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Abstract. In this study we compare long-term Doppler and
Raman lidar observations against a full month of large eddy
simulations of continental shallow cumulus clouds. The goal
is to evaluate if the simulations can reproduce the mean ob-
served vertical velocity and moisture structure of cumulus
clouds and their associated subcloud circulations, as well
as to establish if these properties depend on the size of the
cloud. We propose methods to compare continuous chords of
cloud detected from Doppler and Raman lidars with equiva-
lent chords derived from 1D and 3D model output. While
the individual chords are highly variable, composites of thou-
sands of observed and millions of simulated chords contain
a clear signal. We find that the simulations underestimate
cloud size and fraction but successfully reproduce the ob-
served structure of vertical velocity and moisture perturba-
tions. There is a clear scaling of vertical velocity and mois-
ture anomalies below the chords with chord size, but the
moisture anomalies are only 1 %-2 % higher than the hor-
izontal mean values. The differences between the observa-
tions and simulations are smaller than the difference in sam-
pling the modeled chords in time or space. The shape of the
vertical velocity and moisture anomalies from cloud chords
sampled spatially from 3D model snapshots is almost per-
fectly symmetric. In contrast, the chords sampled tempo-
rally from the lidar observations and 1D model output have a
marked asymmetry, with stronger updrafts and higher mois-
ture anomalies occurring earlier on.

1 Introduction

Shallow cumulus cloud populations contain a wide range
of spatial, temporal, and physical-dynamical variability. The
individual clouds themselves vary greatly in size, lifetime,
depth, and microphysical properties. But even statistics of
large shallow cumulus populations differ as well, with sub-
mesoscale dynamics, such as cold pools, causing large-scale
organization and aggregation (Sengupta et al., 1990; Nair
et al., 1998). This high individual and statistical variability,
combined with their comparatively small temporal and spa-
tial scales, make shallow cumulus a tricky aspect of the atmo-
sphere to represent numerically in weather and climate mod-
els (e.g., Neggers and Siebesma, 2013; Nam et al., 2014),
from which they cannot be neglected due to their critical con-
tribution to Earth’s energy and water budget (e.g., Sherwood
et al., 2014; Bony et al., 2015; Brient and Schneider, 2016).

One useful paradigm that simplifies representing the ef-
fects of sub-grid-scale shallow cumulus on resolved-scale
flow is the assumption that various properties of shallow
cumulus are size-dependent, which enables the representa-
tion of the high variability in cumulus clouds through a lim-
ited number of shallow convective plumes of differing size
(e.g., Arakawa and Schubert, 1974; Neggers, 2015; Olson
et al., 2019). The idea that larger shallow cumulus clouds
have stronger updrafts than small shallow cumulus clouds
is as intuitive as it is old (e.g., Plank, 1969; Raga et al.,
1990; Benner and Curry, 1998; Zhao and Girolamo, 2007,
Yuan, 2011). Assuming shallow cumulus clouds are created
by buoyant plumes that are slowed via entrainment with the
dry surrounding air (Turner, 1962; Simpson and Wiggert,
1969; Warner, 1970a), it follows that larger plumes could
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rise faster by either being more buoyant, entraining less, or a
mix of both. The assumed size dependence of plume entrain-
ment is a cornerstone of the first bin-macrophysics approach
in spectral modeling introduced by Arakawa and Schubert
(1974). Model studies support this entrainment dependence
(e.g., Zhao and Austin, 2005; Peters et al., 2020), and the
dependence is still being used today (e.g., Neggers, 2015;
Olson et al., 2019).

The potential use of size dependence in convective param-
eterization has motivated historic and recent efforts to ob-
serve the existence of this dependence in nature, but detect-
ing this dependence in observations has proven to be quite
difficult. This is in part because due to the relatively small
size of shallow cumulus clouds, which predominantly have a
horizontal area below a single square kilometer, the resolu-
tion of 3D scanning radars is insufficient to fully resolve the
associated wind field. The short life span and nonstationary
character further complicate measurements, as only a short
time window exists to measure the active updraft. Airplanes
can fly right through the center of cumulus clouds to mea-
sure a 1D track though the cloud and have a long and suc-
cessful history of studying the structure of cumulus clouds
and their subsiding shells, especially for maritime cumulus
(e.g., Warner, 1970b; French et al., 1999; Laird et al., 2000;
Rodts et al., 2003; Neggers et al., 2006; Heus and Jonker,
2008; Wang and Geerts, 2010, 2011). However, the high
operating costs of aircraft mean that for practical reasons
the total number of clouds that can be sampled via aircraft
is limited, and commonly only a 1D line is sampled along
a specific height. Other novel approaches such as tethered
balloons (Kitchen and Caughey, 2007), helicopters (Siebert
et al., 2006), and radar chaff detected from a plane-mounted
radar (Jung and Albrecht, 2014) suffer from similar practical
constraints. Given the large role turbulence and individual
thermals play in shallow cumulus development, many sam-
ples are needed to detect if a size dependence is present.

This is where upward-facing lidar observations excel. Af-
ter years of steady deployment of Doppler lidars at the ARM-
SGP (Atmospheric Radiation Measurement—Southern Great
Plains) and other super-sites, thousands of shallow cumulus
clouds have been measured as they pass over lidars. While
the Doppler lidars cannot measure above the boundary layer
or inside the cloud, they have sufficiently high temporal and
spatial resolution to resolve the vertical velocity below shal-
low cumulus clouds. Both Lamer and Kollias (2015) and
Lareau et al. (2018) successfully collected over 1000 Doppler
lidar observations of shallow cumulus clouds at the ARM-
SGP site, showing that updraft strength increases with cloud
chord length. In regards to the spatial structure, Lareau et al.
(2018) show that on average a clear 2D updraft exists below
the cloud, and Lareau (2020) achieved a similar result using
Raman lidar measurements of water vapor.

In contrast to observations, large eddy simulation (LES)
runs of shallow cumulus in principle allow for unlimited
sampling of all simulated properties in 4D. Studies such as
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Dawe and Austin (2012), Boing et al. (2012), and Neggers
(2015) have taken advantage of this fact to study the cloud
properties of maritime cumulus in an individual LES. How-
ever, LES models still represent a simplification of reality
and should be critically compared to measurements where
possible. But bringing together LES experiments and obser-
vations on cumulus statistics, in particular detailed depen-
dencies on size, requires large numbers of both observa-
tions and LES experiments. This is especially true for con-
tinental shallow cumulus clouds that have a marked daily
cycle and strong day-to-day variability. But thanks to on-
going efforts to run semicontinuous LES experiments for
observational super-sites in Europe (Neggers et al., 2012;
Schalkwijk et al., 2015; van Laar et al., 2019) and the US
(LASSO — LES ARM Symbiotic Simulation and Observa-
tion; Gustafson et al., 2018, 2020), we now have the ability to
robustly compare observed and simulated cloud statistics, as
done recently for cloud-base vertical velocity by Endo et al.
(2019). Maritime cumulus comparisons require fewer simu-
lations, as shown by the analysis of cloud-base mass flux at
the Barbados Cloud Observatory by Sakradzija and Klinge-
biel (2020).

In this study we take advantage of the newly available
large numbers of high-resolution simulations and long-term
lidar observations. We do so by linking the observational
methods of Lareau et al. (2018) and Lareau (2020) with the
LASSO strategy of running LES experiments of all shal-
low cumulus days from 2015 to 2018 at the ARM-SGP site
(Gustafson et al., 2018, 2020). In order to get a resolution
of 25m, which is higher than the default LASSO settings,
we use the LASSO forcing data to simulate 28 cumulus days
with the MicroHH model (van Heerwaarden et al., 2017).

The main goals of this paper are (1) to determine the
size sensitivity of subcloud vertical velocity and moisture
anomaly fields and (2) to determine if the MicroHH simu-
lations provide a reliable approximation of shallow cumu-
lus cloud statistics. The goals are accomplished by making
a one-to-one comparison of observed and simulated cloud
chords and their subcloud circulation. To achieve this one-
to-one comparison we sample chords from 1D column out-
put, which captures the temporal evolution of clouds as they
pass over a fixed point, and from 3D model output snapshots,
which are frozen in time. After accomplishing the main goals
of this paper we use our large data set to quantify the sam-
pling uncertainty of various observed chord properties as a
function of lidar deployment days.

This paper begins with an explanation of the data and
simulations, followed by a comparison of simulated and ob-
served cloud fraction and cloud-base height at the ARM-SGP
site in Sect. 2. We then detail the methods for extracting
chords from 1D (Sect. 3.1) and 3D (Sect. 3.2) model output
to compare against the lidar observations. Before we evalu-
ate the scale dependence and shape of vertical velocity and
moisture anomalies in Sects. 5 and 6, we first compare the
observed and simulated chord distributions in Sect. 4 to test
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how representative the simulated chords are and how much
our results depend on the precise chord definitions used. We
end our results with an analysis of the sampling uncertainty
in Sect. 7 in which we quantify how the uncertainty decreases
for various variables when more days of lidar observations
are available. We end with a conclusion and discussion in
Sect. 8.

2 Observations and simulations
2.1 Observations

In this subsection we provide a brief overview of the instru-
mentation used to observe the vertical velocity and water
vapor mixing ratio. For a more in-depth description of the
data and how they were post-processed we refer the reader to
Lareau (2020) (vertical velocity) and Lareau (2020) (water
vapor mixing ratio).

2.1.1 Vertical velocity

The vertical velocity from the surface up to the cloud base
is observed with a network of five Doppler lidars (DLs) lo-
cated at ARM-SGP (Newsom, 2010). The lidar network is
arranged with four outlying sites (E32, E37, E39, E41) and
one central location (C1). The outlying sites fall on an ap-
proximately 50 km radius circle centered on C1. The DLs are
active ground-based infrared (1.5 um) laser remote sensors
that provide range- and time-resolved profiles of the line-of-
sight velocity (i.e., the vertical velocity when pointed ver-
tically) and the attenuated backscatter coefficient (hereafter
backscatter) over a range of 9—12km from the surface (de-
pending on the lidar and its settings). The lidar data are pro-
cessed at 30 m range gate resolution and 1.3 s temporal res-
olution. The DL is sensitive to micron-scale aerosol, which
provides a tracer for boundary layer flows. As such the lidars
provide an ideal tool for resolving the time—height structure
of large convective eddies in the boundary layer. The lidar
beams also rapidly attenuate in liquid water, thereby enabling
cloud-base detection. The DL is also used to identify the
time-varying convective boundary layer (CBL) height based
on a threshold of the vertical velocity variance computed for
15 min intervals (Tucker et al., 2009). Here we use a variance
threshold of 0.08 m?s~2, which Lareau et al. (2018) show
produces a good representation of CBL heights during shal-
low cumulus (ShCu) conditions.

2.1.2 Water vapor mixing ratio

The subcloud and cloud-base water vapor mixing ratio (g)
is determined using an ultraviolet (UV) Raman lidar (RL),
which is located adjacent to the DL at C1. The RL is sen-
sitive to both molecular and aerosol backscatter, with the
molecular backscatter used in the retrieval of the water va-
por mixing ratio (Wulfmeyer et al., 2010). The retrieved wa-
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ter vapor profiles are available at 10s temporal and 50 m
spatial resolution (Raman lidar vertical profiles, 10SRL-
PROFMRITURN). The ability of RL to measure the first
through third moments of the boundary layer water vapor
mixing ratio is well-established (Wulfmeyer et al., 2010;
Turner et al., 2014a), and the RL at ARM-SGP has been val-
idated against aircraft data (Turner et al., 2014b).

2.2 Model

We are basing our analysis on cloud fields generated with Mi-
croHH (van Heerwaarden et al., 2017). This large eddy simu-
lation model has been validated against a wide range of stan-
dard cases, including shallow cumulus intercomparison cases
in marine (e.g., BOMEX; Siebesma et al., 2003) and conti-
nental (e.g., ARM; Brown et al., 2002) conditions. For the
current study, we simulated 28 d with shallow cumulus con-
vection over the Department of Energy’s Atmospheric Radi-
ation Measurement site in the Southern Great Plains (ARM-
SGP) based on the Large-Eddy Simulation (LES) ARM
Symbiotic Simulation and Observation (LASSO; Gustafson
et al., 2017) database. These realistic and routine simulations
of cumulus fields over the ARM-Southern Great Plains ob-
servatory in Oklahoma are run using a variety of initial con-
ditions and model settings. For each day in the list in Ta-
ble 1, we selected the configurations with the best match to
the observations in cloud cover and liquid water path. We
ran one simulation for each day in the LASSO version 1 re-
lease, as long as the cloud cover and liquid water path have
some skill in the best-matching simulation according to the
LASSO Bundle Browser (https://adc.arm.gov/lassobrowser,
last access: 26 August 2020) (skill scores above 0.3). Since
the simulations in the LASSO database were done on a rel-
atively coarse resolution of 100 m and with insufficient tem-
poral output frequency to mimic lidar observations, we reran
all cases with MicroHH on a 25 m resolution in all direc-
tions and a horizontal domain size of 25.6 x 25.6km?. Be-
tween a height of 6 km to the domain top at 9 km, the verti-
cal grid stretches from 25 to 150 m. Adaptive time stepping
with a constant Courant-Friedrichs—Lewy criterion results
in a time step typically between 1 and 2s. The simulations
were run with periodic boundary conditions, homogeneous
and prescribed surface fluxes, and a prescribed radiative ten-
dency profile. Two-moment warm microphysics was used,
even though precipitation was negligible. Average statistics
and 3D output of all thermodynamic variables were provided
every 1800s. Raw column data were provided every time
step (i.e., about every second) at 42 = 16 locations through-
out the domain, with each column spaced 6.4km apart in
both the x and y direction.

2.3 Simulation evaluation

Before beginning our analysis of cloud chords we first de-
termine to what degree our simulated cloud-topped bound-

Atmos. Chem. Phys., 20, 10211-10230, 2020


https://adc.arm.gov/lassobrowser

10214

Table 1. Dates of simulations included in the analysis (month/day).

2015 06/06 06/09 06/27 08/01

2016  05/18 05/30 06/10 06/11 06/19  06/25
07/19 07/20 08/18 08/19 08/30

2017 05/09 06/05 06/27 07/04 07/16 07/19
07/20  07/22

2018 05/22  06/06 07/05 07/09 07/10

ary layer matches the observations by comparing cloud-base
height and cloud fraction. Thanks to the evaluation data pro-
vided as part of the LASSO library along with the forcing
data, we can easily compare the hourly cloud-base height and
cloud fraction. We find that the cloud-base heights of simula-
tions and observations agree well, with the average simulated
cloud base being only 35 m lower than the observed (Fig. 1).
As expected, the boundary layer deepening over the course of
the day is clearly visible in the individual simulations. This
good agreement of cloud-base height matches was also found
for the original LASSO simulations (Gustafson et al., 2020)
and can be directly attributed to the forcing data provided by
the LASSO project being well-calibrated.

In contrast to cloud-base height, the modeled and ob-
served cloud fractions align less well (Fig. 2). The observed
hourly cloud fraction has a higher temporal variability, with
measurement-to-measurement changes of up to 0.5 (e.g.,
20170716; Fig. 2). Such strong shifts likely represent the
sampling bias in a spatially and temporally heterogeneous
cumulus-topped boundary layer (Rossow, 1989). Since the
cloud fraction from the MicroHH simulations is calculated
from 3D snapshots of the full 25.6 x25.6 km? model domain,
the cloud fraction is captured much more robustly, leading to
a smoother daily cycle.

The two observational products provided by the LASSO
library are the Total Sky Imager (TSI) cloud fraction and the
low cloud fraction provided by the Active Remote Sensing of
Clouds (ARSCL) value-added product. These two products
differ by roughly 0.2 at any moment, and when averaging
over all 24 d a mean difference of roughly 0.1 remains. But
the observations are clear enough to show that the MicroHH
simulations are substantially underestimating cloud fractions
in two cases. The first is when high cloud fractions occur
before noon, for example for days 20160818 and 20170627.
We attribute this to the presence of non-convective clouds.
Non-convective clouds should be screened out in our analysis
as detailed in Sect. 3, so we do not expect the lack of these
early clouds in the LES to affect our analysis. The second
clear case of cloud underestimation in the simulations occurs
on three consecutive days in 2017 when, for reasons we do
not know, the cloud fraction remains below 0.1 throughout
the day (20170719, 20170720, 20170721; Fig. 2).

In regards to the mean cloud fraction over all available data
points after 09:00 (North American Central Time), the sim-
ulations underestimate cloud fraction by 15 % compared to
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3000

2500

2000

1500

1000

Cloud-base height LASSO obs. [m

500

0 500 1000 1500 2000 2500 3000
Cloud-base height MicroHH [m]

Figure 1. Cloud-base height of the MicroHH simulations compared
to the cloud-base height provided by the LASSO Bundle Browser,
which is an ARSCL value-added data product. Points are only
shown when both the model and observations have a well-defined
cloud base at the same time, and the observations are only used
when the quality flag is good. Empty circles mark the earliest time
point and the large dots the latest.

the TSI cloud fraction and by 60 % compared to the AR-
SCL value-added product. This general underestimation is
also present in the original LASSO simulations as shown
by Gustafson et al. (2020) and matches the experience of
previous continental shallow cumulus LES studies over the
ARM-SGP site (Zhang et al., 2017) and over Cabauw in the
Netherlands (Schalkwijk et al., 2015). Recently, Fast et al.
(2019) showed that using a more realistic surface moisture
distribution leads to larger and longer-lived clouds, indicat-
ing that our cloud underestimation could be due to the ho-
mogeneous surface conditions of the LASSO setup. Accord-
ing to Gustafson et al. (2020), the simulated clouds in the
LASSO simulations appear roughly 2 h later than in the ob-
servations, which could contribute to why on average the Mi-
croHH cloud underestimation is stronger before 15:00 (bot-
tom left plot in Fig. 2). For the rest of the paper we will work
with the assumption that the simulated cloud-base height is
accurate and that the simulated cloud fraction is too low by
an unknown amount between 10 % and 60 %.

https://doi.org/10.5194/acp-20-10211-2020
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3 Detecting cloud chords and interpolating scenes

To avoid confusion we will first explain how we use the terms
cloud chord, chord-base height, and scene in this paper as il-
lustrated in Fig. 3. By cloud chord we mean a continuous 1D
string of cloud. Cloud chords are also referred to as traverses
(e.g., Warner, 1970b) or intercepts (e.g., Rodts et al., 2003)
in airplane studies and can theoretically fully describe the
cloud field if one assumes a simplified cloud shape (Wood
and Field, 2011). As we are comparing with lidar observa-
tions, our cloud chords are sampled from the surface, and
a single cloud chord can be sampled from multiple differ-
ent overlapping clouds that do not touch each other in the
3D field as hinted at by the orange chord in Fig. 3. Follow-
ing Lareau et al. (2018), we define the chord-base height as
the 25th percentile of the bottoms of the cloud chord grid
cells. We use the term scene to refer to the 2D vertical slice
from the surface through the cloud chord. The height of the
scene is normalized from zero at the surface to 1 at the chord-
base height and extends before and behind the cloud chord as
shown in the two scenes shown in Fig. 3. All scenes are nor-
malized to the same 2D grid, which allows us to merge mul-
tiple scenes together into composites. Throughout this paper
we will only sort chords according to their length and do not
sort them into forced or active (as done by Lamer and Kollias,
2015) or into updrafts and downdrafts (as done by Lareau
et al., 2018).

In this section we detail how we define and detect cloud
chords from 1D column output and 3D snapshots, followed
by an analysis of how these two approaches differ. We try
to be as consistent as possible with the definitions used by
Lareau et al. (2018), and the exact technical implementation
is described in the scripts used for this paper, which are avail-
able online through the Zenodo repository (Griewank et al.,
2020). Since the model output is not identical to the mea-
surements used by Lareau et al. (2018) we must first define
some analog definitions. Lareau et al. (2018) detect cloudi-
ness from a threshold backscatter value, whereas we con-
sider a model grid box to be cloudy when the liquid wa-
ter mixing ratio is higher than 107%kgkg~!. While we and
Lareau et al. (2018) only take cloudy cells that are no more
than 300 m higher than the convective boundary layer (CBL)
into account, we must use a different definition of convective
boundary layer height. This is because the vertical velocity
variance used by Lareau et al. (2018) is computed from a 2D
time—height slice of vertical velocity that contains many gaps
in which sufficient aerosols are unavailable to retrieve a sig-
nal or liquid water attenuates the lidar too strongly. As we
cannot reproduce when and where the lidar would or would
not have a sufficient signal to produce a measurement, we
instead use the lifting condensation level (LCL) as an addi-
tional height criterion. When the LCL is lower than the CBL
height determined by the vertical velocity variance threshold,
we require the cloudy cells be no more than 300 m higher
than the LCL. Given that we do not require a high degree of
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precision we approximate the LCL from the mean tempera-
ture T and dew point Ty of the lowest model layer following
the approximation of Espy (1836), LCL = 125-(T — Ty), in-
stead of using the exact expression (Romps, 2017).

In many ways it is simpler to detect chords from the sim-
ulation output than from the observations used by Lareau
et al. (2018). Firstly, we know that only convective clouds
occur in the LES simulations, so none of the safeguards used
by Lareau et al. (2018) to minimize the chance of acciden-
tally sampling stratus clouds are needed. Secondly, the model
output contains no gaps in data to work around. Thirdly, in
contrast to the observations the horizontal and vertical wind
points in the model are collocated in time and space. And
finally, having the full 3D domain makes it possible to ac-
curately split the variable into a horizontal mean and local
anomaly. From the observations only the local anomaly of
vertical velocity can be determined easily, as we know the
mean vertical velocity must be very close to zero. To calcu-
late the observed anomalies of the water vapor mixing ratio
discussed in Sect. 6 we use a 90 min running mean.

3.1 From 1D model columns

The 1D column outputs are created by outputting the model
state in specific columns of the model grid at each time step.
Each 1D column output has two dimensions, height z and
time ¢. Using 1D column output allows for a direct compari-
son with the lidar observations as both are stationary 1D mea-
surements, which allows chords to be detected almost iden-
tically to the approach illustrated in Fig. 1 of Lareau et al.
(2018). In contrast, comparing simulations to flight observa-
tions is much more difficult because it requires imitating a
plane’s possible flight path as discussed by Hoffmann et al.
(2014).

When detecting chords from the 1D model columns we ap-
ply the same minimum chord duration of 30 s and maximum
gap time of 20s as applied to the lidar observations. But we
do not apply the maximum chord duration of 20 min, which
is applied to the lidar observations. This 20 min maximum
duration is one of the safeguards implemented by Lareau
et al. (2018) to reduce the chance of accidentally sampling
stratus clouds that are not present in the simulations.

It is noteworthy that as MicroHH does not have a constant
time step, accordingly the 1D column output has a constantly
varying time resolution. For reference, in one simulation the
mean time step over the day is 1.2 s with a standard deviation
of 0.2s. The smallest time step was 0.04s and the largest
1.6 s. On average the MicroHH time step is very close to the
1.3 s resolution of the Doppler lidar observations.

3.2 From 3D model snapshots
When calculating the chords and scenes from the 1D column

output and the Doppler lidar data, we use time to turn the 1D
height measurements into a 2D slice with height and time

Atmos. Chem. Phys., 20, 10211-10230, 2020
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Figure 2. Daily evolution of two cloud fraction measurements provided hourly by the LASSO Bundle Browser, along with the MicroHH
cloud fraction over the 25.6 x 25.6 km model domain for 24 of the 28 simulations. The remaining four were not included because the cloud
fraction is affected by numerical artifacts at the upper model boundary. The Total Sky Imager detects cloud fraction from a fish-eye image
of the sky, while the ARSCL is a value-added product for which cloud fraction below 5 km is determined for 15 min windows. Observations
are only used when the quality flags are ideal. The mean cloud fraction over all days is shown in the bottom left.

as the axes. In contrast, to detect chords from the 3D output
snapshots we first slice the 3D field into a 2D x — z slice and
a 2D y — z slice per snapshot. From these two slices we mea-
sure the chord length by moving an imaginary Doppler lidar
across the surface. The approach of cutting in the x and y di-
rection was used to detect chord length from MODIS data by
Wood and Field (2011), by Endo et al. (2019) to determine
w across the cloud edge, and by Sakradzija and Klingebiel
(2020) to determine chord length in LES output. In contrast
to the chords derived from the 1D column output or the ob-
servations, we are no longer measuring the duration of the
chords but the distance. We do derive a cloud duration using
the mean horizontal wind speed at cloud base, but this ap-
proximation is only used as a rough comparison (shown in
Fig. 6).

We also replace the 20 s minimum duration threshold of
Lareau et al. (2018) used for the 1D and DL chords with a
75 m threshold, which equals three model grid cells. Since
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chords shorter than 250 m have no more than 10 cells, we do
not allow gaps in the 3D cloud chords. We test in Sect. 4.3 the
impact of not allowing gaps on longer chords. When calcu-
lating composite scenes we require a minimum chord length
of 10 cells (250 m) to avoid very strong resolution differences
between shorter and longer scenes.

An important characteristic of our method of slicing the
3D snapshots in the x and y direction is that the detected
cloud chords are not aligned with the wind direction. In con-
trast, the 1D and Doppler lidar chords are by nature affected
by the wind direction, which moves the clouds above the
static sensor. Wind direction is not commonly taken into ac-
count when converting 1D measurements to cloud fractions
(e.g., Brooks et al., 2005; Illingworth et al., 2007) but has a
noticeable influence on our spatially connected 2D scenes. If
the clouds in the domain are consistently oriented in some
manner to the wind direction, this could lead to differences
in chord length and duration between the 3D and 1D chords.
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Figure 3. Illustration of chords, chord-base height, and scenes as
defined in Sect. 3. The top half shows a sketch of a z — x slice of
3D output. The filled-in grid boxes are cloudy cells. The green and
orange cells show the cloudy cells that would be detected as two
chords from the surface. The thick black lines mark the chord length
and the chord-base height of the two chords. The two lower boxes
show the resulting 2D scenes after normalizing the two chords with
their respective chord-base height and length. For an example using
Doppler lidar data, see Lareau et al. (2018, Fig. 1).

However, while we have not systematically analyzed the ori-
entation of the clouds in regard to wind speed, we did not
notice any clear formation of cloud streets or similar features
in the simulations. We are confident that the various other dif-
ferences in methodology between how the 1D and 3D chords
are detected have a far greater effect.

While we do not take the wind direction into account when
detecting chords, we try to take it into account when calcu-
lating the corresponding scenes. The method we devised to
do this is by first flipping the x — z and y — z slices in accor-
dance with the wind speed so that the imitation lidar moves
along the surface in the opposite direction of the wind in the
x and y direction. We then calculate and store the normalized
scenes from the chords in the x and y direction separately for
each snapshot. The last step is to weight the scenes from the
x and y slices by the strength of the wind in the x and y
direction before merging them together into one scene. The
scenes from chords with differing heights and lengths can be
merged thanks to the scenes being normalized in both height
and distance as shown in Fig. 3.

To illustrate how the wind-weighted merging works, if the
wind direction were zero in the y direction, then the scene
resulting from merging the weighed x and y scenes would
be identical to the scenes in the x direction. However, if the
x and y wind components were identical, the weighted and
merged scene would consist of equal parts of the scenes in
the x and y directions. A missing but crucial detail is how
we define the horizontal wind direction; for simplicity we
use the mean horizontal wind direction in the 3D snapshot

https://doi.org/10.5194/acp-20-10211-2020

10217

Table 2. Number of chords diagnosed from model output, Doppler
lidar (DL), and Raman lidar (RL) observations. There are more
chords then scenes in the 3D output because we only require three
cloud cells for a chord to be detected but only calculate the scene of
the chord if the chord contains at least 10 cells.

3D chords
7083946

1D column DL RL
13668 8132 778

3D scenes

4249 468

at each height. An example of how taking the wind direction
into account affects the resulting vertical velocity scene is
shown in Fig. 4.

We acknowledge that there are other possible methods to
detect chords, for example by moving the imitated lidar di-
agonally across the surface cutting through 2D clouds, which
would result in continuous chord lengths as done by Bar-
ron et al. (2020), or we could have first rotated and inter-
polated the 2D horizontal fields onto a 2D grid oriented to
the wind direction. However, in this paper all scenes from
3D snapshots are derived using our method introduced above
because it is both technically and computationally cheaper,
while avoiding any artificial interpolation artifacts.

3.3 Differences in 1D vs. 3D

In comparing 1D and 3D scenes and chords it is important
to recognize that the DL and 1D model data are taken from
slices in time, whereas the 3D snapshots that are cut into 2D
slices are a function of space. Accordingly, the 1D and DL
chords are sampled from clouds as they are evolving from
cloud birth to death, while the 3D chords are taken from
clouds frozen in time. When the horizontal wind speeds are
sufficiently low, a 1D chord could contain the complete cloud
life cycle from birth to death. We cannot deduce from the li-
dar observations alone at which stage of their life cycle the
clouds are when they are sampled. Even neglecting the cloud
life cycle, wind shear and rotation will stretch and deform the
atmosphere as it passes over the lidar. The way we calculate
scenes takes the rotation of the wind direction with height
into account, but it is still a crude approximation. No post-
processing method can bridge the fundamental difference be-
tween the 1D and 3D chords. Any systematic differences be-
tween the simulated 1D and 3D chords that go beyond chord
definitions should be due to the difference in sampling over
space or time.

4 Chord distributions

This section evaluates three different aspects of the cloud
chords. The first evaluation looks at chord-base height, mean
horizontal velocity, and time of day. The purpose of this first
evaluation is to determine how similar the distributions of
atmospheric conditions are of the simulated and observed
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Figure 4. Mean vertical velocity scene of 500 chords in the x direction and 500 chords in the y direction from a 3D snapshot of the MicroHH
simulation on 11 June 2016. The black dashed and white line marks the chord-base height. Shown are scenes that result from not taking the
wind direction into account (a), weighting the x and y scenes using the wind speed at chord-base height before merging (b), and weighting
the x and y scenes differently at each height using the vertical profile of horizontal wind (c). See Sect. 3.2 for a detailed description of how

scenes are derived from 3D snapshots as illustrated in Fig. 3.

chords. The second evaluation focuses on the chord length
and duration. While chord-base height and horizontal veloc-
ity are controlled by the prescribed LASSO forcing, chord
length and duration are highly dependent on the resolved
cloud geometry. And the cloud geometry in turn results form
the simulated convective dynamics. The final evaluation is
a sensitivity test to determine how much chord length and
duration depend on the exact definition of cloudiness and if
cloud gaps are permitted within a chord.

The differences between the 1D model chords and the
Doppler lidar chords will reveal how close the geometry of
the simulated cloud fields were to those measured at the
ARM-SGP site, and the comparison of the 1D to the 3D
model chords will reveal the differences between the tem-
poral and spatial sampling discussed in Sect. 3.3.

4.1 Wind, chord-base height, and time of day

The histograms of horizontal wind speed and chord-base
height both reveal significant differences between the ob-
served and simulated chords (Fig. 5). Despite the spread be-
ing very similar the model chords are 2ms~! slower on av-
erage than the observed chords (mean 1D: 5.3 ms~!, mean
DL: 7.2ms™!). While there are an equal number of Doppler
lidar chords with wind speeds below 2.5 as there are above
12.5ms™!, the model chords rarely exceed 10ms~!. The
chord-base height distributions also do not match well. While
the observed and simulated chords both have the same max-
imum values at around 3000 m, there are many more model
chords lower than 1500 m. On average the model chords are
230 m lower.

These differences between the observed and modeled
cloud chords could be attributed to two sources. Either the
simulated days are not fully representative of the atmospheric
conditions of the included observations, or the simulated
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days are not representative of the actual conditions at the
ARM-SGP site at that time.

In regards to the cloud base, we have already shown that
the simulations matched the observations at the ARM-SGP
site very well (Fig. 1). Despite having the correct cloud-base
height, the simulations could have too few clouds late in the
day when clouds are higher and too many in the morning
when clouds are lower. But this is not the case because the
distributions of when during the day the chords were detected
show no marked shift (Fig. 5¢). This absence of a shift de-
spite the average cloud cover being lower in the simulations
than the observations before noon (Fig. 2) indicates that the
simulated clouds are present at the right time but are not as
large as their observed counterparts. Note that when screen-
ing the lidar observations for chords we exclude all clouds
before 10:00 to avoid stratocumulus conditions.

In regards to the horizontal wind speed, while we can-
not easily check the horizontal wind against observations be-
cause horizontal wind is not one of the LASSO evaluation
observations, we find it highly unlikely that the LASSO forc-
ing data would contain such a strong bias. Accordingly, we
believe that the discrepancies between the modeled and ob-
served chords are not due to the simulations misrepresenting
the conditions at the ARM-SGP site. From this it follows that
the differences are predominantly due to the 28 d of simula-
tions we use not being fully representative of the wind speeds
and cloud heights that result from the selection method of
Lareau et al. (2018) to determine which days are shallow cu-
mulus days.

The difference in wind speed distribution could substan-
tially effect our analysis in three ways. First, the faster a
cloud is advected over lidar the less time it has to evolve
during the ongoing measurement. Second, higher horizon-
tal speeds are typically associated with higher vertical shear
of the horizontal wind, leading to greater deformation of the
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scene. Last, higher wind speeds should reduce the measured
cloud duration.

4.2 Length and duration

In this subsection we examine the differences in chord length
and duration among our three methods of chord detection.
We discuss which differences can be attributed to the vary-
ing definitions used to determine a chord, the model under-
estimation of cloud cover noted in Sect. 2.1, or the difference
in horizontal wind speed and height noted in Sect. 4.1.

We begin by comparing the duration of the Doppler lidar
chords to the 1D output model chords (Fig. 6a). Both show
a strong decrease in chord occurrence in regards to duration,
with the most likely chord duration being just above the 30 s
minimum time as applied by Lareau et al. (2018). The 1D
chords can last longer than 20 min, given that we did not ap-
ply any maximum time measure to the model data because
there was no need to filter out stratus clouds. The distribu-
tions of the 1D chords and DL chords are remarkably simi-
lar, which at first glance would indicate that the observed and
simulated clouds are of the same size and shape. However,
since the horizontal wind speeds are higher than in the ob-
servations (Fig. 5), the chord length, which results from mul-
tiplying chord duration with the wind at cloud base, shows
that longer chords are substantially more common in the ob-
servations than in the simulations (Fig. 6b). From this we can
conclude that not only do the simulations have a lower cloud
fraction as shown in Sect. 2.1,but the simulated clouds are
also smaller than those observed. These findings agree with
the results of Fast et al. (2019) that using homogeneous sur-
face forcing in LES setups leads to smaller individual clouds.
It is worth mentioning that the reason the most common
chord length lies at roughly 300 m is a combination of the
30 s minimum duration and the mean horizontal wind speed
being 5-7 ms~!. Chords shorter than 300 m can only be mea-
sured when the horizontal wind speed is below average.

When interpreting the 3D chords one wonders if the much
larger sample size leads to a higher maximum chord length.
The maximum value is expected to increase with sample size
if all samples are all drawn from the same infinite distribu-
tion. However, given that the domain is 25.6 x 25.6 km? and
the simulations rarely have a cloud fraction over 0.5 (Fig. 2),
there is a limit on possible chord length (Fig. 6b). Note that
the few very long chords of the order of 10 km are not sam-
pled from a single 10km wide cumulus cloud, but instead
are the very rare occurrences when a single chord is sampled
from multiple slightly overlapping cumulus clouds.

That chord occurrence decreases strongly with increasing
length and duration is hardly surprising given that it has been
well-established that the cumuli size density roughly follows
a power law of —3 to —2 (e.g., Raga et al., 1990; Benner
and Curry, 1998; Neggers et al., 2003; Zhao and Girolamo,
2007; Dawe and Austin, 2012; van Laar et al., 2019). Given
that randomly cutting through a cloud with an area of A cre-
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ates many chords with a length smaller than /A but only a
few larger than VA (Barron et al., 2020), it is expected that
the chord distribution is heavily dominated by small chords.
Our results do not agree with the constant slope found by
Wood and Field (2011) for chords up to 1000 km, as Wood
and Field (2011) do not exclusively look at cumulus clouds
and the satellite data they used have a maximum pixel reso-
lution of 1 km.

4.3 Chord definition sensitivity

In this subsection we explore the sensitivity of the simu-
lated chord distributions to variations in the gap tolerance
and cloudy pixel definition used to define chords in the sim-
ulations. First, we examine the influence of allowing gaps in
the 3D chords, which were not allowed in our baseline re-
sults. We test this by allowing 50 m gaps (two grid cells) and
rerunning the chord detection script for 5d. Given that we
are now allowing 50 m gaps we only look at chords that are
at least 250 m long. While it is clear that allowing gaps will
lead to more longer chords and fewer short chords, we cannot
predict how strong that impact will be. A large impact would
indicate that the simulated clouds have many small gaps in
the clouds, have ragged edges, or that the clouds are often
only 50m away from each other. A small impact indicates
that the clouds are well-isolated from each other, with few
internal gaps. Our test reveals that allowing gaps has a slight
but noticeable effect on chords 250-400 m and longer than
3000 m (Fig. 7a), indicating that the chords between those
lengths are sampled from coherent clouds.

Second, we probe the sensitivity of the chord statistics to
relaxing our cloudy pixel definition by treating cells with a
relative humidity of 99 % or 97 % as cloudy as well. This
could in theory help explain why there are more longer ob-
served chords than detected from the 1D columns. Using a
subsaturated threshold can be justified by assuming that a
volume of 25 x 25 x 25 m air with such a high relative hu-
midity could contain some condensed liquid and that by re-
quiring liquid water to be present in the model cells to count
as cloudy we might be stricter than the backscatter thresh-
old used by Lareau et al. (2018). However, by looking at
the changes in the cloud duration distribution from 18 d of
1D column output we see that using a relative humidity has
no noticeable impact on the chord duration (Fig. 7). This
strengthens our conclusion that more longer chords are ob-
served because the simulated clouds are smaller. We did find
that using a relative humidity slightly lowers cloud base but
not by an amount that could impact our results.

In summary, these sensitivity tests indicate that our re-
sults are minimally sensitive to variations in the definition
of cloudiness and chord continuity, indicating that the vast
majority of our scenes are sampled from coherent clouds.

Atmos. Chem. Phys., 20, 10211-10230, 2020
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5 Chord vertical velocity

Now that we have established how the distributions of the
modeled and observed chords compare, we turn to the main
question of our paper. Do the vertical velocities of the mod-
eled chords have a size dependence, and does it match that of
the observations? After answering that we will explore what
can be learned from investigating the axial asymmetry of the
2D scenes.

5.1 Size dependence

Our analysis of the size dependence of updraft strength re-
quires some additional data stratification. First, we restrict
our analysis to chords shorter than 3000 m for practical and
scientific reasons. Given that the cloud base at the ARM-SGP
observatory rarely surpasses 3 km (see Fig. 1), it is likely that
most chords longer than 3000 m are either stratus clouds that
eluded the screening or a chain of smaller cumulus clouds
that by chance happen to overlap. The size filtering is useful
since clouds in either of these groupings do not reflect the
strength to size dependence of individual cumuli.

Atmos. Chem. Phys., 20, 10211-10230, 2020

We define the region over which to examine the mean sub-
cloud vertical velocity (w) as a box marked in each panel in
Fig. 9. The box extends vertically from 0.6 to 0.8, which we
chose to capture the peak in w at roughly 0.7 while staying
far away enough from the cloud base to reduce the impact
of the exact cloud height definition and drop contamination.
The horizontal extent of the box (—0.4 to 0.4) does not quite
extend all the way from chord beginning to end to reduce
the possibility of subsiding shells being included. We man-
ually defined these box dimensions but checked that minor
adjustments of height or width by £0.05 do not effect our
qualitative results.

Our representation of the subcloud velocity differs from
the more commonly used w at chord base, which is often
considered (e.g., Endo et al., 2019) to be vertical velocity at
cloud base; both are easily defined and an important prop-
erty of mass flux parameterizations (Neggers et al., 2006;
Sakradzija and Klingebiel, 2020). This difference is moti-
vated by the sensitivity of chord-base height and thus w at the
chord base. For example, if the cloud base determined by li-
dar backscatter were on average 100 m lower than that of the
cloud base detected from liquid water content in simulations,
the vertical velocity at cloud base would be higher in the ob-
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is no 3D value for chords below 250 m as we only compute scenes
for chords with at least 10 data points as explained in Sect. 2.

servations as the vertical velocity decreases with height. The
second reason is due to the possibility of drops falling into
the air below the cloud, contaminating the retrieved signal
and leading to lower w. We believe this effect is at least par-
tially responsible for the very uniform w decrease visible just
below cloud base (see Fig. 9d and e). We do, however, have
an analysis of w at cloud base in the simulations in Sect. 7.
We also opted to avoid using percentiles, such as the 95th
percentile used by Lareau et al. (2018), despite the strongest
updrafts being of critical importance for cloud formation.
This is because the number of data points per chord is di-
rectly dependent on chord length for 3D chords. For exam-
ple, 3D chords between 250 and 500 m only have 10-20 data
points (Fig. 6¢). This increase in sampling size is also true
for the 1D and DL chords to a lesser extent. Due to the large
change in sampling size, calculating the mean over the 95th
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percentiles of chords with different lengths leads to an artifi-
cial signal.

The first result of our analysis is that the 1D and DL chords
agree well for chords shorter than 1500 m (Fig. 8), although a
consistent bias exists within this range. The simulated chords
have stronger updrafts at all lengths, with the difference be-
tween model and observation increasing to ~0.2ms~! for
chords between 1500 and 3000 m for which sampling is the
weakest. The bias is less than that found by Endo et al. (2019)
at cloud base, which we attribute to the differences in our def-
inition of the subcloud velocity (i.e., at cloud base vs. in the
subcloud box). We also note that the w probability density
function (PDF) at cloud base studied by Endo et al. (2019)
is not sampled from cloud chords but from all cloud-base
grid cells, so the distinction between 1D and 3D sampling
has no effect on their findings. The general shape of the 1D
curve in Fig. 8 is consistent with the findings of Ansmann
et al. (2010) and Lamer and Kollias (2015). A quantitative
comparison is not possible since Ansmann et al. (2010) stud-
ied updrafts at a fixed height within the boundary layer, and
Lamer and Kollias (2015) compare the updrafts and down-
drafts of the cloud chords separately, as well as normalized
chord length by cloud-base height and vertical velocity by
the convective velocity scale (w*).

While it could be argued that the 1D and DL chords have
the same behavior for chords shorter than 1500 m, the differ-
ences between the 1D and 3D chords are much more pro-
nounced (Fig. 8). The 3D chords show a stronger scaling
until 1000 m, with a weak signal beyond but with a distinct
small peak at 1500-1750 m.

In conclusion, 1D and DL chords are in good agreement
for chords shorter than 1500 m. While a modest bias exists
between 1D and DL in that range, it is significantly smaller
than the increase in the mean w across that range. In addition,
this bias is much smaller than the difference between the 1D
columns on the one hand and 3D snapshots on the other. All
three chord measures show a marked increase in w in the first
kilometer; while the 1D model chords show a clear size de-
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pendence up to 2000 m, the 3D chords level off after 1000 m,
and the signal in the observations is only beyond a doubt for
the first 1000 m.

5.2 w scene

In this subsection we examine the size and shape sensitiv-
ity of the broader subcloud vertical velocity scene shown in
Fig. 9. The analysis uses the time—height normalized com-
posite scene for clouds in three size bins, 250-750m (a, b,
c), 750-1500m (d, e, f), and 1500-2500 m (g, h, 1).

Figure 9a, d, and g are similar to those included in the sup-
plementary material of Lareau et al. (2018) but contain more
data and are binned differently. Note that the observed data
are limited to regions where > 70 % of the observations have
sufficient aerosol and are cloud-free, reducing the available
data above 0.8 of cloud-base height on the scene periphery.
Since we do not know if the occurrence of sufficient aerosol
at cloud-base height is independent of w, we are not fully
confident in the observed vertical velocities above 0.8 on the
scene periphery.

In addition, we are wary of DL data close to cloud base
(> 0.9 beneath the chord) due possible interactions with
cloud droplets. For example, we suspect that the reduction
to 0 in vertical velocity at cloud base in Fig. 9a, d, and g is
an artifact of the cloud droplets impacting the w retrieval.
This is supported by the simulated scenes not having such a
feature at all and also there being no theoretical reason for
updrafts to stop at cloud base.

Figure 9 indicates that the simulations and observations
disagree in two aspects. Firstly, the 1D scenes have no down-
drafts extending below 0.8 normalized height (Fig. 9b, e,
h). This could indicate that the model resolution, micro-
physics, and/or 1D radiation are insufficient to fully capture
the evaporative cooling at the cloud edge (Abma et al., 2013),
which agrees with the findings of Endo et al. (2019). Sec-
ondly, the vertical velocity is higher in the simulated chords
longer than 750 m as discussed in Sect. 5.1. But otherwise
the 1D and DL scenes show a very similar pattern and ex-
tent. Both have stronger downdrafts in the wake of the chord,
with the strongest updraft located at roughly 0.7 normalized
height with a marked shift to the right; i.e., the chords have a
stronger updraft earlier on. Not visible in the observations is
that, as expected, the updrafts of the longer chords extend to
a greater altitude.

While we cannot fully isolate what causes the differences
between the 1D and DL scenes, we find that the following
general picture has emerged from our analysis. On average
the simulated clouds are more compact and closely linked
to convective plumes than the observed plumes. Given how
small the differences are for shorter chords there are many
possible explanations, such as the difference in horizontal
wind shown in Fig. 5 or the observations including some days
with anomalously weak convection. In addition, the longer
observed chords appear to have a weaker convective charac-
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ter (Fig. 9g) and show no clear link between chord length and
updraft strength. This could indicate that some of the longest
observed cloud chords are stratus clouds that eluded our se-
lection criteria intended to filter stratus clouds. But we cannot
check if this occurs at all, let alone sufficiently often to have
a noticeable effect on the mean value.

In contrast to the DL and 1D scenes, the 3D chords are
more symmetric with only a weak shift of the updraft core
towards the start of the chord (i.e., in Fig. 9c, f, 1). The sym-
metry is more pronounced when looking at the two subsiding
shells at the edge of cloud chords, which are equally strong
and extend to the same height. There is a slight asymmetry
in that the downdraft region behind the chord is a bit wider,
but not to the extent Mallaun et al. (2018) detected in air-
plane measurements. Also, in contrast to the 1D scenes the
updraft is more tightly organized below the cloud chord. This
is most clearly visible when looking at how far the updrafts
trail behind the chord, i.e., in Fig. 9a, d, and g.

Returning to the differences between 1D and 3D chords
introduced in Sect. 3.3, the difference between 1D and 3D
can be attributed to either the life cycle of the cloud evolving
as it is sampled or the upwind advection stretching the scene
as it is advected over the lidar. The shear in horizontal wind
speed over the boundary layer can explain why the updrafts
in the 1D and DL chords are broader below the chord (Heus
and Jonker, 2008). Weaker horizontal winds closer to the sur-
face would laterally stretch the updrafts, causing the wide
weak updrafts close to the surface in the 1D and DL scenes.
A wind sheer above the chord base should be visible by the
scene above the chord being slightly pulled toward the cen-
ter of the chord. A close look at the trailing subsiding shell in
the 1D chords shows that the subsiding shell bends slightly to
the right over the cloud chord (Fig. 9b, e, h). In contrast, the
subsiding shells of the 3D chords extend straight upwards.
While this is only a very weak signal, it is consistent with
what we would expect from a slight horizontal wind increase
above the cloud base.

The asymmetry, however, cannot be explained by the ver-
tical shear of the horizontal wind. Instead, our results sug-
gest that the asymmetry arises from the ongoing cloud life
cycle. Given that the average horizontal wind speed is about
6ms~! (see Fig. 5), on average we would expect the small-
est clouds to age 1.5 min from chord beginning to end, the
middle chords 3 min, and the longest chords 5.5 min (Fig. 9).
Given that most shallow cumulus clouds live less than 20 min
and many far shorter (Dawe and Austin, 2012; Heus and
Seifert, 2013), the clouds are substantially younger at the be-
ginning of the chords (i.e., Fig. 9c, f, i) than at the end. We
expect younger cumulus clouds to be growing with an active
updraft and older clouds to be decaying and sinking. Know-
ing that the chords are substantially older at the end of the
chord, this aging provides a consistent explanation for why
updrafts both below and above the chord base are stronger at
the beginning of the cloud chords.
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Figure 9. Normalized vertical velocity scenes from Doppler lidar observations (a, d, g), 1D column output (b, e, h), and 3D snapshots (c,
f, i). The scenes are composites of the normalized scenes binned by chord lengths of 250-750 m (a, b, ¢), 750-1500 m (d, e, f), and 1500-
2500 m (g, h, i). After merging the scenes the normalized length is rescaled to match the mean length of the bin (e.g., 500 m for 250-750 m).
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area averaged for Fig. 8. See Sect. 2.1 for information on the Doppler data and Sect. 3.2-3.1 for descriptions of how chords were derived
from the MicroHH simulations. Doppler lidar scenes are only shown when at least 70 % of the scenes contain data.

Having considered possible explanations for the differ-
ences in width and asymmetry between the 1D and DL
chords, we have so far not explained why the 3D chords have
stronger updrafts. The difference in updraft strength is very
likely partially due to the 3D chords not allowing any gaps
in the chords. While we have shown that allowing 50 m gaps
does not effect our results (Sect. 4.3), we know that allowing
longer gaps over hundreds of meters does reduce the updraft
velocity. Interestingly, not only are the 3D updrafts stronger,
but the downdrafts behind and before the chords are also
stronger for the biggest chords (Fig. 9i). Given that the long
chords have a strong updraft, due to mass conservation in the
LES domain there must be downdrafts between the chords.
That these downdrafts are not visible in the 1D chords indi-
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cates that while the 3D chords taken from the frozen snap-
shots have a clear separation of updrafts beneath the clouds
and subsidence between, this clear separation is blurred by
the ongoing time evolution in the 1D chords.

6 Moisture anomalies

After comparing the simulated vertical velocities against the
Doppler lidar measurements, we now move on to the mois-
ture anomalies computed from the Raman lidar. Our core
question remains, which is to what degree the model and ob-
servations agree and if the anomalies show a clear size de-
pendence.

Atmos. Chem. Phys., 20, 10211-10230, 2020
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For interpreting the Raman lidar results it is important
to note that the sample size and frequency of the moisture
anomalies are substantially lower than those of the verti-
cal velocity. We have roughly a factor of 10 fewer observed
chords (Table 2) and the sample frequency is also lower by
a factor of 10 (10s vs. 1.3s). To make use of all the data
we have available for the largest chords we expanded the
binning of the scenes shown in Fig. 10 compared to Fig. 9
(1500-3000 m vs. 1500-2500 m). While the Raman lidar ob-
servations tend to extend higher than the CBL, they cannot
penetrate into the clouds (Lareau, 2020). Since we calculate
the anomalies from a 90 min running mean we do not plot
the anomalies higher than 0.95 of the chord base because the
missing observations in the cloud bias the resulting anoma-
lies.

As expected, due to the sharp decrease in water vapor in
the atmosphere above the boundary layer, both observed and
simulated moisture anomalies have a very strong maximum
at cloud chord base and, for the simulations, in the cloud
cores (Fig. 10). In both the observations and simulations the
positive moisture anomaly reaches all the way to surface,
with a smooth and monotonic increase from the surface to
cloud base. In our simulations the water vapor values in the
lower mixed layer lie roughly between 10 and 15 gkg™!, so
the mean anomalies at 0.5 chord-base height are on the order
of 1 %-2 %. To avoid the signal being dominated by possible
small shifts in cloud height, we use a larger and lower aver-
aging box (marked in grey in Fig. 10) to calculate the mois-
ture anomalies shown in Fig. 11 than we did for the vertical
velocities (marked in grey in Fig. 9).

In contrast to the vertical velocity, which turns negative
within the cloud edge (Fig. 9), the water vapor anomalies
remain slightly positive beyond the cloud at the cloud-base
height. This is consistent with our general understanding of
subsiding shells, which, while drier than the cloud cores, are
still moister than the surrounding air (Heus and Jonker, 2008;
Wang and Geerts, 2010; Katzwinkel et al., 2014; Lareau,
2020).

Comparing the RL and 1D moisture anomaly scenes to the
3D scenes results in the same conclusions we reached from
the vertical velocity scenes. The RL and 1D chords have a
clear asymmetry with no clear negative anomalies before and
behind the chords, while the 3D chords are almost symmetric
with clear dry areas before and behind the chords (Fig. 10).

The size dependence of the moisture anomalies below the
chord base of the 1D and 3D scenes is also quite similar to
that of the vertical velocity (Fig. 11). Again the 3D scenes
have stronger anomalies than the 1D scenes, with the high-
est anomalies corresponding to chords that roughly have the
length of the mean boundary layer height (1.5km), while
the 1D scene anomalies slowly increase with chord length
until about 2.5km. In contrast to the simulated scenes the
observed moisture anomalies decrease with length, although
there are large fluctuations between bins due to the small
sample sizes. It should be noted that the relative anomalies
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are only in the range of 1 %-2 % and that any bias or error
in the anomaly calculation could substantially effect the re-
sults. To more completely understand the size dependence
in the observations would likely require substantially more
data, preferably with a higher measurement frequency, and
a more careful separation of anomalies from the mean than
what we use. However, for now we are confident that the de-
creasing moisture anomalies with length are a direct result of
using a running mean to calculate the anomalies.

In summary, the moisture anomaly analysis shows that
the simulations match our theoretical expectations while cor-
rectly reproducing the observations. The differences between
the 1D and 3D scenes are consistent with our findings from
the vertical velocity in that the 1D chords have a weaker sig-
nal with asymmetric scenes. Both 1D and 3D scenes show
a clear size dependence, while the observed chords have a
weak inverse size dependence due to how the anomalies were
calculated. In relative terms the anomalies halfway below the
chords are in the range of 1 %-2 %.

7 Sampling uncertainty

In this section we use simulated data to address the ques-
tion of how the uncertainty in cumulus properties depends
on how many days of shallow cumulus lidar observations are
available. Assuming a single 1D column output of a shallow
cumulus simulation is equivalent to having one lidar measur-
ing over 24 h; this analysis will determine how many days
of shallow cumulus lidar observations would be needed at
the ARM-SGP site to derive the various chord properties to
within a threshold uncertainty. This analysis is based on the
premise that each individual column output is both indepen-
dent and equivalent; i.e., we make no distinction between two
column outputs from the same day or different days. On av-
erage 31 chords are detected from each column, with a stan-
dard deviation of 17 and a maximum of 68. For this analy-
sis we exclude all columns with fewer than 10 chords, leav-
ing us with 386 columns of our total 448. The three proper-
ties that will be investigated are the chord-length distribution,
the mean vertical velocity below the chords as a function of
chord length, and the mean w scene.

The sampling uncertainty of the chord-length distribu-
tion for n columns is determined by repeatedly sampling
n columns at random and calculating the chord distribu-
tion of all the chords contained in those n columns. As ex-
pected, uncertainty in the chord-length distribution is directly
linked to chord occurrence, with the smallest uncertainty be-
ing at about 300 m, which is the most common chord length
(Fig. 12a). At this point it is informative to compare these
results with the DL observations. The line presenting the DL
chords roughly lies within the n = 64 shading, which implies
that with fewer than 64 columns we cannot rule out the pos-
sibility that the differences between the observed and simu-
lated chord-length distributions are due to sampling.
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P. J. Griewank et al.: Size dependence in chord characteristics

Raman lidar 1D model

N=393 L (@)  N=6577 . :

¥ A

0.5

Normalized height

0.0

N=178

Normalized height

Normalized height

1 -2 2 1

0 -
Length [km]

0 -
Length [km]

10225
3D model
- 10.00
(b)  N=2633602 : : (c)
‘ - 3.16
Q
= >
o
g
@ - 1.00
N
(42
o
3
=] -0.32
3
| |
0 0 -0.10
1 1
()  N=974674 -0.03
o _ —
3- 0.01 -3’
& =)
3 >
g -000 E
o )
a ©
8 °
3 -001 T
--0.03

N=302573 0.10

-0.32

-1.00

W 000€-0051 ‘spioyd

-3.16
I
|
I

1 -2

-10.00
-2 2 1

0 -
Length [km]
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The mean w at cloud base is displayed in the same man-
ner as the chord-length distribution (Fig. 12b). In contrast
to chord length, the uncertainty regarding the dependence
of mean w at chord base on chord length is relatively con-
stant for chords from 100 to 3000 m. We speculate that two
compensating effects are behind this behavior; while longer
chords are rarer than shorter chords, their mean w also has
a much smaller spread. Accordingly, fewer long chords are
needed to reach a representative mean value. An interesting
result not directly related to sample sizes is that the short-
est chords below 200m in length actually have a negative
vertical velocity on average. This negative velocity for the
smallest chords was also found by Rodts et al. (2003) in air-
plane measurements and indicates that the smallest chords
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are dominated by chords sampled from the subsiding shells
of larger clouds or from dying clouds at the end of their life
cycle.

The final variable we examine is the 2D w scene. To de-
termine the uncertainty in the w scene we calculate the root
mean square error (RMSE) between two randomly sampled
scene composites through a bootstrapping approach. The
randomly sampled scenes are generated by drawing 2 -n of
columns into two separate groups with n columns each from
our total pool of 386 1D columns (again we only include
columns that contain at least 10 chords). Once a column is
drawn it is removed from the pool so that no column is com-
pared against itself. We then form a composite of all w scenes
present in the n columns in each group. Finally, we calcu-
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Figure 11. Mean water vapor anomalies below chord base as a func-
tion of chord length. The area over which the anomaly is averaged
is marked by the grey box in Fig. 10. The size of the markers rep-
resents the number of chords in that 250 m bin. Note that there is
no 3D value for chords below 250 m as we only compute scenes for
chords with at least 10 data points as explained in Sect. 2.

late the RMSE between the two w scenes that were calcu-
lated from the two pots. This random drawing is repeated
100 times. Note that the selection of 100 permutations is ar-
bitrary, but the results remain unchanged for higher numbers.
As each column contains a varying number of scenes with
different lengths and from varying times of day, there is no
easy way to predict how the RMSE will behave. Our analy-
sis shows that on average the RMSE behaves as if drawing
from normally distributed errors with a standard deviation of
0.3ms~! (Fig. 13). Accordingly, quadrupling the columns
included in the analysis halves the sampling uncertainty. For
example, to reduce the expected sampling uncertainty from
0.05 to 0.025 ms~! requires measuring 128 d instead of 32.

8 Conclusions and discussion

The two main goals of our study were to evaluate the
LES concerning (thermo)dynamic perturbations of continen-
tal transient shallow cumuli and to establish if size depen-
dence exists in these features. These goals were achieved by
comparing cloud chords observed by Doppler and Raman li-
dars against chords derived from 1D and 3D model output.
From our results we established the following.

8.1 Conclusions

— We are the first to show that an LES approach can re-
produce the magnitude and shape of vertical velocities
and moisture anomalies observed below shallow cumu-
lus clouds.

— The size dependence of vertical velocity on chord length
is clear and robust. Our work puts the findings of
Rodts et al. (2003), Lamer and Kollias (2015), Neggers
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combining n columns 386 times (details in Sect. 7). The shading
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together in each random sample. The shading in (b) fills the 10th
to 90th percentile of all the samples. The black line is the Doppler
lidar data, which shows roughly the same number of chords as we
detect from 250 column outputs.

(2015), and Lareau et al. (2018) on a more robust statis-
tical foundation.

— Compared to observations, MicroHH in combination
with the LASSO forcing leads to a lower cloud frac-
tion (similar to Schalkwijk et al., 2015; Zhang et al.,
2017; Gustafson et al., 2020) and slightly shorter cloud
chords.

— We see a positive bias in modeled vertical velocity at
roughly 0.7 chord height that is smaller than 0.1 ms~!
for chords shorter than 1500 m. Our bias is an order of
magnitude smaller than the bias noted by Endo et al.
(2019) at cloud base.

— Differences between the observations and simulations

are smaller than the differences between the 1D and 3D
sampling approaches applied to the simulations.
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— The quantitative analysis of the observed moisture
anomaly dependence on chord size is complicated by
the relatively weak anomalies, the need to determine the
mean moisture, and the smaller data amounts available
from the Raman lidar. For now, solving this problem is
considered a future research effort.

— Our results suggest that the asymmetry in the observed
Doppler lidar scenes mainly originates from the cloud
evolving while it is being sampled.

— Roughly 60d of Doppler lidar observations from the
ARM-SGP site are needed to detect the differences be-
tween observed and simulated chord-length distribution
with certainty.

8.2 Discussion

Our success at using measurements to evaluate LES perfor-
mance in combination with using LES output to better un-
derstand the measurements at the ARM-SGP site underlines
the usefulness of initiatives to run continuous LES experi-
ments at super-sites such as LASSO (Gustafson et al., 2020)
and the JOYCE test bed (Neggers et al.,, 2012; van Laar
et al., 2019) to drive scientific progress. Our methodology
also highlights again just how crucial it is to imitate the ob-
servations as closely as possible when evaluating LES exper-
iments against observations and illustrates one of the many
meaningful ways LES output can be analyzed beyond look-
ing at profiles of fluxes and mean variables. The underesti-
mation of cloud fraction and cloud size in the simulations
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matches the recent findings of Fast et al. (2019) that using
a horizontally homogeneous surface moisture reduces cloud
size and lifetime.

Our composites of millions of scenes taken from the 3D
snapshots indicate that on average the shape of a standard
symmetric and cylindrical convective plume as originally
formulated by Simpson and Wiggert (1969) is a reasonable
approximation, despite individual clouds being asymmetric
(Zhao and Austin, 2005) or composed of a collection of ther-
mal bubbles (French et al., 1999; Yano, 2014). The clear scal-
ing in vertical velocity below the clouds supports the use of
multiple plumes with different sizes as originally proposed
by Arakawa and Schubert (1974). Also in regards to parame-
terized plumes, that the moisture anomalies below the clouds
are relatively small (1 %-2 %) indicates that initializing mul-
tiple plumes at the surface using the background moisture is
justifiable (Park, 2014; Neggers, 2015; Hagos et al., 2018).

While we expect our results from the ARM-SGP site
to qualitatively apply to continental shallow cumulus else-
where, the applicability to cumulus convection in different
climate regimes (e.g., marine trade wind, mixed phase, high
latitude) and in different modes (precipitating, deep) still
needs to be demonstrated. Now that we have shown that the
LES outputs capture the observed vertical velocity and mois-
ture structure of shallow cumulus chords at the ARM-SGP
site, we can confidently use the LES experiments to study
features linked to shallow cumulus dynamics, such as con-
vective plumes, subsiding shells, and cold pools.

Code and data availability. The simulation and li-
dar data shown in the figures are freely available at
https://doi.org/10.5281/zenodo.3731944 (Griewank et
al., 2020), which also contains the Python files to plot

the data and post-process the simulations. The simu-
lations were generated with version 1.9.1 of MicroHH
(https://github.com/microhh/microhh2/releases/tag/1.9.1, Heus,

2020). The data used to force MicroHH and to evaluate the
simulated cloud fraction and base are available through the LASSO
Bundle Browser (https://adc.arm.gov/lassobrowser, ARM, 2020a).
The lidar data that were processed are freely available through the
ARM data archive at https://adc.arm.gov/data/ (ARM, 2020b) (see
Sect. 2.1).
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