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We develop a categorical compositional distributional semantics for Lambek Calculus with a Rel-
evant Modality, !L*, which has a limited version of the contraction and permutation rules. The
categorical part of the semantics is a monoidal biclosed category with a coalgebra modality as de-
fined on Differential Categories. We instantiate this category to finite dimensional vector spaces and
linear maps via “quantisation” functors and work with three concrete interpretations of the coalge-
bra modality. We apply the model to construct categorical and concrete semantic interpretations for
the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of
the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence
disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and
Relational tensors.

1 Introduction

Distributional Semantics of natural language are semantics which model the Distributional Hypothe-
sis due to Firth [11] and Harris [[18] which assumes a word is characterized by the company it keeps.
Research in Natural Language Processing (NLP) has turned to Vector Space Models (VSMs) of natural
language to accurately model the distributional hypothesis. Such models date as far back as to Rubinstein
and Goodenough’s co-occurence matrices [[35] in 1965, until today’s neural machine learning methods,
leading to embeddings, such as Word2Vec [40], GloVe [32], FastText [6] or BERT [[10]] to name a few.
VSMs were used even earlier by Salton [38]] for information retrieval. These models have plenty of ap-
plications, for instance thesaurus extraction tasks [9}[17], automated essay marking [23]] and semantically
guided information retrieval [24]. However, they lack grammatical compositionality, thus making it dif-
ficult to sensibly reason about the semantics of portions of language larger than words, such as phrases
and sentences.

Somewhat orthogonally, Type Logical Grammars (TLGs) form highly compositional models of lan-
guage by accurately modelling grammar, however they lack distributionality, in that such models do not
accurately describe the distributional semantics of a word, only its grammatical role. Distributional Com-
positional Categorical Semantics (DisCoCat)[i8]] combines these two approaches using category theoretic
methods, originally developed to model Quantum protocols. DisCoCat has proven its efficacy empiri-
cally [115} 116, 37, 143] 21}, 27] and has the added utility of being a modular framework which is open to
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additions and extensions.

DisCoCat is a categorical semantics of a formal system which models natural language syntax,
known as Lambek Calculusﬂ denoted by L. The work in [20]] extends Lambek calculus with a rele-
vant modality, and denotes the resulting logic by !L*. As an example application domain, they use the
new logic to formalise the grammatical structure of the parasitic gap phenomena in natural language.

In this paper, we first form a sound categorical semantics of !L*, which we call C(!L*). This boils
down to interpreting the logical contraction of !L* using comonads known as coalgebra modalities de-
fined in [4]. In order to facilitate the categorical computations, we use the clasp-string calculus of [2]],
developed for depicting the computations of a monoidal biclosed category. To this monoidal diagram-
matic diagrammatic calculus, we add the necessary new constructions for the coalgebra modality and
its operations. Next, we define three candidate coalgebra modalities on the category of finite dimen-
sional real vector spaces in order to form a sound VSM of !L* in terms of structure-preserving functors
C(!L*) — FdVectg. We also briefly introduce a prospective diagrammatic semantics of C(!L*) to help
visualise our derivations. We conclude this paper with an experiment to test the accuracy of the different
coalgebra modalitites on FdVectg. The experiment is performed using different neural word embed-
dings and on a disambiguation task over an extended version of dataset of [16] from transitive sentences
to phrases with parasitic gaps.

This paper is an extended abstract of the full arXiv paper [25]].

2 'L*: Lambek Calculus with a Relevant Modality

Following [20], we assume that the formulae, or types, of Lambek calculus with a Relevant Modality
IL* are generated by a set of atomic types At, a unary connective !, three binary connectives, \, / and ,
via the following Backus-Naur Form (BNF).

p=pcAt|0](9,0)](9/0)|(o\0) |'p,

We refer to the types of IL* by Typ,- ; here, @ denotes the empty type. An element of Typ, - is either
atomic, made up of a modal type, or two types joined by a comma or a slash. We will use uppercase
roman letters to denote arbitrary types of !L*, and uppercase Greek letters to denote a set of types, for
example, I' = {A],A,,..., A} = A1,A;,... A, Tt is assumed that , is associative, allowing us to omit
brackets in expressions like A,A3,...,A,.

A sequent of !L* is a pair of an ordered set of types and a type, denoted by I' A. The deriva-
tions of !L* are generated by the set of axioms and rules presented in table (Il The logic !'L* extends
Lambek Calculus L by endowing it with a modality denoted by !, inspired by the ! modality of Linear
Logic, to enable the structure rule of contraction in a controlled way, although here it is introduced on
a non-symmetric monoidal category but is introduced with an extra structure allowing the !-ed types to
commute over other types. So what !L* adds to L is the (L), (!R) rules, the (perm) rules, and the (contr)
rule.

IThere is a parallel pregroup syntax which gives you the same semantics, as discussed in [5]
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AFA
TFA A,B,AFC IAFB TFA ABAFC ATHB
L R L R
ALBALAEC Y Trga P AT ABMAEC Y Trag
[LADFC IAL,...,'A, B ALAT, A FC ALT A A FC
('L) ('R) (perm;) (permy)
I,A T FC 1AL,..., 1A, FIB ALT A A FC ALA T, A FC
ALAA A - C
(contr)
ALIA, A C

Table 1: Rules of 'L*.

3 Categorical Semantics for !L*

We associate !L* with a category C(!L*), with Typ, - as objects, and derivable sequents of !L* as mor-
phisms whose domains are the formulae on the left of the turnstile and codomains the formulae on the
right. The category C(!L*) is monoidal biclosed’] The connectives , and \,/ in !L* are associated with
the monoidal structure on C(!L*), where , is the monoidal product, with the empty type as its unit and \, /
are associated with the two internal hom functors with respect to ,, as presented in [39]]. The connective
! of IL* is a coalgebra modality, as defined for Differential Categories in [4], with the difference that
our underlying category is not necessarily symmetric monoidal, but we ask for a restricted symmetry
with regards to ! and that ! be a lax monoial functor. In Differential Categories ! does not necessarily
have a monoidal property, i.e. it is not a strict, lax, or strong monoidal functor, but there are examples of
Differential Categories where strong monoidality holds. We elaborate on these notions via the following
definition.

Definition 1. The category C(!L*) has types of 'L*, i.e. elements of Typy, as objects, derivable sequents
of 'L* as morphisms, together with the following structures:

* A monoidal product @: C('L*) x C(!L*) — C('L*), with a unit I.

e Internal hom-functors =: C(\L*)°? x C(IL*) — C(!L*), <: C(!L*) x C('L*)°? — C(IL*) such
that:

i. For objects A,B € C(IL*), we have objects (A = B),(A < B) € C(IL*) and a pair of mor-
phisms, called right and left evaluation, given below:

eVy (amp)  A® (A= B) — A, evl(A<:B)7B: (A=B)®B—A

ii. For morphisms f: AQC — B,g: C®B — A, we have unique right and left curried mor-
phisms, given below:

A(f):C— (A=B), A(g):C— (A<=B)
iii. The following hold

evh o (ids @A (f))=f,  evizo(A'(g)®ids) =g

2We follow the convention that products are not symmetric unless stated, hence a monoidal product is not symmetric unless
referred to by ‘symmetric monoidal’.
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* A coalgebra modality ! on C(IL*). That is, a lax monoidal comonad (!,8,€) such that:

For every object A € C(IL*), the object \A has a comonoid structure (\A,A4,ea) in C(!L").
Where the comultiplication As :'A —!A®!A, and the counit eq 'A — I satisfy the usual
comonoid equations. Further, we require 04 :!A —!A to be a morphism of comonoids [4].

* Restricted symmetry over the coalgebra modality, that is, natural isomorphisms ¢ : legLy®! —
'® 1C(!L*) and 6’ ;! ® lC(!L*) — 1C(!L*)® L

Orp:ARIB—B®A,  0O45:'A@Br— BRA.

We now define a categorical semantics for !L* as the map [ ]: 'L* — C(!L*) and prove that it is sound.

Definition 2. The semantics of formulae and sequents of 'L* is the image of the interpretation map
[]1: 'L* — C(IL*). To elements @ in Typy, this map assigns objects Cy of C(IL*), as defined below:

[0] = CG=I [o] = Co
[(¢,0)] = Co®Cq [lo] = IC,
[(¢/@)] = (Co<=Cyp) [((p\@)] = (Co=Cop)

To the sequents I' = A of L, forI' = {A1,Az,--- A, } where A;,A € Typy, it assigns morphism of C(!L*)
as follows [I' = A] := Cr — Cy, for Cr = [A1] @ [A2] ® - - - & [As].-

Since sequents are not labelled, we have no obvious name for the linear map [I" - A], so we will label
such morphisms by lower case roman letters as needed.

Definition 3. A categorical model for \L*, or a \L*-model, is a pair (C,[ ]c), where C is a monoidal
biclosed category with a coalgebra modality and restricted symmetry, and | |¢ is a mapping Typ, . — C
factoring through [ || : Typy, — C('L¥).

Definition 4. A sequent I' = A of \L* is sound in (C(L*), [ ]), iff Cr — Cga is a morphism of C(!L*). A
rule % of 'L* is sound in (C('L*),[ ]) iff whenever Cr — Cj is sound then so is Ch — Cp. We say
IL* is sound with regards to (C(\L*),[ ]) iff all of its rule are.

Theorem 1. L* is sound with regards to (C(!L*),[ ]).

Proof. See full paper [25]. O

4 Vector Space Semantics for C(!L*)

Following [55], we develop vector space semantics for |L*, via a quantisation functor to the category of
finite dimensional vector spaces and linear maps F : C(!L*) — FdVectg. This functor interprets objects
as finite dimensional vector spaces, and derivations as linear maps. Quantisation is the term first intro-
duced by Atiyah in Topological Quantum Field Theory, as a functor from the category of manifolds and
cobordisms to the category of vector spaces and linear maps. Since the cobordism category is monoidal,
quantisation was later generalised to refer to a functor that ‘quantises’ any category in FdVectr. Since
C(!L*) is free, there is a unique functor C(!L*) — (FdVectg, !) for any choice of ! such that (FdVectg,!)
is a IL*-model. In definition [5| we introduce the necessary nomenclature to define quantisations in full.

3Strictly speaking, this definition applies to symmetric monoidal categories, however we may abuse notation without wor-
rying, as we have symmetry in the image of ! coming from the restricted symmetries ¢/, 6"
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Definition 5. A quantisation is a functor F : C(IL*) — (FdVectg,!), defined on the objects of C(!L*)
using the structure of the formulae of 'L*, as follows:

F(Cp) =R F(Cy) =V,
F(Cpzg) :=Vo @V, F(Cy) =V,
F(Cy/p) = (Vo =Vy) F(Cy\p) := (Vo = V)

Here, V, is the vector space in which vectors of words with an atomic type live and the other vector
spaces are obtained from it by induction on the structure of the formulae they correspond to. Morphisms
of C('L*) are of the form Cr — Ca, associated with sequents I' = A of 'L*, for T = {A},A,--- ,A,}.
The quantisation functor is defined on these morphisms as follows:

F(Cr—)CA) ::F(Cr) —)F(CA):VA1®VA2®"'®VAH — W

Note that the monoidal product in FdVecty is symmetric, so there is formally no need to distinguish
between ([A] = [B]) and ([B] < [A]). However it may be practical to do so when calculating things
by hand, for example when retracing derivations in the semantics. We should also make clear that the
freeness of C(!L*) makes F a strict monoidal closed functor, meaning that F (C4 ® Cg) = FCs ® FCg, or
rather, Visep) = (Va ® V), and similarly, V(4 p) = (Va = V) etc. Further, since we are working with
finite dimensional vector spaces we know that Vq[,l = V., thus our internal homs have an even simpler
structure, which we exploit when computing, which is Vi, = Vi, =V, @ V.

5 Concrete Constructions

In this section we present three different coalgebra modalities on FdVectr defined over two different
underlying comonads, treated in individual subsections. Defining these modalities lets us reason about
sound vector space semantics of C(!L*) in terms of !-preserving monoidal biclosed functors C(!L*) —
FdVectg.

We point out here that we do not aim for complete model in that we do not require the tensor of our
vector space semantics to be non-symmetric. This is common practice in the DisCoCat line of research
and also in the standard set theoretic semantics of Lambek calculus [41]. Consider the English sentence
”John likes Mary” and the Farsi sentence “John Mary-ra Doost-darad(likes)”. These two sentences have
the same semantics, but different word orders, thus exemplifying the lack of syntax within semantics.

5.1 !as the Dual of a Free Algebra Functor

Following [34] we interpret ! using the Fermionic Fock space functor F : FdVectr — Algg. In order
to define F we first introduce the simpler free algebra construction, typically studied in the theory of
representations of Lie algebras [[19]]. It turns out that F is itself a free functor, giving us a comonad
structure on U F upon dualising [34]. The choice of the symbol F comes from “Fermionic Fock space”
(as opposed to “Bosonic”), and is also known as the exterior algebra functor, or the Grassmannian algebra
functor [19]].

Definition 6. The free algebra functor 7 : Vectr — Algy is defined on objects as:

Vi PV =RavVe(VaV)e(VeVeV) @--
>0
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and for morphisms f : V. — W, we get the algebra homomorphism T (f) : T(V) — T (W) defined layer-
wise as

T(f)(vi®@v® - @v,) i =f(vi)@f(»2) @@ f(va).

T is free in the sense that it is left adjoint to the forgetful functor U : Algr — Vectr, thus giving us a
monad UT on Vectr with a monoidal algebra modality structure, i.e. the dual of what we are looking for.
However note that even when restricting 7 to finite dimensional vector spaces V € FdVectp the resulting
UT(V) and UT(V+)* are infinite-dimensional. The necessity of working in FdVectr motivates us to
use F, defined below, rather than T'.

Definition 7. The Fermionic Fock space functor F : Vectg — AlgRﬂ is defined on objects as

Ve PV =RoVe(VAV)S(VAVAV) ®---
n>0

where V"' is the coequaliser of the family of maps (— 1 )ses,, defined as —Tg : VE" — V" and given
as follows:
(=T6) (V1 @ ®@vy) :=5gn(0) (Vo(1) @Ve(2) @+ Vg (n))-

F applied to linear maps gives an analogous algebra homomorphism as in[6}

Concretely, one may define V' to be the n-fold tensor product of V where we quotient by the layer-
wise equivalence relations vi @ vy ® -+ ®@ v, ~ $gn(0) (Vg(1) @ Vg(2) @ - @ V() forn =0,1,2... and
denoting the equivalence class of a vector vi @ v, ® +-- @ v, by vi Ava A -+ Avy,.

Note that simple tensors in V/\"* with repeated vectors are zero. That is, if v; = v jforsome 1 <i,j<n
and i # j in the above, the permutation (ij) € S, has odd sign, and so vi Avy A---Av, =0, since
VIAVIA - Avy =sgn(ij)(vi Ava A= Avy) = —(ViAva A= Awy).

Remark 1. Given a finite dimensional vector space V, the antisymmetric algebra F (V) is also finite
dimensional. This follows immediately from the note in definition @ as basis vectors in layers of F (V)
above the dim(V)-th are forced to repeat entries.

Remark [I] shows that restricting F to finite dimensional vector spaces turns U F into an endofunctor
on FdVectr. We note that F is the free antisymmetric algebra functor [34] and conclude that U F is a
monad (UF, u,n) on FdVectg.

Given F, there are two ways to obtain a comonad structure (UF (V'),Ay, ey ), thus define a coalgebra
modality (UF,§,€) on FdVectg, as desired. One is referred to by Cogebra construction and is given
below, for a basis {e;}; of V, and thus a basis {1,e; ,e;, Ae;;, e, Neis Nejg,- - }i, of UF (V) as:

A(l,e,-l,eiz /\ei3,€i4 /\6,‘5 Ae,‘m--') = (l,eil,e,-z /\€i3,e‘,’4 /\61'5 /\656,"')@)(1,6[1,6,'2 /\e,-3,e,-4 /\e,'5 /\61'6,"')
The map ey : UF (V) — V is given by projection onto the first layer, that is
1,8,‘1,8,‘2 /\€i3,€i4/\€i5 /\eim'” €.

Another coalgebra modality arises from dualising the monad U F, and the monoid structure on F(V),
or strictly speaking on UF (V). Following [7]], we dualise UF to define a comonad structure on UF as
follows. We take the comonad comultiplication to be &y := pir : UFUF(V)+ — UF(V)*, and the
comonad counit to be &y 1= T]‘% :UF(V)*+ — V+. To avoid working with dual spaces one may chose to

4One may wish to think of F as having codomain Aalgg, the category of antisymmetric R-algebras, which is itself a
subcategory Aalgr — Algg.
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formally consider !(V) := UF (V)L as in [34], since UF (V) =2 UF(V) (although this is not strictly
necessary, we choose this notation to stay close to its original usage [34, [7]). Note that a dualising in
this manner only makes sense for finite dimensional vector spaces, as in general, for an arbitrary family
of vector spaces (V;)icr, we have (@;c; Vi) = [1ic;(V/h). Finite dimensionality of a vector space V
makes the direct sum in UF ( ) finite, making the right-hand product a direct sum, i.e. for a finite
index I we have (Pjc; Vi)™ = @i, (Vi ), meaning that we indeed have UF(V)+ = UF(V1). This
lets us dualise the monoid structure of UF(V), giving a comonoid structure on UF (V) hence making
U F into a coalgebra modality. To compute the comultiplication it suffices to transpose the matrix for
the multiplication on UF (V). However, this is in general intractable, as for V an n dimensional space,
UF (V) will have 2" dimensions, and its multiplication will be a (2")? x 2"-matrix. We leave working
with a dualised comultiplication to another paper, but in the next subsection use this construction to
obtain a richer copying than the Cogebra one mentioned above.

5.2 ! as the Identity Functor

The above Cogebra construction can be simplified when one works with free vector spaces, for details
of which we refer to the full version of the paper [25]. The simplified version resembles half of a
bialgebra over FdVectr, known as Special Frobenius bialgebras, which were used in [36] 28| 26] to
model relative pronouns in English and Dutch. As argued in [42], however, the copying map resulting
from this comonoid structure only copies the basis vectors and does not seem adequate for a full copying
operation. In fact, a quick computation shows that this A in a sense only half-copies of the input vector.
In order to see this, consider a vector V= Y..Cis;, for s; € S. Extending the comultiplication A linearly
provides us with

A 7):ZC,-A(SZ~) —Z (s;®@s;) = ZCS Z =V®l,

i

In the second term, we have lost the C; weights, in other words we have replaced the second copy with a
vector of 1’s, denoted by 1.

The above problem can be partially overcome by noting that this A map is just one of a family of
copying maps, parametrised by reals, where for any k € R we may define the a Cofree-inspired comonoid
(V, Ak, e) over a vector spafce V;, with a basis (v;);, as:

A :Vp = Vo@Vy v (v @k)+(k®V), e:V, =Rz ) Cvim ) .G
i i

Here, V is as before and & stands for an element of V padded with number k. In the simplest case, when
k =1, we obtain two copies of the weights 7V and also of its basis vectors, as the following calculation
demonstrates. Consider a two dimensional vector space and the vector ae; + be; in it. The 1 vector 1 is
the 2-dimensional vector ej 4-e; in V. Suppose 7V and T are column vectors, then applying A results in
the matrix 2ae; ® e +abe; R ex +aber R e1 +2bey ® ep, where we have two copies of the weights in
the diagonal and also the basis vectors have obviously multiplied.

This construction is inspired by the graded algebra construction on vector spaces, whose dual con-
struction is referred to as a Cofree Coalgebra. The Cofree-inspired coalgebra over a vector space defines
a coalgebra modality structure on the identity comonad on FdVecty, which provides another !L*-model,
or rather, another quantization C(!L*) — FdVectg.
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l-ed Objects Comonoid Comultiplication Comonad Counit Comonad Comultiplication

*A

1A = A

o (30)
A A +A A

Figure 1: Diagrammatic Structure of ! in C(!L*)

6 Clasp Diagrams

In order to show the semantic computations for the parasitic gap, we introduce a diagrammatic semantics.
The derivation of the parasitic gap phrase is involved and its categorical or vector space interpretations
require close inspection to read. The diagrammatic notation makes it easier to visualise the steps of the
derivation and the final semantic form. In what follows we first introduce notation for the Clasp diagrams,
then extend them with extra prospective notation necessary to model the ! coalgebra modality. The basic
structure of the C(!L*) category, i.e. its objects, morphisms, monoidal product and its internal homs
are as in [2]]. To these, we add the necessary diagrams for the coalgebra modality, that is the coalgebra
comultiplication (copying) A, the counit of the comonad &, and the comonad comultiplication &, found
in figure[I]

7 Linguistic Examples

The motivating example of [20] was the parasitic gap example “the paper that John signed without
reading”, with the following lexicon:

{(The,NP\N), (paper,N), (that, (N\N)/(S/!NP)), (John,NP), (signed, (NP\S)/NP),
(without, ((NP\S)\(NP\S))/NP), (reading, NP/NP)} .

The !L* derivation of “the paper that John signed without reading” is in the full version of the paper
[25]. The categorical semantics of this derivation is the following linear map.

(IvP] <= [N]) @ [N[@ (([N] = [N]) < ([S] = ['NPD) @ [NP] @ ((INP] = [S]) <= [NP]) @
((INP] = [S]) = (INP] = [S])) < [NP]) @ ([NP] < [NP]) — [NP]

defined on elements as follows, for the bracketed subscripts in Sweedler notation:

—
the(—) ® papeF ® that(—, —) ® John @ signed(—, —) @ without (—, —, —) @ reading(—)
— the(lhat(pape;,wzthout(]ohn,szgned(—,—(1)),readlng(—(2)))))

The diagrammatic interpretation of the !L*-derivation is depicted in figure
This is obtained via steps mirroring the steps of the derivation tree of the example, please see the full
version of the paper [23].
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NP =5 NP NP
NP NP NP

(NP = S) = (NP = 5) NP

NP

N

S «<INP

Figure 2: Diagrammatic interpretation of “The paper that John signed without reading”
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8 Experimental Comparison

The reader might have rightly been wondering which one of these interpretations, the Cogebra or the
Cofree-inspired coalgebra model, produces the correct semantic representation. We implement the re-
sulting vector representations on large corpora of data and experiment with a disambiguation task to
provide insights. The disambiguation task was that originally proposed in [[15], but we work with the
data set of [22]], which contains verbs deemed as genuinely ambiguous by [33]], as those verbs whose
meanings are not related to each other. We extended this latter with a second verb and a preposition
that provided enough data to turn the dataset from a set of pairs of transitive sentences to a set of pairs
of parasitic gap phrases. As an example, consider the verb file, with meanings register and smooth.
Example entries of the original dataset and its extension are below; the full dataset is available from
https://msadrzadeh.com/datasets/.

S: accounts that the local government filed

S1: accounts that the local government registered

S2: accounts that the local government smoothed

P: accounts that the local government filed after inspecting

P1: accounts that the local government registered after inspecting
P2: accounts that the local government smoothed after inspecting

P’: nails that the young woman filed after cutting

P’1: nails that the young woman registered after cutting
P’2: nails that the young woman smoothed after cutting
S’: nails that the young woman filed

S’1: nails that the young woman registered

S’°2: nails that the young woman smoothed

We follow the same procedure as in [22] to disambiguate the phrases with the ambiguous verb: (1)
build vectors for phrases P, P1, P2, and also P’, P’1, P’2, (2) check whether vector of P is closer to vector
of P1 or vector of P2 and whether P’ is close to P’2 or P’1. If yes, then we have two correct outputs,
(3) compute a mean average precision (MAP), by counting in how many of the pairs, the vector of the
phrase with the ambiguous verb is closer to that of the phrase with its appropriate meaning.

In order to instantiate our categorical model on this task and experiment with the different copying
maps, we proceed as follows. We work with the parasitic gap phrases that have the general form: “A’s
the B C’ed Prep D’ing”. Here, C and D are verbs and their vector representations are multilinear maps.
C is a bilinear map that takes A and B as input and D is a linear map that takes A as input. For now, we
represent the preposition Prep by the trilinear map Prﬂ) The vector representation of the parasitic g g
phrase with a proper copying operator is Prep(C(?, A ),D( )), for C and D multilinear maps and A
and B, vectors, and where A =Y ; Cl-An,. The different types of copying applied to this, provide us with
the following options.

Cogebra copying Prep( ?, (Zn,)) . (b) Prep( ? an )

Cofree-inspired copying  Prep (C (ﬁ X) D(1), C(?,T) +D(A ))
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Table 2: Parasitic Gap Phrase Disambiguation Results

Model  [[MAP|  Model |MAP|  Model [ MAP |
BERT 0. 65 FT(+) 0.55 W2V (+) 0.46
Full 0.48 Full 0.57 Full 0.54

Cofree-inspired || 0.47 || Cofree-inspired | 0.56 || Cofree-inspired | 0.54
Cogebra (a) 0.46 Cogebra (a) 0.56 Cogebra (a) 0.46
Cogebra (b) 0.42 Cogebra (b) 0.37 Cogebra (b) 0.39

In the copy object model of [22], these choices become as follows:

Cogebra copying  (a) Prep (A o (Cx ? ,D x Zn,)

Prep(an Cx? X)

Cofree-inspired copying  Prep <(A O (C x ?)) (Dx1),(16(CxB))+ (D x K))

For comparison, we also implemented a model where a Full copying operation A(7) =V ®V was
%
used, resulting in a third option Prep (C(?, A ),D(A)), with the copy-object model

Prep (XQ(CX ?),Dx X)

Note that this copying is non-linear and thus cannot be an instance of our Fd Vecty categorical semantics;
we are only including it to study how the other copying models will do in relation to it.

The results of experimenting with these models are presented in table[2] We experimented with three
neural embedding architectures: BERT [10]], FastText (FT) [6], and Word2Vec CBOW (W2V) [40]. For
details of the training, please see the full version of the paper [25]].

Uniformly, in all the neural architectures, the Full model provided a better disambiguation than other
linear copying models. This better performance was closely followed by the Cofree-inspired model: in
BERT, the Full model obtained an MAP of 0.48, and the Cofree-inspired model an MAP of 0.47; in FT,
we have 0.57 for Full and 0.56 for Cofree-inspired; and in W2V we have 0.54 for both models. Also
uniformly, in all of the neural architectures, the Cogebra (a) did better than the Cogebra (b). It is not
surprising that the Full copying did better than other two copyings, since this is the model that provides
two identical copies of the head noun A. This kind of copying can only be obtained via the application of
a non-linear A. The fact that our linear Cofree-inspired copying closely followed the Full model, shows
that in the absence of Full copying, we can always use the Cofree-inspired as a reliable approximation.
It was also not surprising that the Cofree-inspired model did better than either of the Cogebra models,
as this model uses the sum of the two possibilities, each encoded in one of the Cogebra (a) or (b). That
Cogebra (a) performed better than Cogebra (b), shows that it is more important to have a full copy of
the object for the main verb rather than the secondary verb of a parasitic gap phrase. Using this, we can
say that verb C that got a full copy of its object A, played a more important role in disambiguation, than
verb D, which only got a vector of 1°s as a copy of A. Again, this is natural, as the secondary verb only
provides subsidiary information.

The most effective disambiguation of the new dataset was obtained via the BERT phrase vectors,
followed by the Full model. BERT is a contextual neural network architecture that provides different
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meanings for words in different contexts, using a large set of tuned parameters on large corpora of data.
There is evidence that BERT’s phrase vectors do encode some grammatical information in them. So
it is not surprising that these embeddings provided the best disambiguation result. In the other neural
embeddings: W2V and FT, however, the Full and its Cofree-inspired approximation provided better
results. Recall that in these models, phrase embeddings are obtained by adding the word embeddings,
and addition forgets the grammatical structure. That the type-driven categorical model outperformed
these models is a very promising result.

9 Future Directions

There are plenty of questions that arise from the theory in this paper, concerning alternative syntaxes,
coherence, and optimisation.

One avenue we are pursuing is to bound the !-modality of !L*. This is desirable from a natural
language point of view, as the ! of linear logic symbolises infinite reuse, however at no point in natural
language is this necessary. Thus bounding ! by indexing with natural numbers, similar to Bounded
Linear Logic [[13] may allow for a more intuitive notion of resource insensitivity closer to that of natural
language.

Showing the coherence of the diagrammatic semantics by using the proof nets of Modal Lambek Cal-
culus [29], developed for clasp-string diagrams in [44] constitutes work in progress. Proving coherence
would allow us to do all our derivations diagrammatically, making the sequent calculus labour superflu-
ous. However, we suspect there are better notations for the diagrammatic semantics perhaps more closely
related to the proof nets of linear logic.

Applications of type-logics with limited contraction and permutation to movement phenomena is a
line of research initiated in [14} 3] with a recent boost in [1} (30} 31]], and also in [12]. Finding common-
alities with these approaches is future work.

We would also like to see how much we can improve the implementation of the cofree-inspired model
in this paper. This involves training better tensors, hopefully by using neural networks methods.
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