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ARTICLE

Microglia control vascular architecture via a TGFβ1
dependent paracrine mechanism linked to tissue
mechanics
Tejasvi Dudiki1, Julia Meller1, Gautam Mahajan2, Huan Liu1, Irina Zhevlakova1, Samantha Stefl1,4,

Conner Witherow1,4, Eugene Podrez3, Chandrasekhar R. Kothapalli2 & Tatiana V. Byzova 1✉

Tissue microarchitecture and mechanics are important in development and pathologies of the

Central Nervous System (CNS); however, their coordinating mechanisms are unclear. Here,

we report that during colonization of the retina, microglia contacts the deep layer of high

stiffness, which coincides with microglial bipolarization, reduction in TGFβ1 signaling and

termination of vascular growth. Likewise, stiff substrates induce microglial bipolarization and

diminish TGFβ1 expression in hydrogels. Both microglial bipolarization in vivo and the

responses to stiff substrates in vitro require intracellular adaptor Kindlin3 but not microglial

integrins. Lack of Kindlin3 causes high microglial contractility, dysregulation of ERK signaling,

excessive TGFβ1 expression and abnormally-patterned vasculature with severe malforma-

tions in the area of photoreceptors. Both excessive TGFβ1 signaling and vascular defects

caused by Kindlin3-deficient microglia are rescued by either microglial depletion or microglial

knockout of TGFβ1 in vivo. This mechanism underlies an interplay between microglia, vascular

patterning and tissue mechanics within the CNS.

https://doi.org/10.1038/s41467-020-14787-y OPEN

1 Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. 2 Chemical and Biomedical Engineering Department,
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T issue architecture, which is determined by complex and
dynamic interactions between various cell types and the
extracellular matrix, and tissue mechanics are reciprocally

connected in health and pathologies1. While the role of these
interactions has been demonstrated in cell differentiation and
malignancies, very little is known about it in the central nervous
system (CNS) because of its complex cellular composition and
mechanical heterogeneity2,3. Thinning of retinal layers in Alz-
heimer’s patients4 alters retinal stiffness and correlates with the
changes in microvasculature that mirror pathological processes in
the brain5; CNS scarring and neurodegeneration are accompanied
by similar changes6–8. Compared with other tissues, the retina
seems to be particularly affected by a plethora of mechanical
stimuli arising from eye movements and changes in intraocular
pressure. However, the mechanisms and pathophysiological
outcomes underlying the intercellular crosstalk in the context of
tissue mechanics in the CNS are poorly understood.

Of the many cell types in the CNS, microglia are particularly
well-positioned to coordinate tissue organization. Originating
from the yolk sac, microglia populate neural tissues early in
development prior to the formation of blood vessels9 and shape
the neural circuits10,11. In adults, the key functions of microglia
are tissue surveillance and defense, as microglia are the only CNS
cell type that is constantly moving and encountering changes in
the tissue microenvironment12,13. In this study, we focused on
tissue microarchitecture and retinal vascularization, one of the
best models of embryonic neural vascular development. The
retina, characterized by the highest oxygen consumption per unit
weight, is the tissue that most depends upon properly-patterned
and precisely-timed vascularization. Consequently, it is not sur-
prising that any vascular anomaly in the retina causes impaired
vision14. For example, age-related macular degeneration (AMD)
is a leading cause of vision loss and occurs in > 20% of the
population15. In AMD, neovascularization originates either from
choroidal or retinal vasculature, with the latter pathology referred
to as retinal angiomatous proliferation (RAP)16,17 and its
mechanism is not understood. The depth of retinal vasculature is
conserved and vascularization is strictly limited to the inner layer
of the retina, whereas its deeper layers of photoreceptors remain
completely avascular to ensure normal vision18. This micro-
architectural precision of retina suggests the presence of a tightly-
regulated mechanism.

Since microglia are causatively connected to most inflamma-
tory and neurodegenerative disorders from multiple sclerosis to
Alzheimer’s disease to depression11,19,20, numerous studies have
aimed to identify microglial genes that are differentially expressed
in human pathologies. Interactions between microglia and its
microenvironment or with other cells are often mediated by cell
adhesion receptors called integrins. The main microglial integrin
αmβ2 facilitates axon pruning and pathological microgliosis10.
Nevertheless, cell adhesion receptors rarely appear amongst key
targets in genome-wide searches21. In contrast, the short list of
overlapping targets compiled from different studies contains
several intracellular adapters, among which FERMT3 (also
known as Kindlin3 (K3)) is hypomethylated and upregulated in
multiple sclerosis21. Similarly, changes in Kindlin3 levels were
observed in Alzheimer’s and Parkinson’s diseases, schizophrenia,
HIV-associated neurocognitive disorders, and more dramatically
in high-grade glioblastomas as identified from gene expression
profiles from curated Gene Expression Omnibus (GEO) datasets
of patients22. In the CNS, Kindlin3 is exclusively expressed in
microglia;23 however, it is not yet listed in any immune or neu-
rological pathways. The main function of Kindlin3 is to bind and
activate integrins23. In humans, Kindlin3 deficiency causes
devastating bleeding and immune disorder, known as LAD-III,
often accompanied by cerebrovascular complications24. It is

possible that Kindlin3 coordinates key microglial functions dur-
ing tissue development and disease that may be either dependent
on or independent of cell adhesion receptors.

In this study, we demonstrate that the pattern of vascular
networks, positioned between the nuclear layers of increasing
stiffness is controlled by microglia. Microglial bipolarization and
proangiogenic TGFβ1 signaling are closely linked to the stiffness
of the respective retinal layers. Increasing stiffness in hydrogels
in vitro directly induces microglial polarization and a reduction in
TGFβ1, which in turn is responsible for vascular restriction
in vivo. Knockout of Kindlin3 in microglia impairs microglial
stiffness sensing in vitro and dysregulates TGFβ1 in vitro and
in vivo, leading to severe vascular abnormalities in the retina. This
pathology is corrected by either microglial depletion or by
microglia-specific knockout of TGFβ1. Mechanistically, this
Kindlin3 function of regulating TGFβ1 is independent of
microglial integrins and Kindlin-integrin interactions and is
causatively connected with cellular contractility.

Results
Microglia migrate through stiffness gradient at development.
The retina has a highly conserved, layered structure with three
vascular layers that are positioned exactly between the respective
stiffer nuclear layers. As shown in Fig. 1a, while the deep vas-
culature is positioned on top of the outer nuclear layer (ONL), the
intermediate vascular network grows between the outer and inner
nuclear layers (INL). A stiffness map of the retina generated with
atomic force microscopy (AFM) revealed that vascular networks
are separated by the stiffer INL and ONL, characterized by elastic
modulus of 2 ± 0.2 and 6 ± 0.8 kPa, respectively. At the same time,
the stiffness of the vascularized outer plexiform layer (OPL) was
0.7 ± 0.03 kPa (Fig. 1a). Microscopy analysis showed that the
stiffest ONL (6 kPa) had > 3-fold higher nuclear density com-
pared with the INL (2 kPa) (Fig. 1a), which likely contributes to
its high stiffness.

During retinal development, microglia first populate the
superficial layer and then migrate into the deeper layers,
thereby experiencing significant changes in tissue stiffness
(Fig. 1b and Supplementary Fig. 1a, b). As evident from the
cross-sectional and lateral views of the retina shown in Fig. 1b
and Fig. 1c, respectively, microglia are ramified within the
softer OPL, but they become more widely spread and tightly
wrapped around blood vessels on the stiffer ONL. Deep
microglia on the ONL (6 kPa) are characterized by 2.4- and
4.5-fold changes in the vertical ramification index at P12 and
P16, respectively, compared with P9, whereas intermediate
microglia within the softer INL remained ramified (2 kPa)
(Fig. 1d). Between P9 and P16, intermediate microglia form
longer and more branched processes (Fig. 1e); however, they
remained ramified with a cell polarity index between 1 and 2
(Fig. 1f). In contrast, deep microglia on the stiffest ONL showed
time-dependent changes from ramified (polarity index 1.5 ± 0.1
at P9) to a bipolar rod shape (polarity index 3.6 ± 0.3 at P16).
Together, these results show that during retinal vascular
development microglia migrate through layers of increasing
stiffness and undergo polarization by assuming a bipolar rod
shape on the stiffest ONL.

To demonstrate whether tissue stiffness coordinates microglial
polarization, we adapted a new method developed for the CNS
that allows softening live tissues without damage3. Treatment of
live retinas with chondroitin sulfate (CS) for 6 h decreased retinal
stiffness from ~900 to 400 Pa based on AFM (Fig. 1g), while
microglia remained not only viable with moving processes but
also resting as judged by low expression of activation marker,
CD68 (Fig. Supplementary Fig. 1c-e). Although CS might initiate
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microglia activation25, CD68 expression was not increased after 6
h treatment with CS in vivo (Supplementary Fig. 1e). Likewise, CS
treatment in vitro did not significantly affect microglial
morphology nor its activation status (Supplementary Fig. 1c, d).
Together, these data indicate that treatment with CS for 6 h was
sufficient to soften the retina without detectable microglia
activation, which requires a substantially longer exposure25. CS

treatment decreased the polarity index of deep microglia from
~3.5 to 1.7 and intermediate microglia from ~1.7 to 1.5 (Fig. 1h,
i). The length of the major processes and the number of processes
were also altered by CS treatment (Supplementary Fig. 1f, g).
Thus, microglial polarization reflects increasing tissue stiffness
not only during development, but also in this experimental model
of tissue softening.
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Microglial response to stiffness is integrin-independent. To
substantiate the microglial responses to stiffness in vitro, we used
hyaluronic acid-based hydrogels coated with fibronectin. Similar
to our in vivo results, stiff hydrogels promoted bipolarization of
primary microglia. An increase in substrate stiffness by 10-fold
induced an ~3-fold increase in the polarity index of wild-type
(WT) microglia (Fig. 2a, b). Knowing that bipolarization of
microglia might trigger changes in secretory function, we focused
on factors that are (a) exclusively produced by microglia in the
CNS26,27, and (b) known to be associated with changes in the
CNS microenvironment during development, aging, and
pathologies28,29. At the top of this list is TGFβ1, which is a key
regulator of both microglia and the endothelium and is impli-
cated in neurovascular pathogenesis by mechanisms that are yet
to be established30,31.

As shown in Fig. 2c, stiff substrates induced more than a 2-fold
reduction in microglial TGFβ1 indicating mechanosensitive
response. The same pattern was observed in vivo. TGFβ1 in
retinas is expressed almost exclusively by microglia with ameboid
non-polarized microglia expressing the higher levels compared
with polarized cells (Supplementary Fig. 2a). Spatiotemporal
analysis of TGFβ1 and its signaling in vivo further supported the
existence of the mechanosensing mechanism observed in vitro.
Microglial bipolarization on stiff ONL at P16 (Fig. 1f) was
accompanied by a dramatic reduction in microglial TGFβ1
(Supplementary Fig. 2b, c). TGFβ1 can act through autocrine
mechanism, therefore pSMAD3 in microglia reports on
TGFβ1 signaling in these cells. As shown in Supplementary
Fig. 2d-f and quantified in Fig. 2d, the ameboid/non-polarized
intermediate microglia exhibited 3-fold higher pSMAD3 levels
compared with deep polarized microglia.

Consequently, endothelial pSMAD3 levels closely followed
TGFβ1 pattern in microglia. Microglia polarization from P12 to
P16 triggered a 3-fold reduction in endothelial pSMAD3 within
the deep vascular layer, while no significant change occurred in
the intermediate layer where microglia remained ramified (Fig. 2e,
f). This reduction in TGFβ1 signaling in the deep vasculature
coincided with termination of further growth into the ONL
(Fig. 1), thereby implicating microglial TGFβ1 in the restriction
of excessive retinal vasculature. Moreover, microglia-specific
knockout of TGFβ1 (CX3CR1-cre; TGFβ1f/f mice, Fig. 2g–i)
resulted in ablation of pSMAD3 localization to endothelial cells
(Fig. 2i), further confirming the key role of microglial
TGFβ1 signaling within retinal layers of varied stiffness.

It is well-accepted that mechanotransduction depends upon
integrins, and, possibly, upon integrin adaptors, including
Kindlin3. Accordingly, we compared microglial responses within
the stiff ONL using knockouts of the main microglial integrins, β2

(CD18 hypomorph) and β1 (CX3CR1-cre; β1f/f), as well as in a
microglia-specific Kindlin3 knockout (CX3CR1-cre;K3f/f) and
knock-ins expressing either low (K3KI) or normal (K3KI-flp)
levels of mutant Kindlin3 that was unable to bind to or activate
integrins (protein levels are shown in Supplementary Fig. 3a-c).
Microglia lacking β2 and β1 integrins exhibited spreading and
polarization in vitro that were similar to WT, whereas only
Kindlin3-deficient microglia showed defective spreading and
polarization (Supplementary Fig. 3d, e). In all of these lines,
microglia populated the CNS normally and eventually underwent
bipolarization on the stiff ONL (Fig. 2j). Surprisingly, most of the
microglia either lacking individual integrins or expressing mutant
Kindlin3 (K3KI-flp, which is integrin-binding defective) under-
went detectable bipolarization on the ONL (Fig. 2j, k). Only the
absence of Kindlin3 in CX3CR1-cre;K3f/f or low levels of Kindlin3
in K3KI completely impaired microglial bipolarization on the stiff
ONL (Fig. 2j–l). The ability of microglia to respond to the stiff
ONL directly correlated with expression levels of Kindlin3, but
not with its ability to bind to and activate integrins (as in K3KI-
flp; Fig. 2m).

Likewise, Kindlin3-deficient microglia completely failed to
polarize on hyaluronic acid (HA, a major constituent of the
extracellular matrix closely resembling the retinal microenviron-
ment) hydrogels of increasing stiffness in vitro (Fig. 2n, o), and
thereby continuously expressed high levels of TGFβ1 regardless of
the substrate stiffness (Fig. 2p). Similar results were observed
using silicone gels with a stiffness range similar to distinct retinal
layers of 0.2, 0.5, and 2 kPa (Supplementary Fig. 4a, b).

Kindlin3 is essential for microglial polarization on ONL. To
better understand microglial responses to changes in tissue
stiffness during development, we performed lineage tracing of
microglia in both WT and K3KI retinas between the ages of P9
and P16 using a CX3CR1-GFP reporter (Fig. 3a, b). Co-staining
for markers Iba-1 and Tmem-119 demonstrated the microglial
specificity of CX3CR1 as well as the exclusive presence of Kin-
dlin3 in microglia of developing retinas (Supplementary Fig. 4c-
e). Within the intermediate and deep layer, WT microglia
matured and formed branched processes in close contact with the
vasculature, whereas K3KI microglia exhibited delayed matura-
tion with limited branching (Fig. 3a, c; Supplementary Fig. 5a-g).
Within the deep ONL (P9-P16), WT microglia became bipolar-
ized (polarity of deep microglia increased by >2-fold) and aligned
along the blood vessels. In contrast, deep K3KI microglia exhib-
ited no significant changes on the stiff ONL, remaining ramified
and lacking alignment (Fig. 3b–d).

To understand the consequences of microglial abnormality in
Kindlin3-deficient mice, we performed RNA microarray of entire

Fig. 1 Microglia experience changes in tissue stiffness during development. a A lateral view of 3D-reconstituted whole-mount P16 mouse retina with
CX3CR1-GFP-expressing microglia (green) stained with isolectin to detect vasculature (red) and DAPI for nuclei (blue). The average stiffness of the INL,
OPL, and ONL as measured by AFM are shown. Their stiffness map (N= 3 retinas) and the immuno-histochemical images representing the nuclear
densities (blue) are shown on the right. b Cross-section of a P16 retina representing the direction of microglia migration from the ganglion cell layer toward
the ONL. DAPI reveals the densities of nuclei in the INL and ONL. c 3D-reconstituted lateral view of whole-mount P9, P12, and P16 retinas. White arrows
indicate the height of microglia expressing CX3XR1-GFP from the ONL. d Average vertical ramification index (cell height) of microglia from the
intermediate and deep vascular plexi at retinal developmental ages of P9, P12, and P16. One-way ANOVA with Bonferroni’s post hoc analyses; P < 0.0001
(***), P= 0.0426 (*); N= 7 cells from three mice each. e Age-dependent changes in microglia morphology and polarization. Images were taken at an
approximate distance of 500–1500 µm from the optic nerve. f Quantitation of microglial cell polarity measured as a ratio of length to width. One-way
ANOVA with Bonferroni’s post hoc analyses; P < 0.0001 (***); N= 35 cells from five mice each. g AFM measurements of stiffness within a distance of
700–1200 µm from the optic nerve in P16 retinas that were treated with vehicle (control) or CS for 6 h (two-tailed t-test; P < 0.0001 (***), N= 55
measurements on four mice). Center line is mean and error bars represent standard error of mean (SEM). h Confocal microscopy image stacks of microglia
in the intermediate and deep layers of control and CS-treated retinas. i Quantification of microglial polarization in deep and intermediate layers upon CS
treatment of P16 retinas (one-tailed t-test; P= 0.0372 (*), P < 0.0001 (***); N= 42 cells from three mice each). Center line of box plots represents the
median, bound of box shows 25th to 75th percentiles, and upper and lower bounds of whiskers represent the maximum and minimum values, respectively.
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retinas from CX3CR1-cre;K3f/f and control mice, which revealed
changes in ~140 genes, primarily reflecting the main cellular
component of retinas, the photoreceptors (supplementary file).
Several pathways were overrepresented, including sensory
perception and eye development (Supplementary Fig. 6a). These
results show that while the lack of Kindlin3 in microglia affected
the general pathways of eye development and photoreceptor
function, changes within microglia specifically were difficult to
discern. Only analysis of primary isolated microglia by ELISAs

combined with QPCR revealed abnormally high levels of TGFβ1,
both at the RNA and protein levels, in Kindlin3-deficient
microglia as compared with WT; there were no significant
changes in TNFα, IL1β, or other key regulators of angiogenesis
such as sFLT and VEGFA (Fig. 3e; Supplementary Figs. 6b and
7a-g). Furthermore, high levels of TGFβ1 produced by K3KI
microglia and its stimulatory effect on endothelium was
confirmed using monkey retinal endothelial RF6A cells as a
reporter. The percentages of pSMAD3-positive RF6A cells were
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20 and 60% in the presence of WT and K3KI microglia,
respectively (Supplementary Fig. 7h, i), demonstrating that
TGFβ1 overexpressed by K3KI microglia dramatically augments
canonical pSMAD3 signaling in endothelium. Finally, to confirm
the requirement of Kindlin3 for microglia polarization in vivo,
in support of our in vitro observations (Fig. 2n, o), K3KI retinas
were treated with CS for 6 h. As shown in Fig. 3f, g, the CS
treatment to decrease retinal tissue stiffness depolarized the WT
microglia on the ONL, but it had no substantial effect on
Kindlin3-deficient microglia.

Microglia and Kindlin3-dependent retinal vascularization. In
the CNS, microglia are a main source of TGFβ1; therefore, high
expression of TGFβ1 by K3KI microglia resulted in a 3.5-fold
increase in endothelial pSMAD3 staining in vivo as compared
with WT (Fig. 4a, b). Upregulation of pSMAD3 was confirmed by
western blot analysis of retinal extracts (Supplementary Fig. 8a).
Thus, this high level of proangiogenic TGFβ1 signaling sub-
stantially affected the retinal vasculature.

Indeed, while the vasculature in WT retinas had completed
vertical growth and formed the final three layers at P16, blood
vessels in K3KI were continuously growing into the normally
avascular ONL of photoreceptors (Fig. 4c, d). Strong pSMAD3-
staining was especially prominent in these endothelial neovas-
cular sprouts, growing beyond the deep retinal layer in K3KI mice
(Fig. 4e). Premature vertical neovascular growth in K3KI was also
observed at P6, but not at earlier stages (Supplementary Fig. 8b-
d). Depth labeling of the resulting vasculature (Fig. 4f) shows that
in contrast to WT, K3KI vasculature is characterized by a number
of vertical neovascular sprouts with an average length of 17.7 ±
0.9 µm, not only reaching into the typically avascular ONL, but
even penetrating beyond it (Fig. 4f). By the age of P21,
neovascular sprouts growing from the deep vascular plexus into
the ONL were transformed into large bulbous blood vessels
resembling vascular malformations. Some of these malformations
merged together to form lesions under the photoreceptors, nearly
resembling a forth vascular layer, which is never seen in normal
mice (Fig. 4g). By P60, 15–20% of the Kindlin3-deficient mice
retained these neovascular lesions (Supplementary Fig. 8e).
“Skeletonization” of images (Fig. 4h) revealed that K3KI
vasculature had 1.7-fold higher density of vascular loops, whereas

the loops themselves were 4.4-fold smaller as compared with WT
(Fig. 4i). The angles of the connecting blood vessels between the
vascular layers were conserved in WT retinas (75 ± 5.1°);
however, this parameter was also abnormal in K3KI mice (23 ±
7.2°), resulting in nearly 1.8-fold higher density of vascular
junctions compared with WT (Fig. 4j, k).

Microglial integrins are dispensable for vascular architecture.
To show that vascular restriction depends on microglia, we
analyzed a microglia-specific Kindlin3 Knockout (under
CX3CR1-cre), which disables microglial polarization within
the deep layer (Fig. 2j, k). This knockout caused abnormally dense
(Fig. 5a, b) and misguided retinal vasculature growing into the
ONL (Fig. 5c, d), which is a phenotype similar to K3KI mice. At
the same time, disruption of Kindlin3-integrin binding alone in
K3KI-flp microglia had no effect on microglial bipolarization
(Fig. 2j, k), TGFβ1 expression (Fig. 5e), or vasculature (Fig. 5f).
Likewise, vascular phenotype was absent in the CD18 hypo-
morphic mice lacking the main microglial integrin β2 (Fig. 5g). In
microglia-specific β1-integrin knockout mice (CX3CR1-cre; β1f/f),
the vascular density within the existing layers was somewhat
higher than in controls; however, similar to β2-knockout mice,
the main phenotype of excessive sprouting beyond the ONL was
absent (Fig. 5h and Supplementary Fig. 9a, b). A quantitative
comparison of Kindlin3 and integrin knockout mice shows that
neovascular sprouts characteristic of retinal pigment epithelium
(RPE) were caused by the lack of microglial Kindlin3, indepen-
dent of its ability to bind to integrins (Fig. 5i).

Rescue of abnormal vasculature by microglial TGFβ1 deple-
tion. Depletion of microglia at the early postnatal stages of
retinal development delays vascularization (Supplementary
Fig. 9c). However, the same depletion procedure performed
after P14, when vascular layers are nearly formed, slightly
increases vascular density (Supplementary Fig. 9d). Thus, in
agreement with previous reports32,33, while retinal microglia
are angiogenic during earlier stages (before P12–14), it seems to
restrict the vasculature at later stages34. Thus, the timing of
microglial depletion is critical. To show the causative role of
microglia in vascular abnormalities of K3KI mice, we depleted

Fig. 2 ECM stiffness regulates TGFβ1 expression by microglia. a Representative phase-contrast images of WT primary microglia spread on HYSTEM gels
of ~600 Pa and ~60 Pa stiffness overnight from four independent experiments. b Bar graph quantifying the microglial cell polarity measured as a ratio of
length to width (two-tailed t-test; P < 0.0001 (***); N= 59 cells from four experiments). c TGFβ1 mRNA expression measured by QPCR in WT microglia in
suspension (Susp) and spread on HYSTEM gels of ~60 and ~600 Pa (N= 4 experiments). One-way ANOVA with Bonferroni’s post hoc; Psup-60= 0.03 (*)
and P60-600= 0.02 (*). d Relative pSMAD3 levels in microglia of intermediate and deep layer (two-tailed t-test; P= 0.0011 (**); N= 3 mice). e Staining of
pSMAD3 in isolectin-positive endothelium of retinal vascular plexus from P12 and P16 WT mice. At P12, intermediate plexus is not yet established.
f Quantification of pSMAD3 immunofluorescence intensity (two-tailed t-test; P < 0.0001 (***); N= 102 cells from three mice). g Representative confocal
images of pSMAD3 staining in the vasculature (isolectin) of WT and TGFβ1 knockout (CX3CR1-cre; TGFβ1f/f) mice (N= 4 mice). h, i Bar graphs showing
relative pSMAD3 immunofluorescence intensity (two-tailed t-test; P < 0.0001 (***); N= 79 cells from three mice) and percent endothelial cells (lectin
stained) (two-tailed t-test; P= 0.0028 (**); N= 5 mice). j Representative confocal images of microglia on the ONL of retinas from P16 WT, β2 knockout
(CD18hypo), β1-knockout (CX3CR1-cre;β1f/f), K3KI-flp, K3KI, and microglia-specific Kindlin3-knockout (CX3CR1-cre;K3f/f) mice. k Bar graph of percentage of
microglia showing bipolar phenotype, i.e., cells with a ratio of length to width > 3 on the ONL of retinas from P16 mice (one-way ANOVA with Dunnett’s
post hoc comparing WT to other genotypes; PCD18hypo= 0.3278 (ns), PCX3CR1-cre;β1f/f < 0.0001 (***), PK3KI-flp= 0.0062 (**), PCX3CR1-cre;K3f/f < 0.0001 (***),
PK3KI < 0.0001 (***); N= 4 mice for WT and K3KI-flp, and 3 mice for all other groups. l QPCR analysis Kindlin3 expression in primary microglia isolated
from Kindlin3-deficient (K3KI and CX3CR1-cre;K3f/f) mice in comparison to K3KI-flp and WT mice (one-way ANOVA with Dunnett’s post hoc; PK3KI-flp=
0.0780 (ns), PCX3CR1-cre;K3f/f= 0.0003 (***), PK3KI= 0.0006 (***); N= 3 experiments).m Correlation graph showing dependence of microglial polarization
in retina on Kindlin3 expression levels in microglia (N= 3 mice). n Representative phase-contrast images from four experiments of WT and K3KI microglia
on fibronectin-coated HYSTEM gels of ~600 and ~60 Pa stiffness. o Bar graph comparing fold changes in cell polarity of microglia spread on Hystem gels
(two-tailed t-test; P= 0.1905, P < 0.0001 (***); N= 60 cells from four experiments). p QPCR analysis of TGFβ1 mRNA levels in K3KI microglia in
suspension (Susp) and spread on HYSTEM gels of ~60 and ~600 Pa (one-way ANOVA with Dunnett’s post hoc, PSusp-60= 0.7750 (ns), PSusp-600=
0.9999 (ns); N= 5 experiments). All bar graphs are represented as mean and error bars are SEM. Center line of box plots represents the median, bound of
box shows 25th to 75th percentiles, and upper and lower bounds of whiskers represent the maximum and minimum values, respectively.
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>95% of microglia with pexidartinib (Fig. 6a, b) before the
vascular layers were completed. Microglial depletion normal-
ized vascular density in K3KI retinas to levels observed in WT
retinas (Fig. 6a, c). Next, to ultimately prove that it is microglial
TGFβ1 overexpression that caused misguided vasculature in
CX3CR1-cre;K3f/f and K3KI mice, we generated a double
knockout of Kindlin3 and TGFβ1 in microglia, CX3CR1-cre;
K3f/f/TGFβ1f/f mice. Downregulation of TGFβ1 signaling in
endothelium of CX3CR1-cre;K3f/f/TGFβ1f/f mice was confirmed
by dramatically reduced pSMAD3 staining (Fig. 6d, e) and

western blotting for TGFβ1 (Supplementary Fig. 9e). The
reduction in TGFβ1 led to normalization of dense vasculature
in CX3CR1-cre;K3f/f/TGFβ1f/f retinas to levels observed in
CX3CR1-cre;K3f/f/TGFβ1+/+ control mice (Fig. 6d, f). Inducible
knockout of TGFβ1 in microglia (CX3CR1-cre;K3f/f/TGFβ1f/f)
did not affect microglial polarization or numbers (Supple-
mentary Fig. 9f,g) but completely rescued the misguided vas-
cular sprouting caused by Kindlin3 deficiency (Fig. 6f–h). Thus,
TGFβ1 overexpression by Kindlin3-deficient microglia caused
excessively dense and misguided vascularization.
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Kindlin3 regulates TGFβ1 via actomyosin contractility and
ERK. Next we aimed to delineate the connection between Kin-
dlin3, which controls microglial spreading and polarization, and
TGFβ1 expression. In most cells, cell spreading is counteracted by
the contractility of cytoskeleton (i.e., myosin contractility mea-
sured by myosin light chain phosphorylation (pMLC))35. In WT
microglia, pMLC staining was low and localized close to the
plasma membrane and actin cortex (Fig. 7a). The lack of Kindlin3
not only abolished pMLC co-localization with the membrane, but
also resulted in a dramatic increase in pMLC levels, indicating
higher cell contractility (Fig. 7a; Supplementary Fig. 10a). To
causatively connect microglial polarization and TGFβ1 expres-
sion, we lowered cytoskeletal contractility using the myosin-II
inhibitor blebbistatin36 (Fig. 7b). Blebbistatin was able to “rescue”
the spreading and polarization defects in K3KI microglia by
increasing cell area by 4-fold (Fig. 7b). This “forced” polarization
of K3KI microglia also normalized TGFβ1 expression to the levels
observed in WT cells (Fig. 7c), demonstrating that microglial
polarization directly controls TGFβ1.

Since high pMLC reflects high ERK-activity37, we show that
the lack of Kindlin3 disrupted ERK localization to the membrane
and caused increased levels of pERK (Fig. 7d, e). Higher levels of
pERK were also detected in K3KI retinas as compared with WT
in vivo (Supplementary Fig. 10b). ERK might directly control
TGFβ1 expression in phagocytic cells38; therefore, we tested
whether pERK is responsible for high TGFβ1 expression in
microglia. Inhibition of ERK reduced TGFβ1 expression as well as
pMLC levels in microglia (Fig. 7f). This mechanism was
confirmed using two independent CRISPR-K3KO clones of
myeloid RAW cells (K3KO1 and 2), which mirrored K3KO and
K3KI microglia in the lack of spreading (Fig. 7g), high levels of
TGFβ1, and high contractility associated with high pMLC and
pERK levels (Fig. 7h; Supplementary Fig. 10c). Similar to K3KI
microglia, blebbistatin treatment of these K3KO cells reversed
their hyper contractility, resulting in downregulation/normal-
ization of TGFβ1 mRNA levels as analyzed by QPCR (Supple-
mentary Fig. 10d-f). Inhibition of ERK, but not the P38 MAPK
pathway, resulted in normalization of TGFβ1 in K3KO cells to
levels observed in WT cells (Fig. 7i). Together, these results show
that Kindlin3-mediated cell polarization controls TGFβ1 levels in
myeloid cells in an ERK-dependent manner. Microglial bipolar-
ization in stiff tissues in vivo and in vitro requires Kindlin3, but
not integrins, which regulates vascular architecture via spatio-
temporal control of TGFβ1.

Discussion
In the CNS, surveying microglia constantly encounter mechani-
cally heterogeneous regions of varying cellular density and matrix
composition3,39. This heterogeneity is often augmented in various
pathologies6,12, especially those associated with microgliosis40.

In this study, we demonstrate that during retinal development,
microglia migrate through the mechanically heterogeneous tissue
layers towards the stiffer ONL. This ability of microglia, descri-
bed as durotaxis12, suggests the presence of a mechanosensory
mechanism. The retina represents an excellent model of tissue
stiffness gradient. Since microglia populate certain layers at the
precise times, the changes in microglia can be monitored in
spatiotemporal manner, i.e., within the different layers in retinas
of various ages. Within the stiffest ONL, microglia undergo a
characteristic bipolarization, often observed in pathologies and
known to be accompanied by changes in secretory function41.
Treatment and softening of retinas with CS reduced polarization
of WT microglia, but not Kindlin3-deficient microglia, thereby
suggesting a connection between tissue stiffness and microglia
polarization, which was further substantiated in vitro. By
mimicking retinal stiffness in hydrogels, we demonstrated that
bipolarization of microglia occurs on stiff substrates and leads to
a dramatic reduction in TGFβ1, which is a potent regulator of
cell proliferation and extracellular matrix composition42 almost
exclusively produced by microglia in the CNS. TGFβ1 signaling
in retinas followed a similar layered pattern, showing a sub-
stantial reduction in polarized microglia on the stiffest ONL.
Surprisingly, this microglial response requires the presence of
Kindlin3, but not Kindlin3 binding to its main mechanosensory
receptors, integrins. Microglia lacking Kindlin3 (CX3CR1-cre;
K3f/f and K3KI) were not able to respond to the changes in
stiffness in vitro, and lacked polarization in vivo, which are in
contrast to cells expressing Kindlin3 defective in integrin binding
(K3KI-flp). As a result, Kindlin3-deficient microglia overexpress
TGFβ1 in vitro and in vivo, leading to high pSMAD3 levels in
retinal endothelium and transformation of the vasculature into
an overly dense and chaotic pattern. High TGFβ1 levels promote
vascularization of normally avascular ONL of photoreceptors, a
condition known as retinal angiomatous proliferation (RAP),
which is a subset of age-related macular degeneration (AMD).
The vascular lesions replace photoreceptors and might promote
retinal detachment and vascular rupture. Importantly, in
Kindlin3-deficient humans with severe bleeding, this pathology
might be further exacerbated. This aberrant vascularity and
excessive growth in Kindlin3-deficient mice was corrected by
microglial depletion as well as by inducible knockout of TGFβ1
in microglia. In these experiments, both Kindlin3 and TGFβ1
excision were induced simultaneously at P1–5. This did not
affect the presence of microglia in retinas, but substantially
reduced TGFβ1 levels and SMAD signaling in endothelium,
thereby normalizing vascular pattern. It appears that Kindlin3
knockout microglia produced a substantial amount of TGFβ1
prior to its excision, sufficient to support the formation of vas-
cular layers. Besides microglia, other myeloid cells can poten-
tially contribute to the observed vascular phenotype43,44. In

Fig. 3 Kindlin3 deficiency precludes microglial polarization on stiff substrates in vivo. a, b Representative images of CX3CR1-GFP-expressing microglia
within intermediate and deep vascular layers from P9-P16 isolectin-stained (red) whole-mount retinas from three or more mice. Note; polarization of deep
WT but not K3KI microglia at P16, while intermediate microglia remained ramified. c 3D-reconstituted images of CX3CR1-GFP WT and K3KI microglia in
P16 retinas. Representative of six or more mice per genotype. d Cell polarity measured as the ratio of cell length by width for intermediate and deep
microglia in the retina of WT and K3KI P16 mice. One-way ANOVA with Tukey’s post hoc showed significant microglial polarization by WT microglia in
deep layers, but not by K3KI. PWT int-deep= < 0.0001 (***), PK3KI int-deep= 0.9999 (ns); N= 37 cells from six mice. e QPCR analysis for microglia-specific
cytokine expression showed significantly higher expression levels of TGFβ1 mRNA in K3KI relative to WT primary microglia in culture (one-tailed t-test;
P= 0.0037 (**); N= 5 experiments). f Confocal microscopy image stacks of deep-layer microglia in CS-treated WT and K3KI P16 retinas. WT microglia
assumed a less polarized state in response to a decrease in retinal tissue stiffness (CS treated), while K3KI microglia showed no response in CS-treated
retinas. N= 4 mice. g Bar graph representing a significant decrease in the percentage of polarized microglia only in WT retinas, but not in K3KI retinas,
upon treatment with CS (two-tailed t-test; P= 0.0009 (***), P= 0.6702 (ns); N= 3 mice). All bar graphs and dot plots are represented as mean and error
bars are SEM. Center line of box plots represents the median, bound of box shows 25th to 75th percentiles, and upper and lower bounds of whiskers
represent the maximum and minimum values, respectively.
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healthy developing retina these cells are represented by peri-
vascular macrophages, however, their numbers are negligible
(<15 cells/retina) compared with microglia at the same age45,
therefore, their contribution to the robust vascular phenotype is
unlikely. Thus, this TGFβ1-dependent paracrine restriction of
retinal vasculature is mediated by microglia and occurs at the
stiffest ONL, a mechanical boundary generally known to dictate
collective tissue organization46. TGFβ1 and its signaling are
associated with vascular pathologies, rather than development
serving as a driver of endothelial-to-mesenchymal transition47.
In the CNS, TGFβ1 mediates directed growth, differentiation,

and anatomical orientation of axons48. Moreover, TGFβ1 might
exhibit an autocrine effect on microglia, and as a result promote
plasticity and differentiation31. Thus, this function of microglia is
likely to interconnect tissue composition and mechanics with the
overall neural tissue architecture and function.

Mechanistically, using the Kindlin3 specific knock-in mutant
(K3KI-Flp) and individual integrin knockouts, we show that
microglial function in vascular patterning, including responsive-
ness of microglia to substrate stiffness in vitro, depends upon
Kindlin3, but not on its interaction with integrins. Thus, while
Kindlin undoubtedly functions as an integrin adaptor and
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activator, its role might extend beyond integrins. Besides integ-
rins, Kindlin3 binds to the plasma membrane phospholipid, PIP2,
through its main PH domain, and possibly through its second
pseudo PH domain49,50. Kindlin3 contains three FERM domains
and interacts with cytoskeletal proteins51. In the absence of
Kindlin3, the cytoskeletal network is dissociated from the mem-
brane, resulting in characteristic contraction of myosin in the
center of the cell (Fig. 8). A similar contractile phenotype was
observed in armadillo mutants, where the lack of apical adherent
junctions caused myosin-II mislocalization and formation of a
contracted ball at the center of the cell, precluding the cell shape
changes necessary for gastrulation52. Likewise, the lack of Kin-
dlin3 in microglia resulted in a highly contractile phenotype,
possibly preventing microglia from bipolarization and alignment
on rigid substrates. Kindlin3-deficient cells are characterized by a
highly contractile actomyosin core, implicating Kindlin3 in
actomyosin organization. We demonstrate that Kindlin-mediated
microglia response to stiffness in vitro is dependent upon cell
contractility and the phenotype can be rescued by loosening of
myosin cytoskeleton. Actomyosin bundles are known to mediate
mechanotransduction and serve as a scaffold for activation of
ERK signaling, which is phosphorylated exclusively on acto-
myosin bundles in a myosin-II-dependent manner53. In phago-
cytic cells, ERK phosphorylation results in expression of TGFβ138

as observed in K3KI microglia. The entire chain of events leading
to TGFβ1 overexpression was rescued in vitro by interference
with cytoskeletal connections and ERK over-activation, indicating
an importance of Kindlin3 link to cytoskeleton. At the same time,
Kindlin3 binding to the membrane is clearly crucial for Kindlin3
functions, since PH domain deletion generally phenocopies
Kindlin3 knockout54.

Surprisingly, microglial migration in vivo and microglial popu-
lations in brain and retina during development are not affected by
either by Kindlin3 or integrin deficiencies, which is consistent with
the concept that microglia use ameboid rather than mesenchymal
migration in vivo, similar to dendritic cells55. In contrast to in vivo
migration, Kindlin3 is required for the maintenance of microglial
cell shape and plasticity. The lack of Kindlin3 impaired formation
of microglial processes and caused a complete lack of polarization
and alignment. Microglial morphology changes with location, dif-
ferentiation, and activation, and is reciprocally connected to its
function56,57. In humans, changes in microglial shape serve as
indicators of specific pathological processes in the CNS. The
appearance of bipolar rod microglia is a hallmark of activation in
many CNS diseases58. In glaucoma, bipolar rod microglia are
associated with neurodegeneration and ocular hypertension59. We

demonstrate that microglial transition to a bipolar rod shape is
triggered by tissue stiffness and serves as a necessary prerequisite for
vascular restriction during development. However, the very same
process may play a different role in pathologies associated with
changes in substrate stiffness. Multiple examples of the crosstalk
between biochemical and mechanical signals in the CNS support
this notion12,60.

Methods
Animals. The Kindlin3 mutant knock-in mice (K3KI) were generated with the
Q597W598 to AA mutation61. Briefly, a partial mouse Kindlin3 gene in a BAC
construct was introduced into a cloning vector. The mutation CAATGG to
GCCGCC was introduced into exon 14 of the Kindlin3 gene by site-directed
mutagenesis, giving rise to the mutant Kindlin3 protein with Q597W598 to AA
substitution. A neomycin cassette was inserted into intron 13 of the Kindlin3 gene
and the vector was electroporated into ES cells. Neo-positive ES cells were injected
into C57BL6 blastocysts and implanted into pseudo-pregnant females. The chi-
meric male founders were crossed to WT C57BL/6 mice and the progeny positive
for germline transmission were bred to generate K3KI mice. The Neo cassette
present in the Kindlin3 gene resulted in very low levels of mutant Kindlin3
expression (Fig. 2l and Supplementary Fig. 3a). To remove the FRT-flanked neo-
mycin resistance gene, K3KI mice were crossed with FLP1-expressing mice
(Jackson laboratory) for four generations to obtain homozygous mice for FLP1
genes (K3KI-flp). Removal of the Neo cassette increased the expression levels of
mutant Kindlin3 to levels similar to endogenous Kindlin3 of WT controls (Fig. 2l
and Supplementary Fig. 3a). CX3CR1GFP/GFP mice expressing EGFP under
CX3CR1 promoter from the Jackson Laboratory were crossed to WT and K3KI
mice. CX3CR1GFP/−;WT/K3KI progeny were used for experiments. Microglia-
specific inducible Kindlin3 knockout (CX3CR1-cre;K3f/f) mice were generated by
crossing Kindlin3 floxed (K3f/f) mice with CX3CR1-cre (inducible) mice23. Briefly,
Kindlin3 floxed mice were generated by flanking exon 2 of the Kindlin3 gene with
loxP sites on both sides. A neomycin cassette was inserted into intron 2. Neo-
positive ES cells were injected into blastocysts and implanted into pseudo-pregnant
females. Specific integration of targeted DNA fragments was verified by southern
blotting and quantitative PCR with a probe for the inserted Neo gene. CX3CR1-Cre
(tamoxifen-inducible) mice were obtained from Jackson Laboratory.

The CX3CR1-cre;K3f/f mice were bred with TGFβ1f/f (Jackson Laboratory) mice
to obtain microglia-specific inducible Kindlin3 and TGFβ1 double knockout mice
(CX3CR1-cre;K3f/f/TGFβ1f/f). The TGFβ1 knockout (CX3CR1-cre;TGFβ1f/f) mice
were derived by crossing the CX3CR1-Cre (tamoxifen-inducible) mice with the
TGFβ1f/f mice. Integrin β1 knockout mice were generated by crossing β1f/f mice
(Jackson Laboratory) with CX3CR1-Cre (tamoxifen-inducible) mice. Tamoxifen
was dissolved in ethanol and then diluted in corn oil to a final concentration of
20 mg/ml. Tamoxifen was administered to mice orally from the age of P1–P5 at 4
µl/g of body weight. Integrin CD18 global hypomorphic mice were obtained from
Jackson Laboratory. Pexidartinib (PLX3397) was dissolved in vehicle: 5% DMSO,
5% PEG 300, 5% Tween, and ddH2O to a stock concentration of 10 mg/ml. Pups
were fed with pexidarininb (40 mg/kg) orally once daily for at least 7 days before
terminating for experiments. The mice were housed in the Cleveland Clinic’s
Biological Resources Unit (BRU). The mouse room was maintained at 68–79 °F
with 30–70% humidity and 14 h light/10 h dark cycle.

Microglial isolation and culture. Primary microglia were isolated from brains of
postnatal day 1 (P1) mice. The cerebral hemispheres were carefully separated and

Fig. 4 Excessive and misguided retinal vasculature in Kindlin3-deficient mice. a Deep vascular plexus of P12 retinas immunostained for pSMAD3 and
isolectin. b Bar graphs showing relative pSMAD3 immunofluorescence intensity (two-tailed t-test; P < 0.0001 (***); N= 60 cells from three mice) and
percent endothelial cells (lectin stained) with high pSMAD3 levels (two-tailed t-test; P < 0.0084 (**); N= 4 mice). c A lateral view of 3D-reconstituted
vasculature from P16 retinas showing abnormal and excessive neovascular sprouts (indicated by white arrows) penetrating into the ONL. d Number of
neovascular sprouts invading the ONL/500 µm2 (two-tailed t-test; P < 0.0001 (***); N= 7 mice). e An enlarged view of the neovascular sprouts invading
the ONL in K3KI P16 retinas showing pSMAD3 (arrows). The top panel shows a lateral view and the bottom panels are superimposed Z-planes
corresponding to the vertical neovascular sprouts (N= 3 mice). f Neovascular invasion shown by depth color-coding of flat-mounted P16 retinas. Bar graph
showing the length of neovascular sprouts penetrating the ONL, with some extending past the ONL (two-tailed t-test; P < 0.0001 (***); N= 175
neovascular sprouts from 15 mice). g A lateral view of 3D-reconstituted P21 retinas stained with isolectin. The K3KI retina shows sub-retinal neovascular
lesions (NVLs) (white arrowheads) originating from the deep vascular plexus and resting on the RPE layer (indicated by the yellow line). Number of NVL
per retina is shown in the graph on the right (two-tailed t-test; P < 0.0001 (***); N= 5 mice). h Skeletonized representation of vasculature in P16 retinas. i
Quantitation of vascular loop density (N= 6 mice) and loop areas (N= 125 loops from six mice) of P16 retinas. Two-tailed t-test; P < 0.0001 (***). j A
representative image from three mice showing the angle of vascular sprouts from the superficial vascular plexus in P16 retinas. k The bar graphs show the
average vascular sprouts (N= 3 mice, two-tailed t-test; P= 0.004 (**)) and the number of vascular junctions within superficial vascular plexus of P16
retinas (N= 5 mice, two-tailed t-test; P < 0.0001 (***)). All bar graphs and dot plots are represented as mean and error bars are SEM. Center line of box
plots represents the median, bound of box shows 25th to 75th percentiles, and upper and lower bounds of whiskers represent the maximum and minimum
values, respectively.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14787-y

10 NATURE COMMUNICATIONS |          (2020) 11:986 | https://doi.org/10.1038/s41467-020-14787-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the meninges were removed. The tissue was dissociated in cold PBS into a slurry,
passed through a 70 µm sieve, and centrifuged to pellet the cells. The cell pellet was
then resuspended in DMEM/F12 (with 20% FBS, 100 U/ml penicillin and strep-
tomycin, 0.25 µg/ml amphotericin B and supplementation of non-essential amino
acids (NEAA)) and plated onto plastic dishes. The cells were cultured for
2–4 weeks before harvesting the pure floating microglia from the conditioned

media by centrifugation at 700 × g for 10 min23. Microglia carrying the tamoxifen-
inducible CX3CR1-cre with K3f/f gene were treated with 10 nm 4-
hydroxytamoxifen (4-HT) by addition to the medium every 48 h for efficient
excision of the Kindlin3 gene. For microglia activation assay, microglia were plated
on coverslips and treated with 20 mg/ml CS and 10 ng/ml C5a or vehicle alone
(control) for 6 h.
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Fig. 5 Kindlin3 levels are crucial for microglial function and normal vascularization. a Excision of Kindlin3 in microglia is sufficient to induce vascular
overgrowth. 3D-reconstituted P16 vasculature plexus from WT and microglia-specific conditional Kindlin3 knockout mouse (CX3CR1-cre;K3f/f) retinas.
Superimposed and cross-sectional views of the vascular layers are shown. The white arrowheads indicate the neovascular sprouts invading the ONL.
Representative of three mice per genotype. b–d Quantification of deep vascular loop density (two-tailed t-test; P < 0.0001 (***); N= 7 mice), the average
number of neovascular sprouts from the deep plexus per retina (two-tailed t-test; P < 0.0001 (***); N= 7 mice), and their respective lengths invading into
the ONL (two-tailed; P < 0.0001 (***); N= 15 neovascular sprouts). e Mean relative expression of TGFβ1 mRNA as assessed by QPCR in K3KI-flp and WT
primary microglial cells in culture (two-tailed paired t-test; P= 0.5440 (ns); N= 3 experiments). f A 3D reconstruction of retinal vascular plexus from
whole-mount retinas of WT and K3KI-flp P16 mice stained with isolectin. A representative of four (K3KI-flp) and seven (WT) mice are shown. The top
panel is a superimposed view of all three layers of vasculature and the bottom panel is a lateral view of the vascular plexus. g Retinal vascular plexus from
whole-mount isolectin-stained retinas from control (WT) and β2 knockout (CD18hypo) P16 mice. A representative of three (CD18hypo) and seven (WT)
mice is shown. h 3D reconstruction of retinal vascular plexus from whole-mount retinas from β1 knockout (CX3CR1-cre; β1f/f) and control (β1f/f) P16 mice
stained with isolectin. A representative of four (β1f/f) and seven (CX3CR1-cre; β1f/f) mice are shown. i Quantification of the number of neovascular sprouts
of the deep vascular plexus into the ONL of flat-mounted P16 retinas (one-way ANOVA with Tukey’s post hoc; P < 0.0001 (***), P= 0.9205 (ns); N= 5
mice for CX3CR1-cre;β1f/f and 7 mice for all other groups. All bar graphs and dot plots are represented as mean and error bars are SEM.
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Microglial culture on hydrogels. The hydrogel was prepared using the Hystem Cell
Culture Scaffold Kit (Sigma) according to the manufacturer’s protocol. Briefly, the
Hystem stock solution was mixed with Extralink stock solution (crosslinker) along
with 10 µg/ml concentration of fibronectin (Corning). The mixture was then poured
into a 12-well plate and incubated at 37 °C for gelation to occur. The rigidity of the
hydrogel was modified by changing the concentration of the crosslinker to obtain

approximate gel stiffnesses of 60 and 600 Pa. The gels were pre-incubated with media
and microglia were plated on top of the gel and allowed to spread overnight.

Silicone gels in 6-well plates were commercially purchased from Softsubstrates.
com. The gels were coated with 10 µg/ml of fibronectin (Corning). The gels were
pre-incubated with media and microglia were plated on top of the gel and allowed
to spread overnight.
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Fig. 6 TGFβ1 knockout rescues Kindlin3 deficiency-induced abnormal vascular phenotype. a Microglial depletion rescues vascular defects in K3KI
retinas. P14 whole-mount retinas of K3KI mice treated with pexidartinib or vehicle alone (control). CX3CR1-GFP-expressing microglia (green) and
vasculature stained with isolectin (red). A representative image of three experiments is shown. b, c Quantification of microglia numbers (P < 0.0001 (***))
and deep vascular loop density (PWT= 0.0401 (*), PK3KI= 0.0002 (***)) upon pexidartinib treatment (two-way ANOVA; N= 3 mice). d Rescue of
abnormal vascular phenotype in P16 Kindlin3/TGFβ1 conditional double knockout (CX3CR1-cre;K3f/f/TGFβ1f/f) mice compared with their littermate controls;
Kindlin3 conditional knockout mice (CX3CR1-cre;K3f/f/TGFβ1+/+). Deep vascular plexus of CX3CR1-cre;K3f/f/TGFβ1f/f and CX3CR1-cre;K3f/f/TGFβ1+/+ mice
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vascular loops (one-way ANOVA with Tukey’s post hoc; P < 0.0001 (***), P= 0.0473 (*); N= 7 mice). g P16 retinas stained with isolectin as
superimposed and a cross-sectional view of the vascular layers is shown. The white arrowheads indicate neovascular sprouts invading the ONL. h The
density of excessive neovascular sprouts is shown (one-way ANOVA with Tukey’s post hoc; P < 0.0001 (***), P= 0.7573 (ns); N= 9 mice). All bar graphs
are represented as mean and error bars are SEM.
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Fig. 7 Kindlin3 deficiency leads to mislocalization of myosin light chain II and increased ERK activation. a Immunostaining of primary microglial cells for
phosho-myosin light chain II (pMLC) and Actin (phalloidin). The z-planes of confocal microscopy images were stacked to produce a superimposed image.
An enlarged view of the cell edge shows co-localization of pMLC and actin to the membrane. The bar graph shows the proportion of pMLC localized either
to the membrane (outer one-third area) or center (inner two-third area) of the cell (two-tailed t-test; P < 0.0001 (***), P= 0.7780 (ns); N= 35 cells from
three experiments). b Phase-contrast image of microglia treated with DMSO (control) or 50 µM blebbistatin (Blebb) and spread on fibronectin-coated
plates for 12 h. Bar graph shows cell spread area relative to WT control (two-tailed t-test; P < 0.0001 (***); N= 3 experiments). c QPCR analysis for TGFβ1
in control vs. blebbistatin-treated microglia (two-tailed t-test; P= 0.0684 (ns); P= 0.0234 (*), N= 3 experiments). d Immunostaining of microglia for
phospho-ERK1/2 (pERK) (green) counterstained with phalloidin for actin (red) and DAPI for nuclei (blue). e The bar graphs show the proportion of pERK
localized to membrane or the cell center (two-tailed t-test; P < 0.0001 (***), P= 0.7535 (ns); N= 40 cells from three experiments). f TGFβ1 mRNA levels
assessed by QPCR in WT and K3KI microglia treated with vehicle (Control) or ERK inhibitor (U0126) (one-tailed t-test; P= 0.0028 (**), P= 0.0307 (*);
N= 4 experiments). g Representative phase-contrast images of WT and the two clones of Kindlin3 knockout RAW cells, K3KO1 and K3KO2, spread on
fibronectin-coated plates from five independent experiments. h Western blot analysis of WT and K3KO RAW cell lysates for TGFβ1, p-ERK1/2, and pMLC.
Equal protein loading is shown by α-tubulin. The bar graph shows TGFβ1 levels (one-way ANOVA with Dunnett’s post hoc; PWT-K3KO1= 0.0406 (*), PWT-

K3KO2= 0.0205 (*); N= 3 experiments). i TGFβ1 mRNA levels as assessed by QPCR in K3KO cells treated with vehicle, (U0126) and P38 inhibitor
(Sb20358) (one-way ANOVA with Dunnett’s post hoc; P < 0.0001 (***), P= 0.0543 (ns); N= 5 experiments). WT levels (N= 2) are shown only for an
estimated comparison. All bar graphs are represented as mean and error bars are SEM.
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RNA isolation and RT-QPCR. Total RNA from cells was isolated using the Exiqon
mirQury RNA isolation kit following the manufacturer’s protocol. RNA con-
centration and purity were measured using a Nanodrop spectrophotometer. The
RNA was diluted to a concentration of 200 ng/μl with RNase-free water and cDNA
was prepared using a Qiagen RT-PCR kit. Briefly, the genomic DNA was elimi-
nated by incubating RNA with RNase-free DNase for 2 min at 42 °C. It was then
mixed with reverse transcriptase and random hexamers, and incubated at 37 °C for
1 h. The cDNA was diluted and used for PCR analysis. Quantitative real-time PCR
was performed with the SYBR green master mix. The primers were used at a final
concentration of 50 pM and the sequences are provided in the Supplementary
methods table 1. Experiments were performed using an Applied Biosystems Quant
studio 3, and data processing was performed using ABI SDS v2.1 software. The
relative quantitation of each target mRNA was assessed using the comparative Ct
method. GAPDH was used as an internal control.

Mouse transcriptome array. RNA was isolated from freshly enucleated retinas of
control and CX3CR1-cre;K3f/f mice of age P14. The RNA quality control followed
by transcriptome array procedure and data analysis was performed by GEGF
facility at the Case Western Reserve University. Briefly, 150 ng of total RNA at a
concentration of 50 ng/µl was used to process the Affymetrix GeneChip® Mouse
Transcriptome Assay 1.0 Arrays. Biotinylated cDNA was prepared using the
GeneChip® WT Plus Reagent Kit according to manufacturer’s instructions. Fol-
lowing fragmentation and labeling, 5.5 µg of cDNA were hybridized for 16 h at
45 °C on MTA Array. GeneChips were washed and stained in the Affymetrix
Fluidics Station 450. GeneChips were scanned using Affymetrix GeneChip Scanner
3000. Affymetrix’s software was used to normalize arrays via the Robust Multi-
Array algorithm (RMA). The fold-change and p-values were calculated by
ANOVA/empirical Bayes algorithms in the Affymetrix’s Transcriptome Analysis
Software. The list of genes with significant changes (with p < 0.05) were further
analyzed by ConsensusPathDB at http://cpdb.molgen.mpg.de/ according to the
protocol by Herwig et al.62 for over-representation analysis of gene sets. From the
resulting analysis, the top 3 overrepresented pathways (based on q-values calcu-
lated by ConsensusPathDB) are shown in the graph.

Western blot analysis. Cell protein extracts were lysed in RIPA buffer supple-
mented with protease inhibitor cocktail. The extracts were centrifuged at 16000 × g
for 20 min at 4 °C and the supernatant was heated with Laemmli buffer at 95 °C for
7 min. The proteins were separated on 12% polyacrylamide slab gels in a Mini-
Protean II system. Proteins were then electrophoretically transferred to Immobi-
lon-P, PVDF membrane (Millipore Corp., Bedford, MA) and blocked with 5%
nonfat dry milk in TTBS (TTBS; 0.2 M Tris [pH 7.4], 1.5 M NaCl, 0.1% thimerosol
and 0.5% Tween 20). The blots were washed with TTBS and incubated with pri-
mary antibody at 4 °C overnight. The following antibodies were used: Anti-TGFΒ1,
pMLC, pERK1/2, pSMAD3, and SMAD3 at 1:1000 dilution. GAPDH and β-actin

were used at 1:3000 dilution. Blots were washed in TTBS and incubated with the
appropriate secondary antibody conjugated to horseradish peroxidase at 1:5000
dilution for 1 h at room temperature. They were then washed with TTBS twice for
15 min each and four times 5 min each. The blots were developed with Signal fire
chemiluminescence kit. Further antibody and reagents details are provided in
Supplementary methods Table 1.

Immunohistochemistry. For retinal whole mounts, eyes were isolated into 4%
PFA and kept on ice for 1 h. Whole retinal cups were isolated and fixed with 4%
PFA overnight. The retinas were then washed and permeabilized with 0.5% Triton
in blocking solution (5% goat serum, 3% BSA in PBS) overnight at 4 °C. Next, the
retinas were washed in PBS and stained with primary antibodies at a 1:100 con-
centration in blocking solution overnight at 4 °C on a shaker. Following washes
with PBS, they were incubated with Alexa fluor-conjugated secondary antibodies in
blocking solution overnight. Alexa fluor 568-conjugated isolectin was used at 1:200
to visualize blood vessels. After final washes in PBS for 3 h, retinas were flattened
and mounted on glass slides with Prolong Gold Antifade Mountant.

For retinal cross sections, whole eyes were fixed in 4% PFA overnight at 4 °C,
washed in PBS, and transferred to 30% sucrose at 4 °C overnight. The fixed eyes
were transferred to a cryomold and embedded in OCT. Sections (10 µM) were
prepared from the molds with a cryotome. The sections were permeabilized with
0.5% triton, 5% goat serum, and 3% BSA in PBS for 1 h, washed with PBS, and then
incubated in a blocking solution (5% goat serum, 5% BSA in PBS) for 1 h at room
temperature in a humidified chamber. Next, the sections were incubated with
primary antibodies at 1:200 dilutions (in blocking solution) at 4 °C overnight in a
humidified chamber, followed by three 5 min-washes in PBS. Sections were then
incubated with Alexa Fluor-conjugated goat anti-rabbit secondary antibody for 1 h
at room temperature in a dark humidified chamber. Negative control sections were
incubated with secondary antibody alone. Finally, the sections were washed three
times for 5 min in PBS, counterstained with Hoechst or DAPI in PBS for 10 min,
followed by a final wash in PBS. Sections were then mounted with Prolong Gold
Antifade Mountant and examined using a fluorescence or confocal microscope.

Immunocytochemistry. Purified microglia were plated into a six-well plate with
glass coverslips at the bottom. The plate was centrifuged at 700 × g for 3 min at
room temperature to force cells to adhere to the coverslip simultaneously.
Immediately, the cells were fixed with 4% PFA for 20 min to prevent further cell
spreading. This was done to keep the cell size/foot-print equal between WT and
Kindlin3-deficient microglia for comparison of immunostaining between geno-
types. In contrast, because WT cells spread more than Kindlin3-deficient cells,
comparison of immunostaining intensity could be imprecise. The PFA was washed
away with PBS and the cells were permeabilized with 0.5% Triton in blocking
solution for 10 min, and incubated in blocking solution for 1 h at room tempera-
ture. The following antibodies were used at a concentration of 1:100 in blocking
solution overnight at 4 °C in a humidified chamber: anti-phospho S19 MLC2 and
pERK1/2. Alexa-conjugated phalloidin at 1:200 dilution was used to visualize actin.
Fluorescently-conjugated goat anti-rat and mouse secondary antibodies were used
at 1:500 dilution. Finally, the cells were washed and mounted onto slides with
Vectashield containing DAPI. Further antibody and reagents details are provided
in Supplementary methods Table 1.

Chondroitin sulfate treatment of retinas. Mice were euthanized and eyes were
immediately isolated into ice-cold PBS followed by retina isolation. The freshly
isolated retinas were transferred to DMEM/F12 (with 20% FBS, 100 U/ml penicillin
and streptomycin, 0.25 µg/ml amphotericin B and supplementation of non-
essential amino acids (NEAA)) with or without 20 mg/ml CS (Selleck Chemicals
LLC). Retinas were incubated at 37 °C in 5% CO2 for up to 6 h. The retinas were
then immediately analyzed by AFM. Confocal imaging of microglia in these retina
was either performed immediately after treatment or after fixation in 4% PFA
overnight.

Microscopy and image analysis. Confocal images were obtained using a Leica
SP5 confocal/multi-photon microscope in the Imaging Core of the Lerner Research
Institute. Retinal whole mounts were imaged with ×25 and ×40 objectives and a
step size of 2–3 µm for vasculature and 0.5–1.0 µm for in vivo microglia. In vitro
cell were imaged with ×63 objective and a step size of 0.5–1.0 µm. The images were
processed and staining intensity was quantified using Volocity software and Image
J. The 3-D images were prepared by merging the confocal stacks using Volocity.
The retinal loop area, junctions/field, and microglia numbers were quantitated
using FIJI Image J software. The distances of pMLC and phalloidin staining from
the cell membrane were analyzed using ImagePro software.

Cell polarity was measured using Image J. The following steps were involved for
in vivo analysis: (i) image processing to separate microglial cells from background;
(ii) construction of a skeleton to represent the spatial structure of cell bodies and
branched processes if required; (iii) generation of dendritic tree area to identify the
longest and widest axis; (iv) measurement of microglial length in pixels, including
cell body and the branches that are along the longest dendritic tree axis. Similarly,
the width was measured along the widest axis: (v) division of length by width to get
the ratio, i.e., polarity.
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Fig. 8 Schematic summarizing the main findings. Kindlin3 is an
intracellular integrin-binding adaptor molecule containing 3 FERM (F1, F2,
and F3) domains and a PH domain. Kindlin3 binds integrins via its
F3 subdomain and to the plasma membrane phospholipid, PIP2, through its
PH domain. The FERM domains also interact with numerous cytoskeletal
proteins and adaptors. ERK localizes to the actin cytoskeleton and is
phosphorylated exclusively on actomyosin bundles in a myosin-II-
dependent manner. Actomyosin bundles serve as a scaffold for activation of
ERK signaling. In the absence of Kindlin3, the cytoskeletal network is
dissociated from the membrane, resulting in contraction of myosin in the
center of the cell. High myosin contractility leads to ERK phosphorylation,
eventually resulting in overexpression of TGFβ1.
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Atomic force microscopy. All measurements were made using an MFP-3D-Bio
AFM mounted on an inverted optical microscope. For characterization of fixed and
live retinal tissues, a 4.5 or 35 µm bead, respectively, was glued to an ArrowTM TL1
(spring constant ~0.03 N/m) tipless cantilever. The probe was submerged in PBS
prior to each experiment to stabilize, minimize drift, and achieve thermal/
mechanical equilibrium. Retinal sections (40-µM thick) were prepared from the
molds with a cryotome. Force-indentation curves (n ≥ 15 in each region for fixed
retinal tissues, and n ≥ 55 for unfixed retinal tissues) were obtained with a trigger
force of 4 nN at an approach speed of 5 µm/s. Step sizes of 20 µm for retinal
sections immersed in PBS and 50 µm for live tissues immersed in media were used.
The force-indentation curves were fitted to a Hertz model to calculate the elastic
modulus using Igor Pro 6.37 software.

ELISA. Microglia were isolated as described above and plated into 6-well plates at
equal numbers. They were serum-starved for 24 h, fresh FBS and phenol free media
was added, and the conditioned media was collected at 24 and 48 h time points.
The conditioned media was centrifuged at 10,000 × g for 20 min at 4 °C to remove
any cell debris and then diluted at 1:500. Microglia on the plates after media
collection were lysed with RIPA buffer with ROCHE protease inhibitors and
centrifuged at 16,000 × g for 20 min at 4 °C. The conditioned media and cell lysates
were analyzed for TGFβ1 levels using the TGFβ1 Emax immono assay kit
according to the manufacturer’s protocol.

CRISPR-Cas9-mediated knockout of Kindlin3. CRISPR-Cas9 technology was
used to generate Kindlin3 knockout in a Raw 264.7 cell line. Two independent
sgRNAs were designed by the CRISPR Design Tool63. Annealed oligonucleotides
were ligated into the vector LentiCRISPRv2 vector (Addgene) digested with BsmBI
(Fermentas). Pheonix Packaging cells (Takara) were transfected with
LentiCRISPRv2 sgRNAs by lipofectamine3000 (Thermofisher) for 48 h. Then, the
Raw 264.7 cells were infected by lentivirus from the culture medium with Lenti-X™
Packaging Single Shots (Clontech) according to the manufacturer’s protocol.
Seventy-two hours later, cell selection was performed in the presence of 2 μg/mL
puromycin (Thermofisher) for 48 h. The puromycin-resistant cells were collected
and sorted by a flow cytometer into 96-well plates. Individual clones were exam-
ined by western blotting or genomic DNA sequencing. sgRNA hairpin sequences
are provided in the Supplementary methods Table 1.

Study approval. Animal experimental procedures were performed in accordance
with National Institutes of Health (NIH) guidelines on animal care and all pro-
tocols were approved by the Institutional Animal Care and Use Committee at the
Cleveland Clinic. The lentivirus infection was performed in accordance with a
Cleveland Clinic IBC protocol.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its supplementary information files). The source data for Figs. 1d, f–i, 2b–d, f, h–i,
k–m, o–p, 3d–e, g, 4b, d, f–g, i, k, 5b–e, i, 6b–c, e–f, h, 7a–c, e–f, h–i and Supplementary
Figs. 1b, f, g, 2c, e, 3a-c, 4b, e, 5a, c-g, 6a, b, 7a-g, i, 8a, d, b, 9e, g, 10a-c, e-f are provided
as a Source Data File.
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