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ABSTRACT The state-of-the art for solving the nonlinear material decomposition problem in spectral
computed tomography is based on variational methods, but these are computationally slow and critically
depend on the particular choice of the regularization functional. Convolutional neural networks have been
proposed for addressing these issues. However, learning algorithms require large amounts of experimental
data sets. We propose a deep learning strategy for solving the material decomposition problem based on
a U-Net architecture and a Sim2Real transfer learning approach where the knowledge that we learn from
synthetic data is transferred to a real-world scenario. In order for this approach to work, synthetic data must
be realistic and representative of the experimental data. For this purpose, numerical phantoms are generated
from human CT volumes of the KiTS19 Challenge dataset, segmented into specific materials (soft tissue and
bone). These volumes are projected into sinogram space in order to simulate photon counting data, taking
into account the energy response of the scanner. We compared projection- and image-based decomposition
approaches where the network is trained to decompose the materials either in the projection or in the image
domain. The proposed Sim2Real transfer strategies are compared to a regularized Gauss-Newton (RGN)
method on synthetic data, experimental phantom data and human thorax data.

INDEX TERMS Spectral CT, inverse problem, deep learning, transfer learning.

I. INTRODUCTION
The new generation of spectral computed tomogra-
phy (SPCCT) scanners include photon-counting detectors
(PCDs), which count single photons and resolve their
energy [1]. With this extra dimension, SPCCT provides
higher contrast with respect to conventional CT and allows
for material decomposition, which opens up new diagnosis
possibilities [2], [3]. PCDs can be exploited for material
decomposition, including K-edge imaging, which uses the
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discontinuity at diagnostic energies of the linear attenuation
coefficient of high-Z element-based contrast agents such as
gadolinium, gold or bismuth. Material decomposition could
be used to quantify calcium content to assess bone and teeth
health, determine kidney stone composition, determine liver
iron concentrations, determine bone marrow composition,
characterize plaques [3], [4], abdominal imaging [5], eval-
uating the risk of breast cancer [6], and k-edge contrast agent
quantification, among others.

A variety of spectral CT image reconstruction methods
have been proposed. Some of these methods have focused
on compressed sensing and algorithms that promote sparsity
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in the image domain, using total variation (TV) [7], vector-
valued generalization of TV [8], nonlocal TV [9], tight
frames [10], dictionary learning methods [11], prior-based
methods [12], and low-rank [13]–[15]. In this work,
we focus on reconstruction algorithms that perform material
decomposition.

Material reconstruction algorithms can be divided into
projection-based [16], [17], image-based [18], [19], and
one-step inversion approaches [20], [21]. Image-based meth-
ods reconstruct first each energy bin and then perform
material decomposition on the image domain assuming
that images are monochromatic, which may lead to beam
hardening artefacts. Projection-based and one-step inversion
methods are a natural choice as they take into account
the inherent physics. One-step methods are mathemati-
cally the most elegant, as they solve the problem in one
step, but they can be computationally expensive. Projection-
based methods firstly decompose the energy-resolved sino-
grams into material-specific sinograms and then perform
tomographic reconstruction of each of the decomposed
sinograms [22]. An advantage of this approach is that it allows
independent decomposition of each projection view, which
can be parallelized, making the computational process more
convenient [22].

State-of-the art for solving the material decomposition
problem are optimization methods, also named variational
approaches [20], [22]–[26]. Image-based material decompo-
sition is a convex problem for a least squares functional [21].
Material decomposition in the projection domain is a non-
linear, nonconvex inverse problem although it is convex in
a well defined region of the solution space [22], [26]. For
projection-based algorithms, a previous work [22] proposed a
regularized material-specific Gauss-Newton (RGN) method,
which outperformed widely used unregularized maximum
likelihood method. In [26], authors assessed an iterative reg-
ularization scheme based on the Bregman iteration.

While variational methods are robust and have shown
improved results with respect to unregularized approaches,
they present several disadvantages. First, they can be compu-
tationally slow, given their iterative nature. Second, their per-
formances rely on the prior knowledge of the scanner energy
response and the choice of the regularization functional.
With regard to the adopted model, for instance, the detector
response can be degraded by charge sharing, pulse pileup, and
energy loss due to K-escape [27]. The effect of assuming a
perturbed detector response can have detrimental effects on
image quality, as shown in [28]. With regard to the choice of
the regularization functional, specific regularization for the
decomposed materials have shown to improve image quality
with respect to unregularized approaches [22], but the choice
is far from being optimal.

Recently, deep convolutional neural networks (CNN)
have shown outstanding results in several image processing
tasks [29], [30]. CNNs have been also proposed for solv-
ing several inverse problems, including image restoration
and image reconstruction [31]–[36]. Among the diverse

CNN configurations, U-Net has shown outstanding results
for image segmentation [37] and has been applied to post-
processing in CT [31] and to artifact removal of nonlinear
CT images [38]. Several works have also proposed deep
learning for solving the material decomposition, mainly in
the image domain. In [39], the authors trained a U-Net net-
work using simulated phantoms constructed from random
combinations of materials and tested the model on mice
data. In [9], the authors proposed a VGG-16 network and
tested it on Shepp-Logan synthetic data and experimental
cylindrical phantoms. The previously proposed neural net-
works approaches in the projection domain have been based
on multilayer perceptrons (using fully connected layers) for
decomposing materials in a pixel-by-pixel basis [40]–[42].
In [40], the authors used a neural network with two hidden
layers followed by a denoising method to mitigate noise.

The recent success of CNNs for image processing tasks
relies on large-scale annotated data sets such as ImageNet
withmillions of images [29], [43]. However, equivalent medi-
cal imaging data sets are not common. Transfer learning (TL)
has emerged as a promising candidate technique to com-
pensate the lack of large-scale medical imaging data sets.
TL is the ability of a system or model to recognize and
apply knowledge and skills learned in previous domains/tasks
to novel domains/tasks. TL assumes that the model can
generalize to new tasks or new domains by learning fea-
tures or factors that are common between source and target
tasks [44]. TL becomes relevant when labelled training data,
time or computational power are limited, so it is particularly
applicable to medical imaging. Different approaches for TL
can be found in [45], [46]; most common is to pre-train a
model on a large-annotated data set and then to fine tune
the model on a more specific and smaller data set [47], [48].
Recent works proposed related TL approaches based on fine
tuning for material decomposition [28], [42]. However, in this
work we follow a Sim2Real transfer approach where the
knowledge that one learns from synthetic data is transferred
to a real-world scenario [49], [50]. The Sim2Real strategy is
based on the fact that synthetic data is almost infinitely acces-
sible and diverse, and it becomes pertinent when experimental
annotated data are very limited or non existent, which is the
case of SPCCT. While learning-based approaches perform
reasonably well given experimental training data, they may
not necessarily work well when trained only on synthetic
data. In cases in which synthetic data generalize poorly to real
data, data augmentation strategies are generally followed.

In this work, we propose a deep learning strategy for solv-
ing the material decomposition problem based on a U-Net
architecture and a Sim2Real transfer approach. In order for
the Sim2Real approach to work, synthetic data must be
realistic and representative of the experimental data. For this
purpose, numerical phantoms are generated from human CT
volumes of the KiTS19 Challenge dataset [51]. Numerical
data are then computed by segmenting CT volumes into spe-
cific materials (soft tissue and bone), projecting the material
volumes and simulating photon counting data, taking into
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account the energy response of the scanner. In order to com-
pare projection- and image-based decomposition strategies,
the U-Net is trained to decompose the materials either in
the projection domain (U-Net-P) or in the image domain
(U-Net-I). These are compared to a regularizedGauss-Newton
(RGN) method in the projection domain [22] and all methods
are assessed on both numerical and experimental data. The
proposed approach combines a CNN model with training
on human data, which allows to implicitly learn the real
prior distribution of the decomposed materials [52]. This is
particularly interesting from aBayesian perspective to inverse
problems as it motivates the choice of the regularization
functional as a particular selection for the prior distribution
of the unknown variable. Thus, our method differs from
previous CNN methods based on the image domain and
approaches that are trained on experimental phantom data
only.

II. FORWARD MODEL
We assume a 2D sensor with P pixels and I energy
bins and an object with V voxels made of M mate-
rials. We image the object under 2 projections. Let
s = (s11,1, . . . , s

θ
i,p, . . . , s

2
I ,P)
> be the measurement vector,

where sθi,p represents the photon counts measured in the
i-th energy bin at the p-th pixel under the θ -th projection,
and ρ = (ρ1,1, . . . , ρm,v, . . . , ρM ,V )> be the (unknown)
mass densities vector, where ρm,v is the mass density for the
m-th material at the v-th voxel. The forward model in spectral
CT can be represented as the mapping

s = G(ρ). (1)

The forward model G can be seen as the composition of
the linear X-ray transform and a non-linear spectral mixing
operator. The X-ray transform X applies to each material
independently, i.e.,

am = X (ρm), 1 ≤ m ≤ M (2)

where ρm = (ρm,1, . . . , ρm,v, . . . , ρm,V )> and am =

(a1m,1, . . . , a
θ
m,p, . . . , a

2
m,P)
> represent mass density and

projected mass density for the m-th material, respectively.
Spectral mixing applies to each view and detector pixel inde-
pendently, i.e.,

sθ = F(aθ ), 1 ≤ θ ≤ 2 (3)

where aθ = (aθ1,1, . . . , a
θ
m,p, . . . , a

θ
M ,P)

> and sθ =

(sθ1,1, . . . , s
θ
i,p, . . . , s

θ
I ,P)
>. In particular, we consider the fol-

lowing non linear mixing [23] (excluding pileup and charge
sharing effects)

sθi,p =
∫

E∈E

n0,p(E)di,p(E) exp

[
−

M∑
m=1

aθm,pτm(E)

]
dE

(4)

where E is the range of energy delivered by the x-ray
tube, n0,p(E) is the x-ray source energy spectrum at the

p-th pixel, di,p(E) is the energy-dependent detector response
function at the p-th pixel for the i-th bin, and τm(E) is
the energy-dependent mass attenuation coefficient of the
m-th material. This assumes that the local linear attenuation
coefficient (LAC) of the object at energy E and the voxel x,
µ(E, xv), can be decomposed as the sum ofM basis functions
that are separable in energy and space:

µ(E, x) =
M∑
m=1

ρm(x)τm(E), (5)

where ρm(xv) = ρm,v and µm(xv) = µm,v for a voxel xv.
Data simulation involves solving the forward problem. For

this, we first project the mass densities ρm following (2) to
get the projected mass densities am and then we apply the
spectral mixing operator (4) to get the photon-counting data
at the different energy bins s.

III. SPECTRAL CT IMAGE RECONSTRUCTION
Solving the spectral CT image reconstruction problem in
one step involves inverting the RMV

→ RIP2 nonlinear
mapping (1). In this work, we instead adopt two different
two-step approaches: projection- and image-based decompo-
sition approaches.

A. PROJECTION-BASED APPROACH
The projection-based approach splits the problem into
2 inversions of RMP

→ RIP mappings (3), which
decompose projections for different energy bins into projec-
tions for different materials, followed by M inversions of
RV
→ RP2 (2), which provide tomographic reconstructed

images for the different materials. This approach reduces the
size of the subproblems, offering a natural parallelization
scheme (e.g. decomposing all angles in parallel, reconstruct-
ing all materials in parallel), and allows to separate nonlinear
(i.e. spectral) from linear (i.e. tomographic) mixing. Thus,
the two-step approach allows to reduce the computational
complexity with respect to the one-step method by first solv-
ing the material decomposition problem (3), projection by
projection, and then solving the tomographic reconstruction
problem for each material (2). Material decomposition is
done projection by projection, which allows to include an
explicit regularization functional or to implicitly learn the
prior distribution. A previous work found that a regularization
approach led to significant improvement with respect to a
unregularized pixel-by-pixel decomposition, which was very
sensitive to noise [22]. An alternative to solving the mate-
rial decomposition problem projection by projection would
be to decompose all projection views at once. While this
could allow to introduce further regularization on the angle
dimension, we chose single projection decomposition as it
allows for parallelization across angles, reducing computa-
tional complexity.

For the first step (material decomposition in the
projection domain), we consider two different methods:
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a regularized variational framework and a deep learning
strategy, as described below.

1) PROJECTION-BASED MATERIAL DECOMPOSITION
WITH A VARIATIONAL METHOD
Using a variational framework, material decomposition has
been previously formulated as the minimization of the fol-
lowing cost function [22]:

8(aθ ) =
1
2
‖sθ − F(aθ )‖2W θ + α

∑
m

Rm(aθ ),

1 ≤ θ ≤ 2 (6)

where the data fidelity term is a weighted least square
functional to approximate a Poisson distribution, W θ

=

diag(1/
√
sθ ) is a weighting matrix, α is a regularization

parameter, andRm accounts for specific material regulariza-
tion. We chose second-order and first-order Tikhonov regu-
larization for soft tissue and bone, respectively, as suggested
in [22]. While two different values of the regularization
parameter could be used for different materials, it was pre-
viously found to not lead to significant improvement [22].
Cost function (6) is efficiently minimized by using a Gauss
Newton algorithm (RGN); MATLAB code for RGN is avail-
able from the Spectral X-ray image reconstruction Spray
toolbox [53].

2) PROJECTION-BASED MATERIAL DECOMPOSITION WITH
U-NET (U-NET-P)
Deep learning has been recently proposed for inverse prob-
lems [31], [54]. In this work, we want to learn the mapping

Hβ : s̃θ 7→ ãθ , (7)

where β indicates the parameters of the neural network, s̃θ

corresponds to the normalized data defined as

s̃θ = ln(ŝ/sθ ) (8)

with ŝ = F(0) representing the measurement in the absence
of the object, and ã corresponds to the normalized outputs.
We normalize the output material per material across the
entire training set, i.e., ãθ,nm,p = aθ,nm,p/maxp,θ,n aθ,nm,p.
Normalization of input and output variables prior to train-

ing a neural network model is common practice to avoid a
slow or unstable learning process. In this case, normaliza-
tion of the outputs is motivated by the fact that different
materials may have different range of values. For the inputs,
photon-counting data have very large values; in addition;
normalizing the data by the acquisition in the absence of the
object, ŝ, may decrease the sensitivity to modeling errors.
Learning means finding the parameters β of the network

that minimizes the following loss function

4(β) =
N∑
n=1

‖Hβ (s̃n)− ãn‖2

=

N∑
n=1

M∑
m=1

‖Hβ,m(s̃n)− ãnm‖
2, (9)

where (s̃n, ãn) are N input-output vector pairs (3) that
can be reshaped into input-output array pairs of size
(Px × Py × I ,Px × Py × M ), N is the number of projection
images in the training set, and each projection image is of size
Px × Py. Minimization of (9) was done with Adam method
under TensorFlow, with learning rate 10−4 and batch size
of 16. Training and test losses were computed during training
and early stopping was adopted to avoid overfitting.

We use a U-Net architecture [37], which consists in a
contracting multi-scale decomposition path and a symmetric
expanding path with skip connections at each scale. The
contracting path comprises 3×3 convolutions (with the zero-
padding) each followed by a rectified linear unit (ReLU)
and alternated with a 2 × 2 max pooling operation with
stride 2 for downsampling by half every two convolution
operations. At each downsampling the number of feature
channels is doubled, with 32 channels in the first scale and
128 channels in the last scale. The expansive path comprises
the same convolution operations as in the contracting path
but alternated with upsampling by two every two convolution
operations. The final layer is a 1×1 convolution used to map
the 32 channel layer to the output with the desiredM number
of decomposed materials. This leads to a total of 14 hidden
layers (figure 1).

FIGURE 1. U-Net architecture for material decomposition in the projection
domain (U-Net-P) and in the image domain (U-Net-I). For U-Net-P,
the input is a stack of photon counting projection images for I energy
bins (Px × Py × I), and output is a stack of the decomposed material
projection images for M materials (Px × Py ×M) for a projection angle θ .
For U-Net-I, the input is a stack of reconstructed images for I energy bins
(Qx ×Qy × I), and output is a stack of the decomposed material
reconstructed images for M materials (Qx ×Qy ×M) for a 2D slice.

3) TOMOGRAPHIC RECONSTRUCTION OF DECOMPOSED
MATERIAL MASS DENSITIES
The second step corresponds to tomographic reconstruction
for the different materials (2). For numerical data, we assume
parallel geometry and perform tomographic reconstruction
using filtered back-projection algorithm. For experimental
data, tomographic reconstruction is done using a regular-
ized conjugate gradient method within the Reconstruction
Toolkit (RTK) [55], which minimizes the following cost
function:

9(ρm) = ‖Xρm − am‖22 + γ ‖∇ρm‖
2
2, (10)

where γ is a regularization parameter. The forward projection
uses ray casting with trilinear interpolation and the backpro-
jection is voxel-based with bilinear interpolation. Parameters
were selected empirically as γ = 100 and k = 25, where k
is the number iterations of conjugate gradient.
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B. IMAGE-BASED APPROACH
The image-based approach is a widely used two-step
approach for material decomposition in spectral
CT [18], [19]. In the first step, images for the different energy
bins, µbini , are reconstructed by solving

s̃i = X (µbini ), 1 ≤ i ≤ I , (11)

where µbini = (µbini,1 , . . . , µ
bin
i,v , . . . , µ

bin
i,V )
>, µbini,v is the recon-

structed image for the i-th energy bin at the v-th voxel, and
s̃i corresponds to the normalized data (8). The first step (11)
corresponds to I inversions of RV

→ RP2 (11).
The second step is the material decomposition in the image

domain

µbin =M(ρ), (12)

where µbin = (µbin,>1 , . . . ,µ
bin,>
i , . . . ,µ

bin,>
I )>, ρ =

(ρ>1 , . . . , ρ
>
m, . . . , ρ

>
M )> and M is the spectral mixing oper-

ator in the image domain. We remark that M cannot be
analytically described in a simple manner without taking an
approximation and that we are only interested in learning
its inverse mapping. Step (12) requires one inversion of the
mapping RVM

→ RVI . The implementation of the two-step
approach used in this work is described as follows.

1) TOMOGRAPHIC RECONSTRUCTION OF ENERGY BINS
Tomographic reconstruction for the different energy bins (11)
is solved using the same methods and same parameters as
described in section III-A3. For experimental data, the reg-
ularized conjugate gradient method minimizes

9(µbini ) = ‖Xµbini − s̃i‖
2
2 + γ ‖∇µ

bin
i ‖

2
2. (13)

2) IMAGE-BASED MATERIAL DECOMPOSITION WITH U-NET
(U-NET-I)
We solve the material decomposition problem in the image
domain (12) using deep learning. For this, we aim to learn
the mapping

M−1
ω : µ

bin,j
7→ ρj, (14)

where M−1 is the inversion of the mixing operator in the
image domain and ()j stands for the j-th slice in the volume.
In this case, input and outputs are not normalized because
mass densities are already naturally normalized to water.

Learning means finding the parameters ω of the network
that minimizes the following loss function

5(ω) =
N∑
n=1

‖M−1
ω (µbin,n)− ρn‖2

=

N∑
n=1

M∑
m=1

‖M−1
ω,m(µ

bin,n)− ρnm‖
2 (15)

where (µbin,n, ρn) are N input-output vector pairs (12) that
can be reshaped into input-output array pairs of size (Qx ×
Qy× I ,Qx ×Qy×M ), N is the number of image slices in the
training set, and each image is of sizeQx×Qy. Minimization

of (15) was done with the same method and the same U-Net
architecture as described in the projection domain (figure 1).

C. DATA AND IMAGE EVALUATION
1) NUMERICAL HUMAN PHANTOMS
Numerical human phantoms are made of soft tissue and
bone and are built from CT volumes obtained from the
KiTS19 challenge data set (2019 Kidney Tumor Segmenta-
tion Challenge, https://kits19.grand-challenge.org/data/) [51]
(figure 2).We used 50 phantoms for training, 3 for evaluation,
and 9 for test. CT volumes have voxel size 0.96 mm ×
0.96 mm × 1.8 mm. In order to facilitate numerical
simulations, we processed CT volumes to get the same
dimension: volumes were cropped to have 640 voxels in
x- and y-dimensions and 100 voxels along z-axis. CT volumes
were semi-automatically segmented into bone and soft-tissue
using a combination of thresholding and morphological oper-
ations. After segmentation, we created mass density volumes
by normalizing the segmented volumes to have median value
in the kidneys equal to 1.1 g·cm−3. Then, mass densities
for both materials were projected using the Radon transform
(assuming parallel geometry) to create the projected mass
densities.

FIGURE 2. Two examples from the CT Kits19 data base.

Photon counting data were simulated taking into account
the manufacturer source spectrum and detector response
function and the linear attenuation coefficients (LACs) of the
two materials. Both phantom creation and simulation were
realized with the Spray toolbox [22], [53]. Noisy data was
considered by assuming a Poisson distribution for a tube
current of 200 mA, which corresponds to a total number of
photons in a central pixel of the detector equal toN0 = 6·105.
Projected data consisted of 360 projections over a 180◦ angle
span and 924× 8 detector pixels.
In this work, we follow a Sim2Real transfer approach,

so training data for the deep learning strategies are based
on the numerical human phantoms. Training data for U-Net-
P then consisted of 19440 projections (360 projections for
54 phantoms). In order to perform further data augmenta-
tion, projected volumes were randomly cropped along the
z-dimension and data simulation and noise corruption were
performed at runtime during training.

Training data for U-Net-I consisted of 5400 images
(100 slices for 54 phantoms). Data augmentation was per-
formed by random crop along all directions. In addition, data
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augmentation was performed to account for the appearance
of bone tissue in the soft tissue image. For this, the bone
image was first normalized and then scaled to have the max-
imum between 1.2 and 2.2 using random sampling from a
uniform distribution. Then, this reference bone image was
scaled again by κb to provide the final bone image. The
reference bone image was also scaled by κs and added to
the soft tissue image to provide the final soft tissue image. The
values κb and κs were obtained from the ratios of the Gammex
bone inserts (κb, κs) as (0.77, 0.37), (0.01, 1.82), (0.80, 0.53),
(0.45, 1.15). We remark that these ratios account only for the
maximum values in the image but larger variations of bone
values and ratios are actually being considered because the
bone image is not homogeneous. Given the computational
cost of solving the two-step approach in the image domain,
data augmentation and noise were done before training.

2) EXPERIMENTAL DATA
A SPCCT prototype system (Philips Medical Systems)
installed at CERMEP, Lyon, was used for this study [56]. It is
a 500 mm FOV system equipped with a conventional x-ray
tube that can be set with a tube voltage at 80, 100, or 120 kVp
and tube current values between 10 and 500 mA. Tube fil-
tration absorbs low-energy x-rays so the subject is exposed
to a spectrum that ranges from 35 to 120 keV. The system
is based on photon counting detectors of 2-mm-thick cad-
mium zinc telluride with a pixel pitch of 270 µm × 270 µm
at isocenter, ChromAIX2 application-specific integrated cir-
cuits combined with cadmiun zinc telluride as sensor mate-
rial, and operates in single photon-countingmodewith energy
discrimination. Photo-counting detectors allow up to 5 con-
secutive energy thresholds between 30 and 120 keV. The
scan field of view is 500 mm in-plane, with a z-coverage
of 17.5 mm in the scanner isocenter. Axial and helical
scans over 360◦ are performed with 2400 projections per
rotation.

We consider two data sets: an experimental phantom and
human thorax data. For the experimental phantom, we used
the CIRS (Computerized Imaging Reference Systems, Inc,
USA) Electron Density Phantom [57], which is made of a
cylinder of size 330 mm× 270 mm× 50 mm and a density of
1.029 g·cm−3 and inserts as surrogates of different biological
tissues. We used a mixture of inserts from the CIRS phantom
and the GAMMEX Tissue Characterization Phantom Model
467 (Gammex Middleton, USA). Data were acquired using
a tube voltage of 120 kVp and tube current of 198 mA
using axial geometry, with a standard set of energy thresholds
(30, 51, 62, 72, 81 keV). Data were binned to a final size
of 462 × 16 × 2400 × 5. Final reconstructed voxel size was
1 mm × 1 mm × 2 mm. In order to compare the data SNR
with previous work [28], we compute the total number of
photons provided by the source in a central pixel of the
detector. For this data set, the total number of photons was
approximately N0 = 6 · 105.
The human thorax data set corresponds to an adult

male volunteer. Data were acquired using a tube voltage

of 120 kVp and exposure of 62 mAs using helical geometry
(85 mA, 0.75 s rotation time and 1.03 pitch). Data were
binned to a final size of 924 × 8 × 24912 × 5. This corre-
sponded to a total number of photons of N0 = 1.8 · 105.
Image reconstruction of experimental data with both RGN

and deep learning strategies take into account the source
spectrum and the detector response function of the scanner,
following the spectral mixing definition (4). We have not
included charge sharing and pulse pileup effects, which can
lead to artefacts. We also remark that data calibrations and
corrections included in the scanner manufacturer pipeline
have not been included in this work.

3) IMAGE EVALUATION
U-Net-P, U-Net-I and RGN were evaluated on synthetic data
and on the two experimental data sets. The performance of
RGN depends on the selection of the regularization parame-
ter. Selecting the optimal regularization parameter in terms
of MSE may lead to images with low noise but with loss
of image details [26]. Thus, we provide results for RGN for
two values of the regularization parameter: α = 0.1 (low
regularization) and α = 0.6 (intermediate regularization).
For the numerical test set, methods were assessed in terms
of normalized Mean Squared Error (MSE) and Structural
Similarity metric (SSIM) on both decomposed projections
and reconstructed images, bias on reconstructed images for
soft tissue and bone, and noise for soft tissue. Normalized
MSE was computed for each material as follows:

MSEm =
‖am − a

Target
m ‖2

‖aTargetm ‖2

. (16)

Relative bias was computed for each material as follows:

biasm = 100
|ρ̄m − ρ̄

Target
m |

ρ̄
Target
m

, (17)

where the mean was taken across a circular region in a
homogeneous area (of radius equal to ten pixels) for soft
tissue and in a mask for bone (comprised of pixels that
belong to the support of bone in the phantom). Noise for soft
tissue was computed as the standard deviation in the circular
homogeneous region. In addition, methods were assessed by
visual inspection.

For the experimental phantom data, methods were assessed
in terms of quantification of soft tissue and bone inserts
by computing the mean in a circular region with radius
of 1 cm for a central slice. Both experimental phantom data
and human thorax data were evaluated visually. For exper-
imental data, we also computed a ‘virtual’ monochromatic
image (for 60 keV) from the decomposed images in order
to compare visually to the standard CT image provided by
a conventional scanner. We chose 60 keV as a previous study
found that monochromatic images between 60 and 70 keV
could be considered as optimal surrogates of conventional
CT images [58]. Monochromatic images were computed as
the LACs at energy E and point x in the reconstructed volume
following (5).

VOLUME 9, 2021 25637



J. F. P. J. Abascal et al.: Material Decomposition in Spectral CT Using Deep Learning: A Sim2Real Transfer Approach

FIGURE 3. Phantom and decomposed projections (for 0◦ view) for RGN and U-Net-P for a synthetic phantom from the test set.

FIGURE 4. Error images of decomposed projections by RGN and U-Net-P for the same view as in figure 3.

IV. RESULTS
A. NUMERICAL THORAX PHANTOM DATA
Figure 3 shows decomposed images by RGN for two different
values of α and by U-Net-P. For α = 0.1, which corresponds
to little regularization, RGN provides accurate decomposi-
tion, recovering image details, but images are noisy. For
α = 0.6, RGN reduces noise but at the expense of excessive
blurring, particularly in bone regions. This is well appreciated
in the error images in figure 4. On the contrary, U-Net-P is
able to reduce noise while maintaining image details, as can
be appreciated in figure 5.

Tomographic reconstructions of decomposed data with
RGN, U-Net-P and U-Net-I are shown in figure 6.
These results are consistent with results obtained for the

decomposed projections. For α = 0.1, RGN recovers image
details well but images are noisy. For α = 0.6, RGN is able
to remove noise but image details are lost. U-Net-P leads
to similar reduction of noise than RGN for α = 0.6 while
maintaining image quality, as it is well appreciated in the
error images in figure 7. U-Net-I provides much higher image
quality than projection-based methods, with less noise, better
recovery of image details and excellent preservation of image
texture.

Figure 8 shows image details of the reconstructed images
for soft tissue. RGN for α = 0.6 misses image details while
U-Net-P presents better recovery than RGN for α = 0.1.
U-Net-I provides best results with almost perfect decompo-
sition. The improved recovery of image details by U-Net-I
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FIGURE 5. Image detail for phantom and decomposed projections for the images shown in figure 3.

FIGURE 6. Tomographic reconstruction of a numerical human phantom for RGN, U-Net-P and U-Net-I. Image reconstruction
corresponding to decomposed projections shown in figure 3.

can be explained by the presence of these details in the tomo-
graphic reconstructions of the different energy bins (figure 9),
which constitute the input for U-Net-I.

Figure 10 (a, b) displays normalized MSE and SSIM for
decomposed projections for RGN and U-Net-P. For soft tis-
sue, U-Net-P presents a 29 % and 6% decrease in normalized
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FIGURE 7. Error images of tomographic reconstructions of a numerical human phantom (corresponds to figure 6).

FIGURE 8. Detail of tomographic reconstruction of soft tissue for the images shown in figure 6. Yellow arrow points
where bone details are not well recovered. Green arrow points to the appearance of ‘fake’ details.

FIGURE 9. Tomographic reconstructed images for energy bins 1, 3 and 5. Images are displayed with the same colorbar (0,0.53).
Random crops of the five energy bins images are the input for U-Net-I. The output for these images are provided in figure 6.

MSE on decomposed projections with respect to RGN for
α = 0.1 and α = 0.6, respectively. Normalized MSE for
bone is larger than for soft tissue due to noise, as most part of
the image corresponds to background. U-Net-P led to similar
decrease in MSE for bone as for soft tissue. U-Net-P also led
to increase in SSIM with respect to RGN for bone and soft
tissue. For bone tissue, U-Net-P presents a 2.5- and 3-fold
increase in SSIM on decomposed projections with respect to
RGN for α = 0.1 and α = 0.6, respectively.
Figure 10(c, d) shows normalized MSE and SSIM for

tomographic reconstructions for all methods. U-Net-P leads
to better results than RGN, and U-Net-I leads to the best
results overall, with up to 85 % and three-fold increase in
SSIM with respect to RGN and U-Net-P, respectively.

Figure 10(e, f) show normalized bias for tomographic
reconstructions for all methods. Among projection-based
methods, RGN leads to lower bias for soft tissue but much
higher bias for bone than U-Net-P. U-Net-I presents the
lowest bias overall. For all methods, bias for soft tissue is

smaller than for bone because it is computed over a larger
region.

Figure 10(g) shows noise (SD) in soft tissue. Adopting
RGN for α = 0.6 as reference, U-Net-P and U-Net-I lead
to 27 % and 85 % decrease in noise, respectively.

B. EXPERIMENTAL DATA
1) EXPERIMENTAL PHANTOM DATA
Figure 11 shows tomographic reconstructions for the exper-
imental phantom data. Methods lead to similar quantitative
results, especially for soft tissue inserts. Decomposition of
bonematerials are slightly different. U-Net-I leads to a clearer
recovery and closer estimation for most inserts. In terms
of image quality, U-Net-P presents less noisy images and
slightly less ring artefacts than RGN. U-Net-I leads to high
image quality with suppression of most ring artefacts. The
60 keV images provided by the two methods are very similar,
with U-Net-P and U-Net-I presenting less noise.
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FIGURE 10. Quantitative results on the numerical thorax test set. Boxplots for normalized MSE and SSIM of decomposed projections
and tomographic reconstructed images, given by U-Net-P (UP), U-Net-I (UI), RGN for α = 0.1 (G1) and RGN for α = 0.6 (G2), for soft
tissue (S) and bone (B). UI is provided only on reconstructions. Boxplots show the median, 25-th and 75-th percentiles, and minimum
and maximum values excluding outliers, which are displayed with red crosses. When notches do not overlap, one can conclude, with
95% confidence, that the true medians do differ.

FIGURE 11. Experimental phantom with (Gammex and Cirs) inserts. Left: Estimated target images. Second to fourth columns:
Tomographic reconstruction of soft tissue and bone and 60 keV image for RGN, U-Net-P and U-Net-I. We remark that data
calibrations and corrections included in the scanner manufacturer pipeline have not been included in this work.

Figure 12 shows quantification errors of the phantom
inserts. Figures 12 (left and center) shows errors for all inserts
for soft tissue and bone images. For soft tissue-like inserts,

RGN leads to larger errors than deep learning methods,
as it fails to provide zero densities for the bone image. For
bone-like inserts, all methods tend to present a negative bias
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FIGURE 12. Quantification error of (Gammex and Cirs) inserts for RGN (blue) and U-Net-P (yellow) and U-Net-I (red) from
decomposed soft tissue image ρsoft (left) and decomposed bone image ρbone (center). Inserts are marked with the symbol + for soft
tissue like materials (lung, breast, muscle, solid water, adipose tissue, brain, muscle) and with the symbol × for bone like materials
(cortical bone (CB), inner bone, CB 30%, CB 50%). Right: Boxplot of density errors where median and standard deviation are taken
across all inserts for soft tissue and bone like inserts.

in the bone image (part of bone placed in the soft tissue
image). Overall, U-Net-I leads to lowest quantification errors,
as shown in figure 12 (right). Among the projection methods,
U-Net-P provides lower median but larger variance (U-Net-P
has almost zero error for soft tissue-like rods).

2) HUMAN THORAX DATA
Figure 13 shows tomographic reconstructions of the decom-
posed materials and the 60 keV image for RGN, U-Net-P
and U-Net-I. Among the projection methods, RGN provides
noisier decomposed images and appears more sensitive to
ring artefacts than U-Net-P. U-Net-I provides higher image
quality than projection-based methods, with better recovery
of details for both soft tissue and bone images. Compared to
the decomposed images, 60 keV images show highly reduced
ring artefacts, with RGN presenting few artefacts, U-Net-P
correcting for these artefacts, and U-Net-I providing the best
image quality overall, with reduced noise and better recovery
of texture for the soft tissue image.

C. COMPUTATION TIME
We run our code on a Windows computer with 64-bit oper-
ating system, Intel Xeon(R) E5-1650 v4 3.60 GHz CPU and
128 GB RAM. The U-Net is trained on a GeForce NVIDIA
GTX 1080 Ti graphics card. U-Net-P requires 3.2 days for
1200 epochs and U-Net-I requires 33 hours for 600 epochs.
Decomposition and tomographic reconstruction times for
synthetic data and the human thorax data set are displayed
in Table 1. Material decomposition with RGN is done on
CPU by using straight-forward parallelization on 4 cores. For
U-Net, we provide decomposition times on CPU and GPU.
Tomographic reconstruction is done on CPU for synthetic
data and on GPU with RTK for the human thorax data set.
U-Net-I presents higher tomographic reconstruction times
than projection based methods because it requires reconstruc-
tion of five volumes (five energy bins) instead of two (two
materials).

V. DISCUSSION
We have proposed a deep learning method based on a
Sim2Real approach and a U-Net architecture for solving the

material decomposition problem in spectral CT. Given that
medical imaging data and, specifically, spectral CT data are
scarce, we have followed a Sim2Real approach by training
on simulated human phantoms and assessing on experimental
phantom data and human data. We compared projection-
and image-based material decomposition by training the
U-Net on either the projection domain (U-Net-P) or in the
image domain (U-Net-I), and both approaches were com-
pared to a RGN method in the projection domain. Among
projection-based methods, we found that U-Net-P leads to
improved image quality with respect to RGN, which pre-
sented a strong trade off between noise and regularization.
Increasing the regularization parameter for RGN decreased
noise but it led to loss of image details. On the contrary, for
synthetic data, U-Net was able to remove noise while main-
taining image quality. Differences in terms of image quality
between U-Net-P and RGN were smaller for experimental
data. In terms of quantification of decomposed materials,
bothmethods led to similar results on the assessed experimen-
tal phantom data. However, U-Net-P was less affected by ring
artefacts than RGN. Furthermore, U-Net led to a significant
reduction in prediction time, specially for large data sets.
U-Net-I presented a significantly superior improvement in
image quality than projection based methods. For synthetic
data, U-Net-I led to almost perfect material decomposition,
and for experimental data, it removed noise and ring artefacts
while recovering image details.

The superiority in terms of image quality of U-Net-P
with respect to RGN must be discussed in detail. This can
be explained by the fact that U-Net can learn implicitly
the probability distribution of the decomposed materials.
In fact, Bayesian deep learning interprets supervised learning
as recovering the posterior distribution and it approximates
the conditional mean when using the MSE loss [52]. This
is particularly relevant for material decomposition in the
projection domain, as in this case the choice of prior dis-
tributions is less clear. The RGN method included material
specific regularization where regularization functionals for
each material were selected as suggested in [22]. We used
first- and second-order Tikhonov for bone and soft tissue,
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FIGURE 13. Tomographic reconstruction of a human thorax for RGN, U-Net-P and U-Net-I.

TABLE 1. Material decomposition (Mat. Dec.) and tomographic reconstruction (Tomo. Rec.) times for synthetic data and for the human thorax data set.
CPU, 4 cores: Parallelization using 4 cores. BS = Batch Size.

respectively. While this choice seems reasonable, it is not
optimal. A second disadvantage of variational methods is
the high dependence on the regularization parameter, which
requires fine tuning. Here, we showed results for RGN for
different values of the regularization parameter. For further
insight into the selection of the regularization parameter for
RGN, we refer to [22] and [26]. Although fine tuning can
generally lead to an acceptable compromise between noise
and regularization for variational approaches, its benefits are
mitigated by the fact that regularization functionals are not
optimal.

The comparison between projection- and image-based
methods is still an open question, particularly for deep learn-
ing approaches. In this work, we found that U-Net-I led to
superior results than U-Net-P. Specifically, we found that U-
Net-P led to high quality decomposition in the projection
domain, as shown in the image detail in figure 5. How-
ever, this did not translate into an equivalent image qual-
ity after tomographic reconstruction. Tomographic recon-

structed images suffered from some noisy structure or
streak-like artefacts in the soft tissue image, a loss of small
image details on bone parts and slightly blurred small details.
This can be due to several reasons. First, learning the proba-
bility distribution of the soft tissue and bone seems easier in
the image domain than in the projection domain. In the image
domain, distributions could be simplified to some given dis-
tributions centered around theirmean values. In the projection
domain, values depend on both material density and length.
For a given value of a pixel in the projection domain, it is
then not possible to distinguish between different densities
or thickness. Using this reasoning, material decomposition
taking into account other projections may improve results.
Second, for imaged-based methods, tomographic reconstruc-
tion of the different energy bins provide images that are noisy
but for which image details are preserved (figure 9). Thus,
U-Net-I learns to simultaneously decompose materials and
perform image restoration. Third, U-Net-I learns implicitly
the prior distributions of the decomposed materials on the
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image domain while U-Net-P learns the prior distributions
on the intermediate projection domain, on which small errors
may translate in artefacts or noise in the image domain.
Projection-based decomposition methods may thus require a
further postprocessing step. In addition, we also found that
training was easier in the image domain, requiring a lower
number of epochs to start providing good results (results not
shown).

For experimental data, projection-based algorithms were
subject to ring and band artefacts. Interestingly, U-Net-P was
more robust to the presence of artefacts than RGN. This may
be because for U-Net-P we used normalized data while for
RGN we used absolute data. Another explanation could be
that U-Net-P learns the prior distribution of the decomposed
materials, so it may penalize for these type of artefacts. In pre-
vious work, we also found this effect when decomposing
simulated perturbed data [28]. More interesting, U-Net-I did
not present ring artefacts on the experimental data.

Several deep learning approaches have been previously
proposed for material decomposition. Most of them per-
form material decomposition in the image domain [9], [39].
Recently a multilayer perceptron was proposed for solv-
ing the material decomposition problem in the projection
domain [42]. In this work, we proposed a CNN approach
to assess the potential of deep learning not only for solving
the material decomposition problem but for implicit reg-
ularization. In addition, we have shown that a Sim2Real
approach that learns on numerical human phantoms is fea-
sible. This is particularly interesting for a CNN method, as it
can implicitly learn the optimal regularization for human
data. We remark that previous approaches have learned on
experimental cylindrical-shape phantoms, which misses this
feature of the CNN method.

The Sim2Real transfer approach belongs to the wider class
of TL and domain adaptation approaches [45], [46], [59].
‘Transferability’ has been shown to depend on the distance
between source and target specific tasks [60]. In our case,
the task is the same but domains may differ if the feature
spaces or the marginal probability distributions between
source and target are different. In the case of learning on
numerical human phantoms and testing on human data, we do
not expect large differences between source and target learned
features and probability distributions, whichmay explainwhy
we found positive results. In the case of testing on experimen-
tal phantoms, we found probability distributions to be dif-
ferent (results not shown). This could be expected as objects
are different. For projection-based methods, we also remark
that due to the fact that we are projecting mass densities, then
the material decomposition problem in the projection domain
depends also on the object size. Although distributions were
different, the range of values of the thorax data set comprised
those of the experimental phantom, which may explain why
it works. In order to achieve better generalization, we also
tried further data augmentation by modifying sizes of the
thorax phantoms. This led to similar results, with an increase
in training time, but this techniques could lead to models with

improved generalization. The features that are learned from
a human phantom or from a phantom with inserts should be
different, so including these type of phantoms in the training
data may improve the performance on these type of experi-
mental phantom data sets.

This work is subject to a few limitations. Results may
depend on the learning model. Here we have used a U-Net
architecture, which has led to outstanding results for diverse
CT applications [31], [38]. However, for this problem a sim-
pler architecture may be sufficient. The material decompo-
sition has a pixel-wise nature, so it is possible that simpler
ConvNets can learn the prior distributions of the materials
without the need of a hierarchical-based architecture, which
is more designed to interpret information across the entire
image. In order to assess this, we compared U-Net-P with
two ConvNets without max-pooling operations, one with four
convolutional layers, which corresponds to the main path
or the first level of the U-Net, and a second one with the
same number of convolutional layers as U-Net. We found
that U-Net-P allows better removal of artefacts and pro-
vides improved image texture for soft tissue (results not
shown). Besides the architecture, deep iterative methods, also
called model-based learning methods, proposed for solving
inverse problems could provide further benefits [33], [36],
[61]. In particular, these iterative methods include a data
consistency condition, which could mitigate the appearance
of artefacts that can potentially lead to mislead diagnosis.
Although U-Net leads to overall high image quality, deep
iterative methods may be required to provide learning meth-
ods that are robust for the clinical use [62]. These methods
can also reduce further the need of learning power, as well
as the required amount of training data. Another interesting
solution could be to consider Bayesian neural networks that
also provide an uncertainty estimate [52]. With regard to the
amount of training data, we found that using less than ten
phantoms for training U-Net-P led to lower image quality
(results not shown); however, fewer data were not compen-
sated for by more extensive data augmentation strategies such
as translation and rotation. Further investigation could set the
minimum amount of data for training this model. In addition,
we have assumed that the energy response of the scanner
is perfectly known. Although this has been provided by
the manufacturer, some deviations from ideality conditions
may occur. Further work could also fine tune a pretrained
network using experimental phantom data as suggested in
[28]. However, a previous work found only small improve-
ments using a fully-connected network [42]. In this work,
we have assessed the feasibility of the proposed method for
material decomposition for two materials only. However, this
methodology can be easily extended to three or more mate-
rials, including k-edge imaging, as shown on numerical data
in [28].

In conclusion, deep learning methods show a great poten-
tial for spectral CT as they provide almost real time material
decomposition and yield competitive results in comparison
with current variational approaches.
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