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From Dyck paths to standard Young tableaux

Juan B. Gil, Peter R. W. McNamara, Jordan O.
Tirrell and Michael D. Weiner

Abstract. We present nine bijections between classes of Dyck paths and
classes of standard Young tableaux (SYT). In particular, we consider
SYT of flag and rectangular shapes, we give Dyck path descriptions for
certain SYT of height at most 3, and we introduce a special class of
labeled Dyck paths of semilength n that is shown to be in bijection with
the set of all SYT with n boxes. In addition, we present bijections from
certain classes of Motzkin paths to SYT. As a natural framework for
some of our bijections, we introduce a class of set partitions which in
some sense is dual to the known class of noncrossing partitions.

Mathematics Subject Classification (2010). 05A19 (Primary); 05A05 (Sec-
ondary).

Keywords. Dyck path, standard Young tableau, partial matching, in-
creasing Young tableau.

1. Introduction

Dyck paths and standard Young tableaux (SYT) are two of the most central
sets in combinatorics. Dyck paths of semilength n are perhaps the best-known
family counted by the Catalan number Cn, while SYT, beyond their beautiful
definition, are one of the building blocks for the rich combinatorial landscape
of symmetric functions.

Despite their very different definitions, there are interesting connections
between Dyck paths and SYT, led by the elegant bijection between Dyck
paths of semilength n and SYT of shape (n, n): for 1 ≤ j ≤ 2n, if the jth
step in the Dyck paths is an up-step (resp. down-step), then put the entry j
in the first (resp. second) row of the SYT. We propose that this bijection is
just the tip of the iceberg by establishing a large number of other bijections
between subsets of Dyck paths and subsets of SYT, as we elaborate below.

First, though, let us mention some results of this type from the lit-
erature. Pechenik [19] generalized the above bijection to the sets of small

Peter McNamara was partially supported by grant #245597 from the Simons Foundation.
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Schröder paths (steps of (2,0) allowed) and increasing tableaux (as defined in
Remark 2.6 below). In a different direction, Regev [20] showed that the num-
ber of Motkzin paths (steps of (1,0) allowed) of length n equals the number
of SYT with n boxes and at most three rows, a result that was later proved
bijectively by Eu [9]. This result was generalized to SYT with at most 2d+ 1
rows for any d ≥ 1 by Eu et al. [10]. In [14], Gudmundsson showed bijectively
that for d = k + p, the class of Dyck paths of semilength n that begin with
at least k successive up-steps, end with at least p successive down-steps, and
touch the x-axis at least once somewhere between the endpoints, is equinu-
merous with the class of SYT of shape (n, n− d). Most recently, Garsia and
Xin [13] gave a bijection between rational Dyck paths and a particular class
of rectangular standard Young tableaux.

Expanding on these results, in this paper we present 10 bijections from
classes of Dyck and Motzkin paths to classes of SYT. In particular, we look
at SYT of hook, flag, and rectangular shape, and we introduce an interesting
class of labeled Dyck paths of semilength n that is shown to be equinumerous
with the set of SYT with n boxes. Some of the bijections discussed here are
basic, and some are minor variations of known bijections. Nonetheless, we
include them all to illustrate our approach and to provide a broader picture
of how these combinatorial families interact.

Our first group of bijections share a common step, which is a bijective
map ϕ from Dyck paths to a class of set partitions that we call nomincreasing
partitions. We say that a set partition of [n] = {1, . . . , n} is nomincreasing if,
when written in standard form, the elements which are not minimal in their
block form an increasing sequence. For example, the partition 1237|48|5|69 is
nomincreasing because 23789 is increasing. On the other hand, the partition
1239|48|5|67 is not nomincreasing since 23987 is not increasing. The definition
of ϕ together with some properties of nomincreasing partitions will appear
at the beginning of Section 2, followed by our first three bijections:

(1) As a basic example of ϕ in action, we give a bijection (Prop. 2.1) from
Dyck paths of semilength n with k peaks and k returns to SYT of hook
shape (k, 1n−k). Clearly, both of these sets have cardinality

(
n−1
k−1
)
.

(2) Much more interestingly, we give a bijection (Prop. 2.3) from Dyck paths
of semilength n with k peaks and no singletons to SYT of flag shape
(k, k, 1n−2k). A singleton in a Dyck path is an ascent of length 1.

(3) Using a result from [3], the SYT of flag shape (k, k, 1n−k) are equinu-
merous with Dyck paths of semilength 2n with k peaks and all ascents
of even length such that an ascent of length 2j is followed immediately
by a descent of length at least j. This result (Prop. 2.7) is proved using
our bijection from (2) above.

In Section 3, we consider tableaux with at most three rows and present
the bijections numbered (4)–(7) below. The first two bijections make use of
the map ϕ, while the last two use modified versions of the classical bijection
from Dyck paths to SYT of shape (n, n).
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(4) We give a new bijective proof (Prop. 3.1) that the number of Dyck paths
of semilength n that avoid three consecutive up-steps equals the number
of SYT with n boxes and at most 3 rows. In addition, this bijection maps
Dyck paths with s singletons to SYT with s columns of odd length.

(5) As a special case (Rem. 3.2) of the previous bijection, we get that SYT
of shape (n, n, n) correspond to Dyck paths of semilength 3n that avoid
three consecutive up-steps, have exactly n singletons, end with U2D` for
some ` ≥ 2, and such that every subpath starting at the origin has at
least as many 1-ascents as 2-ascents. Here and elsewhere, U (resp. D)
denotes an up-step (resp. down-step).

(6) We already mentioned the result of Gudmundsson involving SYT of
shape (n, n− d). We show (Prop. 3.4) that for 0 ≤ d ≤ n, SYT of shape
(n, n − d) are in bijection with Dyck paths of semilength n + 1 having
exactly d+ 1 returns.

(7) The number of tableaux of shape (n, n) with label set {1, . . . , 2n − k}
such that the rows are strictly increasing and the columns are weakly
(resp. strictly) increasing are known to be enumerated by the large
Schröder numbers [18, A006318] (resp. small Schröder numbers [18,
A001003]). We show (Prop. 3.5) that these are in bijection with the
number of Dyck paths of semilength n with k marked peaks (resp. val-
leys).

In Section 4, we present a more elaborate variation of Dyck paths. In
[1], Asinowski and Mansour consider Dyck paths whose k-ascents are them-
selves “colored” by Dyck paths of length 2k, for all k. We consider labels
on the ascents of a similar flavor in that we color the ascents with connected
matchings, an example of which is shown in Fig. 4.1. We call such Dyck paths
cm-labeled Dyck paths.

(8) The number of cm-labeled Dyck paths of semilength n with s singletons
and k-noncrossing labels equals the number of SYT with n boxes, s
columns of odd length, and at most 2k − 1 rows. This bijection relies
heavily on a bijection of Burrill et al. [5]. As a corollary (Cor. 4.3), we
get that the number of cm-labeled Dyck paths of semilength n equals
the number of SYT with n boxes.

Generalizing the above class of SYT of shape (n, n, n), in Section 5
we consider SYT of shape (nd) and use a result of Wettstein [25] to connect
them with Dyck paths of semilength d ·n whose ascents are labeled by certain
balanced bracket expressions over an alphabet with d letters.

(9) The set of SYT of shape (nd) is in bijection with the set of Dyck paths
of semilength d · n created from strings of the form D and Ud·jD for
j = 1, . . . , n, and such that each d ·j-ascent may be labeled in pj dif-
ferent ways, where (pn) is the sequence of d-dimensional prime Catalan
numbers.

Given Corollary 4.3, it is natural to ask for other sets of paths that are
in bijection with the full set of SYT with n boxes. In Section 6, we present

https://oeis.org/A006318
https://oeis.org/A001003
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three classes of Motzkin paths with such a bijection. See Proposition 6.1 for
the definitions. In each case, the number of flat steps s in the Motzkin path
equals the number of columns of odd length in the tableau.

(10) The following classes of Motzkin paths with n steps are in bijection with
the set of SYT with n boxes.
(a) Height-labeled Motzkin paths, whose bijection to SYT is somewhat

well known.
(b) Full rook Motzkin paths. In the case of Dyck paths (s = 0), see

[7, 11, 12, 16].
(c) Yamanouchi-colored Motzkin paths, for which a different bijection

to the one we use is given by Eu et al. [10].

We conclude in Section 7 with several remarks. We put some of our
bijections in a more general framework of maps between Dyck paths and re-
stricted set partitions, thereby explaining the assertion in the abstract about
the duality between nomincreasing and noncrossing partitions. After a brief
discussion of the noncrossing partition transform, we obtain an elegant ex-
pression for the generating function for SYT of height at most 2k−1 in terms
of the generating function for k-noncrossing perfect matchings.

2. Dyck paths to SYT of hook and flag shape

In this section, we will discuss several bijections between Dyck paths with
certain restrictions and SYT of special shapes. We start by defining a bijective
map from the set of Dyck paths of semilength n to the set of nomincreasing
partitions of [n] that serves as a unifying feature of several of these bijections.
Specifically, we let

ϕ : Dyck(n)→ Partnmi(n) (2.1)

be defined as follows:

◦ From left to right, number the down-steps of the Dyck path with [n] in
increasing order.
◦ At each peak UD, label the up-step with the number already assigned

to its paired down-step.
◦ Going through the ascents from left to right, label the remaining up-

steps from top to bottom on each ascent in a greedy fashion.
◦ The resulting labeling gives a nomincreasing partition of [n] whose

blocks are the labels on the ascents.

For example, the path in Fig. 2.1 gives the partition 1237|48|5|69. As in
Fig. 2.1, we will represent such a partition by a tableau-like array where the
column entries are increasing from top to bottom and give the blocks of the
partition while the top row is also increasing and contains the smallest entry
from each block; when such an array comes from a nomincreasing partition,
we call it a modified tableau.

Note that the difference of the smallest entries in two consecutive blocks
is the number of down-steps between the corresponding ascents on the path.
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Figure 2.1. Example of the map ϕ, where the columns of
the array on the right are the blocks of the resulting nomin-
creasing partition.

Finally, given a partition B1| · · · |B` of [n] with 1 = b1 < · · · < b` where
bi = min(Bi), the reverse map is exactly

U#B1Db2−b1U#B2Db3−b2 · · ·U#B`−1Db`−b`−1U#B`Dn+1−b` . (2.2)

We will modify ϕ to obtain bijections between certain Dyck paths and SYT.

Hook shapes

We begin with a “warm up” example for the use of ϕ. An SYT is said to
be of hook shape if its shape is (k, 1`) for some k and `, where 1` denotes
a sequence consisting of ` copies of 1. A Dyck path of semilength n with
k peaks and k returns is a Dyck path of the form Uj1Dj1 · · ·UjkDjk with
j1 + · · · + jk = n. There are

(
n−1
k−1
)

such paths, which is also the number of

SYT of shape (k, 1n−k). To demonstrate the use of ϕ, we give a bijective
proof of this equinumerosity.

Proposition 2.1. For 1 ≤ k ≤ n, Dyck paths of semilength n with k peaks and
k returns are in bijection with SYT of shape (k, 1n−k).

Proof. Given a Dyck path of the form Uj1Dj1 · · ·UjkDjk with j1+· · ·+jk = n,
we apply the map ϕ to get the partition

1, . . . , j1 | j1 + 1, . . . , j1 + j2 | · · · | n− jk + 1, . . . , n,

which can be represented as a modified tableau. We then obtain an SYT of
hook shape by pushing all the boxes below the first row into the first column.
For example,

ϕ 1

2

3 4

5

6

1

2

5

6

3 4

.

For the inverse, let a1, a2, . . . , ak be the entries of the first row of a given
SYT of shape (k, 1n−k). Move the boxes that appear below the first row to the
unique place such that the modified tableau T has columns with increasing
consecutive entries. The length of column i in T is then the length of the ith
ascent (from left to right) on the Dyck path, which uniquely determines a
Dyck path with k peaks and k returns. �

Corollary 2.2. The number of Dyck paths of semilength n with as many peaks
as returns equals the number of SYT of hook shape with n boxes.
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Flag shapes

We next consider results related to SYT of shape (k, k, 1n−2k), which we will
refer to as SYT of flag shape. Using the hook-length formula, one can check
that the number of such tableaux is

1

n+ 1

(
n+ 1

k

)(
n− k − 1

k − 1

)
. (2.3)

For a fixed integer k ≥ 1, Stanley [23] gave a bijection from dissections of
an (n−k+2)-gon using exactly k−1 diagonals to SYT of shape (k, k, 1n−2k).
We will give a bijection that extends this to the Dyck path setting. Analogous
to the way that Narayana numbers refine Catalan numbers by considering
the number of peaks, we get the following result.

Proposition 2.3. For 1 ≤ k ≤ bn2 c, Dyck paths of semilength n with k peaks

and no singletons are in bijection with SYT of shape (k, k, 1n−2k).

Proof. We present the bijection using the illustrative example:

.

We apply the map ϕ to a Dyck path of semilength n with no singletons and
represent the resulting partition of [n] as a modified tableau:

1

2

4

3

5

6

7

9

10

8

11 .

The SYT of flag shape is then produced by pushing all the boxes below the
second row into the first column:

1

2

4

9

10

3

5

6

7

8

11
.

Conversely, given an SYT of shape (k, k, 1n−2k), let us call the entries
of the first row a1, a2, . . . , ak from left to right, and let us use b1, b2, . . . , bk
for the entries in the second row. We rearrange the boxes below the second
row by moving the box containing the number j into the unique column i
whereby bi < j < bi+1 (where we let bk+1 = n+ 1), thus yielding a modified
tableau. Applying ϕ−1 completes the inverse map. �
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Summing over k = 1, . . . , bn2 c, we recover two manifestations of the
sequence [18, A005043] of “Riordan numbers.”

Corollary 2.4. The number of Dyck paths of semilength n without singleton
ascents equals the number of SYT of flag shape with n boxes.

Remark 2.5. Note that, letting n = 2k in Proposition 2.3, we obtain that the
Catalan number Ck equals the number of Dyck paths of semilength 2k with
k peaks and no singletons, an apparently new1 interpretation of the Catalan
numbers.

Remark 2.6. There is a less direct way to construct a bijection that proves
Proposition 2.3 using results already in the literature. An increasing tableau
is a semistandard Young tableau whose rows and columns are strictly in-
creasing and the set of entries is an initial segment of the positive integers. In
[19], Pechenik gives a bijection from SYT of shape (k, k, 1n−2k) to increasing
tableaux of shape (n− k, n− k) whose maximum entry is at most n. He also
provides a bijection from such increasing tableaux to noncrossing partitions
of n into k blocks each of size at least 2. There is a well-known bijection
between these noncrossing partitions and Dyck paths of semilength n with k
peaks and no singletons, as required.

Another connection between Dyck paths and SYT of flag shape begins
with a result from [3]. A special case of the Dyck paths considered there is the
set Dn(1, 1), which denotes the set of Dyck paths of semilength 2n created
from strings of the form D and U2jDj for j = 1, . . . , n. In [3, Theorem 3.5],
the number of such Dyck paths with exactly k peaks is shown to be

1

k

(
n+ k

k − 1

)(
n− 1

k − 1

)
=

1

n+ k + 1

(
n+ k + 1

k

)(
n− 1

k − 1

)
.

This is exactly the number of SYT of shape (k, k, 1n−k), cf. (2.3). Thus we
have:

Proposition 2.7. For 1 ≤ k ≤ n, Dyck paths in Dn(1, 1) with k peaks are in
bijection with SYT of shape (k, k, 1n−k).

Example 2.8. For n = 2, the three elements of D2(1, 1) are

and the three SYT are

1
2
3

1 3
2 4

1 2
3 4

.

1 At least this interpretation does not appear among the 214 interpretations in [22].

https://oeis.org/A005043
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Here is a bijective proof of Proposition 2.7: starting with an element of
Dn(1, 1) with k peaks, replace each building block U2jDj by Uj+1D to obtain
a Dyck path of semilength n+k with k peaks and no singleton ascents. Then
apply the bijection from Proposition 2.3.

Remark 2.9. Note that in the case k = n of Proposition 2.7, we have yet an-
other (presumably new) interpretation of the Catalan numbers as the number
of Dyck paths of semilength 2n with exactly n peaks and all ascents of even
length such that an ascent of length 2j is followed by a descent of length at
least j.

3. Dyck paths to SYT of height at most 3

It is known that SYT with n boxes and at most 3 rows are in one-to-one
correspondence with the set of Motzkin paths of length n (see [20] and [9]),
enumerated by the sequence [18, A001006]. On the other hand, Motzkin paths
of length n are in bijection with Dyck paths of semilength n that avoid three
consecutive up-steps. In other words, we have the following correspondence
that we will prove here bijectively using the map ϕ.

Proposition 3.1. The number of Dyck paths of semilength n that avoid three
consecutive up-steps equals the number of SYT with n boxes and at most 3
rows.

Proof. Let D be a Dyck path of semilength n having m peaks and avoiding
three consecutive up-steps. We apply ϕ from (2.1) to D and call the columns
of the corresponding modified tableau v1, . . . , vm, where each v` is of the
form [x`] or

[
x`

y`

]
. If the modified tableau is an SYT, we are done. If not, we

repeatedly apply the following algorithm until an SYT is obtained:

◦ Let j be the index of the leftmost column of length 1 and let vk be the
first column of length 2 to the right of vj . If j = 1, let y0 = 0. Empty
column k according to the following rules.
◦ If xk > yj−1, place yk in the third row and move xk to the second row

of column j so that yj = xk.
◦ If xk < yj−1, let i be the largest index such that yi < xk, or set i = 0

if no such yi exists. We then place yi+1 in the third row, move xk to
yi+1’s previous position, and move yk to the second row of column j so
that yj = yk.
◦ Slide the new element in the third row to the left as much as possible,

and fill column k by shifting to the left all columns vi with i > k.

Since the elements in the third row all come from the second row, and we
are placing them in increasing order, the algorithm is guaranteed to create
an SYT of height at most 3.

For example,

https://oeis.org/A001006
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1

2

3

4

8

5

6

9

7

ϕ
1

3

2 4

8

5 6

9

7

x2 > y0 : 1

3

2 4

8

5 6

9

7
1

2

3

4

8

5 6

9

7

x4 < y2 : 1

2

3

4

8

5 6

9

7 1

2

3

4

6

8

5

9

7

The above algorithm can be reversed. Let T be an SYT of height at
most 3 with n boxes and columns v1, v2, . . . , vm. Thus each v` is of the form

[x`],
[
x`

y`

]
, or

x`y`
z`

.

If T has height 3, slide the elements of the third row to the right as much
as possible subject to the restriction that the columns must have increasing
entries. Then repeatedly apply the algorithm below until there are no more
columns of length 3.

◦ Let j be the index of the rightmost column of length 3, and let k be the
largest index such that xk < yj . Note that, by definition, the entry zj
must be smaller than any existing yi with i > j.
◦ Shift the columns vk+1, vk+2, . . . to the right (vi → vi+1 for all i ≥ k+1).
◦ If k = j or if vj+1, . . . , vk are all columns of length 1, then insert

[
yj
zj

]
as

the new column vk+1, removing yj and zj from their previous positions.
◦ If k > j and if v` is the rightmost column of length 2 with j+1 ≤ ` ≤ k,

then let vk+1 =
[
yj
y`

]
, removing yj and y` from their previous positions,

and move zj to yj ’s previous position. Thus the modified columns vj
and v` have lengths 2 and 1, respectively.

Finally, given a tableau with two rows and m columns (standard or
modified), we apply ϕ−1 to yield a Dyck path of the appropriate type. �

Remark 3.2. The above bijection maps Dyck paths with s singletons to SYT
with s columns of odd length. Also, it is not hard to see that SYT of shape
(n, n, n) correspond to Dyck paths of semilength 3n that avoid three consec-
utive up-steps, have exactly n singletons, end with U2D` for some ` ≥ 2, and
such that every subpath starting at the origin has at least as many 1-ascents
as 2-ascents. We denote this class of special Dyck paths by D3cat(n).

For example, if n = 2, there are five such SYT:
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1 2
3 4
5 6

1 2
3 5
4 6

1 3
2 4
5 6

1 3
2 5
4 6

1 4
2 5
3 6

corresponding to the five paths in D3cat(2):

.

Proposition 3.3. The set of SYT of shape (n, n, n) is in bijection with the
set of Dyck paths in D3cat(n). By the hook-length formula, these sets are
enumerated by

2(3n)!

n!(n+ 1)!(n+ 2)!
,

which is the sequence [18, A005789] of 3-dimensional Catalan numbers.

Tableaux with two rows

In the remaining part of this section, we modify the classic bijection between
Dyck paths and standard Young tableaux of shape (n, n) to describe SYT of
shape (n, n− d) and some nonstandard tableaux of shape (n, n).

In [14], Gudmundsson studies certain families of Dyck paths, SYT, and
pattern avoiding permutations. The main result in [14] related to our work
is the following theorem for which the author provides a bijective proof.

Theorem ([14]). Let d = k + p. The class of Dyck paths of semilength n that
begin with at least k successive up-steps, end with at least p successive down-
steps, and touch the x-axis at least once somewhere between the endpoints is
equinumerous with the class of SYT of shape (n, n− d).

Here is a different connection with the same class of SYT.

Proposition 3.4. For 0 ≤ d ≤ n, Dyck paths of semilength n+1 having exactly
d+ 1 returns are in bijection with SYT of shape (n, n− d).

The bijection is defined as follows. Given a Dyck path of semilength
n+ 1 with exactly d+ 1 returns, number each step from left to right ignoring
the first up-step and skipping every down-step that touches the x-axis. Then
create the SYT of shape (n, n − d) by placing the labels of the n up-steps
in the first row and the labels of the n− d labeled down-steps in the second
row. For example:

1

2 3

4 5 6

7

8 9

10

1 2 5 7 8 10

3 4 6 9
.

https://oeis.org/A005789
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We leave the checking that this map is indeed bijective as a nice exercise.
As a final example involving SYT with 3 or fewer rows, by placing

markings on peaks UD (or valleys DU) of the Dyck paths, we obtain a class
enumerated by the large (resp. small) Schröder numbers. A similar result
involving Schröder paths can be found in Pechenik [19].

Proposition 3.5. The number of Dyck paths of semilength n with k marked
peaks (resp. valleys) equals the number of tableaux of shape (n, n) with label
set {1, . . . , 2n− k} such that the rows are strictly increasing and the columns
are weakly (resp. strictly) increasing.

Adding over k, these are known to be enumerated by the large Schröder
numbers [18, A006318] (resp. small Schröder numbers [18, A001003]). In the
first case, where the columns are weakly increasing, the tableau is the trans-
pose of a semistandard Young tableau. In the second case, where the columns
are strictly increasing, such a tableau is called an increasing tableau.

As in the classical bijection, we read our Dyck path from left-to-right,
and insert a box in the first row for an unmarked up step and in the second
row for an unmarked down step. When we encounter a marked peak or valley,
we insert a box in both rows simultaneously. For example:

1

2 3 4

5 5 6 7

8

9 10 10

1

3

2

5

4

7

5

8

6

9

10

10
.

To obtain tableaux with rows strictly increasing, we must avoid peaks
at starting height zero. An alternative way to achieve this is is to use valleys
instead, which never start at height zero. For example:

1

2 3 3

4 5 6 7

8

9 9 10

1

3

2

5

3

7

4

8

6

9

9

10
.

It is clear that these maps have well-defined inverses.

4. cm-Labeled Dyck paths to SYT

As already mentioned, it is well-known that the full set of Dyck paths of
semilength n is in bijection with the set of SYT of shape (n, n), and we
have seen several bijections from classes of Dyck paths to classes of SYT.
Focusing now on the full set of SYT with n boxes and no shape restriction,
in this section we address the following question: Is there a class of Dyck
paths that is in bijection with the set of SYT with n boxes? Our answer,
which is summarized in Corollary 4.3, involves labeled Dyck paths, connected
matchings, noncrossing partitions and nonnesting partitions.

https://oeis.org/A006318
https://oeis.org/A001003
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Figure 4.1. A cm-labeled Dyck path.

We start by describing the combinatorial objects involved in our results.
A graph on the set [n] = {1, 2, . . . , n} is a partial matching if every vertex
has degree at most one. We will also refer to such graphs as involutions
since they are clearly in bijection with self-inverse permutations of [n]. We
will call vertices of degree zero singletons. A partial matching is a perfect
matching if every vertex has degree exactly one; note that the existence of a
perfect matching implies that n is even. We will represent partial matchings
by graphs on the number line with the edges drawn as arcs, with these arcs
always drawn above the number line, as in Fig. 4.2. A partial matching is a
connected matching if these arcs together with the n points on the number
line form a connected set as a subset of the plane. For example, in Fig. 4.2,
the matching on the left is connected whereas the matching on the right has
four connected components. Note that a partial matching on [n] with n > 1
can only be connected if it is a perfect matching. When n = 1, we consider
its unique partial matching (consisting of no arcs) to be connected.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 4.2. The partial matchings (1 5)(2 8)(3 6)(4 7) and
(1 6)(2 3)(4)(5 7)(8).

Definition. A cm-labeled Dyck path is a Dyck path where each k-ascent is
labeled by a connected matching on [k] (see Fig. 4.1 for an example).

First note there are no connected matchings on [k] when k is odd and
greater than 1, so all the ascents in a cm-labeled Dyck path must be of even
length or length 1. Secondly, a cm-labeled Dyck path all of whose ascents
are length 1, 2 or 4 is equivalent to its unlabeled version since there is a
unique connected matching on [k] when k = 1, 2, 4. The first interesting case
is when a Dyck path has 6-ascents, because then there are 4 ways to label
each 6-ascent:

.
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In a partial matching, two arcs (i, j) and (k, `) form a crossing if i <
k < j < ` or, equivalently, if the arcs cross in the graphical representation
of the partial matching. A k-crossing is a set of k arcs in a partial matching
M that are pairwise crossing, and the crossing number of M is the largest k
such that M has a k-crossing. A partial matching is k-noncrossing if it has
no k-crossings. For example, the partial matching (1 5)(2 8)(3 6)(4 7) on the
left in Fig. 4.2 is 4-noncrossing and has crossing number 3 due to the arcs
(1 5)(3 6)(4 7).

Analogously, two arcs (i, j) and (k, `) form a nesting if i < k < ` < j. A
k-nesting is a set of k arcs in a partial matching that are pairwise nesting, with
the nesting number and k-nonnesting defined in a way parallel to the analo-
gous terms for crossings. For example, the partial matching (1 5)(2 8)(3 6)(4 7)
above is 3-nonnesting and has nesting number 2 due to the arcs (2 8)(3 6) or
(2 8)(4 7).

Our bijection relies heavily on the following result of Burrill et al. [5,
Proposition 12].

Proposition 4.1 ([5]). The following classes are in bijection:

(i) the set of k-noncrossing partial matchings on [n] with s singletons;
(ii) the set of k-nonnesting partial matchings on [n] with s singletons;

(iii) the set of involutions on [n] with decreasing subsequences of length at
most 2k − 1 and with s fixed points;

(iv) the set of SYT with n boxes, at most 2k − 1 rows, and s odd columns.

Using this result together with one of the standard bijections between
Dyck paths and noncrossing partitions, we arrive at the following:

Proposition 4.2. The number of cm-labeled Dyck paths of semilength n with s
singletons and k-noncrossing labels equals the number of SYT with n boxes,
s columns of odd length, and at most 2k − 1 rows.

Let SYT(n) denote the number of SYT with n boxes (cf. [18, A000085]).
Letting k be sufficiently large and summing over s, Proposition 4.2 yields:

Corollary 4.3. The number of cm-labeled Dyck paths of semilength n equals
SYT(n).

The proof of Proposition 4.2 consists of several bijective steps: from cm-
labeled Dyck paths to k-noncrossing partial matchings to k-nonnesting partial
matchings to involutions, and finally to SYT via the Robinson–Schensted–
Knuth (RSK) algorithm. We proceed to illustrate this elaborate construction
by means of an example.

Consider the cm-labeled Dyck path D depicted in Fig. 4.1. Number the
up-steps in the following fashion. First number the down-steps with {1, . . . , 9}
in increasing order from left-to-right. Then move each such label horizontally
to the left until it meets its corresponding up-step, resulting in a labeling on
the up-steps:

https://oeis.org/A000085
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1

2

5

6

7

9

3

4

8

.

The partial matching MD associated with D is obtained by applying
the connected matching on each ascent to the ascent’s numbers; see Fig. 4.3.

1 2 3 4 5 6 7 8 9

Figure 4.3. The partial matching MD = (1 6)(2 7)(3 4)(5 9)(8).

Note that if the cm-labels are k-noncrossing, so is the partial matching,
and clearly the number of singletons on the Dyck path equals the number
of singletons in the matching. Also, the connected components of MD corre-
spond to the ascents of D.

The step from k-noncrossing to k-nonnesting partial matchings works
by modifying a known bijection between perfect matchings and oscillating
tableaux. We follow a technique from [8] (see also [5]) by first mapping a
partial matching to an oscillating tableau, then transposing the tableau, and
then mapping the result back to a partial matching. The modified map is
constructed so as to preserve the number of singletons. We restrict our at-
tention to weakly oscillating tableau of empty shape and length n, that is, a
sequence of partitions Λ = (λ0, λ1, . . . , λn) such that:

(i) λ0 = λn = ∅, the empty partition;
(ii) for 1 ≤ i ≤ n, λi is obtained from λi−1 by either doing nothing, adding

a box, or deleting a box.

Given a partial matching M on [n], represented as a graph on the number
line, we construct a sequence of tableaux Tn, . . . , T 0 as follows. We begin by
setting Tn = ∅, the empty tableau. For n ≥ j ≥ 1, construct T j−1 according
to the following rules.

1. If j is a singleton in M , then set T j−1 = T j .
2. If j is the right-hand endpoint of an arc (i, j) in M , then RSK insert2 i

into T j .
3. If j is the left-hand endpoint of an arc (j, k) in M , then remove j (and

the box that contained j) from T j .

For the partial matching MD = (1 6)(2 7)(3 4)(5 9)(8), the sequence
T 0, . . . , T 9 and the resulting weakly oscillating tableau Λ = (λ0, . . . , λ9) are
displayed on Table 1. Recall that the construction of the T j proceeds from

2See [21, §3.1] or [24, §7.11] for an introduction to RSK insertion.
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right to left, and that T j−1 is determined by the properties of the number j,
rather than of j − 1.

j 0 1 2 3 4 5 6 7 8 9

T j ∅ 1
1
2

1 3
2

1
2

1
2
5

2
5

5 5 ∅

λj ∅ ∅

Table 1. Sequences corresponding to MD = (1 6)(2 7)(3 4)(5 9)(8).

Conversely, given an oscillating tableau Λ = (λ0, . . . , λn), set (T 0,M0) =
(∅, ∅) and, for 1 ≤ j ≤ n, construct (T j ,M j) from left to right according to
the following rules:

1. If λj = λj−1, then set (T j ,M j) = (T j−1,M j−1).
2. If λj ⊂ λj−1, then obtain T j from T j−1 by reverse RSK insertion,

starting with the entry k in the box in position λj \ λj−1. This will
result in an entry i ≤ k leaving T j−1. Add the pair (i, j) to M j−1 to
obtain M j .

3. If λj ⊃ λj−1, let T j be obtained from T j−1 by adding the box λj \λj−1
with entry j, and simply let M j = M j−1.

The image of Λ is then the partial matching Mn.
With this bijection in place, the composite bijection from k-noncrossing

partial matchings to k-nonnesting partial matchings is given by

M 7→ Λ 7→ Λt 7→ M̂,

where Λt :=
(
(λ0)t, . . . , (λn)t

)
is the weakly oscillating tableau obtained by

transposing the partitions from Λ, and M̂ is the partial matching resulting
from the inverse map above applied to Λt.

We leave it as an exercise for the reader to check that

M̂D = (1 9)(2 4)(3 7)(5 6)(8).

Observe in Fig. 4.4 that MD has a 3-crossing and a 2-nesting, whereas M̂D

has a 2-crossing and a 3-nesting (cf. [8, Thm. 3.2]). Moreover, they both have
the same number of singletons.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Figure 4.4. The associated partial matchings MD and M̂D.
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Treating the arcs as transpositions, partial matchings M on [n] are triv-
ially in one-to-one correspondence with involutions π on [n], and the number
of singletons in M clearly equals the number of fixed points of π. For example,

M̂D = (1 9)(2 4)(3 7)(5 6)(8) corresponds to the involution πD = 947265381.
Now, using the RSK algorithm on the involution πD, we finally get the SYT
TD corresponding to the cm-labeled Dyck path D (see Fig. 4.5).

1 3 8
2 5
4
6
7
9

Figure 4.5. The cm-labeled Dyck path D and its corre-
sponding SYT TD.

5. Dyck paths to SYT of rectangular shape

In a recent paper, Wettstein [25] discussed certain sets of balanced bracket
expressions that are enumerated by the d-dimensional Catalan numbers, and
he introduced a class of prime elements that serve as building blocks for the
entire set of such expressions. If Cd(x) and Pd(x) are the generating functions
for these sets (with Cd(0) = Pd(0) = 1), respectively, Wettstein proved the
relation

Cd(x) = Pd
(
xCd(x)d

)
for every d ≥ 2. (5.1)

By [4, Example 14], this means that Cd(x) is the d-th noncrossing partition
transform of Pd(x) (cf. Subsection 7.2), which provides a way to bijectively
connect SYT of shape (nd) with Dyck paths.

We proceed to elaborate on this bijective connection.

Definition 5.1. For d, n ∈ N and d ≥ 2, let Wd(n) be the set of words w of
length d·n over the alphabet {a1, a2, . . . , ad} with #(w, a1) = · · · = #(w, ad),
and such that for every prefix u of w we have

#(u, a1) ≥ #(u, a2) ≥ · · · ≥ #(u, ad),

where #(z, `) denotes the number of times the letter ` appears in the word z.

Further let W̃d(n) be the set of corresponding primitives (factor-free) words,
i.e. words in Wd(n) that do not contain any nonempty contiguous subword
in Wd(j) for j < n.

Proposition 5.2. Wd(n) is in bijection with the set of SYT of shape (nd) and
their elements are enumerated by the d-dimensional Catalan numbers. More-

over, by [25, Lemma 4.3], the set W̃d(n) of primitive elements is enumerated
by the function Pd(x) satisfying (5.1).
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The bijection between Wd(n) and the set of SYT of shape (nd) is simple
and well-known, and is given at the start of the proof of Theorem 5.4 below.

Example 5.3 (d = 3). The 3-dimensional Catalan numbers [18, A005789] are
given by

1, 1, 5, 42, 462, 6006, 87516, 1385670, 23371634, 414315330, . . .

and the corresponding coefficients of P3(x) are (cf. [18, A268538])

1, 1, 2, 12, 107, 1178, 14805, 203885, 3002973, 46573347, . . .

For example, using the alphabet {a, b, c} we have that W3(2) consists of the
five words

aabcbc ababcc abcabc aabbcc abacbc

that correspond to the SYT

1 2
3 5
4 6

1 3
2 4
5 6

1 4
2 5
3 6

1 2
3 4
5 6

1 3
2 5
4 6

.

Note that aabbcc and abacbc are the only words in W̃3(2) (primitives of length
6). In fact, the other three words aabcbc, ababcc, and abcabc all contain the

factor abc as a subword. On the other hand, the set W̃3(3) consists of 12
elements:

aaabbbccc aaabbcbcc aababbccc aabbacbcc aabacbbcc aabbaccbc

aabbcacbc abacabbcc abacbacbc abaacbbcc abaacbcbc ababaccbc

corresponding to

1 2 3
4 5 6
7 8 9

1 2 3
4 5 7
6 8 9

1 2 4
3 5 6
7 8 9

1 2 5
3 4 7
6 8 9

1 2 4
3 6 7
5 8 9

1 2 5
3 4 8
6 7 9

1 2 6
3 4 8
5 7 9

1 3 5
2 6 7
4 8 9

1 3 6
2 5 8
4 7 9

1 3 4
2 6 7
5 8 9

1 3 4
2 6 8
5 7 9

1 3 5
2 4 8
6 7 9

.

Theorem 5.4. The set of SYT of shape (nd) is in bijection with the set
Dp
n(d, 0) of Dyck paths of semilength d ·n created from strings of the form

D and Ud·jD for j = 1, . . . , n, and such that each d·j-ascent may be labeled
in pj different ways. Here p = (pn) denotes the sequence of coefficients of
Pd(x), called d-dimensional prime Catalan numbers in [25].

Proof. This could be proved using (5.1) together with results from [3, 4], but
here we give a bijective proof by example. Consider the SYT

T =
1 3 6 8

2 4 9 11

5 7 10 12

.

https://oeis.org/A005789
https://oeis.org/A268538
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Going through the numbers 1 through 12 in T , we write (left to right)
a, b, or c if the number is on the first, second, or third row of the tableaux,
respectively. This gives us the word wT = ababcacabcbc.

Moving now from right to left, we extract the factors of wT through the
reduction

ababcacabcbc −→
abc

ababcacbc = ababcacbc −→
abc

abacbc,

which gives us the factors abacbc, abc, and abc. We record the length of the
most left factor in each reduction step: `1(ababcac) = 7 and `2(ab) = 2 and
construct a Dyck path

DT = U6D`2U3D`1−`2U3D12−`1 = U6D2U3D5U3D5,

where the ascents are labeled (from left to right) by the primitive words
abacbc, abc, and abc, see Fig. 5.1. This process is clearly reversible. �

a

b
a

c

b
c

a

b
c a

b
c

Figure 5.1. Labeled Dyck path DT associated with wT = ababcacabcbc.

Remark 5.5. For d = 3 this offers a different Dyck path representation from
the one given in Proposition 3.3.

6. Labeled Motzkin paths to SYT

In Section 4 we considered adding extra structure to Dyck paths of length
2n to obtain objects equinumerous to SYT with n boxes. In this section, we
discuss other equinumerous sets which instead are obtained by adding extra
structure to Motzkin paths of length n.

Proposition 6.1. The following objects, defined by Motzkin paths of length n
with s flat steps and some additional structure, are in bijection with partial
matchings on [n] having s singletons and thus also with SYT with n boxes
and s odd columns:

◦ Height-labeled Motzkin paths, where each down-step starting at height
i is given a label from [i].
◦ Full rook Motzkin paths, which have rooks placed in their lower shape

such that there is exactly one in the “row” beneath each up-step and
exactly one in the “column” beneath each down-step, where “row” and
“column” refer to the 45◦ rotation.
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◦ Yamanouchi-colored Motzkin paths which can be defined by their cor-
respondence with weakly oscillating tableaux. Up-steps, down-steps, and
flat-steps correspond to adding, removing, or leaving as-is, respectively,
and the label specifies the row in which to add or remove a box.

For instance, for the partial matching (1 6)(2 7)(3 4)(5 9)(8) discussed in
Section 4, we have the labeled Motzkin paths in Fig. 6.1.

3 1

1

1

(a) Height-labeled Motzkin path

R

R R
R

(b) Full rook Motzkin path

1

2

1 1 3 3

2

1

(c) Yamanouchi-colored Motzkin path

(compare λj in Table 1)

Figure 6.1. Motzkin paths corresponding to (1 6)(2 7)(3 4)(5 9)(8).

In contrast, the corresponding cm-labeled Dyck path is given in Fig. 4.1.
Before proving Proposition 6.1, let us put it in context with related

results in the literature. The bijection with height-labeled Motzkin paths is
somewhat well known. The other two bijections are simple extensions of the
better-known case when s = 0. Height-labeled Motzkin paths are a case of
the histoires of orthogonal polynomials. This bijection is due to Françon and
Viennot [11, 12]. In the Dyck path case (s = 0), height-labeled paths appear
in Callan’s survey of double factorials [7] and are also called Hermite histoires.
Again for the case when s = 0, full rook Motzkin paths are better known as
full rook placements in Ferrers shapes. These were used by Krattenthaler [16]
to extend the work of Chen et al. [8]. For a reader already familiar with Fomin
growth diagrams, full rook Motzkin paths are a simple intermediate step in
the bijection between height-labeled and Yamanouchi-colored Motzkin paths.
Yamanouchi-colored Motzkin paths were introduced by Eu et al. [10], who
gave a definition and bijection using the language of Motzkin paths.

Proof of Proposition 6.1. First, there is a simple bijection between partial
matchings and full rook Motzkin paths. Each pair (i, j) in the matching with
i < j indicates an up-step at step i and a down-step at step j. A singleton
at i indicates a flat-step at step i. We then draw the path from left to right
according to these steps and place rooks at the positions determined by the
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matching, as in Fig. 6.1(b). For the reverse map, simply match the two steps
diagonal from each rook, and leave the flats as singletons.

To make the bijection between height-labeled and full rook Motzkin
paths easier to state, we use the terms “row” and “column” for the shape
beneath the full rook path by considering the result of rotating it 45◦ coun-
terclockwise. We assign height-labels to each down-step starting at height i
(from left to right) according to the height of the rook in the column below,
ignoring any rows with a rook in an earlier column. For example, in Fig. 6.1,
the first down-step in (a) has label 3 because in (b) the rook is at height 3
in the column beneath this down-step. A more interesting case is the third
column, where the down-step has label 1 because it has a column of four
beneath it, but ignoring the rows with the rooks already placed, there are
two places available and the rook is in the first. Observe that the number
of places available is always the starting height of the down-step, so we do
indeed arrive at a height-labeled Motzkin path. Clearly, this map is easily
reversed.

Finally, we defined Yamanouchi-colored Motzkin paths by their cor-
respondence with weakly oscillating tableaux, so the bijection with partial
matchings is simply the one we have already seen in Section 4. �

7. Further remarks

7.1. Dyck paths to restricted set partitions

Many of our connections between Dyck paths and Young tableaux involved
either the map ϕ : Dyck(n) → Partnmi(n) (as in Sections 2 and 3) or the
classic bijection from Dyck paths to noncrossing partitions (which appeared
implicitly in Section 4). We can describe the reverse map for both bijections
in the same way, as in Equation (2.2). It is then straightforward to generalize
as follows.

Proposition 7.1. A map Dyck(n) → Part(n) is injective if, for each k-ascent
in the Dyck path followed by the mth down step, there is a k-block of the
partition with minimum m.

For example, such a map would take the Dyck path U4D3U2DUDU2D4

to a partition of the form 1���|4�|5|6�, because there are four ascents
of sizes 4, 2, 1, and 2 followed by the 1st, 4th, 5th, and 6th down steps,
respectively. If we place the remaining elements 23789 into blocks greedily
from left to right, we obtain the nomincreasing partition 1237|48|5|69. If
instead we place elements greedily into blocks from right to left, preserving
the minimum element of each block, we obtain the partition 1239|48|5|67.
It is not hard to see that these two maps are the map ϕ to nomincreasing
partitions and the classic map to noncrossing partitions.

Another way to describe the relationship between these maps is to look
at the front representations of partitions studied by Kim [15]. In this case, a
block B = {a1, . . . , ak} with a1 < · · · < ak is associated with the arc diagram
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(a1, a2), (a1, a3), . . . , (a1, ak) instead of (a1, a2), (a2, a3), . . . , (ak−1, ak). Then,
it is not hard to show that noncrossing partitions are exactly the partitions
whose front representations are noncrossing, and nomincreasing partitions
are exactly the partitions whose front representations are nonnesting.

7.2. Noncrossing partition transform

As stated in Corollary 4.3:

The number of cm-labeled Dyck paths of semilength n equals SYT(n).

This result is motivated by the noncrossing partition transform, which natu-
rally relates its output to Dyck paths labeled by combinatorial objects enu-
merated by the input.

The noncrossing partition transform, as studied by Beissinger [2] and
Callan [6], may be defined in terms of partial Bell polynomials as follows:3

For a sequence (xn), define (yn) by

y0 = 1, yn =

n∑
k=1

1

(n− k + 1)!
Bn,k(1!x1, 2!x2, . . . ) for n ≥ 1, (7.1)

where Bn,k denotes the (n, k)-th partial Bell polynomial defined as

Bn,k(z1, . . . , zn−k+1) =
∑

α∈πk(n)

n!
α1!···αn−k+1!

(
z1
1!

)α1 · · ·
(

zn−k+1

(n−k+1)!

)αn−k+1

with πk(n) denoting the set of (n − k + 1)-part partitions of k such that
α1 + 2α2 + · · ·+ (n−k+ 1)αn−k+1 = n. As shown in [3], if (xn) is a sequence
of nonnegative integers, yn gives the number of Dyck paths of semilength n
such that each j-ascent may be labeled in xj different ways. As expected, if
(xn) is the sequence of ones, then yn gives the sequence of Catalan numbers.
In general, yn enumerates configurations obtained by adorning the ascents
with structures whose elements are counted by (xn).

Let aj denote the number of all possible cm-labels for an ascent of length
2j. This is the number of connected matchings on [2j] and is given by the
sequence 1, 1, 4, 27, 248, 2830, 38232, 593859, . . . , [18, A000699]. Therefore, if
we define the sequence (xn) by

x1 = 1,

x2n+1 = 0 and x2n = an for n ≥ 1,

then from Corollary 4.3 and equation (7.1) we deduce that

SYT(n) =

n∑
`=1

1

(n− `+ 1)!
Bn,`(1!, 2!a1, 0, 4!a2, 0, . . . ). (7.2)

Observe that SYT(n) is a special case of the sequence

y(α)n =

n∑
`=1

1

(n− `+ 1)!
Bn,`(1!α, 2!a1, 0, 4!a2, 0, . . . ) (7.3)

3The equivalence of this definition with (5.1) in the case d = 1 is shown in [4].

https://oeis.org/A000699
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that counts the number of cm-labeled Dyck paths of semilength n, where
singletons (ascents of length 1) may be colored in α ∈ N0 different ways. The

case α = 0 means that no singletons are allowed. In this case, y
(0)
2n−1 = 0 for

all n ≥ 1 while y
(0)
2n gives the number of perfect matchings on [2n], which are

counted by the double factorials (2n− 1)!!.
Another interesting instance of (7.3) is when α = 2, i.e. each single-

ton may be colored in two ways. In this case, (7.3) gives the sequence [18,
A005425] whose nth term gives the number of involutions on [n] whose fixed
points can each be colored in two different ways.

7.3. Generating functions

Let A(t) be the the generating function for the number of connected match-
ings on [2n], and let Y (t) be the corresponding function that enumerates SYT
with n boxes. Equation (7.2) implies that Y (t) is the noncrossing partition
transform of X(t) = t + A(t2). Thus, in terms of generating functions, this
means (cf. Callan [6, §4])

tY (t) =

(
t

1 +X(t)

)〈−1〉
,

where 〈−1〉 denotes compositional inverse. In other words,

Y (t)− 1 = X(tY (t)), or equivalently, (1− t)Y (t) = 1 +A(t2Y (t)2). (7.4)

Further, if P (t) is the generating function for the number of perfect matchings
on [2n], then P (t2) is the noncrossing partition transform of A(t2), and

1 + P (t2) =
1

t

(
t

1 +A(t2)

)〈−1〉
.

This implies(
t(1 + P (t2))

)〈−1〉
=

t

1 +A(t2)
and P

(
t2

(1 +A(t2))2

)
= A(t2).

Combining this identity with (7.4), we obtain

P

(
t2Y (t)2

(1− t)2Y (t)2

)
= A(t2Y (t)2) = (1− t)Y (t)− 1,

which implies

Y (t) =
1 + P (t2/(1− t)2)

1− t
.

While this formula is known [18, A001006], our approach using the non-
crossing partition transform gives the same identity when restricted to k-
noncrossing perfect matchings on [2n] and SYT with n boxes and height at
most 2k − 1. In other words, if Pk(t) denotes the generating function for the
number of k-noncrossing perfect matchings on [2n], and if Yk(t) enumerates
SYT with n boxes and height at most 2k − 1, then

Yk(t) =
1 + Pk(t2/(1− t)2)

1− t
.

https://oeis.org/A005425
https://oeis.org/A001006
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This is the elegant expression we promised in the introduction. As stated in
the survey [17], no explicit expression for the coefficients of Yk(t) for k > 3
appears in the literature. For some values of k, these sequences are listed in
[18] as follows:

k k-noncrossing matchings SYT of height ≤ 2k − 1

2 A000108 A001006
3 A005700 A049401
4 A136092 A007578
5 A251598 A212915

Conjecturally, the number of SYT with n boxes and height at most
seven is given by

bn/2c∑
`=0

(
n

2`

) `+1∑
j=0

180(2`)!

j!(j + 4)!(`− j + 1)!(`− j + 3)!
(2`− 3j + 2)Cj+1 .
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