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Abstract—Traditional clustering algorithms are widely used
for building bag-of-words (BOW) models to aggregate spatio-
temporal feature points extracted from a video for human
activity recognition problems. Their performances are restricted
by the computational complexity which limits the number of
feature points being used. In contrast, deep clustering yields
good clustering performance without the limit of the number
of feature points. Therefore, this work proposes a dual stacked
autoencoders features embedded clustering (DSAFEC) and a
BOW construction method based on the DSAFEC (B-DSAFEC)
to reduce the computational complexity and to remove the
selection restriction. The DSAFEC first transforms feature points
extracted from a video to a learned feature space and then
probabilities of cluster assignment of feature points are predicted
to build BOWs for human activity recognition. A soft clustering is
used by assigning each feature point to multiple clusters yielding
the largest probabilities instead of only one in hard clustering. Ex-
perimental results on three benchmark human activity datasets
show that the B-DSAFEC yields better performance compared
to five reference methods which are developed based on either
traditional clustering methods or deep clustering methods.

Index Terms—Bag-of-words (BOW), deep clustering, human
activity recognition, autoencoder

I. INTRODUCTION

HUMAN activity recognition (HAR) is an important
research topic in the field of computer vision. The

objective of bag-of-words (BOW) model is to aggregate var-
ious feature points of a video sequence into a fixed-length
representation. The BOW is popular in HAR as it is easy to
use, highly computationally efficient, and able to cope with
most application contexts [1]. Particularly in HAR tasks, state-
of-the-art extraction methods extract a vast amount of feature
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points from videos even for relatively small datasets, so that
efficient feature representations are still widely used [2].

The key aspect of the BOW model in HAR is to apply a
traditional clustering algorithm to build a visual vocabulary
[3]. The most widely used traditional clustering algorithms in
BOW include K-means clustering [4], agglomerative cluster-
ing (AGNES) [5], and spectral clustering [6]. However, these
algorithms need to calculate pairwise distances or similarities
between feature points, which has a high computational cost,
and this cost grows rapidly as the number of feature points
increases. This limitation makes traditional clustering methods
unable to deal with large datasets with millions of feature
points. A random undersampling of feature points can be
applied to reduce the computational cost [7]–[9]. However,
this may cause a loss of important information due to the
random removal of feature points.

Deep clustering does not need to compute pairwise distances
and/or pairwise similarities [10]. Furthermore, deep clustering
has no limit on the number of feature points and can utilize
all available feature points to build a BOW model. The deep
clustering networks [11] [12] can be trained in an end-to-
end and joint learning manner on a unified objective function.
Finally, deep clustering learns improved representations that
are better suited to feature point clustering [13].

Therefore, this work proposes a novel BOW model (B-
DSAFEC) based on a deep clustering algorithm—dual stacked
autoencoders features embedded clustering (DSAFEC) for
HAR. The DSAFEC first transforms the feature points to a
learned feature space to generate new representations, which
are then subsequently clustered with probabilities. The B-
DSAFEC is used to build BOW vectors for HAR using
the probabilistic clustering generated by the DSAFEC. Major
contributions of this work are:

1) The DSAFEC is a more computationally efficient clus-
tering algorithm than traditional clustering methods and
is therefore not limited by the number of feature points
in the dataset.

2) The B-DSAFEC is a joint learning framework that au-
tomatically learns feature representations and performs
cluster assignment simultaneously. The BOW generated
by the B-DSAFEC has a good discriminative power for
HAR.

3) The B-DSAFEC is robust to the selection of the BOW
size and builds better BOW vectors than traditional
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clustering algorithms for HAR. The B-DSAFEC also
yields better performances than deep clustering methods.

The rest of this paper is organized as follows. Section
II reviews related works. The DSAFEC and B-DSAFEC
for HAR are proposed in Section III. Experimental results
and discussion will be presented in Section IV. Finally, we
conclude this paper in Section V.

II. RELATED WORKS

A. Bag-of-Words in HAR

Representing local features using the BOW and its variants
is successful and popular in dealing with HAR problems [14].
The scale invariant feature transform (SIFT) [15] and the dense
trajectory (DT) [16] are successful feature extractors for video.
The DT extracts features based on sampling trajectory and
motion boundary descriptor.

Based on the DT [16], an improved dense trajectory (IDT)
[17] is proposed and shows improved performance in HAR.
Although the DT and the IDT are the most successful feature
extraction methods for image processing, high demands in
both computational complexity and storage limit their appli-
cation to activity recognition. The space-time interest points
(STIP) [18] has been proposed to detect the local spatio-
temporal feature points from video sequences. Although the
computational complexity and storage requirements of the
STIP are much less than the DT and the IDT, the STIP extracts
a large number of feature points and some STIP feature
points are redundant (unnecessarily increasing the storage
requirement of the STIP).

The multi-task information bottleneck (MTIB) clustering
[19] employs the agglomerative information maximization to
build the common visual vocabulary for multiple tasks. The
traditional BOW models and support vector machine (SVM)
are integrated into a recurrent neural network (RNN) [2]
to allow feature points aggregation and action classification
to be implemented simultaneously in a unified network. A
discriminative embedding method based on the image-to-class
distance (I2CDDE) [20] is proposed to learn compact and
discriminative local feature descriptors. The genetic algorithm
has also been applied to find optimal BOW representation by
optimizing weights of samples, features, words in a visual
vocabulary, and SVM parameters in [21]. To obtain a compact
representation of video sequences, a visual word ranking
method is proposed to select the significant words of the
visual vocabulary and reduce the size of the BOW model
[3]. An interest point pruning algorithm [22] is proposed to
eliminate the large number of redundant STIP feature points
and select the more discriminative visual words for building
the BOW. The STIP is also employed to build the BOW
in [23] where the BOW size is selected automatically via a
minimization of the localized generalization error of a radial
basis function neural network (RBFNN) [24]. Using action
bank as feature extraction, [25] directly trains a RBFNN
yielding high performance and then performs uncertainty
reduction for ambiguous classes. A semi-supervised method
[26] is proposed to categorize human activity using multiple
visual features which discovers a common subspace shared

by each type of feature and characterizes more discriminative
information of each feature type.

B. Deep clustering algorithms

The deep clustering (DC) is applied to address audio source
separation problems by predicting implicit segmentation labels
of the target spectrogram from audio in [27]. The deep
embedded clustering (DEC) [11] learns embedded feature
representations with stacked autoencoders and predicts cluster
assignment according to distance metrics simultaneously. A
joint unsupervised learning framework (JULE) [10] is pro-
posed to extract features from images with a convolutional
neural network (CNN) and perform agglomerative clustering
[5] with an RNN. The deep embedded regularized cluster-
ing (DEPICT) [12] consists of a multilayer convolutional
autoencoder and a softmax regression layer which learns
feature transformation and cluster assignment via minimizing
reconstruction errors and relative entropies. A deep convo-
lutional autoencoder network (DCAN) and a softmax layer
are combined to co-optimize the deep representation features
and cluster using an integrated loss function to simultaneously
minimize the reconstruction loss and the clustering loss [28].
To learn the visual features of images and videos, deep cluster
[29] treats the cluster assignments generated by K-means as
pseudo-labels for CNN training. A systematic taxonomy of
clustering methods that utilize deep neural networks and an
improved clustering method based on taxonomy is proposed in
[13]. An end-to-end signal approximation objective is used to
implement speaker-independent multi-speaker separation with
deep clustering in [30]. A hybrid model [31] combining deep
clustering and conventional networks offers improved results
on the music separation problem. A unified framework [32]
is used to jointly solve clustering and representation learning
in an iterative manner. In this framework, a CNN is used
to learn representations of images and a K-means is used to
update clusters. In a multi-task network [33] that jointly learns
classification and clustering, the deep clustering is treated as
an auxiliary task to explore the structure of image data and
assist to train a better model for the classification task.

Several deep clustering methods use unsupervised or su-
pervised representation learning to achieve human activation
recognition, such as autoencoders, clustering modules, and
feature fusion [34]–[36]. An unsupervised end-to-end learning
network architecture [34] is developed for clustering human
activities based on raw sequences of wearable sensor data
streams. An anomaly detection of human actions method
[35] uses a spatio-temporal graph autoencoder (ST-GCAE) to
obtain a latent vector for each action. Then, the latent vector
is soft assigned to clusters using a deep clustering layer. A
potential set of clusters is obtained from egocentric videos
with many actions and events by combining a pre-trained
CNN, a center surround model (CSM), and a K-means [36].
A new deep clustering algorithm named soft and regularized
deep K-means (SR-K-means) [37] is proposed. This algorithm
is a version of deep K-means and theoretically proves that
maximizing the L2 regularized mutual information via an
approximate alternating direction method (ADM) is equivalent
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Fig. 1. The framework of the DSAFEC.

to a minimization of the SR-K-means loss. As aforementioned,
deep clustering algorithms yield good clustering performances
and are not limited by the number of feature points. Therefore,
a unique opportunity exists to construct the BOW model for
HAR using deep clustering algorithms in this work.

III. B-DSAFEC – BOW BASED ON THE DSAFEC

In this paper, we propose an efficient deep clustering
method: dual stacked autoencoders features embedded clus-
tering (DSAFEC), and a novel BOW model based on the
DSAFEC (B-DSAFEC). The DSAFEC first uses dual stacked
autoencoders features to map the original inputs onto a new
feature space to generate new feature representations for
clustering. Cluster assignment probabilities are predicted for
the new transformed feature representations. The B-DSAFEC
builds BOW vectors with the probabilities predicted by the
DSAFEC. Details of the DSAFEC and the B-DSAFEC are
given in Section III-A and Section III-C, respectively.

A. Dual stacked autoencoders features embedded clustering
(DSAFEC)

The DSAFEC uses dual stacked autoencoders features
(DSAF) to learn new representations for the original input and
then uses a softmax regression to predict cluster assignment
probabilities for the representations. The framework of the
DSAFEC is shown in Fig. 1. The DSAF concatenates the
original inputs and learned features from two stacked autoen-
coders (SAE) [38] [39] which use the sigmoid (the upper SAE,
or sigmoid SAE) and tanh (the lower SAE, or tanh SAE)
functions as activation functions, respectively. In this paper,
a SAE consists of an input layer and two encoding layers
followed by two decoding layers.

A dataset X consists of N feature point xi ∈ Rdx in X =
{x1, x2, ..., xN}, where dx and N denote the length of feature
point and the total number of feature points, respectively. In
DSAF, the forward propagation of sigmoid SAE with input xi
as follows:

ase1i = σ(W s1
e xi + bs1e ) (1)

ase2i = σ(W s2
e ase1i + bs2e ) (2)

asd2i = σ(W s2
d ase2i + bs2d ) (3)

asd1i = σ(W s1
d asd2i + bs1d ) (4)

where σ denotes the sigmoid activation function. ase1i , W s1
e ,

and bs1e denote the output, the weight vector, and biases of the
encoding layer while asd1i , W s1

d , and bs1d denote the output,
the weight vector, and biases of the decoding layer of the first
autoencoder (AE) module of the sigmoid SAE, respectively.
ase2i , W s2

e , and bs2e denote the output, the weight vector, and
biases of the encoding layer while asd2i , W s2

d , and bs2d denote
the output, the weight vector, and biases of the decoding layer
of the second AE module of the sigmoid SAE, respectively.
Similarly, the forward propagation of the tanh SAE with input
xi is as follows:

ate1i = δ(W t1
e xi + bt1e ) (5)

ate2i = δ(W t2
e a

te1
i + bt2e ) (6)

atd2i = δ(W t2
d a

te2
i + bt2d ) (7)

atd1i = δ(W t1
d a

td2
i + bt1d ) (8)

where δ denotes the tanh activation function. ate1i , W t1
e , and

bt1e denote the output, the weight vector, and biases of the
encoding layer while atd1i , W t1

d , and bt1d denote the output,
the weight vector, and biases of the decoding layer of the
first AE module of the tanh SAE, respectively. ate2i , W t2

e ,
and bt2e denote the output, the weight vector, and biases
of the encoding layer while atd2i , W t2

d , and bt2d denote the
output, the weight vector, and biases of the decoding layer
of the second AE module of the tanh SAE, respectively.
Then, representations learned in encoding layers of the second
sigmoid and the second tanh AEs (i.e. ase2i and ate2i ) are
concatenated with the original input xi to form the new
representation as follows:

zi = ase2i ⊕ xi ⊕ ate2i (9)

where ⊕ and zi denote the concatenating operation and the
corresponding feature representation of xi, respectively.

Given N feature representations being mapped by the
DSAF, Z = {z1, z2, ..., zN}, where zi ∈ Rdz and dz denotes
the length of each feature representation. The clustering task
is to assign these representations into K categories. The
DSAFEC uses a softmax regression function to predict the
probabilistic cluster assignment P as follows:

pik = P (yi = k | zi,Θ) =
exp(θTk zi)∑K
k′=1 exp(θ

T
k′zi)

(10)

where P is a matrix consisting of all pik and Θ =
[θ1, θ2, ..., θK ] ∈ Rdz×K denotes the softmax function pa-
rameters, and pik denotes the probability of the ith feature
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representation (zi) belonging to the kth cluster. The detail of
the procedure of network training and prediction task will be
presented in Section III-B.

B. Training of the DSAFEC

The DSAFEC is an end-to-end joint learning framework
[10]–[12] that learns feature transformation and cluster assign-
ment simultaneously via a minimization of a unified objective
function. The unified objective function of the DSAFEC
consists of a reconstruction error (Lr) and a clustering loss
(Lc) which is defined as follows:

L = Lc + αLr (11)

where α denotes the regularization factor between Lc and
Lr. The clustering loss Lc focuses on the enhancement of
accuracy on cluster assignment probability predicted by the
DSAFEC while the reconstruction loss Lr improves learned
representation of the DSAFEC for clustering.

In the DSAF, the reconstruction loss is defined as follows:

Lr =
1

2N

N∑
i=1

(
‖asd1i − xi‖2 + ‖asd2i − ase1i ‖2

+ ‖atd1i − xi‖2

+ ‖atd2i − ate1i ‖2
) (12)

In contrast to [40] which trains dual AEs separately, the
DSAF combines the training of four AEs in the dual SAE as a
single reconstruction loss to facilitate the end-to-end training.
To train the deep clustering network, we adopt an auxiliary
target variable Q defined in [12]:

qik =
pik/(

∑
i′pi′k)

1
2∑

k′pik′/ (
∑
i′pi′k′)

1
2

(13)

Then, we define a variable f as follows:

fk = P (y = k) =
1

N

∑
i

qik (14)

We denote the variable µ as a uniform distribution. Finally,
the clustering objective function is defined as follows:

Lc = KL(Q‖P ) +KL(f‖µ)

=

(
1

N

N∑
i=1

K∑
k=1

qik log
qik
pik

)
+

(
1

N

N∑
i=1

K∑
k=1

fk log
fk
µk

)

=
1

N

N∑
i=1

K∑
k=1

qik log
qik
pik

+ qik log
fk
µk

(15)
where KL(Q‖P ) denotes the clustering precision while
KL(f‖µ) denotes the balanced assignment loss. KL(Q‖P ) is
the kullback-leibler (KL) divergence between P and Q while
KL(f‖µ) is designed to avoid too many feature points being
allocated to a few clusters or assign outlier feature points to
a cluster. In our experiments, we set α = 0.01 and use the
stochastic gradient descent (SGD) [41] with a learning rate of
0.01 to optimize parameters of the DSAFEC.

C. The DSAFEC based BOW (B-DSAFEC) and its application
to HAR

Then, a BOW model (B-DSAFEC) is constructed using
cluster assignment probabilities generated by the DSAFEC.
When building a BOW vector, hard cluster assignment [14]
is a natural choice in most situations which assigns feature
point xi to the kth cluster with the highest probability. The k
is deduced as follows:

k′ = arg max
k

pik (16)

After assignment, a BOW vector v = [v1, v2, ..., vK ] ∈ RK is
built for each video or image as follows:

vk =

m′∑
i=1

sikpik (17)

where sik, m′, and vk denote whether xi is assigned to kth

cluster (sik = 1) or not (sik = 0), the number of local feature
points extracted from the video or image, and the kth element
of the BOW vector v, respectively.

In this paper, the STIP is used as the local feature extraction
method for video sequences. The radial basis function neural
network (RBFNN) is used as the classifier in our experiments
for its fast training speed and good generalization capacity
[23] [24]. The number of nodes on the hidden layer of the
RBFNN is set to be 120 as in [23].

The application of the B-DSAFEC to HAR consists of mul-
tiple steps. Given a set of video sequences, local feature points
are extracted using the STIP algorithm to build a DSAFEC
model for clustering. Then, based on the cluster assignment
probabilities predicted by the trained DSAFEC model, a BOW
vector is built for each video sequence according to Eq. (17).
Finally, the generated BOW vectors of video sequences are
used for training and testing a RBFNN model on HAR. The
overall procedure of the B-DSAFEC for HAR is shown in
Algorithm 1 and Fig. 2 presents the detailed work flowing of
the B-DSAFEC.

D. B-DSAFEC with soft cluster assignment
The B-DSAFEC with hard assignment assigns a feature

point to one cluster only. The B-DSAFEC can also use
a soft cluster assignment [14] (B-DSAFEC-S) to assign a
feature point to multiple clusters to improve its performance.
The trained DSAFEC model outputs K probability values
which indicate the probability of a feature point belonging
to different clusters. In hard assignment, the cluster with the
largest probability is assigned. In the B-DSAFEC-S, the top T
largest probabilities are kept while others are change to zero.
Then, cluster assignment probabilities (pik) of a feature point
are then normalized to the range of [0, 1]. Finally, a BOW
vector is built for each video sequence with the following
probabilities:

vk =

m′∑
i=1

pik (18)

The value of T can be selected from powers of two which
ranges between one and K. In particular, the B-DSAFEC-S
reduces to B-DSAFEC when T = 1.
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Fig. 2. The flowchart of the B-DSAFEC.

Algorithm 1 The procedure of the B-DSAFEC for HAR
Input: The dataset X
Output: The predicted activity label

Training phase
1: Extract local feature points from video sequences of

training set using the STIP algorithm.
2: Train the DSAFEC clustering model using STIP feature

points extracted in Step 1 to form K clusters.
3: Calculate cluster assignment probabilities for STIP feature

points with the trained DSAFEC in Step 2 according to
the Eqs. (9) and (10).

4: Build a BOW vector for each video sequence according
to the Eq. (17) with the probabilities generated in Step 3.

5: Train a RBFNN using the BOW vectors built in Step 4.
Testing phase

6: Apply the trained DSAFEC to predict cluster assignment
probabilities for the STIP feature points of the test set
according to the Eqs. (9) and (10).

7: Build a BOW vector for each video sequence according
to the Eq. (17) with the probabilities generated in Step 6.

8: Predict activity labels for BOW vectors built in Step 7
with the RBFNN trained in Step 5.

E. The computation complexity of the DSAFEC

As aforementioned, the input dimensionality of the
DSAFEC is dx. In a stacked autoenocder, we set the dimen-
sions of the first and the second encoding layers to be 2dx
and 4dx, respectively, as shown in Fig. 3. The dimensionality
of a decoding layer is the same as its corresponding encoding
layer. The outputs of 2nd encoding layers in sigmoid stacked
autoencoders, tanh stacked autoencoders, and the origin input
are concatenated to form a new representation with dimen-
sionality of 9dx. Finally, the new representation is fed into a
softmax layer with dimensionality of K. The time complexity
of training the first and second AE in the SAE is O(dx×2dx×
dx) = O(2d3x) and O(2dx×4dx×2dx) = O(16d3x). The time
complexity of training the regression layer is O(9dxK). As a

Fig. 3. The joint training of the B-DSAFEC.

result, the computation complexity of the DSAFEC is about
O(2× (2d3x + 16d3x) + 9dxK) = O(36d3x + 9dxK).

IV. EXPERIMENTS

A. Experimental setup

The proposed B-DSAFEC is tested on three widely used
benchmarking human activity video datasets: the KTH video
dataset [42], the UCF Sports video dataset [43], and the
HMDB51 dataset [44]. For fair comparison to other methods,
the hard cluster assignment version of B-DSAFEC is used.

The KTH activity dataset consists of six human activity
classes and 600 video sequences with static backgrounds,
with each class having the same number of video samples.
The UCF sports datasets consists of 10 human activities and
150 video samples with a large intra-class variability. The
number of instances of each activity varies within the dataset.
The horizontally flipped version of each video sequence is
added to double the number of instances as in [45]. The
HMDB51 dataset is a large human motion database released
by the Brown University in 2011. Most of the video clips are
collected from various sources and movies. A small proportion
of videos are collected from public databases such as YouTube,
the Prelinger archive, and Google videos. The dataset contsists
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of 6849 clips divided into 51 action categories, each containing
a minimum of 101 clips. The actions categories corresponding
to a variety of human actions, such as the general facial
actions, facial actions with object manipulation, general body
movement, body movement with object interaction, and body
movement for human interaction [44]. Fig. 4 gives some
examples for these datasets.

(a) KTH activities

(b) UCF sport activities

(c) HMDB51 activities

Fig. 4. Some examples for the KTH, the UCF Sports, and the HMDB51
videos.

For these datasets, one-third of the total amount of instances
are randomly selected to be the testing set while the rest of
video sequences are used as the training set. This is repeated
for three times with a random one-third instances selected each
time and the average accuracy over all the classes is reported
for the three training-testing splits.

In our experiments, both traditional clustering-based meth-
ods (the K-means [4] and the AGNES [5]) and deep clustering-
based methods (the CNNKMS [32], the DEPICT [12], and the
SR-K-means [37]) are compared. The CNNKMS first extracts

CNN features of video frames using the ResNet50 [46] and
uses K-means to build a visual vocabulary with these features.
As aforementioned, the K-means and the AGNES are not
suited for problems with a very large number of feature points.
Therefore, to reduce the computational complexity, 100, 000
feature points are randomly sampled from the training set
to construct the visual vocabulary with them. Other deep
clustering-based methods are not restricted by the number of
feature points, so all feature points extracted from the training
set are used for training. BOW models yielded by the K-
means, the AGNES, the CNNKMS, the DEPICT, and the
SR-K-means are named by the B-K-means, the B-AGNES,
the B-CNNKMS, the B-DEPICT, and the B-SR-K-means,
respectively.

B. Experimental results and analysis

In this experiment, we compare performances of the B-
DSAFEC with different reference methods equipped with
different sizes of visual vocabularies (K), where K = 2η, η =
7, 8, ..., 13.

Table I shows accuracy yielded by the B-DSAFEC and ref-
erence methods with different K on the KTH activity dataset.
The proposed B-DSAFEC yields the best average performance
while the B-CNNKMS yields the worst performance among
all methods. This indicates that a simple combination of a
CNN and a K-means clustering does not provide a good BOW
model for HAR. The B-DSAFEC yields the best performance
for all K except for K = 8192. The B-K-means yields the best
accuracy of 90.66% when K = 8192, but it is worse than the
B-DSAFEC with K = 256. This shows that the B-DSAFEC
learns much better BOW and is able to use small K to yield
a good BOW model.

TABLE I
THE ACCURACY OF REFERENCE METHODS WITH DIFFERENT SIZES OF

VISUAL VOCABULARY ON THE KTH DATASET.

K B-K-means B-AGNES B-CNNKMS B-DEPICT B-SR-K-means B-DSAFEC

128 0.8207 0.7660 0.4899 0.8468 0.7121 0.8855

256 0.8561 0.8182 0.4566 0.8754 0.7525 0.9074

512 0.8699 0.8552 0.4091 0.9024 0.8737 0.9242

1024 0.8674 0.8552 0.3626 0.9091 0.8939 0.9125

2048 0.8813 0.8822 0.3212 0.9158 0.8687 0.9360

4096 0.8838 0.8822 0.3212 0.9259 0.8788 0.9343

8192 0.9066 0.8670 0.2960 0.9461 0.8990 0.9377

Average 0.8694 0.8466 0.3795 0.9031 0.8398 0.9197

Table II shows accuracy of the B-DSAFEC and reference
methods with different K values on the UCF activity dataset.
The B-DSAFEC yields the best performance for K = 128,
256, 2048, 4096, and 8192 while yields the second best
performance for K = 512 and 1024 (only worse than the
B-DEPICT). The B-DSAFEC with K = 2048 yields the best
accuracy of 82.82% which outperforms all other methods with
K = 8192. From both Tables I and II, the B-DSAFEC yields
3.87% and 5.50% better performances in comparison with
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the second-best B-DEPICT and B-CNNKMS, respectively.
The B-DSAFEC yields larger advantages when K is small
which indicates a better BOW model learning by the B-
DSAFEC. Table III shows accuracy of the B-DSAFEC and
reference methods with different K values on the HMDB51
activity dataset. The B-DSAFEC yields the best performance
for K = 128, 256, 512, 1024, 2048, and 4096 while the B-K-
means yields the best performance for K = 8192. The average
accuracy in Table III shows that the proposed method yields
a good results even for very large dataset like the HMDB51.

TABLE II
THE ACCURACY OF THE REFERENCE METHODS WITH VARYING SIZES OF

VISUAL VOCABULARY ON THE UCF DATASET.

K B-K-means B-AGNES B-CNNKMS B-DEPICT B-SR-K-means B-DSAFEC

128 0.6357 0.6082 0.7711 0.6976 0.5979 0.7766

256 0.7113 0.6426 0.7794 0.7595 0.6495 0.7835

512 0.7766 0.6529 0.7711 0.8110 0.6392 0.7835

1024 0.7835 0.6873 0.7691 0.8179 0.7113 0.8110

2048 0.8041 0.6598 0.7526 0.8144 0.6598 0.8282

4096 0.8110 0.6667 0.7278 0.8007 0.7423 0.8213

8192 0.7973 0.6873 0.5443 0.8007 0.7010 0.8110

Average 0.7599 0.6578 0.7308 0.7860 0.6716 0.8022

TABLE III
THE ACCURACY OF THE REFERENCE METHODS WITH VARYING SIZES OF

VISUAL VOCABULARY ON THE HMDB51 DATASET.

K B-K-means B-AGNES B-CNNKMS B-DEPICT B-SR-K-means B-DSAFEC

128 0.3235 0.3123 0.3274 0.7675 0.3889 0.8307

256 0.3274 0.3706 0.3503 0.8196 0.4541 0.9013

512 0.6189 0.4381 0.3791 0.7868 0.4576 0.8568

1024 0.7339 0.5159 0.4307 0.7834 0.6662 0.8934

2048 0.8300 0.5896 0.4549 0.8355 0.7930 0.9045

4096 0.9045 0.6985 0.4902 0.9067 0.8459 0.9379

8192 0.9437 0.7871 0.5209 0.8627 0.8846 0.9320

Average 0.6688 0.5303 0.4219 0.8232 0.6239 0.8938

Overall, the B-DSAFEC yields the best performance over
other reference methods. It demonstrates that the DSAF
learns more discriminative feature representations for clus-
tering tasks. The B-DSAFEC is robust to the selection of
K and yields a promising performance even when K is ex-
tremely small (e.g. 128). Furthermore, the local representation
methods may be better than deep clustering methods in small
datasets like the KTH and UCF datasets for HAR. In addition,
Tables I, II, and III show that the optimal K values vary
for different methods and the relationship between accuracies
and the value of K does not monotonically increase for all
reference methods. This is because clustering performance
heavily depends on the nature of the input data and the
algorithm itself, and these human activity video datasets have
their own characteristics, for example, UCF dataset contains

a large intra-class variability. Therefore, there is no guarantee
that the clustering performance will improve with the increase
of the K value even if the above deep clustering-based learning
methods map the input data onto a latent feature space where
grouping tasks become much easier. This is also why the
value of K is so difficult to be determined for most clustering
methods, and the value of K is often determined via either
trial-and-error or cross-validation methods.

C. Further analysis of experimental results

To further analyze the performance of the proposed B-
DSAFEC and reference methods on each action class of
each dataset, four other performance indices are employed
in this study, including confusion matrix, AUC, F1-score,
and G-mean [40]. Multi-class HAR problems are inheritantly
imbalanced because the classification of each action versus
all other classes is imbalanced. Furthermore, different ac-
tion classes may have different number of instances. Overall
accuracy may not be enough to reflect the performance of
a method for HAR problems. Therefore, these metrics are
needed to further analyze performances of different methods.
In a confusion matrix, row and column stand for true labels and
predicted labels, respectively. The value in each entry denotes
the number of samples in the corresponding label class in the
row being predicted as the corresponding class in the column.
AUC measures the area under receiver operating characteristic
curve. The F1-score is the harmonic mean of the precision
and recall of the positive class. In the experiment, each class
in a dataset takes turn to be the positive class while remaining
classes are used as negative classes. The average value over all
classes is then recorded. The G-mean measures the geometric
average precision of the positive class and the negative class.
The average values of AUCs, F1-scores, and G-means over
all classes in a dataset are represented as mAUC, mF1, and
mG, respectively. In this experiment, we choose K = 4096,
which is widely used in BOW models for HAR [3] [7] [21]
[45].

Confusion matrices of the B-DSAFEC and reference meth-
ods on the KTH dataset are depicted in Fig. 5. The mAUC,
mF1, and mG of these methods on the KTH dataset are
listed in Table IV. As shown in Fig. 5, the B-DSAFEC
and reference methods show the worst performances on the
jogging and running classes. The same situations appear
between walking/jogging and handwaving/handclapping.
It is reasonable because these actions are similar in the real
world. With these difficult HAR tasks, the proposed method
outperforms other methods with less incorrect predictions on
these classes. The B-CNNKMS performs even worse than the
B-K-means. It indicates that simple concatenation of CNN
with K-means may hamper the performance and dedicated
representation learning methods for clustering should be em-
ployed, for examples B-DSAFEC and B-DEPICT. Table IV
shows that the B-DSAFEC yields the best mAUC, mF1, and
mG on the KTH dataset over reference methods.

Confusion matrices of the B-DSAFEC and reference meth-
ods on the UCF dataset are depicted in Fig. 6 while mAUC,
mF1, and mG of these methods on the UCF dataset are



JOURNAL OF LATEX CLASS FILES, FEB 2021 8

(a) B-K-means (b) B-AGNES (c) B-CNNKMS

(d) B-DEPICT (e) B-SR-K-means (f) B-DSAFEC

Fig. 5. The visualization results of confusion matrices of reference methods on the KTH dataset.

TABLE IV
PERFORMANCE OF DIFFERENT METHODS ON THE KTH DATASET.

methods mAUC mF1 mG

B-K-means 0.9364 0.8934 0.9336

B-AGNES 0.9364 0.8929 0.9337

B-CNNKMS 0.5939 0.3352 0.4625

B-DEPICT 0.9485 0.9137 0.9474

B-SR-K-means 0.8879 0.7671 0.8870

B-DSAFEC 0.9636 0.9393 0.9630

listed in Table V. As shown in Fig. 6, the proposed method
and reference methods yield worse performances on actions
of kicking and run. The B-CNNKMS misclassifies a lot of
instances in different action classes to be golf swing because
they have some common hand actions. The B-AGNES has
a similar defficiency. Table V shows that the B-DSAFEC
yields the best mAUC, mF1, and mG on the UCF activity
dataset over reference methods. Especially, due to the fact
that there are 51 categories in the HMDB51 dataset, the
confusion matrix cannot be clearly presented. Therefore, the
confusion matrix of the HMDB51 is omitted in this section.
From Table VI, the B-DSAFEC yields the best mAUC, mF1,
and mG on the HMDB51 dataset over reference methods. The
performances of all reference methods in some actions are not
prominent, such as punch, run, smile, and swordexercise. It

is reasonable because these actions are relatively complicated.
For example, everyone has different running postures and
speed. Even the same person in different scenes can not
guarantee to perform the same action in the exact same way.
Thus, complex actions reduce the performance of models.

TABLE V
PERFORMANCE OF DIFFERENT METHODS ON THE UCF DATASET.

methods mAUC mF1 mG

B-K-means 0.9031 0.8286 0.8970

B-AGNES 0.8423 0.7080 0.8212

B-CNNKMS 0.8412 0.7441 0.8216

B-DEPICT 0.8992 0.8089 0.8842

B-SR-K-means 0.8750 0.8235 0.8613

B-DSAFEC 0.9083 0.8369 0.8990

D. The performance of B-DSAFEC with soft cluster assign-
ment

As mentioned in Section III-D, this experiment explores the
influence of the soft cluster assignment and the hard cluster
assignment strategies on the performance of the model for
HAR. The outputs of the B-DSAFEC are probabilities of a
STIP feature point belonging to different clusters. So, this
outputs can be directly used as the probability values for the
soft cluster assignment. Fig. 7 shows the accuracy of the B-
DSAFEC-S on the KTH, the UCF, and the HMDB51 datasets
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(a) B-K-means (b) B-AGNES (c) B-CNNKMS

(d) B-DEPICT (e) B-SR-K-means (f) B-DSAFEC

Fig. 6. The visualization of the results of the confusion matrices of reference methods on the UCF dataset.

TABLE VI
PERFORMANCE OF DIFFERENT METHODS ON THE HMDB51 DATASET.

methods mAUC mF1 mG

B-K-means 0.9276 0.7123 0.9256

B-AGNES 0.7133 0.4905 0.6561

B-CNNKMS 0.7573 0.4324 0.7234

B-DEPICT 0.8940 0.6667 0.8890

B-SR-K-means 0.8967 0.7500 0.8914

B-DSAFEC 0.9290 0.7536 0.9602

with respect to the logarithm to base two of T (log T ). The
hard cluster assignment is a special case of the soft cluster
assignment when log T = 0. So, in Fig. 7, results yielded by
log T = 0 are for the hard cluster assignment’s. The perfor-
mance of the B-DSAFEC-S varies greatly with the increment
of log T , and the soft cluster assignment outperforms the hard
cluster assignments in the majority of cases of log T with
different K values. In the KTH dataset, the B-DSAFEC-S with
log T = 7 yields 5.05% better accuracy than the B-DSAFEC
when K = 128. Although the soft cluster assignment strategy
improves the accuracy on the KTH by 1.51%, it has no
significant improvement on the UCF when K = 256. The
B-DSAFEC-S with log T = 3 yields 6.19% better accuracy
than the B-DSAFEC when K = 128. When K = 256 for the

UCF dataset, the B-DSAFEC-S predicts cluster assignment
probabilities close to zero or one which makes the soft cluster
assignment fail to improve the performance. Similarly, the B-
DSAFEC-S with log T = 7 yields 4.75% better accuracy than
the B-DSAFEC when K = 128 for the HMDB51 dataset.
When K = 2048, the range of accuracy is not large and the
contribution of soft clustering to improvement of B-DSAFEC
performance is not outstanding. Results on the UCF and the
HMDB51 datasets are not available due to a memory error
when K = 8192 and logT = 14. The fundamental reason is
that the UCF and the HMDB51 datasets have more feature
points than the KTH dataset.

In summary, soft cluster assignment improves the perfor-
mance of the B-DSAFEC substantially when compared with
the hard cluster assignment.

E. Training manner of the DSAFEC

The performance of the end-to-end joint learning in the
B-DSAFEC is compared with a greedy layer-wise disjoint
learning [8] version of the B-DSAFEC. The greedy layer-wise
disjoint learning method trains the DSAF first, and then uses
its outputs to train parameters of the softmax regression.

Accuracy of the B-DSAFEC with end-to-end joint learning
and greedy layer-wise disjoint learning are shown in Fig. 8.
It can be observed that the end-to-end joint learning always
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(a) KTH dataset

(b) UCF dataset

(c) HMDB51 dataset

Fig. 7. The accuracy of the B-DSAFEC with soft cluster assignment on the
KTH, the UCF, and the HMDB51 datasets with respect to the logarithm to
base two of T (log T ).

outperforms the greedy layer-wise disjoint learning on the
KTH, the UCF, and the HMDB51 datasets in all cases of
K. The B-DSAFEC with end-to-end joint learning improves
the performance by 21.04% when K = 8192, 28.51% when
K = 256, and 18.08% when K = 4096 on the KTH, the
UCF, and the HMDB51 datasets, respectively.

Experimental results confirm that training the DSAFEC with
the end-to-end joint learning method is more appropriate than
the greedy layer-wise disjoint learning method. This shows
that the unified objective function may prevent negative effects
of optimizing several different objectives.

(a) KTH dataset

(b) UCF dataset

(c) HMDB51 dataset

Fig. 8. The performance of joint learning and disjoint learning of the B-
DSAFEC on the KTH, the UCF, and the HMDB51 datasets.

F. Discriminative histograms of different classes

In this subsection, we carried out experiments to inves-
tigate the discriminative ability of the proposed method on
the KTH, the UCF, and the HMDB51 datasets, respectively.
Figs. 9, 10, and 11 show histograms generated by the pro-
posed B-DSAFEC with K = 128 for six videos from four
classes, namely hand−clapping, golf−swing, ride−bike,
and ride−horse. Fig. 9 depicts two people clapping hands
with different gestures from the KTH dataset. Fig. 10 depicts
two people swinging golf from different angles from the UCF
dataset. Fig. 11 (a) depicts people riding a bike heading to
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the left and Fig. 11 (b) depicts people riding a horse heading
to the right. Both Fig. 11 (a) and (b) are from the HMDB51
dataset. These figures show that histograms of the two videos
are very discriminative even when human actions are similar
in scenes. This demonstrates the discriminative power of the
B-DSAFEC for HAR.

G. Computational efficiency analysis

A good model is expected to yield both high efficiency and
high accuracy. Our experiments in previous sections show that
our proposed method yields high accuracy performance over
a number of different datasets. In this section, we compare
computational efficiencies of different methods by comparing
their run time on the HMDB51 dataset using Python 3.6 and
a personal computer with Window10, 8 GB RAM, an Intel
Core i5-95000 3.00GHz CPU, and a GeForce RTX 2080Ti
GPU. Table VII presents run time of different methods on the
HMDB51 using the aforementioned computer. The numbers of
feature points for the training and the testing sets are 4,364,865
and 1,831,961, respectively. The DSAFEC uses 20.83 seconds
on average for each training epoch with a batch size of 8192.
The average accuracy of our model is consistently greater than
80% after 10 epochs and converges before 100 epochs. It uses
8.74 seconds on average for the testing. It is also worth noting
that the SR-K-means takes the longest computational time.
The main reason is that the objective function of SR-K-means
integrates discriminative models with the K-means. A large
computational time is needed by the SR-K-means to obtain
balanced parameters in optimization processes for both latent
cluster assignments and deep network parameters. Overall, the
proposed method demonstrates the computational advantage
over other bench marking approaches.

V. CONCLUSION

In this paper, the dual stacked autoencoders features em-
bedded clustering (DSAFEC) and a novel BOW based on
the DSAFEC (B-DSAFEC) as an efficient deep clustering
algorithm are proposed for HAR tasks. The DSAFEC predicts
cluster assignment probabilities of feature points and then the
B-DSAFEC uses these probabilities to build BOW vectors
for HAR. Experimental results show that the proposed B-
DSAFEC outperforms BOW models built either using tradi-
tional clustering algorithms or using deep clustering methods.
Experimental results also demonstrate that end-to-end joint
learning is more appropriate than greedy layer-wise disjoint
learning for training of the DSAFEC. The soft cluster assign-
ment improves the performance of the B-DSAFEC.

In this work, the deep clustering is not integrated with
the final classification phase. Therefore, a more sophisticated
combination of the classification and the clustering could
be further investigated for further improvement of HAR. In
addition to activity recognition, the proposed method can also
be applied to other computer vision tasks, such as image
classification and segmentation.
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[3] J. R. Cózar, J. M. González-Linares, N. Guil, R. Hernández, and
Y. Heredia, “Visual words selection for human action classification,”
in 2012 International Conference on High Performance Computing
Simulation (HPCS), 2012, pp. 188–194.

[4] S. Yu, S. W. Chu, C. Wang, Y. Chan, and T. Chang, “Two improved
k-means algorithms,” Applied Soft Computing, vol. 68, pp. 747–755,
2017.

[5] M. Roux, “A comparative study of divisive and agglomerative hierar-
chical clustering algorithms,” Journal of Classification, vol. 35, no. 2,
pp. 345–366, 2018.

[6] M. T. Law, R. Urtasun, and R. S. Zemel, “Deep spectral clustering
learning,” in Proceedings of the 34th International Conference on
Machine Learning, vol. 70, 2017, pp. 1985–1994.

[7] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in 2008 IEEE Conference on
Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[8] L. Shao, S. Jones, and X. Li, “Efficient search and localization of human
actions in video databases,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 24, no. 3, pp. 504–512, 2014.

[9] Y. Gang, J. Yuan, and Z. Liu, “Unsupervised random forest indexing for
fast action search,” in Computer Vision & Pattern Recognition, 2011.

[10] J. Chang, G. Meng, L. Wang, S. Xiang, and C. Pan, “Deep self-evolution
clustering,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 42, no. 4, pp. 809–823, 2020.

[11] K. G. Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep
clustering via joint convolutional autoencoder embedding and relative
entropy minimization,” in IEEE International Conference on Computer
Vision, 2017, pp. 5747–5756.

[12] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of
deep representations and image clusters,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 5147–
5156.

[13] E. Aljalbout, V. Golkov, Y. Siddiqui, and D. Cremers, “Clustering with
deep learning: Taxonomy and new methods,” arXiv: Learning, 2018.

[14] X. Zhen and L. Shao, “Action recognition via spatio-temporal local
features: A comprehensive study,” Image and Vision Computing, vol. 50,
pp. 1–13, 2016.

[15] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[16] H. Wang, A. Klaser, C. Schmid, and C. Liu, “Dense trajectories
and motion boundary descriptors for action recognition,” International
Journal of Computer Vision, vol. 103, no. 1, pp. 60–79, 2013.

[17] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in 2013 IEEE International Conference on Computer Vision, vol.
159, 2013, pp. 3551–3558.

[18] I. Laptev, “On space-time interest points,” International Journal of
Computer Vision, vol. 64, no. 2, 2005.

[19] X. Yan, S. Hu, and Y. Ye, “Multi-task clustering of human actions by
sharing information,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 6401–6409.

[20] X. Zhen, F. Zheng, L. Shao, X. Cao, and D. Xu, “Supervised local
descriptor learning for human action recognition,” IEEE Transactions
on Multimedia, vol. 19, no. 9, pp. 2056–2065, 2017.

[21] B. Tahayna, M. Belkhatir, S. M. Alhashmi, and T. O’Daniel, “Human
action detection and classification using optimal bag-of-words represen-
tation,” in 6th International Conference on Digital Content, Multimedia
Technology and its Applications, 2010, pp. 75–80.

[22] Q. Wu, Z. Wang, F. Deng, Y. Xia, W. Kang, and D. D. Feng, “Discrimi-
native two-level feature selection for realistic human action recognition,”
Journal of Visual Communication and Image Representation, vol. 24,
no. 7, pp. 1064–1074, 2013.

[23] W. W. Y. Ng, J. Li, J. Zhang, Q. Wu, and J. Li, “Visual words selection
for human action recognition using rbfnn via the minimization of l-
gem,” in 2017 International Conference on Wavelet Analysis and Pattern
Recognition (ICWAPR), 2017, pp. 183–187.

[24] D. S. Yeung, W. W. Y. Ng, D. Wang, E. C. C. Tsang, and X. Wang,
“Localized generalization error model and its application to architecture



JOURNAL OF LATEX CLASS FILES, FEB 2021 12

(a) hand−clapping (b) hand−clapping

Fig. 9. Comparison of the histograms generated by the B-DSAFEC for two different actions of same class from the KTH dataset. Example image (left) and
the B-DSAFEC (right) for the videos hand−clapping in (a) and (b), respectively.

(a) golf−swing−back (b) golf−swing−front

Fig. 10. Comparison of the histograms generated by the B-DSAFEC for two different angles of same class from the UCF dataset. Example image (left) and
the B-DSAFEC (right) for the videos golf−swing−back and golf−swing−front in (a) and (b), respectively.

(a) ride−bike (b) ride−horse

Fig. 11. Comparison of the histograms generated by the B-DSAFEC for two videos of two different classes from the HMDB51 dataset. Example image (left)
and the B-DSAFEC (right) for the videos ride−bike and ride−horse in (a) and (b), respectively.

selection for radial basis function neural network,” IEEE Transactions
on Neural Networks, vol. 18, no. 5, pp. 1294–1305, 2007.

[25] K. Chen, L. Yao, D. Zhang, X. Wang, X. Chang, and F. Nie, “A
semisupervised recurrent convolutional attention model for human activ-
ity recognition,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 5, pp. 1747–1756, 2020.

[26] S. Wang, Z. Ma, Y. Yang, X. Li, C. Pang, and A. G. Hauptmann,
“Semi-supervised multiple feature analysis for action recognition,” IEEE
Transactions on Multimedia, vol. 16, no. 2, pp. 289–298, 2014.

[27] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clustering:

Discriminative embeddings for segmentation and separation,” in 2016
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2016, pp. 31–35.

[28] Y. Li, W. Wang, M. Liu, Z. Jiang, and Q. He, “Speaker clustering by
co-optimizing deep representation learning and cluster estimation,” IEEE
Transactions on Multimedia, pp. 1–1, 2020.

[29] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for
unsupervised learning of visual features.” in Proc. European Conference
on Computer Vision, vol. 11218, 2018, pp. 139–156.

[30] Y. Xie, B. Lin, Y. Qu, C. Li, W. Zhang, L. Ma, Y. Wen, and D. Tao, “Joint



JOURNAL OF LATEX CLASS FILES, FEB 2021 13

TABLE VII
THE RUN TIME OF DIFFERENT METHODS FOR THE HMDB51 DATASET.

Run Time (s) K=128 K=256 K=512 K=1024 K=2048 K=4096 K=8192 Average

B-K-means 489.24 1399.34 2139.26 3464.3 5560.34 7645.65 21330.79 6004.13

B-AGNES 1415.36 1570.71 1721.47 1929.35 2276.01 5045.76 9429.31 3341.14

B-CNNKMS 1498.89 1600.1 1829.94 2454.09 3565.04 6015.66 8803.04 3680.97

B-DEPICT 546.64 733.14 1116.59 1895.95 3674.57 8451.01 17158.6 4796.64

B-SR-K-means 2336.00 3631.68 4938.16 13605.23 21242.29 42640.58 74860.23 23322.02

B-DSAFEC 216.75 281.44 405.87 670.65 1187.01 4279.58 7544.86 2083.73

deep multi-view learning for image clustering,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1–1, 2020.

[31] X. Peng, J. Feng, J. T. Zhou, Y. Lei, and S. Yan, “Deep subspace clus-
tering,” IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–13, 2020.

[32] C. Hsu and C. Lin, “Cnn-based joint clustering and representation
learning with feature drift compensation for large-scale image data,”
IEEE Transactions on Multimedia, vol. 20, no. 2, pp. 421–429, 2017.

[33] S. Wu, Q. Ji, S. Wang, H. Wong, Z. Yu, and Y. Xu, “Semi-supervised
image classification with self-paced cross-task networks,” IEEE Trans-
actions on Multimedia, vol. 20, no. 4, pp. 851–865, 2018.

[34] A. Abedin, F. Motlagh, Q. Shi, H. Rezatofighi, and D. Ranasinghe,
“Towards deep clustering of human activities from wearables,” in
Proceedings of the 2020 International Symposium on Wearable
Computers, ser. ISWC ’20, 2020, p. 1–6. [Online]. Available:
https://doi.org/10.1145/3410531.3414312

[35] A. Markovitz, G. Sharir, I. Friedman, L. Zelnik-Manor, and S. Avidan,
“Graph embedded pose clustering for anomaly detection,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[36] A. Sahu and A. S. Chowdhury, “Summarizing egocentric videos using
deep features and optimal clustering,” Neurocomputing, vol. 398, pp.
209–221, 2020.

[37] M. Jabi, M. Pedersoli, A. Mitiche, and I. Ben Ayed, “Deep clustering:
On the link between discriminative models and k-means,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.

[38] Y. Liu, X. Feng, and Z. Zhou, “Multimodal video classification with
stacked contractive autoencoders,” Signal Processing, vol. 120, no. 120,
pp. 761–766, 2016.

[39] Y. Lei, W. Yuan, H. Wang, Y. Wenhu, and W. Bo, “A skin segmenta-
tion algorithm based on stacked autoencoders,” IEEE Transactions on
Multimedia, vol. 19, no. 4, pp. 740–749, 2017.

[40] W. W. Y. Ng, G. Zeng, J. Zhang, D. S. Yeung, and W. Pedrycz, “Dual
autoencoders features for imbalance classification problem,” Pattern
Recognition, vol. 60, pp. 875–889, 2016.

[41] S. Mei, A. Montanari, and P. Nguyen, “A mean field view of the
landscape of two-layer neural networks,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 115, no. 33,
p. 201806579, 2018.

[42] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: a lo-
cal svm approach,” in Proceedings of the 17th International Conference
on Pattern Recognition, 2004. ICPR 2004., vol. 3, 2004, pp. 32–36.

[43] M. D. Rodriguez, J. Ahmed, and M. Shah, “Action mach a spatio-
temporal maximum average correlation height filter for action recog-
nition,” in 2008 IEEE Conference on Computer Vision and Pattern
Recognition, 2008, pp. 1–8.

[44] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: A
large video database for human motion recognition,” in IEEE Interna-
tional Conference on Computer Vision, 2011.
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