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Abstract 

Conventional aeolian sand transport models relate mass transport rate to wind speed or shear 

velocity, usually expressed and empirically tested on a 1-second time-scale. Projections of total sand 

delivery over long time-scales based on these models are highly sensitive to any small bias arising 

from statistical fitting on empirical data. We analysed time-series of wind speed and sand transport 

rate collected at 14 independent measurement stations on a beach during a prior field experiment. 

The results show that relating total sand drift to cumulative above-threshold wind run yields models 

which are more statistically robust when fitted on empirical data, generating smaller prediction 

errors when projected to longer time-scales. Testing of different power exponents indicates that a 

linear relationship between sand drift and above-threshold wind run yields the best results. These 

findings inspire a speculative novel phenomenological model relating the mass flow of air in the 

boundary layer to the mass transport of sand over the surface. 
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Introduction 

Accurate prediction of the amount of sand moved by wind is a key ambition in our pursuit toward a 

better understanding of the physical mechanisms and processes involved, and it is vital for practical 

applications relating to sediment budgets on coasts and arid lands, dust emissions, and dune 

dynamics. Over the years several dozen equations and models have been developed to express sand 

transport rate as a function of wind forcing (speed or shear velocity). Dong et al. (2003), for example, 

compared and categorized 19 predictive equations. The majority of these relate bulk sand transport 

rate Q, in terms of mass shifted across a lateral span per unit time, e.g. kg m-1 s-1, to the cube of 

shear velocity of the boundary layer airflow, U*
3. Most equations also explicitly include a shear 

velocity threshold of motion for sand grains, U*t, below which no sand is moved.  The models 

underlying the equations consider sand transported in saltation mode only and the cubic 

relationship to U* partly rests on an assumption that the speed of saltating grains is proportional to 

U*. This is now thought to be a weak dependency so some recent models relate sand transport rate 

to U*
2 instead (Martin & Kok 2017; Duran et al. 2011). 

Direct comparison of common transport equations, using the best estimates of empirical coefficients 

and threshold values, shows a great divergence between predictions, ranging over nearly an order of 

magnitude for any given shear velocity (Sherman and Li 2012). More disconcerting, however, is that 

the majority of field studies testing predictive equations against direct measurements indicate a 

poor performance of these equations altogether (e.g. Arens 1996, Wiggs 2011, Bauer et al. 1990), 

with measured transport rates ranging anywhere from 65% to 300% of predicted rates (Ellis & 

Sherman 2013). The comparisons are confounded by the fact that accurate and synchronous 

empirical measurement of sand transport as well as wind forcing in field experiments is challenging 

(Baas 2008); i.e. both sides of the comparison suffer from significant error bars.  

While most equations are derived from theoretical models and calibrated in wind tunnels, empirical 

studies try to statistically fit their functional mathematical forms to measurements of sand transport 

rate and wind forcing. Analysis by Davidson-Arnott et al. (2009), for example, shows a large variation 

in fitted exponents for empirical power-law relationships between wind speed and sand transport 

intensity measured with electronic probes at 1 Hz. More generic polynomials can also be applied, as 

shown in the work by Jackson and McCloskey (1997) fitting a parabolic equation through 1 Hz field 

data, with good results. The fitting and testing of sand transport equations is usually conducted at 

this short time-scale of 1 second but this is also the time-scale that exhibits great spatio-temporal 

variability in sand transport in response to wind turbulence and surface conditions, yielding 

inescapable mismatches between models and measurements (Barchyn et al. 2014). Temporal scale 

impacts on the resultant wind forcing variable, particularly determination of shear velocity, and on 

the assessment of thresholds, while it has also been shown that the correlation between wind 

forcing and sand transport response generally improves at longer time-scales (Martin et al. 2013). 

This study attempts to address one of the fundamental challenges of contemporary aeolian sand 

transport models: the problem of projecting predictions based on transport equations that are 

designed and tested on a temporal scale of seconds to the much longer time-scales needed to assess 

sand delivery to foredunes or infrastructure over the course of months and years. 

Wind speed or Wind run 
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With traditional sand transport equations that are empirically fitted or calibrated on a time-scale of 

seconds, any minor error or bias, i.e. over-estimation or under-estimation, is severely amplified 

when projecting to time-scales of weeks, months, or years, as it spans over many orders of 

magnitude. 

The analysis presented here explores an alternative approach for relating sand transport to wind 

forcing, by considering these variables in cumulative form: relating wind run to sand drift. Wind run 

is defined as the total length of airflow (in metres) that has passed through, i.e. wind speed 

integrated over time. Sand drift is defined here as the total amount of sand that has been moved 

across a unit width (in mass m-1), i.e. sand transport rate integrated over time. The cumulative 

approach should be equivalent to the normal, “differential,” approach, since wind run and sand drift 

need to be, in practice, assessed over some specific duration. For example, wind run after a month is 

equivalent to the average wind speed for that month multiplied by the number of seconds in a 

month, and the total sand drift can similarly be converted from the average sand transport rate. 

While theoretically equivalent, the question is, however, whether the statistical fitting through 

empirical data may be different and possibly more robust in the cumulative form rather than the 

differential form, so that the cumulative form may be used for more accurate prediction of sand 

delivery over long periods of time. 

As an initial exploration of this alternative on relatively short time-scales, we compare the statistical 

performance of the cumulative wind run model and the differential wind speed model fitted through 

empirical data collected in a field experiment at 25 Hz at fourteen independent measurement 

locations. The two models are fitted for integer power exponents and include a fitted transport 

threshold, such that: 

for wind run:    𝑄 = 𝑚 (𝑊𝑅>𝑈𝑡)𝑛     [1] 

where: Q is sand drift (g m-1), m is the slope coefficient, WR>Ut is wind run (m) exceeding a wind 

speed threshold, Ut , and n is an integer exponent; and 

for wind speed:    𝑞 = 𝑚 𝑈𝑛 + 𝑏      [2] 

where: q is sand transport rate (g m-1 s-1), m is the slope coefficient, U is wind speed (m s-1), b is the 

offset, and n is an integer exponent. The wind speed threshold can be derived from the fitted 

parameters via: 

     𝑈𝑡 = (
−𝑏

𝑚
)

1
𝑛⁄

      [3] 

The two models are fitted on three different time scales spanning two orders of magnitude: 1 s, 10 s, 

and 100 s. 

 

Study site and methods 

Instrumentation 
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The data analysed here was collected during field experiments on the beach of Magilligan Strand, 

Northern Ireland (Figure 1), as part of a larger research project on airflow reversal by foredunes 

under offshore winds (Jackson et al. 2011, 2013). The data were collected during a measurement run 

on the 3rd of May 2010 under oblique onshore wind, with a similar set-up as that described in Lynch 

et al. (2013). The beach is oriented along a north-west – south-east axis, facing the sea toward the 

north-east, and is backed by foredunes of up to 12 m in height. The beach is flat and up to 100 m 

wide during spring low tides. The sediment consists of mono-disperse, very well sorted, fine-grained 

quartz sand, with a median grain size, D50, of 0.17 mm, a sorting value of 0.3 φ (very well sorted) and 

a skewness of 0.15 (fine skewed) (Folk & Ward 1957). The beach was relatively free of debris and 

vegetation at the time of the experiments. 

[Figure 1 roughly here] 

Wind and sand transport were synchronously measured at twenty stations distributed in a grid over 

the dry beach surface (Figure 2). At each station wind was measured with a Gill HS-50 sonic 

anemometer, mounted at 0.5 m above the surface, recording 3D wind vectors at 25 Hz, and sand 

transport was measured with a collocated continuously weighing horizontal sediment trap (Figure 

3). This trap is a modified form of the Jackson trap (1996) with a 3.5 kg capacity load-cell, outputting 

the increasing weight of accumulating sand inside the trap over time. The saltating sand falls into the 

trap over a 0.25 m diameter funnel opening that is flush with the surface, with the load-cell bucket 

and electronics buried underneath. All instruments were connected to a custom-made data 

acquisition system recording all data at 25 Hz with synchronous time stamps. 

[Figure 2 roughly here] 

The grid of stations was organised over four cross-shore transects spaced at 30 m alongshore 

intervals. Within transects A, C, and D four stations were spaced at 10 m intervals from the back 

beach towards the shore. Transect B had an increased spatial resolution with eight stations spaced 

at 5 m intervals. Station B2 included a mast with four sonic anemometers, but the analysis presented 

here uses only the instrument mounted at 0.5 m. This grid was overseen by a reference sonic 

anemometer, unaffected by topography, mounted at 6 m above the foredune crest (18 m above the 

beach surface). 

[Figure 3 roughly here] 

Data-processing 

Data were subjected to strict quality control standards and this yielded a period of 4000 seconds (67 

minutes) of reliable continuous time-series at 25 Hz of both 3D wind vectors and cumulative sand 

capture, recorded synchronously. Quality control criteria included the integrity and continuity of the 

wind data (no gaps), and monotonically increasing trap data (no negative changes and no 

reverberations). The wind conditions measured above the foredune crest show a mean oblique 

onshore wind flow direction of 44 degrees away from shore-normal, i.e. nearly exactly diagonal onto 

the shoreline, as a northerly wind in Figure 1. Five-second averaged wind direction data indicate a 

normal distribution around this mean with a standard deviation of 7 degrees, which suggests that 

95% of the wind was contained within a window ±14 degrees on either side of the diagonal mean 

wind direction. Trap data posed the main limitation to quality control, including some traps 
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approaching the load-cell capacity after 4000 seconds and others experiencing communication 

problems, leading to some stations being excluded from analysis. Fourteen stations passed quality 

control and are used in this study: A1-3, B1-6, C1-3, D1 and D3. 

A minimal trapping efficiency correction was applied to the trap data to take into account saltating 

grains that have long-enough horizontal trajectory lengths to jump over the 0.25 m diameter round 

funnel opening. We used COMSALT (Kok & Renno 2009) to simulate a population of more than 

27,000 instances of saltating and reptating grains with a diameter of 0.17 mm (the D50 at the site), 

driven by a shear velocity of 0.4 m s-1 (roughly twice the transport threshold, see below) and 

including the effects of turbulence. This generated a statistical distribution of horizontal trajectory 

lengths. Applying this distribution to the trapping distance across the circular opening, varying from 

0.25 m at the centre-line to zero at the edges, and integrating over the lateral width of the trap, 

shows that overall 25% of the saltating sand is able to jump over the hole. Trapping efficiency thus 

amounts to 75% and sand capture data were adjusted by a factor of 4/3 accordingly. The sand trap 

data were then multiplied by four to convert from the 0.25 m width of the trap to a standard unit 

metre width. 

The 3D sonic anemometry data were adjusted to a true horizontal plane based on the angle from 

vertical reported by each on-board inclinometer sensor. Because the analysis considers only 

horizontal wind speed (and not Reynolds shear stress, for example) no streamline correction was 

applied. Data of windspeed and cumulative sand capture at each station were resampled to 10 Hz, 

as the temporal response of the trap load-cell is limited to this time scale. We then determined the 

optimum lag between wind speed fluctuations and transport rate response at each station and 

applied this to allign the time-series with maximum correlation (lags ranged from 0.6 to 1.1 

seconds). This provided the baseline dataset from which we produced paired time-series with 

periods of 1 s, 10 s, and 100 s, by resampling from the 10 Hz time-series of wind speed and 

cumulative sand capture. For the wind run method the data need no further conversions as the trap 

data are already in cumulative form. For the wind speed method the cumulative sand capture time-

series are converted to a differential time-series to yield transport rates in grams per second per 

metre width. 

Statistical analysis: wind run method 

For this method a threshold is deducted from the wind speeds, and all resulting negative values 

reduced to zero. The excess wind speeds are then converted to wind run by multiplying each excess 

speed value by the length of the relevant period. The power-law exponent is applied to the wind run 

values and the time-series is converted to cumulative form. This is the x-variable in a least-squares 

linear regression with the y-variable being the cumulative sand trapped, and with the linear model 

fit forced through the origin (no offset parameter). The empirical data points are thus defined as: 

𝑥(𝑡) = ∑ [𝑇 (𝑈 − 𝑈𝑡)>0]𝑛𝑡
0      [4]

   

where: t is in time-steps of the relevant period T (1, 10, or 100 seconds), and 

𝑦(𝑡) = 𝑀𝑡𝑟𝑎𝑝(𝑡) − 𝑀𝑡𝑟𝑎𝑝(0)     [5] 

where: Mtrap(t) is the mass of sand collected in the trap at time t. 
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The evaluation statistics returned by the linear regression include the goodness-of fit, R2, and the 

root mean square error, RMSE (reported here in g m-1). In order to find the best-fit wind speed 

threshold the preceding calculations are repeated for a range of threshold values (from 2 to 6 m s-1 

with a resolution of 0.01 m s-1) and the eventual best-fit model is identified as the one with the 

lowest RMSE. 

Statistical analysis: wind speed method 

For this method transport rate measurements that are zero or very small need to be removed from 

the data set, as they are effectively ‘noise’ along the bottom of the scatter plot that adversely affect 

the regression models. Based on visual evaluation of scatter plots a filter threshold of 0.1 g s-1 m-1 

was established to remove the low-level noise (later in the analysis we assess the impact of the filter 

threshold on the fitted model results). In general, the amount of transported sand that was removed 

as low-level noise amounts to roughly 0.1% of the total amount of sand trapped and can be 

considered negligible. The filtered transport rate measurements are the y-variable in a least-squares 

linear regression with the x-variable being the average windspeed raised to the power, n. The 

empirical data points are thus defined as: 

𝑥(𝑡) = (
1

𝑇
 ∑ 𝑈 ∆𝑡𝑡

𝑡−𝑇 )
𝑛

     [6] 

where: T is the relevant period, and 

𝑦(𝑡) =
1

𝑇
 [𝑀𝑡𝑟𝑎𝑝(𝑡) − 𝑀𝑡𝑟𝑎𝑝(𝑡 − 𝑇)]   [7] 

The linear regression yields both a slope and an offset coefficient, and the offset can be converted to 

the equivalent threshold wind speed via equation [3]. The goodness-of-fit, R2, returned by the linear 

regression can be compared with that of the wind run method. The RMSE, however, we calculate 

separately from the deviations between the modelled transport and observed transport data in 

cumulative form (i.e. RMSE in g m-1), so that this measure is directly comparable to that obtained 

with the wind run method. 

Transport threshold 

Both methods yield an estimated sand transport threshold wind speed (at 0.5 m above the surface). 

In order to judge its sensibility in comparison with theoretical predictions and previous studies, the 

threshold wind speed is converted to a shear velocity, U*t, by assuming a logarithmic law-of-the-wall 

velocity profile and a roughness length, z0, estimated as Nikuradse’s (1933): ks/30, where ks is taken 

to be 5  D50. 

For reference: Bagnold’s (1941) commonly applied threshold shear velocity formula: 

𝑈∗𝑡 = 𝐴 √𝑔 𝐷 
𝜌𝑠−𝜌𝑎

𝜌𝑎
     [8] 

(where: g is gravitational acceleration (m s-2), D is grain size (m), s and a are density of sand 

mineral – taken to be quartz – and air, respectively) predicts a threshold of 0.15 - 0.18 m s-1, 

depending on whether the coefficient A is taken to be 0.8 for the continuation of transport (impact 

threshold), or 1.1 for initiation of saltation (fluid threshold). 
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Results 

Figure 4 shows examples of the two model types fitted through data at an individual station for the 

three temporal scales, demonstrating the different nature of the two methods, where the traditional 

approach fits a cubic curve through a scatter plot of data, while the wind-run model fits a line 

through a cumulative trace. In graphical format, the traditional method is more intuitive because it 

relates transport rate (g/s) to a wind speed (m/s), whereas the independent axis on the wind-run 

graph here reflects cumulative above-threshold wind-run – a much harder variable to relate to. A 

more intuitive version is to graph cumulative transport versus plain wind-run, as in Figure 5, which 

reflects the time sequence of sand transport activity, showing periods of below-threshold winds (and 

no transport) as parts where the curve is horizontal. Such a graph is not useful for fitting or 

visualising a statistical model however. 

[Figure 4 roughly here] 

[Figure 5 roughly here] 

For the practical application of predicting total amounts of sand delivered after certain events or 

periods of time (a storm, or a year), the cumulative total is the value of interest. The wind-run model 

yields this value directly, whereas for the scatter-plot method the fitted model must be integrated 

over time. Figure 6 demonstrates the key issue: inevitable minor bias in the fitted scatter-plot model 

is amplified and projected over a longer period, leading to a gradually increasing divergence 

between the predicted total sand delivery and the observed. 

[Figure 6 roughly here] 

The results of the statistical analysis are reported in Table 1, comparing the fitting of a cubic model 

on wind speed (n=3) via the traditional scatter plot regression and a linear model (n=1) on wind run 

via the cumulative trace. Models with other powers were also explored (see below), but the two 

reported in Table 1 were deemed the best performing ones. The results show that the cumulative 

wind run model provides a better statistical performance than the differential scatter model on all 

three time-scales and at all stations. The goodness-of-fit for the wind-run model is always greater 

than 0.99, while these values for the scatter plot method range from 0.82 to 0.97 even for the 100 s 

(the best performing) time-scale. The statistical performance of the wind speed model is poor at the 

1 s time-scale, better at 10 s, and good at 100 s. Statistical performance of the wind-run model is 

consistently high at all three time-scales. These trends are evident in both the goodness-of-fit (R2) 

and the RMSE. The RMSE measure is more informative, however, because it provides better 

discrimination among model fits with very high R2 values. The U*t values produced by the regression 

models all lie in the range of 0.16 to 0.20 m/s, across all time-scales and for both model types. This is 

in excellent agreement with the predicted range of thresholds from equation [8] and shows both 

that the model fittings are sensible and that a wind speed threshold predicted from that equation in 

conjunction with z0 estimated as: 5 𝐷50 30⁄  can be assumed from the outset for the wind run model. 

Difference in the methods is reflected in the sample size (N). In the wind-run model all data points 

are used in the statistical fit. The scatter-plot model, on the other hand, requires filtering of a 
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substantial number of measurements of very small or zero transport rates in order to produce 

acceptable statistical results. 

[Table 1 roughly here] 

Different powers 

The statistical performance of model fits was assessed for different powers (n in equations 2 and 3) 

from 1 to 4, for each of the time-scales. Table 2 reports the averages across the 14 stations for the 

measures of goodness-of-fit (R2) and the RMSE of the cumulative function. The results are somewhat 

ambiguous as they do not identify a straightforward optimal power for either of the model types, as 

trends vary depending on time-scale and depending on the performance measure. For wind-run 

models the RMSE is minimised at n=1 for the two shorter time-scales, but at n=2 for the 100 s 

period. Differences in R2 values meanwhile are too small to allow differentiation. For scatter-plot 

models the highest R2 values are achieved at n=4 for all three time-scales, but minimum RMSE at the 

1 s period at n=1 and for 10 s and 100 s periods at n=3. 

[Table 2 roughly here] 

Model generality 

Transferability of fitted models between stations was evaluated by taking the statistically fitted 

model derived from one station and applying it to the wind data at other stations to yield predicted 

cumulative sand displacement, compared against observed sand displacement. For the sake of 

brevity this analysis was only performed for the wind-run model with n=1 and for the wind speed 

model with n=3 (as these were deemed to be marginally the best overall performances in Table 2 in 

terms of RMSE). Table 3 reports the averages of the RMSE values resulting from all cross-

applications (182 per time-scale) for the two model types, as well as the minimum and maximum 

within each set. The results show that RMSE values are similar for both types and that averages are 

an order of magnitude larger than the RMSE associated with the original model fitting themselves 

(Table 2). The range of error is quite large in both cases, with maximum RMSE exceeding 4.5 kg m-1 

deviation between predicted and observed sand delivery (while sand displacement over the whole 

period amounted to about 7 kg m-1 on average across the stations). There are however also many 

cross-applications that produce very small RMSE. At the 100 s time-scale, for example, both model 

types see nearly 25% of cross-applications yielding an RMSE of less than 400 g m-1. These results 

reflect the significant challenges of applying a statistically-fitted transport model derived at one 

location to another location, even within the same beach environment and wind conditions. 

[Table 3 roughly here] 

Predictive power 

The predictive power of the two methods was explicitly tested by fitting cubic wind-speed and linear 

wind-run models to 1 s data from the first 400 seconds only (the first 10% of the time-series). The 

fitted model parameters were then applied to the full wind time-series to predict the total amount 

of sand drift after 4000 s, compared to the total amount observed. The results reported in Table 4 

confirm the superior performance of the wind-run method to yield a predicted total sand drift after 

4000 seconds that is closer to the observed amount, with errors (in absolute terms) of only 5-10% at 
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most stations (10 out of 14), whereas the wind-speed method results in prediction errors of 19% or 

more at most stations (10 out of 14). At all but one station the wind-run model yields a smaller error 

in sand drift prediction than the wind-speed model, and in most cases by many multiples at that. The 

thresholds that are determined from both types of fitted model, meanwhile, are similar to those 

from the previous full-data fitting (Table 1) at the 1 s time-scale. This suggests that the model fits are 

otherwise quite sensible and that the worse prediction error from the wind-speed method is a 

consequence of any minor bias of that model derived from the first 400 seconds being amplified 

when it is projected to 4000 seconds. 

[Table 4 roughly here] 

 

Discussion 

It is not surprising that the wind run model shows better statistical fit in terms of R2 than the scatter 

plot regressions: in the latter any outlier data points quickly degrade the goodness-of-fit, whereas in 

the wind run model these only lead to very small deviations in the cumulative trend. More 

fundamentally the key difference is that in the cumulative analysis the data points that are fitted 

through the regression are not mutually independent (as they are in the traditional scatter plot 

regression). The RMSE results, however, indicate a more robust fitting with smaller deviations in the 

cumulative form for the wind-run model, as compared with wind speed. At the coarsest time-scale 

the differences in statistical performance between the two methods narrow. It is to be expected that 

results converge: as the time-scale gets closer to the length of the dataset the wind run and the wind 

speed scatter become more identical, since average wind speed is equal to wind run divided by the 

sampling duration. Even then, while involving only ~30 data points, the wind run model shows better 

results at the 100 s time-scale. 

It is particularly revealing how bias in the scatter plot regressions derived on small time-scales 

multiplies to significant estimation errors in the longer term: a cubic wind speed model fitted on 1 Hz 

data from 400 seconds of time-series leads to an estimation error of 23%, on average, of total sand 

drift when projected to 4000 seconds, whereas a linear wind run model fitted on 1 Hz data yields 

only a 11% difference, on average. The superiority of the wind-run model to predict total sand drift 

based on a short time-series is demonstrated at nearly all of the 14 stations in this field experiment. 

A strength of the analysis presented here is that findings can be tested and replicated over a large 

number of independent measurement stations rather than rely on just a single location or instance, 

as most other studies do. 

In mathematical terms the two methods are analytically linked: wind run is an integration of wind 

speed over time, and so theoretically the exponent n for the wind run model ought to be one integer 

larger than the exponent on the wind speed model. The results in table 2 do not clearly support this 

expectation however. Differences in statistical performance at various n are relatively small, but for 

wind speed n=3 appears the best choice, also considering this conforms to the traditional model. 

This choice mathematically suggests n=4 for the wind run model, but on statistical measures that 

would be suboptimal. The linear model (n=1) appears a better solution, also because of its simplicity. 

Advantages and disadvantages 
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The advantages of the wind run method include: i) more robust estimation of total sand drift over 

longer periods of time, and ii) simpler analysis, particularly for the linear model and when assuming 

the transport threshold predicted by equation [8] from the outset. Disadvantages include: i) 

graphical presentation less intuitive for visualising physical relationship, and ii) continuous time-

series required. 

In comparison, advantages of the traditional wind speed method include: i) intuitive graphical 

presentation, and ii) based on independent measurement points, while disadvantages include: i) bias 

extrapolates to significant error in predicting total sand drift over longer periods of time, ii) more 

complicated analysis and assumptions required for filtering of near-zero transport data and adjusting 

time-series for lags, particularly at short time-scales. 

The main argument of the analysis exercise presented here is not to claim that the wind run model is 

altogether better, but to show that if we want to use empirical data on short time-scales as a basis 

for predicting sand delivery over longer periods, the cumulative analysis method is more statistically 

robust and reduces the potential for error due to bias magnification when upscaling.  

Limitations and future work 

The main limitation of the analysis exercise here is the relatively small range of time-scales 

considered, spanning only across three orders of magnitude, from seconds to thousands of seconds, 

with the upper limit imposed by the trap capacity being reached after ~1 hour of active sand 

transport. This study furthermore only concerns transport limited conditions, whereas surface 

conditions and supply limitations are crucial to upscaling and predicting sand drift over months or 

years. Nevertheless, in those applications the problems associated with calculating projections of 

total sand delivery based on predictive transport equations that have been empirically fitted on 

second-scale data remains, and our study shows that the wind run approach is more statistically 

robust. Future work should explore the application of the wind run method on longer time-scales, 

for example to estimate total sand drift over several weeks from hourly data, although it may prove 

harder to assure continuous transport limited conditions rather than supply controls.   

Speculative phenomenological model 

While presented here principally as an alternative data analysis method, the wind run model of 

equation [1] may also form the basis for hypothesising a physical sand drift model by considering 

dimensional analysis of the linear version of the equation (n=1) to attach meaning to the slope 

coefficient m. Equation 1 can be reflected in terms of the fundamental SI units of mass (M), length 

(L), and time (T) involved, adopting the method of directed dimensions (Huntley, 1967), where 

subscripts x, y, and z indicate length dimensions in streamwise, spanwise, and vertical directions: 

     
𝑀

𝐿𝑦
= [𝑚] 𝐿𝑥          [9] 

with the dimensions of the coefficient m to be defined. 

We may interpret the equation to represent a balance in mass transfer, per unit width, of sand (on 

the left-hand side) relative to air (on the right-hand side). The mass transfer of air is equivalent to 

the volumetric wind run multiplied by the density of air, a. This requires a vertical length scale to 
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define a ‘depth’ of flow, which we interpret as the height of the boundary layer, . The mass transfer 

of air per unit width is then equal to a WR , with dimensional analysis showing: 

     [ 
𝑎

 𝑊𝑅  ] =
𝑀

𝐿𝑥 𝐿𝑦 𝐿𝑧
 𝐿𝑥  𝐿𝑧 =  

𝑀

𝐿𝑦
   [10] 

This suggests that the coefficient m can be treated as a non-dimensional coefficient, which the 

results in Table 1 indicate is of O (1). The model further requires a scaling of the height of 

measurement, H, as wind run is longer when measured higher above the ground. In the context of 

the volumetric transfer of air this may be considered as a fraction of the flow depth, i.e. the 

boundary layer height, yielding a dimensionless adjustment factor 𝛿 𝐻⁄ . The relationship between 

wind run and measurement height is technically of a logarithmic form (mirroring the velocity profile 

in the boundary layer flow), but if 𝐻 ≫ 𝑧0 the linear simplification may be considered adequate. 

A speculative phenomenological model for predicting total sand drift as a function of wind run may 

thus be formulated as: 

     𝑄 =  𝐶 𝜌𝑎
𝛿2

𝐻
 𝑊𝑅>𝑈𝑡     [11] 

where: C is a calibration coefficient, and the positive dependency of sand drift on  may be reflective 

of the fetch effect (Delgado-Fernandez 2010). 

 

Conclusions 

Traditional sand transport equations that are calibrated on statistical regression models of empirical 

data at short time-scales are less suitable for predicting total amounts of sand drift over longer 

periods of time, as any small bias is drastically magnified when upscaling, leading to significant 

estimation errors. An alternative analysis method using the cumulative approach of wind run, 

instead of wind speed, yields more robust statistical fitting of empirical data and smaller deviations 

in predicted total sand drift. Results presented here suggest that sand drift as a linear function of 

above-threshold wind run is the most effective, with the threshold derived from the customary 

Bagnold’s (1941) equation in conjunction with a surface roughness length estimated as 5 𝐷50 30⁄ . 

The cumulative approach further inspires a speculative phenomenological model for predicting total 

sand drift as a function of above-threshold wind run (equation 11), including an explicit dependency 

on the height of the boundary layer. 
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Figure 1: Location of the field experiment in Northern Ireland, UK. Red box on map indicating 

location of Google Earth imagery shown in main panel. White box indicating location of field 

experiment measurement array. Scale bar equal to 1 km. 
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Figure 2: 3D map of the array of measurement stations, with rows A, B, C, and D running from dune 

foot seaward. Spacing between stations indicated. 
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Figure 3: view of measurement stations along row B, looking landward. Forefront shows sonic 

anemometer mounted at 0.5 m above the ground and buried sand trap indicated by inverted funnel 

(trap inactive at time of picture taken). 
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Figure 4: Examples of fitting a cubic wind speed model (left) and a linear above-threshold wind run 

model (right) to sand transport data, on time scales of 1 second (top), 10 seconds (middle), and 100 

seconds (bottom). Black points are empirical data from station B6, red curves are model fitted via 

least-squares regression. 
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Figure 5: Trace of cumulative sand drift as a function of wind run (without threshold) for station B6 

on a data time-scale of 10 seconds. 
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Figure 6: Cumulative sand drift as projected by integrating a cubic wind speed model (red) fitted on 

empirical data at 1 second time-scale, compared with the observed sand drift (black), for station B6. 
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Table 1: Results of fitting linear wind run and cubic wind speed models via regression on empirical 
data from 14 measurements stations on three different time scales. See text for explanation of 
variables. 

    wind run - linear   wind speed - cubic 

station  N R2 RMSE m U*t  N R2 RMSE m U*t 

     (g m-1)  (m s-1)    (g m-1)  (m s-1) 

               

A1   3999 0.999 25.3 6.62 0.20   1503 0.364 1542.9 0.032 0.15 

A2  3999 0.995 108.4 6.59 0.20  1977 0.514 841.9 0.037 0.16 

A3  3998 1.000 21.8 6.38 0.20  2170 0.564 1073.1 0.039 0.16 

B1  3999 0.995 26.0 7.14 0.21  959 0.507 533.8 0.033 0.17 

B2  3999 0.999 40.8 6.55 0.20  1528 0.315 1857.8 0.032 0.13 

B3  3999 0.999 43.4 6.40 0.19  2072 0.471 1263.7 0.040 0.14 

B4  3998 1.000 31.0 6.14 0.19  1919 0.566 889.8 0.041 0.16 

B5  3998 0.997 90.1 6.34 0.20  2083 0.625 578.1 0.037 0.16 

B6  3999 0.997 85.1 7.94 0.21  1873 0.642 744.6 0.043 0.17 

C1  3999 1.000 27.9 7.33 0.18  2009 0.537 1079.7 0.047 0.14 

C2  3999 0.998 89.3 8.46 0.20  2511 0.693 777.7 0.039 0.16 

C3  3999 0.997 96.3 7.17 0.19  1870 0.686 952.3 0.050 0.16 

D1  3998 0.999 26.4 4.29 0.20  2317 0.621 481.7 0.030 0.17 

D3  3999 0.998 57.1 8.92 0.20  2114 0.625 588.7 0.039 0.17 

               

mean:  3999 0.998 54.9 6.88 0.20  1922 0.552 943.3 0.039 0.16 

               

               

A1   399 0.998 42.9 3.58 0.19   206 0.752 264.7 0.046 0.18 

A2  399 0.998 73.4 5.32 0.19  239 0.852 121.0 0.048 0.18 

A3  399 1.000 21.1 5.27 0.19  250 0.863 264.4 0.050 0.18 

B1  399 0.992 34.0 2.58 0.18  154 0.774 119.1 0.038 0.18 

B2  399 0.999 35.3 4.53 0.18  205 0.755 219.2 0.049 0.17 

B3  399 1.000 29.6 5.18 0.18  256 0.808 230.9 0.052 0.17 

B4  399 1.000 23.9 4.89 0.18  239 0.885 144.3 0.051 0.17 

B5  399 0.997 80.6 4.92 0.19  244 0.885 112.3 0.043 0.17 

B6  399 0.998 73.7 5.75 0.19  220 0.905 129.4 0.051 0.18 

C1  399 1.000 24.7 5.50 0.17  235 0.851 171.4 0.065 0.16 

C2  399 0.998 93.9 7.05 0.19  288 0.890 218.0 0.049 0.17 

C3  399 0.998 78.1 5.47 0.18  228 0.920 128.4 0.060 0.17 

D1  399 1.000 19.9 3.30 0.19  263 0.896 79.7 0.038 0.18 

D3  399 0.998 58.8 7.39 0.19  250 0.888 134.8 0.048 0.18 

               

mean:  399 0.998 49.3 5.05 0.19  234 0.852 167.0 0.049 0.18 

               

               

A1   39 0.997 56.3 2.32 0.17   34 0.879 121.4 0.038 0.17 

A2  39 0.997 80.7 3.83 0.18  34 0.957 125.2 0.044 0.17 

A3  39 0.999 58.6 4.25 0.18  33 0.971 55.4 0.051 0.17 



A
cc

ep
te

d 
A

rt
ic

le
 

 
This article is protected by copyright. All rights reserved. 

B1  39 0.984 46.2 1.61 0.17  22 0.821 74.3 0.029 0.16 

B2  39 0.999 43.8 3.11 0.17  31 0.935 43.9 0.045 0.17 

B3  39 0.998 66.7 3.90 0.17  34 0.967 59.8 0.054 0.16 

B4  39 0.999 45.5 3.74 0.17  33 0.973 60.2 0.048 0.16 

B5  39 0.998 71.5 3.47 0.17  33 0.957 143.8 0.040 0.17 

B6  39 0.999 51.9 4.06 0.18  31 0.958 71.1 0.047 0.18 

C1  39 0.999 58.2 4.15 0.16  34 0.955 64.1 0.062 0.16 

C2  39 0.997 99.7 5.12 0.18  35 0.929 166.6 0.050 0.17 

C3  39 0.999 45.9 3.98 0.17  35 0.951 60.2 0.056 0.17 

D1  39 0.999 34.2 2.37 0.18  34 0.965 55.6 0.035 0.17 

D3  39 0.993 113.0 3.86 0.18  34 0.930 173.9 0.048 0.17 

               

mean:  39 0.997 62.3 3.56 0.17  33 0.939 91.1 0.046 0.17 
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Table 2: Averages across the 14 stations of the statistical performance of wind run and wind speed 

models with power exponent n ranging from 1 to 4, on each of the three time-scales. 

    wind run   wind speed 

   R2 RMSE  R2 RMSE 

         

n=1 

1 s 0.998 54.9   0.524 856.8 

10 s 0.998 49.3  0.827 179.5 

100 
s 0.997 62.3   0.909 102.4 

         

n=2 

1 s 0.998 64.2   0.542 865.3 

10 s 0.998 57.3  0.843 167.0 

100 
s 0.997 56.9   0.927 93.1 

         

n=3 

1 s 0.997 72.1   0.552 943.3 

10 s 0.998 64.7  0.852 167.0 

100 
s 0.997 60.5   0.939 91.1 

         

n=4 

1 s 0.997 78.2   0.554 1135.1 

10 s 0.997 70.2  0.853 187.0 

100 
s 0.997 63.0   0.947 91.4 
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Table 3: Descriptive statistics of the RMSE (of the cumulative trace, in grams) for the cross-
application of linear wind run and cubic wind speed models obtained from fitting on empirical data 
at one station and then applied to all other stations. 
 

  wind run - linear   wind speed - cubic 

  mean min max  mean min max 

          

1s 1090 26 4702   1384 115 5050 

10s 1110 35 4561   1081 37 4691 

100s 1154 54 4640   1106 56 4644 
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Table 4: Results of projecting models fitted on the first 10% of data (at 1 s time-scale) to predict total 
sand drift after the full 4000 seconds of measurements, comparing predicted to observed amounts, 
expressed as an absolute prediction error (where error = (predicted - observed)/observed). 
 

        wind run - linear   wind speed - cubic 

station  observed  projected |error| U*t  projected |error| U*t 

   (g)  (g)  
(m s-

1) 
 (g)  

(m s-

1) 

                 

A1   5165   5440 5 % 0.22   7578 47 % 0.14 

A2  7471  7990 7 % 0.20  9003 21 % 0.17 

A3  9294  9173 1 % 0.19  10370 12 % 0.15 

B1  1801  1143 37 % 0.19  1971 9 % 0.14 

B2  5596  7872 41 % 0.21  8854 58 % 0.12 

B3  7691  7662 0 % 0.19  9224 20 % 0.14 

B4  7156  7329 2 % 0.18  8514 19 % 0.15 

B5  7156  7499 5 % 0.18  8123 14 % 0.16 

B6  7374  8143 10 % 0.19  9444 28 % 0.17 

C1  7564  9220 22 % 0.20  9279 23 % 0.14 

C2  9205  10643 16 % 0.16  11628 26 % 0.15 

C3  8393  8732 4 % 0.20  9974 19 % 0.17 

D1  5471  5311 3 % 0.20  5642 3 % 0.17 

D3  6377  6773 6 % 0.19  7576 19 % 0.17 

                 

mean:       11 % 0.19    23 % 0.15 
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Using wind run to predict sand drift 

Andreas CW Baas1*, Derek DW Jackson2, Irene Delgado-Fernandez3, Kevin Lynch4, J Andrew G 

Cooper2 

 
Conventional aeolian sand transport models based on wind speed or shear velocity are expressed 

and tested on a 1-second time-scale. These models can generate large errors when predicting total 

sand delivery over longer periods due to the amplification of any small bias. An alternative method 

relating total sand drift to cumulative above-threshold wind-run yields smaller prediction errors. 

These findings inspire a speculative phenomenological model relating the mass flow of air in the 

boundary layer to the mass transport of sand. 

 

 

 




