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A growing body of observations worldwide has documented fault slip transients that 

radiate little or no seismic energy. The mechanisms that govern these slow slip events and 

their wide range of depths, slip rates, durations, stress drops, and recurrence intervals 

remain poorly known. Here we show that slow slip can be explained by a transition from 

rate-weakening frictional sliding at low slip rates toward rate-neutral or rate-strengthening 15 

behavior at higher slip rates, as has been observed experimentally. We use numerical 

simulations to illustrate that this rate-dependent transition quantitatively explains 

experimental data for natural fault rocks representative of materials in the source regions 

of slow slip events. With a standard constant-parameter rate-and-state friction law, slow 

slip events arise only near the threshold for slip instability. The inclusion of velocity 20 

dependent friction parameters significantly broadens the range of conditions for slow slip 
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occurrence, and produces a wide range of event characteristics, including stress drop, 

duration, and recurrence, as are observed in nature. Upscaled numerical simulations that 

incorporate parameters consistent with laboratory measurements can reproduce geodetic 

observations of repeating slow slip events on tectonic faults. Our work offers an 25 

explanation for the ubiquitous occurrence of slow slip events in a broad spectrum of 

geologic environments.  

 

Faults in nature can slip episodically during earthquakes, with slip rate typically larger than 

1cm/s, but also in much slower transient slip events that are essentially aseismic. These include 30 

slow slip events (SSEs) which last days to weeks and are often associated with low-amplitude 

seismic tremors1,2. SSEs have been widely observed spanning a range of depths along subduction 

plate interfaces including Cascadia2, Mexico3, Japan4, Costa Rica5, and New Zealand6, as well as 

on continental transform faults including the San Andreas7 and North Anatolian Faults8. In some 

cases, these phenomena have been linked to elevated pore pressure based on theoretical 35 

considerations, their sensitivity to tidal stresses, and their spatial correlation with zones of high 

Vp/Vs9-11.  

SSEs result, like regular earthquakes, from unstable frictional sliding12,13. Previous studies have 

shown that SSEs can arise in numerical simulations based on the rate-and-state14 (RSF) 

formalism. Within the RSF framework, regular earthquakes (stick-slip) occur if the slipping area 40 

is larger than a critical patch size, and SSEs arise if the system is near critical. However, in this 

context, SSEs should be observed only over a very narrow range of parameters for which the 

fault lies precisely at, or very near the stable-unstable transition12,13 (Figs. 1&2). This contrasts 

with ubiquitous occurrence of SSEs spanning a diversity of geological environments in nature.  
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Recent laboratory experiments also document a wide range of slow-slip behaviors, with a 45 

gradual evolution from stable sliding to slow stick-slip and ultimately to fast slip15-19. This 

laboratory work, together with the widespread occurrence of slow slip in nature, suggests a role 

for processes other than those represented by standard friction on a homogeneous fault - such as 

fluid-assisted dilation hardening20, geologic heterogeneities21, or more complex frictional 

rheology such as sliding rate dependence of RSF parameters22-24.  50 

In RSF theory, a critical fault weakening rate as a function of slip (characterized by Kc~(a-

b)σ’/Dc, see Methods) determines frictional stability25. In the standard form of RSF, the rate 

parameter (a-b) and critical distance (Dc) are constant and independent of sliding velocity. 

However, recent laboratory measurements on both natural and synthetic fault gouges, including 

drill core from faults that are known to host SSEs, indicate that these parameters actually vary 55 

systematically with slip velocity26-28. The velocity dependence of Dc and a-b was reported more 

than a decade ago for some materials29,30, and has been speculated as a potential explanation for 

episodic slow slip22-24. These results suggest qualitatively that the increased stability at high slip 

velocity would suppress acceleration of slip, and accordingly widen the range of conditions for 

slow earthquake generation. Numerical simulations in 1D and 2D  have successfully produced 60 

slow slip evolution and propagation by incorporating velocity-dependent stability criteria22,24. 

Here, we investigate this hypothesis further by taking advantage of newly available laboratory 

data from natural fault zones that host slow earthquakes and comparing observations of SSEs 

with numerical simulations. The dynamic simulations are used to first reproduce the behavior 

observed in the laboratory16 and second to upscale to in situ fault zone conditions.  65 

Numerical Simulations of Laboratory Observations  
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Our simulations for both constant (Fig. 1a) and velocity-dependent (Fig. 1b) RSF parameters are 

consistent with the theoretically defined stability criterion25 (κ = K/ Kc= 1; bold black lines in Fig. 

1a & b). Note that Kc must be evaluated in a general form (see Methods; also ref 25) to account 

for rate-dependent RSF parameters. All cases with κ < 1 converge toward repeating unstable slip 70 

(filled circles), whereas all cases with κ > 1 converge to stable sliding (empty circles). In both 

cases, and as predicted by theory, slip transitions from stable to unstable as the normal stress is 

increased. In the experimental data16, the transition occurs at higher normal stress when the 

loading rate is increased; i.e. slip stabilizes at higher velocity (Extended Data Fig. 2a). This is not 

expected for constant parameter (regular) RSF, because the critical stiffness Kc is only expected 75 

to increase with slip velocity (Equation (6) in Methods). The observations are, however, 

consistent with a rate dependence of Dc and a-b, and this behavior is reproduced by simulations 

that account for this effect (Extended Data Fig. 2).  

Another important difference is that constant RSF parameters predict an abrupt transition from 

steady sliding to fast earthquake-like stick-slip events, whereas rate dependent RSF parameters 80 

predict a more gradual transition (blue regions in Fig. 1b) and a broader range of loading 

velocities and normal stresses that yield a spectrum of slow slip events, consistent with field and 

lab results15-19. This difference is also evident from comparison of time series of both normalized 

shear stresses and the velocity of unstable sliding closest to the stability boundary (κ = 1) (Figs. 

1c and 1d). Constant parameter simulations for the laboratory experimental conditions produce 85 

regular stick slip with peak velocity 20 cm/s and slip duration ~ 1 ms (Fig. 1c). In contrast, the 

velocity dependent parameter cases result in slow events with peak velocity of ~ 80 µm/s and 

slip duration of ~1 s (Fig. 1d).  
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The expansion of the slow earthquake domain is particularly evident when simulations for a 

given loading rate are compared to laboratory experiments as a function of κ (Fig. 2). 90 

Simulations with velocity dependent RSF parameters agree much better with the laboratory 

results. The constant parameter case exhibits an abrupt transition at κ = 1 (the stability threshold), 

resulting in 2 ~ 3 orders of magnitude larger peak velocities (Fig. 2a) and 3~5 times larger stress 

drop (Fig. 2b) than the laboratory observations. In contrast, cases with velocity dependent RSF 

parameters produce a gradual evolution of slip behavior as κ approaches unity, in significantly 95 

better agreement with the laboratory experimental data. We note that the fit to laboratory data is 

not perfect; for Vpeak > 1 mm/s, laboratory measurements of peak velocity are slower than model 

predictions (Fig. 2a). The overprediction of peak velocity may be explained by finite sampling 

frequency, derivation of velocity from discrete measurements in the lab, or other factors 

unaccounted for in our analysis. 100 

Our results also demonstrate that the peak slip velocity in slow stick slip events remains 

consistently lower than a commonly reported “cutoff velocity” that has been inferred at the 

transition from negative (a-b<0) to positive (a-b>0) rate-dependence of friction; furthermore, 

such a transition is not necessarily required to produce a spectrum of slow stick slip. This arises 

because slip behavior exhibits a strong dependence on the rate of friction change with velocity 105 

(second term in Equation (10) in Methods) as well as the absolute value of rate-dependence.  

Upscaled Simulations and Application to Subduction Zones  

With a spring-slider approximation approach, we conducted multiple simulations with 

parameters representative of a generic subduction zone (Fig. 3a&b), modified from the 

parameters of Scholz31 for regular (constant parameter) RSF friction. At low slip rate (V<< 110 

Va=10-9 m/s), steady-state friction is assumed to be rate-weakening (a0–b < 0) between 7.5 km 
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and 37.5 km depths, and rate-strengthening (a0–b > 0) above and below this. The value of a0-b is 

constant and set to -0.003 between 15 km and 30 km, and it varies linearly with depth elsewhere 

(Fig. 3b). We consider two scenarios: one in which pore pressure is 70% of the lithostatic 

pressure, presumably representative of the typical pore pressure along subduction megathrusts32; 115 

and a second case in which the pore pressure is set to 95% of the lithostatic pressure, which falls 

in the range of pore pressures approaching lithostatic values as suggested on the basis of forearc 

wedge taper angles and geophysical survey data10,32. We then consider the additional effect of a 

velocity dependence of a-b and Dc, and explore a parameter space consistent with recently 

reported laboratory data for real fault rocks27,30. 120 

With regular RSF, the entire rate-weakening domain between 7.5-37.5 km depth produces 

simulated stick-slip events with high peak velocity (>1cm/s) and relatively large stress drops 

(>1MPa), even if a high pore pressure is assumed (Figs. 3c&3d). In order to generate slow stick-

slip events in a case where RSF parameters are constant, effective normal stress must remain 

very small, and near neutral RSF behavior (with a-b <<10-4) is required. This condition is met 125 

only in a very narrow zone at the transition from the rate-strengthening to the rate-weakening 

behavior that is not resolved with our simulations. This result is consistent with previously 

reported fault plane simulation results13 showing that the range of fault length (stiffness) hosting 

slow slip is too small to be explained by standard constant parameter RSF13. 

However, with velocity dependent RSF parameters, slow slip transients (with velocities similar 130 

to those in subduction zone SSEs; 1nm/s - 1µm/s) are simulated over a considerably broader 

region spanning this transition zone, and with a wider range of event characteristics (Fig. 3). 

Notably, all of our simulation results with velocity dependent a-b and Dc yield Vpeak < 1 mm/s, 

which we regard as “slow” relative to the cm/ to m/s slip velocities typical of ordinary 
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earthquakes (Fig. 3c, red and blue curves). Although not required, higher pore pressure (lower 135 

effective normal stress) leads to a decreased peak slip velocity, and hence further broadens the 

region where slow slip occurs. Stress drop and recurrence interval are also sensitive to pore 

pressure (Figs. 3d&3e), such that modest variations are able to produce simulated SSE that span 

a wide spectrum of rates, recurrence, and durations, consistent with the broad range of observed 

SSE behavior in nature.  140 

Comparison to natural slow slip events 

We considered case examples of well-characterized repeating SSEs in Cascadia33, Hikurangi6 

(New Zealand), Ryukyu34 (Japan) and the Guerrero gap35 (Mexico) (Fig. 4). These examples 

span a wide range of depths, from near surface to ~40 km, and a range of recurrence intervals 

from sub-annual to decadal. We explored a parameter space consistent with the laboratory 145 

constraints16,27,29 (see Extended Data Fig. 3B). Assuming that GPS displacement is proportional 

to fault slip, we successfully reproduce the evolution and behavior of these well-characterized 

SSEs with only modest adjustment of the model parameters within the range of experimental 

data, using a single-degree-of-freedom approximation. Given that this approximation is not 

strictly valid as it is clear that SSE can expand and propagate33, we carried out tests (Extended 150 

data Fig. 5), which indicate that it is still a reasonable first-order approximation for typical rates 

of propagation of SSEs.  

Interestingly, our simulations also capture the asymmetric fast-acceleration and slow-

deceleration characteristics of SSEs, which are most prominent in the Ryukyu and to a lesser 

degree the Mexican examples, and which can be observed in most of the GPS stations regardless 155 

of their relative locations to the slipping patch36,37. This behavior emerges in our simulations as a 

result of fundamental characteristics of RSF that lead to fast acceleration at (a-b)<0 (nucleation 
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phase in simulation), and slow deceleration for (a-b) ≈ 0 or (a-b)> 0 (when slip decelerates). 

However, we acknowledge that other factors, including 3-dimensional effects that are ignored in 

our simulations, could also help explain the asymmetric slip-velocity pulse of SSEs in nature.  160 

We do not claim that the model parameters used in each of these simulations are uniquely 

constrained. However, we emphasize that a framework with rate-dependent a-b and Dc, which is 

consistent with recent laboratory measurements for materials from natural tectonic faults that 

host SSEs, together with low effective normal stress (or, more precisely a high ratio of shear 

stress to fault zone frictional strength), can produce a broad range of episodic slow slip events 165 

with characteristics comparable to those of observed SSEs.  

Our work quantitatively illuminates one potential underlying mechanism explaining the 

widespread occurrence and broad spectrum of SSE slip rates. We find that recurrent slow slip 

can occur over a much wider range of conditions if RSF formalism is adjusted so that frictional 

sliding transitions from rate-weakening at low slip rate to lesser rate-weakening or rate-neutral 170 

behavior at higher slip rate, as is observed in laboratory experiments on samples representative 

of lithologies hosting SSEs in nature27,28. Our results provide a resolution to the apparent paradox 

that SSE are widespread globally and occur over a broad range of depths and geologic 

environments, and span a spectrum of slip rates and durations, yet the predictions of regular RSF 

friction laws restrict their occurrence to a very narrow set of conditions.  175 
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Fig. 1. Conditions for episodic slow slip. Evolution of modeled peak slip velocity for constant 290 

RSF parameters (a) and velocity dependent Dc and a (b). See Extended Data Fig. 1 for cases 

showing the separate effects of velocity dependence of Dc and a. Filled circles represent unstable 

periodic oscillations (e.g., in Panel c&d). Empty circles denote stable sliding. Bold black line 

denotes analytically calculated stability criterion (κ = 1)25. c, d: limit cycle oscillation of 

normalized shear stress (black), K(δlp-δ)/σ, and velocity (red) for closest case to κ = 1 at Vl = 10-5 295 

m/s. See methods for details.  

 

Fig. 2. Peak velocity (a) and normalized stress drop (b) as a function of κ. The loading 

velocity is 10 µm/s. For constant and velocity dependent a and Dc we use the same parameters as 

in Fig. 1 (see Methods for detailed input parameters). X-axis is normalized by the normal stress 300 

at the stability transition (κ = 1); upper x axis shows corresponding values of κ. Yellow stars 

denote experimental results16. Models with rate-dependent RSF parameters predict slow stick 

slip (V < 1 mm/s) for values of κ  as low as ~0.7. 

 

Fig 3. Characteristics of stick-slip events as a function of depth for a generic subduction 305 

megathrust. Each circle in c, d and e represents single-degree-of-freedom simulation results 

using normal stress and a0-b shown in a and b. Colored lines denote pore pressures 70% (blue) 

and 95% (red) of lithostatic stress. Red and blue line in b represent inverse of κ (unstable at 

positive). c: Simulated peak slip velocity d: stress drop e: recurrence for velocity dependent 

parameters (both a and Dc; colored) and constant parameters (regular RSF; grey).  310 
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Fig. 4. Comparison with observed Slow Slip Events. Estimated slow slip history (colored dots) 

and simulations (black lines) for examples of repeating SSEs observed at the Cascadia33 (a), 

Hikurangi6 (b), Ryuku34 (c) and Mexican megathrusts35 (d). (e): schematic section of subduction 

megathrust showing the estimated depths of SSE for the case examples and equivalent fault 315 

length used in the simulations (L = 50km for the Guerrero gap on the Mexican megathrust, L = 

20km for all others). Pore pressure is set to 97.5%, 70%, 95%, and 95% of lithostatic pressure for 

the Cascadia, Hikurangi, Ryukyu and Guerrero gap simulations respectively. The velocity 

dependence of a–b for each simulation (f) is color-coded as in the other panels and the symbols 

show experimental data for a-b27 (also see extended Data Fig. 3).  320 

 

Methods 

Stability analysis with velocity-dependent RSF parameters  

In the RSF framework, friction is dependent on the slip velocity (V) and a state variable 

(θ)14. The most widely used form is: 325 

 
0

0
0

ln ln
c

VVa b
V D

θ
µ µ

   
= + +   

   
 (1) 

where µ0 is a reference friction coefficient at reference velocity V0, Dc is a critical slip distance, 

and a and b are empirical constants that define the direct and evolution effects, respectively. 

Negative values of the quantity (a-b) represent velocity-weakening behavior, such that friction 

decreases with increased slip rate, and which is a prerequisite for unstable slip25,38. Positive 330 

values of (a-b) indicate velocity-strengthening behavior, which is inherently stable. 
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There are several formulations that define the evolution of frictional state θ. In this work, 

we used the Ruina (slip) law which provides the best match to laboratory observations39,40 

 ln
c c

d V V
dt D D
θ θ θ 
= −  

 
 (2) 

Considering a one-degree of freedom spring-slider system with elastic interaction, the 335 

force balance governing motion can be written in dimensionless form as,  

 
( )

' '
lpKM δ δδ µ

σ σ
−

= −


 (3) 

where M is mass per unit area (kg/m2), K is a spring stiffness expressed in units of shear 

stress per unit slip (Pa/m), and σ’ is effective normal stress. Equation 3 shows that the 

normalized shear stress K(δlp-δ)/σ’ and friction µ decouple when the motion is dominated by 340 

inertia ( / 'Mδ σ ). In this work, we use the normalized shear stress to define the magnitudes of 

stick-slip stress drop. In the stick-slip cycle, this normalized stress drop is almost identical to the 

friction drop unless inertia is significant41. The criterion for unstable sliding depends on the ratio 

between the system stiffness (K) and the critical weakening rate (stiffness) of the fault zone (Kc),  

 
c

K
K

κ = . (4) 345 

Sliding is unstable for κ < 1 and stable for κ > 1: For κ < 1, fault weakening outpaces the 

reduction in stress due to elastic unloading during slip, resulting in a force imbalance and 

runaway instability31. 

The critical stiffness Kc for a more generalized case with velocity dependent friction is25: 

 
( ) / 1

( , ) /
ss

c
c c

Vd V dV MVK
D D V V

σ µ
σ µ θ

 ′
= − + ∂ ∂ 

,  (5) 350 
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where µss(V) is the steady state friction at velocity V. Given Equations 1 and 2, the parameter 

µss(V) can be written µss=µ0 +(a-b)ln(V/V0). For one state variable and regular RSF (constant a, b 

and Dc), Equation 5 simplifies to  

 
2( ) 1

'c
c c

b a MVK
D aD

σ
σ

 ′−
= + 

 
.  (6) 

The second bracketed term in Equations 4 and 5 is a dimensionless inertial, “dynamic” 355 

parameter41. The influence of this term can be observed in Fig. 1a as a velocity driven stability 

transition at Vl > 1cm/s. In the other simulations this term is not significant due to the low 

loading rates and/or velocity dependence of the “a” parameter. However, this only means that the 

inertial influence is insignificant in controlling stability transitions; mass (i.e. inertia) is essential 

to define slip motions (such as peak velocity, recurrence and friction drop) except for cases with 360 

extremely small accelerations (e.g. slow slip examples in Fig. 4).  

Stiffness and Mass 

For upscaled simulation of SSEs, we used a lumped stiffness and mass approximation. 

The stiffness K of the spring-slider system representing the dynamics of slip on a fault of 

characteristic length L embedded in an elastic medium is32: 365 

 
(1 )

GK
Lν

=
−

 (7) 

where G is shear modulus, ν is Poisson’s ratio and L is length of the fault patch. In all 

simulations, we used K = 4 MPa/m. Assuming ν = 0.25, this lumped stiffness is equivalent to a 

fault patch 10 km length, within a crust with shear modulus of 30 GPa. 
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We use M = 600000 kg/m2, which is equivalent to a rock mass at ~ 222 m depth (density 370 

2700 kg/m3). Note that the influence of the mass in all of our upscaled slow slip simulations 

(velocity dependent parameter cases in Fig. 3 and all simulations in Fig. 4) is negligible, as 

acceleration is low. To verify the negligible influence of mass for constant parameter cases, we 

conducted a set of simulations with 2 orders of magnitude variation in mass (60000, 600000, 

6000000 kg/m2; Extended Data Fig. 4). The results show that this choice has little effect on the 375 

results; even for the largest mass there is an abrupt Vpeak jump at the transition.  

Velocity dependence 

We conduct our simulations with both constant and velocity-dependent friction 

parameters. On the basis of previous laboratory observations (see Extended Data Fig. 3)26-28,43-45, 

we define a log-linear dependence on velocity for the RSF parameters a and Dc,  380 

 0 10( ) log a
a

a

V Va V a S
V
+

= + , and (8) 

 0 10( ) log Dc
c c Dc

Dc

V VD V D S
V
+

= + . (9) 

In Equations 8 and 9, both parameters are constant for V < Va and V < VDc at the value of a = a0 

and Dc = Dc0, and both increase log-linearly for V > Va and V > VDc, with slope of Sa and SDc per 

decade in velocity.  385 

With velocity dependent parameters, an analytical expression defining the stability 

transition can be obtained following from ref. 25. The expanded expressions are:  

 10

0

log lnss a

a

d S ea b V
dV V V V V
µ −

= +
+

 (10) 

and,  
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 10 10

0

log loglna Dc

a Dc c

S e S ea V b
V V V V V V V D
µ∂
= + −

∂ + +
. (11) 390 

The critical stiffness Kc can be expressed by substituting Equations 10 and 11 into 

Equation 5. Note that V0, a reference velocity in RSF, now influences stability. Because the 

ln(V/V0) term is directly multiplied by the parameter a, V0 regulates the temporal influence of a(V) 

on friction (µ) and therefore influences linear stability. In turn, this means that V0 is not just a 

reference parameter but must have a physical meaning. However, defining V0 is beyond the 395 

scope of this work. Here, we assume V0=10-9 m/s, which results in a stability transition that 

roughly fits laboratory observations for our velocity dependent parameter case (see Extended 

Data Fig. 2). 

Input parameters 

For simulations of laboratory experiments (Fig. 1&2), we used parameters determined in 400 

experiments16 (on fine granular quartz): a = 0.005, b = 0.01, Dc = 10µm, K = 2 GPa/m and M = 

200 kg/m2. Here M = 200 kg/m2 presents 4 kg of mass with 10 cm × 20 cm of contact area. 

Considering the quasi-static critical stiffness (Kc,qs = (b-a)σ/Dc), our input parameters predict a 

stability transition at a normal stress of 4 MPa, in agreement with experimental results at low 

loading rates. For the velocity-dependent RSF parameter case, we set a0 = 0.005, Sa = 0.0003 per 405 

decade, Va = 100 µm/s, Dc0 = 10 µm, SDc = 30 µm/decade and VDc = 100 µm/s. This cut-off 

velocity Va = VDc = 100 µm/s is determined from quartz-gouge experiments26 that used material 

similar to that for slow slip experiments16 (Extended Data Fig. 3A). The velocity-dependent a 

and Dc cases shown in Fig. 2 also use identical parameters except Sa = 0.0006 and SDc = 60 µm. 

For up-scaled simulations (Fig. 3), we set parameters on the basis of laboratory data for 410 

material sampled from natural subduction faults, which are typically clay-rich. These parameters 
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include a constant b = 0.006 and a depth dependent a0 ranging from 0.009 to 0.003; a0 increases 

linearly from 0~15km, remains constant between 15 ~ 30km, and decreases linearly from 

30~45km (Fig. 3b). Boundaries between velocity strengthening and weakening occur at depths 

of 7.5 km and 37.5 km. We set Va = VDc = 0.5nm/s and Sa = 0.0013 (Extended Data Fig. 3B), and 415 

K = 4MPa/m (equivalent to a slip patch size, L=10km).  

Slow-slip data 

In the case of Cascadia (Fig. 4), the slip model was derived from the inversion of 

geodetic time series33. We selected the time history of slip on the northern segment of the 

Cascadia subduction zone, where the signal-to-noise ratio is best and nucleation occurs most 420 

frequently (at latitude ~48°N in ref 28). In the other examples we selected representative time 

series at particular GPS stations. We rescaled each time series for slip on the megathrust on the 

basis of published fault slip inversions6,33,34,35 (second y-axis), assuming that repeated SSEs 

result from slip on the same segment and that GPS displacement varies linearly with fault slip. 

The long term trend has been subtracted from data. 425 

Simulation method 

We conduct simulations using a method that provides numerical stability in all slip 

modes – stable sliding, stick-slip and harmonic vibrations41,46. The velocity at each numerical 

step is constrained by the force balance. The time-discretized equation for displacement is  

 1 1 1 1 1[ ( / )]cos( t) sin( ) ( / )
i

i i i i i i
lp lp

VK t Kδ δ δ µ σ ω ω δ µ σ
ω

+ + + + += − − ∆ + ∆ + − , (12) 430 

where superscripts i and i+1 denote successive time steps and ω is angular frequency defined as 

. (see Ref. 46 for detail).   /K Mω =
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Numerical stability of the finite difference scheme described by Equation 12 requires Δt 

<< ω. This constraint is not troublesome if total simulation time is sufficiently small. Hence, this 

method can be employed to simulate laboratory experiments (Figs. 1 and 2) due to the high 435 

loading rate (Vl > 1µm/s). However, the time step constraint becomes a problem for upscaled 

simulations (Figs. 3 and 4) due to the long event recurrence (tr > 100 years). In upscaled 

simulations, Equation 12 is only adopted for the dynamic rupture phase. During static loading 

phases, Equations 1, 2 and 3 are solved by simple discretization and coupling. A varied time step 

is implemented in the range 2 µs to 1 ms for laboratory parameter simulations and 100 ms to 440 

10000 s for upscaled simulations.  

 

Data Availability 

GPS data for Hikurangi and Ryuku are available at Nevada Geodetic Laboratory 

(geodesy.unr.edu). Mexico GPS data are available at Caltech Tectonics Observatory 445 

(http://www.tectonics.caltech.edu/resources/). 

 

Code Availability 

Simulation codes are available at Caltech data repository (data.caltech.edu). 

 450 
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Fig. 1. Conditions for episodic slow slip. Evolution of modeled peak slip velocity for constant 

RSF parameters (a) and velocity dependent Dc and a (b). See Extended Data Fig. 1 for cases 

showing the separate effects of velocity dependence of Dc and a. Filled circles represent unstable 

periodic oscillations (e.g., in Panel c&d). Empty circles denote stable sliding. Bold black line 

denotes analytically calculated stability criterion (κ = 1)25. c, d: limit cycle oscillation of 

normalized shear stress (black), K(δlp-δ)/σ, and velocity (red) for closest case to κ = 1 at Vl = 10-5 

m/s. See methods for details.  

  



 

Fig. 2. Peak velocity (a) and normalized stress drop (b) as a function of κ. The loading velocity 

is 10 µm/s. For constant and velocity dependent a and Dc we use the same parameters as in Fig. 1 

(see Methods for detailed input parameters). X-axis is normalized by the normal stress at the 

stability transition (κ = 1); upper x axis shows corresponding values of κ. Yellow stars denote 

experimental results16. Models with rate-dependent RSF parameters predict slow stick slip (V < 1 

mm/s) for values of κ  as low as ~0.7. 

  



 

Fig 3. Characteristics of stick-slip events as a function of depth for a generic subduction 

megathrust. Each circle in c, d and e represents single-degree-of-freedom simulation results using 

normal stress and a0-b shown in a and b. Colored lines denote pore pressures 70% (blue) and 95% 

(red) of lithostatic stress. Red and blue line in b represent inverse of κ (unstable at positive). c: 

Simulated peak slip velocity d: stress drop e: recurrence for velocity dependent parameters (both 

a and Dc; colored) and constant parameters (regular RSF; grey).  

  



 

Fig. 4. Comparison with observed Slow Slip Events. Estimated slow slip history (colored dots) 

and simulations (black lines) for examples of repeating SSEs observed at the Cascadia33 (a), 

Hikurangi6 (b), Ryuku34 (c) and Mexican megathrusts35 (d). (e): schematic section of subduction 

megathrust showing the estimated depths of SSE for the case examples and equivalent fault length 

used in the simulations (L = 50km for the Guerrero gap on the Mexican megathrust, L = 20km for 

all others). Pore pressure is set to 97.5%, 70%, 95%, and 95% of lithostatic pressure for the 

Cascadia, Hikurangi, Ryukyu and Guerrero gap simulations respectively. The velocity dependence 

of a–b for each simulation (f) is color-coded as in the other panels and the symbols show 

experimental data for a-b27 (also see extended Data Fig. 3).  

 



 

Extended Data Fig. 1 
Evolution of peak velocity and stress drop with stability transition. a,e: constant parameter, 
b,f: velocity dependent Dc, c,g: velocity dependent a, d,h: velocity dependent Dc and a cases. 
Panels a and d are identical to Figure 1a and 1b, respectively. We used, Dc0 = 10 µm, SDc = 60 
µm and VDc = 100 µm/s for velocity dependent Dc and a0 = 0.005, Sa = 0.0003, Va = 100 µm/s for 
velocity dependent a simulations.  
  



 

Extended Data Fig. 2 
Comparison of stability transition between laboratory data and simulation results. Friction 
drop as a function of normal stress and loading velocity for a: laboratory experiments16, and b-e: 
simulations with b: constant parameters, c: velocity dependent Dc, d: velocity dependent a, and 
e: velocity dependence of both a and Dc. Simulation results in b-e are identical to Extended Data 
Fig. 1e-h, but re-sized to match the laboratory results of Panel a. 
  



 

 

Extended Data Fig. 3 
Experimental data for velocity dependence of friction parameters. a: Experimental data 
showing Dc as a function of sliding velocity for quartz gouge25. Blue circles are measurements 
and solid line represents the velocity dependence we used in our laboratory scale simulations 
(Figures 1 and 2). For tectonic fault zone simulations, we used identical SDc, but with Dc0 = 100 
µm and VDc=10-9 m/s. b: Compiled experimental data for a-b on tectonic fault zone materials27. 
Dashed line denotes the trend line of all measurement. We used the slop of the trendline (0.0013 
per decade) for upscaled (Figure 3) simulations.  
 
  



 
Extended Data Fig. 4 
Influence of simulation mass on earthquake slip rate. Here we only considered constant 
parameter RSF cases, with high pore pressure. Red squares (M=600000kg/m2) are case identical 
to that shown in fig. 3. Blue and black squares show cases with one order of magnitude smaller 
and larger mass, respectively. Panel c shows that the peak velocity is dependent on the mass. 
However, even we assume significantly larger mass, stick slip abruptly evolves to fast rupture 
(Vpeak > 1 cm/s) at the transition.  
 
 

 
  



 

Extended Data Fig. 5 
Simple kinematic model for slip propagation. a: Model illustration. We assume 200km × 63 
km slipping patch (light yellow) embedded in a half space with its lower edge at a depth of 26 
km. For displacement of each patch, we impose the time evolution of slip derived from the 
spring-slider model adjusted to the Guerrero example (Fig. 4d). We considered three cases for 
slip propagation along the strike direction at: (i) 1km/day, (ii) 5km/day, and (iii) a case with 
simultaneous slip in the entire patch. Panel b shows an example of slip propagation for the 
1km/day case. The fault slip is converted to surface deformation using an elastic dislocation 
(Okada) model47 and the normalized displacements are plotted in panels c&d for comparison 
with the observed Guerrero gap GPS timeseries. The result shows that the case with a 
propagation rate of 5km/day (red) is nearly indistinguishable from the case of simultaneous slip 
(equivalent to an infinitely fast propagation). The case with 1 km/day (blue) which is at the lower 
end of the typical rate of propagation of SSEs, is also only slightly altered by the effect of the 
propagation.   

 


	Slip rate-dependent friction as a universal mechanism for slow slip events
	References
	Fig. 2. Peak velocity (a) and normalized stress drop (b) as a function of κ. The loading velocity is 10 µm/s. For constant and velocity dependent a and Dc we use the same parameters as in Fig. 1 (see Methods for detailed input parameters). X-axis is n...
	Fig 3. Characteristics of stick-slip events as a function of depth for a generic subduction megathrust. Each circle in c, d and e represents single-degree-of-freedom simulation results using normal stress and a0-b shown in a and b. Colored lines denot...
	Fig. 4. Comparison with observed Slow Slip Events. Estimated slow slip history (colored dots) and simulations (black lines) for examples of repeating SSEs observed at the Cascadia33 (a), Hikurangi6 (b), Ryuku34 (c) and Mexican megathrusts35 (d). (e): ...

	Methods
	Stability analysis with velocity-dependent RSF parameters
	Stiffness and Mass
	Input parameters
	Slow-slip data
	Simulation method

	References
	Figures_Combined_Jean_Philippe_1.pdf
	Fig. 2. Peak velocity (a) and normalized stress drop (b) as a function of κ. The loading velocity is 10 µm/s. For constant and velocity dependent a and Dc we use the same parameters as in Fig. 1 (see Methods for detailed input parameters). X-axis is n...
	Fig 3. Characteristics of stick-slip events as a function of depth for a generic subduction megathrust. Each circle in c, d and e represents single-degree-of-freedom simulation results using normal stress and a0-b shown in a and b. Colored lines denot...
	Fig. 4. Comparison with observed Slow Slip Events. Estimated slow slip history (colored dots) and simulations (black lines) for examples of repeating SSEs observed at the Cascadia33 (a), Hikurangi6 (b), Ryuku34 (c) and Mexican megathrusts35 (d). (e): ...

	Extended_Data_Fig_Jean_Philippe_2.pdf
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5


