Synthetic Studies on the Pseudopterosins and trans-4-Methyl-L-Proline

A Thesis Presented to the
University of London in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

Andrew A. Calabrese

University College London
The Christopher Ingold Laboratories
20 Gordon Street
London

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10630749
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

To my family

Contents

Abstract i
Abbreviations ii
Acknowledgements iii
Section 1
Chapter 1 - The Pseudopterosins
1.0 Introduction 1
1.1 Isolation and Structural Determination 3
1.2 Pharmacology 6
1.3 Promulgated Synthetic Approaches to the Pseudopterosins 9
1.4 Concluding Remarks 42
Chapter 2 - The Pseudopterosins: Results and Discussion
2.0 Retrosynthesis 44
2.1 Synthesis of the Starting Materials 47
2.2 Triene Synthesis 48
2.3 Attempted IMDA Reaction of $\mathbf{2 5 9}$ 53
2.4 Synthetic Probe of the Steric vs Electronic Activity of 259 55
2.5 Synthesis of a 'Late' Triene with an Electron-Rich Diene Unit 59
2.6 Attempted IMDA Reaction of 276 61
2.7 New Retrosynthesis: An Intermolecular Diels-Alder Approach 63
2.8 Synthesis of the Dienophile 64
2.9 Synthesis of the Diene 67
2.10 Attempted Intermolecular Diels-Alder Reaction 70
2.11 Conclusions and Future Work 74

Section 2

Chapter 3 - trans-4-Methyl-L-Proline
3.0 Introduction 75
3.1 Promulgated Synthesis of trans-4-Methyl-L-Proline 77
3.2 Synthetic Approaches to trans-4-Alkyl-L-Prolines 86
3.3 The Hale Approach to 4-Methyl-D-Proline 90
3.4 Concluding Remarks 92
Chapter 4 - trans-4-Methyl-L-Proline: Results and Discussion
4.0 Retrosynthesis 93
4.1 Synthesis of 414 and Attempted Hydrazination 94
4.2 Synthesis of the Bromide 424 96
4.3 New Retrosynthesis 97
4.4 The Schöllkopf Approach 98
4.5 The O'Donnell-Lygo-Corey Approach 100
4.6 Conclusions and Future Work
Section 3
Chapter 5-Experimental Section
5.0 Experimental Techniques 103
5.1 Experimental Procedures 105
Appendix 1 -References
Appendix 2 - Spectra

The Pseudopterosin family of diterpene glycosides was isolated in 1986 from the Caribbean sea-plume Pseudopterogorgia elisabethea. Pseudopterosin E is one of the most potent anti-inflammatory agents currently know, being fifty times more active than indomethacin in preventing phorbol myristate acetate topically-induced inflammation in the mouse ear oedema model.

In the first section of this thesis, an attempted synthetic strategy towards Pseudopterosin E is reported. Our initial retrosynthesis adopted an intramolecular DielsAlder reaction (IMDA) to form the tricarbocyclic core of the natural product. It was envisaged that elaboration of the IMDA product would lead to a key intermediate in the Corey et al. synthesis of Pseudopterosin E. The remainder of our synthesis would be after Corey.

Free trans-4-methyl-L-proline was first obtained from Worcester Pearmain apples in 1952. It is a constituent part of several natural products; Grisemelycin, Mycoplanecin A, and the Monamycins, all of which have potent biological activity profiles.

trans-4-METHYL-L-PROLINE

In the second section of this thesis, several synthetic approaches to trans-4-methyl-L-proline are reported.

Acknowledgements

I would like to thank;
Professor Hale for his patient supervision and guidance for the past three years.
The technical staff of the Christopher Ingold Laboratories, particularly George in the nmr suite and Steve Corker in the mass spectrometry laboratory.

Past and present members of the Hale group (Ruk, Guppy, Allan, Raf, Huan-Lo, Marc, Neha, and Soraya and the others) and everyone on the fourth floor (especially the Motherwell group and Sandy).

Mike Cocksedge at The London School of Pharmacy for determining accurate mass measurements.

My family, without whose support this thesis could not have been prepared.

Abbreviations

acac	acetylacetonate anion
Ac	acetyl
AIBN	α, α^{\prime}-azobisisobutyronitrile
al.	alia
aq	aqueous
atm	atmospheres
Bn	benzyl
Boc	(t-butoxycarbonyl)
BOM	benzyloxymethyl
Bu	butyl
cat	catalytic
CA	chiral auxiliary
Chem. Abs.	Chemical Abstracts
CI	chemical ionisation
conc	concentrated
DBAD	di-t-butyl azodicarboxylate
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCM	dichloromethane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DHP	dihydropyran
DME	dimethoxyethane
DMF	dimethylformamide
DIBAL	diisobutylaluminium hydride
DMAP	4-dimethylaminopyridine

DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidone
DMS	dimethyl sulfide
DMSO	dimethyl sulfoxide
DNP	2,4-dinitrophenyl
dppp	1,3-bis(diphenylphosphino)propane
$E D_{50}$	effective dose in 50\% of subjects tested
ee	enantiomeric excess
ether	diethyl ether
Et	ethyl
HMDS	hexamethyldisilazane
HMPA	hexamethylphosphoric triamide
HPLC	high performance liquid chromatography
$\mathrm{hr}(\mathrm{s})$	hour(s)
HRMS	high resolution mass spectrometry
IC_{50}	concentration of a drug that reduces a response to another drug or target enzyme by 50%
ir	infra red
LDA	lithium diisopropylamide
LiCA	lithium isopropylcyclohexylamide
Lit.	literature
m-CPBA	3-chloroperbenzoic acid
Me	methyl
MHz	megahertz
$\min (\mathrm{s})$	minute(s)
MOM	methoxymethyl

mp	melting point
MPLC	medium pressure liquid chromatography
m / z	mass/charge ratio
Ms	methanesulfonyl
NADP(H)	nicotinamide dinucleotide (phosphate)
NBS/NCS	N-bromosuccinimide/ N -chlorosuccinimide
$n / i / t$	normal/iso/tertiary
NMO	4-methylmorpholine N -oxide
nmr	nuclear magnetic resonance
$o / m / p$	ortho/meta/para
petrol	petroleum ether $40-60^{\circ} \mathrm{C}$
PDC/PCC	pyridinium dichromate/pyridinium chlorochromate
Ph	phenyl
PhFl	9-(9-phenylfluorenyl)
Piv	pivaloyl
PMB	p-methoxybenzyl
PPTS	pyridinium p-toluenesulfonate
Pr	propyl
psi	pounds/inch ${ }^{2}$
R_{f}	retention factor
R	general alkyl group
rt	room temperature
satd	saturated
$\sec (\mathrm{s})$	second(s)
TBAF	tetra- n-butylammonium fluoride

TBDPS	t-butyldiphenylsilyl
TBS	t-butyldimethylsilyl
TEMPO	$2,2,6,6$-tetramethyl-1-piperidinyloxy
TES	triethylsilyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
tlc	thin layer chromatography
TM	trade mark
TMEDA	$N, N, N^{\prime}, N^{\prime}$, -tetramethylethylenediamine
TMS	trimethylsilyl
p-Ts	p-toluenesulfonyl
Z	benzyloxycarbonyl

CHAPTER 1
 The Pseudopterosins

1.0 Introduction

The Pseudopterosin family of diterpene glycosides (Fig. 1) was isolated in 1986^{1} and 1990^{2} by Fenical et al. from the Caribbean sea-plume Pseudopterogorgia elisabethea.

Fig. 1

PSEUDOPTEROSIN A; $\mathbf{R}_{1}=\mathbf{R}_{2}=\mathbf{R}_{3}=\mathbf{H}$ PSEUDOPTEROSIN B; $R_{1}=A c, R_{2}=R_{3}=H$ PSEUDOPTEROSIN C; $\mathbf{R}_{2}=A c, \mathbf{R}_{1}=\mathbf{R}_{3}=\mathbf{H}$ PSEUDOPTEROSIN D; $\mathbf{R}_{3}=A c, \mathbf{R}_{1}=\mathbf{R}_{2}=\mathbf{H}$

PSEUDOPTEROSIN G; $\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{R}_{6}=\mathrm{H}$ PSEUDOPTEROSIN H; $\mathbf{R}_{4}=\mathbf{A c}, \mathbf{R}_{5}=\mathbf{R}_{6}=\mathbf{H}$ PSEUDOPTEROSIN I; $\mathbf{R}_{5}=\mathbf{A c}, \mathbf{R}_{4}=\mathbf{R}_{6}=\mathrm{H}$ PSEUDOPTEROSIN J; $\mathbf{R}_{6}=\mathbf{A c}, \mathbf{R}_{4}=\mathbf{R}_{5}=\mathbf{H}$

PSEUDOPTEROSIN K; $\mathbf{R}_{T}=\mathbf{H}$ PSEUDOPTEROSIN L; $\mathbf{R}_{7}=\mathbf{A c}$

Pseudopterogorgia elisabethea

Structurally, the family is united by a common aglycone unit, albeit with differing absolute and relative stereochemistry, attached to a variety of sugars, and their acetylated congeners, in a regio- and stereospecific manner.

Biologically, they are potent anti-inflammatory and analgesic agents with Pseudopterosin C achieving commercial success in Resilience ${ }^{\mathrm{TM}}$, an anti-ageing cream marketed by Estée Lauder.

Structurally related natural products are the seco-pseudopterosins ${ }^{3}$, also isolated from Pseudopterogorgia elisabethea by Fenical et al., and the Helioporins ${ }^{4}$ obtained from Heliopora coerulea in 1993 by Higa et al. (Fig 2).

Fig. 2

seco-PSEUDOPTEROSIN A; $\mathbf{R}_{1}=\mathbf{R}_{\mathbf{2}}=\mathbf{R}_{\mathbf{3}}=\mathbf{H}$ seco-PSEUDOPTEROSIN B; $\mathbf{R}_{3}=A c, \mathbf{R}_{1}=\mathbf{R}_{\mathbf{2}}=H$ seco-PSEUDOPTEROSIN C; $\mathbf{R}_{2}=A c, R_{1}=\mathbf{R}_{3}=H$ seco-PSEUDOPTEROSIN D; $\mathbf{R}_{1}=A c, \mathbf{R}_{2}=\mathbf{R}_{\mathbf{3}}=H$

HELIOPORIN A

HELIOPORIN B

HELIOPORIN E

HELIOPORIN C

HELIOPORIN D

1.1 Isolation and Structural Determination

Marine soft corals of the subclass Octorallia are ubiquitous in the tropical waters of the Atlantic ocean and the Caribbean sea ${ }^{5}$. Known as sea-whips, sea-fans, seaplumes, and as gorgonian corals (order Gorgonacea, phylum Cnidaria), they account for an estimated 38% of the known fauna in the Caribbean with over 195 reported species ${ }^{6}$.

There are 15 species of the genus Pseudopterogorgia documented which are best characterised as sea-plumes owing to their large, highly and finely branched plumose and physically soft forms ${ }^{5}$. The natural product chemistry of Pseudopterogorgia species was first studied in 1968 and led to the isolation of complex mixtures of sesquiterpene hydrocarbons from Pseudopterogorgia americana ${ }^{7}$. Since then, natural product isolation programmes have found that they are a rich source of terpenoids ${ }^{8}$ and secosterols ${ }^{9}$ and they have been described as one of the most chemically prolific of the octocorals of the tropical Atlantic ocean ${ }^{2}$.

Fenical et al. have focused attention on representatives of this genus which are found in deeper water and which are less conspicuous ${ }^{1}$. In 1982, Pseudopterogorgia elisabethea was collected near Crooked Island in the Bahamas at depths of -15 to -35 metres. The animals were homogenised and the gorgonian cake was repeatedly extracted with CHCl_{3} and EtOAc. Purification of the crude residue by rapid-elution chromatography and HPLC yielded Pseudopterosins A-D (Fig 1). Pseudopterosin C was the major component accounting for 7.5% of the organic extract, whilst Pseudopterosins A, B, and D occupied less than 1% of the organic extract each.

For Pseudopterosin C, a molecular formula of $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{7}$ was established from the HRMS and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum, indicating that the molecule was highly unsaturated. A peak at $1725 \mathrm{~cm}^{-1}$ in the ir spectrum suggested that Pseudopterosin C contained a
monoacetate unit and the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum contained five methyl peaks, in addition to the acetyl peak, and three hydroxyl peaks. The 'Methyl Count' in the ${ }^{1} \mathrm{H} n m r$ spectrum suggested a diterpenoid carbon skeleton. Furthermore, the ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum showed peaks characteristic of an isopropylidene group. The presence of an acetate group, polyhydroxylation, and a carbon count five in excess of a diterpenoid molecule indicated that Pseudopterosin C contained an acetylated pentose sugar. Comparison of the spectral data established that Pseudopterosins B and D were isomeric monoacetates and that Pseudopterosin A was the unacetylated congener. Extensive ${ }^{1} \mathrm{H} \mathrm{nmr}$ spindecoupling experiments established that the sugar moiety was a β-xylopyranose and the positions of acetylation for Pseudopterosins B-D. In addition, when subjected to acid hydrolysis Pseudopterosin A liberated D-xylose.

The full structural assignment of Pseudopterosin C was achieved by X-ray crystallography where the aglycone unit was found to be a tricyclic diterpene ring system based on the rare amphilectane ${ }^{10}$ skeleton. As the absolute stereochemistry of the sugar moiety was known, and the X-ray data gave the relative stereochemistry of the molecule as a whole, the absolute stereochemistry of Pseudopterosin C could be assigned (Fig. 3). The aromatic ring is planar and the two carbocyclic rings are in the

Fig. 3 half-chair conformation. The methyl at C-7 is

PSEUDOPTEROSIN C pseudoaxial whilst the methyl at C-3 is pseudoequatorial. The isopropylidene group and the bridgehead hydrogen (C-4) are pseudoaxial. The 3-O-acetyl- $\beta-$ - $-x y l o p y r a n o s e ~$ moiety is attached at the C-9 hydroxyl and is in a chair conformation with all the substituents occupying equatorial positions. The absolute stereochemical structures of the remaining Pseudopterosins were defined by analogy.

When a Bermudan extract of Pseudopterogorgia elisabethea was examined, the animals were found to contain six additional members of the family ${ }^{2}$, namely Pseudopterosins E-J (Fig. 1).

Using techniques similar to those just described, both Pseudopterosin E and F were found to contain the same agylcone unit as for Pseudopterosins A-D, though long range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation nmr spectra suggested that the sugar was attached to the $\mathrm{C}-10$ hydroxyl. The sugar component of Pseudopterosin E was identified as an α-fucose, and thought to be an α-L-fucose as only L-fucose is found in marine organisms ${ }^{11}$. Furthermore, this structure was confirmed through a concomitant total asymmetric synthesis by Corey ${ }^{12}$ (vide infra). Chemical degradation of Pseudopterosin F revealed that the sugar component was a D -arabinose and X-ray crystallography confirmed the structure. The sugar unit of Pseudopterosin G was determined to be an $\alpha-L$-fucose attached to the C-9 position of an aglycone which is epimeric at the C-7 methyl to those previously described. Pseudopterosins $\mathrm{H}-\mathrm{J}$ are the monoacetate isomers of Pseudopterosin G.

Interestingly, when Pseudopterogorgia elisabethea was collected at Great Abaco Island in the Bahamas, the animals were found to contain Pseudopterosins K and L exclusively without even trace amounts of the other Pseudopterosins ${ }^{2}$.

The sugar moiety of Pseudopterosin K is an α-L-fucose attached to the C9 position of an agylcone that was found to be enantiomeric to those in Pseudopterosins A-F. Pseudopterosin L is the 3-O-acetyl- $\alpha-\mathrm{L}$-fucoside version of Pseudopterosin K.

In summary, the Pseudopterosin class of tricarbocyclic diterpene glycosides has been isolated by Fenical et al. and their structures have been determined using a combination of chemical, physical, and spectral techniques.

1.2 Pharmacology

Human inflammatory ailments such as gout, psoriasis, and oedemas can be extremely painful ${ }^{13}$.

The inflammatory response is mediated by the biosynthesis of eicosanoids, such as leukotrienes, prostaglandins, and thromboxanes, from arachidonic acid ${ }^{14}$ (Fig. 4).

Fig. 4

PHOSPHOLIPID

LYSOPHOSPHOLIPID

'Arachidonic acid cascade'

Eicosanoids
The production of arachidonic acid is catalysed by phospholipase A_{2}, an enzyme for ester hydrolysis at the $s n-2$ position of a phospholipid. The resulting arachidonic acid is then metabolised by many biosynthetic pathways, known collectively as the 'arachidonic acid cascade', to produce eicosaniods. Of these, the most potent chemotactic eicosanoids are the leukotrienes, which increase the permeability of local venules and capillaries resulting in fluid leaking into the interstitial spaces causing oedema ${ }^{15}$. Any selective inhibition of phospholipase A_{2} or any of the main pathways within the 'arachidonic acid cascade' by a substrate can be expected to modify the inflammatory response ${ }^{16}$. For example, indomethacin, a typical non-steroidal antiinflammatory agent, inhibits the cyclo-oxygenase pathway responsible for the production of prostaglandins ${ }^{17}$.

Often, the painful nature of the inflammation is not due to the inflammation per se but to the tissue destructive events of neutrophils (polymorphonuclear leukocytes) ${ }^{18}$.

Neutrophils, phagocytic cells released by non-specific immune systems, help to destroy foreign antigens, invading microorganisms, and damaged tissue structures. Once activated, neutrophils congregate at the site of the offending agent and undergo degranulation to release a complex armamentarium. Among the most damaging of the tissue ravaging agents released are hypochlorous acid ${ }^{19}$ and chloramines ${ }^{20}$. Both types of oxidant are formed through a cascade of reactions that commences with the reduction of molecular oxygen to $\mathrm{O}_{2}{ }^{-}$by NADPH oxidase ${ }^{21}$ (Scheme 1). The $\mathrm{O}_{2}{ }^{-}$then undergoes Scheme 1 distmutation to hydrogen peroxide ${ }^{22}$, $2 \mathrm{O}_{2}+\mathrm{NADPH} \rightarrow 2 \mathrm{O}_{2}{ }^{-}+\mathrm{NADP}+\mathrm{H}^{+}$much of which then fuels the $2 \mathrm{O}_{2}{ }^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \quad$ myleperoxidase system in its oxidation $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Cl}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O} \quad$ of chloride ion to hypochlorous acid. $\mathrm{RNH}_{2}+\mathrm{HOCl} \rightarrow \mathrm{RNHCl}+\mathrm{H}_{2} \mathrm{O} \quad$ The chloramines are thought to be generated by oxidation of amines within the intracellular granules by some of the liberated hypochlorous acid ${ }^{23}$. Unfortunately, neutrophils often display little discriminatory ability to distinguish between damaged tissue and healthy tissue that is merely inflamed, as in the leukotriene mode of action described above. The unnecessary destructive attack by neutrophils on inflamed tissue is one of the causes of pain in inflammatory illnesses ${ }^{24}$.

Recent pharmacological characterisation by Jacobs ${ }^{25}$ et al. of Pseudopterosin A and E has shown that they are potent anti-inflammatory and analgesic agents.

When administered topically against phorbol 12-myristate 13-acetate induced mouse ear oedema both Pseudopterosin A and E exhibited high levels of inhibition at low concentrations $\left(\mathrm{ED}_{50}=8 \mu \mathrm{~g} /\right.$ ear and $38 \mu \mathrm{~g} /$ ear respectively $)$. Both are significantly more potent than indomathecin $\left(\mathrm{ED}_{50}=80 \mu \mathrm{~g} /\right.$ ear $)$, the current industry standard. When administered systematically (intraperitoneally) Pseudopterosin A and E inhibited
inflammation in a dose-dependent manner $\left(\mathrm{ED}_{50}=32 \mu \mathrm{~g} /\right.$ ear and $14 \mu \mathrm{~g} /$ ear respectively) confirming an anti-inflammatory effect and ruling out a non-specific counter irritant effect. Increasing dosage levels led to a maximum inhibition of 90% at $100 \mathrm{mg} / \mathrm{kg}$ for both compounds, but at these high doses the mice appeared severely agitated suggesting a possible neurological effect.

In vivo, analgesic effects for Pseudopterosin A and E were determined against phenyl-p-benzoquinone-induced writhing $\left(\mathrm{ED}_{50}=4 \mathrm{mg} / \mathrm{kg}\right.$ and $14 \mathrm{mg} / \mathrm{kg}$, ip, respectively) and, for Pseudopterosin E, against zymosian-induced eicosanoid production in murine peritoneal exudates $\left(\mathrm{ED}_{50}=24 \mathrm{mg} / \mathrm{kg}\right.$ for 6-keto-prostaglandin $-\mathrm{F}_{1 \alpha}$ and $\mathrm{ED}_{50}=24 \mathrm{mg} / \mathrm{kg}$ for leukotriene $\left.\mathrm{C}_{4}\right)$. These data suggest a direct effect on the lipoxygenase and cyclo-oxygenase enzymes in the 'arachidonic acid cascade'. However, the observed four-fold increase between ED_{50} values for zymosian writhing $(4 \mathrm{mg} / \mathrm{kg})$ and eicosanoid production $(26-31 \mathrm{mg} / \mathrm{kg})$ indicate that other mechanisms contribute to the analgesic effects of the Pseudopterosins.

In vitro, Pseudopterosin A inhibited both prostaglandin $\mathrm{E}_{2}\left(\mathrm{IC}_{50}=4 \mu \mathrm{M}\right)$ and leukotriene $\mathrm{C}_{4}\left(\mathrm{IC}_{50}=1 \mu \mathrm{M}\right)$ in a concentration-dependent manner. In contrast, Pseudopterosin E was inactive ($<40 \%$ inhibition) suggesting in vivo metabolism that allows Pseudopterosin E to inhibit zymosian-induced eicosanoid production in vivo. Furthermore, both Pseudopterosin A and E have no significant effect on phospholipase A_{2} activity nor do they effect phospholipase A_{2}-regulated surface expression of CD11b in human neutrophils.

The mode of action of the Pseudopterosins remains unclear, though early work of Faulkner et al. has established that the aglycone unit is the active form of the drug ${ }^{15}$.

In summary, these combined data suggest that the Pseudopterosins mediate their anti-inflammatory effect by the inhibition of eicosanoid production through a
phospholipase A_{2} and cyclo-oxygenase independent mechanism. Crucially, they have been shown to inhibit the most potent of the chemotactic eicosanoids, namely the leukotrienes.

1.3 Promulgated Synthetic Approaches to the Pseudopterosins

The first reported synthetic work on the Pseudopterosins was an attempted interconversion of Pseudopterosin C (the most abundant Pseudopterosin) to Pseudopterosin E (the most biologically active Pseudopterosin) by Fenical ${ }^{2}$ et al. (Scheme 2).

Scheme 2

(i) $\mathrm{K}_{2} \mathrm{CO}_{3}, o$-nitrobenzyl chloride, acetone, $\mathrm{rt}, 9 \mathrm{hrs}, 67 \%$; (ii) 1 N (aq) $\mathrm{HCl}, \mathrm{MeOH}, 6{ }^{\circ} \mathrm{C}, 48 \mathrm{hrs}, 86 \%$; (iii) TESCl , imidazole, DMF, rt for 1 hr , then $60^{\circ} \mathrm{C}$ for $5 \mathrm{hrs}, 96 \%$; (iv) hv, Girard's reagent T, MeOH: DCM 2:1, rt, 6 hrs, 91%.

Pseudopterosin C reacted readily with o-nitrobenzyl chloride to form the ether 1. Acid hydrolysis of the 3-O-acetyl-D-xylose unit gave the phenol 2 , which was then protected as the triethylsilyl ether 3. Photolysis of the o-nitrobenzyl ether unmasked the C-10 hydroxyl affording 4, which could have been glycosidated with a variety of protected
sugars to yield Pseudopterosin E and analogues. Despite many attempts at C-10 glycosidation, the yields were always very low. Optimisation of the reaction conditions was not pursued by Fenical, in light of a successful synthesis of Pseudopterosin E by Corey ${ }^{13}$ et al., though the use of orthogonal protecting groups in this manner could lead to a large assemblage of Pseudopterosin analogues.

Massey-Westropp ${ }^{26}$ and Cowin have developed an expedient route to secoPseudopterosin analogues from the naturally occurring diterpene Serrulatenol (Scheme 3).

Scheme 3

(i) NaH , MeI, DMSO, rt, $48 \mathrm{hrs}, 72 \%$; (ii) $\mathrm{Li}-\mathrm{NH}_{3}, \mathrm{THF}, \mathrm{EtOH},-7{ }^{\circ} \mathrm{C}, 5 \mathrm{mins}$; (iii) $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{EtOAc}, \mathrm{rt}$, 71% for two steps; (iv) NaH , MeI, DMSO, rt, $48 \mathrm{hrs}, 48 \%$; (v) MsCl, pyridine, $0^{\circ} \mathrm{C}$, overnight; (vi) NaI, acetone, reflux, overnight, 85% for two steps; (vii) $n-\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{PhH}$, reflux, $16 \mathrm{hrs}, 38 \%$.

Serrulatenol was methyl protected and exposed to $\mathrm{Li}-\mathrm{NH}_{3}$ in EtOH followed by hydrogenation to afford 5. Selective phenol methylation and subsequent deoxygenation under standard conditions led to 6 in very low overall yield (8\% for 7 steps). Though 6 is somewhat different to the seco-Pseudopterosin aglycone, Massey-Westropp and Cowin intend to prepare derivatives of 6 for biological assay.

1.3.1 The Corey Asymmetric Total Syntheses of Pseudopterosin A and E

Corey ${ }^{13}$ and Carpino achieved the asymmetric total synthesis of Pseudopterosins A and E in 1989. The oxime 7 (Scheme 4), available from (+)-menthol as a 5:1 $R: S$
mixture of diastereomers ${ }^{27}$ at $\mathrm{C}-3$ (Pseudopterosin numbering), was hydrolysed with 5 equivalents of NaHSO_{3} to form the lactol 8 which was oxidised to the lactone 9 with Br_{2} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$.

Scheme 4

(i) $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 4 \mathrm{hrs}$; (ii) $\mathrm{Br}_{2}, \mathrm{CaCO}_{3}$, THF, $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 1.5 \mathrm{hrs}$; (iii) LDA, THF, $0{ }^{\circ} \mathrm{C}, 2 \mathrm{hrs}, 60 \%$ for 3 steps; (iv) DIBAL, DCM, $-78^{\circ} \mathrm{C}, 2 \mathrm{hrs}$; (v) $\mathrm{Ph}_{3} \mathrm{PC}(\mathrm{Me}) \mathrm{SEt}, \mathrm{DMSO}, \mathrm{rt}, 24 \mathrm{hrs}$; (vi) $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-65^{\circ} \mathrm{C}, 1 \mathrm{hr}$; (vii) $\mathrm{HgCl}_{2}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 1 \mathrm{hr}$; (viii) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{hrs}, 40 \%$ for 4 steps.

Complete isomerisation at C-3 (Pseudopterosin numbering) to the R configuration was achieved by aqueous quench of the enolate formed by the action of LDA on 9 to afford the γ-lactone 10 in good yield. Reduction of $\mathbf{1 0}$ with DIBAL in DCM and subsequent Wittig chain extension with $\mathrm{Ph}_{3} \mathrm{PC}(\mathrm{Me}) \mathrm{SEt}$ in DMSO gave rise to 11. Swern oxidation of 11 with $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ followed by thioether cleavage with HgCl_{2} afforded the $1,5-$ diketone 12, which, on exposure to NaOMe in MeOH , yielded the octalone 13 via an Aldol cyclisation, condensation reaction.

In a later report ${ }^{28}$ (1990), Corey and Carpino showed that the octalone 13 can be made in a more expedient manner starting from commercially available (S)-citronellal (Scheme 5).

Scheme 5

(i) $\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$, piperidinium acetate, $\mathrm{rt}, 12 \mathrm{hrs}$; (ii) $\mathrm{FeCl}_{3}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 3 \mathrm{hrs}$, then $\mathrm{rt}, 1 \mathrm{hr}, 89 \%$; (iii) $1 \mathrm{M}(\mathrm{aq}) \mathrm{LiOH}, \mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{hrs}$; (iv) (COCl)$)_{2}, \mathrm{DCM}, \mathrm{DMF}$, rt, 2 hrs ; (v) $\mathrm{EtAlCl}_{2}, \mathrm{DCM},-30^{\circ} \mathrm{C}$ to rt, 24 hrs, 72% for 3 steps; (vi) Li-NH3, THF, $-78{ }^{\circ} \mathrm{C}, 10 \mathrm{mins}, 78 \%$; (vii) $\mathrm{NaH}, \mathrm{THF}, \mathrm{rt}, 3 \mathrm{hrs}$, then Br_{2}; crude residue, $\mathrm{LiCl}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 3 \mathrm{hrs}$, then $125^{\circ} \mathrm{C}, 3 \mathrm{hrs}, 70 \%$.

The unsaturated malonic ester 14, obtained from the reaction of (S)-citronellal with dimethyl malonate and piperidinium acetate, formed the cyclic diester 15 upon exposure to FeCl_{3} in DCM with excellent yield (89\%) and diastereoselectivity (97:3) ${ }^{29}$. Monosaponification of $\mathbf{1 5}$ with 1.2 equivalents of LiOH and reaction of the resulting monoacid with oxalyl chloride in DCM resulted in the formation of the mono-acid chloride 16. The acid chloride 16 reacted with 3 equivalents of EtAlCl_{2} in DCM to afford the unsaturated β-keto ester 17 in excellent (72\%) yield overall from the cyclic diester 15. The saturated β-keto ester 18 was formed by lithium metal reduction of 17 at low temperature and was transformed to the octalone 13 by a novel two-step procedure. Namely, 18 was reacted with NaH in THF to afford the sodio derivative which was quenched with Br_{2}. The crude isolated product was heated with a 6% solution of LiCl in DMF for several hours to give the octalone 13, which was identical in all respects to the previously synthesised material.

Reaction of the octalone 13 with KH in THF and trapping of the thermodynamic enolate with TBSCl gave the dienol silyl ether 19 (Scheme 6).

Scheme 6

(i) $\mathrm{KH}, \mathrm{TBSCl}, \mathrm{THF}, \mathrm{HMPA}, \mathrm{rt}, 12 \mathrm{hrs}, 97 \%$; (ii) 2-Butynal, TBSOTf, DCM, $-78^{\circ} \mathrm{C}, 3 \mathrm{hrs}$; (iii) PCC, $4 \AA$ molecular sieves, DCM, rt, $3 \mathrm{hrs}, 61 \%$ for two steps; (iv) KH, THF, rt, $24 \mathrm{hrs}, 70 \%$; (v) (PhSeO$)_{2} \mathrm{O}$, HMDS, $\mathrm{PhH}, \mathrm{rt}, 12 \mathrm{hrs}, 79 \%$; (vi) Acetic acid, $\mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 2$ hrs, 71%; (vii) 2,2-Dimethoxypropane, pyridinium tosylate, $\mathrm{CHCl}_{3}, 70{ }^{\circ} \mathrm{C}, 12 \mathrm{hrs}, 87 \%$; (viii) $\mathrm{Me}_{2} \mathrm{SCH}_{2}, \mathrm{THF}$, rt; (ix) $\mathrm{BF}_{3}-\mathrm{OEt}, \mathrm{DCM},-30^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{hr}, 76 \%$ for two steps; (x) $\mathrm{Ph}_{3} \mathrm{PCMe}_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 1 \mathrm{hr}, 81 \%$; (xi) 1:1:1 10% (aq) HCl:THF:MeOH, $70^{\circ} \mathrm{C}, 12 \mathrm{hrs}, 71 \%$.

Slow addition of 19 in DCM to butynal and TMSOTf in DCM at $-78^{\circ} \mathrm{C}$ and oxidation of the resulting propargylic alcohol with PCC gave the diketone 20 . Treatment of 20 with KH in THF gave the phenol 21 in which the tricyclic core of the Pseudopterosins is formed by a novel aromatic annulation procedure. Ortho-hydroxylation of the phenol 21 was achieved under Barton conditions to give the catechol 22, which was protected
under standard conditions. The ketone 23 was methenylated on the lesser sterically hindered face of the ketone with $\mathrm{Me}_{2} \mathrm{SCH}_{2}$ in THF and the resulting epoxide 24 was ring-opened with BF_{3}-OEt in DCM to form the aldehyde 25 stereoselectively. Wittig reaction of 25 with $\mathrm{Ph}_{3} \mathrm{PCMe}_{2}$ in THF and exposure of 26 to mild acid conditions led to the formation of the Pseudopterosin A-F aglycone 27 identical in all respects to a sample obtained from degradation of the natural products.

With the unsatisfactory glycosidation experiences of Fenical ${ }^{2}$ et al. in mind, Corey and Carpino first investigated the reactive nature of 27 (Scheme 7).

(i) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-30^{\circ} \mathrm{C}$ to rt, $2 \mathrm{hrs}, 85 \%$; (ii) $\mathrm{NaH}, 29, \mathrm{MeCN}$, rt; (iii) $\mathrm{KOH}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 1 \mathrm{hr}$; (iv) $6 \% \mathrm{NaHg}, \mathrm{MeOH}, 54 \%$ for three steps; (v) n-BuLi, 31, THF, rt; (vi) LiOH, THF, MeOH; (vii) Li$\mathrm{NH}_{3}, \mathrm{THF}, 53 \%$ for three steps.

Crucially, they found that 27 reacts with 1 equivalent of TsCl in DCM in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ exclusively at the $\mathrm{C}-10$ hydroxyl of the aglycone to afford $\mathbf{2 8}$ in very good (85\%) yield.

With this knowledge in hand, 28 was deprotonated with NaH in MeCN and reacted with 2,3,4-tri- O-acetyl- α-D-xylopyranosyl bromide ${ }^{30} 29$ to produce 30 stereoselectively. Removal of the acetyl and tosyl groups furnished synthetic Pseudopterosin A, which was identical in all respects to the natural product.

Deprotonation of $\mathbf{2 7}$ with 2 equivalents of $n-\mathrm{BuLi}$ in THF and reaction with the α-L-bromofucose derivative ${ }^{31} 31$ led regio- and stereoselectively to 32 , which on deprotection afforded synthetic Pseudopterosin E identical in all respects to the natural product. As the absolute stereochemistry of the fucose component of Pseudopterosin E had not been determined from the natural product, Corey and Carpino have also synthesised the D-fucoside of 27 and have demonstrated that this is not the natural product.

Recently (1998), Corey ${ }^{32}$ and Lazerwith have reported a novel synthetic route to the agylcone unit 27 starting from commercially available (S)-(-)-limonene (Scheme 8). The diol 33 was obtained from hydroboration of (S)-(-)-limonene and alkaline peroxide oxidation as a $1: 1$ mixture of diastereomers ${ }^{33}$ at $\mathrm{C}-3$ (Pseudopterosin numbering). NaOCl mediated selective oxidation of the secondary hydroxyl in acetic acid formed the hydroxy ketone 34. Exposure of 34 to isopropenyl acetate in isopropyl ether with Amano PS lipase as a catalyst resulted in selective acetylation of the ($3 S$)-alcohol and allowed for isolation of the desired ($3 R$)-alcohol 35 in 36% yield. Oxidation of 35 afforded the keto-aldehyde 36, which, under the Wittig-Vedejs E-selective conditions with ylide 37^{34}, gave rise to 38 as a single diastereomer in good yield. Mukaiyama-type aldol coupling of 39 , produced from 38 under standard conditions, with the α, β -
unsaturated enone 40^{35} using SnCl_{4} as the catalyst gave 41 as a gross mixture of diastereomers.

Scheme 8

(i) NaOCl , acetic acid, $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 3 \mathrm{hrs}, 86 \%$; (ii) Amano PS lipase, isopropenyl acetate, isopropyl ether, rt, $23 \mathrm{hrs}, 36 \%$; (iii) 6% (aq) NaOCl, TEMPO, $\mathrm{KBr}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$, $1.5 \mathrm{hrs}, 92 \%$; (iv) 37, DME, $-60^{\circ} \mathrm{C}, 10$ mins, 85%; (v) LDA, TMSCl, DME, $-78^{\circ} \mathrm{C}$, 5 mins, 100%; (vi) $40, \mathrm{SnCl}_{4}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 40 \mathrm{mins}, 58 \%$ with 22% recovered starting material; (vii) $\mathrm{KOH}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{hr}, 70 \%$; (viii) SOCl_{2}, pyridine, rt, 1.5 hrs, 70%; (ix) LDA, TBSOTf, THF, $-78^{\circ} \mathrm{C}$, 15 mins , then $0^{\circ} \mathrm{C}$, $15 \mathrm{mins}, 100 \%$; (x) MnO_{2}, methylcyclohexane, $70^{\circ} \mathrm{C}, 16 \mathrm{hrs}$; (xi) TBAF, THF, rt, 5 mins, 86% for two steps; (xii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, DCM, $-30^{\circ} \mathrm{C}$ to rt, $15 \mathrm{mins}, 96 \%$; (xiii) $\mathrm{MsOH}, \mathrm{DCM},-78^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$ for $10 \mathrm{hrs}, 100 \%$; (xiv) MeMgBr , THF, $0^{\circ} \mathrm{C}, 18 \mathrm{hrs}, 97 \%$; (xv) $\mathrm{BBr}_{3}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 5 \mathrm{mins}, 83 \%$.

Aldol cyclisation of 41 with ethanolic KOH afforded the α, β-unsaturated enone 42 upon dehydration of the aldol product with SOCl_{2}-pyridine. Aromatisation of the newly formed ring was achieved in good yield by the action of activated MnO_{2} in
methylcyclohexane at $70^{\circ} \mathrm{C}$ on the TBS enol ether 43, obtained from 42 under standard conditions. The transformation 43 to 44 represents a novel aromatisation protocol and appears to be general for cyclohexadienes. Desilylation of 44 with TBAF in THF and mesylation under standard conditions afforded 45. This mesylate cyclised diastereoselectively (25:1) and in high yield to 46 when treated with 5 equivalents of $\mathrm{MeSO}_{3} \mathrm{H}$ in DCM at $-50^{\circ} \mathrm{C}$. The mesyl group was removed with MeMgBr in THF and the benzyl group was cleaved with BBr_{3} in DCM to reveal the Pseudopterosin aglycone 27. This material was identical in all respects to the compound made by Corey and Carpino and, therefore, constitutes a formal asymmetric synthesis of Pseudopterosin A and E.

In summary, Corey et al. have developed several stereocontrolled synthetic routes to Pseudopterosin A and E starting from (+)-menthol (A, 23 steps, $\sim 1 \%$ overall yield; E, 22 steps, $\sim 1 \%$ overall yield) and (S)-citronellal, and to the Pseudopterosin A-F aglycone from (S)-(-)-limonene (15 steps, 11% overall).

1.3.2 The Broka Asymmetric Total Synthesis of Pseudopterosin A

In $1987 \mathrm{Broka}^{36}$ et al. reported a synthesis of Pseudopterosin A which starts with the diol $33^{34,37}$, obtained from (S)-(-)-limonene (Scheme 9). Routine functional group interconversion leads to the hydroxy acid 48 in excellent yield, which was lactonised under standard conditions. Selenation-oxidation of the lactone 49 afforded the α, β unsaturated lactone 50 as a single diastereomer. Vinyl cuprate addition to $\mathbf{5 0}$ in the presence of TMSCl resulted in the formation of 51 stereoselectively, thereby setting the C-3 (Pseudopterosin numbering) stereocentre to the desired configuration, in good yield. Ring opening of $\mathbf{5 1}$ to the diol $\mathbf{5 2}$ with LiAlH_{4} in THF followed by selective sulfonylation with $\mathrm{PhSO}_{2} \mathrm{Cl}$ gave rise to 53 , which was then treated with $\mathrm{LiEt}_{3} \mathrm{BH}$ in

THF to afford 54. PCC oxidation of $\mathbf{5 4}$ in DCM gave the hydroxy ketone $\mathbf{5 5}$ as a single diastereomer.

Scheme 9

(i) PivCl , pyridine; (ii) DHP, PPTS, DCM; (iii) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}$; (iv) PCC, $\mathrm{NaOAc}, \mathrm{DCM}$; (v) NaClO_{2}, t $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 2$-methyl-2-butene; (vi) Acetic acid, $\mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}, 90 \%$ for six steps; (vii) p-TsOH, PhMe , reflux, 67\%; (viii) LDA, $\mathrm{PhSeCl}, \mathrm{HMPA}$; (ix) $\mathrm{H}_{2} \mathrm{O}_{2}, 91 \%$ for two steps; (x) Vinyl magnesium bromide, CuI-DMS, TMSCl, THF, $-40^{\circ} \mathrm{C}, 79 \%$; (xi) LiAlH_{4}, THF, rt, 84%; (xii) $\mathrm{PhSO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}$; (xiii) $\mathrm{LiEt}_{3} \mathrm{BH}, \mathrm{THF}$; (xiv) PCC, DCM, 63% for three steps.

Installation of the aromatic nucleus of the natural product was realised under the Chan-Brownbridge conditions ${ }^{38}$ (Scheme 10).

Scheme 10

(i) $\mathrm{NaH}, \mathrm{HCO}_{2} \mathrm{Et}$, dioxane; (ii) $\mathrm{TMSCl}, \mathrm{Et}_{3} \mathrm{~N}$, hexane, 85% for two steps; (iii) $57, \mathrm{TiCl}_{4}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$; (iv) $\mathrm{NaOMe}, \mathrm{MeOH}, 66 \%$ for two steps.

Unfortunately, conversion of 55 to the required silyl enone 56 resulted in loss of stereochemistry at C-7 (Pseudopterosin numbering). Reaction of 56 with the diene 57^{39}
and subsequent aromatisation with NaOMe gave the phenols 58 and 59 (58:59, 2:3).
Preparative TLC allowed for the isolation of the desired epimer 58.
The synthesis was completed starting with peracid oxidation of $\mathbf{5 8}$ to give $\mathbf{6 0}$ as an inseparable mixture of epoxides (Scheme 11). Freidel-Crafts alkylation on 60 using SnCl_{4} as the Lewis acid formed the third ring of the amphilectane skeleton gave 61 and selective benzylation of the phenol hydroxyl formed 62 in excellent yield. Silylation of the primary hydroxyl and DIBAL reduction of the methyl ester led to 63 and 64 (63:64, 1.1:1), which were separated by preparative TLC. PCC oxidation of 63 followed by Baeyer-Villiger oxidation with m - CPBA in CHCl_{3} led to the formyl compound $\mathbf{6 5}$. Desilylation to $\mathbf{6 5}$ could be achieved with TBAF at $\mathrm{pH}=7$ without formyl hydrolysis to form 66. Swern oxidation of the alcohol 66 with $(\mathrm{COCl})_{2}$ afforded the aldehyde 67 with no detectable epimerisation. Reaction of 67 with the di-lithio anion of isobutyric acid in THF and subsequent treatment of the crude reaction residue with (dimethylamino)formaldehyde dineopentyl acetal ${ }^{40}$ led to the formation of 69 , presumably via the β-hydroxy acid 68. AgOTf mediated glycosidation of 69 with 2,3,4-tri- O-acetyl- α-D-xylopyranosyl bromide ${ }^{31} 29$ gave 70 stereoselectively in 51% yield. Removal of the acetyl and benzyl protecting groups led to synthetic Pseudopterosin A, which was identical in all respects to the natural product.

Scheme 11

(i) m-CPBA, $\mathrm{NaHCO}_{3}, \mathrm{CHCl}_{3}, 55^{\circ} \mathrm{C}, 64 \%$; (ii) $\mathrm{SnCl}_{4}, \mathrm{DCM}$; (iii) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 88 \%$ for two steps; (iv) TBDPSCl, imidazole, DMF, $45^{\circ} \mathrm{C}$; (v) DIBAL, DCM, rt, 75% for two steps; (vi) PCC, DCM; (vii) m-CPBA, $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{CHCl}_{3}, \mathrm{rt}, 3 \mathrm{hrs}, 88 \%$ for two steps; (viii) TBAF, acetic acid, THF; (ix) $(\mathrm{COCl})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO},-60^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}, 86 \%$ for two steps; (x) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{Li}) \mathrm{CO}_{2} \mathrm{Li}, \mathrm{THF}, \mathrm{rt}, 30 \mathrm{mins}$; (xi) (dimethylamino)formaldehyde dineopentyl acetal, 4,4'-methylenebis(2,6-di-t-butylphenol), $\mathrm{CHCl}_{3}, 55$ ${ }^{\circ} \mathrm{C}, 3$ days, 82% for two steps; (xii) 2,3,4-tri- O-acetyl- α-D-xylopyranosyl bromide, AgOTf, tetramethylurea, DCM, rt, 51%; (xiii) $\mathrm{KOH}, \mathrm{MeOH}$; (xiv) $\mathrm{Li}-\mathrm{NH}_{3}, \mathrm{THF}, 73 \%$ for two steps.

In summary, Broka et al. have produced a synthesis of Pseudopterosin A starting from (S)-(-)-limonene (26 steps, $<1 \%$ overall yield).

1.3.3 The Kozikowski Asymmetric Synthesis of a late Pseudopterosin Intermediate

In 1991 Kozikowski ${ }^{41}$ et al. published a Diels-Alder approach, starting from (S)carvone, to the tricarbocyclic core of the Pseudopterosins (Scheme 12). The ketone 71 was obtained from (S)-carvone under standard conditions and was converted to 72 by the Shapiro reaction with acetaldehyde as the electrophile and PDC to oxidise the resulting alcohol in good yield. Reaction of 72 with LiHMDS in THF and trapping of the enolate with TMSCl generated the silyloxydiene 73. Treatment of 73 with neat dienophile 74 and hydrolysis of the primary reaction product with 2 N (aq) HCl and elimination of the nitro group with DBU in THF afforded 75 in 52% yield. Conversion of the ketone 75 to the silyl enol ether 76 and aromatisation of the resulting cyclohexadiene ring with DDQ led to the formation of the phenol 77, which was methylated with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ in the presence of $\mathrm{Bu}_{4} \mathrm{NI}$ in good overall yield.

(i) $\mathrm{Li}-\mathrm{NH}_{3}, t-\mathrm{BuOH}, \mathrm{THF},-30^{\circ} \mathrm{C}, 72 \%$; (ii) $\mathrm{NMO}, \mathrm{OsO}_{4}, t$ - $\mathrm{BuOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 10 \mathrm{hrs}, 95 \%$; (iii) 2,2dimethoxypropane, PPTS, DCM, rt, 24 hrs, 90%; (iv) TrisNHNH ${ }_{2}, \mathrm{MeOH}, 10 \mathrm{mins}, 81 \%$; (v) n-BuLi, hexane:TMEDA $1: 1,-78^{\circ} \mathrm{C}, 2 \mathrm{hrs}, 0^{\circ} \mathrm{C}, 1 \mathrm{hr}$ with $\mathrm{MeCHO}, 57 \%$; (vi) PDC, DCM, rt, overnight, 71%; (vii) LiHMDS, TMSCl, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 40 \mathrm{mins}, 99 \%$; (viii) $74,3,5$-di- t-butylcatechol, $0^{\circ} \mathrm{C}$ for 30 mins, rt for 15 hrs ; (ix) 2 N (aq) $\mathrm{HCl}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 5 \mathrm{mins}$; (x) DBU, THF, $0^{\circ} \mathrm{C}$ for 30 mins , rt for 1 hr , 52% for three steps; (xi) TMSI, HMDS, $\mathrm{Et}_{3} \mathrm{~N}, 1,2$-dichloroethane, rt, 2 hrs ; (xii) DDQ, PhH, rt, overnight, 68% for two steps; (xiii) $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}_{4} \mathrm{NI}$, acetone, dark, reflux, $15 \mathrm{hrs}, 95 \%$.

The diol 79 (Scheme 13), produced by DIBAL reduction of 78, was converted to the bistrifluoromethanesulfonate $\mathbf{8 0}$ and subjected to hydrogenolysis in the presence of trace TFA. The thus formed trifluoromethanesulfonate 81 was converted to the acetate 82 under standard conditions. Removal of the acetonide protecting group with acetic acid in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ and treatment of the diol 83 with tosyl chloride and $\mathrm{Et}_{3} \mathrm{~N}$ in DCM followed by DBU produced the epoxide 84. Eliminative ring-opening of the epoxide 84, and concomitant acetyl hydrolysis, with aluminium isopropoxide in PhMe heated at reflux produced the allylic alcohol 85 in 94% yield, which was converted to the allylic chloride by the action of NCS in $\mathrm{Me}_{2} \mathrm{~S}$.

Scheme 13

(i) DIBAL, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 30 \mathrm{mins}$, then $\mathrm{rt}, 2 \mathrm{hrs}, 78 \%$; (ii) $(\mathrm{TfO})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 2 \mathrm{hrs}$; (iii) $\mathrm{H}_{2}, 10 \%$ Pd-C, TFA, $50{ }^{\circ} \mathrm{C}$, overnight; (iv) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt} 30 \mathrm{mins}, 85 \%$ for three steps; (v) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, DCM, rt, overnight, 98\%; (vi) AcOH:THF:H2O 3:1:1, $80^{\circ} \mathrm{C}, 20 \mathrm{hrs}, 82 \%$; (vii) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, DCM, rt, 20 hrs then DBU, rt, $5 \mathrm{hrs}, 95 \%$; (viii) $\mathrm{Al}(\mathrm{O}-i-\mathrm{Pr})_{3}, \mathrm{PhMe}, 120^{\circ} \mathrm{C}, 20 \mathrm{hrs}, 94 \%$; (ix) NCS, $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{DCM},-15^{\circ} \mathrm{C}, 5 \mathrm{mins}$, then $0^{\circ} \mathrm{C}, 2 \mathrm{hrs}, 84 \%$.

The tricyclic core of the Pseudopterosin aglycone was synthesised by enamine ring closure of 88 (Scheme 14). Alcohol 86 was oxidised with PDC in DCM and the resulting aldehyde 87 was reacted with TMS-diethylamine (hetero-Peterson olefination)
to form the enamine 88 . When crude 88 was heated at $85^{\circ} \mathrm{C}$ in EtOH , cyclisation occurred to give 89 as a $3: 2$ mixture of desired to undesired diastereomers at $\mathrm{C}-1$ (Pseudopterosin numbering). Chromatographic separation was achieved by conversion of 89 to the pyrrolidine derivatives 90 and 91 .
Scheme 14

(i) PDC, DCM, rt, overnight, 76\%; (ii) TMS-diethylamine, p-TsOH, rt, 24 hrs; (iii) EtOH, NaI, $85^{\circ} \mathrm{C}, 15$ hrs, then EtOH: $\mathrm{H}_{2} \mathrm{O} 4: 1,85^{\circ} \mathrm{C}, 12 \mathrm{hrs}, 75 \%$ for two steps; (v) NaOCl_{2}, 2-methyl-2-butene, 1 M (aq) $\mathrm{KH}_{2} \mathrm{PO}_{4}: t$ - $\mathrm{BuOH} 1: 2$, rt, ovemight; (vi) pyrrolidine, $\mathrm{Et}_{3} \mathrm{~N}, 2$-chloro-1-methylpyridinium iodide, $\mathrm{DCM}_{2} 45$ ${ }^{\circ} \mathrm{C}, 2 \mathrm{hrs}, 52 \%$ for two steps.

In summary, Kozikowski et al. have reported the synthesis of an advanced intermediate which could be used in a synthetic strategy to the Pseudopterosins and analogues. To date, this work has not been elaborated nor has the stereochemistry at C-1 (Pseudopterosin numbering) been confirmed.

1.3.4 The McCombie Racemic Synthesis of the Pseudopterosin A-F and seco-

Pseudopterosin Aglycones

In 1991 McCombie et al. published racemic syntheses of the secoPseudopterosin ${ }^{42}$ and Pseudopterosin A-F ${ }^{43}$ aglycones both starting from 5methoxytetralone with the alcohol 99 as a key intermediate (Scheme 15).

Scheme 15

(i) $\mathrm{Zn}, \mathrm{MeCH}(\mathrm{Br}) \mathrm{CO}_{2} \mathrm{Et}, \mathrm{TMSCl}, \mathrm{THF}, 65{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{MsOH}, 1,2$-dichloroethane, $80{ }^{\circ} \mathrm{C}$; (iii) $\mathrm{NaH}_{2} \mathrm{Al}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right), \mathrm{Et}_{2} \mathrm{O}, 75-85 \%$ for three steps; (iv) $\mathrm{H}_{2}, \mathrm{ClRh}\left(\mathrm{PPh}_{3}\right), t$-BuOK, $60 \mathrm{psi}, \mathrm{THF}, \mathrm{rt}, 50$ hrs; (v) p- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCl}$, pyridine, 86% for two steps; (vi) $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{CuSO}_{4}$, sym-collidine, $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ $1: 1,80^{\circ} \mathrm{C}, 1.5 \mathrm{hrs}$; (vii) PCC, Celite ${ }^{\mathrm{TM}}$, DCM, 63% for two steps; (viii) NaOMe ; (ix) $\mathrm{MeCeCl}_{2}, \mathrm{THF},-70$ ${ }^{\circ} \mathrm{C}$ to rt ; (x) $\mathrm{TsOH}, 72 \%$ for three steps; (xi) t - $\mathrm{Bu}_{2} \mathrm{SiHCl}$, imidazole, DMF, rt; (xii) Syringe pump addition ($16-20 \mathrm{hrs}$) of 96 in DCM to 0.1 M TFA in DCM; (xiii) TBAF, THF, rt, $65-75 \%$ for three steps.

Reformatski reaction and subsequent dehydration of 5-methoxytetralone, gave the ester 92, which was reduced to the homoallylic alcohol 93 with $\mathrm{Red}-\mathrm{Al}$ in $\mathrm{Et}_{2} \mathrm{O}$ in good overall yield. The dihydronaphthalene 93 has a strongly preferred solution conformation, which minimises peri-ArH interactions and allows for stereoselective reduction of the diastereotopic faces of the double bond. This was achieved under the Thompson conditions to afford 94 in $\mathbf{9 5}: 5$ stereoselectivity. Conversion of the alcohol 94 to the p-nitrobenzoate and recrystalisation secured 95 as a single compound. Treatment of 95 with $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and CuSO_{4} with sym-collidine, followed by further oxidation with PCC in DCM, led to the ketone 96. Hydrolysis of the p-nitrobenzoate and reaction of the carbonyl group with MeCeCl_{2} resulted in the olefin 97 after dehydration. Stereoselective reduction of 98, produced from 97 under standard conditions, was realised via an intra-molecular 'ionic hydrogenation' reaction mediated
by TFA and subsequent desilylation gave 99 of $>95 \%$ isomeric purity and in $65-75 \%$ yield from 97.

The seco-Pseudopterosin aglycone was obtained (Scheme 16) as follows: conversion of 99 to the tosylate and sulfone displacement with $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}(\mathrm{Li}) \mathrm{SO}_{2} \mathrm{Ph}$ in THF led to $\mathbf{1 0 0}$ as a mixture of diastereomers.

Scheme 16

(i) TsCl , pyridine, rt; (ii) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}(\mathrm{Li}) \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{THF},-70^{\circ} \mathrm{C}$ to rt; (iii) $\mathrm{Li}-\mathrm{EtNH}_{2}$; (iv) MOMCl , Hünigs base; (v) t - $\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, then $\mathrm{B}(\mathrm{OMe})_{3}, \mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{CO}_{3}$; (vi) $\mathrm{CH}_{2} \mathrm{O}$, morpholine, $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{EtOH}, 80^{\circ} \mathrm{C}$; (vii) $\mathrm{Cl}_{3} \mathrm{COCOCl}$, sym-collidine, Hünigs base, $0^{\circ} \mathrm{C}$ to rt , 6 hrs ; (viii) NaBH_{4}, DMSO; (ix) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$; (x) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeI, acetone; (xi) TsOH, MeOH.

Desulfonylation with Li in EtNH_{2} with concomitant demethylation led to 102 with trace amounts of the by-product 101 . The phenol was MOM protected, metalated with t BuLi , and worked-up with $\mathrm{B}(\mathrm{OMe})_{3}$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{CO}_{3}$ to give the catechol ether 103. Mannich reaction produced 104, which was converted to the chloromethyl compound 105 with $\mathrm{Cl}_{3} \mathrm{COCOCl}$. Reduction of 105 followed by hydrolysis afforded 106, which was O-methylated under standard conditions to cede 107 . Hydrolysis of the

MOM ether provided 108, identical to a sample obtained from degradation of the natural product.

The Pseudopterosin A-F aglycone was obtained (Scheme 17) as follows: alcohol 99 was transformed to the tricyclic ketone 109 under standard conditions and subsequent reduction led to $\mathbf{1 1 0}$ as a mixture of diastereomers.

Scheme 17

(i) TsCl , pyridine, rt; (ii) $\mathrm{NaCN}, \mathrm{DMSO}, 65^{\circ} \mathrm{C}$; (iii) $\mathrm{MsOH}, 1,2$-dichloroethane, $85^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, then $\mathrm{NaOAc}, \mathrm{H}_{2} \mathrm{O}, 85^{\circ} \mathrm{C}, 2 \mathrm{hrs}, 60-70 \%$ for three steps; (iv) NaBH_{4}; (v) t - $\mathrm{BuLi}^{\circ}, \mathrm{Et}_{2} \mathrm{O}$, pentane, $35^{\circ} \mathrm{C}$, then MeI, $0{ }^{\circ} \mathrm{C}$; (vi) $\mathrm{Et}_{2} \mathrm{AlCN}, \mathrm{BF}_{3}$-OEt, $\mathrm{DCM},-70{ }^{\circ} \mathrm{C}, 60-70 \%$; (vii) $i-\mathrm{Bu}_{2} \mathrm{AlH}, \mathrm{PhMe},-70{ }^{\circ} \mathrm{C}$; (viii) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{Li}) \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}$; (ix) $\mathrm{Na}-\mathrm{Hg}, \mathrm{K}_{2} \mathrm{HPO}_{4}, \mathrm{MeOH}, 55 \%$ for three steps; (x) $\mathrm{BBr}_{3}, 2,6$-di- t butylpyridine, $\mathrm{DCM}, 0^{\circ} \mathrm{C}$; (xi) $\mathrm{ON}\left(\mathrm{SO}_{3} \mathrm{~K}\right)_{2}, \mathrm{KH}_{2} \mathrm{PO}_{4}$, acetone- $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (xii) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}, \mathrm{H} 2 \mathrm{O}, \mathrm{DCM}$.

Alkoxide-directed metalation with t - BuLi in $\mathrm{Et}_{2} \mathrm{O}$ of 110 and reaction with MeI installed the aromatic methyl of the natural product. Reaction of 111 with $\mathrm{Et}_{2} \mathrm{AlCN}$ with $\mathrm{BF}_{3}-\mathrm{OEt}$ as the Lewis acid afforded 112 in good yield and high stereoselectivity (16:1). The nitrile 112 was reduced to the aldehyde 113 and Julia olefination with the sulfone $\mathrm{Me}_{2} \mathrm{CSO}_{2} \mathrm{Ph}$ gave 114. Demethylation with BBr_{3}, and oxidation with $\mathrm{ON}\left(\mathrm{SO}_{3} \mathrm{~K}\right)_{2}$ yielded the o-quinone 115, which was reduced to the Pseudopterosin aglycone 116 with
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ in $\mathrm{H}_{2} \mathrm{O}$. Synthetic 116 was identical to a sample obtained from degradation of Pseudopterosin E.

In an update ${ }^{44}$ of their earlier work, McCombie et al. report an asymmetric synthesis of the key alcohol 124 starting from 2,3-dimethoxybenzaldehyde (Scheme 18).

Scheme 18

119, R=H
ix $\longrightarrow_{120, R=}=\mathrm{Me}_{2} \mathrm{SiH}$

124

123

122

121
(i) $\mathrm{EtO}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{ZnI}, \mathrm{ClTi}(\mathrm{O}-i-\mathrm{Pr})_{3}$; (ii) $\mathrm{PhSH}, \mathrm{MsOH}$; (iii) (COCl$)_{2}$; (iv) SnCl_{4}; (v) LiAlH_{4}; (vi) $\mathrm{PhSO}_{2} \mathrm{Na}, \mathrm{TFA}, \sim 65 \%$ for six steps; (vii) $\mathrm{LDA}, \mathrm{THF}, 70-75 \%$; (viii) LiAlH_{4}; (ix) $\mathrm{Me}_{2} \mathrm{SiHCl}^{\text {; (x) }} \mathrm{EtAlCl}_{2}$, DCM, $-70^{\circ} \mathrm{C}$; (xi) OXONE ${ }^{\mathrm{TM}}$; (xii) MeI; (xiii) t - $\mathrm{Bu}_{2} \mathrm{SiHCl}$; (xiv) EtAlCl_{2}, rt; (xv) F^{-}.

The sulfone 117 , obtained in 65% overall yield, was alkylated with the triflate 118 , and the crude alkylation product was reduced to the alcohol 119 . Conversion of $\mathbf{1 1 9}$ to the dimethylsilyl ether $\mathbf{1 2 0}$ and subsequent treatment with EtAlCl_{2} in DCM at $-70^{\circ} \mathrm{C}$ led to 121 stereoselectively. Sulfide oxidation yielded 122 , which was methylated then O silylated under standard conditions. Treatment of 123 with EtAlCl_{2} at room temperature produced 124 after fluoride treatment.

In summary, McCombie et al. have achieved racemic syntheses of a secoPseudopterosin aglycone derivative and the Pseudopterosin aglycone (25 steps) via a
common intermediate. Furthermore, they have produced an advanced intermediate for an asymmetric total synthesis of these compounds.

1.3.5 The Jung Racemic Synthesis of a Late Pseudopterosin Intermediate

The Jung ${ }^{45}$ and Siedem (1993) approach to the Pseudopterosins starts with the readily available β-ethoxyenone $\mathbf{1 2 5}^{\mathbf{4 6}}$ (Scheme 19).

Scheme 19

(i) LDA, allyl bromide, THF, HMPA, $-78{ }^{\circ} \mathrm{C}, 95 \%$; (ii) $\mathrm{Sia}_{2} \mathrm{BH}$; (iii) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$; (iv) $\left(\mathrm{COCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}\right.$, DMSO, 56% for three steps; (v) 128, n-BuLi, THF, $0{ }^{\circ} \mathrm{C}$, added to $127, \mathrm{THF},-78^{\circ} \mathrm{C}$; (vi) TBSCl , imidazole, DMF, 53% for two steps; (vii) DIBAL, $\mathrm{PhMe},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{SiO}_{2}, 70 \%$; (viii) $\mathrm{SnCl}_{4}, \mathrm{PhMe},-78$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{hr}, 13358 \%$ and 13236%; (ix) t-BuOK, t-BuOH; (x) TBSCl, imidazole, DMF, 60% for two steps.

Alkylation of $\mathbf{1 2 5}$ under standard conditions with allyl bromide gave 126 in good yield and stereoselectivity (7.5:1). Hydroboration-oxidation of the double bond with disiamylborane followed by Swern oxidation with $(\mathrm{COCl})_{2}$ furnished the aldehyde 127 in good yield. The lithium anion of furan 128^{47} was reacted with 127 to form the secondary alcohol 129 as a 1:1 mixture of diastereomers, which was silylated to give 130. DIBAL reduction of $\mathbf{1 3 0}$ not only unmasked the desired enone unit in $\mathbf{1 3 1}$ but also equilibrated the benzylic centre α to the furan ring to one diastereomer as shown.

Attempted intramolecular Diels-Alder reactions of 131 under thermal and Lewis acid conditions all failed to give the desired product 134. Instead, the major products of the reaction were the novel intramolecular Michael adducts 133 (58\%) and 132 (36\%), as exemplified for SnCl_{4}. The hemiacetal 133 was converted to the desired phenalene 134 upon the action of $t-\mathrm{BuOK}$ in $t-\mathrm{BuOH}$ (with re-silylation of the unsilylated analogue of 134).

In summary, Jung and Siedem have developed a novel Michael addition strategy to substituted phenalenes and have prepared a late intermediate which could be used in a racemic synthesis of Pseudopterosin A.

1.3.6 The Harrowven Cascade Approach to the Pseudopterosin Tricyclic Core

In 1994 Harrowven ${ }^{48}$ et al. reported initial model studies on the construction of the amphilectane skeleton of the Pseudopterosins via a tandem Friedel-Crafts alkylation, Friedel-Crafts acylation protocol (Scheme 20).

(i) $135, \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{PhH}$, reflux, 3 hrs, then $\mathrm{KF}, \mathrm{H}_{2} \mathrm{O}, 48 \%$; (ii) $\mathrm{TiCl}_{4}, \mathrm{DCM}$, reflux, 36 hrs, 74%.

Unification of the iodolactone 135^{49} and 2,3-dimethoxystyrene under tin mediated radical conditions led to the simple analogue 136 to be used in test reactions. Gratifyingly, when TiCl_{4} was used as the Lewis acid, there was a smooth tandem Friedel-Crafts alkylation, Friedel-Crafts acylation reaction accompanied by parademethylation to afford 137. It appears that alkylation occurs with inversion of
configuration, based on the optical activity of 137 , though this is not confirmed neither has the ee of the reaction been determined.

In summary, Harrowven et al. have achieved a rapid and concise entry into the Pseudopterosin aglycone via a novel synthetic tactic which also allows for differentiation of the two catechol groups.

1.3.7 The Buszek Asymmetric Synthesis of the Pseudopterosin A-F Aglycone

The Buszek ${ }^{50}$ and Bixby approach (1995) to the Pseudopterosin A-F aglycone starts with commercially available $(R)-(-)$-2-phenylpropionic acid, which is reduced to the alcohol 138 with LiAlH_{4} in THF (Scheme 21).

Scheme 21

(i) LiAlH_{4}, THF, $65^{\circ} \mathrm{C}, 12 \mathrm{hrs}$; (ii) $\mathrm{Na}-\mathrm{NH}_{3}, \mathrm{EtOH},-78^{\circ} \mathrm{C}, 6 \mathrm{hrs}$; (iii) t-BuOK, DMSO, $-65^{\circ} \mathrm{C}$ to rt, 2 hrs; (iv) NBS, PPh_{3}, pyridine, $\mathrm{DCM}, \mathrm{rt}, 1 \mathrm{hr}, 48 \%$ for four steps; (v) $\mathrm{Mg}, \mathrm{THF}$, rt to $0^{\circ} \mathrm{C}$, then add to 141 , THF, $0^{\circ} \mathrm{C}, 78 \%$; (vi) $\left(\mathrm{COCl}_{2}\right)_{2}, \mathrm{Et}_{3} \mathrm{~N}$, DMSO, DCM, $-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{hr}$; (vii) $\left(\mathrm{TMSOCH}_{2}\right)_{2}$, TMSOTf, DCM, $-78^{\circ} \mathrm{C}, 4 \mathrm{hrs}, 81 \%$ for two steps; (viii) LDA, THF, $-78^{\circ} \mathrm{C}, 2$ hrs, then slow warming to rt over 12 hrs, 63-71\%.

Birch reduction of $\mathbf{1 3 8}$ followed by t - BuOK induced isomerisation led to the $1-$ substituted cyclohexadiene 139 , which was brominated with $\mathrm{NBS} / \mathrm{Ph}_{3} \mathrm{P}$ in DCM
containing pyridine to afford 140 in good overall yield. Grignard addition of $\mathbf{1 4 0}$ to the known aldehyde 141^{51} led to 142 as a mixture of diastereomers. Swern oxidation with $(\mathrm{COCl})_{2}$ to the ketone and protection as the 1,3-dioxolane under Noyori conditions gave 143. The key step in this sequence is the intramolecular benzyne Diels-Alder reaction ${ }^{52}$ of 143 , yielding 144 and 145 (144:145 42:58), in which the tricyclic core of the natural product is produced.

The desired diastereomer 145 was readily separated by chromatography and oxidative cleavage of the ethylene bridgehead gave the diol 146 in good yield (Scheme 22).

Scheme 22

(i) a. NMO, $10 \% \mathrm{OsO}_{4}$ in PhMe , acetone: $\mathrm{H}_{2} \mathrm{O} 9: 1, \mathrm{rt}, 2.5 \mathrm{hrs}$, b. $\mathrm{NaIO}_{4}, \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}$ 1:1, rt, 4 hrs, then $\mathrm{NaBH}_{4}, 85 \%$; (ii) TsCl, pyridine, $0^{\circ} \mathrm{C}$ to rt, $6 \mathrm{hrs}, 83 \%$; (iii) Dess-Martin periodinane, $\mathrm{DCM}, \mathrm{rt}, 2 \mathrm{hrs}$; (iv) $\left(\mathrm{Ph}_{3} \mathrm{P}_{3} \mathrm{RhCl}, \mathrm{PhCN}\right.$, rt to $160^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}, 76 \%$ for two steps; (v) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux, $18 \mathrm{hrs}, 68 \%$; (vi) PPTS, acetone, $\mathrm{H}_{2} \mathrm{O}, 12 \mathrm{hrs}, 100 \%$; (vii) TMSI, $\mathrm{CHCl}_{3}, 35^{\circ} \mathrm{C}, 48 \mathrm{hrs}$.

Selective protection of the less hindered alcohol gave the tosylate 147. Dess-Martin periodinane oxidation of the remaining alcohol and decarbonylation of the resulting aldehyde with Wilkinson's catalyst led to 148 in 76% yield. Hydride displacement of the tosylate using LiAlH_{4} in THF heated at reflux afforded 149 , which was deketalised
with PPTS in warm acetone $/ \mathrm{H}_{2} \mathrm{O}$ to give the hexahydrophenalen-1-one 150. The isopropylidene unit was installed using the chemistry of Corey ${ }^{13}$ (Scheme 6) giving 151 and the methyl ethers were cleaved with TMSI to afford the aglycone 27, identical in all respects to a sample obtained by degradation of the natural products.

In summary, Buszek and Bixby have used a novel intramolecular benzyne DielsAlder strategy in an expedient asymmetric synthesis of the Pseudopterosin A-F aglycone (18 steps, 3\% overall yield).

1.3.8 The Frejd Approach to the Pseudopterosin Tricyclic Core

Frejd ${ }^{53}$ et al. have reported (1995) a rapid creation of the tricyclic core of the Pseudopterosins starting from the known racemic enone $\mathbf{1 5 2}^{54}$ (Scheme 23).

Scheme 23

(i) $\mathbf{1 5 3}, \mathrm{Mg}, \mathrm{THF}$, rt, ultrasound for 50 mins , then cool to $-78^{\circ} \mathrm{C}, \mathrm{CuBr}, \mathrm{Me}_{2} \mathrm{~S}, 1 \mathrm{hr}$, then $\mathbf{1 5 2}, \mathrm{THF},-78$ ${ }^{\circ} \mathrm{C}$ for 9 hrs , rt for $1 \mathrm{hr}, 63 \%$; (ii) $\mathrm{HCl}, \mathrm{THF}, 80^{\circ} \mathrm{C}, 6 \mathrm{hrs}, 59 \%$; (iii) $\mathrm{Ph}_{3} \mathrm{PCHMe}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$ for $4 \mathrm{hrs}, \mathrm{rt}$ for $0.5 \mathrm{hrs}, 53 \%$; (iv) Dimethyl acetylenedicarboxylate, $\mathrm{AlCl}_{3}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 2 \mathrm{hrs}$; (v) DDQ, DMF, 140 ${ }^{\circ} \mathrm{C}, 37 \mathrm{hrs}, 38 \%$ for two steps.

Cuprate addition of the bromodioxolane 153^{55} to 152 formed the Michael addition product 154 as predominately the trans diastereomer (trans:cis 97:3). Acid hydrolysis of 154 induced an aldol cyclisation, condensation reaction to give the methyloctalone

155, which reacted with $\mathrm{Ph}_{3} \mathrm{PCHMe}$ to give diene 156 as a mixture of geometric isomers (Z:E 2:1). Lewis acid catalysed Diels-Alder reaction of 156 with dimethyl acetylenedicarboxylate proceeded smoothly to afford 157 and the resulting cyclohexadiene ring was aromatised with DDQ to give 158.

Frejd et al. also comment on the remarkable inactivity of the enone 152 as a dienophile in the Diels-Alder reaction (Scheme 24).

Scheme 24

Specifically, 152 failed to react with both 159 and 160 even under very forcing conditions, and reacted only in low yield with 161 ultimately affording 162.

In summary, Frejd et al. have developed a rapid assembly of a possible intermediate for the preparation of the Pseudopterosins and analogues. Furthermore, an asymmetric synthesis could be realised starting from the known enone $(S)-152^{56}$.

1.3.9 The Kocienski Asymmetric Syntheses of the Pseudopterosin K and L C-10

Deoxyaglycone and the Pseudopterosin G Aglycone Dimethyl Ether Enantiomer

In the first ${ }^{57}$ (1996) of two publications, Kocienski et al. report a stereoselective synthesis of the Pseudopterosin K and L C-10 deoxyaglycone starting from ($1 S, 2 S, 5 R$)neoisopulegol $163{ }^{58}$ (Scheme 25). Hydroxyl directed epoxidation of 163 , obtained from commercially available from ($1 S, 2 S, 5 R$)-isopulegol, affords the oxirane 164 , which is ring opened with clean inversion of configuration with $\mathrm{NaBH}_{3} \mathrm{CN}$ and $\mathrm{BF}_{3}-\mathrm{OEt}$ to produce 165. Silyl protection of the primary hydroxyl to yield 166 followed by Swern oxidation of the secondary hydroxyl gave the ketone 167.

(i) $\mathrm{VO}(\mathrm{acac})_{2}, t$ - $\mathrm{BuOOH}, \mathrm{PhH}, \mathrm{rt}, 88 \%$; (ii) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{BF}_{3}-\mathrm{OEt}, \mathrm{THF}, 79 \%$; (iii) TBSCl , imidazole, DMF, rt, 84%; (iv) Swern oxidation, 88%; (v) a. LiHMDS, DMPU, THF, $-78^{\circ} \mathrm{C}, \mathrm{b} . \mathrm{CS}_{2},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, c. LiHMDS, $-78^{\circ} \mathrm{C}$, d. $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Br},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 71 \%$; (vi) Methallylmagnesium chloride, $\mathrm{THF}, 0^{\circ} \mathrm{C}$; (vii) $\mathrm{BF}_{3}-\mathrm{OEt}_{2}, \mathrm{MeOH}, \mathrm{THF},-40^{\circ} \mathrm{C}$ to $\mathrm{rt}, 63 \%$ for two steps; (viii) $\mathrm{TsCl}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 86 \%$; (ix) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}(\mathrm{Li}) \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to rt, 91%; (x) $\mathrm{EtAlCl}_{2}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 79 \%$.

Conversion of 167 to the α-oxoketenedithioacetal 168 was mediated by a one-pot, four step procedure involving the reaction of the lithium enolate of 167 with CS_{2} followed by a second enolisation and trapping of the intermediate ketene dithiolate with 1,3dibromopropane to give 168 in 71% yield. Creation of the aromatic ring of the natural product, with concomitant desilylation, was realised under the Dieter-Ila-Junjappa conditions 59, where 168 was reacted with methallylmagnesium chloride and the resulting crude alcohol 169 was treated with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ in MeOH and THF to afford 170 in good yield. Tosylation of the pendent alcohol yielded 171, which was reacted with $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}(\mathrm{Li}) \mathrm{SO}_{2} \mathrm{Ph}$ to produce 172 as a $\sim 1: 1$ mixture of diastereomers. Treatment of $\mathbf{1 7 2}$ with EtAlCl_{2} in THF at $-78^{\circ} \mathrm{C}$ returned the tricycle $\mathbf{1 7 3}$ as a $10: 1$ mixture of diastereomers (10 steps, 15% overall yield). In addition, as ent- 163^{60} is readily available
from (S)-citronellal, this synthetic route could also furnish the Pseudopterosin A-F aglycone.

In a later ${ }^{61}$ (1998) report, Kocienski et al. disclose an asymmetric route to the enantiomer of the Pseudopterosin G aglycone dimethyl ether 187 starting from the iodide 174^{62} (Scheme 26).

Scheme 26

(i) a. n-BuLi, THF: $\mathrm{Et}_{2} \mathrm{O} 5: 1,-100^{\circ} \mathrm{C}$, b. $\mathrm{ZnBr}_{2},-100^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$, c. $\mathrm{CuCN} .2 \mathrm{LiCl},-70^{\circ} \mathrm{C}, \mathrm{d} .175,-70{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}, 60 \%$; (ii) $\mathrm{Mg}, \mathrm{MeOH}, 5{ }^{\circ} \mathrm{C}, 3 \mathrm{hrs}, 90 \%$; (iii) DIBAL, $\mathrm{DCM},-80^{\circ} \mathrm{C}, 1 \mathrm{hr}, 87 \%$; (iv) TMSethynylmagnesium bromide, $0^{\circ} \mathrm{C}, 15 \mathrm{mins}, 89 \%$; (v) a. $\mathrm{Co}_{2}(\mathrm{CO})_{8}, \mathrm{DCM}, \mathrm{rt}, 1 \mathrm{hr}, \mathrm{b} . \mathrm{BF}_{3}-\mathrm{OEt},-20$ ${ }^{\circ} \mathrm{C}, 3 \mathrm{hrs}$, c. $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{rt}, 3 \mathrm{hrs}, 86 \%$; (vi) a. $\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)_{2} \mathrm{BH}, \mathrm{THF}, 5^{\circ} \mathrm{C}, 1 \mathrm{hr}$, b. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$, $\mathrm{MeOH}, 30-50^{\circ} \mathrm{C}, 1 \mathrm{hr}, 65 \%$; (vii) Tetramethylguanidine, MeI, PhMe, rt, 95%, (viii) a. LDA, THF, -40 ${ }^{\circ} \mathrm{C}$, b. MeI, 85%; (ix) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 92 \%$; (x) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}, 86 \%$; (xi) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}(\mathrm{Li}) \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{THF}, 3 \mathrm{hrs}, 75 \%$; (xii) $\mathrm{EtAlCl}_{2}, \mathrm{DCM},-30^{\circ} \mathrm{C}, 3 \mathrm{hrs}, 90 \%$.

Zinc-cuprate addition of $\mathbf{1 7 4}$ to the homochiral (E)-[(2,3,4- $\left.\eta^{3}\right)$-1-ethoxy-1-oxo-3pentenyl]tricarbonyliron (1-) tetrafluoroborate complex 175^{63} led to 176 stereoselectively (>95:5) in 60\% yield. Treatment of $\mathbf{1 7 6}$ with Mg in MeOH gave 177 followed by DIBAL reduction in DCM of the ester group to the unsaturated aldehyde 178. Reaction of $\mathbf{1 7 8}$ with TMSethynylmagnesium bromide afforded $\mathbf{1 7 9}$ as a $1: 1$ mixture of diastereomers. Protection of the triple bond with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, and Nicholas cyclisation of the resulting complex with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$, formed 180 stereoselectively (95:5). Hydroboration-oxidation of the silylalkyne led to the carboxylic acid 181, which was esterified with iodomethane. Treatment of the ester 182 with LDA followed by MeI leads to 183 , where α-alkylation was in good yield and diastereocontrol (10:1). Installation of the final ring and stereogenic centre of the natural product was achieved as published previously by Kocienski et al. Namely, reduction of the ester 183 to the alcohol 184 followed by tosylation to 185. Sulfone displacement with $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}(\mathrm{Li}) \mathrm{SO}_{2} \mathrm{Ph}$ yields 186 , which cyclises under Lewis acid conditions to give the enantiomer of the Pseudopterosin G aglycone dimethyl ether 187.

In summary, Kocienski et al. have synthesised the Pseudopterosin G aglycone in a stereocontrolled manner (12 steps, 4.5% overall yield).

1.3.10 The Schmalz Asymmetric Syntheses of the 14,15-Dihydro-Pseudopterosin G

 Aglycone Dimethyl Ether, the 18-nor-seco-Pseudopterosin Aglycone Dimethyl Ether, the Pseudopterosin A-F Aglycone, the seco-Pseudopterosin Aglycone, and the Related Natural Product Helioporin DSince 1994 Schmalz et al. have exploited the chemistry of the homochiral complexes of the type 188^{64} (Scheme 27) in their synthetic work on the Pseudopterosins.

Their first report ${ }^{65}$ was of an asymmetric synthesis of the 14,15 -dihydro-
Pseudopterosin G aglycone dimethyl ether 196 (Scheme 27).
Scheme 27

194

190
191

(i) LiHMDS, THF, $-78^{\circ} \mathrm{C}$, 15 mins, then MeI, HMPA, rt , 2.5 hrs ; (ii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{DCM}, \mathrm{rt}, 1 \mathrm{hr}$; (iii) $3 \% \mathrm{TsOH}$ on $\mathrm{SiO}_{2}, \mathrm{PhH}, \mathrm{rt}, 4 \mathrm{hrs}, 83 \%$ for three steps; (iv) $\mathrm{H}_{2}, \mathrm{Rh}^{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$, ethyl acetate:AcOH 50:1, rt, 30 hrs; (v) Lithium-2,2',6,6'-tetramethylpiperidide, TMSCI, THF, $-40^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{hr}, 80 \%$ for two steps; (vi) n-BuLi, THF:HMPA $25: 1,-50^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 3 \mathrm{hrs}$, then $\mathrm{ICH}_{2} \mathrm{CHMe}_{2},-30^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{hrs}, 84 \%$; (vii) n-BuLi, THF:HMPA 20:1, $-55^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, then $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{TMS}) \mathrm{CO}_{2} \mathrm{Me},-75^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 30 \mathrm{mins}$, then 2 N (aq) $\mathrm{HCl}, 0^{\circ} \mathrm{C}, 5$ mins, then TBAF, THF, rt, $15 \mathrm{hrs}, 67 \%$; (viii) $\mathrm{NaOH}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 20 \mathrm{hrs}$; (ix) PPA, rt, 3 hrs, then $70^{\circ} \mathrm{C}, 3 \mathrm{hrs}, 60 \%$ for two steps; (x) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{DCM}, \mathrm{rt}, 3 \mathrm{hrs}$; (xi) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, rt, 18 hrs ; (xii) $\mathrm{Me}_{3} \mathrm{Al}, \mathrm{DCM},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, $3 \mathrm{hrs}, 48 \%$ for three steps; (xiii) hv, air, $\mathrm{Et}_{2} \mathrm{O}$, rt, 95%; (xiv) n-BuLi, TMEDA, hexane, $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, then MeI, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 17 \mathrm{hrs}$.

Conversion of 188 to 189 was achieved in good yield under standard conditions. Rhcatalysed hydrogenation of 189 (from the face opposite to the metal) gave 190 diastereoselectively, and the resulting methyl compound was bis-silylated. Treatment of 191 with n-BuLi in THF followed by isobutyl iodide furnished 192 regio- and stereoselectively. A lithiation/Michael addition strategy using methyl- α-TMSacrylate ${ }^{66}$ afforded 193, after treatment with TBAF, as a single diastereomer. Hydrolysis of the ester unit and Friedel-Crafts type cyclisation gave the tricyclic compound 194.

Installation of the final stereogenic centre of the molecule was achieved under Uemura conditions ${ }^{67}$ and oxidative decomplexation led to 195 (12 steps, 10% overall yield), which was methylated under standard conditions, albeit with extensive O demethylation, to afford the 14,15-dihydro-Pseudopterosin G aglycone dimethyl ether 196.

Synthesis of the 18 -nor-seco-Pseudopterosin aglycone dimethyl ether ${ }^{68} 202$ starts with Peterson olefination of 197 to give the exo-alkene 198 (Scheme 28).

Scheme 28

(i) $\mathrm{TMSCH}_{2} \mathrm{CeCl}_{2}, \mathrm{THF},-75^{\circ} \mathrm{C}$ to rt, $0.5 \mathrm{hrs}, 96 \%$; (ii) $\mathrm{KH}, \mathrm{THF}, \mathrm{rt}, 10 \mathrm{mins}, 93 \%$; (iii) n - BuLi , THF, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}$, then TMSCl, 94%; (iv) n-BuLi, THF:HMPA $70: 1,-50^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}$, then MeI, -30 ${ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}, 96 \%$; (v) 4-methyl-3-pentenyllithium, THF, $-60^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, then $0.5 \mathrm{~N}(\mathrm{aq}) \mathrm{HCl}, 0^{\circ} \mathrm{C}$ to rt, 94%; (vi) TBAF, THF, $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 15$ mins, 75%; (vii) n - $\mathrm{BuLi}, \mathrm{THF},-70^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, then MeI, $-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 15 \mathrm{mins}, 94 \%$; (viii) hv, air, $\mathrm{Et}_{2} \mathrm{O}, 98 \%$.

Reaction of 198 with n - BuLi in THF followed by TMSCl with subsequent treatment of n-BuLi followed by MeI yielded 199 as a single diastereomer. Michael addition of homoprenyllithium to $\mathbf{1 9 9}$ led, after TBAF treatment, to a $\mathbf{7 5 \%}$ isolated yield of $\mathbf{2 0 0}$ with a 7\% isolated yield of the cis-diastereomer (stereoselectivity of addition 10:1).

Aromatic methylation of $\mathbf{2 0 0}$ was performed under standard conditions to provide 201, which was submitted to photochemical decomplexation to afford 202 (8 steps, 55% overall yield). De- O-methylation of 202 was achieved using BCl_{3} in DCM , though the product proved to be air-sensitive. Unfortunately, the synthesis of the secoPseudopterosin aglycone using this route was inappropriate as direct ethylidenation of 197 to provide the required starting material 203 was difficult.

The Schmalz et al. synthesis of the aglycones of the Pseudopterosins A-F and the seco-Pseudopterosins using 197 as the chiral building block was finally realised in 1997^{69} (Scheme 29). Isoprenyllithium attack onto 197 with TMSCl quench led to the bis-silylated product 204 stereoselectively. Deprotonation/methylation of 204 afforded 205 diastereoselectively in quantitative yield. Diastereoselective hydroboration of the isoprenyl side-chain preceded desilylation with TBAF in THF and elimination of the resulting benzylic OH to give 206 a single compound. The aromatic methyl was introduced under standard conditions, albeit requiring temporary silyl protection of the pendant hydroxyl, to afford 207 in excellent yield. Treatment of 207 with SmI_{2} in THF followed by oxidative decomplexation led to 208 almost quantitatively, which was tosylated under standard conditions to afford 209. Tosyl displacement with $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}(\mathrm{Li}) \mathrm{SO}_{2} \mathrm{Ph}$ gave 210, a late common intermediate for both the Pseudopterosin A-F and the seco-Pseudopterosin aglycone, as a mixture of diastereomers.

Cyclisation of 210 with EtAlCl_{2} in DCM gave the tricycle 211, which was de- O methylated with LiSEt in THF to afford the Pseudopterosin A-F aglycone 27.

Reductive desulfonylation of $\mathbf{2 1 0}$ with $\mathrm{LiEt}_{3} \mathrm{BH}$ followed by de-O-methylation of $\mathbf{2 1 2}$ also with LiSEt in THF produced the seco-Pseudopterosin aglycone 213.

Scheme 29

(i) isopropenyllithium, THF, $-70^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}, 1 \mathrm{hr}$, then $\mathrm{rt}, 1 \mathrm{hr}$, then $\mathrm{TMSCl},-30^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}, 87 \%$; (ii) n-BuLi, THF, HMPA, $-35^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, 2 hrs , then MeI, $-20^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}, 99 \%$; (iii) $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}, \mathrm{THF}, 30^{\circ} \mathrm{C}$, 15 hrs , then $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$; (iv) TBAF, THF, $0^{\circ} \mathrm{C}, 1 \mathrm{hr}$; (v) $p-\mathrm{TsOH}, \mathrm{SiO}_{2}, \mathrm{PhH}, \mathrm{rt}, 2 \mathrm{hrs}, 71 \%$ for three steps; (vi) TBSCl, imidazole, DMF, rt, 1.5 hrs ; (vii) n-BuLi, THF, $-75^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, then MeI, -65 ${ }^{\circ} \mathrm{C}, 10 \mathrm{mins}$, then $\mathrm{rt}, 1 \mathrm{hrs}$; (viii) TBAF, THF, $\mathrm{rt}, 1 \mathrm{hr}, 95 \%$ for three steps; (ix) SmI_{2}, THF:HMPA $15: 1$, $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 2.5 \mathrm{hrs}$, then $\mathrm{rt}, 0.5 \mathrm{hrs}, 98 \%$; (x) hV, air, $\mathrm{Et}_{2} \mathrm{O}$; (xi) p-TsCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}, 35^{\circ} \mathrm{C}, 6 \mathrm{hrs}$, 92% for two steps; (xii) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}(\mathrm{Li}) \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to $-45^{\circ} \mathrm{C}, 1.5 \mathrm{hrs}$, then $0{ }^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}, 90 \%$; (xiii) $\mathrm{EtAlCl}_{2}, \mathrm{DCM},-78^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$, then $\mathrm{rt}, 0.5 \mathrm{hrs}, 95 \%$; (xiv) $\mathrm{LiEt}_{3} \mathrm{BH}, \mathrm{PdCl}_{2}(\mathrm{dppp}), \mathrm{THF}, 0^{\circ} \mathrm{C}, 1.5$ hrs, then rt, $0.5 \mathrm{hrs}, 98 \%$; (xv) LiSEt, DMF, $160^{\circ} \mathrm{C}, 2 \mathrm{hrs}, 95 \%$.

To further demonstrate the synthetic application of piano-stool complexes as starting materials in asymmetric total synthesis, Schmalz et al. have also prepared ${ }^{70}$ Helioporin D (Fig. 2), a cytotoxic natural product structurally related to the secoPseudopterosin aglycone (Scheme 30). Protection of the acidic aryl position of 214 allows for regio- and stereoselective deprotonation/methylation of 215 to produce 216 in excellent yield.

Scheme 30

(i) n-BuLi, TMSCl, THF, 91%; (ii) n-BuLi, MeI, THF, 93%; (iii) n-BuLi, hexane, $0^{\circ} \mathrm{C}$, then add to $\mathrm{Tf}_{2} \mathrm{O}$, DCM, $-20^{\circ} \mathrm{C}$; (iv) s - $\mathrm{BuLi}, \mathrm{THF},-70^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 75 \mathrm{mins}$, then add crude 218 in hexane, $\mathrm{DCM},-65^{\circ} \mathrm{C}$ to rt, $1.5 \mathrm{hrs}, 85 \%$; (v) TBAF, THF, $0^{\circ} \mathrm{C}, 100 \%$; (vi) n-BuLi, THF, $-70^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 70 \mathrm{mins}$, then MeI, $40^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1.5 \mathrm{hrs}, 95 \%$; (vii) hv, air, $\mathrm{Et}_{2} \mathrm{O}, 100 \%$; (viii) LiESt, DMF, reflux, $2 \mathrm{hrs}, 95 \%$; (ix) CsF, DCM, DMF, reflux, 3 hrs 88\%.

Treatment of $\mathbf{2 1 6}$ with s-BuLi in THF followed by addition of the triflate $\mathbf{2 1 8}^{\mathbf{7 1}}$, prepared from (R)-sulcatol 217, results in the diastereoselective (92:8) formation of $\mathbf{2 1 9}$, which was desilylated with TBAF in THF to form 220. Ortho-lithiation/methylation gave 221 and oxidative decomplexation afforded 222, which was de- O-methylated with LiESt in THF to give 223 in almost quantitative yield. Formation of the methylenedioxy bridge was achieved with CsF in DCM to yield Helioporin D as described by Higa et al. (8 steps, 45\% overall yield).

However, high field ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ revealed that the synthetic and natural materials were different ${ }^{72}$. Reasoning that, as the relative stereochemistry of the Pseudopterosin agylcones as a whole vary only at C-7, Schmalz et al. installed the methylenedioxy bridge on their previously synthesised seco-Pseudopterosin aglycone material (Scheme 31). The material thus derived 224 was shown to be identical to natural Helioporin D. Confusingly, when the Pseudopterosin A-F aglycone was
converted to the methylenedioxy compound 225 (Scheme 31), the possibility of a C-7 epimeric structure for Helioporin E was ruled out. The full stereostructural assignment of the Helioporins has yet to be determined (those in Fig. 2 are after Higa et al.)

Scheme 31

(i) CsF, DCM, DMF, reflux, 91%; (ii) CsF, DCM, DMF, reflux, 83%.

In summary, Schmalz et al. have developed the use of chiral arene $-\mathrm{Cr}(\mathrm{CO})_{3}$ complexes for the asymmetric synthesis of the Pseudopterosin A-F aglycone (15 steps, 43% overall yield) and the seco-Pseudopterosin aglycone (15 steps, 44% overall yield) as well as various analogues. Furthermore, the stereoselective predictability and reliability of this chemistry has allowed for the asymmetric synthesis of the correct structure for Helioporin D.

1.4 Concluding Remarks

There have been many elegant, direct, and efficient syntheses of the Pseudopterosins many of which embrace novel synthetic methodology in their realisation.

Pharmacologists have proposed that the nature of the relative and absolute stereochemistry of the Pseudopterosin aglycone is of vital importance to the activity ${ }^{73}$. Ideally, pharmacologists would like to draw structure-activity relationships between the 16 possible diastereomers of Pseudopterosin E (the most biologically active

Pseudopterosin). As nature cannot provide these compounds, synthesis must. However, none of the above syntheses are flexible enough to allow for the predictable synthesis of aglycone diastereomers.

As a result, the primary aim of our synthetic programme was to develop an efficient, practical route to Pseudopterosin E, which would ultimately be applicable to the synthesis of the 16 possible diastereomers of the Pseudopterosin A-F aglycone. With these materials in hand a full structure-activity relationship for the Pseudopterosins could be determined.

CHAPTER 2

The Pseudopterosins: Results and Discussion

2.0 Retrosynthesis

Our retrosynthesis envisages an intramolecular Diels-Alder (IMDA) ${ }^{75}$ reaction on a substrate of the type 226 (Scheme 32), in which the A and B rings of the tricarbocyclic core of the Pseudopterosins would be created. Dihydroxylation of the resulting double bond and aromatisation of the B ring would lead to the hexasubstituted aromatic ring of the natural product. It should be noted that all of the stereochemistry derived from the IMDA reaction is destroyed in the steps that introduce the aromatic nucleus. Protection of the catechol unit and reductive ring opening of the lactone would afford the diol 227. Oxidation of the secondary alcohol and deoxygenation at the primary alcohol would give the ketone 23, a key intermediate in the Corey ${ }^{13}$ syntheses of Pseudopterosins A and E. As adumbrated, the remaining steps in our synthesis would be after Corey via the aldehyde 25.

The triene 226 could be synthesised starting with the Horner-Emmons-Wittig condensation of the known aldehyde 230^{76} with a phosphonate of the type $\mathbf{2 3 1}$. The resulting enone could be subjected to a low temperature Lewis acid mediated DielsAlder reaction with 1,3-butadiene ${ }^{77}$ to form 232, where the C ring and the stereogenic centres at C-3 and C-4 of the natural product have been created. Hydrolysis of the chiral auxiliary followed by iodolactonisation would cede 233 , where elimination of HI would introduce the dienophilic double bond of the triene 226. Deprotection of the silyl ether 234, followed by oxidation of the resulting alcohol to the aldehyde and Wittig homologation, would install the remaining double bonds to afford the triene 226.

The primary aim of this synthetic programme was to develop an efficient, stereocontrolled synthesis of Pseudopterosin E, which would ultimately be applicable to
the synthesis of the 16 possible diastereomers of the Pseudopterosin A-F aglycone. For this to be achieved our synthesis must flexible enough to accept changes in stereochemistry of intermediates without affecting the overall synthetic route.

Scheme 32

Our retrosynthesis could allow this goal to be attained for the following reasons;

- The methyl C-7 stereogenic centre is derived from the starting aldehyde 230. Both enantiomers of $\mathbf{2 3 0}$ can be synthesised from commercially available material via the same synthetic route ${ }^{76}$ (vide infra).
- The methyl C-3 and bridgehead C-4 stereogenic centres are set in a chiral auxiliary directed Diels-Alder reaction to afford 232. To make the diastereomer of 232, with the same (trans) relative configuration but opposite absolute configuration, would require $\mathbf{2 3 5}$ as the starting material. To make the diastereomers with cis relative configuration would require 236 and 237 as starting materials for the Diels-Alder reaction with 1,3-butadiene. Judicious use of both chiral auxiliaries and cis/trans enones should allow for the synthesis of all the possible diastereomers of 232 using the same reaction conditions.

- The C-1 stereogenic centre is to be set using the chemistry of Corey to provide the aldehyde 25 (Scheme 6). Though there is no direct control over the creation of this stereogenic centre (under the Corey route the stereochemistry of this centre is set by the influence of the molecule as a whole), the resulting aldehyde could be used to obtain both epimers. Exposure of $\mathbf{2 5}$ to mild base should selectively epimerise the C - 1 centre (the α-aldehydic proton being quite acidic) without affecting the other benzylic positions. Separation of the resulting diastereomers would provide the required materials.

In this manner, our retrosynthesis can accommodate the synthesis of the 16 diastereomers of Pseudopterosin E required by pharmacologists for structure-activity investigations.

2.1 Synthesis of the Starting Materials

Synthesis of the aldehyde $\mathbf{2 3 0}{ }^{\mathbf{7 6}}$ starts with protection of commercially available (Sigma) (R)-(+)-3-hydroxy-2-methylpropionic acid methyl ester and DIBAL reduction of the crude residue to afford the alcohol 238 in good yield (Scheme 33).

Scheme 33

(i) TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}, \mathrm{rt}, 18 \mathrm{hrs}$; (ii) DIBAL, $\mathrm{DCM},-78^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}, 98 \%$ for two steps; (iii) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 1.5 \mathrm{hrs}$, then $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 20 \mathrm{mins}, 92 \%$; (iv) $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}, \mathrm{DCM}, \mathrm{rt}, 18$ hrs, 97%; (v) H_{2}, Pd-C, EtOAc, rt, $0.5 \mathrm{hrs}, 99 \%$; (vi) DIBAL, DCM, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}, 99 \%$; (vii) (COCl) $)_{2}$, DMSO, DCM, $-78^{\circ} \mathrm{C}, 1.5 \mathrm{hrs}$, then $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 30 \mathrm{mins}, 95 \%$.

Swern oxidation with $(\mathrm{COCl})_{2}$ of 238 followed by Wittig reaction with $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}$ in DCM gave the α, β-unsaturated ester 239, which was hydrogenated under standard conditions to cede 240 in excellent yield. DIBAL reduction of $\mathbf{2 4 0}$ in DCM followed by Swern oxidation furnished 230 in 7 steps and 81% overall yield. The synthesis of ent230 using this reaction sequence can be realised starting with (S)-(-)hydroxymethylpropionic acid methyl ester (Sigma).

For the phosphonate, the chiral auxiliary of choice was the Oppolzer sultam, as used in the Oppolzer et al. synthesis of Pulo'upone ${ }^{78}$. However, although N-acylation with both bromo- and chloroacetyl chloride was facile (Scheme 34), subsequent conversion to the phosphonoacetate 241 under Arbusov conditions was low yielding (6\%). Instead, the major reaction products were 242 (43\%) and 243 (33\%), appearing to come from direct attack of triethylphosphite on the halogen.

Scheme 34

OPPOLZER SULTAM

DERIVED FROM
(R)-(-)-CAMPHOR-
SULFONIC ACID

242

243
(i) $\mathrm{X}=\mathrm{Br}$: NaH , bromoacetyl chloride, $0^{\circ} \mathrm{C}, 1.5 \mathrm{hrs}, 91 \%$; $\mathrm{X}=\mathrm{Cl}: n$ - BuLi , chloroacetyl chloride, $-78^{\circ} \mathrm{C}$ to rt, $1 \mathrm{hr}, \mathbf{8 0 \%}$; (ii) $\mathrm{X}=\mathrm{Br}: \mathrm{P}(\mathrm{OEt})_{3}, 150^{\circ} \mathrm{C}, 21 \mathrm{hrs}, 2416 \%, 24243 \%, 243$ 33\%.

Fortunately, synthesis of the phosphonate derived from the Evans oxazolidinone 244 (Scheme 35), as used by Broka and Ehrler in the synthesis of Bengamides B and E^{79}, was achieved readily on a variety of scales (max. 150 g).

Scheme 35

DERIVD FROM L-PHENYALANINE
(i) n-BuLi, bromoacetyl chloride, $\mathrm{THF},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{hr}$; (ii) $\mathrm{P}(\mathrm{OEt})_{3}, \mathrm{PhMe}, 5{ }^{\circ} \mathrm{C}, 3$ days, 80% for two steps.

2.2 Triene Synthesis

Before embarking on the synthesis, it was necessary to determine if compounds of the type 247 were stable under Lewis acid conditions, particularly as $(R)-(+)$ hydroxymethylpropionic acid methyl ester was somewhat expensive ($>\mathrm{f} 1 \mathrm{per} \mathrm{g}$). To this end, condensation of $245{ }^{148}$, available readily from 1,4 -butanediol, with the phosphonate 244 gave the enone 246, suitable for test reactions (Scheme 36). It was found that 246 was stable to the action of $\mathrm{Me}_{2} \mathrm{AlCl}$ in $\mathrm{DCM} /$ hexanes at $0^{\circ} \mathrm{C}$ for several hours but was destroyed upon exposure to EtAlCl_{2} under the same conditions.

Scheme 36

(i) $\mathrm{NaH}, \mathrm{TBDPSCl}, \mathrm{THF}, \mathrm{rt}, 1.5 \mathrm{hrs}, 99 \%$; (ii) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 1.5 \mathrm{hrs}$, then $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 30$ mins, 99%; (iii) 244, LiCl, Hünigs base, MeCN, rt, 5 mins, then 246, MeCN, rt, 2 days, 93%.

With this knowledge in hand, the attempted synthesis of triene 226 begins with condensation of 244 with 230 under Roush-Masamune conditions ${ }^{80}$ leading to the formation of 247 (Scheme 37) as a single diastereomer of $[\alpha]_{D}^{21}+31.5$ ($c=0.43$ in DCM) with suitable combustion analysis (found $\mathrm{C} 73.43, \mathrm{H} 7.33, \mathrm{~N} 2.54 ; \mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}$ requires $\mathrm{C} 73.48, \mathrm{H} 7.44, \mathrm{~N} 2.52$) and HRMS (found $m / z 556.2826 ; \mathrm{C}_{34} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}$ $[\mathrm{MH}]^{+}$requires m / z 556.2883).

Scheme 37

230

(i) 244, LiCl, Hünigs base, MeCN , rt, 40 mins, then 230, MeCN, rt, $18 \mathrm{hrs}, 82 \%$; (ii) 1,3 -Butadiene, $\mathrm{Me}_{2} \mathrm{AlCl}, \mathrm{DCM}$, hexanes, $-40^{\circ} \mathrm{C}, 20$ mins, then $-10^{\circ} \mathrm{C}, 3$ days, 72%; (iii) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF}: \mathrm{H}_{2} \mathrm{O} 1: 1$, rt, $18 \mathrm{hrs}, 88 \%$; (iv) $\mathrm{NaHCO}_{3}, \mathrm{KI}, \mathrm{I}_{2}, \mathrm{DCM}: \mathrm{H}_{2} \mathrm{O} \sim 16: 1,0^{\circ} \mathrm{C}, 3 \mathrm{hrs}, 85 \%$; (v) DBU, DCM, reflux, 24 hrs , 95%; (vi) TBAF, THF, rt, $4 \mathrm{hrs}, 96 \%$; (vii) $\left(\mathrm{COCl}_{2}\right.$, DMSO, $\mathrm{DCM},-78^{\circ} \mathrm{C}, 1 \mathrm{hr}$, then $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 20 \mathrm{mins}$, 95\%.

Evidence for the trans nature of the double bond in 247 could not be obtained from coupling constants in the ${ }^{1} \mathrm{H} \mathrm{nmr}$ as the double bond peaks were superimposed by the
aromatic peaks of the benzyl unit of the molecule. When 247 was reacted with 1,3butadiene at low temperature under the influence of $\mathrm{Me}_{2} \mathrm{AlCl}$ these conditions afforded 248 as a single diastereomer according to nmr analysis after 3 days at $-10^{\circ} \mathrm{C}$. This is at the limit of the reaction conditions as 1,3-butadiene boils at $-4^{\circ} \mathrm{C}$ (on large scale a wellventilated fume-hood is essential as, under balloon pressure, a significant proportion of 1,3-butadiene escapes from the reaction vessel). Lithium hydroperoxide hydrolysis in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ of the amide bond in 248 gave the acid 249 as a $\sim 7: 1$ (nmr) mixture of diastereomers at the acid centre. (It seems that, under the base conditions of the hydrolysis, some exchange of the α-acidic proton is occurring to give the diastereomeric mixture). Unfortunately, owing to hydrolysis of the carbamate unit in 248, a small amount of the oxazolidinone is not recovered under the reaction conditions. However, 88% was deemed to be acceptable recovery and this material is fully recyclable. Bartlett iodolactonisation of 249 gave the iodolactone 250 in good (85%) yield and DBU, in DCM heated at reflux, mediated elimination of HI and ceded 251 as a single diastereomer (according to nmr analysis), the minor diastereomer having been 'purifiedout'. Installation of the diene unit of triene 226 began with a TBAF in THF induced O desilylation of $\mathbf{2 5 1}$ to yield the alcohol 252, which under Swern oxidation conditions with $(\mathrm{COCl})_{2}$ gave the aldehyde 253.

Unfortunately, the aldehyde 253 proved quite unstable and initial attempts to introduce the crotonyl unit of the triene 226 with the known phosphonium salt 254^{82} and phosphine oxide $\mathbf{2 5 5}^{83}$ led to multiple products by tlc (Scheme 38). Under the milder Horner-Emmons-Wittig reaction conditions with the phosphonate $\mathbf{2 5 6}{ }^{\mathbf{8 4}}$ complete consumption of the aldehyde 253 to several products (tlc) was observed. The same was true for attempted Julia olefination with the known sulfone $\mathbf{2 5 7}{ }^{85}$.

Scheme 38

Reaction of 253 with a variety of other Wittig ${ }^{86,87,88}$ and Julia ${ }^{89}$ reagents also failed to yield the desired products (vide infra) despite much experimentation (Scheme 39).

Scheme 39

Presumably, the aldehyde 253 is rather base sensitive and several base-induced decay pathways can be envisaged.

Fortunately, exposure of $\mathbf{2 5 3}$ to the known phosphonate $\mathbf{2 5 8}{ }^{90}$ under standard Roush-Masamune conditions ${ }^{80}$ (Scheme 40) resulted in the clean formation of the triene 259 in modest (40\%) yield.

Scheme 40

(i) $\mathbf{2 5 8}$, LiCl, Hünigs base, $\mathrm{MeCN}, \mathrm{rt}, 30 \mathrm{mins}$, then $\mathbf{2 5 3}, \mathrm{MeCN}, \mathrm{rt}, 48 \mathrm{hrs}, 40 \%$.

Though the yield for this reaction is low, the preceding steps to 259 are all high yielding and can be performed on large scale, which allows for synthesis of $\mathbf{2 5 9}$ on a multigram scale. Triene 259 was a single compound (nmr), of E, E configuration in the diene unit $\left({ }^{3} J_{\mathrm{HH}}\right.$ values of 10.5 and 15.5), with $[\alpha]_{\mathrm{D}}^{19}+69.9(\mathrm{c}=0.29$ in DCM$)$ and the HRMS (FAB) found $m / z 313.1406\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{MNa}]^{+}\right.$requires $\left.m / z 313.1416\right)$.

The inclusion of an ester group at C-20 (Pseudopterosin numbering) affects the synthetic plan only slightly (Scheme 41) and does not increase the number of steps. Specifically, the aromatic methyl unit of the natural product was to be unmasked by reduction then deoxygenation of the methyl ester group. These two steps were already present in the original retrosynthetic plan (cf Scheme 32).

IMDA product

With gram quantities on 259 in hand, attempts at the IMDA reaction were initiated.

2.3 Attempted IMDA Reaction of 259

Table 1 outlines the thermal, Lewis acid, and radical-cation ${ }^{91}$ conditions under which the IMDA reaction of 259 was attempted. To our delight, one of the first conditions tested (entry 2) resulted in an 8% (3 mg) yield of a compound tentatively ascribed as the desired IMDA product 260. Although the ${ }^{1} \mathrm{H} \mathrm{nmr}$ (Appendix 2) seems to show that the IMDA product has been formed as a $\sim 3: 1$ mixture of diastereomers at the ester position, the material was too unstable for further characterisation (decayed whilst the ${ }^{13} \mathrm{C} \mathrm{nmr}$ was acquiring). Furthermore, this result could not be reproduced in order to obtain more of the putative IMDA product.

Table 1

THERMAL

1. PhMe, Sealed Tube, $120^{\circ} \mathrm{C}, 60 \mathrm{hrs}$, no reaction.
2. PhMe, Sealed Tube, $190-200^{\circ} \mathrm{C}, 60 \mathrm{hrs}, 8 \%$.
3. $\left(\mathrm{HOCH}_{2}\right)_{2}$, Sealed Tube, $150^{\circ} \mathrm{C}, 3$ days, no reaction.
4. o-Xylene, Sealed Tube, $200^{\circ} \mathrm{C}, 5$ days, no reaction.
5. Xylenes, Sealed Tube, $250^{\circ} \mathrm{C}, 4$ days, no reaction.

LEWIS ACID

6. SnCl_{4} (0.1 equivalents), $\mathrm{DCM},-100^{\circ} \mathrm{C}, 35$ mins, then $-78^{\circ} \mathrm{C}, 1 \mathrm{hr}$, no reaction.
7. SnCl_{4}, (1.1 equivalents), $\mathrm{DCM},-78^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, no reaction.
8. $\mathrm{Me}_{2} \mathrm{AlCl}$ (5.0 equivalents), $\mathrm{DCM},-78^{\circ} \mathrm{C}, 1 \mathrm{hr}$, no reaction.
9. EtAlCl_{2} (5.0 equivalents), $\mathrm{DCM}, \mathrm{rt}, 6 \mathrm{hrs}$, no reaction.

RADICAL-CATION

10. $(p-\mathrm{BrPh})_{3} \mathrm{NSbCl}_{6}, 2,6$-di- t-butylpyridine, $\mathrm{DCM}, 0^{\circ} \mathrm{C}, 30 \mathrm{mins}$, then $\mathrm{rt}, 3 \mathrm{hrs}$, no reaction

However, this was an extremely encouraging finding. The starting triene 259 is not an ideal precursor for the IMDA reaction. The presence of an electron-withdrawing group on the diene unit is not desirable; in most IMDA reactions the diene unit is electron-rich and the dienophile unit is electron-poor ${ }^{92}$. In addition, the newly created cyclohexane ring in the product contains four substituents in pseudoaxial positions, resulting in an highly sterically encumbered product. The supposed production of 260 in
spite of unfavourable electronic and steric factors was a great stimulus to further investigation of the IMDA reaction of 259.

The use of ethylene glycol ${ }^{93}$ (entry 3) or xylenes ${ }^{94}$ (entries 4 and 5), both wellknown IMDA sealed tube reaction solvents, failed to effect the desired transformation even at temperatures up to $250^{\circ} \mathrm{C}$.

Various Lewis acid conditions were equally unsuccessful (entries 6-9). At temperatures between $-100^{\circ} \mathrm{C}$ to room temperature several IMDA reaction attempts, using $\mathrm{SnCl}_{4}, \mathrm{Me}_{2} \mathrm{AlCl}$, and EtAlCl_{2}, all returned the starting triene.

Despite the fact that the diene component of 259 is neither cyclic nor in the s-cis conformation and contains an electron withdrawing group, a cation-radical IMDA reaction was also attempted (entry 10), but with no success ${ }^{91}$.

In the face of these disappointing findings, the major spur to continue on an IMDA route was the early (unconfirmed) successful IMDA reaction of 259. To develop our synthetic strategy, it was necessary to determine if steric or electronic arguments were the major adverse factors for the inactivity of 259 in the IMDA reaction.

2.4 Synthetic Probe of the Steric vs Electronic Inactivity of 259

The triene 261, which contains an electron-rich diene unit, was made in extremely low yield from the aldehyde 253 (Scheme 42).

Scheme 42

[^0]Wittig homologation with the known phosphorane $\mathrm{Ph}_{3} \mathrm{PCHC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Me}^{95}$ in DCM followed by silyl enol ether formation under standard conditions led to the formation of 261 by ${ }^{1} \mathrm{H}$ nmr. The synthesis of 261 allows for a probe of electronic factors in the diene moiety between 261 and 259 whilst keeping the steric factors inherent in the lactone group constant.

Methanolysis of $\mathbf{2 5 1}$ at $-15^{\circ} \mathrm{C}$ led to the alcohol 262 with no detectable (nmr) epimerisation at C-3 (Pseudopterosin numbering) and 262 was protected as the methoxymethyl ether 263 (Scheme 43).

Scheme 43

(i) $\mathrm{NaOMe}, \mathrm{MeOH},-15^{\circ} \mathrm{C}, 16 \mathrm{mins}$; (ii) MOMCl, Hünigs base, $\mathrm{DCM}, \mathrm{rt}, 4 \mathrm{hrs}, 98 \%$ for two steps; (iii) TBAF, THF, rt, $18 \mathrm{hrs}, 72 \%$; (iv) $\left(\mathrm{COCl}_{2}\right.$, DMSO, DCM, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{hr}$, then $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 40 \mathrm{mins}, 94 \%$; (v) 258, LiCl, Hünigs base, MeCN, rt, 7 mins, then 264, MeCN, rt, $72 \mathrm{hrs}, 90 \%$.

Installation of the diene component was realised as for 259. Namely, silyl deprotection of 263 with TBAF in THF followed by Swern oxidation with $(\mathrm{COCl})_{2}$ of the resulting alcohol to the aldehyde 264. Horner-Emmons-Wittig homologation gave $265\left({ }^{1} \mathrm{H} \mathrm{nmr}\right.$ and LRMS $)$ in good overall yield. The triene 265 allows for a probe of steric factors between 265 and 259 whilst keeping the electronic factors of the diene unit constant.

Finally, DIBAL reduction of $\mathbf{2 5 9}$ followed by triple silyl protection of the crude triol 266 ceded the triene 267 in good yield (Scheme 44).

Scheme 44

(i) DIBAL, DCM, $-78^{\circ} \mathrm{C}, 1 \mathrm{hrs}$; (ii) TESCl, imidazole, $\mathrm{DCM}, \mathrm{rt}, 50$ mins, 66% for two steps.

The triene 267 was made as a standard for this set of IMDA attempts as it is moderately sterically hindered (as a result of using the TES protecting group) and contains a diene unit which is neither electron-rich nor electron-poor.

Table 2 summarises the IMDA reaction conditions to which the trienes 261, 265, and 267 were submitted.

Unfortunately, these results seem to imply that adverse steric factors are of paramount importance. Even the electron-rich diene moiety in 261 is unable to effect the required IMDA reaction under either thermal or radical-cation conditions (Lewis acid conditions are not appropriate as these would cleave the TBS enol ether). Ringopening of the lactone group also seems to have little effect on reactivity. For 265, where no IMDA reaction was observed, the inference is that, whilst steric strain in the putative product has been relieved, the electron-poor diene is not a sufficient driving force for the IMDA reaction. Only 267 showed any sign of reactivity, albeit in a complex (decay) manner.

Table 2

TRIENE	THERMAL	LEWIS ACID	$\begin{gathered} \text { RADICAL- } \\ \text { CATION } \end{gathered}$
	PhMe, Sealed Tube, $200^{\circ} \mathrm{C}$, 6 days, no reaction.	Not applicable	$\left(p \mathrm{BrPh}_{3} \mathrm{NSbCl}_{6}\right.$ 2,6-di-t-butyl pyridine, DCM, $0^{\circ} \mathrm{C}, 10 \mathrm{mins}$, then rt, 4 hrs, no reaction.
	PhMe, Sealed Tube, $150^{\circ} \mathrm{C}$, 4 days, no reaction.	$\mathrm{Me}_{2} \mathrm{AlCl}, \mathrm{DCM}$, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 6 \mathrm{hrs}$, no reaction.	Not applicable.
	PhMe, Sealed Tube, $150{ }^{\circ} \mathrm{C}$, 5 days, complex reaction (tlc).	Not applicable.	$(p \mathrm{BrPh}){ }_{3} \mathrm{NSbCl}_{6}$ 2,6-di-t-butyl pyridine, DCM, $0^{\circ} \mathrm{C}, 20 \mathrm{mins}$, then $\mathrm{rt}, 1.5 \mathrm{hrs}$, no reaction.

The major conclusion drawn from this work is that the IMDA reaction in this particular system is very susceptible to steric factors. To this end, the synthesis of a triene of the type 265 but with an electron-rich diene unit could be desirable. To do this represents a significant departure from our original retrosynthesis, which envisaged an IMDA reaction early in the synthetic plan with subsequent elaboration to the required ketone 23. Conceptually, our new synthetic plan would contain an IMDA reaction late in the route on a triene as similar in structure as the desired ketone 23 as possible. In this way, we hope to minimise steric interactions in the IMDA reaction product.

2.5 Synthesis of a 'Late' Triene with an Electron-Rich Diene Unit

Methanolysis of 251 at $0^{\circ} \mathrm{C}$ led to the alcohol 262 , which was protected as the benzyloxymethyl ether 268 (Scheme 45).

Scheme 45

(i) $\mathrm{NaOMe}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 26 \mathrm{mins}$; (ii) BOMCl , Hünigs base, $\mathrm{DCM}, \mathrm{rt}, 2$ days, 95% for two steps; (iii) DIBAL, DCM, $0^{\circ} \mathrm{C}, 31 \mathrm{mins}, 85 \%$; (iv) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}$, THF, rt, $3.5 \mathrm{hrs}, 94 \%$; (v) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, PhMe, reflux, $62.5 \mathrm{hrs}, 95 \%$.

DIBAL reduction of the methyl ester in DCM gave the alcohol 269 in good yield. Bromination of 269 was realised with CBr_{4} and $\mathrm{Ph}_{3} \mathrm{P}$ in THF and $\mathrm{Bu}_{3} \mathrm{SnH}$ reduction of the bromide 270 revealed the C-3 methyl (Pseudopterosin numbering) of the natural product.

Desilylation of 271 with TBAF in THF led to the alcohol 272, which was oxidised under Swern conditions with $(\mathrm{COCl})_{2}$ to afford the aldehyde 273 (Scheme 46). Horner-Emmons-Wittig reaction, again under Roush-Masamune conditions ${ }^{80}$, with the known phosphonate $274{ }^{86}$ ceded the enone 275 in excellent yield. (The earlier homologation problems associated with installing the diene unit were overcome by ringopening of the lactone group). Treatment of 275 with $\mathrm{Et}_{3} \mathrm{~N}$ and TBSOTf in DCM produced the triene 276 in virtually quantitative yield. Triene 276 appears to be a single geometric isomer (nmr) having $[\alpha]_{D}^{18}+19.0(\mathrm{c}=0.28$ in DCM$)$ and a peak in the HRMS at $m / z 523.3030\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiK}[\mathrm{MK}]^{+}\right.$requires $\left.m / z 523.3010\right)$.

Scheme 46

(i) TBAF, THF, rt, $20 \mathrm{hrs}, 86 \%$; (ii) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{DCM},-78^{\circ} \mathrm{C}, 1 \mathrm{hr}$, then $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 1 \mathrm{hr}$; (iii) 274, LiCl , Hünigs base, MeCN, rt, 4 mins, then 273, MeCN, rt, $48 \mathrm{hrs}, 93 \%$; (iv) TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}, 18$ mins, 98%.

Though this triene was thought to be reasonably similar in structure to the ultimately required ketone 23 a bid was made to further activate the molecule for the IMDA reaction (Scheme 47).

Scheme 47

(i) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 2 \mathrm{hrs}, 91 \%$.

It was intended to synthesise 277, which contains an electron-poor dienophile unit. Unfortunately, several hydrogenation attempts led only to the formation of 278. Though hydrogenolysis of BOM protecting groups in the presence of carbon-carbon double bonds is well precedented, ${ }^{96}$ in this case relief of ring strain seems to favour the production of 278 - as evidenced inter alia by a peaks in the ${ }^{1} \mathrm{H} \mathrm{nmr}$ characteristic of
the $\mathrm{MeCH}_{2} \mathrm{CO}$ group $\left(\delta_{\mathrm{H}} 0.95,3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{MeCH}_{2} \mathrm{CO}\right.$ and $\delta_{\mathrm{H}} 2.34,2 \mathrm{H}, \mathrm{q}, J 7.5$, $\left.\mathrm{MeCH}_{2} \mathrm{CO}\right)$ and a peak in the HRMS at $\mathrm{m} / \mathrm{z} 375.2887\left(\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{3}[\mathrm{MH}]^{+}\right.$requires m / z 375.2899).

With 276 in hand, further investigation into a synthetic route based on an IMDA reaction to the tricarbocylic core of the Pseudopterosins could be tackled.

2.6 Attempted IMDA Reaction of 276

Triene 276 was subjected to the reaction conditions outlined in Table 3.
Table 3

\longrightarrow

THERMAL	RADICAL-CATION
1. PhMe, Sealed Tube, $200{ }^{\circ} \mathrm{C}, 2$ days,	$(p \mathrm{BrPh})_{3} \mathrm{NSbCl}_{6}, 2,6$-di- t-butylpyridine,
clean conversion to the enone 275.	DCM, $0^{\circ} \mathrm{C}, 10$ mins, then $\mathrm{rt}, 5 \mathrm{hrs}$, no
2. PhMe, Sealed Tube, $200{ }^{\circ} \mathrm{C}, 7 \mathrm{hrs} in$,	reaction.
the presence of trace TBSCl and $\mathrm{Et}_{3} \mathrm{~N}$,	
clean conversion to the enone 275.	
3. $\mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 5$ hrs, then reflux, $8 \mathrm{hrs}, \mathrm{no}$	
reaction.	

Under our standard thermal reaction conditions (entry 1) 276 decayed very cleanly to the starting enone 275, even with trace amounts of TBSCl and $\mathrm{Et}_{3} \mathrm{~N}$ in the reaction vessel. Prolonged exposure of $\mathbf{2 7 6}$ to $\mathrm{H}_{2} \mathrm{O}$ at reflux ${ }^{97}$ also failed to induce the IMDA reaction, as did standard radical-cation conditions.

At this stage, it was decided that an IMDA based strategy to the tricarbocyclic core of the Pseudopterosin aglycone could not form part of a viable synthetic route to this family of natural products.

The major reason for abandoning this work was our inability to make the triene 279 (Scheme 48), an ideal precursor for the IMDA reaction having an electron-poor dienophile and electron-rich diene with the optimal regiochemistry for addition.

Scheme 48

Intuitively, 279 could be formed from the di-enone 280, though only in an highly regioselective silyl enol ether formation reaction (there are four possible deprotonation sites in 280). It was felt that a reaction of this type would not be synthetically convenient, particularly on large-scale.

However, it appeared logical, as both diene and dienophile could not be created together in the same reaction pot, that an intermolecular Diels-Alder reaction approach would solve this synthetic problem.

2.7 New Retrosynthesis: An Intermolecular Diels-Alder Approach

Diels-Alder unification of the diene 281 with the enone $\mathbf{2 8 2}$ would form the enol ether 283 (Scheme 49).

Scheme 49

PSEUDOPTEROSIN E

McMurry then
hydrogenation $\uparrow \downarrow$

Grignard addition then enol

ether formation

$\uparrow \| \begin{gathered}\text { Selenation/oxidation } \\ \text { procedures }\end{gathered}$

Hydroxylation of $\mathbf{2 8 3}$ followed by aromatisation of the B-ring would, after suitable protection, install the hexasubstituted benzene ring of the natural product. Double deprotection of $\mathbf{2 8 4}$ followed by double oxidation of the resulting diol would give the di-aldehyde 285. McMurry reaction of 285 would, on hydrogenation of the newly formed double bond, create the A-ring of the desired ketone 23.

The enone 282 could be derived from the epoxide 286 according to Sharpless ${ }^{98}$ et al., the epoxide in turn being produced from the known cyclohexene acid 287^{99}. This acid was synthesised by Clive et al. in a low temperature, Lewis acid mediated, chiral auxiliary directed Diels-Alder reaction of 288 with 1,3-butadiene (vide infra).

The known cyano compound $289{ }^{100}$, obtained from $(S)-(-)$ hydroxymethylpropionic acid methyl ester, was chosen as a favourable starting material for the diene 281.

In this new retrosynthesis the stereogenic centres of the molecule are planned to be set as in the IMDA route. Namely, C-1 after Corey, C-3 and C-4 via a chiral auxiliary, and C-7 from a commercially available homochiral starting material. As a result, the primary aim of this project can still be realised.

2.8 Synthesis of the Dienophile

Clive ${ }^{99}$ et al. and Sonnet ${ }^{101}$ et al. report the asymmetric synthesis of 287 (called trimedlure, a synthetic attractant for the Mediterranean fruit fly) using the Evans oxazolidinone as the chiral auxiliary. However, both comment on inconvenient hydrolysis protocols needed to obtain the acid in pure form with good chiral auxiliary recovery. Presumably, direct hydrolysis of the amide bond in 290 is accompanied by hydrolysis of the oxazolidinone. However, use of the more hydrolytically robust Oppolzer sultam as the chiral auxiliary should allow for a direct synthesis of trimedlure.

To this end, our synthesis of 287 starts with the known butenoyl compound 291 (Scheme 50), as used by Oppolzer et al. in the synthesis of Loganin ${ }^{102}$.

Scheme 50

(i) 1,3-Butadiene, EtAlCl_{2}, DCM, $-20^{\circ} \mathrm{C}, 3$ days, 98%; (ii) LiOH, $\mathrm{H}_{2} \mathrm{O}_{2}$, THF: $\mathrm{H}_{2} \mathrm{O}$ 1:1, rt, $5 \mathrm{hrs}, 287$ 89\%, 243 87\%.

Prolonged exposure (3 days) of 291 to 1,3-butadiene in DCM at $-20^{\circ} \mathrm{C}$ in the presence of EtAlCl_{2} produced 292 as a single compound (nmr) with $\mathrm{mp} 187-190^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{21}+154.1$ ($\mathrm{c}=0.27$ in DCM) and a peak in the HRMS at $m / z 338.1783\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{MH}]^{+}\right.$ requires $m / z 338.1790$). Lithium hydroperoxide hydrolysis of 292 gave synthetic trimedlure in good yield (89\%) with clean recovery of the chiral auxiliary (87\%). The recovered Oppolzer sultam was of sufficient purity to be used again in the preparation of 287 .

Initial attempts at stereoselective epoxidation of 287 focused upon the use of m CPBA, where the participation of the carboxy group would direct epoxidation onto the same face of the molecule as the acid centre (Scheme 51).

Scheme 51

(i) m-CPBA, $\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 3 \mathrm{hrs}$, then $\mathrm{Et}_{3} \mathrm{~N}, 30^{\circ} \mathrm{C}, 4 \mathrm{hrs}$, then MOMCl, $30^{\circ} \mathrm{C}, 2.5 \mathrm{hrs}, 89 \%$.

Unfortunately, the epoxy acid 293 could not be separated from the reaction co-product (m-chlorobenzoic acid) by standard techniques. In order to ascertain the degree of stereoselectivity on epoxidation, trimedlure was converted to the lactone ether 294 in a
one-pot, three step procedure. Specifically, treatment of 287 with m-CPBA at $0^{\circ} \mathrm{C}$ for 3 hrs effected epoxidation, lactonisation was then induced by the action of $\mathrm{Et}_{3} \mathrm{~N}$ at $30^{\circ} \mathrm{C}$ for 4 hrs and the resulting alcohol was trapped as the MOM ether 294 in good overall yield (89\%). The lactone 294 was isolated as an inseparable, 1:1 mixture of diastereomers (nmr) at the centre indicated, implying that there was no direction of epoxidation by the carboxyl unit of 287 .

A stereoselective epoxidation of 287 was achieved starting with Bartlett iodolactonisation in moderate (62\%) yield (Scheme 52).

Scheme 52

(i) $\mathrm{NaHCO}_{3}, \mathrm{KI}, \mathrm{I}_{2}, \mathrm{DCM}_{2} \mathrm{H}_{2} \mathrm{O} 1: 1,0^{\circ} \mathrm{C}, 5 \mathrm{hrs}, 62 \%$; (ii) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{CHCl}_{3},-5^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 15 \mathrm{mins}$, 88%; (iii) $\mathrm{LiBH}_{4}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, then $\mathrm{rt}, 17.5 \mathrm{hrs}, 90 \%$; (iv) TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}$, rt, $15.5 \mathrm{hrs}, 99 \%$; (v) $(\mathrm{PhSe})_{2}, \mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{rt}, 5$ mins, then 298, EtOH, reflux, $3 \mathrm{hrs}, 86 \%$; (vi) NaIO_{4}, THF: $\mathrm{H}_{2} \mathrm{O}$ 1:1, rt, $16 \mathrm{hrs}, 92 \%$; (vii) $\mathrm{MnO}_{2}, \mathrm{PhMe}$, reflux with azeotropic removal of $\mathrm{H}_{2} \mathrm{O}$ (Dean-Stark), then 300 , PhMe, reflux, $1 \mathrm{hr}, 92 \%$.

The known iodolactone $295{ }^{103}$ was then exposed to NaOMe at $-5^{\circ} \mathrm{C}$ to $0 .{ }^{\circ} \mathrm{C}$ for 15 mins to cede the epoxide 296 as a single compound (nmr) and reduction of the methyl ester 296 to the alcohol 297 was realised with LiBH_{4} at low temperature. In both steps no loss of stereochemical integrity was observed (by nmr) at the C-4 (Pseudopterosin numbering) stereocentre. Silyl protection of 297 under standard conditions gave rise to 298 as a white crystalline solid ($\mathrm{mp} 175-177^{\circ} \mathrm{C}$). $\mathrm{C}-2$ ring opening of the epoxide was readily achieved under the conditions of Sharpless ${ }^{98}$ to give the selenol 299 as an oil,
which was smoothly converted to the allylic alcohol $\mathbf{3 0 0}$ by the action of NaIO_{4} in THF and $\mathrm{H}_{2} \mathrm{O}$. Several one-pot procedures for the direct conversion of 298 to 300 were examined and it was found that the overall yield was greater if the intermediate selenol 299 was isolated and purified prior to oxidation/elimination. Oxidation of $\mathbf{3 0 0}$ using pre-dried MnO_{2} gave the dienophile 301 in 7 steps from 287 , 35% overall yield. The dienophile 301 was an oil with $[\alpha]_{\mathrm{D}}^{22}+38.3$ (c=0.39 in DCM) and a peak in the HRMS at $m / z 401.190\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{MNa}]^{+}\right.$requires $\left.m / z 401.1913\right)$.

2.9 Synthesis of the Diene

Synthesis of the known cyano compound $\mathbf{2 8 9}^{\mathbf{1 0 0}}$ starts with silyl protection of (S)-(-)-hydroxymethylpropionic acid methyl ester followed by DIBAL reduction to the alcohol 302 (Scheme 53).

Scheme 53

(i) TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}, \mathrm{rt}, 4.5 \mathrm{hrs}$; (ii) DIBAL, DCM, $0^{\circ} \mathrm{C}, 38$ mins, 99% for two steps; (iii) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{rt}, 96 \%$; (iv) $\mathrm{NaCN}, \mathrm{DMF}, 9{ }^{\circ} \mathrm{C}, 1.5 \mathrm{hrs}, 94 \%$.

Bromination to 303 and cyanation under standard conditions furnished 289 in good overall yield. Unfortunately, 289 was found unsuitable as an intermediate for the synthesis of the enone 304 , even when the Grignard reagent was exposed to 289 in the presence of CuBr^{74}.

Conversion of 289 to the aldehyde 305^{100} with DIBAL (Scheme 54) at low temperature in DCM allowed for the addition of propenylmagnesium bromide to form

306 as an inseparable mixture of the four possible diastereomeric alcohols (propenylmagnesium bromide is supplied as a mixture of geometric isomers by Aldrich).

Scheme 54

(i) DIBAL, DCM, $-78^{\circ} \mathrm{C}, 1 \mathrm{hr}, 99 \%$; (ii) 1-Propenylmagnesium bromide, THF, $-78{ }^{\circ} \mathrm{C}, 45 \mathrm{mins}, 99 \%$; (iii) PDC, DMF, rt, 13 hrs, 304 47\%, 307 52\%; (iv) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, rt, $18 \mathrm{hrs}, 95 \%$.

PDC oxidation of 306 in DMF gave 1.1:1 cis:trans mixture of enones, which were separated easily by flash column chromatography. Gratifyingly, treatment of the cis isomer 307 with $\mathrm{Et}_{3} \mathrm{~N}$ in THF at rt overnight effected double bond isomerisation to the trans compound 304 in excellent yield. Taking this isomerisation into account, the yield of the desired trans enone 304 is 96% from 306.

Quite by surprise, when the same isomerisation was attempted with NaOMe in MeOH , conjugate addition of methoxide occurred to afford $\mathbf{3 0 8}$ as an inseparable 1:1 mixture of diastereomers (nmr) where indicated (Scheme 55).

Scheme 55

(i) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{rt}, 20 \mathrm{hrs}, 95 \%$.

The trans isomer 304 also acts as a Michael acceptor of methoxide under the same reaction conditions, giving the identical product in 96% yield.

Initial attempts to synthesise the required diene 309 focused on the action of lithium bases (LDA and LiHMDS) on 304 and trapping of the resulting enolate with TBSOTf. In all cases, and when $\mathrm{Et}_{3} \mathrm{~N}$ was utilised as the base, the product was the terminal diene 310 (Scheme 56). This diene is the more stable of the two as the oxygen lone-pair is fully delocalised over the double bonds.

Scheme 56

(i) NaHMDS, THF, $-78^{\circ} \mathrm{C}, 7 \mathrm{mins}$, then TBSOTf, THF, $-78^{\circ} \mathrm{C}, 16 \mathrm{mins}, 72 \%$.

The desired diene 309 was only produced by treating 304 in THF with NaHMDS at low temperature and trapping the resulting enolate with TBSOTf in 72% yield - and was characterised inter alia by the presence of a low field methyl doublet in the ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\delta_{\mathrm{H}}\right.$ $1.71,3 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{MeC}(\mathrm{H})=)$ and a peak in the HRMS at $\mathrm{m} / \mathrm{z} 495.3122\left(\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{Si}_{2}\right.$ $[\mathrm{MH}]^{+}$requires m / z 495.3115).

Combined with the earlier isomerisation observation, it appears that the enones $304 / 307$ exhibit unusual reactivity when in the presence of Na^{+}. There is no immediately obvious explanation for this.

The use of the enone 311 as a precursor for the diene would have avoided the production of regio-isomeric dienes (Scheme 57). However, though the synthesis of the allylic alcohol 312 was facile, subsequent oxidation to the enone 311 failed under a wide variety of oxidation protocols (PDC in DMF, MnO_{2} in $\mathrm{Et}_{2} \mathrm{O}$, Swern conditions with $(\mathrm{COCl})_{2}$, Magtrieve ${ }^{\mathrm{TM}}$ in DCM , and TPAP/ O_{2} in DCM$)$.

Scheme 57

(i) Vinylmagnesium bromide, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{hr}, 99 \%$.

Ultimately, the use of the diene 313 was rejected, as this would require the installation of the aromatic methyl group of the natural product at a later stage thereby increasing the number of synthetic steps.

Having established gram scale routes to both the diene and dienophile, the key step of this synthesis could then be investigated.

2.10 Attempted Intermolecular Diels-Alder Reaction

With the warning of Fredj ${ }^{53} \mathrm{et} \mathrm{al}$. on the reluctance of enones of the type 301 to be willing participants in the Diels-Alder reaction in mind, test reactions with simpler dienes were first attempted (Table 4). Early results using piperylene as the diene confirmed the findings of Fredj et al. under a variety of thermal and Lewis acid conditions.

Table 4

DIENE	THERMAL	LEWIS ACID
	PhH , Sealed Tube, $150{ }^{\circ} \mathrm{C}$, 4 days, no reaction.	1. $\mathrm{Me}_{2} \mathrm{AlCl}, \mathrm{DCM},-78$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{hr},-40^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, $0^{\circ} \mathrm{C}, 1 \mathrm{hr}, \mathrm{rt}, 17 \mathrm{hrs}$, no reaction. 2. $\mathrm{ZnCl}_{2}, \mathrm{PhMe}, 0^{\circ} \mathrm{C}, 1.5$ hrs, rt, overnight, no reaction. 3. $\mathrm{SnCl}_{4}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 1.5$ hrs, $-20^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, no reaction.
 314	PhMe , Sealed Tube, $190^{\circ} \mathrm{C}, 15.5 \mathrm{hrs}$, clean conversion to an unstable compound.	Not applicable.

However, under thermal conditions, the di-enol ether 314^{104} reacted cleanly (tlc) to give an extremely unstable product. Based solely on the available data (${ }^{1} \mathrm{H} \mathrm{nmr}$ and ir) the product was assigned as 315 , where addition has occurred with concomitant loss of the silyl groups from the diene.

Unfortunately, exposure of freshly prepared 315 to either DDQ in dioxane or MnO_{2} in PhMe failed to transform the molecule to a more stable compound.

As a test reaction, this was a promising result and the diene 309 and dienophile 301 were submitted to the same reaction conditions (Scheme 58).

(i) PhMe , trace HMDS , Sealed Tube, $190^{\circ} \mathrm{C}, 3$ days, 95%.

Reaction to the desired product 316 did not occur. Instead, the allylic alcohol 317 was produced of $[\alpha]_{D}^{22}+26.7(c=0.47$ in DCM) with a peak in the HRMS at $m / z 403.2087$ $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{MNa}]^{+}\right.$requires $\left.\mathrm{m} / \mathrm{z} 403.2069\right)$. Identification of this compound was greatly helped by our previous synthesis of the isomeric compound 300. During the course of the reaction the diene 309 reverted (tlc) to the enone 304. The formation of 317 was a quite unexpected result.

Of paramount importance is the discovery that the desired product was not formed during the course of this reaction.

Given the relative instability of the diene 309 and the inactivity of the enone 301, it was decided to abandon work on this project.

2.11 Conclusions and Future Work

The primary aim of this project was to develop an efficient, stereocontrolled synthesis of Pseudopterosin E, which would ultimately be applicable to the synthesis of the 24 possible diastereomers of the Pseudopterosin A-F aglycone.

In order to achieve this, synthetic routes in which the Diels-Alder reaction was the key step were investigated. It was found that, though the synthesis of many Diels-

Alder reaction precursors was facile, the actual reaction itself proved problematic. Despite employing a broad variety of well characterised literature procedures known to effect the Diels-Alder reaction, little success was achieved.

The use of a more stable diene system, such as 325 or 326 , could allow for the unification of diene and dienophile.

In the course of this work a practical (particularly on large scale) synthetic route to the natural product trimedlure 287 was developed.

Cyclisation with NaH in DMF then TFA/DCM deprotection should then cede trans-4-methyl-L-proline.

Both the starting materials were synthesised during the course of our work on the Pseudopterosins (244 Scheme 35, ent-413 Scheme 33).

In this retrosynthesis the C-4 stereogenic centre of trans-4-methyl-L-proline is derived from the chiral pool and the C-2 stereocentre is set in a chiral auxiliary directed hydrazination reaction. By building the molecule this way, it should be possible to avoid the production of C-4 diastereomers as observed in our earlier work (in this case the N acyl side of $\mathbf{4 1 4}$ chain does not contain competing chelation sites). Futhermore, careful use of the two starting materials 244 and 413 and their enantiomers should allow for the asymmetric synthesis of the four possible diastereomers of 4-methyl-proline.

4.1 Syntheses of 414 and Attempted Hydrazination

Horner-Emmons-Wittig condensation of 244 with 413 afforded 418 as a single diastereomer in good yield (Scheme 79).

Scheme 79

(i) 244, LiCl, Hünigs base, MeCN, rt, 10 mins, then $413, \mathrm{MeCN}, \mathrm{rt}, 13 \mathrm{hrs}, 86 \%$; (ii) 40% (aq) HF , MeCN:THF 1:1, rt, 24 hrs, 97%; (iii) MsCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 31 \mathrm{mins}, 94 \%$; (iv) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$, $\mathrm{rt}, 13.5 \mathrm{hrs}, 97 \%$.

CHAPTER 3:
 trans-4-Methyl-L-Proline

3.0 Introduction

Free trans-4-methyl-L-proline was first isolated from young Worcester Pearmain apples by Hulme and Arthington in 1952^{105}.

trans-4-METHYL L-PROLINE

The structure of this novel imino acid was predicted on the basis of extensive chromatographic techniques in comparison to L-proline and confirmed by a synthesis of Steward et al. at Cornell ${ }^{106}$.

To date, trans-4-methyl-L-proline has been found to be a constituent part of several natural products (Scheme 60).

- Grisemelycin, an octadepsipeptide, was isolated in 1971 by Terlain and Thomas (Rhône-Poulenc Laboratories, France) from the bacteria Stremptomyces crelicus and Stremptomyces griseus ${ }^{107}$. It contains two trans-4-methyl-L-proline residues and has several minor congeners containing either three proline residues or three trans-4-methyl-L-proline residues, or two proline and one trans-4-methyl-L-proline residues. The natural product is active against mycobacteria and Gram-positive microorganisms.
- In 1983 the structurally related natural product Mycoplanecin A was isolated from Actinoplanes awajinensis by several workers of the Sankyo Corporation of Japan ${ }^{108}$.

GRISELIMYCINE

MYCOPLANECIN A

In addition to a trans-4-methyl-L-proline residue the molecule also includes a trans-4-ethyl-L-proline residue. The compound is active against molds, yeasts, and mycobacteria including Mycobacterium tuberculosis whilst exhibiting low toxicity (mice can tolerate oral administrations of up to $3,000 \mathrm{mg} / \mathrm{kg}$).

- The Monamycins, a family of fifteen hexadepsipeptides, were first isolated by Hassall and Magnus from Streptomyces jamaicensis in $1959{ }^{109}$. Structural elucidation of Monamycin D_{1} and H_{1} was reported by Hassall et al. in 1971^{110}. They are active against Gram-positive bacteria with some immunosuppressant activity.

Though trans-4-methyl-L-proline for itself has little or no biological significance, a convenient fabrication is essential in any synthetic programme towards the more (biologically) interesting compounds Grisemelycin, Mycoplanecin A, and the Monamycins ${ }^{111}$.

3.1 Promulgated Syntheses of trans-4-Methyl-L-Proline

Whilst trying to make 4-hydroxyleucine, Dakin ${ }^{112}$ reports the unexpected synthesis of racemic 4-methylproline, which pre-dates the Hume isolation of trans-4-methyl-L-proline (Scheme 61).

Scheme 61

(i) $\mathrm{Na}, \mathrm{EtOH}$, dioxane, rt, then 328, dioxane, reflux, 9 hrs , then hot EtOH.

Condensation of the sodio derivative of acetylaminomalonic acid ethyl ester 327 with 1,3-chloroiodoisobutane 328 followed by hydrolysis and treatment of the crude residue with hot absolute alcohol affords 4-methylproline in low overall yield (?\%).

In 1962 Kariyone 113 also published a racemic synthesis of 4-methylproline, starting from the Michael condensation of propionitrile 329 with ethyl acrylate 330 (Scheme 62). Raney nickel reduction of 331 afforded the 5-methyl-2-piperidone 332, which was chlorinated in CHCl_{3} in the presence of both PCl_{5} and SOCl_{2}. Reduction (Raney nickel) of 333 gave the mono-chloropiperidone 334, which cyclised to form 4methylproline when exposed to $\mathrm{Ba}(\mathrm{OH})_{2}$ mediated hydrolysis (ignoring the extremely low yielding formation of $331 ; 4$ steps, 23% overall yield).

(i) t-BuOK, t-BuOH, Sealed Tube, $180^{\circ} \mathrm{C}, 10 \mathrm{hrs}, 9 \%$; (ii) H_{2}, Raney nickel, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}, 80 \mathrm{~atm}$., 130 ${ }^{\circ} \mathrm{C}, 3 \mathrm{hrs}, 86 \%$; (iii) $\mathrm{PCl}_{5}, \mathrm{SOCl}_{2}, \mathrm{CHCl}_{3}, \mathrm{rt}, 30 \mathrm{mins}, 86 \%$; (iv) H_{2}, Raney nickel, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}, \mathrm{rt}, 69 \%$; (v) $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{H}_{2} \mathrm{O}$, reflux, 3.5 hrs , then $\mathrm{H}_{2} \mathrm{SO}_{4}$, reflux, 0.5 hrs , then rt, overnight, 46%.

Slight variation to this chemistry also allows for the synthesis of racemic 2 methylproline.

3.1.1 The Dalby, Kenner, and Sheppard Synthesis of trans-4-Methyl-L-Proline and cis-4-Methyl-D-Proline

The first synthesis of trans-4-methyl-L-proline was realised by Dalby, Kenner, and Sheppard ${ }^{114}$ in 1962 and starts with the homochiral acid 335, an industrial byproduct (Scheme 63). Exposure of 335 to HBr and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH effected bromination to 336. After esterification, 337 was condensed with potassium phthalimide in DMF to cede 338, which was subjected to acid hydrolysis to afford 339. α-Bromination of 339 proceded with little stereoselectivity, giving 340 as a mixture of C-2 diastereomers (the extent of diastereoselectivity varied from experiment to experiment). Cyclisation under base conditions afforded a mixture of trans-4-methyl-Lproline and of cis-4-methyl-D-proline 341.

Scheme 63

340
(i) 48% (aq) HBr , conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 90^{\circ} \mathrm{C}, 7 \mathrm{hrs}, 60 \%$; (ii) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, reflux, $20 \mathrm{hrs}, 80 \%$; (iii) Potassium phthalimide, DMF, $90^{\circ} \mathrm{C}, 3 \mathrm{hrs}, 98 \%$; (iv) 2 N (aq) HCl , reflux, $2.5 \mathrm{hrs}, 72 \%$; (v) Red phosphorus, $\mathrm{Br}_{2}, \mathrm{CCl}_{4}$, reflux, $4 \mathrm{hrs}, 72 \%$; (vi) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 4$ days, 43%.

The two imino acids were separated either;

1. By exposure of the mixture 341 to $\mathrm{Cu}(\mathrm{CO})_{2}$, which induced preferential crystallisation of the copper salt of trans-4-methyl-L-proline. Separation of the two salts was then possible and they were converted to pure trans-4-methyl-L-proline and pure cis-4-methyl-D-proline on Dowex 50 -exchange resins with ammonia to afford the two products (17% isolation of trans-4-methyl-L-proline), or
2. By destructive oxidation of the cis-4-methyl-D-proline component of the mixture 341 with the enzyme D-amino acid oxidase in the presence of O_{2}, which allowed for the isolation of pure trans-4-methyl-L-proline (45% isolation of trans-4-methyl-Lproline).

An alternative, less efficient route to the mixture 341 was also given, starting with dibromination of 335 (Scheme 64). Esterification of 342 in MeOH heated at reflux containing conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ yielded 343 . Condensation of 343 with potassium ptoluenesulfonamide gave the tosyl compound 344, after saponification. Cleavage of the tosyl group with HBr in AcOH gave the mixture 341 in low overall yield.

Scheme 64

(i) Red phosphorous, $\mathrm{Br}_{2}, \mathrm{CCl}_{4}$, reflux, 4 hrs; (ii) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, reflux, $18 \mathrm{hrs}, 26 \%$ for two steps; (iii) Potassium p-toluenesulphonamide, DMF, $90^{\circ} \mathrm{C}, 4.5 \mathrm{hrs} ; \mathrm{NaOMe}, \mathrm{MeOH}, 90^{\circ} \mathrm{C}, 2.5 \mathrm{hrs} ; \mathrm{NaOH}$, dioxane, $\mathrm{H}_{2} \mathrm{O}$, reflux, $2 \mathrm{hrs}, 11 \%$ for three steps; (iv) $\mathrm{HBr}, \mathrm{AcOH}$.

They also outline another approach to 4-methylproline, extended by Cox, Johnson, and Mauger ${ }^{115}$ (vide infra).

In summary, Dalby, Kenner, and Sheppard have synthesised trans-4-methyl-Lproline from a commercial by-product (Phthalimido route; 7 steps, 5% overall yield).

3.1.2 The Cox, Johnson, and Mauger Racemic Synthesis of 4-Methylproline

As alluded to by Dalby, Kenner, and Sheppard ${ }^{114}$, Michael addition of the sodio derivative of diethyl benzyloxycarbonylaminomalonate 345 to α-methacrolein 346 afforded 347 , which is in equilibrium with the cyclic form 348 (Scheme 65).

Scheme 65

(i) $\mathbf{3 4 5}, \mathrm{Na}, \mathrm{EtOH}, \mathrm{rt}$, then add $346, \mathrm{EtOH}, 30 \mathrm{mins}$; (ii) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}, \mathrm{rt}, 82 \%$ for two steps; (iii) 6 N (aq) HCl , reflux, $3 \mathrm{hrs}, 80 \%$.

Reduction of $348\left(\mathrm{H}_{2}\right.$ over $\left.10 \% \mathrm{Pd}-\mathrm{C}\right)$ in EtOH followed by exposure to $6 \mathrm{~N}(\mathrm{aq}) \mathrm{HCl}$ produced racemic 4-methylproline (3 steps, 66% overall yield).

Depending upon the aldehyde used as a Michael acceptor, a wide variety of racemic proline derivatives may be synthesised by this chemistry. Specifically, 3-
phenylproline and 3-methylproline are available from cinnamaldehyde and crotonaldehyde respectively.

3.1.3 The Lavergne Synthesis of trans- and cis-4-Methyl-L-Proline

Lavergne ${ }^{116}$ et al. make use of the Hoffmann-Löffler-Freytag reaction in their synthesis of trans-4-methyl-L-proline and cis-4-methyl-L-proline 351 starting from Lleucine (Scheme 66).

Scheme 66

(i) $\mathrm{SOCl}_{2}, \mathrm{EtOH}$, reflux, $10 \mathrm{hrs}, 70 \%$; (ii) t-BuOCl, $\mathrm{PhH},<5^{\circ} \mathrm{C}, 1.5 \mathrm{hrs}, 90 \%$; (iii) 15 W Rayonet Lamp, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{KI}$, acetone, $0^{\circ} \mathrm{C}, 40 \mathrm{hrs}$; (iv) $\mathrm{NaOH}, \mathrm{MeOH}$, reflux, 2 hrs ; (v) HCl, Dowex 50 Column, 38% for three steps.

Esterification of L-leucine followed by N-chlorination using $t-\mathrm{BuOCl}$ in PhH gave the Hoffmann-Löffler-Freytag precursor 349 in good yield. Irradiation of 349 effected the desired chlorine transposition and cyclisation was achieved by exposure of $\mathbf{3 5 0}$ to NaOH to give a mixture of trans-4-methyl-L-proline and cis-4-methyl-L-proline 351 (1:1 mixture of diastereomers). Separation of the diastereomers was realised as described by Dalby, Kenner, and Sheppard ${ }^{114}$ (5 steps, 24% overall yield).

This chemistry can also be applied to the asymmetric syntheses of L-proline, trans-3-methyl-L-proline and cis-3-methyl-L-proline starting from L-norvaline, Lalloisoleucine, and L-isoleucine respectively.

3.1.4 The Belekon Synthesis of trans- and cis-4-Methyl-L-Proline: A General Route

 to 3-, 4-, and 5-alkylprolinesIn 1988 Belekon ${ }^{117}$ et al. reported the use of the $\mathrm{Ni}(\mathrm{II})$ Shiff complex 352 (formed from the reaction of glycine and (S)-o-[(N-benzylprolyl)amino]benzophenone in the presence of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$) in the synthesis of both trans-4-methyl-L-proline and cis-4-methyl-L-proline 351 (Scheme 67).

Scheme 67

(i) α-Methacrylaldehyde, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}, 72 \mathrm{hrs}, 98 \%$; (ii) MSA-1 resin $\left(\mathrm{BH}_{4}{ }^{-}\right.$form), $\mathrm{MeOH}, \mathrm{rt}, 354$ $23 \%, 35563 \%$; (iii) MsCl , pyridine, DCM , rt; (iv) 3 N (aq) $\mathrm{HCl}, \mathrm{MeOH}, 80^{\circ} \mathrm{C}, 70 \%$ for two steps; (v) MsCl , pyridine, DCM , rt ; (vi) 3 M (aq) $\mathrm{HCl}, \mathrm{MeOH}, 8{ }^{\circ} \mathrm{C}, 74 \%$ for two steps.

Treatment of 352 in MeOH with $\mathrm{Et}_{3} \mathrm{~N}$ followed by α-methacrylaldehyde gave a 2:1 $(2 S, 4 S):(2 S, 4 R)$ mixture of diastereomers and a minor (11\%) quantity of the $2-(R)$ diastereomers. Reduction of 353 with MSA-1 resin ($\mathrm{BH}_{4}{ }^{-}$form) allowed for chromatographic separation of the epimeric alcohols 354 and 355 . Conversion of 354 to the mesylate and subsequent treatment of 356 with 3 N (aq) HCl cleaved the $\mathrm{Ni}(\mathrm{ii})$ complex with concomitant cyclisation to form trans-4-methyl-L-proline (4 steps, 16% overall yield) in $>95 \%$ ee at the newly created amino stereogenic centre. Similarly, cis-

4-methyl-L-proline 351 can be synthesised from the alcohol 355 via the mesylate epi356.

Furthermore, condensation of the complex 352 with acryaldehyde, (E)crotonaldehyde, (E)-cinnamaldehyde, and methyl vinyl ketone leads to the production of (S)- and (R)-proline, trans-3-methyl-L-proline, trans- and cis-3-phenyl-L-proline, and trans- and cis-5-methyl-L-proline respectively accompanied by trace amounts of the Dseries. Belokon et al. indicate that the synthetic limitation to this chemistry is only the availability of suitably substituted acryaldehydes.

3.1.5 The Rapoport Synthesis of trans- and cis-4-Methyl-L-Proline: A General,

Chirospecific Route to 4-Substituted Prolines

The Rapoport ${ }^{118}$ et al. synthesis (1989) of trans-4-methyl-L-proline and cis-4-methyl-L-proline 351 begins with global protection of L-glutamate (Scheme 68).

Scheme 68

(i) Ref. 119; (ii) $\mathrm{TMSCl}^{2} \mathrm{CHCl}_{3}$, reflux, 2 hrs, then $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}, 9$-bromo-9-(phenylfluorenyl), CHCl_{3}, $\mathrm{rt}, 87 \mathrm{hrs}, 84 \%$; (iii) $O-t$-Butyl- N, N^{\top}-diisopropylurea, DCM, rt, $16 \mathrm{hrs}, 75 \%$; (iv) KHMDS, THF, $-78^{\circ} \mathrm{C}, 1$ hr , then MeI, THF, $-78{ }^{\circ} \mathrm{C}$, $3 \mathrm{hrs}, 94 \%$; (v) LiAlH_{4}, THF, $-78{ }^{\circ} \mathrm{C}, 4 \mathrm{hrs}, 35924 \%, 36066 \%$; (vi) CBr_{4}, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{hr}, 89 \%$; (vii) TFA, DCM, $16 \mathrm{hrs}, 87 \%$; (viii) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{hr}, 88 \%$; (ix) TFA, DCM, 16 hrs, 90%.

The 9-(9-phenylfluorenyl) protecting group was chosen so as to prevent racemisation at the α-amino acid stereogenic centre, and the two acid groups were differentiated as the
t-butyl and methyl esters. Treatment of $\mathbf{3 5 7}$ in THF with KHMDS at low temperature selectively generated the distal enolate ester, which was quenched with MeI to afford 358 in good yield as a 1:3 $R: S$ inseparable mixture of diastereomers with minor amounts (3\%) of the dialkylated product. Separation of the diastereomers was achieved by MPLC after low temperature LiAlH_{4} reduction to the alcohols $\mathbf{3 5 9}$ and $\mathbf{3 6 0}$. Cyclisation of 359 under Mitsunobu conditions (CBr_{4} and $\mathrm{Ph}_{3} \mathrm{P}$ in THF containing Hünigs Base)
gave 361, which was deprotected with TFA in DCM to afford trans-4-methyl-L-proline (6 steps, 11% overall yield). Similarly, cis-4-methyl-L-proline 351 can also be produced.

Alkylation with electrophiles other than MeI was also realised using similar chemistry, which allowed the syntheses of trans- and cis-4-propyl-L-proline, trans- and cis-4-cyanomethyl-L-proline, and trans- and cis-4-phenyl-L-proline.

3.1.6 The Sasaki Asymmetric Synthesis of trans-4-Methyl-L-Proline: A General Asymmetric Route to 4-Substituted Prolines

To date, the only totally stereocontrolled synthesis of trans-4-methyl-L-proline is that of Sasaki ${ }^{120}$ et al. published in 1998. Global benzylation of 362, obtained from cysteine under standard conditions, followed by hydrolysis of the Boc group in 363 gave the dibenzyl compound 364 in good yield (Scheme 69). Reductive N-alkylation of 364 with (2R)-2,3-O-isopropylideneglyceraldehyde ${ }^{121}$ using $\mathrm{NaBH}(\mathrm{OAc})_{3}$ in 1,2dichloroethane gave 365 in excellent yield. Hydrolysis of the isopropylidene group with 4 N (aq) HCl ceded the diol 366 , which was monotosylated to 367 and cyclised with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in wet DMF to afford the epoxide 368. Cyclisation of 368 was achieved using KHMDS as the base in THF at low temperature with $\operatorname{Ti}(\mathrm{O}-i-\operatorname{Pr})_{4}$ as a Lewis acid additive in 73% yield. The N-benzyl protecting group in 369 was exchanged for an N -

Boc group without any O-benzyl deprotection. Exposure of 370 to $6 \% \mathrm{Na}-\mathrm{Hg}$ amalgam in MeOH effected desulfonylation in quantitative yield to give 371. Tosylation of the pendent alcohol group in $\mathbf{3 7 1}$ to afford $\mathbf{3 7 2}$ was followed by NaBH_{4} reduction in DMSO to install the methyl unit of the final product. Hydogenolysis of $\mathbf{3 7 3}$ followed by TEMPO NaOCl oxidation and diazomethane esterification of the resulting acid gave the methyl ester 374 in good overall yield. Treatment of 374 with HCl and propylene oxide afforded trans-4-methyl-L-proline (15 steps, 26% overall yield).

Scheme 69

(i) $\mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 30 \mathrm{mins}$, then BnBr, n - $\mathrm{Bu} 4 \mathrm{NI}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 24 \mathrm{hrs}, 86 \%$; (ii) 3 N (aq) $\mathrm{HCl}, \mathrm{EtOAc}, \mathrm{rt}, 1$ $\mathrm{hr}, 95 \%$; (iii) ($2 R$)-2,3- O-isopropylideneglyceraldehyde, $\mathrm{NaBH}(\mathrm{OAc})_{3}, 1,2$-dichloroethane, rt, overnight, 97%; (iv) 4 N (aq) HCl , THF, rt, $3 \mathrm{hrs}, 94 \%$; (v) TsCl, pyridine, $0^{\circ} \mathrm{C}$, 24 hrs, 85%; (vi) $\mathrm{K}_{2} \mathrm{CO}_{3}$, wet DMF, rt, 24 hrs, 99%; (vii) KHMDS, Ti(O-i-Pr) $4, \mathrm{THF},-70^{\circ} \mathrm{C}, 2 \mathrm{hrs}, 73 \%$; (viii) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{Boc}_{2} \mathrm{O}, \mathrm{MeOH}$, rt, $3 \mathrm{hrs}, 95 \%$; (ix) $6 \% \mathrm{Na}-\mathrm{Hg}, \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 2 \mathrm{hrs}, 100 \%$; (x) TsCl, DMAP, pyridine, $0^{\circ} \mathrm{C}, 30$ mins, then rt, 24 hrs, 85%; (xi) NaBH_{4}, DMSO, $45^{\circ} \mathrm{C}, 16$ hrs, 87%; (xii) $\mathrm{H}_{2}, 10 \%$ Pd-C, MeOH, rt, 18 hrs, 92%; (xiii) TEMPO, $\mathrm{NaOCl}, \mathrm{KBr}, 5 \%$ (aq) NaHCO_{3}, acetone, $0^{\circ} \mathrm{C}$, 2 hrs ; (xiv) $\mathrm{CH}_{2} \mathrm{~N}_{2}, 88 \%$ for two steps; (xv) $1 \mathrm{~N}(\mathrm{aq}) \mathrm{HCl}$, reflux, 3 hrs , then propylene oxide, EtOH, heat, 100%.

The motivation for this work was to make homochiral trans-4-methyl-L-proline to act as a proline-leucine chimera in peptidomimetic studies. With this chemistry,

Sasaki et al. have also synthesised proline-lycine, proline-arginine, and proline-glutamic acid chimeras.

3.2 Synthetic Approaches to trans-4-Alkyl-L-Prolines

Several asymmetric syntheses of trans-4-alkyl-L-prolines start from the commercially available material trans-4-hydroxy-L-proline.

Thottathil ${ }^{122}$ and Moniot achieved a rapid synthesis of trans-4-phenyl-L-proline 375 via cuprate addition of phenyl lithium to the tosylate 376 (Scheme 70).

Scheme 70

(i) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{KOH}$; (ii) $\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}$; (iii) TsCl, pyridine; (iv) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$; (v) $\mathrm{PhLi}, \mathrm{CuBr}$ DMS, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}, 0$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{hr}, 90 \%$ overall, 37867%; (vi) TFA.

The overall yield of phenyl addition $(378+379)$ was 90% with net retention of configuration at C-4 being observed for both products. A single crystallisation of the crude reaction mixture from chloroform gave pure N-Boc-trans-4-phenyl-L-proline 378 in 67% yield and this was deprotected with TFA. Furthermore, when the cis tosylate 380 was subjected to the same cuprate reaction conditions (Scheme 71), net retention of configuration was also observed giving the mixture of products 381 and 382 in 82% yield (381:382 2:3).

(i) $\mathrm{Ph}_{2} \mathrm{CuLi}$; (ii) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$; (iii) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, 82 \%$ for three steps.

Thottathil and Moniot propose that the D-imino acid products come from secondary reaction processes under the reaction conditions. (When pure 378 was treated with $\mathrm{Ph}_{2} \mathrm{CuLi}$ in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$ at $0^{\circ} \mathrm{C}$ for 1 hr , a 2:1 mixture of $\mathbf{3 7 8}$ and 379 resulted).

Smith ${ }^{123}$ et al. have disclosed that when 383, the trans epimer of $\mathbf{3 8 0}$, was exposed to KCN in the presence of dibenzo-16-crown-6 (Scheme 72), the cyano compounds 384 and 385 were produced in low yield (38433%, 385 15\%).

Scheme 72

(i) KCN , dibenzo-18-crown-6, MeCN, reflux, $44 \mathrm{hrs}, 38433 \%, 38515 \%$.

In this case, the major product of the reaction has net inversion of configuration at C-4 and no D-imino acid production was observed. Smith et al. have exploited compound 383 as a precursor to several 4-substituted-L-prolines (such as ethers, sulfides, fluorides, and azides) under this chemistry.

In a separate report, Bridges ${ }^{124}$ et al. publish a synthesis of trans-L-pyrrolidine-2,4-dicarboxylate 386 using similar chemistry to set the C-4 stereogenic centre (Scheme 73). Conversion of trans-4-hydroxy-L-proline to the cis tosyl compound 387 was realised in high overall yield (66\%) under standard conditions. Treatment of 387 with NaCN in DMSO at elevated temperature formed 388 in 70\% yield (cf Scheme 72). Pinner reaction of 388 gave the dimethyl ester 389 , which was triple deprotected to afford 386. Using this synthetic approach, starting either from trans-4-hydroxy-L-
proline or cis-4-hydroxy-D-proline, the three other possible diastereomers of $\mathbf{3 8 6}$ can be produced in good yield.

Scheme 73

(i) $\mathrm{BnO}_{2} \mathrm{CCl}, \mathrm{NaHCO}_{3}, \mathrm{PhMe}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 16 \mathrm{hrs}, 98 \%$; (ii) Jones reagent, acetone, isopropanol, $\mathrm{rt}, 2.5 \mathrm{hrs}$; (iii) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O},-5^{\circ} \mathrm{C}, 20 \mathrm{hrs}$; (iv) p - $\mathrm{TsOH}, \mathrm{EtOH}$, reflux, $36 \mathrm{hrs}, 83 \%$ for three steps; (v) p TsCl , pyridine, rt, 7 days, 80%; (vi) $\mathrm{NaCN}, \mathrm{DMSO}, 8{ }^{\circ} \mathrm{C}$, $3 \mathrm{hrs}, 70 \%$; (vii) $\mathrm{HCl}, \mathrm{MeOH}, \mathrm{rt}, 4$ days, 94%; (viii) $\mathrm{NaOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 55 \mathrm{mins}, 100 \%$; (ix) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$, Parr shaker bottle, $48-50 \mathrm{psi}, 0.5$ hrs, 75%.

L-Pyroglutamic acid has also proved useful in the synthesis of trans-4-alkyl-Lproline residues.

Baldwin ${ }^{125}$ et al. have found that treatment of N-Boc-pyroglutamic acid t-butyl ester 390 with a lithium base in THF at low temperature followed by quench of the resulting enolate with an electrophile produces the trans-4-alkyl products 391 stereoselectively (Scheme 74)

Scheme 74

The relatively low yields for these alkylations were due to competing processes, such as dialkylation (at C-4 and/or C-2) and ring cleavage. Of particular note was the failure of MeI to act as a suitable electrophile for this chemistry. Hon ${ }^{126}$ et al., Langlois ${ }^{127}$ et al., and Young ${ }^{128}$ et al. have used this chemistry to produce several other 4 -substitutedpyroglutamates. Hon ${ }^{126}$ et al. also show that trans to cis interconversion can be realised under standard deprotonation/reprotonation conditions. Final conversion to the imino acid was best achieved by Pedregal and Runao ${ }^{129}$ et al. by exposure of the trans-4-substituted-L-pyroglutamate to $\mathrm{LiEt}_{3} \mathrm{BH}$ in THF at low temperature followed by treatment of the crude hemiaminal 392 with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ and $\mathrm{Et}_{3} \mathrm{SiH}$ (Scheme 75).

Scheme 75
 cyanomethyl.
(i) $\mathrm{LiEt}_{3} \mathrm{BH}, \mathrm{THF},-78^{\circ} \mathrm{C}, 30 \mathrm{mins}$; (ii) $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{BF}_{3}-\mathrm{OEt}_{2}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{hrs}, 70-$ 85% for two steps.

The 4-alkyl prolines 393 thus formed, via the N-acyliminiums 394 , have been produced without affecting the stereochemical integrity of the molecule.

L-Pyroglutamic acid was used as the chiral template by Thottathil ${ }^{130}$ et al. in the synthesis of trans-4-cyclohexyl-L-proline 395 (Scheme 76).

Scheme 76

(i) ROH , acid; (ii) NaBH_{4}; (iii) PhCHO, p-TsOH, PhMe, reflux, Dean-Stark, 9 hrs, 86%; (iv) LDA, THF, $-78^{\circ} \mathrm{C}, 30$ mins, then 3-bromocyclohexene, THF, $-20^{\circ} \mathrm{C}, 20 \mathrm{mins}$; (v) LiAlH 4 , THF, reflux, 1 hr ; (vi) H_{2}, $10 \% \mathrm{Pd}-\mathrm{C}$, ethyl acetate, AcOH, rt, $45 \mathrm{psi}, 2 \mathrm{hrs}, 65 \%$ for three steps; (vii) $\mathrm{ZCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, 15 mins ; (viii) Jones reagent, acetone, $-5^{\circ} \mathrm{C}$, 6 hrs ; (ix) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{hrs}, 78 \%$ for three steps.

Reaction of 396, obtained from L-pyroglutamic acid, with benzaldehyde in PhMe heated at reflux gave the bicyclic N, O-acetal 397 as a single diastereomer. Alkylation of 397 in THF using LDA as the base and 3-bromocyclohexene as the electrophile afforded 398. LiAlH_{4} reduction followed by hydrogenolysis of 399 gave the fully reduced compound 400. Temporary protection of the amine allowed for Jones oxidation of the alcohol 401 to the acid 402, which was hydrogenated to cede trans-4-cyclohexyl-L-proline 395.

3.3 The Hale Approach to 4-Methyl-D-Proline

Hale ${ }^{131}$ et al. have shown that 4-methyl-D-proline 403 can be made starting with the Horner-Emmons-Wittig condensation of the phosphonate 244^{79} with the Garner aldehyde 404^{132} (Scheme 77)

(i) 244, Hünigs base, $\mathrm{LiCl}, \mathrm{MeCN}$, rt, 76 mins, then $404, \mathrm{MeCN}, \mathrm{rt}, 5 \mathrm{hrs}, 88 \%$; (ii) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}$, $\mathrm{rt}, 2.5 \mathrm{hrs}, 67 \%$; (iii) LiHMDS, THF, MeI, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, then $0^{\circ} \mathrm{C}, 4.5 \mathrm{hrs}, 75 \%$; (iv) $\mathrm{LiEt}_{3} \mathrm{BH}$, THF, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{hrs}, 91 \%$; (v) MsCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$, rt, $19 \mathrm{hrs}, 96 \%$; (vi) PPTS, MeOH, rt, $8 \mathrm{hrs}, 89 \%$; (vii) $\mathrm{RuCl}_{3}, \mathrm{NaIO}_{4}, \mathrm{CCl}_{4}: \mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN} 2: 2: 3, \mathrm{rt}, 1 \mathrm{hr}, 75 \%$; (viii) $\mathrm{NaH}, \mathrm{DMF}, \mathrm{rt}, 8 \mathrm{hrs}$; (ix) TFA, DCM, rt, 18 hrs, 100% for two steps.

Exposure of 405 to $10 \% \mathrm{Pd}-\mathrm{C}$ in EtOAc under H_{2} allowed for hydrogenation of the enone in good yield. Alkylation of the LiHMDS derived enolate of 406 in THF with MeI afforded 407. Owing to the presence of rotamers in 407 the degree of stereoselectivity of methylation could not be determined at this stage. Superhydride reduction of 407 in THF cleaved the chiral auxiliary and gave the alcohol 408, which was converted to the mesylate 409 under standard conditions. The isopropylidene protecting group was removed by the action of PPTS in MeOH and the resulting alcohol 410 was oxidised to the acid 411 with RuCl_{3} and NaIO_{4} in a solution of $\mathrm{CCl}_{4}: \mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN} 2: 2: 3$. Cyclisation of 411 was induced with NaH in DMF to give 412, which was deprotected with TFA in DCM to afford 4-methyl-D-proline 403. Although
this material appeared to be a single compound with spectral data consistant to trans-4-methyl-D-proline, conversion to the N-DNP derivative revealed that a 3.4:1 cis:trans mixture had been formed. Presumably, the nitrogen, and possibly the oxygen, of the Garner aldehyde moiety of 406 in someway chelates to lithium on enolate formation, thereby over-riding the directing effect of the oxazolidinone auxiliary and favouring the production of the cis compound.

3.4 Concluding Remarks

To build on the previous work in the group, it was decided develop a synthetic strategy to trans-4-methyl-L-proline which relied on the successful transformations already achieved.

CHAPTER 4
 trans-4-Methyl-L-Proline: Results and Discussion

4.0 Reterosynthesis

Our retrosynthesis of this deceptively simple molecule starts with Horner-Emmons-Wittig condensation of the known aldehyde 413^{76} with the known phosphonate 244^{79} (Scheme 78).

Scheme 78

Silyl ether to mesyl ester interconversion followed by hydrogenation would give 414. A chiral auxiliary directed hydrazination reaction with di-t-butyl azodicarboxylate (DBAD) followed by cleavage of the oxazolidinone with LiOBn would afford the ester 415 diastereoselectively. Under the conditions of Evans ${ }^{133}$, treatment of $\mathbf{4 1 5}$ with TFA in DCM then Raney Ni hydrogenolysis followed by reprotection would yield the N -Boc amine 416. Ester hydrogenolysis of 416 would afford the acid 417 , the enantiomer of the key intermediate 411 (Scheme 77) in the Hale et al. synthesis of 4-methyl-D-proline.

Cyclisation with NaH in DMF then TFA/DCM deprotection should then cede trans-4-methyl-L-proline.

Both the starting materials were synthesised during the course of our work on the Pseudopterosins (244 Scheme 35, ent-413 Scheme 33).

In this retrosynthesis the C-4 stereogenic centre of trans-4-methyl-L-proline is derived from the chiral pool and the C-2 stereocentre is set in a chiral auxiliary directed hydrazination reaction. By building the molecule this way, it should be possible to avoid the production of C-4 diastereomers as observed in our earlier work (in this case the N acyl side of $\mathbf{4 1 4}$ chain does not contain competing chelation sites). Futhermore, careful use of the two starting materials 244 and 413 and their enantiomers should allow for the asymmetric synthesis of the four possible diastereomers of 4-methyl-proline.

4.1 Syntheses of 414 and Attempted Hydrazination

Horner-Emmons-Wittig condensation of 244 with 413 afforded 418 as a single diastereomer in good yield (Scheme 79).

Scheme 79

(i) 244, LiCl, Hünigs base, $\mathrm{MeCN}, \mathrm{rt}, 10 \mathrm{mins}$, then $413, \mathrm{MeCN}, \mathrm{rt}, 13 \mathrm{hrs}, 86 \%$; (ii) 40% (aq) HF , MeCN:THF 1:1, rt, 24 hrs, 97%; (iii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 31 \mathrm{mins}, 94 \%$; (iv) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$, rt, 13.5 hrs, 97%.

Exposure of 418 to 40% (aq) HF in MeCN/THF for 24 hrs effected clean desilylation and the resulting alcohol 419^{81} was mesylated under standard conditions to cede 420. Hydrogenation of $\mathbf{4 2 0}$ gave the hydrazination precursor 421 in virtually quantitative yield. The ir spectrum of 421 contained peaks at 1777 and $1697 \mathrm{~cm}^{-1}$ indicative of the $\mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}$ and $\mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}$ carbonyl groups respectively, with a peak in the HRMS at $370.1337\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{MH}]^{+}\right.$requires $\left.\mathrm{m} / \mathrm{z} 370.1324\right)$ and $[\alpha]_{\mathrm{D}}^{24} \quad+37.8(\mathrm{c}=0.25 \mathrm{in}$ DCM).

Unfortunately, hydrazination of 421 was unsuccessful using either LDA or LiHMDS as the base for enolate formation. Complete consumption of $\mathbf{4 2 1}$ to several products was observed (tlc) with both bases, presumably owing to competing deprotonation on the methyl group of the mesylate.

As a way around this a route in which hydrazination preceded silyl ether to mesyl ether interconversion was investigated. To this end, hydrogenation of 418 followed by hydrazination using LDA gave the N, N '-Boc-hydrazino compound 422 (Scheme 80), as characterised inter alia by a peak in the HRMS at $\mathrm{m} / \mathrm{z} 782.3840$ $\left(\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}[\mathrm{MNa}]^{+}\right.$requires $\left.m / z 782.3813\right)$.

Scheme 80

[^1]Unfortunately, desilylation with either TBAF in THF or 40% (aq) HF in MeCN/THF gave rise to several products (tlc) and failed to yield the desired alcohol 423.

With these results in mind, it was decided to adopt a synthetic route to a cyclisation precursor having an alternative leaving group to OMs .

4.2 Synthesis of the Bromide 424

Hydrogenation of 419 afforded the alcohol 425, which was brominated using $\mathrm{CBr}_{4} / \mathrm{Ph}_{3} \mathrm{P}$ in THF to cede the hydrazination precursor $\mathbf{4 2 6}{ }^{81}$ (Scheme 81).

Scheme 81

(i) $\mathrm{H}_{2}, 10 \%$ Pd-C, EtOAc, rt, 32 mins, 99%; (ii) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{rt}, 37$ mins, 83%; (iii) LDA, THF, -78 ${ }^{\circ} \mathrm{C}, 1 \mathrm{hr}$, then DBAD, DCM, $-78^{\circ} \mathrm{C}, 1 \mathrm{hr}, 90 \%$.

Exposure of $\mathbf{4 2 6}$ to LDA in THF at low temperature followed by enolate quench with DBAD in DCM afforded 424 in excellent yield - the HRMS (FAB) found m / z 606.1811; $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{BrN}_{3} \mathrm{O}_{7} \mathrm{Na}[\mathrm{MNa}]^{+}$requires $m / z 606.1791$.

In keeping with the original plan, LiOBn mediated cleavage of the oxazolidinone was attempted but to no avail. It appeared that competing bromide displacement and/or elimination precluded the synthesis of 427.

It was expected that exposure of $\mathbf{4 2 4}$ to TFA in DCM followed by mild base conditions $\left(\mathrm{NaHCO}_{3}\right.$ in $\left.\mathrm{DCM} / \mathrm{H}_{2} \mathrm{O}\right)$ would afford the bicyclic compound 428. Unfortunately, this proved not to be the case.

Given the series of difficulties encountered with this chemistry, specifically the failure to make 415 (Scheme 78), it was decided to investigate a new synthetic route to trans-4-methyl-L-proline.

4.3 New Retrosynthesis

The approach of Schöllkopf ${ }^{134}$ et al. for the synthesis of α-amino acids was adopted in this new retrosynthesis (Scheme 82).

Scheme 82

Alkylation of the bis-lactim ether $\mathbf{4 2 9}{ }^{135}$ (derived from D-valine) with the iodide $\mathbf{4 3 0}{ }^{136}$ should afford 431 diastereoselectively. Acid hydrolysis of 431 would give 432, after N Boc protection. Silyl to mesyl ester interconversion would result in the cyclisation precursor 433. Exposure of 433 to NaH in DMF followed by acid hydrolysis would afford trans-4-methyl-L-proline.

Similarly, the Schiff Base asymmetric alkylation chemistry of O'Donnell ${ }^{137}$ et al. (as extended by Lygo ${ }^{138}$ et al., Corey ${ }^{139}$ et al., and Katsuki ${ }^{119}$ et al.) could be used to set the imino acid stereogenic centre of trans-4-methyl-L-proline (Scheme 83).

Scheme 83

Alkylation of the iodide 434^{140} to the imine $\mathbf{4 3 5} 5^{137}$ in the presence of the $(-)$-cinconidine derived catalyst 436^{138} would result in the formation of 437 with good diastereoselectivity. Hydrogenation of 437 would give the aminol 438, which could be cyclised under Mitsu nobu conditions to afford trans-4-methyl-L-proline t-butyl ester.

In principle, either of these proposed routes could give an efficient and expedient synthesis of trans-4-methyl-L-proline.

4.4 The Schöllkopf Approach

The bis-lactim ether 429 was produced from D-Valine according to Schöllkopf ${ }^{135}$ et al. in good overall yield (Scheme 84). Treatment of 429 with n-BuLi in THF at low temperature followed by the iodide 430, prepared from (S)-(-)hydroxymethylpropionc acid methyl ester (Scheme 85), failed to deliver the desired
product 440 . After aqueous work-up, both the bis-lactim ether 429 and the iodide 430 were recovered cleanly.

Scheme 84

(i) Phosgene, THF, $\mathrm{PhMe}, 40^{\circ} \mathrm{C}, 2 \mathrm{hrs}$, then rt , 1 hr ; (ii) $\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCl}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CHCl}_{3},-70{ }^{\circ} \mathrm{C}, 3 \mathrm{hrs}$, then PhMe , reflux, $14 \mathrm{hrs}, 92 \%$ for two steps; (iii) [$\mathrm{Me}_{3} \mathrm{O}^{\mathrm{O}} \mathrm{BF}_{4}, \mathrm{DCM}, \mathrm{rt}, 3$ days, 100%.

Alkylation with the triflate 441^{141} was also found to be unsuccessful and these results were mirrored by the benzyl protected congeners 434^{140} and 442^{142} (Scheme 85).

Scheme 85

(i) TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, DCM, rt, 15 hrs ; (ii) DIBAL, $\mathrm{DCM}, 0^{\circ} \mathrm{C}, 41 \mathrm{mins}, 86 \%$ for two steps; (iii) $\mathrm{I}_{2}, \mathrm{Ph}_{3} \mathrm{P}$, imidazole, $\mathrm{PhMe}, \mathrm{rt}, 2 \mathrm{hrs}, 93 \%$; (iv) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DCM, rt, used crude; (v) Benzyl 2,2,2trichloroacetimidate, TFA, cyclohexane, DCM, rt, 23 hrs; (vi) DIBAL, DCM, $0^{\circ} \mathrm{C}, 38 \mathrm{mins}, 86 \%$ for two steps; (vii) $\mathrm{I}_{2}, \mathrm{Ph}_{3} \mathrm{P}$, imidazole, $\mathrm{PhMe}, \mathrm{rt}, 59$; (viii) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}, 2$ hrs, used crude.

It appears that the branching methyl group in the electrophiles presents a sufficient steric block to alkylation and it was decided to investigate the O'Donnell-Lygo-Corey approach for the synthesis of trans-4-methyl-L-proline.

4.5 The O'Donnell-Lygo-Corey Approach

The known glycine imine 435 was made according to O^{\prime} Donnell ${ }^{137}$ in excellent yield (Scheme 86).

Scheme 86

(i) Isobutylene, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{DCM}, \mathrm{rt},-78^{\circ} \mathrm{C}$, then $\mathrm{rt}, 5$ days, 91%; (ii) $\mathrm{H}_{2}, 10 \%$ Pd-C, EtOH, rt, 19.5 hrs , then conc. $\mathrm{HCl}, 91 \%$; (iii) Benzophenone imine, DCM, rt, 36 hrs, 66%.

Attempted alkylation under the phase-transfer conditions of Lygo ${ }^{138}$ et al. with the iodide 430 failed to effect unification of the two materials. When the triflate 441 was used in the reaction the alcohol ent-238 (Scheme 35) was produced virtually quantitatively.

In order to increase the nucleophilicity of the imine component, the dithiol imine 443 of Hoppe ${ }^{143}$ et al. was investigated as an alkylation precursor, again without success (Scheme 87).

Scheme 87

(i) $\mathrm{CS}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CHCl}_{3}, \mathrm{rt}, 1.5 \mathrm{hrs}$, then MeI, reflux, 1.5 hrs; (ii) Crude residue, $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeI, acetone, reflux, $2 \mathrm{hrs}, 63 \%$ for two steps.

As with the Schöllkopf approach, it appears that the presence of a branching methyl group presents an adequate barrier to alkylation.

4.6 Conclusions and Future Work

Four routes inter alia to trans-4-methyl-L-proline were investigated during the course of this work.

Unfortunately, the hydrazino route, used in our earlier work on the synthesis of 4-methyl-D-proline, was unfruitful in this case. Though both stereogenic centres could be set to the correct absolute configuration using this chemistry, cyclisation to the imino acid was found to be problematic.

In our hands, the O'Donnell-Lygo-Corey approach did not allow for the synthesis of trans-4-methyl-L-proline, though our work highlighted the problem of using β-branched alkyl iodides as the electrophilic component for alkylation.

Shortly after this work was completed O^{\prime} Donnell ${ }^{144}$ et al. reported the efficient asymmetric (ee $>97 \%$) alkylation of the imine 435 with the alkyl iodide 444 under homogenous reaction conditions using the Schwesinger base $445{ }^{145}$ in the presence of the cinchonidine derived catalyst 446 (Scheme 88).

Scheme 88

(i) $\mathrm{DCM},-50^{\circ} \mathrm{C}, 24 \mathrm{hrs}, 97 \%$.

By using the iodide 441 in this reaction, the O'Donnell-Lygo-Corey approach could still furnish trans-4-methyl-L-proline.

CHAPTER 5 EXPERIMENTAL SECTION

5.0 Experimental Techniques

${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra were recorded on the following spectrometers; Brüker AMX 300 (300 MHz), Varian VXR 400 (400 MHz), Brüker AMX 400 (400 MHz), and Brüker AMX $500(500 \mathrm{MHz})$. Chemical shifts (δ) are quoted in parts per million (ppm) downfield of tetramethylsilane. Abbreviations used in the description of multiplicities are: s (singlet), d (doublet), t (triplet), q (quartet), app (apparent), m (multiplet), and br (broad). Coupling constants (J) are quoted to the nearest 0.5 Hz (for 300 and 400 MHz spectra) and 0.1 Hz (for 500 MHz spectra).
${ }^{13} \mathrm{C} n \mathrm{~nm}$ spectra were recorded on the following spectrometers; Brüker AMX 300 (75.4 MHz), Varian VXR 400 (100.5 MHz), Brüker AMX 400 (100.5 MHz), and Brüker AMX 500 (125.8 MHz).

Peaks in the nmr data were assigned with the aid of COSY (correlated spectroscopy), DEPT (distortionless enhancement through polarisation transfer), and CH correlation spectra where obtained.

Infrared (ir) spectra were recorded on a Perkin-Elmner 1600 Series FTIR spectrophotometer, where adsorption maxima are given in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ and are classified as s (strong), m (medium), w (weak), and br (broad).

Mass spectra (MS) were recorded on the following machines; FAB and CI, VG ZAB-SE, and EI, VG-7070. m / z values are reported in Daltons with the percentage abundance in parentheses.

High resolution mass spectra (HRMS) were recorded at The London School of Pharmacy.

Combustion analyses were determined in the department.
Optical rotations were measured on a Polaar AA Series automatic polarimeter and the specific rotation $[\alpha]_{D}^{t}$ of the sample is quoted at concentration $c(g / 100 \mathrm{ml})$ and temperature $t\left({ }^{\circ} \mathrm{C}\right)$.

Melting points were determined on a Reichert Hotstage Microscope apparatus and are corrected.

Thin layer chromatography (tlc) was performed on Merck 12 PLC $20 \times 20 \mathrm{~cm}$ silca gel $60 \mathrm{~F}_{254} 0.2 \mathrm{~mm}$ precoated plates. Product spots were visualised by the quenching of UV fluoresence (if appropriate) then stained and heated with one, some, or all of the following solutions: (i) 5\% (w/v) dodeca-molybdophosphoric acid in ethanol, (ii) p-Anisaldehyde $(15 \mathrm{ml})$, sulfuric acid $(15 \mathrm{ml})$, and acetic acid $(15 \mathrm{ml})$ in EtOH (250 ml), (iii) 0.3% ninhydrin in $n-\mathrm{BuOH}$ with 3% acetic acid, (iv) 0.5% (aq) PdCl_{2} with a drop of conc HCl , and (v) 0.5% 2,4-dinitrophenylhydrazine in $2 \mathrm{M}(\mathrm{aq}) \mathrm{HCl}$.

Preparative layer chromatography was performed on Merck 12 PLC 20x20cm silca gel $60 \mathrm{~F}_{254} 2.0 \mathrm{~mm}$ precoated plates

Flash chromatography purification was performed on Fluka silica gel 60 for column chromatography for flash chromatography according to the method of Still ${ }^{146}$ et al. using the solvent systems given.

All solvents were purified and distilled by standard procedures ${ }^{147}$ before use. 'Petrol' refers to that fraction of light petroleum ether boiling in the range $60-80^{\circ} \mathrm{C}$.

For radical reactions, benzene and toluene were degassed by passing a rapid flow of nitrogen through the solvent for 30-60 mins before use, depending on scale, and the purity of tri- n-butyltin hydride was ascertained to be approx 80% by proton nmr (by
comparison of the intensity of the SnH peak with the relative intensity of the butyl peaks).
S-(-)- and R-(+)-Hydroxymethylpropionic acid methyl ester (Sigma) were dried from benzene prior to use (3 x Xml of benzene per Xml of reagent).

All other reagents were used as supplied by the manufacturers.
All known compounds were made as promulgated, are referenced, and gave identical spectral data to that reported.
(1S,6S)-6-Methyl-3-cyclohexene-1-carboxylate 287^{99} was synthesised under novel conditions and the data is given for information.

Reactions were conducted under an inert (nitrogen) atmosphere, at balloon pressure, using three-way taps, unless otherwise stated.

Experimental Procedures

(7R)-2-Bromo-1-(10,10-dimethyl-3,3-dioxo-3 λ^{6}-thia-4-aza-tricyclo $\left[5.2 .1 .0^{0,0}\right]$ dec-4-

yl)-ethanone

To a stirred solution of (7R)-10,10-dimethyl-3-thia-4-aza-tricyclo[5.2.1.0 ${ }^{0,0}$] decane 3,3dioxide $(1.14 \mathrm{~g}, 5.30 \mathrm{mmol})$ in THF $(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(60 \%$ dispersion in oil, $318 \mathrm{mg}, 7.95 \mathrm{mmol}$) over 10 mins . The ice/water bath was removed and stirring was continued for 1 hr during which time the reaction mixture heated to rt . Bromoacetyl chloride $(0.89 \mathrm{ml}, 10.63 \mathrm{mmol})$ was then added dropwise over 20 mins . The resulting mixture was stirred at rt for 1.5 hrs . The reaction mixture was quenched carefully with
$\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and extracted $(3 \times 100 \mathrm{ml}$ DCM). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $20: 1 \rightarrow 10: 1 \rightarrow 5: 1$) to afford the title compound as a clear oil (1.62g, 91\%).
$\mathrm{R}_{\mathrm{f}} 0.31$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.31-1.43(2 \mathrm{H}$, $\mathrm{m}), 1.83-1.92(3 \mathrm{H}, \mathrm{m}), 2.05(1 \mathrm{H}, \mathrm{dd}, J 7.5,13.0, \mathrm{NCHCH} \alpha), 2.09-2.13(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHCH} \beta), 3.44\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{NSO}_{2} \mathrm{CHH}\right), 3.49\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{NSO}_{2} \mathrm{CHH}\right), 3.89$ (1H, dd, $J 5.0,7.5, \mathrm{CHN}), 4.17(1 \mathrm{H}, \mathrm{d}, J 13.0, \mathrm{BrCHH}), 4.30(1 \mathrm{H}, \mathrm{d}, J 13.0, \mathrm{BrCHH})$. $\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 19.84(\mathrm{Me}-10), 20.70(\mathrm{Me}-10), 26.39\left(\mathrm{CH}_{2}\right), 32.75$ $\left(\mathrm{CH}_{2}\right), 32.81\left(\mathrm{CH}_{2}\right), 37.89\left(\mathrm{CH}_{2}\right), 44.76(\mathrm{CH}), 47.85,48.97,52.66\left(\mathrm{CH}_{2}\right), 65.42(\mathrm{CH})$, 164.46 (CO).
$v_{\text {max }}$ (thin film) 3050-2950 (s, C-H), 1702 (s, C=O), 1457 (w), 1381 (s), 1314 (w), 1255 (m), 1171 (m, $\left.\mathrm{SO}_{2}-\mathrm{N}\right), 1098(\mathrm{~m}, \mathrm{~S}=\mathrm{O}), 849(\mathrm{w}), 751(\mathrm{w})$.
$m / z(\mathrm{FAB}) 358 / 360\left(\left[\mathrm{M}\left({ }^{79 / 81} \mathrm{Br}\right) \mathrm{Na}\right]^{+}, 15\right), 336 / 338\left(\left[\mathrm{M}\left({ }^{79 / 81} \mathrm{Br}\right) \mathrm{H}\right]^{+}, 100\right), 307(15), 289$ (17), 228 (16), 216 (45\%).

HRMS (FAB) found m / z 336.0279; $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{MH}]^{+}$requires m / z 336.0269.
$[\alpha]_{D}^{24}-29.4(c=0.30$ in DCM $)$.
(7R)-1-(10,10-Dimethyl-3,3-dioxo-3 ${ }^{6}$-thia-4-aza-tricyclo[5.2.1.0 ${ }^{0,0}$]dec-4-yl)ethanone 242, (7R)-10,10-dimethyl-3-thia-4-aza-tricyclo[5.2.1.0 ${ }^{0,0}$]decane 3,3dioxide 243, and (7R)-[2-(10,10-dimethyl-3,3-dioxo-3 λ^{6}-thia-4-azatricyclo[5.2.1.0 ${ }^{0,0}$]dec-4-yl)-2-oxo-ethyl]-phosphonic acid diethyl ester $241{ }^{78}$

A stirred solution of (7R)-2-Bromo-1-(10,10-dimethyl-3,3-dioxo-3 λ^{6}-thia-4-azatricyclo[5.2.1.0 $0^{0,0}$]dec-4-yl)-ethanone $(420 \mathrm{mg}, 1.25 \mathrm{mmol})$ in $\mathrm{POEt}_{3}(236 \mu \mathrm{l}, 1.38 \mathrm{mmol})$ was heated at $150{ }^{\circ} \mathrm{C}$ for 21 hrs . After cooling to rt , the reaction mixture was diluted with EtOAc $(100 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $10: 1 \rightarrow 5: 1 \rightarrow 0: 1$) to afford (7R)-1-(10,10-Dimethyl-3,3-dioxo-3 λ^{6}-thia-4-aza-tricyclo[5.2.1.0 ${ }^{0,0}$]dec-4-yl)-ethanone 242 as a white crystaline solid (121mg, 43\%), (7R)-10,10-dimethyl-3-thia-4-azatricyclo $\left[5.2 \cdot 1.0^{0,0}\right]$ decane 243 as a white crystaline solid $(90 \mathrm{mg}, 33 \%)$, and (7R)-[2-(10,10-dimethyl-3,3-dioxo-3 ${ }^{6}$-thia-4-aza-tricyclo[5.2.1.0 $0^{0,0}$]dec-4-yl)-2-oxo-ethyl]phosphonic acid diethyl ester 241 as a clear oil ($29 \mathrm{mg}, 6 \%$). (7R)-1-(10,10-Dimethyl-3,3-diox0-3 ${ }^{6}$-thia-4-aza-tricyclo[5.2.1.0 ${ }^{0,0}$ dec-4-yl)ethanone 242
$\mathrm{R}_{\mathrm{f}} 0.38$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.93(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10), 1.30-1.37(2 \mathrm{H}$, $\mathrm{m}), 1.83-1.88(3 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{dd}, J 7.5,14.0, \mathrm{NCHCH} \alpha), 2.09-2.10(1 \mathrm{H}, \mathrm{m}$,
$\mathrm{NCHCH} \beta), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 3.38\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{NSO}_{2} \mathrm{CHH}\right), 3.45(1 \mathrm{H}, \mathrm{d}, J 14.0$, $\left.\mathrm{NSO}_{2} \mathrm{CHH}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, J 5.0,7.5, \mathrm{CHN})$.
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 19.82(\mathrm{Me}-10), 20.76(\mathrm{Me}-10), 23.13(\mathrm{MeCO}), 26.38$ $\left(\mathrm{CH}_{2}\right), 32.76\left(\mathrm{CH}_{2}\right), 38.33\left(\mathrm{CH}_{2}\right), 44.58(\mathrm{CH}), 47.69,48.31,52.69\left(\mathrm{CH}_{2}\right), 65.9(\mathrm{CH})$, 168.52 (CO).
$\nu_{\text {max }}(\mathrm{KBr}$ disc) 3050-2830 (s, C-H), 1688 (s, $\mathrm{C}=\mathrm{O}$), 1513 (w), 1456 (m), 1426 (m), 1378 (m), 1326 ($\mathrm{s}, \mathrm{SO}_{2}$), 1293 (s$), 1250(\mathrm{~s}), 1167\left(\mathrm{~m}, \mathrm{SO}_{2}-\mathrm{N}\right), 1140(\mathrm{~m}), 1116$ (m), $1090(\mathrm{~m}), 1040(\mathrm{~m}), 986(\mathrm{~m}), 878(\mathrm{w}), 839(\mathrm{w}), 768(\mathrm{~m})$.
$m / z(\mathrm{FAB}) 280\left([\mathrm{MNa}]^{+}, 12\right), 258\left([\mathrm{MH}]^{+}, 100\right), 214(11), 135(20), 93(10 \%)$.
HRMS (FAB) found $m / z 258.1171 ; \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{MH}]^{+}$requires $m / z 258.1164$. $[\alpha]_{D}^{19}-62.8(c=0.28$ in DCM$)$.
mp $135-137^{\circ} \mathrm{C}$.
(4S,2'E)-4-Benzyl-3-[6'-(t-butyl-diphenyl-silanyloxy)-hex-2'-enoyl]-oxazolidin-2-
one 246

To a stirred solution $244^{79}(3.59 \mathrm{~g}, 11.02 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{ml})$ containing LiCl ($933 \mathrm{mg}, 22.02 \mathrm{mmol}$) at rt was added Hünigs base $(9.60 \mathrm{ml}, 55.06 \mathrm{mmol})$ over 1 min and the resulting mixture was stirred at rt for 5 mins . A solution of 4 - $(t$-butyl-diphenyl-silanyloxy)-butaldehyde $245^{145}(5.86 \mathrm{~g}, 16.52 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{ml})$ was then added dropwise over 2 mins and the resulting mixture was stirred at rt for 2 days. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$, washed with $10 \%(\mathrm{aq}) \mathrm{HCl}(200 \mathrm{ml})$, and then
satd (aq) $\mathrm{NaCl}(100 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $10: 1)$ to afford the title compound as an orange, yellow oil (5.42g, 93\%).
$\mathrm{R}_{\mathrm{f}} 0.37$ (petrol:ethyl acetate; $3: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 1.06(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.73-1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSiR}_{3}\right)$, 2.39-2.46 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSiR}_{3}$), $2.78(1 \mathrm{H}, \mathrm{dd}, J 9.5,13.5, \mathrm{PhCHH}), 3.32(1 \mathrm{H}$, dd, $J 3.0,13.5, \mathrm{PhCHH}), 3.71\left(2 \mathrm{H}\right.$, appt, $\left.J 3.0, \mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 4.13-4.21(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})$), 4.70-4.74 (1H, m, CHN), 7.19-7.68 (17H, m, Ph superimposing alkenic protons).
$\delta_{\mathrm{C}} \quad\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) \quad 19.16 \quad\left(\mathrm{CMe}_{3}\right), \quad 26.08 \quad\left(\mathrm{CMe}_{3}\right), \quad 29.27$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 30.96\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 37.84\left(\mathrm{PhCH}_{2}\right), 55.25(\mathrm{CHN}), 63.00$ $\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 66.02\left(\mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right), 120.37,127.24,128.87,129.39,129.50,129.55$, 133.72, 135.34, 135.49, 151.48, 153.34, 164.94.
$v_{\max }($ thin film $) 3070-2850(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1783(\mathrm{~s}, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{CH}), 1682(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1635(\mathrm{~s}$, $\mathrm{HC}=\mathrm{CH}$), 1537 (w), 1473 (m), 1428 (m), 1388 (s), 1357 (s), 1288 (s), 1211 (s), 1107 (s), 1007 (s), 823 (m), 738 (s), 704 (s), 613 (s).
$m / z(\mathrm{FAB}) 550\left([\mathrm{MNa}]^{+}, 36\right), 464$ (89), 450 (100), 416 (9), 351 (29), 293 (71), 230 (30\%).

HRMS (FAB) found $m / z 550.2377 ; \mathrm{C}_{32} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{MNa}]^{+}$requires $m / z 550.2390$. $[\alpha]_{\mathrm{D}}^{17}+83.8(\mathrm{c}=0.22$ in DCM$)$.

To a stirred solution $244^{79}(13.7 \mathrm{~g}, 38.5 \mathrm{mmol})$ in $\mathrm{MeCN}(50 \mathrm{ml})$ containing $\mathrm{LiCl}(3.28 \mathrm{~g}$, 77.17 mmol) at rt was added Hünigs base $(33.8 \mathrm{ml}, 192.6 \mathrm{mmol})$ over 10 min and the resulting mixture was stirred at rt for 30 mins . A solution of $\mathbf{2 3 0}{ }^{76}(15.0 \mathrm{~g}, 42.38 \mathrm{mmol})$ in $\mathrm{MeCN}(50 \mathrm{ml})$ was then added dropwise over 10 mins and the resulting mixture was stirred at rt for 18 hrs . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$, washed with 10% (aq) $\mathrm{HCl}(100 \mathrm{ml})$, and then satd (aq) $\mathrm{NaCl}(100 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 10:1) to afford the title compound as a clear oil (19.3g, 82\%).
$\mathrm{R}_{\mathrm{f}} 0.54$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.09(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.32-1.35(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHMe}), 1.58-1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}\right), 2.23-2.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}\right), 2.78(1 \mathrm{H}$, dd, J 9.5, 13.5, PhCHH), $3.33(1 \mathrm{H}, \mathrm{dd}, J 3.0,13.5, \mathrm{PhCHH}), 3.45-3.52(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 4.14-4.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right), 4.70-4.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 7.15-7.69(17 \mathrm{H}$, m, Ph superimposing alkenic protons).
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 16.69(\mathrm{MeCH}), 19.33\left(\mathrm{CMe}_{3}\right), 26.92\left(\mathrm{CMe}_{3}\right), 38.43$ $\left(\mathrm{CH}_{2} \mathrm{CHCH}\right), 42.47\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHMe}\right), 42.65(\mathrm{CHMe}), 37.88\left(\mathrm{PhCH}_{2}\right), 55.31(\mathrm{CHN})$, $66.07\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 68.46\left(\mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right), 120.25,127.28,127.63,127.69,128.93$, $129.46,129.57,129.68,133.87,135.61,152.00,168.08$.
$v_{\max }($ thin film $) 3070-2850(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1781(\mathrm{~s}, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{CH}), 1682(\mathrm{~m}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1634$ (m, $\mathrm{HC}=\mathrm{CH}$), 1455 (w), 1428 (m), 1389 (m), 1355 (m), 1211 (m), 1112 (s), $1030(\mathrm{~m})$, 824 (w), 741 (m), 702 (s).
$m / z(\mathrm{FAB}) 578\left([\mathrm{MNa}]^{+}, 4\right), 498\left([\mathrm{M}-(t-\mathrm{Bu})]^{+}, 45\right), 478$ (67), 321 (11), 259 (13), 199 (63), 135 (100), 91 (35\%).

HRMS (FAB) found m / z 556.2862; $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 556.2883$.
Combustion analysis found C 73.43, H 7.33, N 2.54; $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{4}$ Si requires C 73.48, H 7.44, N 2.52.
$[\alpha]_{D}^{21}+31.5(c=0.43$ in $D C M)$.

(4S,1'S,6'S,3''S])-4-Benzyl-3-\{6'-[4''-(t-butyl-diphenyl-silanyloxy)-3''-methyl-

butyl]-cyclohex-3'-enecarbonyl\}-oxazolidin-2-one 248

To freshly condensed 1,3 -butadiene (approx 8 ml , approx 150 mmol) at $-40^{\circ} \mathrm{C}$ was added 247 ($8.3 \mathrm{~g}, 14.95 \mathrm{mmol}$) in $\mathrm{DCM}(81 \mathrm{ml})$ over $10 \mathrm{mins} . \mathrm{Me}_{2} \mathrm{AlCl}$ (1.0 M in hexanes, $74.77 \mathrm{ml}, 74.77 \mathrm{mmol}$) was then added over 10 mins . The resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ for 3 days. The reaction mixture was diluted with $\mathrm{DCM}(500 \mathrm{ml})$ and quenched at $0^{\circ} \mathrm{C}$ with $10 \%(\mathrm{aq})$ Rochelles salt $(500 \mathrm{ml})$. The quenched reaction mixture was stirred vigorously for 1.5 hrs during which time it heated to rt . The now clear layers were separated and the aqueous layer was extracted ($3 \times 500 \mathrm{ml}$ DCM). The combined organic
layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 40:1) to afford the title compound as a clear oil (6.59g, 72\%).
$\mathrm{R}_{\mathrm{f}} 0.63$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{Me}), 1.05(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.10-2.40$ (10H, m), $2.75(1 \mathrm{H}, \mathrm{dd}, J 9.5,13.5, \mathrm{PhCHH}), 3.23(1 \mathrm{H}, \mathrm{dd}, J 3.0,13.5, \mathrm{PhCHH}), 3.45$ $\left(1 \mathrm{H}, \mathrm{dd}, J 6.0,10.0, \mathrm{CHHOSiR}_{3}\right), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J 5.5,10.0, \mathrm{CHHOSiR}_{3}\right), 3.75-3.80$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{CO})\right), 4.01(1 \mathrm{H}, \mathrm{dd}, J 7.5,9.0, \mathrm{BnCHCHH}(\mathrm{CO})), 4.11(1 \mathrm{H}, \mathrm{dd}, J 3.0$, 9.0, $\mathrm{BnCHCHH}(\mathrm{CO})$), 4.55-4.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), $5.70(2 \mathrm{H}$, apps, $\mathbf{H C = C H})$, 7.19-7.67 (15H, m, Ph).
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz} \mathrm{Brucker}, \mathrm{CDCl}_{3}\right) 17.28(\mathrm{CHMe}), 19.26\left(\mathrm{CMe}_{3}\right), 26.82\left(\mathrm{CMe}_{3}\right), 28.76$ $\left(\mathrm{CH}_{2}\right), 29.66\left(\mathrm{CH}_{2}\right), 30.05\left(\mathrm{CH}_{2}\right), 31.48\left(\mathrm{CH}_{2}\right), 35.15(\mathrm{CH}), 35.99(\mathrm{CH}), 37.79$ $\left(\mathrm{PhCH}_{2}\right), 42.93\left(\mathrm{CH}_{2} \mathrm{CH}(\mathrm{CO})\right), 55.30(\mathrm{CHN}), 65.85\left(\mathrm{CHCH}_{2}(\mathrm{CO})\right), 68.34\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right)$, $124.49,126.12,127.29,127.53,128.86,129.42,133.75,134.75,135.22,135.55$, 152.97, 176.44.
$v_{\text {max }}($ thin film $) 3030-2850(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1781(\mathrm{~s}, \mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{CH}), 1696$ (s, $\left.\mathrm{N}(\mathrm{C}=\mathrm{O}) \mathrm{O}\right), 1462$ (m), 1429 (m), 1385 (s), 1205 (s), 1108 (s), 938 (w), 823 (m), 740 (m), 702 (s), 661 (m). $m / z(\mathrm{FAB}) 632\left([\mathrm{MNa}]^{+}, 100\right), 552\left([\mathrm{M}-(t-\mathrm{Bu})]^{+}, 9\right), 199(37), 135(52), 91$ (42\%). HRMS (FAB) found $m / z 610.3372 ; \mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 610.3353$.

Combustion analysis found $\mathrm{C} 74.48, \mathrm{H} 7.79, \mathrm{~N} 2.10, \mathrm{C}_{38} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{Si}$ requires $\mathrm{C} 74.84, \mathrm{H}$ 7.77, N 2.30.
$[\alpha]_{D}^{21}+16.1$ ($c=0.41$ in DCM).
enecarboxylic acid 249

To a stirred solution of $248(5.59 \mathrm{~g}, 8.91 \mathrm{mmol})$ in THF (81 ml) and $\mathrm{H}_{2} \mathrm{O}(81 \mathrm{ml})$ at rt was added $\mathrm{LiOH}(95 \%, 1.94 \mathrm{~g}, 44.55 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(8.1 \mathrm{ml}, 89.12 \mathrm{mmol})$ in single portions. The resulting mixture was stirred at rt for 18 hrs . The reaction mixture was acidified to $\mathrm{pH}=2$ with cHCl and extracted ($3 \times 100 \mathrm{ml}$ DCM). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $3: 1 \rightarrow 1: 1$) to afford the title compound as a clear oil ($4.12 \mathrm{~g}, 99 \%$) and as a $\sim 7: 1$ mixture of diastereoisomers and (4S)-4-benzyl-oxazolidin-2-one as a white crystaline solid ($1.62 \mathrm{~g}, 88 \%$).
$\mathrm{R}_{\mathrm{f}} 0.42$ (petrol:ethyl acetate; $3: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.04(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.60-1.72(6 \mathrm{H}$, $\mathrm{m}), 1.86-1.90(1 \mathrm{H}, \mathrm{m}), 2.21-2.39\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 3.44(1 \mathrm{H}, \mathrm{dd}, J 5.5,10.0$, $\mathrm{CHHOSiR}_{3}$), 3.47 ($1 \mathrm{H}, \mathrm{dd}, J 5.5,10.0, \mathrm{CHHOSiR}_{3}$), 5.64 (2 H , apps, $\mathrm{HC}=\mathrm{CH}$), 7.24$7.66(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, (minor diastereomer; $0.86(\mathrm{~d}, J 6.5)$).
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right) 17.10(\mathrm{CHMe}), 19.32\left(\mathrm{CMe}_{3}\right), 26.88\left(\mathrm{CMe}_{3}\right), 27.57$ $\left(\mathrm{CH}_{2}\right), 29.48\left(\mathrm{CH}_{2}\right), 30.03\left(\mathrm{CH}_{2}\right), 31.39\left(\mathrm{CH}_{2}\right), 34.92(\mathrm{CH}), 36.00(\mathrm{CH}), 44.97$ $\left(\mathrm{CHCO}_{2} \mathrm{H}\right), 68.50\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 124.35(=\mathrm{CH}), 126.05(=\mathrm{CH}), 127.56(\mathrm{Ph}), 129.49$ (Ph), $134.04(\mathrm{Ph}), 135.61(\mathrm{Ph}), 182.7(\mathrm{C}=\mathrm{O})$, (minor diastereomer; 26.55, 27.84, 29.54, $34.46,35.52,127.71,129.58,129.60,129.64,134.01,134.78)$.
$v_{\max }($ thin film $) 3800-2850(\mathrm{~s}, \mathrm{O}-\mathrm{H}$ and C-H), 1704 (s, C=O), 1465 (m), 1428 (m), 1251 (m), 1200 (m), 1108 (s), 941 (w), 823 (m), $740(\mathrm{~m}), 702(\mathrm{~s})$.
$m / z(\mathrm{FAB}) 473\left([\mathrm{MNa}]^{+}, 51\right), 433\left(\left[\mathrm{MH}-\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}, 3\right), 355(3), 315$ (69), 239 (11), 199 (82), 135 (100), 91 (78\%).

HRMS (FAB) found $m / z 451.2651 ; \mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 451.2668$. $[\alpha]_{\mathrm{D}}^{19}+56.5(\mathrm{c}=0.29$ in DCM $)$.
(1S,2S,4R,5R,3'S)-2-[4'-(t-Butyl-diphenyl-silanyloxy)-3'-methyl-butyl]-4-iodo-6-oxa-bicyclo[3.2.1]octan-7-one 250

To a stirred solution of $249(4.1 \mathrm{~g}, 9.23 \mathrm{mmol})$ in $\mathrm{DCM}(852 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(52 \mathrm{ml})$ at $0 .{ }^{\circ} \mathrm{C}$ in a flask open to air and protected from light was added $\mathrm{NaHCO}_{3}(2.36 \mathrm{~g}, 27.68 \mathrm{mmol})$, $\mathrm{KI}(2.25 \mathrm{~g}, 13.85 \mathrm{mmol})$, and $\mathrm{I}_{2}(3.49 \mathrm{~g}, 13.85 \mathrm{mmol})$ in single portions. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 hrs . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (200 ml) and washed with satd (aq) $\mathrm{Na}_{2} \mathrm{SO}_{3}(200 \mathrm{ml})$, and then satd (aq) $\mathrm{NaCl}(200 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 30:1) to afford the title compound as a clear oil ($4.42 \mathrm{~g}, 85 \%$).
$\mathrm{R}_{\mathrm{f}} 0.70$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 1.01(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.40-1.50$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHMe}$), 1.60-1.70(1H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHMe}$), 1.7-1.8 (2H, m,
$\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHMe}\right), 1.97-2.01(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \beta$ and $\mathrm{H}-6), 2.15-2.25(1 \mathrm{H}, \mathrm{H}-2 \alpha), 2.52-2.63$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-2 \beta$), $2.75(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{H}-5 \alpha), 3.44-3.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SiOR}_{3}\right)$, 4.32-4.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 4.81-4.86 (1H, m, H-3), 7.31-7.63 (10H, m, Ph).
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz} \mathrm{Brucker}, \mathrm{CDCl}_{3}\right) 16.51(\mathrm{MeCH}), 19.09\left(\mathrm{CMe}_{3}\right), 19.61(\mathrm{CH}), 26.99$ $\left(\mathrm{CMe}_{3}\right), 27.8\left(\mathrm{CH}_{2}\right), 29.70\left(\mathrm{CH}_{2}\right), 30.70\left(\mathrm{CH}_{2}\right), 32.02\left(\mathrm{CH}_{2}\right), 34.45(\mathrm{CH}), 35.27(\mathrm{CH})$, $41.88(\mathrm{CH}), 68.37\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 81.26(\mathrm{CHI})$, $127.49(\mathrm{Ph}), 129.42(\mathrm{Ph}), 133.70(\mathrm{Ph})$, 135.41 (Ph), 178.36 (CO).
$\nu_{\max }($ thin film) 3000-2850 (s, C-H), 1787 (s, C=O), 1464 (m), 1319 (w), 1157 (s), 1108 (s), 963 (w), 906 (w), 820 (w), 740 (w), 702 (s).
$m / z(\mathrm{FAB}) 599\left([\mathrm{MNa}]^{+}, 4\right), 577\left([\mathrm{MH}]^{+}, 18\right), 519\left([\mathrm{M}-(t-\mathrm{Bu})]^{+}, 31\right), 499(100), 421$ (24), 393 (26), 373 (88), 361 (22), 349 (17), 338 (23), 315 (85%).

HRMS (FAB) found m / z 577.1645; $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{IO}_{3} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 577.1635$. $[\alpha]_{\mathrm{D}}^{19}+8.6$ (c=0.23 in DCM).
($1 S, 2 S, 5 R, 3^{\prime} S$)-2-[4'-(t-Butyl-diphenyl-silanyloxy)-3'-methyl-butyl]-6-oxa-bicyclo[3.2.1]oct-3-en-7-one 251

To a stirred solution of $\mathbf{2 5 0}(4.4 \mathrm{~g}, 7.54 \mathrm{mmol})$ in DCM $(125 \mathrm{ml})$ at rt was added DBU ($1.26 \mathrm{ml}, 8.30 \mathrm{mmol}$) dropwise over 5 mins. The resulting mixture was heated at reflux for 24 hrs . After cooling to rt, the reaction mixture was diluted with EtOAc (200 ml) and washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in
vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $30: 1)$ to afford the title compound as a clear oil ($3.21 \mathrm{~g}, 95 \%$).
$\mathrm{R}_{\mathrm{f}} 0.53$ (petrol:ethyl acetate; $3: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.05(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.18-1.27(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CHHCHMe}\right), \quad 1.40-1.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHMe}\right), 1.51-1.60(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CHHCHMe}\right), 1.61-1.67(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 2.07(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H}-2 \beta), 2.26-2.31(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-2 \alpha), 2.40-2.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.71-2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 3.48(2 \mathrm{H}, \mathrm{d}, J 6.0$, $\left.\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 4.70-4.72(1 \mathrm{H}, \mathrm{appt}, J 5.5, \mathrm{H}-3), 5.74(1 \mathrm{H}, \mathrm{dd}, J 3.5,9.5, \mathrm{H}-5), 6.15(1 \mathrm{H}$, m, H-4), 7.34-7.66 (10H, m, Ph).
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 16.76(\mathrm{MeCH}), 19.31\left(\mathrm{CMe}_{3}\right), 26.89\left(\mathrm{CMe}_{3}\right), 30.38$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHMe}\right), 31.00\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHMe}\right), 31.07(\mathrm{C}-2), 35.64$ (CHMe), 38.73 (C-6), $42.15(\mathrm{C}-1), 68.43\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 73.76(\mathrm{C}-3), 127.61(\mathrm{Ph}), 128.54(\mathrm{C}-5), 129.58(\mathrm{Ph})$, $133.84(\mathrm{Ph}), 134.76(\mathrm{C}-4), 135.59(\mathrm{Ph}), 179.61(\mathrm{CO})$.
$v_{\max }$ (thin film) 3050-2850 (s, C-H), 1777 (s, C=O), 1633 (w), 1590 (w), 1465 (m), 1428 (m), 1388 (m), $1330(\mathrm{~m}), 1181(\mathrm{~m}), 1145(\mathrm{~s}), 1110(\mathrm{~s}), 1014(\mathrm{~m}), 956(\mathrm{~m}), 907(\mathrm{~m}), 821$ (m), 742 (s), 703 (s), 613 (s).
$m / z(\mathrm{FAB}) 499(25), 479(46), 449\left([\mathrm{MH}]^{+}, 23\right), 421$ ([(MH)-(CO) $\left.]^{+}, 18\right), 403$ ([M$\left.\left(\mathrm{CO}_{2} \mathrm{H}\right)\right]^{+}, 391\left([\mathrm{M}-(t-\mathrm{Bu})]^{+}, 30\right), 371$ (28), 353 (19), 347 (37), 327 (21), 319 (33), 313 (100\%).

HRMS (FAB) found $m / z 449.2506 ; \mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 449.2512$.
$[\alpha]_{D}^{20}+33.4$ ($c=0.45$ in DCM).

To 251 ($790 \mathrm{mg}, 1.75 \mathrm{mmol}$) at rt was added TBAF (1.0 M in THF, $5.33 \mathrm{ml}, 5.24 \mathrm{mmol}$) dropwise over 30 secs. The resulting mixture was stirred at rt for 4 hrs then conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $10: 1 \rightarrow 1: 1)$ to afford the title compound as a clear oil $(354 \mathrm{mg}, 96 \%)$.
$\mathrm{R}_{\mathrm{f}} 0.28$ (petrol:ethyl acetate; 1:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{Me}), 1.21-1.31(2 \mathrm{H}, \mathrm{m}), 1.41-1.59(3 \mathrm{H}, \mathrm{m})$
1.60-1.71 (1H, m, CHMe), $2.14(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{H}-2 \beta), 2.35(1 \mathrm{H}$, appddd, $J 5.2,11.4$, $16.5, \mathrm{H}-2 \alpha), 2.49-2.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.80(1 \mathrm{H}, \mathrm{dd}, J 1.2,5.2, \mathrm{H}-1), 3.49(1 \mathrm{H}, \mathrm{dd}, J 3.8$, $10.5, \mathrm{CHHOH}), 3.53(1 \mathrm{H}, \mathrm{d}, J 6.0,10.5, \mathrm{CHHOH}), 4.76(1 \mathrm{H}$, appt, $J 8.5, \mathrm{H}-3), 5.79$ (1H, dd, J3.4, 9.5, H-5), 6.20-6.23 (1H, m, H-4).
$\delta_{\mathrm{C}}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.42(\mathrm{MeCH}), 30.41\left(\mathrm{CH}_{2}\right), 31.01\left(\mathrm{CH}_{2}\right), 31.08(\mathrm{C}-2), 35.67$ (CHMe), 38.71 (C-6), $42.10(\mathrm{C}-1), 67.97\left(\mathrm{CH}_{2} \mathrm{OH}\right), 73.76$ (C-3), 128.75 (C-5), 134.67 (C-4), 179.53 (CO).
$v_{\text {max }}$ (thin film) 3410 (br s, O-H), 3050-2850 (s, C-H), 1765 (s, C=O), 1462 (m), 1250 (m), 1109 (s), 845 (m), 702 (s).
$m / z(\mathrm{FAB}) 211\left([\mathrm{MH}]^{+}, 7\right), 176(12), 154$ (100), 136 (48), 125 (10), 109 (13\%).
HRMS (FAB) found m / z 211.1335; $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{MH}]^{+}$requires $m / z 211.1334$.
$[\alpha]_{D}^{22}+113.3(c=0.17$ in DCM).
octa-2,4-dienoic acid methyl ester 259

To a stirred solution of DMSO ($4.2 \mathrm{ml}, 58.78 \mathrm{mmol})$ in DCM $(38 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added oxalyl chloride ($3.7 \mathrm{ml}, 41.94 \mathrm{mmol}$) dropwise over 2 mins . The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 31 mins . A solution of $252(1.75 \mathrm{~g}, 8.39 \mathrm{mmol})$ in DCM (38 ml) was then added dropwise over 3 mins. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 31 mins. $\mathrm{Et}_{3} \mathrm{~N}(29.4 \mathrm{ml}, 209.7 \mathrm{mmol})$ was then added over 2 mins and the $\mathrm{CO}_{2} /$ acetone bath was removed. The resulting mixture was stirred for 17 mins. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and extracted ($3 \times 100 \mathrm{ml}$ DCM). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $5: 1 \rightarrow 1: 1$) to afford a clear oil presumed to be the aldehyde $253(1.65 \mathrm{~g}, 95 \%)$. To a stirred solution of phosphonate $\mathbf{2 5 8}{ }^{90}(2.90 \mathrm{~g}, 6.56 \mathrm{mmol})$ in $\mathrm{MeCN}(33.6 \mathrm{ml})$ containing $\mathrm{LiCl}(585 \mathrm{mg}, 11.96 \mathrm{mmol})$ at rt was added Hünigs base ($5.2 \mathrm{ml}, 29.96 \mathrm{mmol}$) dropwise over 2 mins. The resulting mixture was stirred at rt for 30 mins. A solution of aldehyde $253(1.25 \mathrm{~g}, 5.99 \mathrm{mmol})$ in MeCN (33.6 ml) was then added dropwise over 8 hrs . The resulting mixture was stirred at rt for 48 hrs . The reaction mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{ml})$ and washed with $10 \%(\mathrm{aq}) \mathrm{HCl}(100 \mathrm{ml})$, and then satd $(\mathrm{aq}) \mathrm{NaCl}(200 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column
chromatography (petrol:ethyl acetate; $10: 1 \rightarrow 7: 1$) to afford the title compound as a clear oil ($698 \mathrm{mg}, 40 \%$).
$\mathrm{R}_{\mathrm{f}} 0.73$ (petrol:ethyl acetate; 1:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{MeCH}), 1.34-1.45(4 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}$, $\mathrm{d}, J 11.0, \mathrm{H}-2 \beta$), 2.20-2.28 (1 H , ddd, $J 5.0,11.0,16.5, \mathrm{H}-2 \alpha$, superimposing $1 \mathrm{H}, \mathrm{m}$, $\mathrm{MeCH}), ~ 2.37-2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.67(1 \mathrm{H}, \mathrm{dd}, J 1.5,5.0, \mathrm{H}-1), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $4.67(1 \mathrm{H}$, appt, $J 5.5, \mathrm{H}-3), 5.67-5.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 5.75(1 \mathrm{H}, \mathrm{d}, J 15.5$, $\left.\mathrm{CHCHCHCHCO}_{2} \mathrm{Me}\right), 5.89\left(1 \mathrm{H}, \mathrm{dd}, J 6.0,15.5, \mathrm{CHCHCHCHCO}_{2} \mathrm{Me}\right), 6.09(1 \mathrm{H}, \mathrm{dd}, J$ $\left.6.0,10.5, \mathrm{CHCHCHCHCO}_{2} \mathrm{Me}\right), ~ 6.12-6.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 7.18(1 \mathrm{H}, \mathrm{dd}, J 10.5,15.5$, $\left.\mathrm{CHCHCHCHCO}_{2} \mathrm{Me}\right)$.
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 19.90(\mathrm{MeCH}), 30.62\left(\mathrm{CH}_{2}\right), 30.95\left(\mathrm{CH}_{2}\right), 34.23\left(\mathrm{CH}_{2}\right)$, $37.15(\mathrm{CH}), 38.41(\mathrm{C}-6), 42.12(\mathrm{C}-1), 51.35\left(\mathrm{CO}_{2} \mathbf{M e}\right), 73.71(\mathrm{C}-3), 119.22(=\mathrm{CH})$, $127.06(=\mathrm{CH}), 128.74(=\mathrm{CH}), 134.18(=\mathrm{CH}), 144.91(=\mathrm{CH}), 158.31(=\mathrm{CH}), 167.43$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 179.39\left(\mathrm{CO}_{2} \mathrm{CH}\right)$.
$\nu_{\text {max }}($ thin film) 2860-2300 (m, C-H), 1774 (s, (C=O)OCH), 1716 (s, (C=O)OMe), 1641 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), 1438 (m), 1257 (s), 1145 (s), 1009 (s), 954 (s), 907 (m), 759 (m).
$m / z(\mathrm{FAB}) 313\left([\mathrm{MNa}]^{+}, 8\right), 291\left([\mathrm{MH}]^{+}, 41\right), 259(46), 231(13), 213(10), 185(17)$, 145 (32), 107 (56), 91 (100\%).

HRMS (FAB) found $m / z 313.1406 ; \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{MNa}]^{+}$requires m / z 313.1416.
$[\alpha]_{D}^{19}+69.9(c=0.29$ in DCM $)$.

Possible tricycle 260

A solution of 259 ($32 \mathrm{mg}, 0.11 \mathrm{mmol}$) in PhMe (20 ml) was transferred to an Ace pressure tube under N_{2} and the tube was sealed tightly. The sealed tube was heated at $120^{\circ} \mathrm{C}$ for 60 hrs and then at $190-200^{\circ} \mathrm{C}$ for 60 hrs . After cooling to rt , the sealed tube was opened carefully and the reaction mixture was conc in vacuo. The residue was purified by preparatory plate chromatography (petrol:ethyl acetate; 3:1) to afford a residue which was purified by flash column chromatography (petrol:ethyl acetate; 3:1) to afford the title compound as a clear oil $(3 \mathrm{mg}, 8 \%)$ and as a $\sim 3: 1$ mixture of diastereoisomers.
$\mathrm{R}_{\mathrm{f}} 0.45$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{MeCH}), 1.06-1.30(2 \mathrm{H}, \mathrm{m}), 1.73-2.38$ $(8 \mathrm{H}, \mathrm{m}), 2.70-2.83(2 \mathrm{H}, \mathrm{m}), 3.19-3.23(1 \mathrm{H}, \mathrm{m}), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.65-4.68(1 \mathrm{H}$, $\mathrm{m}), 5.98-6.03(1 \mathrm{H}, \mathrm{m}), 6.17-6.21(1 \mathrm{H}, \mathrm{m})$, (minor diastereomer, $1.04(\mathrm{~d}, J 6.5), 3.77(\mathrm{~s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right)$).
$v_{\max }$ (thin film) 3382 (br s, wet sample), 2860-2300(m, C-H), 1779 (s, (C=O)OCH), 1735 (s, (C=O)OMe), 1458 (m), 1158 (s). $m / z\left(\mathrm{APCI}, \mathrm{NH}_{3}\right) 291\left([\mathrm{MH}]^{+}, 23\right), 259(30), 245(42), 231$ (19), 213 (10), 185 (100), 149 (12\%).

HRMS (FAB) found $m / z 313.1430 ; \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{MNa}]^{+}$requires $m / z 313.1416$.

(triethyl-silanyloxymethyl)-6-(triethyl-silanyloxy)-cyclohexene 267

To a stirred solution of $\mathbf{2 5 9}$ ($361 \mathrm{mg}, 1.25 \mathrm{mmol}$) in DCM (26 ml) at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.5 M in hexanes, $4.9 \mathrm{ml}, 7.48 \mathrm{mmol}$) dropwise over 4 mins . The $\mathrm{CO}_{2} /$ acetone bath was replaced with an ice/water bath and the resulting mixture was stirred for 30 mins. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and quenched carefully with 10% (aq) Rochelles salt (100 ml). The resulting mixture was diluted with DCM (75 ml) and stirred vigorously for 1 hr during which time it heated to rt . The now clear layers were separated and the aqueous layer was extracted ($3 \times 50 \mathrm{ml}$ EtOAc). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo to afford a clear oil presumed to be the triol 266 ($259 \mathrm{mg}, 78 \%$). To a stirred solution of $266(259 \mathrm{mg}, 0.97 \mathrm{mmol})$ in DCM (20 ml) containing imidazole $(332 \mathrm{mg}, 4.87 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ was added a solution of TESCl ($0.33 \mathrm{ml}, 1.95 \mathrm{mmol}$) in $\mathrm{DCM}(5 \mathrm{ml})$ dropwise over 3 mins . The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 46 mins. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and poured onto ice cold $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. The aqueous layer was extracted ($1 \mathrm{xl00} \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $1: 0 \rightarrow 30: 1$) to afford the title compound as a clear oil ($378 \mathrm{mg}, 66 \%$).
$\mathrm{R}_{\mathrm{f}} 0.64$ (petrol:ethyl acetate; $10: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz} \mathrm{Brucker}, \mathrm{CDCl}_{3}\right)$ 0.45-0.54 (18H, m, $\mathrm{SiCH}_{2} \mathrm{CH}_{3}$), 0.71-0.88 (30H, m, $\mathrm{SiCH}_{2} \mathrm{CH}_{3}$ superimposing MeCH), 1.02-1.43 $(6 \mathrm{H}, \mathrm{m}), 1.83-2.00(3 \mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{dd}$, $J 7.0,10.0$, saturated CHHOTES), 3.57 (1 H, dd, $J 4.0,10.0$, saturated CHHOTES), 4.06 ($2 \mathrm{H}, \mathrm{d}, J 5.5$, unsaturated $\mathrm{CH}_{2} \mathrm{OTES}$), 4.10-4.14 (1H, m, CHOTES), 5.35-6.10 (6H, m, alkenic protons).
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.37,4.43,4.83,5.75,6.45,6.72,6.76,6.79,20.69(\mathrm{MeCH})$, $30.74\left(\mathrm{CH}_{2}\right), 33.22\left(\mathrm{CH}_{2}\right), 36.05\left(\mathrm{CH}_{2}\right), 36.60(\mathrm{CH}), 37.14(\mathrm{CH}), 39.80(\mathrm{CH}), 63.29$ $\left(\mathrm{CH}_{2} \mathrm{OTES}\right), 65.19\left(\mathrm{CH}_{2} \mathrm{OTES}\right)$, 67.73 (CHOTES), 128.00 (=CH), 128.12 (=CH), $130.04(=\mathrm{CH}), 130.65(=\mathrm{CH}), 131.90(=\mathrm{CH}), 140.16(=\mathrm{CH})$.
$v_{\text {max }}($ thin film) 3000-2870 (s, C-H), 1459 (m), 1414 (w), 1380 (w), 1239 (m), 1084 (s), 1010 (s), 798 (m), 741 (s), 669 (w).
$m / z(\mathrm{FAB}) 607\left([\mathrm{M}-\mathrm{H}]^{+}, 24\right), 580(13), 492$ (13), 476 (100), 464 (42), 448 (94), 435 (23), 419 (21), 407 (21\%).

HRMS (FAB) found $m / z 607.4370 ; \mathrm{C}_{34} \mathrm{H}_{67} \mathrm{O}_{3} \mathrm{Si}_{3}[\mathrm{M}-\mathrm{H}]^{+}$requires $m / z 607.4398$. $[\alpha]_{D}^{24}+87.6(c=0.20$ in DCM $)$.
(1S,2S,5R,3'S)-5-Benzyloxymethoxy-2-[4'-(t-butyl-diphenyl-silanyloxy)-3'-methyl-butyl]-cyclohex-3-enecarboxylic acid methyl ester 268

To a stirred solution of $251(1.93 \mathrm{~g}, 4.31 \mathrm{mmol})$ in $\mathrm{MeOH}(198 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaOMe}(0.4 \mathrm{M}$ in $\mathrm{MeOH}, 10.8 \mathrm{ml}, 4.31 \mathrm{mmol})$ dropwise over 3 mins. The resulting
mixture was stirred at $0^{\circ} \mathrm{C}$ for 23 mins. The reaction mixture was diluted with EtOAc (200 ml) and washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo to afford a yellow oil presumed to be the alcohol 262. To a stirred solution of the crude alcohol 262 (assuming 100% conversion, $2.10 \mathrm{~g}, 4.31 \mathrm{mmol}$) in DCM (50 ml) at rt was added Hünigs base ($1.6 \mathrm{ml}, 8.75 \mathrm{mmol}$) dropwise over 1 min . The resulting mixture was stirred at rt for 4 mins. $\mathrm{BOMCl}(60 \%$ assay, $2.3 \mathrm{ml}, 8.75 \mathrm{mmol})$ was added dropwise over 2 mins. The resulting mixture was stirred at rt for 2 days. The reaction mixture was diluted with $\mathrm{DCM}(100 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. The aqueous layer was extracted ($1 \times 100 \mathrm{ml}$ EtOAc) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 20:1) to afford the title compound as a clear oil ($2.46 \mathrm{~g}, 95 \%$ over two steps).
$\mathrm{R}_{\mathrm{f}} 0.80$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.93(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCH}), 1.09(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.21-2.22(7 \mathrm{H}, \mathrm{m})$, 2.46-2.54 (2H, m, CHCHCO 2 Me$), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J 6.0,9.9, \mathrm{CHHOSiR}_{3}\right), 3.52(1 \mathrm{H}, \mathrm{dd}$, $\left.J 5.8,9.9, \mathrm{CHHOSiR}_{3}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.22-4.24(1 \mathrm{H}, \mathrm{m}, \mathrm{BOMOCH}), 4.72(2 \mathrm{H}$, apps, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.86-4.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.68-5.76(2 \mathrm{H}, \mathrm{m}$, alkenic protons), 7.307.70 (15H, m, Ph).
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.94(\mathrm{MeCH}), 19.29\left(\mathrm{CMe}_{3}\right), 26.85\left(\mathrm{CMe}_{3}\right), 29.43\left(\mathrm{CH}_{2}\right)$, $31.40\left(\mathrm{CH}_{2}\right), 32.68\left(\mathrm{CH}_{2}\right), 36.00(\mathrm{CH}), 37.61(\mathrm{CH}), 44.30(\mathrm{CH}), 51.70\left(\mathrm{CO}_{2} \mathbf{M e}\right), 68.42$ $\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 69.88\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 72.48(\mathrm{BOMOCH}), 91.32\left(\mathrm{OCH}_{2} \mathrm{O}\right), 127.55(\mathrm{Ph})$, $127.72(\mathrm{Ph}), 127.80(\mathrm{Ph}), 127.85(\mathrm{Ph}), 128.09(\mathrm{Ph}), 128.43(\mathrm{Ph}), 129.49(\mathrm{HC}=\mathrm{CH})$, $132.47(\mathrm{Ph}), 133.97(\mathrm{Ph}), 135.59(\mathrm{HC=}=\mathrm{CH}), 175.14(\mathrm{CO})$. $v_{\text {max }}$ (thin film) 3040-2850(s, C-H), 1736 (s, C=O), 1457 (m), 1430 (m), 1273 (m), 1163 (s), 1110 (s), 995 (s), 824 (m), 741 (s), 702 (s), 612 (s).
$m / z(\mathrm{FAB}) 639\left([\mathrm{MK}]^{+}, 1\right), 573$ ([M-(TBDPS)] $\left.{ }^{+}, 58\right), 464$ (43), 385 (75), 307 (64), 289 (65), 239 (63\%).
$[\alpha]_{\mathrm{D}}^{19}+31.9(\mathrm{c}=0.29$ in DCM$)$.
(1S,2S,5R,3'S)-\{5-Benzyloxymethoxy-2-[4'-(t-butyl-diphenyl-silanyloxy)-3'-methyl-butyl]-cyclohex-3-enyl\}-methanol 269

To a stirred solution of $268(2.46 \mathrm{~g}, 4.27 \mathrm{mmol})$ in $\mathrm{DCM}(45 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL (1.5 M in hexanes, $8.5 \mathrm{ml}, 12.81 \mathrm{mmol}$) dropwise over 2 mins. The $\mathrm{CO}_{2} /$ acetone bath was replaced with an ice/water bath and the resulting mixture was stirred for 31 mins. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and quenched carefully with $20 \%(\mathrm{aq})$ Rochelles salt (250 ml). The resulting mixture was diluted with DCM (200 ml) and stirred vigorously for 38 mins during which time it heated to rt . The now clear layers were separated and the aqueous layer was extracted ($2 \times 100 \mathrm{ml}$ EtOAc). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $10: 1 \rightarrow 3: 1$) to afford the title compound as a clear oil ($1.99 \mathrm{~g}, 85 \%$).
$\mathrm{R}_{\mathrm{f}} 0.33$ (petrol:ethyl acetate; $10: 1$).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{Me}), 1.08(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.20-1.78(8 \mathrm{H}, \mathrm{m})$, $1.93(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.07-2.13(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{dd}, J 6.1,9.8, \mathrm{CHHOH}), 3.52(1 \mathrm{H}$, dd, $J 5.7,9.8, \mathrm{CHHOH}), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J 7.0,10.6, \mathrm{CHHOSiR}_{3}\right), 3.69(1 \mathrm{H}, \mathrm{dd}, J 4.1$,
10.6, $\mathrm{CHHOSiR}_{3}$), 4.18-4.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{BOMOCH}$), 4.61-4.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}$), 4.86-4.97 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.75-5.81(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH}), 7.31-7.75(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right) 16.98(\mathrm{MeCH}), 19.30\left(\mathrm{CMe}_{3}\right), 26.85\left(\mathrm{CMe}_{3}\right), 30.04$ $\left(\mathrm{CH}_{2}\right), 30.13\left(\mathrm{CH}_{2}\right), 30.82\left(\mathrm{CH}_{2}\right), 35.97(\mathrm{CH}), 36.74(\mathrm{CH}), 38.26(\mathrm{CH}), 65.38$ $\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 68.53\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 69.46 \quad\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 71.02 \quad(\mathrm{BOMOCH}), 93.21$ $\left.\left(\mathrm{OCH}_{2} \mathrm{O}\right), 127.13(\mathrm{Ph}), 127.56=\mathrm{CH}\right), 127.70(\mathrm{Ph}), 127.88(\mathrm{Ph}), 128.43(\mathrm{Ph}), 129.50$ $(\mathrm{Ph}), 133.99(\mathrm{Ph}), 134.13(\mathrm{Ph}), 135.60(=\mathrm{CH}), 137.78(\mathrm{Ph})$.
$v_{\max }$ (thin film) 3423 (br m, O-H), 3000-2850 (s, C-H), 1726 (m), $1460(\mathrm{~m}), 1428$ (m), 1388 (m), 1277 (m), 1109 (s), 1037 (s), 823 (m), 740 (s), 702 (s).
$\mathrm{m} / \mathrm{z}(\mathrm{FAB}) 595\left([\mathrm{MNa}]^{+}, 14\right), 494(11), 466$ (16), 436 (19), 414 (31), 392 (72), 377 (34), 329 (37), 307 (77), 289 (100), 269 (56), 239 (72), 227 (46), 212 (77\%).

HRMS (FAB) found $m / z 595.3245 ; \mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{MNa}]^{+}$requires $m / z 595.3220$. $[\alpha]_{\mathrm{D}}^{17}+53.2(\mathrm{c}=0.19$ in DCM$)$
(2S,1'S,4'R,6'S)-[4-(4'-Benzyloxymethoxy-6'-bromomethyl-cyclohex-2'-enyl)-2- . methyl-butoxy]-t-butyl-diphenyl-silane 270

To a stirred solution of $269(1.35 \mathrm{~g}, 2.46 \mathrm{mmol})$ in THF (30 ml) at rt was added PPh_{3} ($1.95 \mathrm{~g}, 7.39 \mathrm{mmol}$) and $\mathrm{CBr}_{4}(2.46 \mathrm{~g}, 7.39 \mathrm{mmol})$ in single portions. The resulting mixture was stirred at rt for 3.5 hrs during which time a bright yellow precipitate formed. The reaction mixture was conc in vacuo. $\mathrm{Et}_{2} \mathrm{O}$ was added to the residue and the
white precipitate which formed on cooling the flask to $0^{\circ} \mathrm{C}$ was filtered-off. The filtrate was conc in vacuo and the residue was purified by flash column chromatography (petrol:ethyl acetate; 20:1) to afford the title compound as a clear oil $(1.40 \mathrm{~g}, 94 \%)$. $\mathrm{R}_{\mathrm{f}} 0.78$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.09(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.13-1.79(7 \mathrm{H}$, m), 2.16-2.23 ($2 \mathrm{H}, \mathrm{m}$), 3.46-3.56 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Br}$ superimposing $\mathrm{CH}_{2} \mathrm{OSiR}_{3}$), 4.27-4.30 $(1 \mathrm{H}, \mathrm{m}, \mathrm{BOMOCH}), 4.60-4.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.86(1 \mathrm{H}, \mathrm{d}, J 7.0$, OCHHO $), 4.90$ $(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCHHO}), 5.68-5.58(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH}), 7.30-7.70(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. $\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.07(\mathrm{MeCH}), 19.33\left(\mathrm{CMe}_{3}\right), 26.91\left(\mathrm{CMe}_{3}\right), 29.43\left(\mathrm{CH}_{2}\right)$, $30.03\left(\mathrm{CH}_{2}\right), 33.35\left(\mathrm{CH}_{2}\right), 36.00(\mathrm{CH}), 38.49(\mathrm{CH}), 38.53\left(\mathrm{CH}_{2} \mathrm{Br}\right), 38.57(\mathrm{CH}), 68.38$ $\left(\mathrm{CH}_{2} \mathrm{SiOR}_{3}\right), 69.48\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 71.74(\mathrm{BOMOCH}), 93.24\left(\mathrm{OCH}_{2} \mathrm{O}\right), 127.61(\mathrm{Ph})$, $127.72(\mathrm{Ph}), 127.97(\mathrm{Ph}), 128.35(\mathrm{Ph}), 128.46(\mathrm{Ph}), 129.56(=\mathrm{CH}), 132.75(\mathrm{Ph}), 133.96$ $(=\mathrm{CH}), 135.63(\mathrm{Ph}), 137.86(\mathrm{Ph})$.
$v_{\max }($ thin film) 3070-2850 (s, C-H), 1590 (w), 1461 (m), 1428 (m), 1389 (m), 1163 (m), 1109 (s), 1042 (s), 823 (m), $740(\mathrm{~m}), 702(\mathrm{~s}), 612(\mathrm{~m})$.
m / z (FAB) 657/659 ([M($\left.\left.{ }^{79} \mathrm{Br} /{ }^{81} \mathrm{Br}\right) \mathrm{Na}\right]^{+}$, 7), 497/499 (100) 471 (32), 437 (22), 391 (28\%).

HRMS (FAB) found $m / z 657.2383 ; \mathrm{C}_{36} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{BrSiNa}[\mathrm{MNa}]^{+}$requires $m / z 657.2376$.
$[\alpha]_{\mathrm{D}}^{21}+24.4$ ($\mathrm{c}=0.44$ in DCM).
($2 S, 1^{\prime} S, 4^{\prime} R, 6^{\prime} S$)-[4-(4'-Benzyloxymethoxy-6'-methyl-cyclohex-2'-enyl)-2-methyl-butoxy]-t-butyl-diphenyl-silane 271

To a stirred solution of $270(1.08 \mathrm{~g}, 1.85 \mathrm{mmol})$ in $\mathrm{PhMe}(25 \mathrm{ml})$ at rt was added tri- n butyltin hydride ($1.0 \mathrm{ml}, 3.70 \mathrm{mmol}$) and AIBN ($20 \mathrm{mg}, 0.09 \mathrm{mmol}$) in single portions. The resulting mixture was heated at reflux for 14.5 hrs . AIBN (approx 20mg, 0.09 mmol) was added in a single portion and heating at reflux was continued for 48 hrs . After cooling to rt, the reaction mixture was conc in vacuo and the residue was purified by flash column chromatography (petrol:ethyl acetate; $1: 0 \rightarrow 40: 1$) to afford the title compound as a clear oil ($926 \mathrm{mg}, 95 \%$).
$\mathrm{R}_{\mathrm{f}} 0.41$ (petrol:ethyl acetate; $10: 1$).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{d}, J 6.6$, ring Me), $1.00(3 \mathrm{H}, \mathrm{d}, J 6.5$, chain Me), 1.08 $(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.12-2.08(9 \mathrm{H}, \mathrm{m}), 3.48\left(1 \mathrm{H}, \mathrm{dd}, J 6.1,9.8, \mathrm{CHHOSiR}_{3}\right), 3.52(1 \mathrm{H}, \mathrm{dd}, J$ 5.7, 9.8, $\mathrm{CHHOSiR}_{3}$), 4.30-4.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{BOMOCH}$), 4.65-4.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}$), 4.86 $(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCHHO}), 4.89(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCHHO}), 5.67-5.74(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH})$, 7.31-7.75 (15H, m, Ph), (minor diastereomer; 0.93 (d, J 6.6), 3.35-3.42 (m), 3.48-3.50 (m), 4.24-4.30 (m), 4.65-4.70 (m superimposed by PhCH_{2}), 4.84-4.90 (m)). $\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz} \mathrm{Brucker}, \mathrm{CDCl}_{3}\right) 17.10$ (ring Me), $19.30\left(\mathrm{CMe}_{3}\right), 19.89$ (chain Me), $26.86\left(\mathrm{CMe}_{3}\right), 28.90\left(\mathrm{CH}_{2}\right), 29.84\left(\mathrm{CH}_{2}\right), 32.15(\mathrm{CH}), 36.15(\mathrm{CH}), 38.70\left(\mathrm{CH}_{2}\right), 43.04$ $(\mathrm{CH}), 68.49\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 69.51\left(\mathrm{PhCH}_{2}\right), 73.30(\mathrm{BOMOCH}), 93.13\left(\mathrm{OCH}_{2} \mathrm{O}\right), 127.54$
$(=\mathrm{CH}), 127.90(\mathrm{Ph}), 128.41(\mathrm{Ph}), 128.61(\mathrm{Ph}), 129.47(\mathrm{Ph}), 130.87(\mathrm{Ph}), 133.71(\mathrm{Ph})$, $134.04(\mathrm{Ph}), 135.61(=\mathrm{CH}), 137.95(\mathrm{Ph})$.
$v_{\max }$ (thin film) 3040-2850 (s, C-H), 1590 (w), 1726 (w), 1459 (m), 1428 (m), 1385 (m), 1270 (m), 1110 (s), 1042 (s), 823 (m), 740 (m), 702 (s).
$\mathrm{m} / \mathrm{z}(\mathrm{FAB}) 579\left([\mathrm{MNa}]^{+}, 4\right), 420(24), 392$ (26), 377 (16), 357 (21), 335 (15), 301 (21), 289 (31), 259 (27), 239 (87), 227 (45), 211 (64\%).

HRMS (FAB) found $m / z 579.3254 ; \mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{MNa}]^{+}$requires $m / z 579.3270$. $[\alpha]_{\mathrm{D}}^{24}+11.3(\mathrm{c}=0.46$ in DCM$)$.
(2S,1'S,4'R,6'S)-[4-(4'-Benzyloxymethoxy-6'-methyl-cyclohex-2'-enyl)-2-methyl-butan-1-ol 272

To 271 ($926 \mathrm{mg}, 1.84 \mathrm{mmol}$) at rt was added TBAF (1.0 M in THF, $5.51 \mathrm{ml}, 5.51 \mathrm{mmol}$) dropwise over 45 secs. The resulting mixture was stirred at rt for 20 hrs then conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $10: 1 \rightarrow 5: 1$) to afford the title compound as a clear oil ($501 \mathrm{mg}, 86 \%$).
$\mathrm{R}_{\mathrm{f}} 0.24$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{d}, J 6.7$, ring Me), $1.02(3 \mathrm{H}, \mathrm{d}, J 6.5$, chain Me$), 1.19-$ $2.20(10 \mathrm{H}, \mathrm{m}), 3.45(1 \mathrm{H}, \mathrm{dd}, J 6.4,10.5, \mathrm{CHHOH}), 3.55(1 \mathrm{H}, \mathrm{dd}, J 5.6,10.5$, CHHOH), 4.29-4.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{BOMOCH}), 4.64(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{PhCHH}), 4.68(1 \mathrm{H}, \mathrm{d}, J$ 11.8, PhCHH), $4.85(1 \mathrm{H}, \mathrm{d}, J 7.0$, OCHHO), $4.89(1 \mathrm{H}, \mathrm{d}, J 7.0$, OCHHO), $5.67-5.75$
$(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH}), 7.30-7.74(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, (minor diastereomer; $0.94(\mathrm{~d}, J 6.7)$, 3.57-
$3.60(\mathrm{~m}), 4.22-4.28(\mathrm{~m}), 4.77(\mathrm{~d}, J 7.0), 4.79(\mathrm{~d}, J 7.0)$).
$\delta_{\mathrm{C}}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.78$ (ring Me), 19.92 (chain Me), $29.36(\mathrm{CH}), 29.83\left(\mathrm{CH}_{2}\right)$,
$32.09(\mathrm{CH}), 36.15(\mathrm{CH}), 38.57\left(\mathrm{CH}_{2}\right), 39.19\left(\mathrm{CH}_{2}\right), 68.10\left(\mathrm{CH}_{2} \mathrm{OH}\right), 69.34\left(\mathrm{PhCH}_{2}\right)$,
$73.25(\mathrm{BOMOCH}), 91.15\left(\mathrm{OCH}_{2} \mathrm{O}\right), 127.65(=\mathrm{CH}), 127.90(\mathrm{Ph}), 128.42(\mathrm{Ph}), 128.85$ $(\mathrm{Ph}), 133.52(=\mathrm{CH}), 137.93(\mathrm{Ph})$.
$v_{\text {max }}$ (thin film) 3423 (br m, O-H), 3030-2860 (s, C-H), 1725 (w), 1457 (m), 1380 (m), $1273(\mathrm{~m}), 1164(\mathrm{~m}), 1107(\mathrm{~m}), 1041(\mathrm{~s}), 737(\mathrm{~m}), 697(\mathrm{~m})$.
$m / z(\mathrm{FAB}) 341\left([\mathrm{MNa}]^{+}, 79\right), 307(46), 287(39), 279$ (100), 249 (41), 243 (45), 234 (47), 227 (57\%).

HRMS (FAB) found $m / z 341.2080 ; \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}[\mathrm{MNa}]^{+}$requires $m / z 341.2093$.
$[\alpha]_{D}^{22}+18.6(c=0.29$ in DCM $)$.
(4E,6S,1'S,4'R,6'S)-8-(4'-Benzyloxymethoxy-6'-methyl-cyclohex-3'-enyl)-6-methyl-oct-4-en-3-one 275

To a stirred solution of DMSO $(0.58 \mathrm{ml}, 7.98 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added oxalyl chloride ($0.53 \mathrm{ml}, 5.69 \mathrm{mmol}$) dropwise over 30 secs. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 29 mins. A solution of $272(362 \mathrm{mg}, 1.14 \mathrm{mmol})$ in DCM (5 ml) was then added dropwise over 45 secs. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 28 mins. $\mathrm{Et}_{3} \mathrm{~N}(4.0 \mathrm{ml}, 28.46 \mathrm{mmol})$ was then added and the $\mathrm{CO}_{2} /$ acetone bath was removed.

The resulting mixture was stirred for 57 mins. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and extracted $(3 \times 100 \mathrm{ml}$ DCM). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $10: 1 \rightarrow 5: 1$) to afford a clear oil presumed to be the aldehyde 273 ($358 \mathrm{mg}, 99 \%$). To a stirred solution of phosphonate 274^{95} (270 mg , 1.38 mmol) in MeCN (4.1 ml) containing LiCl ($571 \mathrm{mg}, 1.48 \mathrm{mmol}$) at rt was added Hünigs base $(0.61 \mathrm{ml}, 3.70 \mathrm{mmol})$ dropwise over 30 secs. The resulting mixture was stirred at rt for 4 mins. A solution of the aldehyde 273 ($234 \mathrm{mg}, 0.74 \mathrm{mmol}$) in MeCN (4.1 ml) was then added dropwise over 30 secs. The resulting mixture was stirred at rt for 48 hrs . The reaction mixture was diluted with EtOAc (100ml) and washed with 10% (aq) $\mathrm{HCl}(100 \mathrm{ml})$, and then satd (aq) $\mathrm{NaCl}(200 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $20: 1 \rightarrow 10: 1$) to afford the title compound as a clear oil (253mg, 93\%).
$\mathrm{R}_{\mathrm{f}} 0.72$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.80-0.91(1 \mathrm{H}, \mathrm{m}), 0.97(3 \mathrm{H}, \mathrm{d}, J 6.5$, ring Me), $1.10(3 \mathrm{H}$, d, $\left.J 6.5, \mathrm{MeCHCH}_{2}\right), 1.14(3 \mathrm{H}, \mathrm{t}, J 7.5$, chain Me), $1.15-1.60(5 \mathrm{H}, \mathrm{m}), 1.71-1.80(1 \mathrm{H}$, $\mathrm{m}), 2.00-2.08(1 \mathrm{H}, \mathrm{m}), 2.22-2.33(1 \mathrm{H}, \mathrm{m}), 2.58\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{MeCH}_{2} \mathrm{CO}\right), 4.27-4.31$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{BOMOCH}), 4.64(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{PhCHHO}), 4.66(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{PhCHHO})$, $4.85(1 \mathrm{H}, \mathrm{d}, J 7.0$, OCHHO $), 4.88(1 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{OCHHO}), 5.64-5.75(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH})$, $6.08(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{CHCHCO}), 6.70(1 \mathrm{H}, \mathrm{dd}, J 8.0,16.0, \mathrm{CHCHCO}), 7.31-7.46(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph})$.

This compound was taken forward onto the next step without further characterisation.
(1Z,2E,4S,1'S,4'R,6'S)-[6-(4'-Benzyloxymethoxy-6'-methyl-cyclohex-2'-enyl)-1-ethylidene-4-methyl-hex-2-enyloxyl-t-butyl-dimethyl-silane 276

To a stirred solution of $275(199 \mathrm{mg}, 0.54 \mathrm{mmol})$ in $\mathrm{DCM}(7 \mathrm{ml})$ at rt was added $\mathrm{Et}_{3} \mathrm{~N}$ ($0.36 \mathrm{ml}, 2.69 \mathrm{mmol}$) dropwise over 1 min . The resulting mixture was stirred at rt for 4 mins. TBSOTf $(0.26 \mathrm{ml}, 1.08 \mathrm{mmol})$ was added dropwise over 1 min and the resulting mixture was stirred at rt for 13 mins. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $40: 1$) to afford the title compound as a clear oil ($256 \mathrm{mg}, 98 \%$).
$\mathrm{R}_{\mathrm{f}} 0.55$ (petrol:ethyl acetate; 10:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.97(3 \mathrm{H}, \mathrm{d}, J 6.5$, ring Me), $1.08(12 \mathrm{H}, \mathrm{s}, t-$ Bu superimposing chain Me), 1.00-1.55 ($6 \mathrm{H}, \mathrm{m}$), $1.66(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{MeCH}=)$, 1.70$2.30(3 \mathrm{H}, \mathrm{m}), 4.20-4.33(1 \mathrm{H}, \mathrm{m}, \mathrm{BOMOCH}), 4.58-4.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 4.75(1 \mathrm{H}, \mathrm{d}, J$ 7.0, MeCHC(OTBS)), $5.84(1 \mathrm{H}, \mathrm{d}, J 7.0$, OCHHO), $4.86(1 \mathrm{H}, \mathrm{d}, J 7.0$, OCHHO), 5.52$5.87(4 \mathrm{H}, \mathrm{m}$, alkenic protons), $7.30-7.80(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right)-3.54\left(\mathrm{SiMe}_{2}\right), 11.72(\mathrm{MeCH}=), 19.95\left(\mathrm{CMe}_{3}\right), 21.08$ (chain Me), $26.00\left(\mathrm{CH}_{2}\right), 26.56\left(\mathrm{CMe}_{3}\right), 30.34$ (ring Me), $32.27\left(\mathrm{CH}_{2}\right), 33.34(\mathrm{CH})$, $36.94(\mathrm{CH}), 38.61\left(\mathrm{CH}_{2}\right), 42.71(\mathrm{CH}), 69.31\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 73.27(\mathrm{BOMOCH}), 93.14$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 107.56(\mathrm{MeCHC}(\mathrm{OTBS})), 127.21(=\mathrm{CH}), 127.64(\mathrm{Ph}), 127.90(=\mathrm{CH})$, $128.40(=\mathrm{CH}), 128.66(\mathrm{Ph}), 133.52(=\mathrm{CH}), 134.19(\mathrm{Ph})$.
$v_{\max }$ (thin film) 3000-2850(m, C-H), 1724 (m), 1674 (m), 1626 (m), 1458 (m), 1379
(m), 1272 (m), 1111 (s), 1040 (s), 838 (m), $740(\mathrm{~m}), 701(\mathrm{~m})$.
$m / z\left(\mathrm{APCI}, \mathrm{NH}_{3}\right) 485\left([\mathrm{MH}]^{+}, 20\right), 451(15), 416(60), 399(100), 341$ (24), 321 (51), 250 (16), 233 (31), 132 (31), 108 (23), 91 (18\%).

HRMS (FAB) found m / z 523.3030; $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiK}[\mathrm{MK}]^{+}$requires $m / z 523.3010$. $[\alpha]_{D}^{18}+19.0(c=0.28$ in DCM $)$.
(6S,1'S,4'R,6'S)-8-(4'-Benzyloxymethoxy-2'-methyl-cyclohexyl)-6-methyl-octan-3one 278

To a stirred solution of $276(60 \mathrm{mg}, 0.12 \mathrm{mmol})$ in THF (5 ml) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ at rt was added with care $\mathrm{Pd} / \mathrm{C}(40 \mathrm{mg}, 10 \mathrm{wt} \%$ palladium on activated carbon) and the reaction flask was then evacuated and flooded with hydrogen four times. The resulting suspension was then stirred vigorously under hydrogen at rt for 2 hrs . The reaction mixture was filtered through a thin plug of Celite ${ }^{\mathrm{TM}}$ and the filtrate was diluted with $\operatorname{EtOAc}(50 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $40: 1 \rightarrow 30: 1$) to afford the title compound as a clear oil $(41 \mathrm{mg}$, 91\%).
$\mathrm{R}_{\mathrm{f}} 0.70$ (petrol:ethyl acetate; $10: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 5.5$, ring Me superimposing $2 \mathrm{H}, \mathrm{m}), 0.81$ $\left(3 \mathrm{H}, \mathrm{d}, J 6.5\right.$, chain Me), $0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{MeCH}_{2} \mathrm{CO}\right.$ superimposing $\left.2 \mathrm{H}, \mathrm{m}\right), 1.01-1.99$
$(11 \mathrm{H}, \mathrm{m}), 2.21-2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.34\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{MeCH}_{2} \mathrm{CO}\right), 3.41-3.50$ $(1 \mathrm{H}, \mathrm{BOMOCH}), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.17-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. $\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right) 7.88\left(\mathrm{MeCH}_{2} \mathrm{CO}\right.$), 19.64 (ring Me), 20.07 (chain Me), $29.92\left(\mathrm{CH}_{2}\right), 30.10\left(\mathrm{CH}_{2}\right), 30.44\left(\mathrm{CH}_{2}\right), 32.93\left(\mathrm{CH}_{2}\right), 32.96\left(\mathrm{CH}_{2}\right), 33.48(\mathrm{CH}), 35.42$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 35.85\left(\mathrm{MeCH}_{2} \mathrm{CO}\right), 40.07\left(\mathrm{CH}_{2}\right), 42.01(\mathrm{CH}), 43.40(\mathrm{CH}), 69.25$ $\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 75.64(\mathrm{BOMOCH}), 92.55\left(\mathrm{OCH}_{2} \mathrm{O}\right), 127.64(\mathrm{Ph}), 127.88(\mathrm{Ph}), 128.40(\mathrm{Ph})$, 138.05 (Ph), 212.14 (CO).
$v_{\max }($ thin film $) 3040-2850(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1718(\mathrm{~m}, \mathrm{C}=\mathrm{O}), 1674$ (w), 1458 (m), 1377 (m), $1254(\mathrm{~m}), 1158(\mathrm{~m}), 1109(\mathrm{~s}), 1045(\mathrm{~s}), 837(\mathrm{~m}), 778(\mathrm{~m}), 736(\mathrm{~m}), 698(\mathrm{~m})$.
$m / z(\mathrm{FAB}) 397$ ([MNa] $\left.{ }^{+}, 24\right), 392(19), 375$ ([MH] $\left.{ }^{+}, 7\right), 307$ (11), 289 (13), 265 (14), 253 (16), 237 (100), 219 (56\%).

HRMS (FAB) found m / z 375.2887; $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{3}[\mathrm{MH}]^{+}$requires m / z 375.2899. $[\alpha]_{D}^{24}+10.7(\mathrm{c}=0.24$ in DCM$)$.

(7R,1'S,6'S)-(10,10-dimethyl-3,3-dioxo-3 λ^{6}-thia-4-aza-tricyclo[5.2.1.0 $\left.{ }^{0,0}\right]$ dec-4-yl)-

 (6'-methyl-cyclohex-3'-enyl)-methanone 292

To freshly condensed 1,3 -butadiene (approx 68 ml , approx 1260 mmol) at $-20^{\circ} \mathrm{C}$ was added $291^{102}(35.67 \mathrm{~g}, 126.48 \mathrm{mmol})$ in DCM $(245 \mathrm{ml})$ over 20 mins. A solution of $\mathrm{EtAlCl}_{2}(1.0 \mathrm{M}$ in hexanes, $189.73 \mathrm{ml}, 189.73 \mathrm{mmol})$ was then added over 30 mins . The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 3 days. The reaction was diluted with DCM (11) and quenched at $0^{\circ} \mathrm{C}$ with 10% (aq) Rochelles salt (1.51). The quenched mixture
was vigorously stirred for 1.5 hrs during which time it heated to rt . The resulting mixture was filtered through a thin plug of Celite ${ }^{\mathrm{TM}}$ and the filtrate was stirred for a further 1 hr at rt . The now clear layers were separated and the aqueous extracted ($3 \times 500 \mathrm{ml}$ EtOAc). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $40: 1$) to afford the title compound as a white crystaline solid $(41.54 \mathrm{~g}, 98 \%)$.
$\mathrm{R}_{\mathrm{f}} 0.29$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.90(6 \mathrm{H}, \mathrm{m}, 1 \mathrm{xMe}-10$ superimposing MeCH$), 1.07(3 \mathrm{H}$, $\mathrm{s}, 1 \mathrm{xMe}-10), 1.30-1.37(2 \mathrm{H}, \mathrm{m}), 1.67-1.89(4 \mathrm{H}, \mathrm{m}), 1.92-2.10(5 \mathrm{H}, \mathrm{m}), 2.29-2.34(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}(\mathrm{CO})), 2.85(1 \mathrm{H}, \mathrm{dt}, J 5.5,10.5, \mathrm{NCHCHH}-\alpha), 3.38\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{NSO}_{2} \mathrm{CHH}\right)$, $3.45\left(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{NSO}_{2} \mathrm{CHH}\right), 3.86\left(1 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{NCHCH}_{2}\right), 5.57(2 \mathrm{H}$, apps, $\mathrm{HC}=\mathrm{CH})$.
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.20,19.58,20.82,26.39,28.44,29.51,30.48,32.74,32.93$, 38.47, 47.31, 47.68, 48.17, 53.19, 64.94, 124.48, 126.73, 175.19.
$v_{\text {max }}(\mathrm{KBr}$ disc) 3000-2837(s, C-H), 1738 ($\mathrm{s}, \mathrm{C}=\mathrm{O}), 1682(\mathrm{~s}, \mathrm{C}=\mathrm{C}), 1459(\mathrm{~m}), 1399(\mathrm{~m})$, $1321\left(\mathrm{~s}, \mathrm{SO}_{2}\right), 1274$ (m), 1238 (s), 1208 (s), $1169\left(\mathrm{~m}, \mathrm{SO}_{2}-\mathrm{N}\right), 1129(\mathrm{~s}), 1060(\mathrm{~s}, \mathrm{~S}=\mathrm{O})$, $1000(\mathrm{~m}), 769(\mathrm{~m}), 740(\mathrm{w}), 713$ (w), 662 (w), 539 (s), $502(\mathrm{w})$.
$m / z(\mathrm{FAB}) 360\left([\mathrm{MNa}]^{+}, 2\right), 338\left([\mathrm{MH}]^{+}, 100\right), 135(31), 121(35), 107(66), 95(100)$, 79 (78), 67 (72), 55 (89\%).

HRMS (FAB) found $m / z 338.1783 ; \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{MH}]^{+}$requires $m / z 338.1790$. $[\alpha]_{D}^{21}+154.1(c=0.27$ in $\operatorname{DCM})$.
mp $187-190^{\circ} \mathrm{C}$.
(1S,6S)-6-Methyl-3-cyclohex-3-enecarboxylic acid 28799

To a solution of $292(35 \mathrm{~g}, 104.17 \mathrm{mmol})$ in THF $(812 \mathrm{ml})$ and water $(812 \mathrm{ml})$ at rt in a flask which was open to air was added $\mathrm{LiOH}(21.8 \mathrm{~g}, 520.8 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(70 \mathrm{ml}$, 1041.6 mmol) in single portions. The resulting mixture was stirred vigorously at rt for 5 hrs. The reaction mixture was extracted $\left(3 \times 150 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}\right)$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was recrystalised from EtOH to afford (7R)-10,10-dimethyl-5-thia-4-azatricyclo[5.2.1.0]decane-5,5dioxide as a white crystaline solid $(19.60 \mathrm{~g}, 87 \%)$. The aqueous layer was acidified to $\mathrm{pH}=2$ with conc HCl , extracted $(3 \times 150 \mathrm{ml}$ EtOAc), and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo to afford the title compound as a clear oil (14.01g, 89\%).
$\mathrm{R}_{\mathrm{f}} 0.19$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.03(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.71-1.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHCHCO}_{2} \mathrm{H}\right)$, 1.92-1.97 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHCHCO}_{2} \mathrm{H}\right), 2.16-2.33\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 5.67(2 \mathrm{H}$, apps, $\mathbf{H C}=\mathbf{C H}), 11.0-11.6\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathbf{H}\right)$.
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.69(\mathrm{Me}), 28.35\left(\mathrm{CH}_{2}\right), 30.25\left(\mathrm{MeCHCHCO}_{2} \mathrm{H}\right), 32.83\left(\mathrm{CH}_{2}\right)$, $46.77\left(\mathrm{MeCHCHCO}_{2} \mathrm{H}\right), 124.47(=\mathrm{CH}), 126.27(=\mathrm{CH}), 182.56(\mathrm{C}=\mathrm{O})$.
$\nu_{\max }$ (thin film) 3600-2350 (br s, OH and C-H), 1698 (s, C=O), 1596 (w), 1574 (m), 1417 (m), 1306 (s), 1264 (s), 1074 (m), 898 (m), 749 (s), 720 (s).
$[\alpha]_{D}^{22}+41.6(\mathrm{c}=0.19$ in DCM$) ;$ Lit. Value $[\alpha]_{D}^{24}+76.7\left(\mathrm{c}=9.78, \mathrm{CHCl}_{3}\right)$. (1S,2S,4S,5R)-4-methoxymethoxy-2-methyl-6-oxa-bicyclo[3.2.1]octan-7-one 294

To a stirred solution of $287(119 \mathrm{mg}, 0.87 \mathrm{mmol})$ in $\mathrm{PhMe}(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added m CPBA $(50 \%, 329 \mathrm{mg}, 0.96 \mathrm{mmol})$ in a single portion. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for $3 \mathrm{hrs} . \mathrm{Et}_{3} \mathrm{~N}(1.19 \mathrm{ml}, 8.75 \mathrm{mmol})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$. The resulting mixture was heated at $30^{\circ} \mathrm{C}$ for $4 \mathrm{hrs} . \mathrm{MOMCl}(146 \mu \mathrm{l}, 1.92 \mathrm{mmol})$ was then added slowly to the reaction mixture at $30^{\circ} \mathrm{C}$ over 20 mins. The resulting mixture was stirred at $30^{\circ} \mathrm{C}$ for 2.5 hrs . The reaction mixture was diluted with EtOAc (200 ml) and washed with 5% (aq) $\mathrm{KOH}(100 \mathrm{ml})$, and then satd (aq) $\mathrm{NaCl}(100 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 10:1) to afford the title compound as a clear oil ($157 \mathrm{mg}, 89 \%$) and as an inseparable 1:1 mixture of the two diastereoisomers above.
$\mathrm{R}_{\mathrm{f}} 0.74$ (petrol:ethyl acetate; $1: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right)$ 0.80-0.84 (3H, $\left.2 \mathrm{xd}, J 6.5,6.5, \mathrm{MeCH}\right), 1.31-2.28(6 \mathrm{H}$, $\mathrm{m})$, $3.06-3.15(2 \mathrm{H}, \mathrm{m}), 3.35-3.57\left(3 \mathrm{H}, \mathrm{m}, \mathrm{MeOCH}_{2}\right), 5.12-5.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeOCH}_{2}\right)$.
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right) 19.07$ and $19.18\left(\mathrm{CH}_{3}\right), 26.36(\mathrm{CH}), 26.76\left(\mathrm{CH}_{2}\right)$, $28.42\left(\mathrm{CH}_{2}\right), 29.56(\mathrm{CH}), 31.91\left(\mathrm{CH}_{2}\right), 32.73\left(\mathrm{CH}_{2}\right), 43.19(\mathrm{CH}), 45.98(\mathrm{CH}), 50.05$ $(\mathrm{CH}), 51.05(\mathrm{CH}), 51.91(\mathrm{CH}), 52.24(\mathrm{CH}), 57.34$ and $57.38\left(\mathrm{CH}_{3}\right), 90.02$ and 90.08 $\left(\mathrm{CH}_{2}\right), 174.28$ and $174.75(\mathrm{CO})$.
$v_{\max }($ thin film $) 3000-2850(\mathrm{~m}, \mathrm{C}-\mathrm{H}), 1740$ (s, C=O), 1435 (w), 1371 (w), 1312 (m), 1243 (m), 1215 (m), 1159 (s), 1134 (s), 1094 (s), 1077 (s), 988 (s), 964 (s), 931 (m), 822 (m), 785 (m).
$m / z(\mathrm{FAB}) 201\left([\mathrm{MH}]^{+}, 100\right), 185(37), 171(14), 163(19), 137(25), 109(15 \%)$.
HRMS (FAB) found m / z 201.1120; $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{MH}]^{+}$requires m / z 201.1127. $[\alpha]_{\mathrm{D}}^{19}+23.2(\mathrm{c}=0.34$ in DCM $)$.
(1S,3S,4S,6R)-4-Methyl-7-oxa-bicyclo[4.1.0]heptane-3-carboxylic acid methyl ester 296

To a solution of $287(200 \mathrm{mg}, 1.43 \mathrm{mmol})$ in $\mathrm{DCM}(6 \mathrm{ml})$ and water $(6 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ in a flask open to air and protected from light was added $\mathrm{NaHCO}_{3}(360 \mathrm{mg}, 4.29 \mathrm{mmol})$, KI ($354 \mathrm{mg}, 2.14 \mathrm{mmol}$), and I_{2} ($541 \mathrm{mg}, 2.14 \mathrm{mmol}$) in single portions. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 hrs . The reaction mixture was quenched with satd (aq) $\mathrm{Na}_{2} \mathrm{SO}_{3}(200 \mathrm{ml})$ and extracted (3x50ml DCM). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 3:1) to afford yellow, white crystals presumed to. be the iodolactone 295 ($232 \mathrm{mg}, 62 \%$). To the iodolactone 295 ($202 \mathrm{mg}, 0.76 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(7 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$ was added $\mathrm{NaOMe}(0.4 \mathrm{M}$ in $\mathrm{MeOH}, 1.90 \mathrm{ml}, 0.78 \mathrm{mmol})$ dropwise over 2 mins. The resulting mixture was stirred for a further 15 mins during which time the cooling bath heated to $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with EtOAc (100 ml) and washed with satd $(\mathrm{aq}) \mathrm{NaCl}(50 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography
(petrol:ethyl acetate; 3:1) to afford the title compound as a clear oil ($112 \mathrm{mg}, 88 \%$) albeit contaminated with a trace amount of an inseparable aromatic contaminant.
$\mathrm{R}_{\mathrm{f}} 0.24$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCH}), 1.40(1 \mathrm{H}, 2 \mathrm{xdd}, J 1.7,11.0), 1.81-$ $1.88(1 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{dt}, J 6.6,10.8, \mathrm{MeCH}), 2.08-2.23(3 \mathrm{H}, \mathrm{m}), 3.15-3.18(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}(\mathrm{O}) \mathrm{CH}), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, (minor peaks owing to the contaminant; 1.05 (s), 7.39-7.68(m)).
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.26(\mathrm{MeCH}), 26.75,27.03,33.01,45.97,50.29,51.46$ $(\mathrm{CH}(\mathrm{O}) \mathrm{CH}), \quad 51.47\left(\mathrm{CO}_{2} \mathbf{M e}\right), 52.49(\mathrm{CH}(\mathrm{O}) \mathrm{CH}), 175.48\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, (minor peaks owing to the contaminant; $14.16,37.26,67.47,68.54,127.68,129.71,133.08,135.50)$. $v_{\text {max }}$ (thin film) 3000-2900 (s, C-H), 1735 (s, C=O), 1435 (s), 1376 (m), 1318 (s), 1261 (s), 1171 (s), 1147 (s), 1110 (m), 1080 (m), 1024 (m), 988 (m), 903 (w), 864 (w), 825 (m), 785 (m), 744 (w), 706 (m), 669 (w).
$m / z(\mathrm{FAB}) 171\left([\mathrm{MH}]^{+}, 44\right), 165(25), 153(76), 139(91), 121(65), 111(97), 107$ (100\%).

HRMS (FAB) found m / z 171.1024; $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{MH}]^{+}$requires m / z 171.1021. $[\alpha]_{D}^{24}+93.2(c=0.15$ in DCM).
(1S,3S,4S,6R)-(4-Methyl-7-oxa-bicyclo[4.1.0]hept-3-yl)-methanol 297

To a solution of $296(6.63 \mathrm{~g}, 38.94 \mathrm{mmol})$ in THF $(300 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added LiBH_{4} $(96 \%, 1.96 \mathrm{~g}, 85.66 \mathrm{mmol})$ in a single portion. The $\mathrm{CO}_{2} /$ acetone bath was removed and replaced with an ice/water bath and stirring was continued for 2 hrs during which time
the reaction mixture heated to $0^{\circ} \mathrm{C}$. The ice/water bath was then removed and stirring was continued for 17.5 hrs during which time the reaction mixture heated to rt . The reaction mixture was quenched carefully at $0^{\circ} \mathrm{C}$ with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and extracted (3 x 100 ml EtOAc). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $10: 1 \rightarrow 1: 1$) to afford the title compound as a white crystaline solid (4.99 g , 90\%).
$\mathrm{R}_{\mathrm{f}} 0.18$ (petrol:ethyl acetate; 1:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{Me}), 1.26-1.49(3 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{q}, J 12.9)$, 2.16-2.21 (1H, m), $2.45(1 \mathrm{H}, \mathrm{dt}, J 3.9,13.4), 2.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.55(1 \mathrm{H}, \mathrm{dd}, J 5.5$, 10.7, CHHOH), $3.61-3.72(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}(\mathrm{O}) \mathrm{CH}), 3.74(1 \mathrm{H}, \mathrm{dd}, J 4.6,10.7, \mathrm{CHHOH})$, 4.02-4.10 (1H, m, HC(O)CH).
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.42(\mathrm{Me}), 35.46(\mathrm{CHMe}), 36.58\left(\mathrm{CH}_{2}\right), 41.52(\mathrm{HC}(\mathrm{O}) \mathrm{CH})$, $44.39\left(\mathrm{CHCH}_{2} \mathrm{OH}\right), 46.78\left(\mathrm{CH}_{2}\right), 64.52\left(\mathrm{CH}_{2} \mathrm{OH}\right), 75.95(\mathrm{HC}(\mathrm{O}) \mathrm{CH})$.
$v_{\text {max }}($ thin film) $3363(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3000-2865(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1435(\mathrm{~s}), 1358(\mathrm{~s}), 1238(\mathrm{~s}), 1155$ (s), 1052 (s), 925 (s), 703 (s).
$m / z(\mathrm{EI} @ 70 \mathrm{eV}) 143\left([\mathrm{MH}]^{+}, 2\right), 125\left(\left[(\mathrm{MH})-\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}, 100\right), 107(74), 95(44), 91(23)$, 81 (37), 69 (26), 54 (95), 41 (66), 37 (27\%).

HRMS (CI) found m / z 160.1337; $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{MNH}_{4}\right]^{+}$requires m / z 160.1337.
$[\alpha]_{\mathrm{D}}^{19}+25.6(\mathrm{c}=0.27$ in DCM$)$.
$\mathrm{mp} 147-151^{\circ} \mathrm{C}$. silane 298

To a stirred solution of $297(4.71 \mathrm{~g}, 33.17 \mathrm{mmol})$ in $\mathrm{DCM}(250 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($13.3 \mathrm{ml}, 99.52 \mathrm{mmol}$) over 1 min and DMAP ($202 \mathrm{mg}, 1.65 \mathrm{mmol}$) in a single portion. The resulting mixture was stirred for 4 mins at $0^{\circ} \mathrm{C}$ before $\operatorname{TBDPSCl}(10 \mathrm{ml}$, 36.94 mmol) was added over 2 mins. The ice/water bath was removed and stirring was continued for 15.5 hrs during which time the reaction mixture heated to rt . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ and washed with satd (aq) $\mathrm{NaHCO}_{3}(250 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 30:1) to afford the title compound as a white crystalline solid $(12.46 \mathrm{~g}, 99 \%)$ and as a $\sim 10: 1$ mixture of diastereoisomers.
$\mathrm{R}_{\mathrm{f}} 0.80$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.14(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.21-1.41(1 \mathrm{H}, \mathrm{m})$, $1.37-1.53(1 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{q}, J 12.7), 2.25(1 \mathrm{H}, \mathrm{dt}, J 4.3,12.3), 2.45-2.52(2 \mathrm{H}, \mathrm{m})$, $3.62\left(1 \mathrm{H}, \mathrm{dd}, J, 5.4,10.2, \mathrm{CHHOSiR}_{3}\right), 3.67\left(1 \mathrm{H}, \mathrm{dd}, J 3.1,10.2, \mathrm{CHHOSiR}_{3}\right), 3.73-$ $3.78(1 \mathrm{H}, \mathrm{dt}, J 4.5,10.8, \mathrm{CH}(\mathrm{O}) \mathrm{CH}), 4.08-4.14(1 \mathrm{H}, \mathrm{dt}, J 4.5,10.0, \mathrm{CH}(\mathrm{O}) \mathrm{CH}), 7.42-$ $7.82(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, (minor diastereomer; $0.83(\mathrm{~d}, J 6.5), 3.18-3.53(\mathrm{~m})$). $\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 18.35,18.96,26.53,35.26,36.72,42.19,44.58,46.78$, $65.18,76.13,127.65,129.56,134.77,135.15$, (minor diastereomer; 19.29, 26.86, 34.34, 41.22, $52.15,53.11,65.53,129.72,135.15)$.
$\nu_{\text {max }}$ (thin film) 3418 (br s, wet plate), 3070-2850 (s, C-H), 1960 (w), 1891 (w), 1590 (w), 1468 (m), 1428 (m), 1389 (m), 1362 (m), 1258 (m), 1159 (m), $1110(\mathrm{~s}), 1003(\mathrm{~m})$, 938 (w), 821 (s), 740 (s), 703 (s), 606 (s).
$m / z(\mathrm{FAB}) 403\left([\mathrm{MNa}]^{+}, 4\right), 381\left([\mathrm{MH}]^{+}, 16\right), 323\left([(\mathrm{M})-(t-\mathrm{Bu})]^{+}, 21\right), 303(10), 245$
(13), 199 (100), 183 (20), 135 (73), 125 (13), 107 (37), 95 (16), 75 (19\%).

HRMS (FAB) found $m / z 403.2087 ; \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{MNa}]^{+}$requires $m / z 403.2069$. $[\alpha]_{\mathrm{D}}^{21}+21.4(\mathrm{c}=0.36$ in DCM $)$.
$\operatorname{mp} 175-177{ }^{\circ} \mathrm{C}$.
(1S,2S,4S,5S)-5-Methyl-4-(t-butyl-diphenyl-silanyloxymethyl)-2-phenylselanylcyclohexanol 299

To a bright yellow solution of $(\mathrm{PhSe})_{2}(2.26 \mathrm{~g}, 19.66 \mathrm{mmol})$ in $\mathrm{EtOH}(162 \mathrm{ml})$ at rt was added $\mathrm{NaBH}_{4}(1.48 \mathrm{~g}, 39.33 \mathrm{mmol})$ in approx 100 mg portions over 1 min . The resulting mixture was stirred at rt for 4 mins during which time the yellow colour of the solution dissipated. A solution of $298(12.46 \mathrm{~g}, 32.77 \mathrm{mmol})$ in $\mathrm{EtOH}(64 \mathrm{ml})$ was added over 5 mins and the resulting mixture was heated at reflux for 3 hrs . Upon cooling to rt , the reaction mixture was diluted with $\mathrm{EtOAc}(500 \mathrm{ml})$ and washed with satd (aq) NaCl (300 ml). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $40: 1 \rightarrow 20: 1$) to afford the title compound as a pale, yellow oil $(15.18 \mathrm{~g}, 86 \%)$.
$\mathrm{R}_{\mathrm{f}} 0.54$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{Me}), 1.07(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.59-1.67(2 \mathrm{H}, \mathrm{m})$, 1.78-1.94 (3H, m), $2.07(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.16-2.2\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{OSiR}_{3}\right), 3.31-3.34(1 \mathrm{H}$, $\mathrm{m}, \mathrm{PhSeCH}), 3.64\left(1 \mathrm{H}, \mathrm{dd}, J 6.8,10.1, \mathrm{CHHOSiR}_{3}\right), 3.69(1 \mathrm{H}, \mathrm{dd}, J 4.6,10.1$, CHHOSiR ${ }_{3}$), $3.90(1 \mathrm{H}$, apps, CHOH$), 7.25-7.68(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.28(\mathrm{MeCH}), 19.62\left(\mathrm{CMe}_{3}\right), 26.85\left(\mathrm{CMe}_{3}\right), 27.62,28.75$, 36.38, 41.46, $50.74(\mathrm{PhSeCH}), 65.62\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 68.82(\mathrm{CHOH}), 127.04(\mathrm{Ph}), 127.62$ $(\mathrm{Ph}), 128.98(\mathrm{Ph}), 129.57(\mathrm{Ph}), 131.88(\mathrm{Ph}), 133.47(\mathrm{Ph}), 134.50(\mathrm{Ph}), 135.58(\mathrm{Ph})$.
$v_{\max }($ thin film) 3380 (br s, OH), 3070-2900 (s, C-H), 1587 (w), 1473 (m), 1429 (m), 1110 (s), 821 (m), 740 (s), 702 (s).
$m / z(\mathrm{FAB}) 671$ ([MHCs] $\left.{ }^{+}, 7\right), 415(10), 355(16), 327(22), 281$ (47), 239 (46\%).
HRMS (FAB) found $m / z 671.0835 ; \mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{SeSiCs}[\mathrm{MHCs}]^{+}$requires $m / z 671.0861$. $[\alpha]_{D}^{18}+10.5(\mathrm{c}=0.35$ in DCM $)$.

(1S,4S,5S)-5-Methyl-4-(t-butyl-diphenyl-silanyloxymethyl)-cyclohex-2-enol 300

To a solution of $299(4.0 \mathrm{~g}, 7.45 \mathrm{mmol})$ in THF (32 ml) at rt in a flask open to air was added a solution of $\mathrm{NaIO}_{4}(6.37 \mathrm{~g}, 29.80 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(32 \mathrm{ml})$ in a single portion. The resulting mixture was stirred at rt for 16 hrs . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(200 \mathrm{ml})$ and washed with satd $(\mathrm{aq}) \mathrm{NaHCO}_{3}(500 \mathrm{ml})$. The aqueous layer was extracted ($2 \mathrm{x} 100 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $3: 1 \rightarrow 1: 1$) to afford the title compound as a white foam $(2.61 \mathrm{~g}, 92 \%)$. $\mathrm{R}_{\mathrm{f}} 0.17$ (petrol:ethyl acetate; $3: 1$).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.94(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.03(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me}), 1.62-1.84(3 \mathrm{H}, \mathrm{m})$, 2.94-2.98 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{OSiR}_{3}\right), 3.44\left(1 \mathrm{H}\right.$, appt, $\left.J 8.2, \mathrm{CHHOSiR}_{3}\right), 3.56(1 \mathrm{H}, \mathrm{dd}, J$ $\left.4.5,10.3, \mathrm{CHHOSiR}_{3}\right), 4.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.52(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 7.35-7.94(12 \mathrm{H}, \mathrm{m}$, Ph superimposing alkenic protons).
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.09(\mathrm{MeCH}), 19.71\left(\mathrm{CMe}_{3}\right), 21.34,26.75\left(\mathrm{CMe}_{3}\right), 28.09$, 36.25, 41.29, $65.22\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 66.19\left(\mathrm{CHCH}_{2} \mathrm{OSiR}_{3}\right), 66.84(\mathrm{CHOH}), 125.31$, $127.64,129.06,129.64,132.08,133.25,135.04,142.39$.
$v_{\text {max }}$ (thin film) 3382 (br s, OH), 3070-2900 (s, C-H), 1589 (w), 1428 (m), 1308 (w), 1110 (s), 1019 (s), 912 (w), 821 (m), 739 (s), 702 (s).
$m / z(\mathrm{FAB}) 403\left([\mathrm{MNa}]^{+}, 8\right), 363\left(\left[(\mathrm{MH})-\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+} 33\right), 323(8), 269(14), 229(19), 199$ (92), 183 (26), 165 (30), 154 (67), 135 (100), 121 (38\%).

HRMS (FAB) found m / z 403.2087; $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SNa}[\mathrm{MNa}]^{+}$requires m / z 403.2069.
$[\alpha]_{\mathrm{D}}^{22}+32.0(\mathrm{c}=0.27$ in DCM $)$.
(4S,5S)-5-Methyl-4-(t-butyl-diphenyl-silanyloxymethyl)-cyclohex-2-enone 301

A suspension of $\mathrm{MnO}_{2}(1.77 \mathrm{~g}, 20.36 \mathrm{mmol})$ in $\mathrm{PhMe}(20 \mathrm{ml})$ was heated at reflux for 2.5 hrs with azeotropic removal of water (Dean-Stark apparatus). A solution of $\mathbf{3 0 0}(177 \mathrm{mg}$, 0.47 mmol) in PhMe (5 ml) was added over 5 secs and the resulting suspension was heated at reflux for 1 hr . After cooling to rt , the reaction mixture was filtered through a thin plug of Celite ${ }^{\mathrm{TM}}$ and the filtrate was conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 10:1) to afford the title compound as a clear oil ($2.61 \mathrm{~g}, 92 \%$).
$\mathrm{R}_{\mathrm{f}} 0.71$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.98(3 \mathrm{H}, \mathrm{d}, J 5.8, \mathrm{Me}), 1.09(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.14-2.26(3 \mathrm{H}, \mathrm{m})$, $2.48(1 \mathrm{H}, \mathrm{d}, J 12.4), 3.71\left(1 \mathrm{H}, \mathrm{dd}, J 5.9,10.1, \mathrm{CHHOSiR}_{3}\right), 3.88(1 \mathrm{H}, \mathrm{dd}, J 4.0,10.1$, CHHOSiR $_{3}$), $6.09(1 \mathrm{H}, \mathrm{dd}, J$ 2.2, 10.2, $\mathrm{CHCH}(\mathrm{CO})), 7.02(1 \mathrm{H}, \mathrm{dd}, J$ 2.2, 10.1, $\mathrm{CHCH}(\mathrm{CO})$), $7.33-7.72(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.28(\mathrm{MeCH}), 19.44\left(\mathrm{CMe}_{3}\right), 26.82\left(\mathrm{CMe}_{3}\right), 31.03,45.19$, 46.18, $64.02\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 127.76(\mathrm{Ph}), 129.69(\mathrm{Ph}), 129.82(\mathrm{Ph}), 133.23(\mathrm{CHCH}(\mathrm{CO}))$, $135.59(\mathrm{Ph}), 152.48(\mathrm{CHCH}(\mathrm{CO})), 199.91(\mathrm{C}=\mathrm{O})$.
$\nu_{\max }($ thin film $) 3070-2850(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1680(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1468(\mathrm{~m}), 1427(\mathrm{~m}), 1392(\mathrm{~m})$, 1247 (w), 1109 (s), 1000 (m), 867 (m), 823 (m), 741 (m), 703 (s).
$m / z(\mathrm{FAB}) 401\left([\mathrm{MNa}]^{+}, 4\right), 378\left([\mathrm{MH}]^{+}, 4\right), 377\left([\mathrm{M}-\mathrm{H}]^{+}, 9\right), 321\left([\mathrm{M}-(t-\mathrm{Bu})]^{+}, 24\right)$, 239 (11), 197 (45), 165 (22), 135 (100), 105 (23), 91 (18\%).

HRMS (FAB) found m / z 401.1904; $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{MNa}]^{+}$requires $m / z 401.1913$.
$[\alpha]_{D}^{22}+38.3(c=0.39$ in DCM $)$.
(2E,4S,6R)-7-(t-Butyl-diphenyl-silanyloxy)-6-methyl-hept-2-en-4-ol, (2E,4R,6R)-7-(t-butyl-diphenyl-silanyloxy)-6-methyl-hept-2-en-4-ol diphenyl-silanyloxy)-6-methyl-hept-2-en-4-ol, and (2Z,4R,6R)-7-(t-butyl-diphenyl-silanyloxy)-6-methyl-hept-2-en-4-ol 306

To a solution of $305^{100}(487 \mathrm{mg}, 1.56 \mathrm{mmol})$ in THF $(15 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added 1propenylmagnesium bromide (0.5 M in $\mathrm{THF}, 4.7 \mathrm{ml}, 2.34 \mathrm{mmol}$) over 3 mins . The CO_{2} /acetone bath was removed and replaced with an ice/water bath and the resulting mixture was stirred for 41 mins. The reaction mixture was quenched at $0^{\circ} \mathrm{C}$ by the rapid addition of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and extracted $(3 \times 50 \mathrm{ml} \mathrm{Et} 2 \mathrm{O})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $15: 1$) to afford the title compound as a clear oil ($589 \mathrm{mg}, 99 \%$) and as a inseparable $1: 1: 1: 1$ mixture of the four possible diastereoisomers.
$\mathrm{R}_{\mathrm{f}} 0.51$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ complex owing to diastereomers $0.95-1.00(3 \mathrm{H}, 4 \mathrm{xd}, J 6.8,6.8$, 6.8, 6.8, MeCHCH_{2}), $1.12(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.33-1.95\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}\right), 1.67-1.73(3 \mathrm{H}$, $4 \mathrm{xd}, J 6.9,7.0,6.9,6.9, \mathrm{MeCHCH}), 2.1-2.3(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.55-3.61(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 4.15-4.69(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.43-5.73(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH}), 7.70-7.82(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, CDCl_{3}) complex owing to diastereomers $13.17,13.25,17.40$, $17.46,19.21,26.80,32.23,32.31,33.09,41.49,41.63,42.14,42.24,65.28,65.69$, 68.96, 69.32, 69.41, 70.96, 71.22, 125.48, 125.94, 126.10, 126.57, 127.60, 129.58, $133.51,133.54,133.99,134.29,134.67,134.77,135.58$.
$v_{\max }$ (thin film) 3381 (br s, OH), 3072-2840 (s, C-H), 1590 (m), 1427 (m), 109 (s), 642 (s).
$m / z(\mathrm{FAB}) 405\left([\mathrm{MNa}]^{+}, 2\right), 383\left([\mathrm{MH}]^{+}, 5\right), 365\left([\mathrm{M}-(t-\mathrm{Bu})]^{+}, 9\right), 325(4), 303(3), 239$ (6), 199 (53), 183 (11), 135 (37), 109 (100), 67 (19\%).

HRMS (FAB) found $m / z 383.2415 ; \mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 383.2406$.
$[\alpha]_{\mathrm{D}}^{22}+10.2(\mathrm{c}=0.42$ in DCM).
(2E,6R)-7-(t-Butyl-diphenyl-silanyloxy)-6-methyl-hept-2-en-4-one 304 and (2Z,6R)-7-(t-butyl-diphenyl-silanyloxy)-6-methyl-hept-2-en-4-one 307

To a solution of $306(80 \mathrm{mg}, 0.21 \mathrm{mmol})$ in DMF (10 ml) at rt was added PDC (236 mg , 0.63 mmol) in a single portion and the resulting mixture was stirred vigorously at ft for 13 hrs . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and extracted $(3 \times 15 \mathrm{ml}$ $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 40:1) to afford the title compounds as clear oils ($E ; 37 \mathrm{mg}, 52 \%: Z ; 41 \mathrm{mg}, 47 \%: E: Z ; 1: 1.1$). (2E,6R)-7-(t-Butyl-diphenyl-silanyloxy)-6-methyl-hept-2-en-4-one 304 $\mathrm{R}_{\mathrm{f}} 0.50$ (petrol:ethyl acetate; $10: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.92\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{MeCHCH}_{2}\right), 1.07(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.89$ $(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{MeCHCH}), 2.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHCO}\right.$, superimposing $\left.\mathrm{MeCHCH}_{2}\right), 2.82(1 \mathrm{H}$, dd, $J 6.0,16.0$, CHHCO), 3.48 (1H, dd, $J 6.5,10.0$, CHHSiOR $_{3}$), $3.55(1 \mathrm{H}, \mathrm{dd}, J 6.5$, 12.0, $\mathrm{CHHOSiR}_{3}$), $6.13(1 \mathrm{H}, \mathrm{d}, J 14.0, \mathrm{CHCH}(\mathrm{Me})), 6.84(1 \mathrm{H}$, appdd, $J 6.0,14.0$, CHCH(Me)), 7.36-7.67 (10H, m, Ph).
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.75\left(\mathrm{CMe}_{3}\right), 18.20\left(\mathrm{MeCHCH}_{2}\right), 19.28(\mathbf{M e C H C H}), 26.84$ $\left(\mathrm{CMe}_{3}\right), 32.51\left(\mathrm{CH}_{2} \mathbf{C H M e}\right), 43.68\left(\mathrm{CH}_{2} \mathrm{CO}\right), 68.34\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 127.61(\mathrm{Ph}), 129.57$ (Ph), 132.35 ($\mathrm{CHCH}(\mathrm{Me})$), 133.73 (Ph), 135.57 (Ph), 142.44 ($\mathrm{CHCH}(\mathrm{Me})$), 200.22 (CO).
$v_{\max }($ thin film $) 3072-2840(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1696(\mathrm{~m}, \mathrm{C}=\mathrm{O}), 1670(\mathrm{~m}, \mathrm{C}=\mathrm{O}), 1633(\mathrm{~m}, \mathrm{C}=\mathrm{C})$, 1513 (w), 1428 (m), 1365 (m), 1251 (m), 1109 (s), 971 (m), 824 (m), 740 (m), 703 (s). $m / z(\mathrm{FAB}) 381\left([\mathrm{MH}]^{+}, 26\right), 339(16), 323\left([\mathrm{M}-(t-\mathrm{Bu})]^{+}, 100\right), 303(50), 199(64), 135$ (53), 69 (30\%).

HRMS (FAB) found $m / z 381.2256 ; \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 381.2250$.
$[\alpha]_{\mathrm{D}}^{20}+15.5(\mathrm{c}=0.45$ in DCM$)$.

(2Z,6R)-7-(t-Butyl-diphenyl-silanyloxy)-6-methyl-hept-2-en-4-one 307

$\mathrm{R}_{\mathrm{f}} 0.35$ (petrol:ethyl acetate; $10: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.95\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{MeCHCH}_{2}\right), 1.06(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.11$ $(3 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{MeCHCH}), 2.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHH}(\mathrm{CO})\right.$ superimposing $\left.\mathrm{MeCHCH}_{2}\right), 2.75$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}(\mathrm{CO})), 3.48\left(1 \mathrm{H}, \mathrm{dd}, J 5.5,10.0, \mathrm{CHHOSiR}_{3}\right), 3.55(1 \mathrm{H}, \mathrm{dd}, J 6.0,10.0$, $\left.\mathrm{CHHOSiR}_{3}\right), 6.17(2 \mathrm{H}$, apps, $\mathbf{H C = C H}), 7.36-7.68(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.83\left(\mathrm{CMe}_{3}\right), 16.73(\mathbf{M e C H C H} 2), 19.25(\mathbf{M e C H C H}), 26.81$ $\left(\mathrm{CMe}_{3}\right), 32.23\left(\mathrm{CH}_{2} \mathbf{C H M e}\right), 47.95\left(\mathrm{CH}_{2} \mathrm{CO}\right), 68.22\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 127.58(\mathrm{Ph}), 127.97$ ($\mathrm{CHCH}(\mathrm{Me})$), $129.54(\mathrm{Ph}), 133.69(\mathrm{Ph}), 135.53(\mathrm{Ph}), 142.50(\mathrm{CHCH}(\mathrm{Me})), 201.54$ (CO).
$v_{\max }($ thin film $) 3072-2840(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1692(\mathrm{~m}, \mathrm{C}=\mathrm{O}), 1620(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 1512(\mathrm{w}), 1468$ (m), 1427 (m), 1389 (m), $1365(\mathrm{~m}), 1250(\mathrm{~m}), 1109(\mathrm{~m}), 936(\mathrm{w}), 824(\mathrm{~m}), 740(\mathrm{~m})$, 703 (s), 612 (s).
$m / z(\mathrm{FAB}) 381\left([\mathrm{MH}]^{+}, 6\right), 339\left([\mathrm{M}-(\mathrm{CHCH}(\mathrm{Me}))]^{+}, 7\right), 323\left([\mathrm{M}-(t-\mathrm{Bu})]^{+}, 80\right), 303$ (34), 199 (100), 135 (100), 125 (55), 69 (44\%).

HRMS (FAB) found m / z 381.2256; $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 381.2250$.
$[\alpha]_{\mathrm{D}}^{21}+21.9(\mathrm{c}=0.36$ in DCM$)$.
(2R,6R)-1-(t-Butyl-diphenyl-silanyloxy)-6-methoxy-2-methyl-heptan-4-one and (2R,6S)-1-(t-butyl-diphenyl-silanyloxy)-6-methoxy-2-methyl-heptan-4-one 308

To a stirred solution of $\mathbf{3 0 7}(53 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{ml})$ at rt was added NaOMe (0.4 M in $\mathrm{MeOH}, 0.53 \mathrm{ml}, 0.21 \mathrm{mmol}$) dropwise over 1 min . The resulting mixture was stirred at rt for 16 hrs . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and extracted ($3 \times 50 \mathrm{ml} \mathrm{EtOAc}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $40: 1 \rightarrow 20: 1$) to afford the title compounds as a clear oil (51 mg , $86 \%)$ and as an inseparable 1:1 mixture of the two possible diastereoisomers.
$\mathrm{R}_{\mathrm{f}} 0.27$ (petrol:ethyl acetate; 10:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.91\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{MeCHCH}_{2}\right), 1.07(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.16$ (3H, 2xd, J 6.0, 6.0, MeCHOMe), 2.20-2.29 (2H, m, CHHCHOMe superimposing CHHCHMe), $2.38(1 \mathrm{H}$, appdt, CHMe), 2.67-2.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHOMe}$ superimposing

CHHCHMe), 3.29-3.30 ($3 \mathrm{H}, 2 \mathrm{xs}, \mathrm{OMe}$), 3.44 (1 H , dd, $J 2.5,6.0, \mathrm{CHHOSiR}_{3}$), 3.53 ($1 \mathrm{H}, \mathrm{dd}, J 2.5,6.0, \mathrm{CHHOSiR}_{3}$), 3.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOMe}$), 7.27-7.72 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). $\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.70$ and $16.73\left(\mathrm{MeCHCH}_{2}\right), 19.22$ and 19.27 (MeCHOMe), $26.83(t-\mathrm{Bu}), 31.64$ and 31.73 (CHMe), $47.60\left(\mathrm{CH}_{2} \mathrm{CHMe}\right), 50.03$ and 50.07 $\left(\mathrm{CH}_{2} \mathrm{CHOMe}\right), 56.25(\mathrm{OMe}), 68.14$ and $68.23\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 73.14$ and 73.23 (CHOMe), 127.62 (Ph), 129.59 (Ph), 133.68 (Ph), $135.56(\mathrm{Ph}), 209.14$ and 209.18 (CO).
$v_{\text {max }}($ thin film) 3072-2850 (s, C-H), 1713 (m, C=O), 1467 (m), 1428 (m), 1373 (m), 1110 (s), 823 (m), 741 (m), 703 (s).
m / z (FAB) 413 ([MH] ${ }^{+}, 16$), 355 ([M-($\left.\left.t-\mathrm{Bu}\right)\right]^{+}, 100$), 339 (65), 323 (45), 303 (38), 297 (76), 277 (44), 239 (96), 219 (74), 213 (100), 207 (67\%).

HRMS (FAB) found m / z 413.2504; $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 413.2512$. $[\alpha]_{D}^{20}+13.2(\mathrm{c}=0.2 \mathrm{in} \mathrm{DCM})$.
(2R,3Z,5E)-(4-(t-Butyl-dimethyl-silanyloxy)-2-methyl-hepta-3,5-dienyloxy)-t-butyl-diphenyl-silane and (2R,3E,5E)-(4-(t-butyl-dimethyl-silanyloxy)-2-methyl-hepta-3,5-dienyloxy)-t-butyl-diphenyl-silane 309

To a stirred solution of $\mathbf{3 0 4}(287 \mathrm{mg}, 0.76 \mathrm{mmol})$ in $\mathrm{THF}(7 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added NaHMDS (1.0 M in THF, $0.84 \mathrm{ml}, 0.84 \mathrm{mmol}$) dropwise over 1 min . The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 6 mins before a solution of TBSOTf $(0.26 \mathrm{ml}$, 1.14 mmol) in THF (1 ml) was added streamwise over approx 5 secs. The resulting
mixture was stirred at $-78^{\circ} \mathrm{C}$ for 16 mins. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ (50 ml) and extracted (1 x 50 ml EtOAc). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 400:1) to afford the title compound as a sparingly volatile oil ($271 \mathrm{mg}, 72 \%$) and as an inseparable $1: 1$ mixture of geometric isomers.
$\mathrm{R}_{\mathrm{f}} 0.83$ (petrol:ethyl acetate; $10: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ 0.20-0.22 (6H, 4xs, SiMe S_{2}), 1.07 ($9 \mathrm{H}, \mathrm{s}, \boldsymbol{t}$ - $\mathrm{BuPh}_{2} \mathrm{Si}$), 1.08$1.19\left(12 \mathrm{H}, \mathrm{m}, \boldsymbol{t}\right.$ - $\mathrm{BuMe}_{2} \mathrm{Si}$ superimposing $\left.\mathrm{MeCHCH}_{2}\right), 1.71(3 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{MeC}(\mathrm{H})=)$, $3.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHCH}_{2}(\mathrm{CH})\right), 3.62-3.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 4.69(1 \mathrm{H}, \mathrm{d}, J 7.5$, CHC(OTBS)CH), $6.00(2 \mathrm{H}$, apps, $\mathbf{H C}=\mathrm{CH}), 7.35-7.96(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(125.8 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ complex owing to geometric isomers, $-4.40,-4.31,-3.61,-3.45$, $0.70,16.48,16.58,17.7,17.81,18.20,18.62,19.54,19.60,2.82,25.96,26.10,26.19$, $27.13,33.60,33.10,34.67,35.99,41.02,68.74,68.90,111.63,111.88,112.00,115.53$, 124.36, 127.47, 127.81, 128.20, 128.30, 128.51, 129.86, 129.91, 129.92, 130.75, $133.45,134.40,136.04,136.08,136.11,148.65,152.10,155.08$.
$v_{\max }$ (thin film) 3075-2850 (s, C-H), 1644 (m with shoulder $2 \mathrm{xC}=\mathrm{C}$), 1590 (w), 1469 (m), 1427 (m), 1387 (m), 1360 (m), 1305 (m), 1255 (s), 1196 (m), 1111 (s), 1104 (s), $962(\mathrm{~m}), 936(\mathrm{~m}), 886(\mathrm{~m}), 827(\mathrm{~s}), 780(\mathrm{~s}), 740(\mathrm{~m}), 703$ (s), 613 (s).
$m / z(\mathrm{FAB}) 495\left([\mathrm{MH}]^{+}, 13\right), 438\left([\mathrm{MH}-(t-\mathrm{Bu})]^{+}, 63\right), 418(18), 313(21), 271(100), 257$ (37\%).

HRMS (FAB) found m / z 495.3122; $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{MH}]^{+}$requires $m / z 495.3115$. $[\alpha]_{D}^{22}+9.6(c=0.44$ in DCM $)$.

butyl-diphenyl-silanyloxy)-5-methyl-hex-1-en-3-ol 312

$(3 R, 5 R)$

$(3 R, 5 R)$

To a stirred solution of $\mathbf{3 0 5}{ }^{100}(1.45 \mathrm{~g}, 4.66 \mathrm{mmol})$ in THF $(46 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added vinylmagnesium bromide (1.0 M in $\mathrm{THF}, 7.0 \mathrm{ml}, 6.98 \mathrm{mmol}$) over 1 min . The CO_{2} /acetone bath was removed and replaced with an ice/water bath and the resulting mixture was stirred for 1 hr . The reaction mixture was quenched at $0^{\circ} \mathrm{C}$ by the careful addition of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and extracted $\left(3 \times 150 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}\right)$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 10:1) to afford the title compound as a clear oil $(589 \mathrm{mg}, 99 \%)$ and as an inseparable $1: 1$ mixture of the two possible diastereomers.
$\mathrm{R}_{\mathrm{f}} 0.24$ (petrol:ethyl acetate; $10: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.82(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 0.97(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.30-1.85(3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHMe}\right), 2.0-2.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.32-3.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{COSiR}_{3}\right), 4.01-4.16(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 4.99(1 \mathrm{H}$, appt, $J 10.0,=\mathrm{CHH}-($ trans $)), 5.15(1 \mathrm{H}, \mathrm{dd}, J 6.0,17.0,=\mathrm{CHH}-($ cis $))$, $5.78\left(1 \mathrm{H}\right.$, ddd, $\left.J 6.0,10.0,17.0, \mathrm{HC}=\mathrm{CH}_{2}\right), 7.28-7.63(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 17.55(\mathrm{Me}), 19.21\left(\mathrm{CMe}_{3}\right), 26.82\left(\mathrm{CMe}_{3}\right), 32.12$ and $33.18(\mathrm{CHMe}), 41.40$ and $42.12\left(\mathrm{CH}_{2} \mathrm{CHMe}\right), 68.93$ and $69.50\left(\mathrm{CH}_{2} \mathrm{COSiR}_{3}\right), 71.09$ and $71.42(\mathrm{CHOH}), 114.08$ and $114.50\left(=\mathrm{CH}_{2}\right), 127.64(\mathrm{Ph}), 129.64(\mathrm{Ph}), 133.48(\mathrm{Ph})$, $135.60(\mathrm{Ph}), 141.25$ and $141.63\left(\mathrm{HC}=\mathrm{CH}_{2}\right)$.
$v_{\text {max }}$ (thin film) $3382(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3072-2850(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1710(\mathrm{~m}, \mathrm{HC}=\mathrm{CH}), 1589$ (w), $1469(\mathrm{~m}), 1427(\mathrm{~m}), 1390(\mathrm{~m}), 1363(\mathrm{~m}), 1261(\mathrm{~m}), 1189(\mathrm{~m}), 1110(\mathrm{~s}), 923(\mathrm{~m}), 824$ (m), 740 (m), 703 (s), 613 (s).
$\mathrm{m} / \mathrm{z}\left(\mathrm{APCI}, \mathrm{NH}_{3}\right) 369\left([\mathrm{MH}]^{+}, 9\right), 352\left(\left[(\mathrm{MH})-\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}, 16\right), 339(41), 279(42), 239$ (41), 201 (100), 179 (43), 129 (52\%).

HRMS (FAB) found m / z 369.2246; $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}[\mathrm{MH}]^{+}$requires $m / z 369.2250$. $[\alpha]_{\mathrm{D}}^{21}+10.9(\mathrm{c}=0.27$ in DCM $)$.
(1R,5S,6R)-6-(t-Butyl-dipenyl-silanylyoxymethyl)-5-methyl-cyclohex-2-enol 317

Solutions of 301 (104mg, 0.27 mmol) in $\mathrm{PhMe}(28 \mathrm{ml})$ and 309 ($271 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{PhMe}(10 \mathrm{ml})$ were transferred to an Ace pressure tube under N_{2} and the tube was sealed tightly. The sealed tube was heated at $190^{\circ} \mathrm{C}$ for 3 days. After cooling to rt , the sealed tube was opened carefully and the reaction mixture was conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 5:1) to afford the title compound as a yellow oil ($97 \mathrm{mg}, 95 \%$).
$\mathrm{R}_{\mathrm{f}} 0.43$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Brucker, $\left.\mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 0.95(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.11-1.76$ $(5 \mathrm{H}, \mathrm{m}), 3.46\left(1 \mathrm{H}, \mathrm{dd}, J 6.5,10.0, \mathrm{CHHOSiR}_{3}\right), 3.66\left(1 \mathrm{H}, \mathrm{dd}, J 4.5,10.0, \mathrm{CHHOSiR}_{3}\right)$, $4.04(1 \mathrm{H}$, appd, $J 3.5, \mathrm{CHOH}), 5.78-5.82(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CHCHOH}), 5.84(1 \mathrm{H}, \mathrm{dd}, J 1.5$, $10.0, \mathrm{HC}=\mathrm{CHCHOH}), 7.30-7.57(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.31(\mathrm{Me}), 19.84\left(\mathrm{CMe}_{3}\right), 24.75,26.86\left(\mathrm{CMe}_{3}\right), 38.76,45.82$, $64.19(\mathrm{CHOH}), 65.40\left(\mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 127.64(\mathrm{Ph}), 128.96(\mathrm{Ph}), 129.62(\mathrm{HC}=\mathrm{CHCHOH})$, $133.26(\mathrm{HC}=\mathbf{C H C H O H}), 133.68(\mathrm{Ph}), 135.61(\mathrm{Ph})$.
$v_{\max }($ thin film) 3341 (br s, OH), 3070-2850 (s, C-H), 1960 (w), 1891 (w), 1824 (w), 1737 (w), 1652 (w), 1590 (w), 1468 (s), 1428 (s), 1387 (m), 1256 (m), 1189 (m), 1110 (s), 1075 (s), 989 (s), 941 (m), 825 (s), 777 (s), 740 (s), 703 (s), 612 (s).
$m / z(\mathrm{FAB}) 403\left([\mathrm{MNa}]^{+}, 1\right), 363\left(\left[(\mathrm{MH})-\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}, 3\right), 199(55), 153,(72 \%)$.
HRMS (FAB) found m / z 403.2087; $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{MNa}]^{+}$requires $m / z 403.2069$. $[\alpha]_{\mathrm{D}}^{22}+26.7$ ($\mathrm{c}=0.47$ in DCM).
(4S,4'R,2' E)-4-Benzyl-3-[5'-(t-butyl-diphenyl-silanyloxy)-4'-methyl-pent-2'-enoyl]-oxazolidin-2-one 418

To a stirred solution of $244^{79}(5.98 \mathrm{~g}, 16.84 \mathrm{mmol})$ in MeCN (20 ml) containing LiCl $(1.30 \mathrm{~g}, 30.59 \mathrm{mmol})$ at rt was added Hünigs base $(13.3 \mathrm{ml}, 76.53 \mathrm{mmol})$ over 1 min and the resulting mixture was stirred at rt for 10 mins. A solution of $413^{76}(4.99 \mathrm{~g}$, 15.31 mmol) in MeCN (20 ml) was then added dropwise over 30 secs and the resulting mixture was stirred at rt for 13 hrs . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$, washed with $10 \%(\mathrm{aq}) \mathrm{HCl}(100 \mathrm{ml})$, and then satd (aq) $\mathrm{NaCl}(100 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 10:1) to afford the title compound as a faint yellow oil ($7.61 \mathrm{~g}, 86 \%$).
$\mathrm{R}_{\mathrm{f}} 0.16$ (petrol:ethyl acetate; $10: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 1.06(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.12(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 2.67(1 \mathrm{H}, \mathrm{m}$, MeCH), $2.82(1 \mathrm{H}, \mathrm{dd}, J 10.0,13.5, \mathrm{PhCHH}), 3.32(1 \mathrm{H}$, appdd, $J 10.0,13.5, \mathrm{PhCHH})$, $3.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 4.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right), 4.72(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 7.18-7.67$ ($17 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ superimposing alkenic protons).
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 15.70,19.30,28.85,37.86,39.70,55.27,55.33,66.07$, $67.59,120.05,127.29,127.68,128.94,129.46,129.66,133.52,135.38,135.61,153.90$, 165.03.
$v_{\max }($ thin film $) 3070-2858(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1779(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{CH}), 1681(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1634(\mathrm{~s}$, $\mathrm{HC}=\mathrm{CH}$), 1589 (w), 1472 (m), 1454 (m), 1428 (m), 1386 (s), 1359 (s), 1255 (s), 1209 (s), 1104 (s), 1027 (m), 1006 (m), 983 (w), 824 (m), 805 (m), 741 (s), 702 (s), 614 (s). $m / z(\mathrm{FAB}) 550\left([\mathrm{MNa}]^{+}, 15\right), 528\left([\mathrm{MH}]^{+}, 10\right), 470(79), 450(100), 416$ (7), 376 (11), 356 (24), 338 (15), 293 (44), 197 (81\%).

HRMS (FAB) found $m / z 550.2377 ; \mathrm{C}_{32} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{MNa}]^{+}$requires $m / z 550.2390$. $[\alpha]_{D}^{18}+19.5(c=0.30$ in DCM).
(4S,4'R,2'E)-4-Benzyl-3-[5'-hydroxy-4'-methyl-pent-2'-enoyl]-oxazolidin-2-one 419

To a vigorously stirred solution of $418(1.20 \mathrm{~g}, 2.28 \mathrm{mmol})$ in $\mathrm{MeCN}(10.3 \mathrm{ml})$ and THF (10.3ml) at rt in a plastic container was added with care 40% (aq) HF (5.16 ml) in a single portion. The resulting mixture was stirred vigorously at rt for 24 hrs . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and quenched with care by the addition of solid
$\mathrm{NaHCO}_{3}(10 \mathrm{~g})$ followed by the slow addition of water $(100 \mathrm{ml})$. The layers were separated and the aqueous layer extracted $\left(2 \times 50 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}\right)$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $5: 1 \rightarrow 1: 1$) to afford the title compound as a clear oil ($671 \mathrm{mg}, 97 \%$).
$\mathrm{R}_{\mathrm{f}} 0.33$ (petrol:ethyl acetate; 1:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 1.11(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 2.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.63(1 \mathrm{H}, \mathrm{m}$, MeCH), 2.77 ($1 \mathrm{H}, \mathrm{dd}, J 9.5,13.0, \mathrm{PhCHH}), 3.30(1 \mathrm{H}$, appdd, $J 3.0,13.0, \mathrm{PhCHH}), 3.64$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right), 4.71(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 7.18-7.67(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ superimposing alkenic protons).
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 15.52,37.75,39.57,36.66,55.24,66.10,66.43,120.68$, 127.21, 128.84, 129.33, 135.22, 152.9, 164.92.
$v_{\max }$ (thin film) 3443 (br s, OH), 3089-2875 (s, C-H), 1768 (s, $\left.\mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{CH}\right), 1681$ (s, $\mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1633$ (s, HC=CH), 1496 (m), 1480 (m), 1454 (s), 1360 (s), 1243 (s), 1103 (s, C-O), 1077 (s), 1040 (s), 1004 (s), 917 (m), 857 (m), 751 (s), 734 (s), 701 (s). $\mathrm{m} / \mathrm{z}\left(\mathrm{APCI}, \mathrm{NH}_{3}\right) 290\left([\mathrm{MH}]^{+}, 100\right), 272\left(\left[\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 17\right), 260(10), 210(9), 178(69)$, 117 (14\%).

HRMS (FAB) found $m / z 290.1399 ; \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{MH}]^{+}$requires $m / z 290.1392$. $[\alpha]_{\mathrm{D}}^{17}+16.2(\mathrm{c}=0.34$ in DCM$)$.
($2 R, 4^{\prime} S, 3 E$)-Methanesulfonic acid 5-(4'-benzyl-2'-oxo-oxazolidin-3'-yl)-2-methyl-5-oxo-pent-3-enyl ester 420

To a stirred solution of $419(180 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($0.26 \mathrm{ml}, 1.87 \mathrm{mmol}$) followed by methanesulfonyl chloride $(0.05 \mathrm{ml}, 0.69 \mathrm{mmol}$) in single portions and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 31 mins . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ and washed with water $(50 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $3: 1 \rightarrow 2: 1$) to afford the title compound as a faint yellow oil ($215 \mathrm{mg}, 94 \%$).
$\mathrm{R}_{\mathrm{f}} 0.50$ (petrol:ethyl acetate; 1:1).
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.23(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCHH}), 2.92(1 \mathrm{H}, \mathrm{m}$, $\mathrm{MeCH}), 3.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSO}_{2}\right), 3.33(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCHH}), 3.54\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right.$ superimposing $\mathrm{CH}_{2} \mathrm{OMs}$), $4.83(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 7.00-7.25$ ($7 \mathrm{H}, \mathrm{m}$, Ph superimposing alkenic protons).
$v_{\max }($ thin film $) 3100-2939(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1769(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{CH}), 1682(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1643(\mathrm{~s}$, $\mathrm{HC}=\mathrm{CH}$), 1495 (w), 1455 (s), 1360 (s), 1211 (s), 1173 (s), 1107 (s), 1076 (m), 1054 (s), 964 (s), 837 (m), 751 (m), 706 (s).
$m / z(\mathrm{FAB}) 390\left([\mathrm{MNa}]^{+}, 6\right), 368\left([\mathrm{MH}]^{+}, 100\right), 272\left([\mathrm{M}-(\mathrm{OMs})]^{+}, 28\right), 230(5), 191(9)$, 117 (20), 95 (78\%). oxo-pentyl ester 421

To a stirred solution of $\mathbf{4 2 0}(199 \mathrm{mg}, 0.55 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{ml})$ at rt was added with care $\mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 10 \mathrm{wt} \%$ palladium on activated carbon, Aldrich 20,569-9) and the reaction flask was evacuated and then flooded with hydrogen four times. The resulting suspension was stirred vigorously at rt under hydrogen for 13.5 hrs . The reaction mixture was filtered through a thin plug of Celite ${ }^{\mathrm{TM}}$ and the filtrate was conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 1:1) to afford the title compound as a clear oil ($197 \mathrm{mg}, 97 \%$).
$\mathrm{R}_{\mathrm{f}} 0.18$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 1.60-2.20\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}\right), 2.83(1 \mathrm{H}$, dd, $J 14.0,19.0, \mathrm{PhCHH}), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSO}_{2}\right.$ superimposing $\left.2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{CO}) \mathrm{CH}_{2}\right), 3.33$ (1 H, dd, $J 10.0,19.0, \mathrm{PhCHH}), 4.20\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right.$ superimposing $\left.\mathrm{CH}_{2} \mathrm{OMs}\right)$, $4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 7.00-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$v_{\text {max }}$ (thin film) $2937(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1777\left(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}\right), 1697(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1454$ (w), 1391 (m), 1352 (s), 1213 (m), 1173 (s), 1101 (w), 1053 (w), 961 (m), 839 (w), 748 (w), 705 (m).
$m / z(\mathrm{FAB}) 392\left([\mathrm{MNa}]^{+}, 7\right), 370\left([\mathrm{MH}]^{+}, 88\right), 274\left([\mathrm{M}-(\mathrm{OMs})]^{+}, 71\right), 193$ (15), 178 (100), 137 (34), 117 (44), 91 (48), 69 (39\%).

HRMS (FAB) found $m / z 370.1337 ; \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{MH}]^{+}$requires $m / z 370.1324$.
$[\alpha]_{\mathrm{D}}^{24}+37.8(\mathrm{c}=0.25$ in DCM$)$.

To a stirred solution of $418(535 \mathrm{mg}, 1.02 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{ml})$ at rt was added with care Pd / C ($54 \mathrm{mg}, 10 \mathrm{wt} \%$ palladium on activated carbon, Aldrich 20,569-9) and the reaction flask was then evacuated and flooded with hydrogen four times. The resulting suspension was then stirred vigorously under hydrogen at rt for 2 hrs . The reaction mixture was filtered through a thin plug of Celite ${ }^{\mathrm{TM}}$ and the filtrate was conc in vacuo affording 504 mg of residue. To a stirred solution of a portion of the residue $(177 \mathrm{mg})$ in THF (1 ml) at $-78^{\circ} \mathrm{C}$ was added 0.5 ml of a stock solution of LDA dropwise (prepared from adding $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $1.48 \mathrm{ml}, 3.70 \mathrm{mmol})$ to diisopropylamine $(0.52 \mathrm{ml}$, $3.70 \mathrm{mmol})$ in THF $(5 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 32 mins. A solution of $\mathrm{DBAB}(92 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added over approx 5 secs and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 49 mins during which time the yellow colour of the DBAD dissipated. The reaction mixture was quenched at $78{ }^{\circ} \mathrm{C}$ with glacial actetic acid (1ml) and partitioned with DCM (50ml) and pH 7 phosphate buffer (20 ml). The aqueous layer was extracted ($3 \times 10 \mathrm{ml}$ DCM) and the combined organic layers were washed with satd (aq) $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; $10: 1$) to afford the title compound as a clear oil ($207 \mathrm{mg}, 78 \%$ over two steps).
$\mathrm{R}_{\mathrm{f}} 0.56$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right)$ complex owing to rotamers, $0.89-1.07(12 \mathrm{H}, \mathrm{m}, t-\mathrm{BuSi}$, superimposing Me), 1.31-1.53 ($18 \mathrm{H}, \mathrm{m}, t$ - BuO), $1.62-2.20\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}\right), 2.70-$ $3.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 3.51-3.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 4.09-4.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right.$), 4.53-4.56 (1H, m, BnCHN), 5.85-6.00 (1H, br s, N(CO)CHNBoc), $6.50-6.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH , rotamers), 7.17-7.68 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, CDCl_{3}) complex owing to rotamers.
$v_{\max }($ thin film) 3385 (br s, N-H), 3000-2858(s, C-H), 1789 (s, $\mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{CH}), 1713$ (s, with two shoulders, $3 x O(C=O) N$), 1473 (m), 1428 (m), 1391 (s), 1367 (s), 1241 (s), 1152 (s), 1109 (s), 911 (w), 824 (w), 737 (m), 703 (s).
$m / z\left(\mathrm{APCI}, \mathrm{NH}_{3}\right) 760\left([\mathrm{MH}]^{+}, 28\right), 704\left([(\mathrm{MH}-(t-\mathrm{Bu})) \mathrm{H}]^{+}, 20\right), 660\left(\left[\left(\mathrm{MH}-\left(\mathrm{CO}_{2} t-\right.\right.\right.\right.$ $\left.\mathrm{Bu})) \mathrm{H}]^{+}, 100\right), 604$ (73), 560 (49), 526 (23), 452 (60), 178 (70), 117 (21\%).

HRMS (FAB) found $m / z 782.3840 ; \mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}[\mathrm{MNa}]^{+}$requires $m / z 782.3813$. $[\alpha]_{\mathrm{D}}^{17}+18.1$ ($\mathrm{c}=0.14$ in DCM).
(4S,4'R)-4-Benzyl-3-[5'-hydroxy-4'-methyl-pentanoyl]-oxazolidin-2-one 425

To a stirred solution of 419 ($250 \mathrm{mg}, 0.87 \mathrm{mmol}$) in EtOAc (10 ml) at rt was added with care Pd / C ($25 \mathrm{mg}, 10 \mathrm{wt} \%$ palladium on activated carbon, Aldrich $20,569-9$) and the reaction flask was then evacuated and flooded with hydrogen four times. The resulting suspension was then stirred vigorously under hydrogen at rt for 32 mins. The reaction mixture was filtered through a thin plug of Celite ${ }^{\mathrm{TM}}$ and the filtrate was conc in vacuo.

The residue was dried from benzene $(3 \times 5 \mathrm{ml})$ in vacuo to afford the title compound as a clear oil ($251 \mathrm{mg}, 99 \%$).
$\mathrm{R}_{\mathrm{f}} 0.32$ (petrol:ethyl acetate; $1: 1$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me}), 1.56(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}), 1.68-1.85$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}$), 1.88, ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $2.75(1 \mathrm{H}, \mathrm{dd}, J 2.5,13.0, \mathrm{PhCHH}), 2.93(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 3.24(1 \mathrm{H}, \mathrm{dd}, J 3.0,13.0, \mathrm{PhCHH}), 3.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSiR}_{3}\right), 4.16(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right), 4.64(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN})$, 7.17-7.33 (5H, m, Ph).
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 16.40,27.19,32.93,35.15,37.78,55.08,66.14,67.12$, $117.05,128.85,129.30,135.10,153.39,173.46$.
$v_{\max }($ thin film $) 3417(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3029-2874(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1789\left(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}\right), 1694(\mathrm{~s}$, $\mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1454$ (s), 1392 (s), 1357 (s), 1213 (s), 1098 (s), 1047 (s), 916 (w), 841 (w), 744 (s), 703 (s).
$m / z\left(\mathrm{APCI}, \mathrm{NH}_{3}\right) 314\left([\mathrm{MNa}]^{+}, 3\right), 274\left(\left[\mathrm{MH}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 78\right), 210(12), 178(100), 117(27)$.
HRMS (FAB) found $m / z 292.1562 ; \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{MH}]^{+}$requires $m / z 292.1549$.
$[\alpha]_{\mathrm{D}}^{17}+36.4$ (c=0.29 in DCM).
(4S,4'R)-4-Benzyl-3-[5'-bromo-4'-methyl-pentanoyl]-oxazolidin-2-one 426

To a stirred solution of 425 ($206 \mathrm{mg}, 0.70 \mathrm{mmol}$) in THF (7 ml) at rt was added PPh_{3} ($548 \mathrm{mg}, 2.09 \mathrm{mmol}$) and CBr_{4} ($693 \mathrm{mg}, 2.09 \mathrm{mmol}$) in single portions. The resulting mixture was stirred at rt for 37 mins during which time a yellow precipitate formed. The reaction mixture was conc in vacuo, $\mathrm{Et}_{2} \mathrm{O}$ was added to the residue and the white
precipitate which formed on cooling the flask to $0^{\circ} \mathrm{C}$ was filtered off. The filtrate was conc in vacuo and the residue was purified by flash column chromatography (petrol:ethyl acetate; $20: 1 \rightarrow 10: 1$) to afford the title compound as a clear oil (206mg, 83\%).
$\mathrm{R}_{\mathrm{f}} 0.53$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 1.04(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{Me}), 1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}), 1.66-1.89$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}$), $2.78(1 \mathrm{H}, \mathrm{dd}, J 3.0,13.0, \mathrm{PhCHH}), 2.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right)$, $3.27(1 \mathrm{H}, \mathrm{dd}, J 3.0,13.0, \mathrm{PhCHH}), 3.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right)$, $4.65(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 7.17-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right) 18.53,29.04,32.94,34.41,37.79,40.63,55.05,66.16$, 127.26, 128.86, 129.29, 135.11, 153.34, 172.66.
$\nu_{\text {max }}($ thin film $) 3063-2873(\mathrm{~s}, \mathrm{C}-\mathrm{H}), 1789\left(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{CH}_{2}\right), 1695(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1606$ (w), 1486 (m), 1480 (m), 1454 (s), 1391 (s), 1353 (s), 1287 (s), 1211 (s), 1104 (s), 1076 (s), 1052 (s), 1052 (s), 1016 (m), 919 (w), 840 (w), 762 (s), 744 (s), 703 (s).
$m / z\left(\mathrm{APCI}, \mathrm{NH}_{3}\right) 354 / 356\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br} /{ }^{81} \mathrm{Br}\right) \mathrm{H}\right]^{+}, 35\right), 274\left([\mathrm{M}-(\mathrm{HBr})]^{+}, 36\right), 210(20), 178$ (100), 117 (16\%).

HRMS (FAB) found $m / z 354.0700 ; \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrNO}_{3}[\mathrm{MH}]^{+}$requires m / z 354.0705. $[\alpha]_{D}^{18}+40.9(c=0.39$ in DCM).

hydrazino)-pentanoyl]-oxazolidin-2-one 424

To a solution of diisopropylamine $(0.05 \mathrm{ml}, 0.37 \mathrm{mmol})$ in THF $(0.5 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.15 \mathrm{ml}, 0.37 \mathrm{mmol})$ dropwise over 10 secs. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 8 mins . A solution of $\mathbf{4 2 6}(118 \mathrm{mg}, 0.33 \mathrm{mmol})$ in THF (1.0 ml) was added dropwise over 30 secs and stirring at $-78^{\circ} \mathrm{C}$ was continued for 58 mins. A solution of DBAB ($92 \mathrm{mg}, 0.40 \mathrm{mmol}$) in DCM (2 ml) was then added dropwise over 20 secs and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 58 mins during which time the yellow colour of the DBAD dissipated. The reaction was quenched at $-78{ }^{\circ} \mathrm{C}$ with glacial actetic acid (1ml) and partitioned with $\mathrm{DCM}(20 \mathrm{ml})$ and pH 7 phosphate buffer (50 ml). The aqueous layer was extracted $(2 \times 20 \mathrm{ml}$ DCM) and the combined organic layers were washed with satd (aq) NaHCO_{3} (50 ml), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and conc in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate; 10:1) to afford the title compound as a pale yellow oil ($174 \mathrm{mg}, 90 \%$).
$\mathrm{R}_{\mathrm{f}} 0.46$ (petrol:ethyl acetate; 3:1).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right)$ complex owing to rotamers, $0.96-1.13(3 \mathrm{H}, 3 \mathrm{xd}, J 6.5$, $6.5,6.5, \mathrm{Me}), 1.23-1.57(18 \mathrm{H}, \mathrm{m}, t-\mathrm{BuO}), 1.62-2.20\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}\right), 2.70-3.60$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Br}\right)$, 4.07-4.22 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}(\mathrm{CO})\right.$), 4.53-4.56 $(1 \mathrm{H}, \mathrm{m}$, BnCHN), 5.85-6.00 (1H, m, N(CO)CHNBoc), $6.75(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}), 7.17-7.68(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$.
$\delta_{\mathrm{C}}\left(100.5 \mathrm{MHz}\right.$ Varian, $\left.\mathrm{CDCl}_{3}\right)$ complex owing to rotamers.
$v_{\max }$ (thin film) 3354 (br s, N-H), 3000-2933 (s, C-H), 1790 (s, O(C=O)CHN), 1731 (s, $\mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1714(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1682(\mathrm{~s}, \mathrm{O}(\mathrm{C}=\mathrm{O}) \mathrm{N}), 1567$ (w), 1480 (s), 1455 (s), 1393 (s), 1368 (s), 1248 (s), 1152 (s), 1110 (s), 1049 (s), 945 (w), 852 (m), 738 (s), 702 (s).
$\left.m / z\left(\mathrm{APCI}, \mathrm{NH}_{3}\right) 584 / 586\left(\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)^{81} \mathrm{Br}\right) \mathrm{H}\right]^{+}, 2\right), 528 / 530\left(\left[\left(\mathrm{M}\left({ }^{79} \mathrm{Br} /{ }^{81} \mathrm{Br}\right) \mathrm{H}-(t-\mathrm{Bu})\right) \mathrm{H}\right]^{+}\right.$, 3), $472 / 474$ (36), 428/430 (56), 384/386 (73), 348 (5), 304 (9), 274 (18), 223 (13), 178 (100), 117 (24\%).

HRMS (FAB) found $m / z 606.1811 ; \mathrm{C}_{26} \mathrm{H}_{38} \mathrm{BrN}_{3} \mathrm{O}_{7} \mathrm{Na}[\mathrm{MNa}]^{+}$requires m / z 606.1791. $[\alpha]_{\mathrm{D}}^{21}+21.2(\mathrm{c}=0.29 \mathrm{in} \mathrm{DCM})$.

APPENDIX 1
 REFERENCES

1. Look, S.A.; Fenical, W.; Matsumoto, G.K.; Clardy, J., J. Org. Chem., 51, 1986, 5140.
2. Roussis, V.; Wu, Z.; Fenical, W.; Strobel, S.A.; Van Duyne, G.D.; Clardy, F., J. Org. Chem., 55, 1990, 4916.
3. Look, S.A.; Fenical, W., Tetrahedron, 43, 1987, 3363.
4. Tanaka, J.; Ogawa, N.; Liang, J.; Higa, T., Tetrahedron, 49, 1993, 811.
5. Fenical, W., J. Nat. Prod., 50, 1987, 1001.
6. Bayer, F.M., "The Shallow Water Octocorallia of the West Indies Region", 1961, Nijhoff, The Hague.
7. Weinheimer, A.J.; Washecheck, P.H.; van der Helm, D.; Houssain, M.B., J. Chem. Soc., Chem. Commun., 1968, 1070.
8. McEnroe, F.J.; Fenical, W., Tetrahedron, 34, 1978, 1661. Look, S.A.; Buchholz, K.; Fenical, W., Experimentia, 40, 1984, 931.
9. Enwall, C.E.L.; van der Helm, D.; Hsu, I.N.; Pattabhiraman, T.; Schmitz, F.J.; Spraggins, R.L.; Weinheimer, A.J., J. Chem. Soc., Chem. Commun., 1972, 215.
10. Wratten, S.J.; Faulkner, D.J.; Hirotsu, K.; Clardy, J., Tetrahedron Lett., 1978, 4345.
11. Flowers, H.M., Adv. Carbohydr. Chem. Biochem., 39, 1981, 279.
12. Corey, E.J.; Carpino, P., J. Am. Chem. Soc., 111, 1989, 5472.
13. Potts, B.C.M.; Faulkner, D.J.; Jacobs, R.S., J. Nat. Prod., 55, 1992, 1701.
14. Pace-Asciak, C.R.; Smith, W.L., "The Enzymes", Editor Boyer, P.D., Volume 16, 1983, Academic Press, New York.
15. Flower, R.J.; Moncada, S.; Vale, J.R., "The Pharmacological Basis of Therapeutics", Editors Gilman, A.G.; Goodman, L.S.; Rall, T.W.; Murad, F., MacMillan, New York.
16. Kuehl jnr, F.A.; Egan, R.W., Science, 210, 1980, 978.
17. Vane, J.R., Nature (London) New Biol., 231, 1971, 232.
18. Malech, H.L.; Gallin, J.I., N. Engl. J. Med., 317, 1987, 687. Henson, P.M.; Johnston jnr, R.B., J. Clin. Invest., 79, 1987, 669. Lehrer, R.I.; Ganz, T.; Selsted, M.E.; Baboir, B.M.; Curnutte, J.T., Ann. Intern. Med., 109, 1988, 127. Cross, C.E.; Halliwell, B.; Borish, E.T., Ann. Intern. Med., 107, 1987, 526
19. Test, S.T.; Weiss, S.J., Adv. Free Radical Biol. Med., 2, 1986, 91.
20. Weiss, S.J.; Lampert, M.B.; Test, S.T., Science, 222, 1983, 625.
21. Fridovich, I., Arch. Biochem. Biophs., 247, 1986, 1. Weiss, S.J., J. Biol. Chem., 255, 1980, 9912.
22. Weiss, S.J.; Young, J.; LoBuglio, A.F.; Silvka, A.; Nimeh, N.F., J. Clin. Invest., 68, 1981, 714. Klebanoff, S.J., "Inflammation: Basic Principles and Clinical Correlates", Editors Gallin, J.I.; Goldstein, I.M.; Snyderman, R., 1988, Raven Press, New York.
23. Test, S.T.; Lampert, M.B.; Ossanna, P.J.; Thoene, J.G.; Weiss, S.J., J. Clin. Invest., 74, 1984, 1341.
24. . Weiss, S.J., New. Engl. J. Med., 320, 1989, 365.
25. Mayer, A.M.S.; Jacobsen, P.B.; Fenical, W.; Jacobs, R.S.; Glaser, K.B., Life Sciences, 62(23), 1998, PL 401. Luedke, E.; Meyer, A.M.S.; Jacobs, R.S., Faseb Journal 22(5), 1988, A1109. Mayer, A.M.S.; Oh, S.; Fenical, W.; Jacobs, R.S., Shock, 11(S1), 1999, 58.
26. Massey-Westropp, R.A.; Cowin, L.M., J. Nat. Prod., 55, 1992, 1790.
27. Akhtar, M., "Advances in Photochemistry", Volume 2, 1964, J. Wiley Interscience, New York. Kabsakalian, P.; Townley, E.R., Amer. Perf. Cosmet., 78, 1963, 22 (Chem. Abs. 58:12366g).
28. Corey, E.J.; Carpino, P., Tetrahedron Lett., 31, 1990, 3857.
29. Tietze, L.F.; Beifess, U., Tetrahedron Lett., 27, 1986, 1767. Tietze, L.F.; Beifess, U., Synthesis, 1988, 6238.
30. "Methods in Carbohydrate Chemistry", Editors Whistler, R.L.; Wolfrom, M.L.; BeMiller, J.N.; Shafizadeh, F., Volume 1, 1962, Academic, New York/London.
31. Prepared from 2-benzyl-L-fucose under standard conditions ${ }^{30}$.
32. Corey, E.J.; Lazerwith, S.E., J. Am. Chem. Soc., 120, 1998, 12777.
33. Brown, H.C.; Pfaffenberger, C.D., J. Am. Chem. Soc., 89, 1967, 5475. Brown, H.C.; Negishi, E., Tetrahedron, 33, 1977, 2331.
34. Cristau, H.J.; Ribeilli, Y., Synthesis, 1988, 911.
35. Terao, S.; Shiraishi, M.; Kato, K., Synthesis, 1979, 467.
36. Broka, C.A.; Chan, S.; Peterson, B., J. Org. Chem., 53, 1988, 1586.
37. The Broka synthesis of Pseudopterosin A was the first published synthesis of a member of the Pseudopterosin family.
38. Chan, T.H.; Brownbridge., Tetrahedron Suppl., 37, 1981, 387.
39. Made from commercially available methyl propionylacetate.
40. Aristoff, P.A.; Johnson, P.D.; Harrison A.W., J. Org. Chem., 48, 1983, 5341.
41. Kozikowski, A.P.; Wu, J.P., Synlett, 1991, 465.
42. McCombie, S.W.; Cox, B.; Lin, S.I.; Ganguly, A.K.; McPhail, A.T., Tetrahedron Lett., 32, 1991, 2083.
43. McCombie, S.W.; Cox, B.; Ganguly, A.K., Tetrahedron Lett., 32, 1991, 2087.

Ganguly, A.K.; McCombie, S.W.; Cox, B.; Lin, S.; McPhail, A.T., Pure Appl. Chem., 62, 1990, 1289.
44. McCombie, S.W.; Ortiz, C.; Cox, B.; Ganguly, A.K., Synlett, 1993, 541.
45. Jung, M.E.; Siedem, C.S., J. Am. Chem. Soc., 115, 1993, 3822.
46. Musser, A.K.; Fuchs, P.L., J. Org. Chem., 47, 1982, 3121.
47. Jung, M.E.; Street, L.J., J. Am. Chem. Soc., 106, 1984, 8327. Jung, M.E.; Street, L.J.; Usui, Y., J. Am. Chem. Soc., 108, 1986, 6810.
48. Harrowven, D.C.; Dennison, S.T.; Howes, P., Tetrahedron Lett., 35, 1994, 4243.
49. Made from commercially available (S)-(+)-Dihydro-5-(hydroxymethyl)-2(3H)furanone.
50. Buszek, K.R.; Bixby, D.L., Tetrahedron Lett., 36, 1995, 9129.
51. Prepared from 2-methylpiperonal (Ziegler, F.E.; Fowler, K.W., J. Org. Chem., 41, 1976, 1564).
52. Buszek, K.R., Tetrahedron Lett., 36, 1995, 9125.
53. Eklund, L.; Sarvary, I.; Frejd, T., J. Chem. Soc., Perkin Trans. 1, 1996, 303.
54. Eklund, L.; Ryberg, C.J.; Frejd, T., J. Chem. Res., 1995 (s), 62.
55. Wenkert, D.; Ferguson, S.B.; Porter, B.; Qvarnstrom, A.; McPhail, A.T., J. Org. Chem., 50, 1985, 4114. Vedejs, E.; Arnost, M.J.; Hagen, J.P., J. Org. Chem., 44, 1979, 3230.
56. Eklund, L.; Ryberg, C.J.; Frejd, T., J. Chem. Res., 1995 (s), 62.
57. Gill, S.; Kocienski, P.; Kohler, A.; Pontoroli, A.; Qun, L., J. Chem. Soc., Chem. Commun., 1996, 1743.
58. Friedrich, D.; Bohlmann, F., Tetrahedron, 44, 1988, 1369.
59. Dieter, R.K., Tetrahedron, 42, 1986, 3029. Junjappa, H.; Ila, H.; Asokan, C.V., Tetrahedron, 46, 1990, 5423.
60. c.f. Scheme 5.
61. LaBrazidec, J.Y.; Kocienski, P.J.; Connolly, J.D.; Muir, K.W., J. Chem. Soc., Perkin Trans. 1, 1998, 2475.
62. Made from 2,3-dimethoxytoluene.
63. Enders, D; Frank, U.; Fey, P.; Jandeleit, B.; Lohray, B.B., J. Organomet. Chem., 519, 1996, 147.
64. Schmalz, H.G.; Millies, B.; Bats, J.W.; Dürner, G., Angew. Chem., 104, 1992, 640. Schmalz, H.G.; Millies, B.; Bats, J.W.; Dürner, G., Angew. Chem., Int. Ed. Engl., 31, 1992, 631.
65. Schmalz, H.G.; Schwarz, A.; Dürner, G., Tetrahedron Lett., 35, 1994, 6861.
66. Ottolenghi, A.; Fridkin, M.; Zilkha, A., Can. J. Chem., 41, 1963, 2977. Cooke jnr, M.P., J. Org. Chem., 52, 1987, 5729.
67. Uemura, M.; Isobe, K.; Hayashi, Y., Tetrahedron Lett., 26, 1985, 767.
68. Majdalani, A.; Schmalz, H.G., Tetrahedron Lett., 38, 1997, 4545.
69. Majdalani, A; Schmalz, H.G., Synlett, 1997, 1303.
70. Geller, T.; Schmalz, H.G.; Bats, J.W., Tetrahedron Lett., 39, 1998, 1537.
71. Stokes, T.M.; Oehlschlager, A.C., Tetrahedron Lett., 28, 1987, 2091.
72. Geller, T.; Jakupovic, J.; Schmalz, H.G., Tetrahedron Lett., 39, 1998, 1541.
73. Private Communication to K.J. Hale.
74. Weiberth, F.J.; Hall, S.S., J. Org. Chem., 52, 1987, 3901.
75. Reviews; Roush, W., "Intramolecular Diels-Alder Reaction", in Comprehensive Organic Synthesis, Editors Trost, B.M.; Fleming, I., Volume 6, 1991, Pergamon,

Oxford. Craig, D., Chem. Soc. Rev., 16, 1987, 187. Fallis, A.G., Can. J. Chem., 62, 1984, 183.
76. Boons, G.J.; Clase, J.A.; Lennon, I.C.; Ley, S.V.; Staunton, J., Tetrahedron, 51, 1995, 5417.
77. Evans, D.A.; Chapman, K.T.; Bisaha, J., J. Am. Chem. Soc., 110, 1988, 1238.
78. Oppolzer, W.; Dupuis, D.; Poli, G.; Raynham, T.M.; Bernadelli, G., Tetrahedron Lett., 29, 1988, 5885.
79. Broka, C.A.; Ehler, J., Tetrahedron Lett., 32, 1991, 5907.
80. Blanchette, M.A.; Choy, W.; Davis, J.T.; Essenfield, A.P.; Masamune, S.; Roush, W.R.; Sakai, T., Tetrahedron Lett., 25, 1984, 2183.
81. Hale, K.J.; Manaviazar, S.; Jogiya, N., unpublished results.
82. Ovakimyan, M.Zh.; Khachatryan, R.A.; Simonyan, A.A.; Indzhikyan, M.G., Arm. Khim. Zh., 26, 1973, 1030 (Chem. Abs. 65:3725d).
83. Lythgoe, B.; Moran, T.A.; Nambudiry, M.E.N.; Ruston, S.J., J. Chem. Soc., Perkin Trans. 1, 1976, 2386.
84. Binns, M.R.; Haynes, R.K.; Katsifis, A.G.; Schober, P.A., Vonwiller, S.C., J. Am. Chem. Soc., 110, 1988, 5411.
85. Trost, B.M.; Schmuff, N.R., J. Am. Chem. Soc., 107, 1985, 396.
86. Grieco, P.A.; Pogonowski, C.S., J. Am. Chem. Soc., 95, 1973, 3071.
87. Schwarz, M.; Oliver, J.E.; Sonnet, P.E., J. Org. Chem., 40, 1975, 2410.
88. Pattenden, G.; Weedon, B.C.L., J. Chem. Soc. (C), 1968, 1984.
89. Prepared from $\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Et}$ under standard conditions (Emde, H.; Domsch, D.;

Feger, H.; Frick, U.; Götz, A.; Hergott, H.H.; Hofmann, K.; Kober, W.; Krägeloh,
K.; Oesterle, T.; Steppan, W.; Wset, W.; Simchen, G., Synthesis, 1982, 1).
90. Burden, R.S.; Crombie, L., J. Chem. Soc. (C), 1969, 2477.
91. Bauld, N., Tetrahedron, 45, 1989, 5307.
92. See Fallis, A.G., Can. J. Chem., 62, 1984, 183.
93. Sternbach, D.D.; Rossana, D.M., J. Am. Chem. Soc., 104, 1982, 5853.
94. Takahashi, T.; Shimizu, K.; Doi, T.; Tsujii, J.; Fukazawa, Y., J. Am. Chem. Soc., 110, 1988, 2674.
95. Cooke, M.P., J. Org. Chem., 38, 1973, 4083.
96. Tanner, D.; Somfai, P., Tetrahedron, 43, 1987, 5221.
97. Grieco, P.A.; Yoshida, K.; Garner, P., J. Org. Chem., 48, 1983, 3137.
98. Sharpless, K.B.; Lauer, R.F., J. Am. Chem. Soc., 95, 1973, 2697.
99. Clive, D.L.J.; Murthy, K.S.K.; Wee, A.G.H.; Prasad, J.S.; da Silva, G.V.J.; Majewski, M.; Anderson, P.C.; Evans, C.F.; Haugen, R.D.; Heerze, L.D.; Barrie, J.R., J. Am. Chem. Soc., 112, 1990, 3018.
100. Smith III, A.B.; Hale, K.J., Tetrahedron Lett., 30, 1989, 1037.
101. Sonnet, P.E.; McGovern, T.P.; Cunningham, R.T., J. Org. Chem., 49, 1984, 4639.
102. Vandewalle, M.; Van der Wycken, J.; Oppolzer, W.; Vullioud, C., Tetrahedron Lett., 42, 1986, 4035.
103. Avery, J.W.; Cunningham, R.T.; Waters, R.M., Tetrahedron Lett., 35, 1994, 9337.
104. Emde, H.; Götz, A.; Hofmann, K.; Simchen, G., Liebigs Ann. Chem., 1981, 1643.
105. Hulme, A.C.; Arthington, W., Nature, 170, 1952, 659.
106. Hulme, A.C.; Arthington, W., Nature, 173, 1954, 588.
107. Terlain, B.; Thomas, J.P., Bull. Chem. Soc. Fr., 6, 1971, 2349. Terlain, B.;

Thomas, J.P., Bull. Chem. Soc. Fr., 6, 1971, 2357. Terlain, B.; Thomas, J.P., Bull. Chem. Soc. Fr., 6, 1971, 2363.
108. Torikata, A.; Enokita, R; Okazaki, T; Nakajima, M.; Iwado, S.; Haneishi, T.;

Arai, M., J. Antibiot., 36, 1983, 957. Nakajima, M.; Torikata, A.; Ichikawa, Y.;
Katayama, T.; Shiraishi, A.; Haneishi, T.; Arai, M., J. Antibiot., 36, 1983, 961.
Nakajima, M.; Torikata, A.; Tamaoki, H.; Haneishi, T.; Arai, M., J. Antibiot., 36, 1983, 967.
109. Hassall, C.H.; Magnus, K.E., Nature, 184, 1959, 1224.
110. Bevan, K.; Davies, J.S.; Hassall, C.H.; Morton, R.B.; Phillips, D.A.S., J. Chem.

Soc. (C), 1971, 514. Hassall, C.H.; Thomas, W.A., Moschidis, M.C. (in part), J. Chem. Soc., Perkin Trans. 1, 1997, 2369.
111. Hale, K.J.; Jogiya, N.; Manaviazar, S., Tetrahedron Lett., 39, 1998, 7163.
112. Dakin, H.D., J. Biol. Chem., 164, 1946, 615.
113. Kariyone, K., Bull. Chem. Soc. Japan, 8, 1960, 1110.
114. Dalby, J.S.; Kenner, G.W.; Sheppard, R.C., J. Chem. Soc., 88, 1966, 2019.
115. Cox, D.A.; Johnson, A.W.; Mauger, A.B., J. Chem. Soc., 1964, 5024.
116. Titouani, S.L.; Lavergne, J.P.; Viallefont, Ph., Tetrahedron, 36, 1980, 2961.
117. Belekon, Y.N.; Bulychev, A.G.; Pavlov, V.A.; Fedorova, E.A.; Tsyryapkin, V.A.; Bakhmutov, V.A.; Belikov, V.M., J. Chem. Soc., Perkin Trans. I, 1988, 2075.
118. Koskinen, A.M.P.; Rapoport, H., J. Org. Chem., 54, 1989, 1859.
119. Ikegami, S.; Uchiyama, H.; Hayama, T.; Katsuki, T.; Yamaguchi, M., Tetrahedron, 44, 1988, 5333.
120. Wang, Q.; Sasaki, N.A.; Potier, P., Tetrahedron, 54, 1998, 15759.
121. Mattson, R.J.; Pham, K.M.; Leuck, D.J.; Cowen, K.A., J. Org. Chem., 55, 1990,
2552.
122. Thottathil, J.K.; Moniot, J.L., Tetrahedron Lett., 27, 1986, 151.
123. Smith, E.M.; Swiss, G.F.; Neustadt, B.R.; Golg, E.H.; Sommer, J.A.; Brown, A.D.; Chiu, P.J.S.; Moran, R.; Sybertz, E.J.; Baum, T., J. Med. Chem., 31, 1988, 875.
124. Bridges, R.J.; Stanley, M.S.; Anderson, M.W.; Cotman, C.W.; Chamberlin,
A.R., J. Med. Chem., 34, 1991, 717.
125. Baldwin, J.E.; North, M.; Flinn, A.; Moloney, M.G., J. Chem. Soc., Chem.

Comтип., 1988, 828. Baldwin, J.E.; North, M.; Flinn, A.; Moloney, M.G., Tetrahedron, 45, 1989, 1453. Baldwin, J.E.; Miranda, T.; Moloney, M.G.;

Hokelek, T., Tetrahedron, 45, 1989, 7459.
126. Hon, Y.S.; Chang, Y.C.; Gong, M.L., Heterocycles, 31, 1990, 191.
127. Langlois, N.; Rojas, A., Tetrahedron Lett., 34, 1993, 2477.
128. Moody, C.M.; Young, D.W., Tetrahedron Lett., 35, 1994, 7277.
129. Pedregal, C.; Eszquerra, J.; Escribano, A.; Carreño, C.; Ruano, J.L.G.,

Tetrahedron Lett., 35, 1994, 2053.
130. Thottathil, J.K.; Moniot, J.L; Mueller, R.H.; Wong, M.K.Y.; Kissick, T.P., J. Org. Chem., 51, 1986, 3140.
131. Hale, K.J.; Manaviazar, S.; Calabrese, A.A., unpublished results.
132. Prepared from L-serine in 4 steps.
133. Evans, D.A.; Britton, T.C.; Dorow, R.L.; Dellaria, J.F., Tetrahedron, 44, 1988, 5525.
134. Schöllkopf, U.; Hartwig, W.; Pospischil, K.H.; Kehne, H., Synthesis, 1981, 966. Schöllkopf, U.;Neubauer, H.J., Synthesis, 1982, 860.
135. Schöllkopf, U.; Groth, U.; Deng, C., Angew. Chem., Int. Ed. (Engl.), 20, 1981, 798.
136. Evans, D.A.; Sacks, C.E.; Kleschick, W.A.; Taber, T.R., J. Am. Chem. Soc., 101, 1979, 6789.
137. O'Donnell, M.J.; Polt, R.L., J. Org. Chem., 47, 1982, 2663.
138. Lygo, B.; Wainwright, P.G., Tetrahedron Lett., 38, 1997, 8595. See also Lygo, B.; Wainwright, P.G., Tetrahedron Lett., 39, 1998, 1599.
139. Corey, W.J.; Xu, F.; Noe, M.C., J. Am. Chem. Soc., 119, 1997, 12414.
140. Evans, D.A.; Dow, R.L.; Shih, T.L.; Takacs, J.M.; Zahler, R., J. Am. Chem. Soc., 112, 1990, 5290. Keck, G.E.; Palani, A.; McHardy, S.F., J. Org. Chem., 59, 1994, 3113.
141. Marshall, J.A.; Sedrani, R., J. Org. Chem., 56, 1991, 5496.
142. Abiko, A.; Masamune, S., Tetrahedron Lett., 37, 1996, 1081.
143. Hoppe, D.; Beckmann, L., Leibigs Ann. Chem., 1979, 2066.
144. O'Donnell, M.J.; Delgado, F.; Hostettler, C.; Schwesinger, R., Tetrahedron Lett., 39, 1998, 8775.
145. Schwesinger, R.; Willaredt, T.; Schlemper, H.; Keller, M.; Schmidt, D.; Fritz, H., Chem. Ber., 127, 1994, 2435.
146. Still, W.C.; Kahn, M.; Mitra, A., J. Org. Chem., 43, 1978, 2923.
147. Perrin, D.D.; Armarego, W.L.F., "Purification of Laboratory of Chemicals", Edition 3, 1988, Pergamon, Oxford.
148. Tius, M.A.; Trehan, S., J. Org. Chem., 51, 1986, 765.

APPENDIX 2 SPECTRA

${ }^{1} \mathrm{H} n m r$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra are presented for each compound in Chapter 5 -
Experimental Section and are given in the order they appear in the thesis.

807

Possible tricycle 260

($1 S, 2 S, 5 R, 3$ 'S)-5-Benzyloxymethoxy-2-[4'-(t-butyl-diphenyl-silanyloxy)-3'-methyl-butyl]-cyclohex-3-enecarboxylic acid methyl ester 268

($1 S, 2 S, 5 R, 3$ ' S)-5-Benzyloxymethoxy-2-[4'-(t-butyl-diphenyl-silanyloxy)-3'-methyl-butyl]-cyclohex-3-enecarboxylic acid methyl ester 268

($2 S, 1$ 'S,4'R,6'S)-[4-(4'-Benzyloxymethoxy-6'-bromomethyl-cyclohex-2'-enyl)-2-methyl-butoxyl-t-butyl-diphenyl-silane 270

(2S,1'S,4'R,6'S)-[4-(4'-Benzyloxymethoxy-6'-methyl-cyclohex-2'-enyl)-2-methyl-butan-1-ol 272

\square
-

0 O OP or 09 08 OO: 02: OD:
ODV 09: OBF OO己
($1 Z, 2 E, 4 S, 1^{\prime} S, 4^{\prime} R, 6$ 'S)-[6-(4'-Benzyloxymethoxy-6'-methyl-cy

[^2]

($2 R, 3 Z, 5 E$)- and ($2 R, 3 E, 5 E$)-(4-(t-butyl-dimethyl-silanyloxy)-2-methyl-hepta-3,5-dienyloxy)-t-butyl-diphenyl-silane 309

(4S,2'S,4'R)-4-Benzyl-3-[5'-(t-butyl-diphenyl-silanyloxy)-4'-methyl-2'-(N, N^{\prime} '-bis-(t-butoxycarbonyl)hydrazino)-pentanoyl]-oxazolidin-2-one 422

[^0]: (i) $\mathrm{Ph}_{3} \mathrm{PCHC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Me}, \mathrm{DCM}, \mathrm{rt}, 33 \mathrm{hrs}, 26 \%$; (ii) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}, 8 \mathrm{mins}$, then TBSOTf, DCM, rt, 25 mins, 33\%.

[^1]: (i) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{hrs}$; (ii) LDA, THF, $-78^{\circ} \mathrm{C}, 32$ mins, then DBAD, DCM, $-78^{\circ} \mathrm{C}, 49 \mathrm{mins}$, 78% for two steps.

[^2]: (1S,2S,4S,5S)-5-Methyl-4-(t-butyl-diphenyl-silanyloxymethyl)-2-phenylselanyl-cyclohexanol 299

