ofmRNP components to regulate only specific

mRNAs containing the sequence recognized by the modification

enzyme. The concentration of a given protein is typically much

higher than that of an individual mRNA, preventing mRNA bind-

ing from having a large effect on the bulk of the protein. Conse-

quently, effects on enzymes are likely to be limited to an increase

in enzyme activity or to cis effects within an mRNP. Consistent

with a positive role, RNA-protein interactions have also been

shown to play a stimulatory role in the assembly of a signaling

complex in yeast cells during the unfolded-protein response

(Aragón et al., 2009).

Figure 1. The Majority of mRNAs Pass through the Same Central
Steps of mRNA Metabolism
These central steps, shown on the left, involve mRNPs, which are referred to
as ‘‘core machineries’’ containing components listed in the right panel.
mRNAs are synthesized in the process of transcription. Cotranscriptionally
(shown as a second step for clarity), the mRNA is modified, and introns
are removed by splicing. After the mature mRNA has been created, it is
exported from the nucleus through the nuclear pore. In the cytoplasm, the
mRNP is remodeled before and during translation. Translation involves
multiple steps (initiation, elongation, and termination), each of which brings
a number of factors to the mRNA in addition to the ribosome. At the end
of the mRNA lifetime, it is degraded. This process occurs through two
main pathways: (1) deadenylation-dependent decapping and 50-to-30 decay
or (2) deadenylation followed by 30-to-50 degradation by the cytoplasmic
exosome.

Figure 2. The Number of RBDs in a Protein Is Inversely Correlated
with the Number of Nucleotides Commonly Bound by that Type
of RBD
RNA-binding domains (RBDs) shown are the zinc-finger domain (binding two
to four nucleotides), KH and RRM domains (binding four nucleotides), the
DEAD-box domain (binding six nucleotides), and the Pumilio domain (binding
eight to ten nucleotides) (Daubner et al., 2013; Del Campo and Lambowitz,
2009; Hall, 2005; Valverde et al., 2008; Wang et al., 2002). The average number
of RBDs per protein was calculated for 120 S. cerevisiae RNA-binding proteins
(Mitchell et al., 2013). Values for the average number of nucleotides bound per
RBD were taken from structural studies cited above.
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The interaction between mRNAs and enzymes has also sug-

gested a complex interconnection between metabolic pathways

and the control of mRNAs, wherein metabolites regulate mRNA-

binding proteins (Figure 3C). Such a model, called the ‘‘REM

(RNA, enzyme, and metabolite) model’’ has been proposed for

enzymes of intermediary metabolism (Hentze and Preiss,

2010). Cytosolic aconitase is known to act in thismanner; it binds

mRNAs in competition with its iron-sulfur cluster to regulate

expression of the genes encoded by these mRNAs, which

include those involved in iron homeostasis (Hentze and Preiss,

2010). This type of competitive binding between mRNA and a

small molecule does not require enzymatic activity. In this way,

a metabolic enzyme can ‘‘moonlight’’ as a regulator of mRNA

translation and stability.

Finally, one has to consider the possibility that some identified

RNA-protein interactions are the results of recent genetic

changes and have little function. This might be particularly com-

mon for proteins that bind other RNAs, and therefore a simple

mutational event could make a new binding site in a given

mRNA. Such new interactions would then be fixed if they

conferred some advantage.

ncRNAs Are Also mRNP Components

Both small ncRNA and long ncRNA (lncRNA) can interact with

and regulate mRNAs to control gene expression. miRNAs, and

other small RNAs, essentially serve as guides to dictate the spec-

ificity of Argonaute or PIWI proteins interacting with mRNAs.

Argonautes, either directly or through the recruitment of GW182

proteins, then repress translation and promote mRNA degrada-

tion (reviewed in Fabian et al., 2010). The roles playedby lncRNAs

in gene expression are quite diverse. lncRNAs regulate both

mRNA stability and translation through direct interactions with

mRNAs (Yoon et al., 2013). Like miRNAs, lncRNAs may recruit

proteins to the mRNP in order to carry out this regulation.

mRNP Components Range from General to Highly

Specific

Components of mRNPs can act either as mRNA-specific regula-

tors or as components of core mRNP machineries that perform

A

B

C

Figure 3. Consequences of Protein-mRNA
Interactions
(A) Proteins bind to mRNA to regulate mRNA
function.
(B) Protein function is regulated by binding to RNA
substrates.
(C) Proteins bind to mRNA in competition with
other binding partners, thus controlling a particular
set of mRNAs in response to the level of other
molecules.

the central tasks of mRNA metabolism.

Many stages in the biology of mRNAs

involve large, canonical machineries that

bind to mRNAs in a coordinated manner

(Figure 1). These core mRNPs regulate

splicing, export, translation, and decay

of the mRNA. Each involves the binding

of many proteins that are deposited dur-

ing earlier biosynthetic events (see below)

or bound in a manner that is primarily

determined by mRNA landmarks, such as the cap structure,

splice sites, and poly(A)-tail. For instance, during translation initi-

ation, a closed-loop structure is thought to form when PABP,

which binds to the poly(A) tail, interacts with the eIF4G subunit

of the cap-binding complex (Sonenberg and Hinnebusch, 2009).

To a certain extent, these common machineries create a

degree of homogeneity across mRNPs. For example, all mRNAs

with introns interact with small nuclear RNAs and other essential

splicing factors. Thus, one key to understanding the assembly

and control of mRNAs is to understand the manner in which

these large central machineries interact with specific mRNAs,

how this interaction can vary, and how that variation can affect

mRNA regulation (see below).

A second key step of mRNP formation is the binding of com-

ponents that interact with sequence-specific features of individ-

ual mRNAs. These mRNA-specific interactors often bind the

mRNA concurrently with core machineries, regulate specific

steps in mRNA biogenesis, and function on subclasses of

mRNAs. For example, many proteins regulate splicing on partic-

ular mRNAs, leading to alternative splicing events. These include

the SR proteins, a family of proteins with both an RNA-binding

domain and a serine/arginine-rich domain that can function in

protein-protein interactions to recruit the splicing machinery to

the mRNP. Some of these proteins can bind to exon sequences,

called splicing enhancers, that promote splice-site selection

(Zhou and Fu, 2013). Consistent with their role in alternative

splicing on select messages, consensus sequences have been

identified for a number of SR proteins (Zhou and Fu, 2013).

Not all mRNA-binding proteins fall into the categories of high

sequence specificity or general machineries. Rather, mRNA-

binding proteins exist on a continuum of specificity, ranging

from extremely selective to quite promiscuous. Many proteins

operate in the middle ground and bind to a range of sequences,

but not all mRNAs. Pumilio-domain-containing proteins are an

example of RNA-binding proteins with high specificity. These

domains typically bind to specific sequences of eight to ten

bases. In the middle of the spectrum, hnRNP A1 and other
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hnRNP family proteins bind a wide variety of targets but have a

discernable sequence preference (Burd and Dreyfuss, 1994;

Jean-Philippe et al., 2013). At the opposite end, having very little

sequence specificity are some of the DEAD-box helicases,

which rearrange a variety of mRNA substrates during central

processes of gene expression. For instance, eIF4A is thought

to rearrange the 50 UTR of most translating mRNAs to facilitate

ribosome binding and scanning. In vivo studies of model mRNAs

have shown little dependence on RNA sequence with a low affin-

ity varying between 1 and 2 mM (Lorsch and Herschlag, 1998;

Rajagopal et al., 2012).

What Determines the Composition of an mRNP?
Hundreds of proteins and RNAs bind to and regulate mRNAs.

How do these components build a complex mRNP structure?

We have found that all together, four inputs into eachmRNA-pro-

tein or mRNA-RNA interaction dictate the dynamic composition

of eachmRNP (Figure 4). Each interaction is dictated by the local

context of the binding site (including mRNA sequence and other

mRNP components), the cellular context (including local and

active concentrations), the deposition of mRNP components

during biogenesis, and transitions in mRNP composition and

structure as an mRNA matures.

Local Context

Local context is defined by the primary sequence and structure

of the mRNA, as well as the proteins and RNA molecules bound

to that mRNA. The local context is what determines the basic

affinity of an mRNA-binding factor for a region of an mRNA.

Since many mRNA-binding proteins and miRNAs recognize

sequence, the primary sequence of an mRNA is often a key fac-

tor in this interaction. Other mRNA features, such as the cap

structure and poly(A) tail, can also contribute.

Some RNA-binding proteins recognize structural features,

either predominantly or in addition to sequence. Yeast Rps28b

binds to a hairpin in the 30 UTR of its own mRNA, stimulating

mRNA decay by recruiting decapping factors (Badis et al.,

2004). Proteins with dsRNA-binding domains, such as Staufen,

are thought to bind to dsRNA regions primarily by recognizing

RNA shape, although dsRNA-binding proteins can be sequence

specific (Masliah et al., 2013).

Local context also includes nearby mRNP components, which

can increase the affinity of a binding site through protein-protein

interactions or inhibit binding via overlapping binding sites on the

RNA. For example, limiting Pum binding to some Drosophila

mRNAs reduces the binding of the interacting protein Nanos

(Figure 4A; Sonoda and Wharton, 1999). Several examples of

proteins competing for miRNA binding sites have been observed

(Jafarifar et al., 2011, and references therein). One well-charac-

terized example of such competition is the ability of the AU-

rich-element (ARE)-binding protein HuR to compete for miRNA

binding sites, located both directly at its recognition site and

nearby, through its polymerization activity (Kundu et al., 2012;

Mukherjee et al., 2011).

Cellular Context

Several observations argue that the binding of any protein or

ncRNA to an mRNA is dictated by both the concentration of

the binding component and the number of competing binding

sites. For example, increasing the cellular concentration of

Mpt5, a yeast Pumilio protein that regulates mRNA translation

and stability, leads to additional translational repression of its

target mRNA, HO. This suggests that all binding sites in the

HO mRNA are not saturated under normal cellular conditions

and that the level of saturation can be increased by increasing

levels of Mpt5 (Tadauchi et al., 2001). Similarly, the amount of

functional eIF4E is regulated by Tor signaling through the phos-

phorylation of eIF4E-binding proteins, thereby regulating the

function of eIF4E on mRNA (Sonenberg and Hinnebusch, 2009).

The ability of a factor to bind any site is influenced by its

competing sites in the transcriptome. This has been most clearly

demonstrated for miRNA binding sites. ncRNA ‘‘decoys’’ or

‘‘sponges’’ compete for miRNAs, reducing the number of

miRNAs bound to their target mRNAs and upregulating the

expression of those genes (Hansen et al., 2013; Memczak

et al., 2013). Moreover, binding sites for a factor can become

A B

C D

Kv1.1-encoding mRNA

Figure 4. Four Types of Input Regulate mRNP Composition
(A) Local context of an mRNP: shown here, Pum binds to NREs (Nanos [Nos]
response elements) and recruits Nos to a ternary complex with the mRNA. In
the absence of Pum, Nos does not bind.
(B) Cellular context: shown here, HuD does not bind to the Kv1.1-encoding
mRNA when other mRNAs with higher-affinity HuD binding sites are available.
When those mRNAs decay, HuD is released and binds the Kv1.1-encoding
mRNA.
(C) Deposition of mRNP factors during biogenesis: shown here, the poly-
adenylation factors CPSF andCstF are transferred from the C-terminal domain
of RNA polymerase II to the nascent RNA.
(D) mRNPs are remodeled during transitions between different states: shown
here, during the first round of translation, the force of the translocating ribo-
some removes proteins and ncRNA from the open reading frame.
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occupied once a competing site is degraded, as appears to be

the case with the CamKII-encoding mRNA in neurons, where

degradation of this and several other mRNAs releases the trans-

lational activator HuD to bind and regulate the Kv1.1-encoding

mRNA (Figure 4B) (Sosanya et al., 2013).

Posttranslational modifications can change mRNP structure

by altering the binding or function of RNA-binding proteins.

mRNA-binding proteins are known to undergo a variety of mod-

ifications, including phosphorylation, methylation, and ubiquiti-

nation, which can alter their affinity for mRNA or other proteins

(Thandapani et al., 2013; Zhou and Fu, 2013). Consequently,

the pool of free protein is not always equivalent to the pool

of available protein if a modification is needed to facilitate bind-

ing. This type of change can be used to regulate binding

globally or in specific regions of the cell. One example of

such regulation is the use of ‘‘phosphogradients’’ across a

cell to modulate mRNP structure by changing local concentra-

tions of active mRNA-binding proteins. This can be achieved by

differential localization of kinases and phosphatases. For

example, in the C. elegans embryo, a phosphogradient of the

RNA-binding protein Mex5 is created by localization of the

kinase Par-1 to the posterior cytoplasm. Phosphorylation of

Mex5 reduces mRNA-binding activity, leading to its release

from mRNP complexes. Because phosphorylated Mex5 is

released from large complexes, it diffuses faster, thus creating

an asymmetric accumulation of Mex5 in the anterior cytoplasm

(Griffin et al., 2011).

Recruitment of Factors during mRNA Biogenesis

mRNP components can be deposited onmRNAs during the pro-

cess of biogenesis. Some RNA-binding proteins are placed on

the mRNA through an interaction with the C-terminal domain

(CTD) of RNA polymerase II; the CTD consists of highly phos-

phorylated repeat sequences. Two such examples are polyade-

nylation factors CPSF and CstF, which interact with the CTD of

RNA polymerase II (Figure 4C). This interaction is required for

efficient mRNA 30 processing in vitro (Hsin andManley, 2012). In-

teractions with RNA polymerase II can also lead to the delivery of

sequence-specific mRNA-binding proteins. For example, She2

in yeast interacts with RNA polymerase II through Spt4 and

Spt5 and can then be transferred to mRNAs that have a She2

binding site (Shen et al., 2010). Because the components of

the polymerase complex are involved in mRNP assembly,

mRNP structure may be influenced by the identity of the DNA

promoter sequence, which can have downstream conse-

quences for the fate of the mRNA.

Other aspects of mRNA processing can also deposit specific

proteins on the mRNA. The process of polyadenylation is

thought to lead to the deposition of nucleophosmin upstream

of the polyadenylation site (Palaniswamy et al., 2006). Similarly,

the process of splicing delivers the exon junction complex

(EJC) to splice sites (Kataoka et al., 2000; Le Hir et al., 2000).

In mammalian cells, the EJC is known to play an important role

in quality control, as it remains bound to the mRNA during

export from the nucleus into the cytoplasm. The presence of

the EJC 30 to a stop codon indicates to the quality-control

machinery that it is a premature stop codon and that the

mRNA should undergo nonsense-mediated mRNA decay

(NMD) (Popp and Maquat, 2013).

The ability of a deposited protein or complex, such as the EJC,

to function at a downstream step relies on a tight interaction with

a slow off-rate; otherwise, it is unlikely to remain bound at the

downstream step. The EJC is clearly tightly bound in this manner

and does not freely dissociate from its boundmRNA (Le Hir et al.,

2000). Instead, it requires the force of translation, or the activity

of PYM, a cytoplasmic protein that interacts with the EJC, to

be removed from themRNA (Dostie and Dreyfuss, 2002; Gehring

et al., 2009).

The coupling of biogenesis and mRNP assembly can be

important for imprinting features onto an mRNP before it enters

the cytosol. For example, manymRNAs that are localized to spe-

cific subcellular regions are loaded in the nucleus with mRNP

components that both dictate their subcellular destination and

repress translation until the mRNA is properly localized (Shen

et al., 2010; Trcek and Singer, 2010).

The coupling of biogenesis and assembly may affect the spec-

ificity of mRNP-component binding in two manners. First, if only

specific mRNA-binding proteins are recruited to a particular

genomic locus, then the apparent specificity of binding to the

resulting mRNA will be enhanced. Alternatively, if an mRNA-

binding factor is recruited to a genomic locus, it might bind to

lower-affinity sites than it would in bulk solution as a result of

its higher local concentration. An understanding of how assem-

bly is coupled to biogenesis will be important in ultimately deter-

mining how mRNPs are structured.

Orchestrated Remodeling Events

As anmRNAmatures, it passes through stages common tomost

transcripts. Most mRNAs are transcribed and modified, spliced,

exported from the nucleus, possibly localized to a specific

cellular region, translated, and degraded (Figure 1). Each of

these transitions requires alterations in the mRNP. In addition,

mRNA-specific transitions can occur. For instance, upon locali-

zation to a site of active actin polymerization, b-actin-encoding

mRNA is released from the translation repressor ZBP1 when

this protein is phosphorylated by a localized kinase, initiating

b-actin translation (Hüttelmaier et al., 2005).

mRNPs are remodeled by several different mechanisms:

1. Proteins are released from mRNA through the activity of

localized modification complexes. For example, after the

yeast SR protein Npl3 is exported from the nucleus as

part of an mRNP, phosphorylation by the cytoplasmic

kinase Sky1 is required for its release from the mRNA

and reimport into the nucleus (Gilbert et al., 2001). Npl3 in-

teracts with the translation initiation factor eIF4G to

repress translation (Rajyaguru et al., 2012). Cytosolic

removal of this factor from an mRNA may facilitate trans-

lation initiation.

2. Proteins are released from mRNA through the activity of

DEAD-box ATPases. In one example, the DEAD-box

ATPase Dbp5 is associated with the cytoplasmic side of

the nuclear pore. Dbp5 releases the export factors

Mex67 and Nab2 from mRNA, ending the process of

export and releasing the mRNA into the cytoplasm (Lund

and Guthrie, 2005; Tran et al., 2007).

3. Proteins are bound to and removed from mRNPs on the

basis of different local availability. Once in the cytoplasm,
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the mRNP is exposed to cytosol-localized factors that can

bind to the mRNA. These factors include the cap-binding

protein eIF4E and other 50 proximal factors that promote

binding of the small ribosomal subunit, as well as the

ribosome itself. The cytoplasmic process of translation

also causes mRNP rearrangements, including removal

of proteins and ncRNAs from the open reading frame

(Figure 4D).

4. Some proteins are removed from cytoplasmic mRNPs by

the RAN-GTPase gradient, which imports proteins with a

nuclear localization signal and thus allows for exchange

with cytoplasmic proteins. The nuclear cap-binding com-

plex is removed from the mRNA by binding to importins,

which release the cap-binding complex from the mRNA

and promote reimport of the cap-binding complex to the

nucleus by interacting with the nuclear pore complex

and releasing the cap-binding complex in the nucleus via

the activity of nuclear-localized RAN-GTP (Görlich et al.,

1996). The cap of the newly exported mRNA is now avail-

able to bind eIF4E (Sato and Maquat, 2009).

5. An mRNP can also be remodeled through direct modi-

fication of mRNAby deadenylation, readenylation, uridiny-

lation, or base-specific modifications. These modifica-

tions can change the bound proteins and ultimately the

function of the mRNP. For example, the addition of a

poly(U) tail can stimulate 30-to-50 degradation by the

exonuclease Dis3L2, or in the case of histone mRNA,

decapping and decay (Malecki et al., 2013; Mullen and

Marzluff, 2008).

Modulation of mRNA Function by mRNP Components
A critical issue in mRNA regulation is how the proteins and

ncRNAs present in mRNPs influence mRNA biogenesis, func-

tion, and degradation. We have identified two general mecha-

A

B

mRNAs

mRNAs
mRNAs

Figure 5. mRNP Components Regulate
mRNA Function in Two Primary Ways
(A) Changes in components of core machineries
can alter the functions of specific mRNAs. Here,
due to the inhibitor eIF4E-binding protein, change
in the activity of eIF4E has a more significant
effect on some mRNAs than on others.
(B) Sequence-specific binding proteins can
regulate target mRNAs, often by recruiting com-
ponents of core machineries. Here, Cup and
Bruno are recruited to oskar mRNA by Bruno-
recognition elements (BREs) in the 30 UTR.

nisms by which the properties of individ-

ual mRNAs are regulated.

Differential Interactions with Core

Machineries

Individual mRNAs interact in different

manners with the core mRNA machin-

eries, which we define as those required

for essential steps in mRNA biogenesis,

function, and decay (Figure 1). Differen-

tial interactions between mRNAs and

core mRNA machineries occur because

the assembly of each core machinery involves a number of

different biochemical interactions and activities. Intrinsic mRNA

qualities, such as differences in sequence and structure, cause

individual mRNAs to interact with these machineries in unique

ways, although in each case the mRNA has to interact with the

machinery in a manner sufficient to allow function. A classic

example of such ‘‘nonconforming conformity’’ from a different

area of cell biology is that although all charged tRNAs bind

eF-Tu with similar affinity, the individual contributions of amino

acids and the tRNA backbone vary significantly (LaRiviere

et al., 2001). Similarly, different substeps in assembly or function

can be rate limiting for different mRNAs without creating signifi-

cant variation in the overall rate of the process (Koromilas et al.,

1992; Nissan and Parker, 2008). Binding to eIF4E (discussed in

detail below) is one such interaction. However, in some cases,

these differences dictate different overall output from individual

mRNAs. For example, mammalian mRNAs differ in the context

of the AUG codon, and this influences the efficiency with which

ribosomes enter translation and produce proteins (Kozak, 1989).

Given the differential interaction betweenmRNAs and the core

machineries, changes in the active concentration of core com-

ponents have both general and specific effects on gene expres-

sion. In this manner, modulation of general pathways can lead to

mRNA-specific regulation (Figure 5A). For instance, eIF4E is a

translation initiation factor that binds to the cap structure to

help recruit the ribosome to the 50 end of mRNAs. Overexpres-

sion of eIF4E has a particularly positive effect on translation of

those mRNAs with highly structured 50 UTRs (Koromilas et al.,

1992). Consistent with its ability to modulate the expression of

key genes, eIF4E is one of the most highly regulated mRNA-

binding proteins in the cell and is controlled by a variety of

signaling pathways, including that of the eIF4E-binding protein

family of inhibitors (Sonenberg and Hinnebusch, 2009). Whereas

these proteins cause a general reduction in translation, some
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genes, including several associated with autism, are more sensi-

tive to this mechanism than others (Figure 5A; Gkogkas et al.,

2013).

Sequence-Specific Regulation

A second mechanism of differential mRNA regulation is by the

sequence-specific binding of accessory proteins and/or ncRNAs

that either promote or inhibit the function of core machineries

(Figure 5B). An example of a sequence-specific mRNP compo-

nent that alters mRNA fate via core factors is miRNA. The

RISCmachinery recruited tomRNAs bymiRNA includes the pro-

tein GW182, which interacts directly with the Ccr4-Caf-Not and

Pan2-Pan3 deadenylation complexes (Braun et al., 2013). In this

way, miRNA binding recruits general deadenylases, stimulating

decay. ARE-binding proteins associate with core decapping,

exonuclease, and deadenylation factors to stimulate decay of

mRNAs with these sequences (Lykke-Andersen and Wagner,

2005). mRNA-specific binding proteins can also recruit core

machineries to stimulate translation. For example, HuD binding

to specific mRNAs can enhance their recruitment of the transla-

tion initiation factor eIF4A to mRNAs and thereby promote trans-

lation (Fukao et al., 2009).

Sequence-specific regulators can affect multiple steps in the

life of an mRNA, and such coupling of regulation can be required

for proper mRNA control. For example, during Drosophila devel-

opment, the protein Cup is recruited to oskar mRNA in a

sequence-dependent manner (via an interaction with Bruno);

there, it binds to eIF4E to inhibit translation (Figure 5B) (Naka-

mura et al., 2004). Cup also stimulates deadenylation of oskar

mRNA by recruiting the Ccr4-Caf-Not complex, further inhibiting

translation (Igreja and Izaurralde, 2011). Cup then stabilizes the

deadenylated mRNA via a noncanonical interaction with eIF4E,

presumably by strengthening the interaction of this protein with

the cap structure to inhibit decapping (Igreja and Izaurralde,

2011). In this way, Cup is able to inhibit translation without trig-

gering mRNA decapping. Similarly, many proteins can affect

RNA-processing events in the nucleus and then modulate trans-

lation, localization, and/or mRNA decay in the cytosol. For

example, HuR influences mRNA processing in the nucleus and

stability and translation in the cytoplasm (Mukherjee et al., 2011).

We hypothesize that sequence-specific binding proteins also

regulate mRNA function through direct modification of the core

machineries once recruited to the same mRNP (in cis). This is

analogous to the local chromatin modification due to the recruit-

ment of modification enzymes and is suggested by the observa-

tion that a number of mRNA-binding proteins, including kinases

(yeast protein Ste20) and ubiquitin proteases (yeast protein

Ubp3), have posttranslational modification activity (Baltz et al.,

2012; Castello et al., 2012; Mitchell et al., 2013; Tsvetanova

et al., 2010). In order to increase the specificity for modifying pro-

teins in the mRNP as opposed to unbound substrates, mRNA

binding might increase enzymatic activity of the modifier

(Figure 3B). As mentioned above, it has been shown that RNA

binding can activate enzymatic activity, as in the case of the

kinase PKR (Dabo and Meurs, 2012).

Sequence-specific binding proteins can also regulate a group

of mRNAs by directly altering the mRNA structure, thereby

changing the way in which these mRNAs interact with core

machineries. For example, cytoplasmic polyadenylation can

stimulate translation and increase mRNA stability and is an

important point of regulation in many biological processes,

including development, mitosis, and synaptic plasticity (Charles-

worth et al., 2013). It is generally thought that the addition of a

poly(A) tail stimulates translation through the binding of PABP

to the newly added tail and the formation of a closed-loop struc-

ture via the interaction between PABP and the cap-associated

factor eIF4G. Thus, the addition of a poly(A) tail most likely

changes which step is the rate-limiting step of translation initia-

tion, increasing the rate of translation. In Xenopus oocytes,

cytoplasmic polyadenylation element binding protein (CPEB)

recognizes a sequence located in the 30 UTR of dormant mRNAs

with shortened poly(A)-tails. CPEB recruits a cytoplasmic poly(A)

polymerase to these mRNAs, activating translation and facili-

tatingmaturation of Xenopus oocytes (Charlesworth et al., 2013).

For two reasons, sequence-specific regulators should not be

expected to affect all bound mRNAs. First, because individual

mRNAs have different rate-limiting interactions with core

machineries, a sequence-specific binding protein might alter a

step that is not rate limiting for an mRNA. Second, given that

binding sites for many factors are quite simple, it should be ex-

pected that new interactions are constantly forming and being

lost as a result of genetic mutations and that at any snapshot

in time, there are a number of nonfunctional interactions in the

mRNP interaction map.

Emergent Properties of the mRNP Interactome
The features of mRNPs and their interactions give rise to some

emergent properties that affect the biogenesis, function, and

degradation of eukaryotic mRNAs.

Higher-Order Assemblies: mRNP Granules

A conserved feature of mRNPs is that they can assemble into

higher-order structures as a result of the interaction and aggre-

gation domains of mRNA-binding proteins (Figure 6A). When

such assemblies are large enough to be visible in the light micro-

scope, they are referred to as mRNP granules, but similar struc-

tures are likely to form on smaller scales. These assemblies are

generally observed for mRNPs that are not engaged in transla-

tion. Examples include (1) RNA-transport granules, which are

prevalent in neurons and oocytes and are thought to play a

role in mRNA localization; (2) P-bodies, which contain translation

repressors and the mRNA decay machinery and are thought to

play a role in mRNA storage and degradation; and (3) stress

granules, which contain some translation initiation factors and

are thought to represent zones where mRNAs assemble a trans-

lation initiation complex (Buchan and Parker, 2009).

mRNP granules create a high local concentration of mRNAs

and mRNA-binding components. As such, the assembly of

mRNAs into these structures is likely to affect the rates and spec-

ificity of transitions in mRNP composition, as well as the acces-

sibility of mRNAs to the degradationmachinery. Sequestration of

mRNAs into granules can also limit their interactions with other

nongranule components.

Structure of Higher-Order mRNP Assemblies

Some features of the assembly and structure of mRNP aggre-

gates are known. First, granules are highly dynamic structures,

as measured by FRAP, suggesting that the interactions within

them are weak enough to allow for rapid exchange (Kedersha
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et al., 2005). Second, protein-protein interactions play an impor-

tant role in granule formation. Such interactions can include pro-

tein dimerization domains, as for Edc3 in the formation of yeast

P-bodies (Decker et al., 2007; Ling et al., 2008), as well as aggre-

gation domains, which are predicted to have a high probability

of beta-zipper formation by computational methods and are

concentrated in mRNA-binding proteins (Decker et al., 2007;

Kato et al., 2012; Li et al., 2013; Reijns et al., 2008). Such aggre-

gation domains have been shown to be important for stress

granule assembly in mammalian cells and for P-bodies in yeast

(Decker et al., 2007; Gilks et al., 2004; Reijns et al., 2008). More-

over, many RNA-binding proteins can self-aggregate when ex-

pressed either in vivo or in vitro (Alberti et al., 2009; Kato et al.,

2012; Kim et al., 2013). This suggests a working model in which

mRNPs assemble into larger structures in part through interac-

A

B

C

D

Figure 6. Emerging Themes in the mRNP
‘‘Interactome’’
(A) Higher-order assemblies of mRNPs form.
(B) Regulons of mRNAs encoding proteins of
related function are coordinately regulated by
the same mRNA-binding proteins. Shown here,
mRNAs that have mitochondrial-related function
are bound by Puf3.
(C) Ultrasensitivity is created when multiple mRNA
sequences are bound by the same protein or
ncRNA.
(D) Many different forms of quality control for
mRNAs exist. In these pathways, quality-control
factors either inhibit the rate of the normal forward
pathways or increase the rate at which the quality-
control reaction occurs. Simultaneously, binding
of mRNP factors for a competing metabolic step
increases the rate of that step, preventing suffi-
cient time for quality-control steps to occur.

tions between different mRNP compo-

nents that crosslink individual mRNAs

together.

Higher-order mRNP assemblies can

also be formed by RNA-binding proteins

that interact with two or more mRNAs at

the same time. For example, both Bruno

and PTB bind the 30 UTR of oskar mRNA

and can simultaneously interact with

multiple molecules of oskar (Besse et al.,

2009). This multimerization may con-

tribute to granule formation, given that a

mutant reducing the expression of PTB

has been shown to reduce the size of

oskar-silencing granules (Besse et al.,

2009).

mRNAs may play an active role in

higher-order assembly formation and/or

stabilization through direct intermolecular

base pairing. For example, the bicoid

mRNA forms an inter-mRNA loop-loop

interaction to create a Staufen binding

site (Ferrandon et al., 1997). Injection

of the 30 UTR of bicoid can cause

the formation of mRNA-protein granules

dependent upon this inter-mRNA interaction, supporting the

hypothesis that mRNA-mRNA contacts can stimulate higher-

order assembly formation (Ferrandon et al., 1997; Wagner

et al., 2001). Base-pairing interactions have the ability to alter

the contents of mRNP granules in two ways. First, some of these

base-pairing interactions are known to recruit proteins to the

mRNP, as for Staufen in the example above. Second, because

mRNA-mRNA base pairing is sequence specific, it could lead

to biases in the mRNA content of individual granules. mRNAs

that base pair may be likely to segregate into granuleswith a sub-

set of mRNAs that have complementary sequences.

mRNP Regulons

Another property of the mRNP interactome map is the emer-

gence of mRNP regulons, which are groups of mRNAs that are

coordinately regulated by one or more mRNA-binding proteins
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or miRNAs (Figure 6B). These functionally related and coregu-

lated sets of mRNAs are referred to as ‘‘regulons’’ in reference

to the bacterial operon, in which functionally related genes are

coordinately regulated by their location on the same transcript

(Keene, 2007). Such regulons are a consequence of mRNA reg-

ulators controlling groups of mRNAs and of mRNP proteins or

miRNAs being influenced by various signaling pathways. Thus,

changes in the abundance or modification status of mRNA-bind-

ing proteins or miRNAs can control a group of mRNAs with a

related biological role. One example of such a regulon is the con-

trol of mRNA stability and localization of mRNAs targeted to the

mitochondria by Puf3 (Figure 6B; Gerber et al., 2004; Olivas and

Parker, 2000; Saint-Georges et al., 2008).

Ultrasensitivity

An interesting feature of the mRNP interactome map is ultrasen-

sitivity to changes in the available pool of an mRNA-binding

component (ultrasensitivity is defined as a nonlinear occupancy

increase relative to a change in intracellular concentration of the

binding partner). Ultrasensitivity in this case is due to the fact that

there are a number of different binding sites for mRNP compo-

nents. These various binding sites have different levels of occu-

pancy depending on their particular affinities and cellular

concentrations. Once a tight binding site has been saturated

by a protein, increases in the levels of this protein cause greater

than linear changes in the occupancy of a lower-affinity site that

was previously unoccupied (Figure 6C; Zhang et al., 2013). The

high-affinity site no longer competes with the lower-affinity site

for binding, allowing for binding to increase to a greater amount

than the increase in concentration of the binding protein. Thus, a

single protein can bind to a variety of binding sites under various

conditions, and this variety can lead to tight regulation of

function and a regulatory output that is determined by the overall

transcriptome.

Two examples of ultrasensitivity due to this type of ‘‘molecular

titration’’ have been suggested to occur at the level of mRNA

regulation (Zhang et al., 2013). Modeling suggests that most

mRNAs are ultrasensitive to changes in the concentration of

ribosomes (De Vos et al., 2011). Single-cell studies of miRNA

regulation found that when miRNA binding sites are not satu-

rated, they are highly sensitive to changes in concentration of

available miRNA and miRNA binding sites (Mukherji et al., 2011).

Quality Control

Quality control exists at many of the central steps of mRNA func-

tion. For example, pre-mRNAs that fail to complete the first or

second step of pre-mRNA splicing are degraded by both nuclear

and cytoplasmic decay mechanisms (Harigaya and Parker,

2012; Hilleren and Parker, 2003; Volanakis et al., 2013). Similarly,

mRNAs that are defective in various aspects of translation are

preferentially degraded (Mitchell and Tollervey, 2001). The

earliest identified translation-dependent quality-control pathway

is NMD, which disposes of mRNAs with premature stop codons

(Popp and Maquat, 2013). Moreover, quality-control systems

exist for the destruction of mRNAswithout stop codons (nonstop

decay), with inefficient signal sequences, and with paused trans-

lation (no-go decay) (Doma and Parker, 2007).

Two properties of themRNP interactome create inherent qual-

ity-control systems that preferentially degrade nonfunctional

mRNAs. First, quality-control systems are an inherent property

of the competing activities of mRNA-binding proteins that lead

to different outcomes for the mRNA (Figure 6D). For example,

competition between the NMD quality-control factor Upf1 and

translation termination factors at translation stop codons is

thought to play a role in triggering NMD (Popp and Maquat,

2013). Similarly, competition between Ago2 and the signal

recognition particle binding to signal sequences has been pro-

posed to play a role in triggering the decay of mRNAswith defec-

tive signal sequences during the translation of secreted proteins

(Karamyshev et al., 2014). Second, quality-control systems are

reinforced by the coupling of steps in the mRNA biogenesis

pathway. Specifically, whenever an upstream event in mRNA

biogenesis loads a positive factor for a downstream event, the

presence of this factor enhances the downstream event at

the expense of any competing quality-control pathway. For

example, proper poly(A) tail addition facilitates mRNA export,

whereas hypo- or hyperadenylation slows export, allowing for

the nuclear exosome to dispose of the aberrant message (Hille-

ren et al., 2001). Similarly, when an upstream event removes a

factor that promotes a downstream quality-control step, failure

to complete an upstream event, as signaled by the remaining

factor, triggers quality control. For example, in mammalian cells

the EJC is loaded on the mRNA during splicing and must be

removed by translation elongation so that the NMD quality-con-

trol pathway does not trigger mRNA degradation (Popp and

Maquat, 2013).

Four Unresolved Issues
Eukaryotic mRNPs are a complex assembly of proteins and

RNAs whose composition is affected by the cellular context of

the cell and the dynamic history of anmRNA’s life. We have iden-

tified four major issues that remain to be resolved to allow a fuller

understanding of the mechanisms and regulation of eukaryotic

mRNPs. For example, it will be of interest to understand how

the higher-order assembly of mRNPs into mRNP granules such

as P-bodies, RNA-transport granules, and stress granules

affects the specificity and control of gene expression.

A second key challenge is to understand the dynamics of

mRNP assembly and exchanges. Currently, essentially nothing

is known about the dynamics of mRNPs in cells. How often do

proteins vacate mRNA binding sites? Are transient, unstable in-

teractions a major component of mRNP structure, and if so, can

they influence function? Are off-rates slow enough that proteins

deposited on mRNA during biogenesis remain bound until the

time of mRNA decay? If off-rates are this slow, does that indicate

that many mRNPs do not have the opportunity to reach thermo-

dynamic equilibrium but are instead composed of low-stability

interactions that are kinetically trapped? Both in vitro and in vivo

characterization of mRNP dynamics will be required for under-

standing what role kinetics plays in establishing the structure

of mRNPs.

A third issue, related to the dynamics of mRNPs, is to under-

stand the diversity of mRNPs, both from an individual gene

and between different genes. Since a given transcript can pro-

duce different alternatively spliced forms, which are the output

of different assembledmRNPs, it is self-evident that an individual

gene can produce multiple different mRNPs. If mRNP composi-

tion is often kinetically determined, we should anticipate that
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variation in initial assembly reactions can yield a diversity of

different mRNPs from a single transcription unit; this might

have downstream consequences for multiple regulatory fates

of individual mRNAs from a single gene. Conversely, if mRNP

composition is thermodynamically controlled and mRNPs are

in equilibrium with free proteins, then any initial variation in

assembly should be lost over time as the mRNP approaches

equilibrium. A related issue is how much mRNP composition

varies between different genes. Given the diversity of compo-

nents, it could be that every mRNP is essentially unique. Alterna-

tively, there could be subtypes, and many mRNPs from different

genes could have related and highly similar composition, which

would eventually be revealed as more data on each mRNP

component and its mRNA targets accumulate.

A final challenge is to understand how the fate of an mRNA is

dictated by a particular assembly of associated proteins and

ncRNAs. On one extreme, each mRNP component could act

independently, and the informational output of the mRNP would

be a simple summation of the effects of each individual compo-

nent. Alternatively, individual mRNP components are likely to

synergize, or antagonize, the functions of each other, thereby

giving more complex outputs dependent on the specific compo-

sition. Thus, gaining insight into the functional interactions

between different mRNP components when in cis on an mRNA

will be needed for reliably predicting the output from mRNP

compositions.
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