See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320466945

System Analysis and Test-Bed for an Atmosphere-Breathing Electric Propulsion System using an Inductive Plasma Thruster

Presentation · September 2017

CITATION 1		READS 349	
32 authors, including:			
	Francesco Romano Universität Stuttgart		Tilman Binder Universität Stuttgart
	52 PUBLICATIONS 229 CITATIONS		39 PUBLICATIONS 208 CITATIONS
	SEE PROFILE		SEE PROFILE

Some of the authors of this publication are also working on these related projects:

DISCOVERER - VLEO satellites for EO View project

SIMP-LEX: PPT R&D for small satellite application View project

All content following this page was uploaded by Francesco Romano on 18 October 2017.

IAC-17-C4,6,5,x41810

System Analysis and Test-Bed for an Atmosphere-Breathing Electric Propulsion System using an Inductive Plasma Thruster

F. Romano, T. Binder, G. Herdrich, P. C.E. Roberts, S. Rodriguez- Donairee, D. Garcia-Almiñanae, N. H. Crisp, S. Edmondson, S. J. Haigh, R. E. Lyons, V. T.A. Oiko, K. L. Smith, J. Becedas, G. González, I. Vázquez, Á. Braña, K. Antonini, K. Bay, L. Ghizoni, V. Jungnell, J. Morsbøl, A. Boxberger, S. Fasoulas, D. Kataria, M. Davidson, R. Outlaw, B. Belkouchi, A. Conte, J. Santiago Perez, R. Villain, B. Heißerer, A. Schwalber

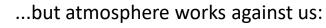
28th September 2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under agreement No 737183

Institute of Space Systems University of Stuttgart

This p funding Union's and in under as

This project has received funding from the European Union's Horizon 2020 research and innovation programme under agreement No 737183



Motivation

Low altitude orbits have advantages:

- Higher resolution imaging and measurements;
- Less complicated instrumentation → lower mass and costs;
- S/C's stabilization by aerodynamic forces.

- Momentum exchange between atmosphere and S/C;
- Decrease of orbital velocity, shorter mission

but also enabling "self" End-of-Life disposal!

University of Stuttgart

→ Drag has to be counteracted.

68th International Astronautical Congress, Adelaide, Australia

What kind of propulsion system is needed?

- Efficient propulsion system for small S/C to compensate the drag;
- Electric propulsion \rightarrow low thrust, high I_{sp};
- Scalable to small sizes, variable thrust, efficiency;
- Looking at I_{sp} and scalability to small S/C we choose electric propulsion.

Great amount of drag to be compensated for most mission time, \rightarrow requires a great amount of propellant to be carried on-board

68th International Astronautical Congress, Adelaide, Australia

deimos

elecnor group

years duration

68th International Astronautical Congress, Adelaide, Australia

countries

RS Institute of Space Systems

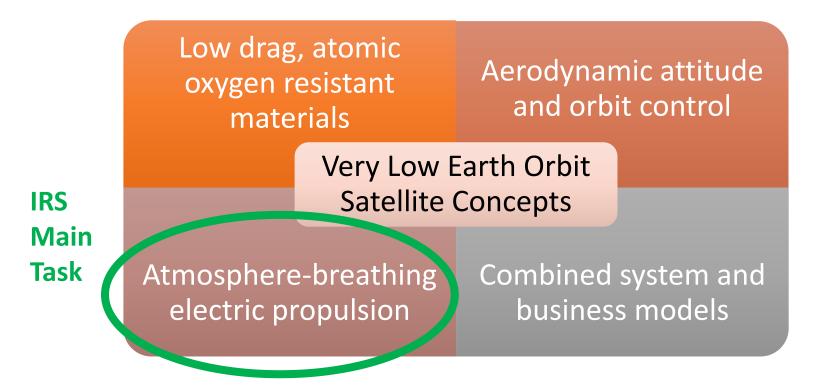
UNIVERSITAT POLITÈCNICA DE CATALUNYA

BARCELONATECH

Euroconsult EC

INTERNATIONAL ASTRONAUTICAL **GRESS 2017** ADELAIDE, AUSTRALIA • 25-29 SEPTEMBER 2017

Unlocking imagination, fostering innovation and strengthening security


68TH IAC

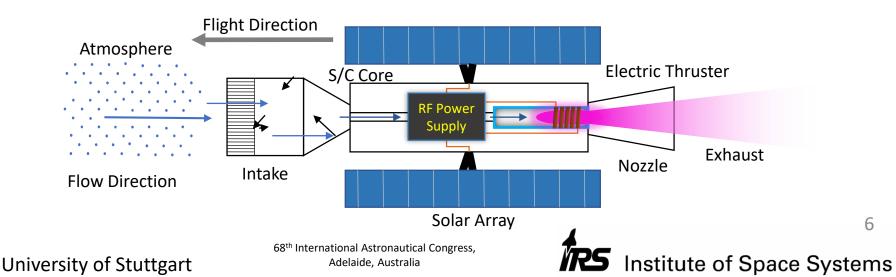
This project has funding from the Union's Horizon 2020 research innovation programme and under agreement No 737183

received

European

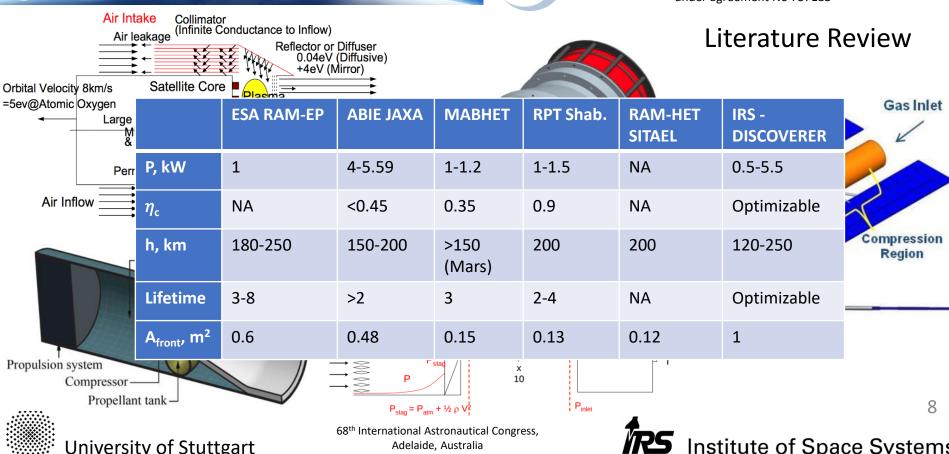
University of Stuttgart

68th International Astronautical Congress, Adelaide, Australia



Atmosphere-Breathing Electric Propulsion (ABEP)

- Use of residual atmosphere as propellant for an electric thruster;
- Intake collects the atmosphere molecules and feeds the thruster;
- Thruster process and expel them through a nozzle to generate thrust.



This project received has INTERNATIONAL ASTRONAUTICAL funding from the CONGRESS 2017 European ADELAIDE, AUSTRALIA • 25-29 SEPTEMBER 2017 Union's Horizon 2020 research 68TH IAC and innovation programme Unlocking imagination, fostering innovation and strengthening security under agreement No 737183 Velocit; (....s) 0.0001 0.001 0.01 0.1 10 100 1000 10000 900 900 Density 800 800 He variation with solar activity (MSIS-E) 700 700 High 600 600 Mean Altitude (km) Low 500 **Drag Threshold** \mathbf{O} 400 400 300 Lifetime ∆v 300 200 200 Karman Line N_2 100 100 0 0 -12 -16 -14 -10 -2 -8 -6 2 Composition 0% 100% 7 log density (kg/m³) **IRS** Institute of Space Systems

- Very Low Earth Orbit VLEO
- ABEP S/C will encounter mostly atomic O and N_2

University of Stuttgart

Adelaide, Australia

Facility Refurbishment

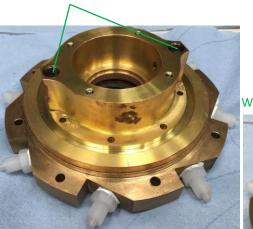
- Tank of 12 m³ previously used for RIT testing;
- Main vacuum facility
 < 1 Pa with no mass flow;
- Secondary system: Oil diffusion pumps (50 000 l/min) ~10⁻⁴ Pa with no mass flow.

68th International Astronautical Congress, Adelaide, Australia

Inductive Plasma Thruster (IPT) – Starting from IPG6-S

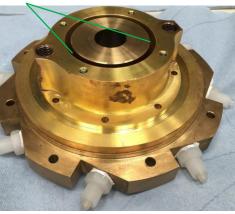
- RF-fed electrodeless device;
- Discharge channel diameter 40 mm;
- Water cooled;
- Power input max 15 kW, $f \sim 4$ MHz, I up to 4.5 A;
- Propellant: O₂, N₂, CO₂.
 - Any gaseous propellant can be used;
 - No neutralizer needed;
 - No components in direct contact with the plasma \rightarrow erosion free

68th International Astronautical Congress, Adelaide, Australia



has received project This funding from the European Union's Horizon 2020 research innovation programme and under agreement No 737183

de Laval-Modular Nozzle


Water inlet/outlet

External nozzle structure attached IPG6-S water to cooled bottom flange.

Convergent section inserted

Water cooling channel

Closure added, convergent-only configuration

Divergent section added, de Laval configuration

68th International Astronautical Congress, Adelaide, Australia

Institute of Space Systems

Inductive Plasma Thruster - IPT

- Based on IPG6-S experience;
- Passively cooled;
- Dimensions optimized for ABEP related mass flow;
- Optimized antenna for best power coupling;
- Acceleration stage;
- Optimized for input power 0.5 to 5.5 kW.

68th International Astronautical Congress, Adelaide, Australia

Conclusion

- Solid and verified literature review available for ABEP development;
- IPG6-S has now an upgraded facility that allows more reliable test results;
- A modular de Laval nozzle has been designed an built;

Outlook

- The new test facility serves as test-bed for the development of the IPT;
- Calorimeter measures the plasma plume energy, mini Pitot probe will be soon integrated;
- Understanding and modification on the power supply will allow better operation; ٠
- Inclusion of external B-field and magnetic nozzle to improve IPG6-S.

University of Stuttgart

68th International Astronautical Congress, Adelaide, Australia

Thank you for your time!

Questions? Suggestions?

Francesco Romano romano@irs.uni-stuttgart.de Pfaffenwaldring 29, 70569 Stuttgart, Germany

68th International Astronautical Congress, Adelaide, Australia

