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Abstract

Supernumerary mini-chromosomes–a unique type of genomic structural variation–have

been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the

mechanisms that facilitate the emergence and maintenance of mini-chromosomes across

fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia

oryzae), mini-chromosomes have been first described in the early 1990s but, until very

recently, have been overlooked in genomic studies. Here we investigated structural varia-

tion in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed

the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The

mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence

composition. They are enriched in repetitive elements and have lower gene density than

core-chromosomes. We identified several virulence-related genes in the mini-chromosome

of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants

of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural

rearrangements, including inter-chromosomal translocations between core- and mini-chro-

mosomes. Our findings provide evidence that mini-chromosomes emerge from structural

rearrangements and segmental duplication of core-chromosomes and might contribute to

adaptive evolution of the blast fungus.

Author summary

The genomes of plant pathogens often exhibit an architecture that facilitates high rates of

dynamic rearrangements and genetic diversification in virulence associated regions.
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These regions, which tend to be gene sparse and repeat rich, are thought to serve as a cra-

dle for adaptive evolution. Supernumerary chromosomes, i.e. chromosomes that are only

present in some but not all individuals of a species, are a special type of structural variation

that have been observed in plants, animals, and fungi. Here we identified and studied

supernumerary mini-chromosomes in the blast fungus Magnaporthe oryzae, a pathogen

that causes some of the most destructive plant diseases. We found that rice, foxtail millet

and goosegrass isolates of this pathogen contain mini-chromosomes with distinct

sequence composition. All mini-chromosomes are rich in repetitive genetic elements and

have lower gene densities than core-chromosomes. Further, we identified virulence-

related genes on the mini-chromosome of the rice isolate. We observed large-scale geno-

mic rearrangements around these loci, indicative of a role of mini-chromosomes in facili-

tating genome dynamics. Taken together, our results indicate that mini-chromosomes

contribute to genome rearrangements and possibly adaptive evolution of the blast fungus.

Introduction

Genomes of plant pathogens are highly dynamic and typically exhibit an architecture that facil-

itates rapid adaptation to their hosts. Since the rise of genome sequencing it became evident

that plant pathogen genomes are often structured to facilitate high genetic diversification rates

at virulence-related loci while maintaining relative stability in house-keeping regions, a phe-

nomenon that shaped the term “two-speed genome” [1]. Since then, the two-speed genome

concept has been widely documented in a number of plant pathogenic species [2,3]. Interest-

ingly, various types of genome architecture have been observed in different species. These

include effector gene clusters [4,5], lineage-specific genomic regions that are rich in transpos-

able elements [6–10], or enrichment of virulence related genes in specific genomic regions, e.g.

unstable telomeric and sub-telomeric regions [11]. Typically, these genomic compartments

display higher rates of adaptive mutations compared to the rest of the genome [12]. In addition

to signatures of single nucleotide polymorphisms (SNPs) indicative of positive selection and

presence/absence polymorphisms, structural variation is common in pathogen populations

and ranges from copy number variations of single genes to chromosome-scale rearrangements

[13,14]. Extreme cases of genomic rearrangement are large-scale, chromosome length varia-

tions and the presence of isolate-specific, supernumerary chromosomes (syn. B-, accessory-,

conditionally dispensable, mini-chromosomes). These are usually small, non-essential chro-

mosomes that occur in addition to the regular set of conserved chromosomes within a species

and have been described in animals, plants, and fungi [14,15]. Supernumerary chromosomes

are present at different frequencies in natural populations of eukaryotic plant pathogens

[14,16]. In some fungal species, supernumerary chromosomes have been directly implicated in

the emergence of new virulence traits, underpinning the importance of understanding their

role in evolution and pathogen adaptation [17–19]. However, the diversity of supernumerary

chromosomes across plant pathogens and their contribution to genome plasticity is still poorly

known.

Supernumerary chromosomes share common features that distinguish them from core-

chromosomes. Although they are variable in size, they tend to be smaller than core-chromo-

somes ranging from ~400 kb to 3 Mb in plant pathogenic fungi [8,14]. Yet, despite their small

size, supernumerary chromosomes can contribute as much as 15% to the total genome in cer-

tain species. Their number is also variable with some plant pathogenic fungi containing up to

eight supernumerary chromosomes in addition to the core-chromosome set [9]. Dynamic loss
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or gain of supernumerary chromosomes has been observed especially under stress conditions

indicating that supernumerary chromosomes are major drivers of genome plasticity [20]. In

addition to frequent genomic rearrangements, supernumerary chromosomes often do not fol-

low Mendelian inheritance. They tend to be meiotically unstable, and thus, are frequently lost

[21]. However, in some cases meiotic gene drives have been observed increasing their capacity

to be inherited and potentially explaining their abundance in pathogen populations [22].

Supernumerary chromosomes are usually gene poor and repeat rich compared to the core-

chromosomes, and form one illustration of the two-speed genome concept [12,23]. However,

a clear association with adaptive evolution is not always evident as they do not necessarily

carry virulence-related genes [9,24]. Nonetheless, in some plant pathogenic fungi, supernu-

merary chromosomes are directly implicated in virulence [17,18]. The origin of supernumer-

ary chromosomes is still debated but there is evidence for segmental duplications from core-

chromosomes (or ancient core-chromosome duplication followed by partial chromosome

loss) and horizontal chromosome transfer [19,25–27]. Interestingly, supernumerary chromo-

somes can be transferred between isolates independently of the core genome and can alter the

virulence spectrum of plant pathogens [19,27]. It is thus possible that supernumerary chromo-

somes facilitate gene flow in natural populations leading to new pathotypes.

Plant pathogens are ubiquitous in the environment and can cause severe damage to both

cultivated and wild plant species [28–31]. Plant pathogens are often specialized on specific

host species or taxon. At the center of the co-evolutionary dynamics between pathogens and

plants are effector proteins, i.e. secreted proteins that manipulate host processes to facilitate

infection and colonization [32–35]. In return, host plants have evolved immune receptors that

can detect conserved molecular patterns and effector proteins to defend against invading path-

ogens [36,37]. This generally leads to fast-paced co-evolution between pathogens and their

host plants that often follows arms-race dynamics where the frequency of adaptive mutations

rises quickly in pathogen populations [16].

The fungus M. oryzae (Syn. Pyricularia oryzae) causes blast disease, one of the most devastating

crop diseases worldwide resulting in yield losses in rice and wheat that make it a threat to global

food security [28,29,38,39]. Despite its Linnaean binomial name, M. oryzae is a multihost patho-

gen that can infect more than 50 cultivated and wild grass species. Population genomics of M. ory-
zae revealed that the species is formed by an assemblage of differentiated lineages that are

associated with particular host taxa, such as important cereals like rice (Oryza sativa), finger millet

(Eleusine coracana), wheat (Triticum aestivum), and foxtail millet (Setaria italica), as well as weeds

such as Indian goosegrass (Eleusine indica) [40,41]. Records of rice blast disease in China date

back to the early 17th century and until today it is recognized as one of the most threatening and

widely distributed rice diseases [39]. Recent population genetics studies revealed that the rice-

infecting lineage of M. oryzae consists of both a recombining population and multiple, clonally

expanded lineages that have emerged in the last few hundred years [42–44]. In Europe, the rice

blast fungus population consists of only one of three major clonal lineages and it is possible that

mating type isolation led to local asexual expansions. Another impactful blast disease is wheat

blast. In the mid 1980s the disease emerged on wheat plants in Brazil and has since spread across

large regions of South America and, more recently, South Asia, demonstrating the ability of M.

oryzae to rapidly undergo host-range expansions and global pandemics [45–47].

Although signatures of gene flow have been observed within and between lineages [41], M.

oryzae is thought to predominantly propagate asexually in agricultural settings. Given that

genetically differentiated lineages tend to be associated with particular host genera, selection

pressure imposed by the host plant is probably the main driver of adaptive evolution [41].

Adaptation to a specific host can be accompanied by gain or loss of effector genes that define

the pathogen host range highlighting the importance of structural genomic variation [35,48–

PLOS GENETICS Mini-chromosomes of the blast fungus

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009386 February 16, 2021 3 / 34

https://doi.org/10.1371/journal.pgen.1009386


50]. The degree to which genome architecture facilitates structural variation and even gene

flow is a fascinating but still poorly understood question [6,11,23,51].

M. oryzae mini-chromosomes have first been described in the early 1990s, when studies on

karyotype diversity revealed that large chromosomal rearrangements occur frequently within

and between clonal lineages [52,53]. More recently, Chuma et al. [11] demonstrated that the

effector gene AVR-Pita underwent multiple translocation events and proposed that genomic

location of effector genes to sub-telomeric regions could favor rearrangements within the

genome and gene flow within asexual populations. Interestingly, AVR-Pita genes occur on dif-

ferent chromosomes, including supernumerary mini-chromosomes. Additionally, Luo et al.
[54] and Kusaba et al. [55] showed that two variants of the AVR-Pik effector gene are present

on a 1.6 Mb mini-chromosome in the Japanese rice blast isolate 84R-62B and that parts of this

mini-chromosome can translocate to core-chromosomes in crosses. Further, loss of the mini-

chromosome resulted in gain of virulence on host plants carrying the rice immune receptor

Pik, a phenotype due to the associated loss of the AVR-Pik genes [55].

Despite the fact that M. oryzae mini-chromosomes have been known for 30 years, genome

sequencing projects have somehow overlooked them. This has changed recently. Peng et al.
[56] reported the first sequences of mini-chromosomes of M. oryzae. They analyzed the karyo-

types of the three wheat blast isolates T25, B71, and P3. T25 was collected in Brazil in 1988 and

B71 and P3 were collected in 2012 in Brazil and Paraguay, respectively. B71 contains a 2 Mb

mini-chromosome and P3 contains two mini-chromosomes of 1.5 and 3 Mb, whereas T25 does

not contain any mini-chromosomes. The mini-chromosomes of B71 and P3 only share partial

sequence similarity, have lower gene and higher repeat content, and display partial similarity to

sub-telomeric regions of core-chromosomes. The mini-chromosome of isolate B71 contains the

effector genes Pwl2 and Bas1 in close proximity whereas they are located on separate core-chro-

mosomes in other M. oryzae isolates. This raised the hypothesis that mini-chromosomes are

sites of structural rearrangements associated with virulence factors within blast genomes. How-

ever, the genetic diversity of mini-chromosomes in other lineages of M. oryzae, and their associ-

ation with genomic rearrangements and effector diversification remains poorly understood.

The objective of this study was to gain an overall picture of genomic structural variation across

lineages of M. oryzae using the host-specific isolates from rice, foxtail millet, goosegrass and wheat

that were previously sequenced using Illumina short reads by Chiapello et al. [48]. Our analyses

led us to focus on mini-chromosomes, which we detected in three of the examined isolates of M.

oryzae. We used long and short read sequencing data in combination with mini-chromosome iso-

lation sequencing (MCIS) to improve the previous genome assemblies [48] to near chromosome

quality. We found that the sequence composition of mini-chromosomes is highly variable indicat-

ing independent emergence of individual mini-chromosomes or rapid divergence including gene

presence/absence polymorphisms during M. oryzae lineage evolution. Further, we identified effec-

tor and virulence-related genes in the mini-chromosome of the rice-infecting isolate FR13

although this protein class was not generally enriched in the three sequenced mini-chromosomes

compared to the core chromosomes. We documented several structural rearrangements around

virulence-related loci which raises the possibility that chromosome-scale variation, notably mini-

chromosome genesis, plays a role in driving adaptive genome plasticity in the blast fungus.

Results

Near chromosome quality genome assemblies of four host-specific isolates

of M. oryzae
Considering that structural genomic variation has emerged as a common feature of fungal

plant pathogens, we re-examined 4 previously sequenced M. oryzae genomes of the host
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specific isolates FR13 (rice), US71 (foxtail millet), CD156 (goosegrass), and BR32 (wheat). We

used long read sequencing to generate highly contiguous assemblies [57] and improved accu-

racy of the assemblies by applying a polishing pipeline using nanopore and published Illumina

raw reads of the same strains [48]. To assess the completeness and quality of our assemblies,

we performed a benchmarking universal single-copy orthologs (BUSCO) analysis using the

Sordariomycota database (https://busco.ezlab.org/) which confirmed 98–98.2% completeness,

similar to the chromosome quality reference genome of strain 70–15 (assembly version 8,

ensemble release 45; 98.2%; Table 1) [58]. Overall, the new assemblies have vastly improved

contiguity with scaffold numbers reduced from 111–2,051 in previous assemblies to 17–55 in

the new assemblies (Table 1). Moreover, we increased the proportion of well-assembled repeat

rich regions, reduced the number of ambiguous bases (“Ns”) to zero, and improved overall

completeness (Table 1). These highly contiguous assemblies can thus serve as new reference

genomes for host-specific isolates of M. oryzae.

The rice, foxtail millet and goosegrass isolates of M. oryzae contain unique

sets of mini-chromosomes

To assess the genomes for karyotype variation, we separated and visualized intact chromo-

somes of each strain by contour-clamped homogenous electric field (CHEF) gel electrophore-

sis. Strikingly, we found large-scale, structural variation in the form of chromosome length

polymorphisms and supernumerary mini-chromosomes in the isolates FR13, US71, and

CD156 (Fig 1). The mini-chromosomes ranged in size between approximately 800 kb and 1.5

Mb. We hypothesized that these mini-chromosomes contribute to structural variation and

might be similar to supernumerary, lineage specific chromosomes reported in other plant

pathogenic fungi. Supernumerary chromosomes can have important functions in pathogenic-

ity, but their sequence composition and intraspecies variation in M. oryzae is still poorly

understood.

Table 1. Comparative summary statistics of genome assemblies.

Host Oryza sativa Setaria italica Eleusine indica Triticum sp. Oryza sativa
Isolate FR13 GEMO� FR13 US71 GEMO� US71 CD156 GEMO� CD156 BR32 GEMO� BR32 70–15

Technology Illumina / 454 ON-MinION Illumina / 454 ON-MinION Illumina / 454 ON-MinION Illumina / 454 ON-MinION Sanger

Coverage 4x 174x 80x 107x 50x 80x 55x 131x N/A

# Contigs 79,619 46 7,398 84 26,535 44 6,044 21 N/A

# Scaffolds 2,051 31 220 55 237 27 111 17 8

Assembly size (bp) 43065003 46455514 41206925 45614181 42691742 43975886 41858488 41851079 41027733

Largest scaffold 557675 7382384 3113975 6027169 2814965 8365714 4783357 11480887 8319966

N50 (bp) 101645 5398440 813981 2812411 1066457 5531649 1760460 5096353 6606598

N75 (bp) 37427 2617860 277145 1350202 408473 3948849 837619 3936184 4490059

L50 124 4 12 5 13 4 7 3 3

L75 290 7 33 11 31 6 16 5 5

BUSCO 60.90% 98.10% 98.10% 98.10% 98.00% 98.00% 97.70% 98.00% 98.20%

Repeat content 1.68% 13.23% 3.29% 13.23% 2.77% 6.21% 3.25% 6.26% 11.54%

GC-content 51.39 50.99 51.09 50.65 50.96 49.87 50.81 50.06 51.61

% N 22.55 0.00 5.45 0.00 6.59 0.00 4.96 0.00 0.19

# N’s per 100 kbp 22547.58 0 5445.7 0 6589.36 0 4962.16 0 189.63

� from Chiapello et al., 2015 [48]

https://doi.org/10.1371/journal.pgen.1009386.t001
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To further analyze the sequence composition of the observed mini-chromosomes, we iden-

tified their corresponding scaffolds in our whole genome assemblies by purifying mini-chro-

mosomal DNA from CHEF gels by electro-elution for mini-chromosome isolation sequencing

(detailed protocol available on protocol.io [57]; adapted from [56]). We then mapped mini-

chromosome derived raw reads against the whole genome assemblies to identify specific scaf-

folds with high coverage compared to the rest of the genome, indicating their mini-chromo-

somal origin (Figs 2 and S1–S4). Importantly, all core-chromosome scaffolds (> 2 Mb)

showed extremely low coverage confirming the robustness of this approach (S1–S4 Figs).

Repetitive sequences could lead to ambiguous mapping of reads due to the presence of simi-

lar repetitive regions in core-chromosomes. To confirm that the observed increase in coverage

is linked to mini-chromosome enrichment and not to ambiguous read mapping, we plotted

the repeat content per 10 kb sliding window and compared it to the coverage of uniquely map-

ping reads derived from mini-chromosome sequencing. This analysis showed that repeat-rich

regions did not overlap with regions of high coverage, which confirmed that the enrichment

was not due to repetitive sequences and ambiguous read mapping. Using this method, we

identified 2, 4, and 3 scaffolds with high depth and breadth of coverage for strains FR13 (Figs 2

and S1), US71 (S2 and S3 Figs), and CD156 (S4 Fig), respectively. The combined size of mini-

chromosome scaffolds was 1.7 Mb for FR13, 1.58 Mb for US71, and 860 kb for CD156. For

FR13 and CD156 the combined length of mini-chromosome scaffolds matched the size

observed on CHEF gels. However, the combined length of US71 mini-chromosome scaffolds

Fig 1. Host-specific isolates of M. oryzae contain mini-chromosomes of various sizes. Contour-clamped homogenous electric field (CHEF) gel

electrophoresis of intact M. oryzae chromosomes. Chromosome size variation between M. oryzae isolates is present in both, mini-chromosomes and core

chromosomes. Strains FR13, US71, and CD156 contain mini-chromosomes ranging in size between approximately 850 kb and 1.5 Mb. Left lane:

Saccharomyces cerevisiae chromosomes as size marker.

https://doi.org/10.1371/journal.pgen.1009386.g001
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adds up to approximately double the size of the mini-chromosome identified by CHEF analysis,

indicating that US71 contains two mini-chromosomes of similar size that cannot be separated

by CHEF gel electrophoresis, that there is a misassembly or that rearrangements occurred dur-

ing culturing of this strain. To further investigate this, we mapped whole genome nanopore

sequencing reads against the US71 genome and extracted the coverage information of mini-

chromosome scaffolds (S5 Fig). Although all mini-chromosome scaffolds are overall well sup-

ported by>100x coverage, we noticed that two regions on scaffold 14 and 21, respectively,

showed a drop in coverage that correlated with a drop in mini-chromosome sequencing cover-

age. We further compared the nanopore coverage of the mini-chromosome scaffolds with the

average whole genome coverage. This analysis revealed that regions with high mini-chromo-

some read coverage have approximately twice as much average coverage as compared to the

whole genome, whereas regions on the proposed mini-chromosome scaffolds with low mini-

chromosome coverage displayed average whole genome coverage. This suggests that mini-chro-

mosomes in US71 contain duplicated sequences that are not resolved in the current assembly.

We also noticed an enrichment of mapped mini-chromosome reads to the start of scaffold

2 in strain CD156 (S4 Fig), which might indicate that a segmental duplication of a core-

Fig 2. M. oryzae strain FR13 contains a 1.7 Mb mini-chromosome assembled into 2 scaffolds. A) Circos plot of mini-chromosome isolation sequencing (MCIS) read

coverage and repeat content across FR13 scaffolds< 2 Mb. Outer ring (rainbow colors): FR13 scaffolds and scaffold sizes. Outer track (Red/Black): MCIS coverage per

sliding window. Window size = 1000 bp; Slide distance: 500 bp. Y-axes: average coverage per 1 kb window; axis limits set to zero to maximum coverage. Inner track

(Blue/Black): Repeat content per sliding window. Window size = 10 kbp; Slide distance: 5 kbp. Y-axes: repeat content in bp per 10 kb window; axis limits set to zero to

maximum. B) Circos plot of MCIS read coverage and repeat content for scaffolds<200 kb (enlarged from A).

https://doi.org/10.1371/journal.pgen.1009386.g002
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chromosomal region contributed to the emergence of the mini-chromosome in this isolate. To

confirm the assembly of this region, we mapped CD156 nanopore reads against the whole

genome sequence resulting in a continuous coverage of ~80x across the entire scaffold, which

is consistent with the average whole genome coverage and thus confirmed the assembly (S6A

Fig). This suggests that the sub-telomeric region of CD156 scaffold 2 is indeed duplicated and

present on core- and mini-chromosomes. To gain further evidence for this duplication, we re-

mapped the nanopore reads to the isolated scaffold 2. As expected for a duplication, we noticed

a ~2x increase in coverage in this region (S6B Fig), confirming a duplication between the core

genomic scaffold 2 and the mini-chromosome. We further aligned the CD156 mini-chromo-

some scaffolds to scaffold 2 which suggested that the mini-chromosome in this isolate repre-

sents a mosaic of repeat-rich sequences acquired from the core-genomic scaffold 2 (S6C Fig).

Taken together we identified and sequenced mini-chromosomes of varying size in three iso-

lates of M. oryzae that might represent isolate-specific, genomic compartments in M. oryzae.

The three examined mini-chromosomes of M. oryzae have a different

sequence composition

Based on the variation in mini-chromosome size and number, we hypothesized that they have

unique sequence composition. We first investigated whether the content of mini-chromo-

somes is conserved in the core genome of reference strain 70–15 by globally aligning the mini-

chromosomes to 70–15. This revealed that only a 761 kb fragment out of the ~1.7 Mb FR13

mini-chromosome generated an alignment matching a ~900 kb region at the end of core chro-

mosome 2 of isolate 70–15. The mini-chromosomes of US71 and CD156 did not generate sig-

nificant alignments with the reference genome.

As synteny breaks might disrupt the global alignments between the mini-chromosomes

and the 70–15 genome, we further mapped mini-chromosome derived raw reads against the

70–15 assembly. The ~900 kb region on chromosome 2 of strain 70–15 showed high coverage

after mapping the mini-chromosome reads of strain FR13, confirming that this region of the

mini-chromosome corresponds to the end of core-chromosome 2 in 70–15. However, we did

not observe unique regions with high coverage after mapping of mini-chromosome derived

reads from the more distantly related strains US71 and CD156 (S7 Fig). This indicates that the

mini-chromosomes of these strains contain unique sequences compared to strains FR13 and

70–15. We further examined the total amount of reads that mapped to any position in the ref-

erence genome. We found that 82.78%, 59.77%, and 55.49% of mini-chromosome reads of

FR13, US71, and CD156, respectively, mapped to the same regions in the reference genome

leading to local coverage peaks irrespective of the mini-chromosome reads used, indicative for

unspecific mapping. However, the fraction of unmapped reads varied between FR13 (17.21%)

and US71 (40.23%) or CD156 (44.51%) indicating that almost half of the mini-chromosome

derived reads of US71 and CD156 originate from isolate-specific regions. Conversely, only

17% of mini-chromosome reads derived from the rice infecting isolate FR13 were strain spe-

cific, indicating higher levels of sequence conservation within the rice infecting isolates.

To further assess the uniqueness of mini-chromosomes between isolates, we performed

pairwise alignments between extracted mini-chromosome scaffolds of each strain. We filtered

the alignments for regions that align over > 10kb to exclude unspecific, short alignments gen-

erated by repetitive regions or local similarities. Only a small fraction of the mini-chromo-

somes aligned under these parameters, whereas core-chromosomes were highly similar to

each other (Fig 3A). Between CD156 and US71 only 28.39% and 15.39% of the mini-chromo-

somes generated alignments, respectively. Between FR13 and US71 the fraction of the mini-

chromosomes that generated alignments was even lower with 15.01% and 14.02% and between

PLOS GENETICS Mini-chromosomes of the blast fungus

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009386 February 16, 2021 8 / 34

https://doi.org/10.1371/journal.pgen.1009386


Fig 3. Mini-chromosomes of M. oryzae are isolate specific. A) Circos plots depicting alignments between mini-chromosomes (left) and core-chromosomes (right).

Outer ring: Mini-chromosome scaffolds and sizes. Alignments> 10 kb are plotted as genetic links in the center. B) Relative fraction of mini- and core-chromosomes

that generate pairwise alignments. Relative fraction of the genomic compartment that form alignments> 10 kb are shown for each pairwise alignment and each

individual isolate. Approximately 75% of the core-chromosomes generate alignments under these parameters, whereas only 2.61–28.39% of mini-chromosomes do.

https://doi.org/10.1371/journal.pgen.1009386.g003
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FR13 and CD156 it was only 5.14% or 2.61%, respectively (Fig 3B). In contrast, between

73.88% and 81.26% of the core-genome generated alignments. We conclude that the three

examined mini-chromosomes of M. oryzae have unique sequence composition.

The three mini-chromosomes are less conserved than core-chromosomes

across M. oryzae lineages

To determine the extent to which the three mini-chromosome encoded sequences are con-

served in various host-specific lineages of M. oryzae we performed whole genome alignments

of 107 publicly available assemblies [41,59,60] to the mini-chromosomes of FR13, US71 and

CD156. The selected assemblies are representative of 10 genetic lineages with isolates from 13

host species. We also included the Pyricularia pennisetigena isolate PM1 and six M. grisea iso-

lates as outgroups in our analysis. As an additional control, we also aligned all genome assem-

blies to the core-chromosome scaffolds FR13_scaf05, US71_scaf04 and CD156_scaf05 that

correspond to homologous core-chromosomes in the three isolates. We then calculated the

breadth of coverage of all non-redundant alignments formed by each genome assembly with

the core- and mini-chromosome scaffolds (Fig 4). Additionally, we analyzed filtered align-

ments that span >5 kb to exclude fragmented and repetitive alignments (Fig 4B and 4C).

This analysis showed that mini-chromosome encoded sequences are consistently less con-

served than core-chromosomes across all lineages. In unfiltered alignments, mini-chromo-

somes yield on average between 50–80% coverage whereas core-chromosomes consistently

align over >90% (Fig 4). The difference in conservation between mini- and core-chromo-

somes becomes even clearer when filtering for continuous alignments (>5 kb) where mini-

chromosomes yield only between 10 to 50% coverage whereas core-chromosomes align over

>80% (Fig 4B and 4C). Of the three analyzed mini-chromosomes, FR13 mini-chromosome

sequences were the most conserved across all M. oryzae lineages at ~41% average breadth of

coverage in contrast to ~21% and ~16% for mini-chromosome sequence of US71 and CD156,

respectively (Fig 4C).

We further investigated the distribution of FR13, US71 and CD156 mini-chromosome

encoded sequences across the rice lineage of M. oryzae using a wider set of isolates for which

genome assemblies are not available [44]. In this case, we mapped reads from 131 rice infecting

isolates from 21 countries that are representative of the 4 genetic lineages of the worldwide rice

blast population [43,44,61] and calculated the breadth of coverage for the same mini-chromo-

some and core-chromosome contigs we used above. This analysis showed that the FR13 mini-

chromosome encoded sequences are more conserved across rice blast isolates compared to the

US71 and CD156 mini-chromosome sequences (S8 Fig). Interestingly, isolates from the

recombining, presumably sexually reproducing lineage (orange lineage in [42,44]), showed

higher degrees of variation in mini-chromosome sequence content.

Mini-chromosomes have lower gene and higher repeat density than core-

chromosomes

To determine the gene content of the mini chromosomes, we mapped the GEMO gene anno-

tations [48] to our new genome assemblies using BLASTn in combination with a sequence

similarity approach (see Material and Methods). Of 14515, 14013 and 14415 genes that were

used as queries, 13828, 13746 and 14201 mapped to a single site in the nanopore assemblies for

strains FR13, US71 and CD156, respectively.

Another 175, 179 and 44 genes mapped to multiple sites reflecting duplicated genes that

were likely collapsed in the previous short-read assemblies. Taking these expansions into

account, we assigned 14322, 14348 and 14304 genes to FR13, US71 and CD156, respectively.
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Of these genes, 13963, 13985 and 14143 mapped to the core chromosomes and 359, 363

and 161 mapped to the mini chromosomes of each isolate (S1 Table). On average, in each of

the three mini-chromosomes the gene content was approximately 30% lower when compared

to the core genome (Fig 5A and S1 Table).

We next analyzed the repeat and GC content of the mini-chromosome scaffolds compared

to the core genomes. The GC content of core- and mini-chromosomes was similar at ~50%,

whereas the repeat content of the three mini-chromosomes differed from the core genome

(Fig 5A and S1 Table). Indeed, the repeat content was more than twice as high in mini-chro-

mosomes (31.38%, 27.87%, and 17.25%) compared to core-chromosomes (13.78%, 12.71%

and 5.99% in strains FR13, US71, and CD156 respectively (Fig 5A).

To exclude the possibility that the observed differences are due to sample size biases that

can occur by comparing mini-chromosomes that represent only small fractions of the genome

to the much larger core-genome, we performed a bootstrapping analysis for each mini-chro-

mosome scaffold (see Material and Methods). Briefly, we sampled 10,000 random fragments of

the size of each mini-chromosome scaffold from the core genome and analyzed gene and

repeat content. This bootstrapping approach confirmed higher repeat and lower gene content

of mini-chromosomes (Fig 5B). These results indicate that even though the mini chromosomes

have distinct sequences, they have common genomic features, low gene and high repeat den-

sity, that deviate from the typical composition of core chromosomes.

Mini-chromosome encoded genes have variable patterns of conservation

across lineages

Our gene content analysis resulted in a total of 42,974 genes between all three isolates. We grouped

these genes into 12,900 orthogroups, of which 9,003 were conserved across all three strains and

3,897 were absent in at least one strain (S2 Table). Among the 3,897 orthogroups that were absent in

at least one strain, we found 1,827 that were conserved between two strains and 2,070 were unique

to single strains. We further analyzed the location of these orthogroups and categorized them into

“core-genome specific”, “mini-chromosome specific” and orthogroups that contain members that

are present on both core- and mini-chromosomes. We found that the vast majority (99.98%) of con-

served orthogroups were encoded exclusively on the core chromosomes or contained members on

both core- and mini-chromosomes and only 0.02% were encoded exclusively on mini-chromo-

somes. Conversely, isolate-specific tribes were slightly more abundant on mini-chromosomes (S2

Table), substantiating the observation that mini-chromosomes are isolate-specific.

We further investigated the distribution of mini-chromosome encoded genes across M. ory-
zae lineages. We therefore extracted all gene models of genes that are exclusively present on

mini-chromosomes and generated pairwise alignments to the 107 isolates described above

using minimap2 [62]. In total, we used 305, 216, and 131 non-redundant gene models that are

exclusive to the mini-chromosomes of FR13, US71, and CD156, respectively. We then

extracted the best hit for each gene and filtered for completeness by applying a>90% query

coverage filter. These analyses revealed variable patterns of gene conservation (both at

Fig 4. Mini-chromosomes are less conserved than core-chromosomes across lineages of M. oryzae. A) Conservation of core- and

mini-chromosomes across host-specific lineages of M. oryzae based on breadth of coverage of non-redundant whole genome alignments

against the three mini- and selected core-chromosome scaffolds. Heatmap values show the relative breadth of coverage of alignments for

each mini-chromosome or core-chromosome scaffolds. Left panel: Schematic representation of a coalescent species tree representing

host-specific genetic lineages of M. oryzae. Host genera are indicated in colors. Yellow = eragrostis lineage; Brown = brachiaria lineage 1

(isolate Bm88324) and 2 (Br2); Red = stenotaphrum lineage. B) Scatterplots showing the average breadth of coverage of alignments of

core- over mini- chromosomes per host-specific lineage. C) Boxplots summarizing the breadth of coverage by genomic compartment

across host-specific lineages.

https://doi.org/10.1371/journal.pgen.1009386.g004
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sequence level and presence/absence polymorphisms) depending on the mini-chromosome

(S9, S10 and S11 Figs). FR13 mini-chromosome genes were clearly more conserved across M.

oryzae lineages than the other two gene sets. These analyses are consistent with the patterns of

mini-chromosome sequence conservation described in earlier sections (Fig 4).

Mini-chromosomes contain highly dynamic effector and virulence-related

loci

To determine functional categories of mini-chromosome encoded genes, we performed a Hidden

Markov Model (HMM) scan against the Pfam database (https://pfam.xfam.org/) using a total of

772 non-redundant, mini-chromosome encoded proteins. More than 50% of these proteins (415)

did not contain any known domain, whereas 357 proteins contained Pfam domains. Certain

domains were shared between at least two mini-chromosomes and included transcription factor

DNA-binding domains, especially Zn(2)-Cys(6) zinc-finger, DDE-superfamily endonuclease, Tc5

transposase DNA-binding, and Methyl-transferase domains as well as domains of unknown func-

tion, amino-acid permease, protein kinase, and glycosyl-hydrolase domains. However, the relative

abundance of these domains varied between individual isolates (S3 Table) and it is unclear if the

presence of these protein domains on the mini-chromosomes has functional implications.

The most abundant, isolate-specific domains on mini-chromosomes were present in the

rice isolate FR13 and included cytochrome P450 and polyketide-synthase domains. Both of

these domains are involved in pathogenicity in M. oryzae and other plant pathogens [17,63].

Interestingly, we identified a polyketide synthase as Ace1 (avirulence conferring enzyme 1),

which is part of a large secondary metabolite cluster and triggers an immune response in host

plants carrying the resistance gene Pi33 [63].

Virulence and host adaptation of M. oryzae are largely determined by genes encoding

secreted effector proteins. To identify the degree to which secreted protein genes occur on

mini-chromosomes, we predicted the secretome of all isolates using signalp 2.1 in combination

with targetp and tmhmm to remove mitochondrial and transmembrane proteins (see Material

and Methods). This resulted in 1,394, 1,558, and 1,611 secreted proteins in strains FR13, US71,

and CD156, respectively. We found 50, 8, and 2 secreted proteins encoded on mini-chromo-

somes, most of which correspond to uncharacterized hypothetical proteins (S4 Table).

We further investigated whether candidate effector genes are present on the mini- and

core-chromosomes using 27 characterized effectors and 167 predicted MAX-effectors (Magna-

porthe AVRs and ToxB) identified by de Guillen et al. [64]. MAX-effectors represent a unique

class of proteins that is expanded in M. oryzae and contain proteins that are sequence unre-

lated but share a similar core structural fold. Using tblastn, we identified 75, 67, and 63 pro-

teins with similarity to known or predicted MAX-effectors in the genomes of FR13, US71, or

CD156, respectively. Most of these genes were located on the core-chromosomes (S12 Fig).

However, we found 5 genes in FR13 and 2 genes in US71 that were located on the mini-chro-

mosomes. Interestingly, 3 of these genes were duplicated either on the same mini-chromo-

some or between the mini- and core chromosomes, suggesting structural, genomic

rearrangements following segmental duplication events. Among the duplicated effector genes,

Fig 5. Mini-chromosomes have lower gene and higher repeat content than core-chromosomes. A) Bar plots of gene and repeat

content of mini- (red) and core-chromosomes (grey) of isolates FR13, US71, and CD156. B) Density plots resulting from a

bootstrapping analysis of gene and repeat content of isolates FR13, US71, and CD156. 10000 core-genomic fragments were

randomly sampled for each mini-chromosome scaffold and distribution of genes and basepairs of repeats are shown as densities.

Number of genes and repeat content of mini-chromosome scaffolds are indicated by arrowheads. The size of mini-chromosome

scaffolds is given in parentheses. Lower and upper 2.5% frequency intervals are shown in red and blue. X-axis: number of genes

and basepairs of repeats. Y-axis: Frequency in 10000 fragments. Y-axis limits set to min/max.

https://doi.org/10.1371/journal.pgen.1009386.g005
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we found the rice isolate specific effector AVR-Pik on the mini-chromosome of FR13 (S12A

Fig). Interestingly, we found two genes encoding different variants, AVR-PikD and AVR-

PikA, located towards both ends of the FR13 mini-chromosome scaffolds (S12A Fig). This is

consistent with previous observations by Kusaba et al. [55], who identified the same effector

variants on a 1.6 Mb mini-chromosome in the Japanese isolate 84R-62B and might indicate

that certain mini-chromosomes are maintained in M. oryzae populations.

Patterns of genomic rearrangements around effector and virulence-related

loci in mini-chromosomes

Our Pfam and effector analyses suggested that some virulence related genes, including AVR-

Pik and Ace1, are located on mini-chromosomes and that these regions undergo rearrange-

ments that possibly involve inter-chromosomal translocation events. To explore this further,

we extracted the AVR-Pik and Ace1 loci from other highly contiguous genome assemblies of

the related strains 70–15, FJ81278, and Guy11 and analyzed the macro-synteny of correspond-

ing regions for signs of genomic rearrangements. AVR-Pik is present in the reference strain

70–15 and is encoded in the sub-telomeric region at the end of chromosome 2 (supercon-

tig_8.2) and on contigs 13 and 21 in strains Guy11 and FJ81278, respectively. In strain 70–15

the AVR-Pik gene resides in the region that is syntenic to the 761 kb region on the mini-chro-

mosome of FR13 described earlier. However, comparison of the corresponding region of

Guy11 suggested large scale rearrangements and variable degrees of synteny around the AVR-

Pik locus in different rice isolates (Fig 6). Additionally, we observed that the syntenic regions

that are shared between the analyzed strains encode different variants of the AVR-Pik effector.

Whereas the first syntenic region of the FR13 mini-chromosome encodes the variant AVR-

PikA, syntenic regions in 70–15 and Guy11 encode the variant AVR-PikC. Furthermore, we

identified a 82 kb region in isolate FJ81278 encoding AVR-PikD with high sequence similarity

and synteny to the FR13 mini-chromosome scaffold 23 that encodes the same AVR-Pik vari-

ant, suggesting that the two copies of AVR-Pik on the mini-chromosome originated from

independent genomic locations and recombined on the mini-chromosome.

The polyketide synthase Ace1 is also located on the FR13 mini-chromosome. Ace1 is part

of a large secondary metabolite cluster that spans a region of approximately 70 kb [63]. To ana-

lyze the genomic context around this cluster on the mini-chromosome, we extracted the gene

sequences of the whole cluster in FR13 and analyzed syntenic regions in the aforementioned

isolates as well as US71 and CD156. In rice isolates and the foxtail millet isolate US71, the Ace1

cluster and the order of the macrosyntenic region are well conserved (Fig 6B). Interestingly,

the ACE1 cluster is encoded on core-chromosomes in strains 70–15, Guy11, and US71, based

on the size of the contigs, suggesting inter-chromosomal rearrangements that involve core-

and mini-chromosomes. In the more distantly related strain CD156, the Ace1 cluster is less

conserved and the syntenic region only spans across 195 kb, reflecting the genetic diversity

and possibly genomic rearrangements between rice isolates and distantly related lineages.

Strikingly, the macrosyntenic region on the FR13 mini-chromosome is disrupted by a 392 kb

insertion after the Ace1 cluster that is absent in the core-chromosomes of other isolates, fur-

ther substantiating the hypothesis that mini-chromosomes undergo complex genomic rear-

rangements and might acquire isolate specific sequences.

Core-genomic rearrangements are associated with mini-chromosome

emergence in M. oryzae
To further investigate the possible role of core-genomic rearrangements in mini-chromosome

emergence, we compared the genome structure of all isolates to closely related reference
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genomes. In the case of FR13 and US71, the most closely related reference genome is 70–15.

For CD156, we compared the genome structure to the chromosome quality reference assembly

of the eleusine isolate MZ5-6-1 [65] in addition to 70–15. We identified several isolate-specific

rearrangements in form of intra- and inter-chromosomal inversions and translocations (S13,

S14 and S15 Figs). Most strikingly, we identified a major genomic rearrangement in the form

of an intra-chromosomal inversion/translocation between core-chromosome 2 in 70–15 and

scaffold 1 in FR13 that was directly adjacent to the syntenic region we identified between chro-

mosome 2 and the mini-chromosome of FR13 (Figs 7A and S13) that was well supported by

>100x nanopore read coverage (S16 Fig).

This association between a major core-genomic rearrangement and the split between core-

and mini-chromosome in FR13 suggests that mini-chromosomes emerge through structural

changes in the core genome. We further analyzed the gene-, repeat- and GC-content in the

regions surrounding this rearrangement and found that blocks of repeat rich regions are asso-

ciated with the observed rearrangements (Fig 7B), suggesting a role of repeats in facilitating

both, core-genomic structural changes and emergence of mini-chromosomes. This finding is

further supported by the observed duplication of the repeat-rich region of the core-genomic

scaffold 2 in CD156 that is duplicated on the mini-chromosome (S4 and S6 Figs).

We also took advantage of the availability of high-quality genome assemblies of isolates 70–

15, MZ5-1-6 and BR32, which do not carry mini-chromosomes, to further investigate the rela-

tionship between mini-chromosomes and core-chromosomes. We analyzed unfiltered align-

ments of the three mini-chromosomes to genome assemblies of isolates 70–15 (rice infecting

lineage), MZ5-1-6 (eleusine infecting lineage) and BR32 (wheat infecting lineage). This analy-

sis revealed that the FR13 mini-chromosome is the only one to form continuous alignments

with core chromosome sequences (chromosome 2) of each of the tested isolates (S17 Fig).

Conversely, US71 and CD156 mini-chromosome sequences only generated fragmented align-

ments of repetitive nature (S17 Fig).

M. oryzae mini-chromosomes contain canonical telomeres

Our observations along with the results obtained with the isolate B71 by Peng et al., 2019 [56]

imply that sub-telomeric regions associated with rearrangements could contribute to mini-

chromosome emergence. Therefore, we investigated the extent to which mini-chromosomes

contain canonical telomeric repeats. We searched for canonical telomeric repeats in our

assemblies after reordering the contigs according to the genomic structure of the reference

genomes 70–15 and MZ5-6-1 using MAUVE [66]. We identified telomeric repeats in the iso-

lates FR13 and US71, but not in CD156. In US71, we identified 10 scaffolds with telomeric

repeats on one end of the scaffold. Co-linearity analysis to 70–15 placed these telomeres at one

end of each core chromosome and to 3 small scaffolds that did not align to 70–15, including

Fig 6. Genomic rearrangements around virulence-related loci on mini-chromosomes. A) Synteny analysis around the AVR-Pik loci on the FR13 mini-

chromosome and corresponding chromosomes and contigs in the related isolates Guy11, FJ81278, and the reference strain 70–15. The 761 kb region

around the variant AVR-PikA on the mini-chromosome with high similarity to the end of chromosome 2 of the reference strain 70–15 is shown in purple.

The makrosyntenic region between 70–15 and FR13 is disrupted on the mini-chromosome (synteny break between region 1 and 2). The synteny is

disrupted earlier in Guy11 and there are 2 inversions around the AVR-Pik locus. Another syntenic region (82 kb) is present between the end of the mini-

chromosome encoding the AVR-PikD variant and contig 21 of isolate FJ81278. Syntenic regions larger than 10 kb are shown. Illustration of supercontig

8.2 starts at 6 Mb for better visualization. B) Synteny analysis around the Ace1-containing secondary metabolite cluster on the FR13 mini-chromosome

and corresponding contigs of isolates Guy11, FJ81278, 70–15, US71, and CD156. The Ace1 cluster is located at the end of the 761 kb syntenic region

between the FR13 mini-chromosome and supercontig 8.2 of isolate 70–15. The synteny around the Ace1 locus is highly conserved in closely related

isolates, including the foxtail millet isolate US71. In strains Guy11, US71, and 70–15 the cluster is located on core-chromosomes. The macro-synteny

around the Ace1 cluster is disrupted by a 392 kb insertion on the FR13 mini-chromosome. The Ace1 cluster is shown in red and the two syntenic regions

(761 kb and 164 kb) are shown in purple and yellow, respectively. Mini-chromosome scaffolds are highlighted in blue.

https://doi.org/10.1371/journal.pgen.1009386.g006
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Fig 7. Core-genomic rearrangements are associated with mini-chromosome emergence. A) Synteny analysis of 70–15

chromosome 2 and syntenic scaffolds and contigs in FR13, Guy11, and FJ81278. Syntenic regions between isolates are shown as

genetic links in blue (alignments in forward direction) and red (reverse direction). Aligning regions are indicated as red and blue

boxes. Scaffold and contig breaks are indicated as grey tones. The mini-chromosome scaffold 9 is shown in bright blue. Regions
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the mini-chromosome scaffold 21 (S14 Fig). We further identified 13 telomeres in isolate

FR13, including two scaffolds that resemble complete chromosomes (S13 Fig). Interestingly,

we found classical telomeric repeats at the end of both mini-chromosome scaffolds, indicating

that mini-chromosomes are linear and that telomere and sub-telomere associated repeats are

associated with mini-chromosome emergence.

Discussion

Genomes of eukaryotic plant pathogens are notorious for being highly dynamic. Chromosome

scale structural variation, including supernumerary mini-chromosomes, has been documented

by electrophoretic karyotyping [14] but has not been studied extensively at the sequence level

mainly due to methodological limitations. Here, we took advantage of recent technical devel-

opments to reassess the genomes of 4 previously sequenced, host-specific isolates of the blast

fungus M. oryzae. We used a combination of long- and short-read sequence data to generate

near chromosome quality genome assemblies. We found that supernumerary mini-chromo-

somes are common in isolates of host-specific lineages of the blast fungus M. oryzae. We then

used a technique we termed mini-chromosome isolation sequencing to collect short-read data

from isolated mini-chromosomes and match them to scaffolds in the whole genome assem-

blies. We detected single mini-chromosomes in the rice and goosegrass isolates, and possibly

two mini-chromosomes in the foxtail millet isolate of M. oryzae. Our study validates, comple-

ments and extends the findings of Peng et al. [56], which described mini-chromosomes in the

wheat blast lineages of M. oryzae. Therefore, all major lineages of this pathogen carry mini-

chromosomes and future genomics studies of the blast fungus pathogen will need to take this

into account.

Comparative analyses of the mini-chromosomes sequences revealed that they are highly

variable between isolates indicating that they may have emerged independently or that they

have diverged rapidly after an ancient emergence event. Comparative analyses with core chro-

mosomes indicate that the mini-chromosomes partially originate from rearrangements and

segmental duplications of core-chromosomes. However, the mini-chromosomes share com-

mon features such as low gene and high repeat density. We also located several genes encoding

secreted proteins on mini-chromosomes although the numbers varied between the three iso-

lates. Due to the small sample size used in this study, we cannot at this point draw strong con-

clusions from these observations. However, our data suggest that mini-chromosomes emerge

from core chromosome ends and the gene and repeat composition of the mini-chromosomes

appears to reflect this origin.

We could not determine the precise structure of the US71 mini-chromosomes. Our results

indicate that US71 mini-chromosome scaffolds contain at least two regions that are duplicated

in the genome that were not resolved in the current assembly. It is generally challenging to

assemble duplicated regions due to several technical reasons. It is possible that duplicated

regions that are present on core- and mini-chromosomes in this isolate are simply hard to

assemble separately. It is also possible that genome rearrangements have emerged during cul-

turing and interfered with matching mini-chromosome reads to scaffolds. In the future, tech-

nical advances are needed to address this type of issues. For example, improving MCIS by

around the major rearrangement are numbered and indicated by colored boxes. B) Analysis of GC-content, gene-content, and

repeat-content in regions i-iv surrounding the major rearrangement. Colors correspond to colors in (A). Axis limits for GC-content

was set to 0.5–0.7. Axis limits for gene- and repeat-content was set to 0 / max and the center line represents the average of the contig.

Gene- and repeat content is plotted as bp per 1kb sliding window. Gene and repeat models are plotted below in bright blue and

bright red, respectively.

https://doi.org/10.1371/journal.pgen.1009386.g007
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including long-range sequencing of purified mini-chromosomes would lead to better mini-

chromosome assemblies.

We located the genes for the effector AVR-Pik and the polyketide synthase Ace1 to the

mini-chromosome of the rice-infecting isolate FR13 even though these genes are located on

core-chromosomes in other isolates. Analyses of macrosynteny around these regions showed

that mini-chromosomes undergo large-scale rearrangements, and thus, could contribute to

genomic plasticity within M. oryzae populations. Additionally, we provide evidence that mini-

chromosomes are associated with extensive rearrangements of core-chromosomes. Overall,

our results demonstrate the value of mini-chromosome isolation sequencing (MCIS) as a scal-

able method to reliably identify mini-chromosomes in whole genome assemblies. This will

allow us to study the biogenesis and biological relevance of this unique genomic compartment.

Our study, along with Peng et al. [56], reveals that mini-chromosomes are present in inde-

pendent lineages of M. oryzae. Although we found mini-chromosomes in the examined rice,

foxtail millet and goosegrass isolates of M. oryzae, we didn’t detect any in the wheat blast iso-

late BR32 (Fig 1), an isolate that traces back to early outbreaks of wheat blast in 1991. This is

consistent with the recent study by Peng et al. [56], which documented mini-chromosomes in

the wheat blast isolates B71 and P3 collected in 2012 but not in T25 collected in 1988. It is pos-

sible that wheat blast isolates collected soon after the emergence of this disease in the 1980s

lack mini-chromosomes. The lack of meiotically unstable mini-chromosomes in these isolates

may be due to sexual reproduction, which was common among isolates from the early phases

of the epidemic [67]. Meiotic instability could also explain the lower degree of conservation of

the FR13 mini-chromosome in the recombining lineage of rice blast isolates (S8). However,

we cannot rule out the possibility that these isolates have lost their mini-chromosomes over

time due to long term culturing under laboratory conditions. Similar loss of accessory chro-

mosomes within weeks has been demonstrated in vitro for Z. tritici [20]. The observed varia-

tion in mini-chromosome content is consistent with earlier studies showing that the

occurrence of mini-chromosomes is variable within and between lineages of M. oryzae [52,53].

The mini-chromosomes we studied share little sequence similarity with each other indicat-

ing that they are not conserved across host specific isolates but rather emerged independently

or diversified more rapidly than core-chromosomes throughout lineage diversification of M.

oryzae (Fig 3). In contrast, mapping of mini-chromosome derived reads of wheat isolate P3 to

the B71 mini-chromosome sequence revealed several overlapping regions [56]. Despite the

overlaps, these regions seem to be interspersed with sequences that are specific to each individ-

ual mini-chromosome. This is consistent with the view that mini-chromosomes can emerge

frequently from rearrangements of core-chromosomes. Indeed, we detected significant simi-

larity in whole genome alignments to the mini-chromosomes in isolates from several lineages

(Fig 4). However, it is unclear to which extent the aligned sequences correspond to mini-chro-

mosomes or to matching regions from core-chromosomes.

Our comparison of the FR13 mini-chromosome to high quality reference assemblies indi-

cates that mini-chromosomal sequences match core chromosome regions (S17, S13 and S15

Figs). Interestingly, the matching core chromosome regions varied depending on the isolate.

Whereas FR13 mini-chromosome matched the end of chromosome 2 in rice isolate 70–15, the

eleusine isolate MZ5-1-6, and the triticum isolate BR32 (S17 Fig), it matched chromosome 1

(scaffold 08) in the eleusine isolate CD156 (S15 Fig). These observations are consistent with a

model where mini-chromosomes and core chromosomes exchange sequences. However, more

fine-tuned comparisons of closely related sibling isolates are necessary to refine this model and

determine the frequency at which such exchanges occur. Future comparative analyses, notably

mini-chromosome isolation sequencing of natural populations of M. oryzae, will shed light on

the mechanisms of mini-chromosome emergence, maintenance and evolution.
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Despite their independent origin, mini-chromosomes share common genetic features. We

notice that elevated repeat content and lower gene densities are consistent features of mini-

chromosomes (Fig 5) [56]. This is surprising given that all mini-chromosomes share overall lit-

tle sequence similarity and seem to have emerged independently. What is the underlying

mechanism that facilitates emergence of sequence unrelated mini-chromosomes with com-

mon genomic features? Our results suggest that mini-chromosomes might emerge from core

genomic rearrangements involving primarily core-chromosome ends (Figs 6, 7 and S4). These

regions are known to have higher repeat content and to be more dynamic than central regions

of chromosomes [11,56,68]. It seems plausible that repeats are involved in mini-chromosome

formation, a notion that is further supported by our observation that core genomic rearrange-

ments and mini-chromosome emergence are associated with blocks of repetitive sequences

(Fig 7B). Repeats facilitate genomic rearrangements, such as inter-chromosomal transloca-

tions, in several plant pathogenic fungi [6,11,20,69,70]. Under stress conditions, specific classes

of transposable elements can get activated and induce genomic rearrangements [71]. Interest-

ingly, Peng et al. [56] observed that the B71 mini-chromosome contains more active repeats

than core chromosomes based on lower rates of repeat-induced point (RIP) mutations. The

emerging model is that transposon activation generates genomic instability, primarily at core-

chromosome ends, resulting in the genesis of mini-chromosomes. Future comparative analy-

ses of mini-chromosomes from closely related isolates, ideally within the same clonal lineage,

will further reveal the precise genetic elements associated with the emergence and divergence

of mini-chromosomes.

What are the implications of mini-chromosomes for adaptive evolution of the blast fungus?

Our results, together with other’s suggest that mini-chromosomes form a gene poor, repeat-

rich genomic compartment that contributes to genome rearrangements and gene flow

[11,55,56]. Given that effector genes are associated with mini-chromosomes in M. oryzae, this

genomic architecture is another example of the two-speed genome concept in which particular

compartments contribute to adaptive evolution. This could happen through several mecha-

nisms. Mini-chromosomes may represent an intermediate stage of large rearrangements that

facilitate generation of structural variations across the genome and might contribute to diver-

gence and gene gains/losses of virulence related genes.

One hint about the adaptive nature of mini-chromosomes is the presence of AVR effector

genes. Indeed, the FR13 1.7 Mb mini-chromosome has a similar size and architecture to a pre-

viously reported mini-chromosome of another rice-infecting isolate, 84R-62B [55]. Both FR13

and 84R-62B mini-chromosomes carry the AVR-PikA and AVR-PikD variants of the effector

AVR-Pik. Kusaba et al. [55] demonstrated that the presence of each of the two effector variants

on the 84R-62B mini-chromosome is associated with allele specific recognition in rice cultivars

carrying the cognate variants of the immune receptor Pik. They further suggested that rear-

rangements between the mini- and core chromosomes, as well as mini-chromosome loss can

lead to AVR-Pik presence/absence polymorphisms that determine virulence on Pik rice plants,

thereby clearly demonstrating that genes on mini-chromosomes can impact virulence.

Another effector, AVR-Pita, is also encoded on mini-chromosomes in various rice blast iso-

lates and multiple independent rearrangement events are thought to have generated AVR-Pita

containing mini-chromosomes [11].

A species such as M. oryzae that consists of genetically defined host-specific lineages may

benefit from a process that facilitates horizontal transfer of genetic material. Genetically

diverse isolates that infect a common host may give rise to new variants that increase the diver-

sity and adaptive potential of local blast populations [72]. Future analyses are needed to deter-

mine the extent to which transfer of supernumerary chromosomes drives the evolution of M.

oryzae as reported for other plant pathogenic fungi [19,27,55,73].
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In conclusion, it is of utter importance to understand the biology of supernumerary mini-

chromosomes and its impact on genomic diversity and gene flow. Our study lays the basis for

studying the role of mini-chromosomes in defining the genetic identity of host specific line-

ages of M. oryzae. In the future we will integrate mini-chromosome sequencing into pangen-

ome studies of M. oryzae to further our understanding on the genetic events that shape the

evolution of host-specific lineages of M. oryzae.

Material and methods

Biological material

The M. oryzae isolates analyzed in this study were field isolates collected from different hosts

and different regions and represent four host-adapted lineages. FR13 was isolated from japon-

ica rice in France in 1988, US71 was isolated from Setaria sp. (foxtail millet) in the USA,

CD156 was isolated from Eleusine indica (goosegrass) in Ferkessedougou, Ivory Coast in 1989,

and BR32 was isolated from wheat in Brazil in 1991. All isolates were acquired from Elisabeth

Fournier and have been previously reported in the GEMO project [48].

DNA extraction for whole genome sequencing and mini-chromosome

isolation sequencing

For mycelium propagation and whole genome sequencing, M. oryzae isolates were cultured on

complete medium agar (CM). High molecular weight genomic DNA from M. oryzae was

extracted from mycelia of 7-days old cultures following the method described in [74]. Geno-

mic DNA was quantified on a TapeStation (Agilent) and treated with DNAse-free RNAse.

RNAse treated DNA was sheared using either a gTUBE or a 22 Gauge needle. Sheared DNA

was captured using AMPure beads (Beckman Coulter, Indianapolis, US) and eluted in 45 μl

water.

For mini-chromosome isolation sequencing, 8 blocks of 7-days old mycelium were trans-

ferred into 150 ml YG-medium (5g/L yeast extract, 20g/L glucose) and incubated at 24˚C and

120 rpm for 3 days. Mycelium was harvested by filtering the culture through two layers of

miracloth. Protoplasts were generated by incubation in sterile Trichoderma harzianum lysing

enzymes solution (150 mg lysing enzymes in 15 mL 1 M Sorbitol) for 2–4 h. Protoplasts were

harvested by filtering through two layers of miracloth followed by centrifugation for 10 min at

1,500 rpm and washed twice in 1 M Sorbitol. Quality of protoplasts was observed microscopi-

cally. Protoplasts were then resuspended in 100–200 μl 1 M Sorbitol / 50 mM EDTA, embed-

ded in 2x volumes of 1% certified megabase agarose (Biorad) and incubated in proteinase K

containing NDS buffer (10 mg/mL laurylsarcosine, 100 mM TRIS-HCl pH9.5, 500 mM

EDTA, proteinase K 200 μg/ml) at 50˚C for 48 h. Plugs were then washed three times with

fresh 50 mM EDTA for 1 h prior to CHEF gel electrophoresis (detailed protocol available on

protocols.io, [75]).

Whole genome sequencing and assembly

Libraries for whole genome sequencing were prepared by following the 1D protocol from

Oxford Nanopore. Sequencing runs were performed using MinION R9.4 (Oxford Nanopore

Technologies, Oxford, UK). Sequence reads were assembled into contigs using Canu (v1.6 and

v1.7) [76]. Contiguity was further improved by merging highly similar contig ends with iden-

tity>98% and alignment length>10 kb (for three contigs the length of the alignment was

between 8 kb and 10 kb) after whole genome alignments using the nucmer application of the

MUMMER3 package [77] and SSPACE [78]. After extracting and merging matching contig
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ends, we tested for read support for both ends and reads spanning the entire region (S5 Table).

We then improved base calling quality of the assemblies by applying a polishing pipeline

(https://github.com/nanoporetech/ont-assembly-polish) consisting of two iterations of

racon (https://github.com/isovic/racon; v1.3.2) and two iterations of pilon v1.22 [79] polishing

using Nanopore and published Illumina reads (Illumina reads from [48]). To assess the perfor-

mance of the polishing pipeline and the overall quality of the genome assemblies, we per-

formed a benchmarking universal single-copy orthologs (BUSCO) [80] analysis using the

Sordariomycota database (https://busco.ezlab.org/). Details about the assemblies, isolates,

and accession numbers are available in [57]. Nanopore sequencing reads are deposited in the

European Nucleotide Archive (ENA) under the accession numbers ERR2612751 (BR32),

ERR2612749 (FR13), ERR2612750 (US71), and ERR2612752 (CD156).

Mini-chromosome isolation, library preparation and sequencing

Mini-chromosomes of M. oryzae were separated from core-chromosomes by contour-clamped

homogenous electric field (CHEF) gel electrophoresis. Therefore, plugs containing the

digested protoplasts (see above) were placed in a 1% megabase agarose gel. We used 0.5% TAE

buffer for subsequent DNA extraction or 0.5% TBE buffer for visualization (Fig 1). We sepa-

rated mini-chromosomes using a Biorad CHEF DRII system with the following settings: Run

time: 96 h; Voltage: 1.8–2 V/cm; Initial switch interval: 120 s; End switch interval: 3600 s. The

gel was then dyed with ethidium bromide solution (1 μg/ml) for visualization on a UV-transil-

luminator and individual mini-chromosome bands were excised.

Mini-chromosomal DNA was eluted from the gel plugs by electroelution using a D-Tube

dialyzer midi, MWCO 3.5 kD (Merck). Therefore, individual plugs were placed in the dialysis

tube and covered with 0.5% TAE buffer. The mini-chromosomal DNA was electroeluted for

3h at 90 V, resuspended by slowly pipetting up and down and concentrated in a vacuum cen-

trifugal evaporator to a concentration of 50–150 ng/μl. Concentration of the extracted DNA

was measured spectrophotometrically and fluorometrically by Nanodrop and Qubit, respec-

tively, prior to library preparation.

Libraries for mini-chromosome sequencing were generated following the general guide-

lines of the Nextera Flex library preparation kit (Illumina). We modified the protocol as fol-

lows. For tagmentation, we used a total volume of 5 μl consisting of 2.5 μl Tn5 transposase,

0.5 μl of 10x reaction buffer, and 2 μl mini-chromosomal DNA set to a concentration of 0.5

ng/μl. The tagmentation mix was incubated in a thermocycler at 55˚C for 7 min. The tag-

mentation product was then used in a PCR reaction containing 2.5 μl custom barcoding

primers (10 μM) (S6 Table), 25 μl 2x NEBNext High-fidelity PCR mix (New England Bio-

labs), and 15 μl H2O. PCR conditions: 72˚C for 5 min, 98˚C for 30 sec, 5 cycles of 98˚C for

10 sec followed by 63˚C for 30 sec and 72˚C for 1 min. The numbers of amplification cycles

needed for library preparation of each sample was then determined by quantitative PCR as

follows: 25 μl SYBR Green Jumpstart Taq ReadyMic (Sigma-Aldrich), 5μl PCR product from

previous reaction, 2.5 μl of each barcoding primer, 15 μl H2O. PCR conditions as described

above, without the initial 72˚C step. Same PCR conditions were then applied to amplify the

tagmented DNA. Libraries were then cleaned up using AMPure PB Bead purification kit

(Pacific Biosciences). Concentration and quality of the libraries was confirmed by Nanodrop,

Qubit, and BioAnalyzer 2100 using the high sensitivity DNA Kit (Agilent Technologies).

Sequencing of mini-chromosomal DNA libraries was carried out on a NextSeq 500 system

(Illumina) using the NextSeq 500/550 Mid output Kit (Illumina). Mini-chromosome derived

reads were deposited at the European nucleotide archive under the accession numbers

ERR3771227-ERR3771238.
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Identification of mini-chromosomes in whole genome assemblies

The quality of reads obtained from mini-chromosome isolation sequencing was confirmed

with fastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and low quality

sequences as well as adaptor sequences were removed using trimmomatic [81]. Mini-chromo-

some reads of each strain were then mapped against the whole genome assembly of the same

strain using the BWA-mem (burrows-wheeler aligner) algorithm with default parameters.

Reads were then filtered to keep only uniquely mapping reads using the samtools package [82]

to prevent ambiguous mapping of reads originating from repeat rich regions. MCIS read cov-

erage was calculated per 1 kb sliding window (window size: 1000 bp; slide: 500 bp) using the

bedtools package (https://bedtools.readthedocs.io/en/latest/) and plotted using the R package

circlize [83]. Mini-chromosome coverage and repeat content used to generate circus plots are

shown in S7 Table.

Read mapping against the reference assembly version 8 of strain 70–15 (ensemble release

version 45) and visualization was carried out as described above. The number of reads map-

ping to the reference genome was calculated for total reads and uniquely mapping reads.

Uniquely mapping reads were used for visualization to exclude ambiguous mapping sites.

Total amount of mapping reads is reported as percentage of total reads per sample. The super-

contig number in assembly version 8 of isolate 70–15 corresponds to the chromosome number

and supercontig_8.8 contains unmapped sequence.

Whole genome and mini-chromosome alignments

Global alignments were generated using the nucmer algorithm of the MUMMER3 package

[77]. The alignments were further filtered using the delta-filter utility (MUMMER3) with

parameters -l 10000 and -i 80 (length >10 kb; percent identity >80%) to retrieve continuous

alignments. Alignment coordinates were extracted with the show-coords utility and the output

was modified to generate coordinate files in “bed” format for plotting in R. Plots were gener-

ated in R using the packages circlize [83], for circular representations of mini- and core-chro-

mosome alignments, and karyoploteR [84], for linear representation of syntenic regions.

To calculate the breadth of coverage of whole genome alignments across several host spe-

cific lineages, all assemblies were aligned to the mini-chromosome contigs and selected core-

chromosome contigs of the three isolates using nucmer. We then used the raw alignments and

filtered alignments (length>5 kb) to generate coordinate files in “bed” format. Overlapping

alignments were merged using bedtools v2.29.2 to generate non-redundant alignments for

each mini-chromosome which were used to calculate the breadth of coverage relative to the

total size of each mini-chromosome.

To calculate the breadth of coverage in the rice infecting lineage, each core chromosome or

set of mini-chromosomes belonging to the same isolate was indexed using “bwa index”. We

retrieved all trimmed Illumina reads from Latorre et al., 2020 [44] and mapped them to the dif-

ferent indexed contigs using bwa mem. PCR duplicates were marked using Picard Tools.
Finally, we used the samtools depth function to calculate the breadths of coverage for at least

1X, for every contig without filtering for Mapping Quality (MQ0). The overall pipeline

description is available at https://gitlab.com/smlatorreo/magnaporthe_minichromosomes.

Analysis of gene and repeat content

Gene models for all strains were retrieved from previous assemblies published via the Magna-
porthe GEMO database ([48]; http://genome.jouy.inra.fr/gemo/). We then identified genes

using a similarity-based approach. We used blastn [85] with all strain specific gene models to

identify genes in our assemblies using a threshold of>90 query coverage and 99% identity to
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account for differences in base calling quality and sequencing errors between two assemblies

of the same strain. The>90 coverage threshold was chosen to account for errors in mononu-

cleotide repeats that can occur from nanopore sequencing and the 99% identity threshold was

empirically determined by whole genome alignments of both assemblies of the same strain

which resulted in an average sequence identity between 99% and 99.5%. Resulting genes were

assigned to mini- and core-chromosome encoded. Gene density was calculated as number of

features per 10 kb window across each genomic compartment (core- and mini-chromosomes).

To analyze gene presence/absence of mini-chromosome encoded genes across host-specific

lineages of M. oryzae, we extracted all gene models that are exclusively present on the mini-

chromosomes and aligned them to 107 publicly available genome assemblies representing 10

genetic lineages of M. oryzae and the outgroups PM1 (M. pennisetigena) and six M. grisea iso-

lates using minimap2. We then extracted all best hits with a query coverage of>90% to

retrieve conserved genes and plotted their similarity to the query [%] and used python (3.8.3)

to plot coverage values as a heatmap, using the pandas library (1.0.4) for data handling, and

matplotlib (3.2.1) and seaborn (0.11.0) libraries for plotting. The seaborn function ‘heatmap’

was used for basic heatmap generation, and ‘clustermap’ was used for the clustered x-axis

heatmap.

Repetitive sequences were annotated with RepeatMasker (http://www.repeatmasker.org/)

using a merged library of repeats consisting of the RepBase repeat library for fungi (https://

www.girinst.org/repbase/) and Magnaporthe repeats identified by Chiapello et al. [48]. Total

repeat content for the whole genome as well as for mini- and core-chromosome scaffolds was

extracted from RepeatMasker.

For bootstrapping of gene and repeat content, we extracted the coordinates of features from

the gene model blastn and RepeatMasker output. We then transformed the data into bed for-

mat for analysis in R. For each mini-chromosome scaffold, we sampled 10,000 random regions

from the core genome with equal size to the respective mini-chromosome scaffold using the

randomizeRegions function of the regionR package. We then determined the numbers of

genes and the basepairs occupied by repeats for each core-chromosome fragment and the

mini-chromosome scaffolds using the countOverlaps function of the GenomicRanges package.

Density plots of the frequency of features per core-chromosome fragment were generated with

the R package ggplot.

Prediction of secreted proteins

To predict secreted proteins, we retrieved the protein annotation of all strains from the Mag-
naporthe GEMO database ([48]; http://genome.jouy.inra.fr/gemo/). We then predicted pro-

teins containing a signal peptide using the program SignalP v2.1 [86]. We then used TargetP-

2.0 [87] to identify mitochondrial proteins and the hidden-markov model TMHMM [88] to

identify proteins containing transmembrane domains. After removing mitochondrial and

transmembrane proteins, we matched secreted proteins to the blastn output used to transfer

gene models (described above) to determine the number and genomic location of secreted

proteins in the nanopore/canu assemblies.

Pfam domain annotation

Pfam domains were predicted by a hidden-markov model scan using the Pfam protein families

database ([89]; https://pfam.xfam.org/). Protein sequences were retrieved from the Magna-
porthe GEMO database as described above. We used a total of 772 non-redundant, mini-chro-

mosome encoded proteins for the analysis. These contain all mini-chromosome encoded

proteins after removal of duplicated, identical sequences.
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Predicting orthologous groups by TRIBE-MCL

Orthologous families were predicted using the software TRIBE-MCL [90]; http://micans.org/

mcl/). We combined the proteomes of all strains and identified homologous proteins using

blastp with a query coverage threshold of 90% and e-value of 10e^10. We then transform the

blastp output into an MCL readable format using the mcxdeblast command of TRIBE-MCL

and identify tribes by mcl and extracted tribes and protein identifiers using custom perl scripts.

Of 12951 tribes predicted from the combined proteome retrieved from the GEMO Magna-

porthe database, the members of 12900 matched the new assemblies with high coverage

(>90%) and identity (>99%). Resulting tribes were then categorized into three groups: i) tribes

that are conserved in all isolates, ii) tribes that are missing in one of the isolates, and iii) tribes

only present in one isolate. Then, we assigned the genomic location of each of the tribe mem-

bers as core-chromosome or mini-chromosome encoded, based on our mini-chromosome

identification.

Supporting information

S1 Fig. MCIS-read mapping and repeat content of M. oryzae strain FR13. Circos plot of

mini-chromosome isolation sequencing (MCIS) coverage and repeat content across the FR13

genome. Outer ring (rainbow colors): Scaffolds and scaffold sizes. Outer track (Red/Black):

MCIS coverage per sliding window. Window size = 1000 bp; Slide distance: 500 bp. Y-axes:

average coverage per 1 kb window; axis limits set to min/max coverage. Inner track (Blue/

Black): Repeat content per sliding window. Window size = 10 kbp; Slide distance: 5 kbp. Y-

axes: repeat content in bp per 10 kb window; axis limits set to zero to maximum.

(TIF)

S2 Fig. MCIS-read mapping and repeat content of M. oryzae strain US71. Circos plot of

mini-chromosome isolation sequencing (MCIS) coverage and repeat content across the US71

genome. Outer ring (rainbow colors): Scaffolds and scaffold sizes. Outer track (Red/Black):

MCIS coverage per sliding window. Window size = 1000 bp; Slide distance: 500 bp. Y-axes:

average coverage per 1 kb window; axis limits set to min/max coverage. Inner track (Blue/

Black): Repeat content per sliding window. Window size = 10 kbp; Slide distance: 5 kbp. Y-

axes: repeat content in bp per 10 kb window; axis limits set to zero to maximum.

(TIF)

S3 Fig. MCIS-read mapping and repeat content of scaffolds < 2 Mb in M. oryzae strain

US71. A) Circos plot of mini-chromosome isolation sequencing (MCIS) coverage and repeat

content across US71 scaffolds < 2Mb. B) Circos plot of mini-chromosome isolation sequenc-

ing (MCIS) coverage and repeat content across US71 scaffolds < 200 kb. Outer ring (rainbow

colors): Scaffolds and scaffold sizes. Outer track (Red/Black): MCIS coverage per sliding win-

dow. Window size = 1000 bp; Slide distance: 500 bp. Y-axes: average coverage per 1 kb win-

dow; axis limits set to min/max coverage. Inner track (Blue/Black): Repeat content per sliding

window. Window size = 10 kbp; Slide distance: 5 kbp. Y-axes: repeat content in bp per 10 kb

window; axis limits set to zero to maximum.

(TIF)

S4 Fig. MCIS-read mapping and repeat content of M. oryzae strain CD156. A) Circos plot

of mini-chromosome isolation sequencing (MCIS) coverage and repeat content across the

CD156 genome. B) Circos plot of mini-chromosome isolation sequencing (MCIS) coverage

and repeat content across US71 scaffolds < 2Mb. Outer ring (rainbow colors): Scaffolds and

scaffold sizes. Outer track (Red/Black): MCIS coverage per sliding window. Window
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size = 1000 bp; Slide distance: 500 bp. Y-axes: average coverage per 1 kb window; axis limits set

to min/max coverage. Inner track (Blue/Black): Repeat content per sliding window. Window

size = 10 kbp; Slide distance: 5 kbp. Y-axes: repeat content in bp per 10 kb window; axis limits

set to zero to maximum.

(TIF)

S5 Fig. Nanopore sequencing read coverage of proposed mini-chromosome scaffolds in

US71. The upper panel of each plot shows the nanopore read coverage per 1 kb sliding window

across proposed mini-chromosome contigs. Lower panels show mini-chromosome sequenc-

ing coverage per 1 kb sliding window. The red line indicates the average coverage across the

whole genome. The green line shows the average coverage per scaffold and the blue line shows

the average coverage in regions of reduced coverage in scaffolds 14 and 21. The regions are

indicated by the blue bars. Axes limits were manually set to best represent the data range in

each plot.

(TIF)

S6 Fig. The CD156 mini-chromosome contains duplicated sequences matching the subte-

lomeric region of core-chromosome scaffold 2. A) Nanopore read coverage across scaffold 2

after mapping to the whole genome sequence (upper panel) and mini-chromosome read cov-

erage (lower panel) in CD156. B) Nanopore read coverage across scaffold 2 after mapping to

the isolated scaffold 2 (upper panel) and mini-chromosome read coverage (lower panel) in

CD156. C) Alignment of CD156 mini-chromosome scaffolds to scaffold 2 (upper panel) and

repeat content of scaffold 2 (lower panel). Axes limits were manually set to best represent the

data in each plot.

(TIF)

S7 Fig. MCIS reads of FR13, US71, and US71 mapped against the reference genome of

strain 70–15. A) Circos plot of MCIS reads uniquely mapped against the 70–15 genome.

Outer ring: 70–15 chromosomes and chromosome sizes. Tracks: 1. FR13 MCIS read depth, 2.

US71 MCIS depth, 3. CD156 MCIS read depth. B) Relative amount of MCIS total reads that

mapped to the genome of strain 70–15. Mapped reads shown in green, unmapped reads in

red.

(TIF)

S8 Fig. Conservation of mini-chromosomal sequences within the rice-infecting genetic

lineage of M. oryzae. Breadth of coverage of each mini-chromosome scaffold and selected

core-chromosome scaffolds after mapping of raw read data of 131 rice-infecting isolates. Iso-

late IDs are given on top of the columns. Scaffold IDs are given at the bottom. Left: Schematic

representation of the rice-lineage phylogeny, adapted from Latorre et al., 2020. Sublineages are

indicated by colors. The bottom row of the heatmap contains FR13 mapping data.

(TIF)

S9 Fig. Conservation of FR13 mini-chromosome encoded genes. The heatmap show

sequence similarity and presence/absence of genes encoded on the FR13 mini-chromosome

across 10 genetic lineages of M. oryzae. Mini-chromosome encoded genes are hierarchical

clustered on the x-axis. Isolate IDs are shown on the y-axis. Host-specific lineages are indicated

on the left.

(TIF)

S10 Fig. Conservation of US71 mini-chromosome encoded genes. The heatmap show

sequence similarity and presence/absence of genes encoded on the US71 mini-chromosome

across 10 genetic lineages of M. oryzae. Mini-chromosome encoded genes are hierarchical
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clustered on the x-axis. Isolate IDs are shown on the y-axis. Host-specific lineages are indicated

on the left.

(TIF)

S11 Fig. Conservation of CD156 mini-chromosome encoded genes. The heatmap show

sequence similarity and presence/absence of genes encoded on the CD156 mini-chromosome

across 10 genetic lineages of M. oryzae. Mini-chromosome encoded genes are hierarchical

clustered on the x-axis. Isolate IDs are shown on the y-axis. Host-specific lineages are indicated

on the left.

(TIF)

S12 Fig. Known effector genes and predicted MAX-effectors are encoded on mini-chromo-

somes and can be duplicated between mini- and core-chromosomes. A) Position of effector

genes in the FR13 genome. B) Position of effector genes in the US71 genome. C) Position of

effector genes in the CD156 genome. Characterized effector genes are shown in red and pre-

dicted MAX-effectors are shown in black throughout A-C. Duplications are shown as lines in

the center. Mini-chromosome scaffolds are shown in red, core-chromosomes in grey. D) Copy

numbers of known effector genes in the genomes of isolates FR13, US71, and CD56. Absence

shown in grey and presence shown in blue. Duplicated and triplicated genes are shown in yel-

low and red, respectively. Numbers in cells show the percentage identity of individual copies.

(TIF)

S13 Fig. Genome structure and telomeres in FR13. Alignments >10 kb between FR13 and

the reference genome 70–15 are shown as genetic links after reordering the FR13 scaffolds

according to the genome structure of 70–15 using MAUVE. Colors indicate the matching

chromosomes and scaffolds between 70–15 and FR13. Colored genomic links represent align-

ments in forward direction. Black genomic links represent inverted alignments. Dashed lines

show completely assembled chromosomes in FR13. Telomeric repeats are indicated by arrow-

heads. Mini-chromosome scaffolds are shown in blue. The proposed mini-chromosome struc-

ture is shown in the top right corner.

(TIF)

S14 Fig. Genome structure and telomeres in US71. Alignments >10 kb between US71 and

the reference genome 70–15 are shown as genetic links after reordering the US71 scaffolds

according to the genome structure of 70–15 using MAUVE. Colors indicate the matching

chromosomes and scaffolds between 70–15 and US71. Colored genomic links represent align-

ments in forward direction. Black genomic links represent inverted alignments. Telomeric

repeats are indicated by arrowheads. Mini-chromosome scaffolds are shown in blue. The pro-

posed mini-chromosome structure is shown in the top right corner. Note that, based on the

current assembly, we cannot resolve the mini-chromosome of US71.

(TIF)

S15 Fig. Genome structure and telomeres in CD156. A) Alignments >10 kb between CD156

and the reference genome 70–15 are shown as genetic links after reordering the CD156 scaf-

folds according to the genome structure of 70–15 using MAUVE. Colors indicate the matching

chromosomes and scaffolds between 70–15 and CD156. Colored genomic links represent

alignments in forward direction. Black genomic links represent inverted alignments. Telo-

meric repeats are indicated by arrowheads. Mini-chromosome scaffolds are shown in blue. B)

Alignments >10 kb between CD156 and the reference genome MZ5-6-1 are shown as genetic

links after reordering the CD156 scaffolds according to the genome structure of MZ5-6-1

using MAUVE. Colors indicate the matching chromosomes and scaffolds between MZ5-6-1
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and CD156. Colored genomic links represent alignments in forward direction. Black genomic

links represent inverted alignments. Telomeric repeats are indicated by arrowheads. Mini-

chromosome scaffolds are shown in blue. The proposed mini-chromosome structure based on

the alignment to MZ5-6-1is shown in the top right corner.

(TIF)

S16 Fig. Nanopore coverage supporting the observed rearrangement between 70–15 chro-

mosome 2 and FR13 scaffold 1. Nanopore coverage per 1 kb sliding window is shown in

green bars. Alignments identified in Fig 6 are shown as red and blue rectangles.

(TIF)

S17 Fig. The sequence content of the FR13 mini-chromosome is partially conserved in

core-chromosomes in isolates from various host-specific lineages. Raw alignment data of

selected high quality whole genome assemblies against mini-chromosome scaffolds of FR13,

US71 and CD156. X-axis: mini-chromosome scaffolds. Y-axis: whole genome assemblies of

the isolates 70–15 (oryza lineage), MZ5-1-6 (eleusine lineage) and BR32 (triticum lineage).

Dots show alignments. Lines indicate continuous alignments. Alignment color shows

sequence similarity [%] between the query and the reference. Color scale = 80–100%.

(TIF)
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