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Abstract 

Purpose: Radiomics is a specific field of medical research that uses programmable 

recognition tools to extract objective information from standard images to combine with 

clinical data, with the aim of improving diagnostic, prognostic and predictive accuracy 

beyond standard visual interpretation. We performed a narrative review of radiomic 

applications that may support improved characterization of small renal masses (SRM). The 

main focus of the review was to identify and discuss methods which may accurately 

differentiate benign from malignant renal masses, specifically between renal cell carcinoma 

(RCC) subtypes and from angiomyolipoma without visible fat (fat-poor AML) and 

oncocytoma. Further, prediction of grade, sarcomatoid features and gene-mutations would 

be of importance in terms of potential clinical utility in prognostic stratification and 

selecting personalised patient management strategies. 

Methods: A detailed search of original articles was performed using the PubMed-MEDLINE 

database until 20 September 2020 to identify English literature relevant to radiomics 

applications in renal tumour assessment. In total, 42 articles were included in the analysis in  

3 main categories related to SRM: prediction of benign versus malignant SRM, subtypes and 

nuclear grade and other features of aggressiveness.  

Conclusion: Overall, studies reported the superiority of radiomics over expert radiological 

assessment but were mainly of retrospective design and therefore of low quality evidence. 

However, it is clear that radiomics is an attractive modality that has the potential to improve 

the non-invasive diagnostic accuracy of SRM imaging and prediction of its natural behaviour. 
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Further prospective validation studies of radiomics are needed to augment management 

algorithms of SRM. 

 

Introduction 

 

Due to an abundance of quantitative features such as histogram (first-order statistics), 

texture (gray-level distribution or second-order statistics) and shape present in 

contemporary cross-sectional imaging of tumours, extracted high-throughput data from 

Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) scans are used to 

develop novel radiomic markers for diagnostic, therapeutic and prognostic benefit. 

Radiomics in renal tumours is an emerging field, and its utility is currently investigated for 

the characterization of renal masses, distinction of renal cell carcinoma (RCC) subtypes, 

monitoring response to targeted therapeutic agents and prognosis in the metastatic setting 

[1,2]. 

 

Radiomics is also of special interest to better characterize small renal masses (SRM, defined 

as renal tumours ≤ 4 cm diameter), the patient population that is increasing the most. 

Currently conventional cross-sectional imaging is unable to reliably distinguish between 

benign and malignant renal tumours despite improvements in qualitative and quantitative 

imaging techniques [3,4]. As a consequence, a retrospective study of 18000 patients 

undergoing partial nephrectomy in the community setting revealed that more than 30% of 

all surgically removed SRM were consistently found to be benign when diagnosis was based 

on CT alone [5]. Presently, only renal mass biopsy (RMB) has the ability to accurately 

establish a diagnosis and prevent overtreatment but there are barriers to the uptake of 
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RMB in the urological community, stemming from fear of needle-tract seeding and 

pathological upstaging as well as diagnostic uncertainties regarding oncocytic tumours  

[6,7,3,8,9]. Nevertheless, avoiding surgery on benign renal lesions as well as tumours of low 

malignant potential is of paramount importance. A nationwide analysis of renal surgeries 

over a 4 year period revealed that 3.7% of resected renal masses were oncocytomas 

(n=1202) [10]. Of those, only 2.9% had a preoperative RMB, 43.5% were SRM and almost 

half of the patients were 70 years and older suggesting that the majority could have avoided 

treatment. Altogether, 243 patients (20.2%) had in-hospital complications of whom 48 had 

Clavien-Dindo classification grade ≥III (4% of the total cohort), including three deaths. In 

addition, strategies of active surveillance (AS) are gaining acceptance, especially in the 

elderly and comorbid patient population and for tumours of low-malignant potential [11-

13]. It has recently been shown that growth rate of SRM on AS are subtype and germline 

BAP-1 alteration dependent [14,15]. Imaging strategies that could reliably identify benign 

from malignant renal tumours and predict progression based on aggressive histological or 

genomic features would enhance an individualised approach to the management of SRM.  

We reviewed the current available evidence of radiomics and radiogenomics in the context 

of SRM characterisation. 

 

Methods 

Evidence acquisition 

We performed a detailed search of original articles using the PubMed-MEDLINE database 

until 20 September 2020 to identify English literature relevant to radiomic applications in 

renal tumor assessment. We used the search terms ‘radiomics’, ‘artificial intelligence (AI)’, 

‘renal cancer’, ‘renal cell carcinoma (RCC)’, ‘kidney cancer’, ‘renal masses’, ‘small renal 
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masses (SRM)’ and ‘machine learning (ML)’. In total, 42 articles were included in the 

narrative review and divided into 3 main categories related to SRM: 1. prediction of benign 

versus malignant SRM, 2. RCC subtype prediction and 3. prediction of likelihood of 

progression by nuclear grade, other features of aggressiveness and gene profiles 

(radiogenomics). 

 

Evidence Synthesis 

Differentiation of benign and malignant renal tumours 

One of the largest retrospective studies involving CT images of 735 patients (539 malignant 

and 196 benign masses) segmented primary tumours by calculating 33 shape and 760 

texture metrics per tumour [16]. Shape features alone achieved an AUC ranging 0.64-0.68 

across multiple classifiers, compared with 0.67-0.75 and 0.68-0.75 achieved by texture-only 

and combined models, respectively. A smaller retrospective study of 79 patients with 84 

solid renal masses (63 malignant and 21 benign) extracting 271 texture features from 

unenhanced and contrast-enhanced CT images demonstrated an AUC of 0.915 for the 

differentiation between malignant and benign tumours [17] and similar results were 

described by others [18,19]. One machine-learning study specifically addressed the 

differentiation in cT1 lesions having analysed a total of 94 lesions (76 malignant; 18 benign). 

The AUC in this small non-validated study reached 0.83 to distinguish malignant from benign 

tumours with machine-learning [20]. 

A recent retrospective study of a cohort of 254 RCC (190 clear cell (ccRCC), 38 chromophobe 

RCCs [chRCC], and 26 papillary RCCs [pRCC]) also included benign lesions such as 26 fat-poor 

AML, and 10 oncocytomas with preoperative CT examinations [21]. Subsequently, 

performance values of four expert-level radiologists and the radiomics models were 
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compared. Machine-Learning outperformed the radiologists with a sensitivity of 90.0%, 

86.3%, and 73.4% and a specificity of 89.1%, 83.3%, and 91.7%, for distinguishing ccRCC 

from chRCC, subtypes chRCC and cc RCC from the benign AML and oncocytomas and 

subtypes chRCC and pRCC from AML and oncocytomas, respectively [21]. 

The largest series using MRI based radiomics included 1162 renal lesions (655 malignant and 

507 benign), and compared model performance with expert interpretation and the most 

optimized radiomics model [22]. Compared with an average of all experts, the best model 

had higher test accuracy (0.70 vs. 0.60, P = 0.053), sensitivity (0.92 vs. 0.80, P = 0.017), and 

specificity (0.41 vs. 0.35, P = 0.450). 

 

Differentiation of fat-poor angiomyolipoma (AML) from RCC 

Fat-poor AMLs are often indistinguishable from RCC on contrast enhanced cross sectional 

imaging. Several studies assessed the discriminative accuracy of different machine learning-

based classification models on the differentiation of small (≤4cm) fat-poor renal AML and 

renal cell carcinoma (RCC). In a retrospective analysis of 118 biopsy proven RCC and 45 AML 

the target region of interest (ROI) was delineated, followed by data extraction of the largest 

lesion area on each phase of the four-phase CT images [23]. Data were fed into 224 

classification models with multiple classifiers resulting in 3360 discriminative models to be 

analysed for top-ranked features. The highest discriminative models achieved an AUC of 

0.90 to distinguish between fat-poor AML and RCC were based on the unenhanced CT 

phase, alone or in association with images obtained at the nephrographic phase. Features 

related to shape and to histogram demonstrated superior discrimination compared with 

texture features [23]. A previous smaller series included 17 and 41 histologically proven fat-

poor AML and RCC respectively using three-phase CT images to establish the best 
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discriminative classifiers [24]. Overall, several retrospective studies support CT-based 

radiomics as an non-invasive pre-operative prediction tool for differentiating fat-poor AML 

from RCC [25,24,26-29]. A. very recent retrospective study suggests that MRI based texture 

analysis can also be used to distinguish fat-poor AML and oncocytoma from RCC [30]. The 

authors reported on 54 masses (34 RCC, 14 fat-poor AML and 6 oncocytomas) for which 

texture parameters on MRI differentiated RCC from fat-poor AML and oncocytoma with 

AUCs > 0.8.  

 

Differentiation of RCC subtypes and oncocytoma 

In a restrospective study involving 179 lesions (128 ccRCC and 51 oncocytoma with a mean 

size of 3.8 cm (range 0.8-14.6 cm) and 3.9 cm (range 1.0-13.1 cm) respectively, contrast-

enhanced CT based texture radiomics data collected in the excretory phase predicted 

oncocytoma with an accuracy of 74.4%, a sensitivity of 85.8% and a positive predictive value 

(PPV) of 80.1% [31]. Another retrospective study of 119 oncocytomas and other RCC 

subtypes of CT based histogram features demonstrated an excellent AUC of 0.93 (p < 

0.0001), respectively, for differentiating ccRCC from oncocytoma; AUC of 0.99 (p < 0.0001) 

for differentiating papillary RCC from oncocytoma; and an AUC of 0.92 for differentiating 

oncocytoma from other subtypes [32]. One study demonstrated differentiation of 

chromophobe RCC (cRCC) from oncocytoma in 61 patients with confirmed histology (44 

cRCC, 17 oncocytomas) using CT based quantitative features with an AUC of 0.85 [33].   
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Differentiation of RCC subtypes 

Differentiation of RCC subtypes with CT 

CT-based texture radiomics suggest a promising high accuracy to distinguish between ccRCC 

and other RCC subtypes. In a retrospective study involving 170 patients and a validation 

cohort of 85 patients the AUC to distinguish between ccRCC and non-ccRCC was 0.949 [34]. 

In a study including 169 biopsy proven tumours and CT scans texture based radiomics 

reached AUCs from 0.87 to 0.93 for chromophobe, papillary and ccRCC subtypes [35]. 

Another retrospective study included 68 RCCs for model development and internal 

validation while 26 RCCs were included from public databases (The Cancer Genome Atlas-

TCGA) for independent external validation. 275 texture features were extracted from 

unenhanced and corticomedullary phase (CMP) CT images [36]. Overall performance of the 

models derived from CMP images were better than those of unenhanced images. Using 

CMP discrimination of non-cc-RCCs from cc-RCCs had an external validation accuracy, 

sensitivity, and specificity of 84.6%, 69.2%, and 100%, respectively. However, the 

performance was poor for distinguishing the three major subtypes and was best for 

discrimination of pRCC from other RCC subtypes with an external validation accuracy, 

sensitivity, and specificity of 69.2%, 71.4%, and 100%, respectively [36].  

 

Differentiation of RCC subtypes with MRI 

A small study involving 77 tumours with ccRCC, pRCC and chRCC subtypes suggests that 

radiomic models using shape and texture from three different MRI series has potential to 

accurately predict subtypes (table 1) [37]. This observation is supported by several other 

small studies (table 1)[38], the largest one involving 125 patients, 21 of whom with benign 

tumours but the AUC in the validation cohort of 37 patients ranged from 0.73-0.77 to 
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distinguish between subtypes and benign lesions [39]. Very recently, a study using MRI 

texture and histogram based models in 90 ccRCC and 22 p RCCs and 30 oncocytomas 

showed accuracies of 77.9-79.3% to distinguish these histologies [40]. 

 

 

 

Prognosis assessment 

Prediction of sarcomatoid RCC 

In a retrospective study involving 29 sarcomatoid and 99 ccRCC cases, 1029 features were 

extracted from each of the CMP and nephrographic phase (NP) CT images. The AUC based 

on the radiomics models for the combined phases was 0.966 suggesting that the presence 

of sarcomatoid dedifferentiation could potentially be reliably  assessed with AI [41], if 

validated by other studies.  

Prediction of grade in ccRCC 

In a study involving 161 and 99 patients with low and high Fuhrman grade ccRCC 1029 

radiomic features were extracted from their CMP and NP CT images [42]. Combining 

features from both phases, the diagnostic accuracy reached 0.777 with an AUC of 0.822 

[95% CI: 0.769-0.866; sensitivity, 0.677; specificity, 0.839]. The authors concluded that 

radiomic features may predict Fuhrman grade [42] as did others in 232 ccRCC [43]. After the 

grading system changed, the same investigators analysed the predictive value in an 

expanded group using the same methodology for World Health Organization/International 

Society of Urologic Pathology (WHO/ISUP) grade differentiation reaching an AUC of 0.948-

0.98 in the training cohorts with models from both the CMP and NP combined. The AUC 

remained high in the validation cohort (0.96-0.978) [44]. In two other studies  CT textures of 
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227 ccRCCs were retrospectively analyzed and revealed an accuracy of more than 90% 

predicting the WHO/ISUP grade using corticomedullary (CMP) and parenchyma phase 

images [45] and an AUC of 0.88 and 0.91 in the training and validation cohort respectively 

[46].  

 

Recently, the largest retrospective study involving 20 external and 440 internal cases 

included  322 and 250 MRI and CT texture features for ML-model development to 

distinguish WHO/ISUP grades [47]. The best MRI and CT based models distinguished high 

from low WHO/ISUP grade with accuracies of 73% and 79%. One particular study involving 

70 ccRCC showed that MRI based radiomics was superior to tumour size in predicting high-

grade disease with AUCs of 0.67 to 0.81 [48]. 

Another study on 114 patients with resected histologically confirmed ccRCC suggested that  

texture models based on CT gray-scales can assist in the discrimination of high from low 

grade ccRCC [49]. The AUC for the models ranged from 0.83-0.88 but only reached 0.67 in a 

validation cohort. Smaller studies of 71 and 53 cases of ccRCC suggested that radiomics may 

be a promising non-invasive technology to distinguish between high and low Fuhrman 

grades [50,51] (table 2). A recent single centre study in 390 tumours investigated the effects 

of different methodologies on the performance of ML models for differentiating high- from 

low-grade ccRCC [52]. The authors found that models based on limited cropping of CT 

images, lower complexity and the application of transfer learning achieved the best 

performance in internal (AUC = 0.82 ± 0.11) and external (AUC = 0.81 ± 0.04) tests. 
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Radio-genomics 

A study in 58 patients of whom 12 developed metastatic disease after surgery  used a CT 

based radiomics model to more accurately predict the postoperative progression of pT1 RCC 

[53]. In addition, the authors linked radiomics parameters to gene expression profiles 

generated by whole transcriptome sequencing (WTS). CT based features included histogram 

and texture. The gene signatures of clinically relevant molecular pathways, tumour immune 

microenvironment, and potential treatment strategies correlated with the radiomic features 

which suggests this technique may be used to predict progression in pT1 tumours more 

accurately and may inform therapeutic options.  

Two retrospective studies investigated specifically an association of BAP1 mutation and CT 

based texture radiomics. One study in 54 RCC and found an AUC of 0.77 to predict 

BAP1 mutation status [54]. The other study, performed with 65 ccRCC tumours and 

unenhanced CT based texture radiomics found a sensitivity, specificity, and precision of 

90.4%, 78.8%, and 81%, respectively for predicting ccRCCs with BAP-1 mutation and an AUC 

of 0.89 [55]. Similarly, another group investigated CT based texture radiomics in predicting 

the mutation status of the gene encoding the protein polybromo-1 (PBRM1) in 45 patients 

with ccRCC with a promising AUC of 0.925 [56]. Earlier studies included a retrospective 

study on 57 ccRCC tumours which reported an AUC 0.85 for VHL, PBRM1 and BAP1 genes 

[57] and a retrospective study on 78 tumours from the TCGA with an AUC 0f 0.71 based on 

the nephrogenic phase of the CT to predict BAP1 [58]. 
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Evidence interpretation 

The management of SRM would greatly benefit from diagnostic tools indicating which 

lesions require therapy and which can be safely observed. Currently, only RMB has the 

potential to accurately characterize SRM but the technique has not been widely adopted.  

Non-invasive techniques to accurately distinguish benign from malignant lesions and – in 

case of malignancy - to assess the malignant potential and prognosis of those lesions if left 

untreated would greatly enhance the management of these patients. Unfortunately, apart 

from fat-containing AML and homogenous lesions measuring 21-39 HU at portal venous-

phase, visual interpretation of CT contrast enhanced or MRI cross sectional imaging cannot 

reliably discern cancer from benign tumours [59]. 

Given that radiomics mines data from existing resources, it is an attractive potential 

modality to be explored. Retrospective studies comparing renal tumour histologies suggest 

a high accuracy and AUC to distinguish benign from malignant tumours. In addition, 

radiomics harbours potential to predict the course of the disease in case of malignancy. The 

early results suggesting that CT based radiomics may predict BAP1 mutation status are 

intriguing in light of the recent publications suggesting higher growth rates of tumours on 

active surveillance with germline BAP1 alterations. However, the data are too preliminary 

and it is uncertain if this technique could be exploited to select SRM for active surveillance. 

This is indicative of a more universal shortcoming of the studies reviewed. None of the 

multifactorial radiomics algorithms for renal tumours has been translated into routine 

clinical practice or been independently validated. Two recent systematic review have 

identified lack of sharing the methodology for data preparation, feature extraction, and 

poor model construction among the included studies to be responsible for the lack of 

translation of the proposed algorithms into the clinic [2,60]. In addition, reproducibility of 
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radiomic features in the very few validation cohorts is questionable and confirmatory 

studies require larger scale independent and external validation [61].  

Another limiting factor of the majority of studies to interpret their findings for the utility in 

SRM is that they included various tumour sizes. Only one study looked particularly at cT1 

lesions and it is uncertain if the radiomic features observed in larger tumours are 

reproducible in SRM, given the relative inherent tumour heterogeneity in larger tumours.  

Future directions 

As several systematic reviews pointed out, a major shortcoming of the current studies to 

characterize renal masses is their heterogeneity in describing workflow characteristics 

[60,61]. Prospective external and independent validation and diagnostic accuracy studies 

with reproducible and uniform radiomic features are needed to translate radiomics from 

research to clinical use. 

In conclusion, radiomics to better characterise SRM is an emerging and promising field but 

not ready for translation into clinical practice. Further sharing of data algorithms, 

methodology and prospective validation studies  are needed if radiomics are to impact on 

the management of SRM. 
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