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In an ever-changing environment, survival depends on learning which stimuli represent threat, and also on updating such

associations when circumstances shift. It has been claimed that humans can acquire physiological responses to threat-asso-

ciated stimuli even when they are unaware of them, but the role of awareness in updating threat contingencies remains

unknown. This complex process—generating novel responses while suppressing learned ones—relies on distinct neural

mechanisms from initial learning, and has only been shown with awareness. Can it occur unconsciously? Here, we

present evidence that threat reversal may not require awareness. Participants underwent classical threat conditioning to

visual stimuli that were suppressed from awareness. One of two images was paired with an electric shock; halfway

through the experiment, contingencies were reversed and the shock was paired with the other image. Despite variations

in suppression across participants, we found that physiological responses reflected changes in stimulus-threat pairings inde-

pendently of stimulus awareness. These findings suggest that unconscious affective processing may be sufficiently flexible to

adapt to changing circumstances.

[Supplemental material is available for this article.]

Flexible responses to environmental threats are essential for adap-
tive behavior. Cues that predict threat constantly change—new
threats may arise while old ones cease to pose a risk. When con-
sciously perceiving such cues, we are able to flexibly update and
shift threat responses from one cue to another (Morris and Dolan
2004; Schiller et al. 2008; Fleming et al. 2012). But can we update
our reaction to stimuli that predict danger when we are not aware
of them?

There is some evidence that threat-conditioned stimuli that
are perceivedwithout awareness can still elicit defensive physiolog-
ical reactions (Ohman and Soares 1994; Morris et al. 1998;Whalen
et al. 1998; Critchley et al. 2002). Additionally, although current
evidence is inconsistent and controversial (Mertens and
Engelhard 2020), there have also been reports that new threat asso-
ciations can be formed through classical conditioning even with-
out any awareness of the conditioned stimuli (Katkin et al. 2001;
Manns et al. 2002; Raio et al. 2012), and that such unconscious
learning correlates negatively with anxiety (Raio et al. 2012).

Updating threat associations when contingencies change,
however, is an entirely different matter: It involves a complex pro-
cess of creating novel responses while simultaneously suppressing
acquired ones. To date, such updating has only been shown in hu-
mans who were aware of the stimuli (Schiller et al. 2008), and in
animals under conditions where stimuli were fully available for
perceptual processing (Izquierdo et al. 2017); these studies have

shown, furthermore, that the neural substrates of threat updating
differ from those of the initial learning. It is thus unknownwheth-
er the sophisticated reevaluation involved in such affectiveflexibil-
ity requires awareness, or can be accomplished without it. Here we
show that it can, and furthermore, that stimulus awareness does
not seem to play a substantial role in such affective flexibility.

To examine this, we used the reversal paradigm, a laboratory
model that requires flexible updating of threat contingencies
(Schiller et al. 2008). In an initial acquisition phase, participants
encounter two conditioned stimuli (CSs) and learn that only one
of them predicts an electric shock. Halfway through the experi-
ment, with no warning, these contingencies flip, initiating the re-
versal phase: Participants must flexibly learn that the formerly safe
CS now predicts the shock and that the old one no longer does.
Appropriate response reversal requires a sophisticated form of up-
dating (Costa et al. 2014), in that one must learn to respond to a
cue that now predicts threat while simultaneously inhibiting re-
sponses to the previously threatening cue that is now safe.
Although it is not necessary (Schiller et al. 2008), explicit instruc-
tion can also lead to reversal (Atlas et al. 2016), indicating the in-
volvement of high-level functions and brain regions (Atlas 2019)
thatmay be independent of themore automatic processes that un-
derlie classic conditioning.
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To assess learning, participants’ physiological arousal is re-
corded throughout the experiment, typically by measuring their
skin conductance responses (SCRs); in the present study, we used
a computational approach that uses SCRs to generate estimates
of sudomotor nerve activity (SNA; the neural driver of sweat-gland
activity that produces SCRs). This approach has been shown to
have better sensitivity than traditional SCR peak-scoring methods
for discriminating aversive and neutral stimuli, both naturally oc-
curring and fear-conditioned (see “Model based analysis” in the
Materials and Methods for further details; Bach et al. 2009, 2010;
Bach and Friston 2013).

To see whether reversal of conditioned threat requires aware-
ness, we had a large group of participants (N=86) undergo reversal
learning with the CSs suppressed from awareness by continuous
flash suppression (CFS), a technique commonly used to examine
unconscious perception (Tsuchiya and Koch 2005; Carmel et al.
2010; Stein et al. 2011; Raio et al. 2012): TheCSswere visual images
presented monocularly, while the other eye was shown a high-
contrast, dynamic image (the CFS mask) at the corresponding ret-
inal location (See Fig. 1 for a description of the design and
procedure).

CFS can suppress images from awareness for several seconds.
However, it is also known that its effectiveness may vary across tri-
als and individuals, and the suppressed stimulus may “break
through” the suppression (Gayet and Stein 2017). Over the last
decade, a growing body of work has raised concerns that the stan-
dard approach—removing from analysis data (participants and tri-
als) in which breakthrough had occurred—may bias the findings

(see the Supplemental Material for further details of these issues;
Stein and Sterzer 2014; Shanks 2016). Here, we adopt a number
of methodological approaches to ensure our results are robust to
these potential concerns. In the interest of clarity, we will now in-
troduce these approaches briefly; detailed explanations are provid-
ed in the Materials and Methods section.

Specifically, we remove no data and instead incorporate indi-
vidual levels of reported stimulus awareness, as well as response
patterns that might reflect residual awareness, into a regression
model accounting for physiological responses. The model also ad-
justs for baseline anxiety (which, as mentioned above, has been
previously shown to correlate with unconscious learning) (Raio
et al. 2012). Additionally, we use a Bayesian approach to establish
that a model in which participants were updating their learning
provides a better account for the findings than models in which
they were simply (and independently of the stimulus) predicting
the probability of a shock on the next trial (Wiens et al. 2003).
Finally, if we found no learning or reversal under CFS, this may
be simply due to an ineffective procedure; as a sanity-check—to
rule this out and verify that our procedure is able to induce reversal
learning when participants are aware of the stimuli—we ran a
no-CFS group (N=12) (see /”Participants” in the Materials and
Methods for details on sample size determination), in which par-
ticipants also viewed the CSs monocularly (as the CFS group
did), but were aware of them as no CFS masks were presented to
their other eye.

We hypothesized that physiological responses to threat can
be flexibly reversed without perceptual awareness. As detailed be-

low, we find that reversal indeed occurs
independently of CS awareness, and that
there is evidence for the reversal of threat
learning even in its complete absence.

Results

Overall assessment of physiological

reversal learning
To assess the physiological arousal evoked
by CSs, we used a model-based approach
(Bach et al. 2010) to estimate the ampli-
tude of anticipatory sudomotor nerve ac-
tivity (SNA) from skin conductance data
recorded during stimulus presentation. A
variational Bayes approximation was
used to invert a forward model that de-
scribes how hidden SNA translates into
observable SCRs (see the Materials and
Methods). Previous work has shown that
this approach is more sensitive than con-
ventional SCR peak scoring analysis
(Bach et al. 2010; Bach 2014; Staib et al.
2015). Figure 2A shows the time course
of evoked SNA to spiders A and B, sepa-
rately for the CFS and no-CFS groups. In
both groups, responses to spider A relative
to spider B were larger during the acquisi-
tion phase and smaller during the reversal
phase [CFS acquisition: β=0.14, t(341.88)
= 3.02, P=0.003; CFS reversal: β= 0.13, t
(341.88) = 2.82, P=0.005; no-CFS acquisi-
tion: β=1.06, t(201.15) = 4.59, P< 0.001;
no-CFS reversal: β=0.44, t(341.88) =
3.62, P<0.001].

To quantify the magnitude of physi-
ological reversal learning, we calculated a

Figure 1. Schematic description of experimental design and procedure. In each trial of the acquisition
phase, participants were presented with one of two stimuli (schematic pictures of spiders, presented
monocularly for 6 sec and suppressed from awareness by a CFS mask shown to the other eye). One
image (spider A) always terminated with a mild electric shock to the wrist, whereas the other (spider
B) never did. Halfway through the experiment, with no warning, the contingencies flipped and the re-
versal phase began: The formerly safe stimulus (spider B) now predicted the shock, and the old threat-
associated one (spider A) was now safe. Each spider was shown eight times in each phase. Trial order was
pseudorandomized (see the Materials and Methods) and spider identity (A or B) was counterbalanced
across participants. To assess the success of the awareness manipulation, participants answered the
questions “Which seen?” (1 = flower, 2 = spider) and “How confident?” (1 = guess to 3 = sure), presented
binocularly (1.5–2 sec each), beginning 1 sec after the offset of every CS, and followed by an 8- to 10-sec
intertrial interval (the questions are only shown here for the first depicted trial, but were repeated in all
trials). Participants who underwent the same procedure without CFS were shown identical CSs, but the
CFS mask was absent.
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reversal learning index for each participant (see the Materials and
Methods). The reversal learning index was positive and signifi-
cantly greater than zero for both the CFS and no-CFS groups (Fig.
2B) as evidenced by a linear mixed model with SNA as the depen-
dent variable, which revealed a significant interaction of stage and
spider in both groups [CFS: β=0.27, t(2839) = 4.23, P<0.001;
no-CFS: β=1.23, t(2839) = 7.29, P< 0.001]. Note that a significant
interaction of stage and spider is formally equivalent to a signifi-
cant reversal learning index; finding a significant interaction for
each group (separately)means each group had a significant reversal
learning index. On its own, however, this simply reveals a differ-
ence in the comparative magnitude of responses to the two CSs
across the two halves of the experiment; follow-up tests show
that this difference is indeed due to reversal: Spider A evoked great-
er responses than spider B in the acquisition phase [CFS: t(341.9) =
3.0, P= 0.003; no-CFS: t(201.1) = 4.6, P<0.001] and the pattern was
reversed in the reversal phase [CFS: t(341.9) = 2.8, P=0.005;
no-CFS: t(341.9) = 3.6, P=0.0003]. These results indicate that rever-
sal learningwas evident in both groups. Although Figure 2 suggests
that it was more pronounced in the no-CFS group, we note that
this difference did not reach statistical significance in a Welch
two sample t-test (accounting for unequal variances) of the reversal
index between groups [t(13.28) =−1.79, P=0.097]. A group differ-
ence would also not be straightforwardly interpretable because,

as addressed in detail below, suppression
from awareness was very heterogenous
in the CFS group.

As previous work has found a nega-
tive association between anxiety and
threat acquisition with and without
awareness (Raio et al. 2012), we also
calculated correlations between the CFS
group’s baseline anxiety measures
(STAIT, STAIS, and FSQ) and the reversal
learning index. Overall, reversal learning
decreased significantly with increasing
levels of state and trait anxiety, and to a
lesser but nonsignificant extent for spider
phobia (Fig. 2C).

Reversal learning and perceptual

awareness
TheCFSmanipulation reduced awareness
of the CSs; as expected, however, it was
differentially effective in doing so across
participants, precluding an overall con-
clusion that all learning under CFS hap-
pened nonconsciously. The CFS group
showed significantly lower accuracy in
response to the “which seen?” question
(M=0.46, SD=0.29) compared with
the no-CFS group [M=0.86, SD=0.16;
t(22.77) =−7.24, P<0.001], and accuracy
in the CFS groupwas not significantly dif-
ferent from the 50% random-response
level [t(85) =−1.21, P=0.229]. The CFS
group also showed lower confidence
(M =1.73, SD=0.65) than the no-CFS
group [M=2.83, SD=0.08; t(95.38) =
−15.05, P<0.001].

However, group differences in accu-
racy and confidence, and even random-
level response accuracy, are not sufficient
to establish an absence of perceptual
awareness in the CFS group. Notably, av-

erage confidence of correct responses in this group was low but sig-
nificantly greater than the minimum value of 1 [t(77) = 10.79, P<
0.001], suggesting that at least some participants were aware of
some of the CSs; learning might thus have arisen from a subset
of trials and/or participants where such awareness occurred. To ad-
dress this, we quantified CS awareness by calculating an awareness
index for each participant, ranging in possible values from 0 for no
awareness to 1 for full awareness (see the Materials and Methods).
Although the awareness index of the CFS group (M=0.28, SD=
0.34) was significantly lower than the no-CFS group’s [M=0.92,
SD=0.18; t(23.93) =−10.19, P<0.001], it was still significantly
higher than zero [t(85) = 7.59, P<0.001], andwas also higher for re-
inforced trials compared with nonreinforced trials [Mdifference =
0.04, SD=0.14; t(85) = 2.51, P=0.014], suggesting that residual
awareness was higher for trials with a shock. Note that we did
not see a significant association between baseline state or trait anx-
iety (indexed by STAIS and STAIT scores) and the awareness index
[STAIS: β=0.04, t(78) = 0.39, P=0.699; STAIT: β=0.04, t(78) = 0.32,
P=0.752], indicating that anxiety was not related to CSs breaking
through suppression.

Therefore, in order to test our main hypothesis that the rever-
sal of acquired threat responses can be achievedwithout perceptual
awareness, we characterized the quantitative relation between the
level of awareness and the magnitude of reversal learning in the

C

A B

Figure 2. Physiological reversal learning. (A) Time courses reveal reversal of threat responses with and
without continuous flash suppression. Data points represent trial-wise mean responses to spider A (the
CS+ during acquisition) and spider B (the CS− during acquisition). Both groups showed reversal learn-
ing, as indicated by greater responses to spider A during the acquisition phase and greater responses to
Spider B during the reversal phase. Error bars represent standard errors. (B) Mean reversal learning index
for each group. Error bars represent 95% confidence intervals, indicating that the interaction of stage
and stimulus and thus the magnitude of reversal learning in both groups was significantly greater
than zero. (C) Heightened anxiety is associated with impaired reversal learning under CFS. A negative
correlation between baseline anxiety measures and the strength of threat reversal learning is evident
for state and trait anxiety. Blue lines show linear fits of each score to the reversal index, and ribbons
around lines indicate bootstrapped 95% confidence intervals around the estimate. Note that the partic-
ipant with the highest reversal index provided data for the STAIS and STAIT, but not FSQ. (STAIS/STAIT)
state/trait anxiety subscale of the Spielberger State-Trait Anxiety Inventory, (FSQ) Fear of Spider
Questionnaire, (∼) P<0.1, (*) P<0.05.
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CFS group. To control for possible artifacts of regression to the
mean (see the SupplementalMaterial), we followed the recommen-
dation (Shanks 2016) to first examine the correlation between two
independent estimates of the awareness index, one calculated from
even-numbered trials, the other from odd-numbered trials.
Because noise at the measurement level might occasionally yield
extreme (i.e., very low or very high) awareness index scores, an as-
sociation of such randomly extreme scores with reversal learning
(specifically, low awareness with intact learning) could be an
artifact.

However, it is highly unlikely that across participants, ran-
domnoisewould yield consistent (and similarly extreme)measure-
ments in separate estimates. Due to regression to the mean, if
random extreme values occur in one of the two estimates, they
are less likely to occur in the other, resulting in a considerable at-
tenuation of any correlation between the two.We found, however,
that the two measures were strongly correlated [r(84) = 0.96, P<
0.001] (Fig. 3A); participants’ awareness level in one set of trials
was overwhelmingly predictive of their awareness in the other
set, confirming their reliability as estimates of awareness.

Next, we examined the association between the awareness in-
dex and the reversal learning index, using values of both indices
obtained separately from even (Fig. 3B) and odd (Fig. 3C) trials.
As the color-coding of Figure 3 shows, the relation between indi-
vidual participants’ awareness and their reversal learning was

highly consistent across these separate
measurements. In light of this, we pooled
the data from all trials and regressed the
reversal learning index on the perceptual
awareness index (Fig. 3D). The parameter
of interest was the intercept, that is, the
magnitude of reversal learning at zero
perceptual awareness. The intercept was
positive and significantly different from
zero. Furthermore, the awareness index
regressor did not contribute significantly
to prediction of reversal learning; impor-
tantly, this finding was even stronger in
models that accounted for STAIT scores
and a binary factor indicating whether
participants were tracking the stimuli
with their responses (see the Materials
and Methods; Fig. 3E; Table 1).

Comparing learning and

expectation-based accounts
Well-controlled laboratory-based con-
ditioning procedures require strict
constraints that preclude complete ran-
domization of the number and order of
different CSs; this comes with a cost: Par-
ticipants are able to develop expectations
with above-chance validity, based on the
sequence of trials so far, about the likeli-
hood of a shock on any upcoming trial
(Wiens et al. 2003). Even without any
awareness of the CSs, a participant should
have been able to distinguish two types of
trials: reinforced (with shock) and non-
reinforced (no-shock). In a study with
two CSs and a 100% reinforcement rate
like ours, such expectations would corre-
spond to an anticipation based on the ex-
perienced pattern of trial-types (shock/
no-shock or vice versa), with an increase

in shock anticipation after every no-shock trial. The question,
therefore, was whether the physiological responses we had mea-
sured might simply reflect participants’ pattern-based anticipation
of shock, rather than learning of the contingencies associated with
the CSs.

The simplest way of addressing this question was to examine
whether participants might use a trial-sequence heuristic that

A B C

D E

Figure 3. Characterizing the relation between perceptual awareness and reversal learning in the CFS
group. (A) Correlation between the awareness index of even and odd-numbered trials. Each data point
represents an individual participant. The strong positive correlation between these independent mea-
sures of awareness demonstrates that individual participants’ awareness ratings—even those with
extreme values of zero or one—are unlikely to be due to measurement noise. For illustrative purposes,
the color scheme marks all participants with an awareness index of 0 in even trials in red ([UA]
unaware, N=27) and classifies the rest of the CFS group in three tertiles (T1–T3). Note that some
data points overlap. (B) Reversal learning plotted against perceptual awareness for individual partici-
pants, for data obtained from even-numbered trials. The color scheme is the same as in A. (C)
Reversal learning plotted against perceptual awareness for individual participants, for data obtained
from odd-numbered trials. Individual participants are marked with the same color as in the previous
panels; the overall distribution of participants is highly similar across panels. (D) Reversal learning as a
function of perceptual awareness in the CFS group, using data pooled from all trials. The intercept, in-
dicating the magnitude of reversal learning in the absence of awareness, is positive and significantly dif-
ferent from zero. (E) Reversal Index intercepts and their 95% confidence intervals in a series of regression
models. Model 1 depicts the intercept (the value of the reversal index when the awareness index equals
zero) shown in D. Model 2 shows the intercept when the regression model includes STAIT scores in ad-
dition to the perceptual awareness index. Model 3 regresses the reversal index onto the perceptual
awareness index, STAIT and tracking scores. (Excluding the potential outlier in the top left corner of D
weakens significance of the intercept in model 1, P=0.07; the intercepts of models 2 and 3 remain sig-
nificant after removal of this outlier.) Blue lines show linear fits, and ribbons around lines indicate boot-
strapped 95% confidence intervals around the estimate.

Table 1. Regression coefficients for all awareness index models

Model Predictor β SE t P

1 Intercept 0.3 0.2 2.1 0.035
1 Awareness index −0.1 0.4 −0.4 0.692
2 Intercept 1.4 0.5 3 0.004
2 STAIT 0 0 −2.3 0.024
2 Awareness index −0.2 0.4 −0.5 0.596
3 Intercept 1.5 0.5 3.1 0.003
3 STAIT 0 0 −2.4 0.021
3 Tracking score −0.3 0.3 −1 0.318
3 Awareness index −0.2 0.4 −0.5 0.597

Reversal learning was the dependent variable in all models. Model 1 included
an intercept and the perceptual awareness index, model 2 additionally includ-
ed STAIT scores, and model 3 additionally included STAIT and tracking
scores.
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would allow them to discriminate spider A from spider B (and to
achieve apparent reversal learning) by assuming that a shock was
more likely after a no-shock trial. In the SNA data, this would be in-
dicated by better discrimination for alternating trials (where the
present trial’s stimulus differs from the previous trial’s) than non-
alternating trials (where the stimuli of the present and previous tri-
al are the same). In a first step, we thus tested whether there was
evidence that the interaction of stage and spider was modulated
by trial-order effects (i.e., alternating and nonalternating trials).
Using a linear mixed model with SNA as the dependent variable
and trial number, stage (acquisition or reversal), spider (spider A
or spider B), and trial-type (alternating or nonalternating) as pre-
dictors, we tested for a three-way interaction of stage, spider, and
trial-type. This interaction tested whether the reversal learning ef-
fect (the two-way interaction between stage and spider) was mod-
ulated by the trial-type. If we found a three-way interaction that
was significantly different from zero, this would indicate that the
reversal learning effect was different for alternating versus nonal-
ternating trials. However, the interaction was not significantly dif-
ferent from zero [β=−0.13, t(2582.49) =−0.86, P=0.391]. Thus,
our data do not provide any support for the idea that the reversal
learning effect was influenced by trial-order effects. We did, how-
ever (perhaps more convincingly), find clear evidence for reversal
learning in nonalternating trials [indicated by a two-way interac-
tion of stage × spider in these trials, β=0.33, t(2574.6) = 4.57, P<
0.001].

To further address the same question, we also used a Bayesian
approach to compare the probability of our findings being ac-
counted for by a classic Rescorla–Wagner learning model
(Rescorla andWagner 1972) versus two different trial-sequence ex-
pectation models. We hypothesized that successful threat reversal
without perceptual awareness should be better explained by the
Rescorla–Wagner learning model, compared with a model in-
formed either by trial alternation (where participants simply ex-
pect an alternating pattern of shock/no-shock trials) or by
pattern-based expectation (in which the expectation of shock on
the next trial increased after every nonshock trial, and accounting
for consecutive trials of the same type). We used maximum likeli-
hood estimation to assess the log likelihood and calculate the
Bayesian information criterion (BIC) of each model (See
Materials and Methods for details of each model and calculation
of the BIC). A smaller BIC indicates a better model, and BIC values
can thus be compared by calculating the difference between them
and interpreting the resulting Δ BIC as providing evidence against
the higher BIC.

As a validation, we first tested these twomodels in the no-CFS
group, where we expected to find that the Rescorla–Wagner model
wouldfit the data better than the trial alternationmodel.We found
that the data of the no-CFS group was indeed more in line with a
Rescorla–Wagner model (BIC: 200.98) than a trial switch model
(BIC: 224.28), with the difference (Δ BIC: 23.3) being >10 and
thus—by widely accepted convention—large enough (Raftery
1995) to conclude that the Rescorla–Wagner model fit the data sig-
nificantly better.

For the CFS group, the Rescorla–Wagner model (BIC:
1019.93) also outperformed the trial alternation expectation
model (BIC: 1098.86), with the difference (Δ BIC: 78.93) >10, sug-
gesting that the evidence against the trial switch model is very
strong (Raftery 1995). (Repeating this comparison for just the par-
ticipants with zero mean awareness confirmed the lower BIC for
the Rescorla–Wagner model [BIC: 263.99] compared with the
pattern-based expectation model [BIC: 300.34], with the differ-
ence again >10 [Δ BIC: 36.36] [see also Supplemental Figure
S2].) The pattern-based expectation model (BIC: 1390.48) was
even less successful at accounting for the data than the trial alter-
nation model.

Finally, an extended Rescorla–Wagnermodel assuming differ-
ent learning rates for acquisition and reversal (BIC: 1291.84) did
not fit the data better than the simpler one. This model compari-
son confirms that a classical Rescorla–Wagner learning model fits
our data better than alternative expectation-based models.

Discussion

These results indicate that participants updated their defensive
physiological responses independently of their awareness of
threat-related cues. The findings therefore suggest that the com-
plex process of threat reversal—shifting reactions from a stimulus
that no longer predicts danger to one that now does—may be ac-
complished independently of perceptual awareness, and thus
that dissociable processes might underlie affective flexibility and
conscious processing (Lau and Rosenthal 2011). Conversely, the
negative correlation between reversal learning and anxiety sug-
gests that the various impairments caused by anxiety are not limit-
ed to the systems underlying conscious processes.

The present findings add to the growing literature on threat
processing outside awareness. Several previous studies have report-
ed evidence that new threat associations can be formed without
perceptual awareness of the conditioned stimuli (Katkin et al.
2001; Manns et al. 2002; Raio et al. 2012), but a recent meta-
analysis (Mertens and Engelhard 2020) has indicated that such re-
ports often suffer from various methodological issues, and further-
more, found evidence for publication bias. Of course, no single
study can conclusively resolve the discussion on a topic that pre-
sents multiple difficulties; we believe, however, that our attempt
to address methodological issues through rigorous testing and
analyses provides a useful addition to the literature by examining
both initial conditioning and reversal of threat responses.
Previous studies have pointed out the limitations of using accuracy
and confidence measures to assess perceptual awareness, and sug-
gested remedies including the calculation of metacognitive sensi-
tivity measures (Fleming and Lau 2014), Bayesian statistics
(Dienes 2015), or parametric variation of the experimental manip-
ulation (Schmidt 2015). The present study addresses an issue not
covered in previous discussions, by showing that a trial-wise anal-
ysis may reveal hints for incomplete suppression that analyses re-
lying on average measures might easily miss. Future studies that
rely on forced-choice questions for awareness assessment should
thus examine response patterns across trials in addition to collect-
ing aggregate measures.

Notably, a previous study (Raio et al. 2012) that used CFS to
investigate acquisition of threat responses without awareness of
the stimuli found that such acquisition can occur, but is rapidly
forgotten. The present study again showed that such acquisition
can occur (and, additionally, be reversed), but did not find the
same rapid forgetting. The reasons for this are unclear, but we spec-
ulate that the difference may be due to specific aspects of the stim-
uli, design and procedure: Our use of pictures of spiders (rather
than the faces used in the previous study) and a 100% (rather
than 50%) reinforcement protocol may have altered the temporal
characteristics of acquisition. Similarly, the temporal profile of re-
versal may change if the stimuli and reinforcement regime are
different.

The present results add to a growing body of findings distin-
guishing functions that do and do not require awareness. Such
distinctions are important in guiding research into the neural
mechanisms of conscious and nonconscious processing.
Previous research hints at the mechanism underlying the non-
conscious affective flexibility reported here, although it remains
to be elucidated: The ability to reverse conditioned responses de-
pends on the integrity of circuitry spanning several neural
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regions, particularly the ventromedial prefrontal cortex (vmPFC)
and its connections with the amygdala (Morris and Dolan
2004) where threat associations are formed (Roy et al. 2012).
Consistent with this, it is known that patients with anxiety disor-
ders often show rigid and inflexible threat responses in conjunc-
tion with prefrontal cortex dysfunction (Rauch et al. 2006; Ressler
and Mayberg 2007).

Indeed, the real-life settings that people with anxiety disor-
ders find challenging often require the updating and shifting of
threat responses. Deficits in affective flexibility may thus explain
the threat learning and extinction deficits seen in such disorders
(Duits et al. 2015): Compared with healthy controls, patients are
less able to distinguish between safe and unsafe stimuli in threat
learning (when it is adaptive to do so), and distinguish between
them to a greater extent during extinction (when it is nonadap-
tive). Recent findings of an association between prediction error
weighting during reversal learning (with awareness) and the
severity of posttraumatic stress disorder (Homan et al. 2019) dem-
onstrate the usefulness of the reversal learning paradigm in study-
ing disorders characterized by impaired threat inhibition
(Jovanovic and Norrholm 2011). Our new findings—that baseline
anxiety is not correlated with stimulus awareness under CFS, but is
negatively correlated with affective flexibility—augment the
emerging picture by showing that the association between reversal
and anxiety may not depend on awareness.

Materials and Methods

Participants
Ninety-eight healthy participants (mean age=29.97; range 18–65)
were assigned to one of the two groups: reversal learning with CFS
(CFS group; N=86, 48 female) or without CFS (no-CFS group; N=
12, 5 female). The sample size for the CFS group was based on the
strength of the effects found in our previous study (Raio et al.
2012), where effect sizes (Cohen’s d) were ∼1.6 in early condition-
ing and 0.5 in late conditioning. Using a conservative effect size
estimate of d=0.5, we would have needed a sample size of 43 or
44 to detect this effect with 90% power; because our effect of inter-
est (reversal) required a significant interaction between stage (ac-
quisition vs. reversal) and stimulus (spider A vs. B), we doubled
this estimate. For our no-CFS group, we based our sample size on
the strong late conditioning effect (d=1.7) in the aware group of
our previous study (Raio et al. 2012), as well as previous literature
on reversal without suppression—under sufficiently similar condi-
tions to the present no-CFS group (Schiller et al. 2008)—which
also suggested that the effect of reversal would be similar to that
of the initial conditioning. We used a slightly more conservative
effect size estimate of d=1.5 for the present no-CFS group, which
required in a sample size of N=7 to detect this effect with 90%
power. Because we intended to test for an interaction between
stage and stimulus in this group as well, we increased the sample
to 12.

Assignmentwas randomuntil each group reached a size of 12;
subsequent participants were assigned to the CFS group. Measures
of trait and state anxiety (Spielberger Trait-State Anxiety Inventory
[STAIT and STAIS, respectively] [Spielberger 1983]) and spider pho-
bia (Fear of Spider Questionnaire [FSQ] [Szymanski and
O’Donohue 1995]) were taken prior to participation and did not
differ between the groups (Supplemental Table S1). The experi-
ment was approved by the Institutional Review Board of the
Icahn School ofMedicine atMount Sinai. All participants provided
written informed consent and were financially compensated for
their participation.

Experimental procedures
Participants viewed the stimulimonocularly, through amirror ster-
eoscope (StereoAids, Australia) placed at a distance of 45 cm from a
17-in Dell monitor. The CSs (schematic low-contrast images of spi-

ders), presented to the left eye only, were suppressed from aware-
ness in the CFS group: While the left eye saw them, the right eye
was presented with “Mondrians”—arrays of high-contrast, multi-
colored, randomly generated rectangles alternating at 10 Hz.
Both the CSs and the CFS masks were flanked by identical textured
black and white bars, to facilitate stable ocular vergence. The
no-CFS group viewed identical CSs (also presented monocularly),
but with no Mondrians presented to the other eye.

The experiment consisted of 16 acquisition trials followed by
16 reversal trials. One of two spider images was presented on each
trial. The spider images were schematic and had similar low-level
features. During acquisition, spider A always terminated with a
shock and spider B never did. Reversal occurred halfway through
the experiment: Spider B now terminated with a shock and spider
A did not. The spider stimuli were presented for 6 sec each in pseu-
dorandomized order. One of four possible trial orders was used for
each participant. Orders were generated by imposing specific con-
straints on the trial order, such that the first trial was always rein-
forced and no more than two trials of the same type ever
occurred consecutively.

Trial order and spider identity were counterbalanced across
participants. To assess the effectiveness of the awareness manipu-
lation (44), 1 sec after the offset of every CS participants were
shown the question “Which seen?” (1 =flower, 2 = spider; nota-
bly, flowers were never shown, meaning the question addressed
detection rather than discrimination as it could be answered cor-
rectly even with a brief glimpse). This was followed by the ques-
tion “How confident?” (1 = guess to 3 = sure; participants were
instructed to indicate how confident they were of the flower/spi-
der answer they had just given). Both questions were presented
binocularly (1.5–2 sec each, during which responses had to be
given by pressing number keys on a standard keyboard). The sec-
ond question was followed by an 8- to 10-sec intertrial interval.
We did not ask participants about their awareness of CS–US
contingencies.

Psychophysiological stimulation and measurement
Mild electric shocks were delivered using a Grass Medical
Instruments SD9 stimulator and stimulating bar electrode attached
to the participant’s right wrist. Shocks (200 msec; 50 pulse/sec)
were delivered at a level determined individually by each partici-
pant as “uncomfortable but not painful” (maximum of 60 V), dur-
ing a work-up procedure prior to the experiment.

Skin conductance responses (SCR) were measured with Ag–
AgCl electrodes, filled with standard isotonic NaCl electrolyte
gel, and attached to the middle phalanges of the second and third
fingers of the left hand. SCR signalswere sampled continuously at a
rate of 200 Hz, amplified and recorded with a MP150 BIOPAC
Systems skin conductance module connected to a PC.

Analysis of physiological responses

Model-based analysis
To quantify the expression of CS–US memory on each trial, we
used a model-based approach to quantify Sudomotor Nerve
Activity (SNA). Sudomotor nerves are the nerves that control sweat
glands, whose activity in turn produces skin conductance respons-
es. Because sweat (and the resulting skin conductance) is an indi-
rect measure of the underlying nerve activity, methods that
characterize the nerve activity itself provide a better assessment
of the neural processing that led to the observed response. This ap-
proach uses a psychophysiological model that describes skin con-
ductance as the convolution of a Gaussian-shaped sudomotor
nerve (SN) inputwith a canonical skin conductance responsemod-
el (Bach et al. 2010). This model is inverted to yield the most likely
SNA amplitude given the data. This approach is conceptually sim-
ilar to the standard approach used in fMRI dynamic causal model-
ing analysis (where the BOLD signal is convolved with a canonical
hemodynamic response function, and the model is inverted to
yield sources of neural activation). Compared with peak-scoring
methods for SCR, this approach has been shown to better
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discriminate between responses to aversive and neutral stimuli
(Bach et al. 2009; Bach and Friston 2013) and to better discriminate
between responses to CS+ andCS− in fear conditioning (Bach et al.
2010). This better discrimination implies better accuracy and preci-
sion than standard SCR analysis in inferences on the latent CS–US
association (Bach et al. 2020).

Specifically, we used a model that describes, for each trial, a
CS-related SN burst at some point during CS presentation, for
which amplitude, onset latency and duration are estimated from
the data; and an additional burst related to the US (or its omission),
for which timings are known and only amplitude is estimated. The
model also captures spontaneous fluctuations and baseline chang-
es during intertrial-intervals (Bach et al. 2010). This nonlinear
model is inverted using a Variational-Bayes algorithm (for further
details on the computational aspects of this algorithm, see
“Model-based SNA analysis of SCR data” in the Supplemental
Material). The SNA estimates were computed using the PsPM soft-
ware package (version 3.0; http://bachlab.org/pspm; Bach et al.
2010) implemented in MATLAB R2016b (The Mathworks, Inc.).
The statistical analyses were conducted with R software (R version
3.6.1 [2019-07-05]; RCore Team2016) and the libraries lme4 (Bates
2005) and lsmeans (Lenth 2016).

Reversal learning index
An estimate of SNAwas obtained for each trial.We expected Spider
A to evoke greater SNA than Spider B during the acquisition phase,
and Spider B to evoke greater SNA than Spider A during the reversal
phase. The strength of reversal learning can thus be quantified by
calculating, separately for the acquisition and reversal phases, the
difference between the average SNA evoked by each spider. To
quantify the degree of reversal (which is formally equivalent to
the interaction of phase and stimulus), the reversal learning index
was calculated by subtracting the difference between mean SNAs
evoked by each spider during reversal from the difference during
acquisition (the larger the index, the greater the magnitude of re-
versal learning):

Reversal learning index = DAcquistion− DReversal

DAcquistion = [mean(Spider A)−mean(Spider B)]Acquistion

DReversal = [mean(Spider A)−mean(Spider B)]Reversal.

(1)

To formally test for group differences in the strength of reversal
learning, we computed a linearmixedmodel using the lme4 library
in R. We used the skin conductance response (converted to a
model-based measure of sudomotor nerve activity, SNA) as the de-
pendent variable and entered group (CFS, no-CFS), stage (acquisi-
tion, reversal), and spider (spider A, spider B) as well as a
continuous variable for trial (to account for habituation) as predic-
tors. The random structure of the model included an intercept and
slopes for stage and spider.

Assessments of perceptual awareness

Perceptual awareness index
To characterize participants’ reported awareness of CSs, each trial
was assigned a perceptual awareness score, defined by a combina-
tion of detection and confidence responses: Correct answers with
a confidence rating of 1 (guess) and incorrect answers irrespective
of confidence were assigned an awareness score of 0; correct an-
swers with a confidence rating of 2 (medium) were assigned a score
of 0.5, and correct answers with a confidence rating of 3 (high)
were assigned an awareness score of 1. A perceptual awareness in-
dex was calculated for each participant by averaging awareness
scores across all trials.

Stimulus-response association patterns ( ‘tracking’)
We also assessed response patterns across trials, to see whether par-
ticipants were able to track stimuli with their responses, accurately

discriminating the images despite not being able to label them.We
plotted individual trial-by-trial responses to the question “Which
seen?”, overlaid on the trial-by-trial presentation of spiders (spider
A or spider B) (Supplemental Fig. S1A). We then calculated the
number of consecutive “hits,” defined as the number of consecu-
tive trials where these two time-courses were either identical or
consistently in opposition, suggesting that there was a possible as-
sociation between the stimulus and the response during those tri-
als. The probability of such consecutive hits occurring by chance
alone can be derived as follows:

Let P=0.5 be the probability of a hit, k the number of consec-
utive hits, n the number of trials left, i the number of consecutive
hits already observed; the chance of observing k consecutive hits
for the remaining n trials can then be formulated as a recursive
problem:

f p,k(i, n) = pf p,k(i+ 1, n− 1)+ (1− p)f p,k(0, n− 1), (2)

which can be solved analytically with dynamic programming or re-
cursion. Trivially, fp,k(k, n) = 1 for n≥0 since k consecutive hits have
already been observed, and fp,k (i, n) = 0 for k− i>n since there are
not enough trials left to observe k consecutive hits.

For example, assuming we want to know how likely it
is to observe k=8 consecutive hits within n=32 trials given P=
0.5, i.e., f0.5, 8 (0, 32), we find that this yields a probability of
0.050.

Alternatively, the probability can be derived by simulation for
all possible numbers of consecutive hits within 32 trials (i.e., from
1 to 31). For each possible number, we thus also simulated 105

draws of a binomial distribution and calculated the average proba-
bility of that number of hits being consecutive. As can be seen in
Supplemental Figure S1B, the result for eight consecutive hits
(0.04991) was very close to the analytical solution. Fifteen partici-
pants showed evidence of tracking the spiders or the shocks with
their responses (eight or more consecutive hits); notably, three of
these participants appeared to have a perceptual awareness index
of zero. We thus adjusted our subsequent analysis with an addi-
tional binary covariate, indicating whether participants did or
did not show eight or more consecutive hits.

Comparing learning and expectation-based models
The Rescorla–Wagner (RW) model (30) describes how the predic-
tion for each trial is updated according to a prediction error and
learning rate:

Vn+1(xn) = Vn(xn)+ adn

dn = rn − Vn(xn),
(3)

where xn is the conditioned stimulus on trial n (spider A or spider
B), and δn is the punishment prediction error thatmeasures the dif-
ference between the expected and the actual shock (rn) on trial n.
The learning rate α for the value update is a constant free parame-
ter. The value for the CS not observed on trial n remains un-
changed. To derive the best fits for the Rescorla–Wagner model,
we assumed that V0 =1, reflecting an assumption that participants
expected to get a shock on the first trial. We also used an extended
version of the RW model that included an additional weight pa-
rameter ρ for the reversal phase to account for a potential change
in the learning rate during reversal compared with acquisition.
For acquisition, we thus used the classical RW model, and used
the extended model for reversal:

Vn+1(xn) = Vn(xn)+ radn

dn = rn − Vn(xn).
(4)

For the alternative trial-sequence learningmodel, we assumed that
a participant expecting a strict sequence of alternating trial types
(shock/no shock or vice versa) would update this expectation ac-
cording to the actually encountered trial types and a constant
learning rate:
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V ′
n+1 = V ′

n + a′d′n
d′n = r′n − V ′

n

tn = |(r′n−1 − 1)|,
(5)

whereV′n+1 is the expected trial type switch at trial n+1 (ifV′n+1
is >0.5, a trial switch is expected), α′ is the learning rate, and δ′n is
the prediction error. The prediction error corresponds to the differ-
ence between the actual trial type switch for trial n (r′n; coded as
one for a trial type switch and zero for an equal trial type) and
the expectation for trial n. A changing trial type for trial n was
tracked by τn, which was one if the preceding trial was zero and
zero if the preceding trial type was one. Tomap these expectations
onto expected values, we assumed that

Vn+1 = V ′
n+1 · tn(1− V ′

n+1)(1− tn), if V ′ . 0.5
V ′

n+1, otherwise,

{
(6)

where the expected value for trial n+1 was calculated according to
whether a trial type switch was expected (V′ >0.5) or not.

To account for instances in which two consecutive nonrein-
forced trials (two consecutive spider B trials in acquisition or
Spider A trials in reversal) might impact the expected values, we
also tested an extended, pattern-based version of the trial-sequence
learning model that included an additional weight parameter, ξ,
for the learning rate α′ under these circumstances:

V ′
n+1 = V ′

n + ja′d′n, if two consecutive neutral trials
V ′

n + a′d′n, otherwise.

{
(7)

We performed formal model comparisons using maximum likeli-
hood estimation and nonlinear optimization (implemented with
the fmincon function in MATLAB R2016b (The Mathworks, Inc).
Using the log likelihood, we calculated the Bayesian Information
Criterion (BIC) to compare the two models as follows:

BIC = log (n)k− 2 · log (L̂), (8)

where n is the number of data points, k is the number of regressors,
and K̂ is the maximized value of the likelihood function. The con-
ventional Rescorla–Wagner model provided the best account of
the data (lowest BIC), and the model with the closest BIC was
the simple trial alternation model. Supplemental Figure S2 there-
fore shows the direct comparison between these two models.
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