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A B S T R A C T

Over recent decades, spectroscopic surveys have yielded exceptional measurements of the large-

scale structure of the Universe. Notably, they have measured the baryon acoustic oscillation (BAO)

scale at late times, helping to develop a tightly-constrained cosmological model by complementing

measurements from the cosmic microwave background. In this thesis, we focus on late-time

BAO measurements from quasar (QSO) spectra. Such measurements can be made at 1 . z . 2

via direct QSO clustering, and at 2 . z . 4 via the Lyman-α (Lyα) forest extracted from high-z

QSO spectra.In the near future, the Dark Energy Spectroscopic Instrument (DESI) will continue

to advance this field, increasing the quantity and quality of QSO spectra available via a host of

technological improvements. In order to maximise the impact of its data, however, DESI will

require major advances in analysis methods to be made.

This thesis describes work to develop such methods for use in two areas of DESI’s QSO survey.

First, we address the construction of optimal strategies for classifying QSO target spectra. We

use data from existing surveys to demonstrate the performance of potential strategies, finding

that high performance levels can be achieved using existing classification tools. Next, we present

LyaCoLoRe, a package developed to produce mock Lyα forest datasets from simple simulations, to

be used in Lyα BAO analyses. We describe the methods employed by LyaCoLoRe, and demonstrate

that our mocks are suitable to be used in Lyα BAO studies present and future. We then discuss

applications of the classification strategies and mock datasets presented previously, as well as a

method of using BAO measurements to constrain the local cosmic expansion rate, showing results

from current datasets and providing forecasts for DESI. We conclude by highlighting a number

of future paths which our work could follow, with particular focus on the opportunities that will

emerge from DESI.
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I M PA C T S TAT E M E N T

This thesis presents original work designed to improve the efficiency and reliability of data analysis

in current and future spectroscopic quasar (QSO) surveys. The methods it presents will enable

greater automation and rigour in such analyses, both of which are significant as the size and quality

of datasets increases.

This work has had a tangible impact on the recently completed extended Baryon Oscillation

Spectroscopic Survey (eBOSS): the mock datasets presented in Chapter 6 were used to validate

the analysis pipeline for measuring the baryon acoustic oscillation (BAO) scale from Lyman-α

forest data. As described in § 7.2, the mocks allowed the analysis pipeline to be validated in a

more stringent manner, thus yielding more reliable measurements of the BAO scale. The mocks

have also been used in the context of the next generation spectroscopic survey — the Dark Energy

Spectroscopic Instrument (DESI) — to help test blinding methods, assess survey strategies and

quantify systematic effects. Equally, the QSO selection strategies presented in Chapter 5 have

been applied to initial DESI data (see § 7.1), with the results now being used to develop a tool to

assist the visual inspection of future DESI spectra. They have also motivated efforts to include

the classifier QuasarNET within the DESI pipeline, aiming to improve the automatic selection of

high-z QSOs for reobservation using strategies such as those introduced in § 5.3.1.

The work presented in this thesis has reached a number of researchers from around the world

through a variety of channels. It has been presented at nine collaboration meetings relating to

eBOSS and DESI, including as part of a “hack session” to identify unusual QSO target spectra.

Additionally, three collaborators within DESI have visited UCL to work on projects relating to the

mock datasets of Chapter 6. This yielded some results presented in this thesis, as well as initialising

further developments of the mocks in an ongoing project. Furthermore, this thesis’ work has

directly led to two first-author publications, as well as three further authorial contributions. Finally,

the work on QSO classification has been presented in three talks to machine learning specialists,
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Impact Statement

once within DESI and twice to external, international groups.

Beyond academia, the skills and techniques developed as a result of the computational nature

of this thesis’ work are eminently applicable to the wider world. The development of realistic mock

datasets is vital in ensuring the reliability of automated systems throughout modern life, including

the flow of traffic in cities and consumer demand for groceries. While the context of such datasets is

somewhat different to that presented in Chapter 6, the dual requirements of computational efficiency

and data realism are universal. Equally, the QSO target classification tasks addressed in Chapter 5

are examples of the broader class of image recognition problems. Effective solutions to these

are central to a host of modern technologies, including facial recognition and self-driving cars.

Developing optimal solutions that are free from bias is a challenge that will become ever more

important in the coming years.
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Ignasi Pérez-Ràfols, Javier Sánchez, Jean-Marc Le Goff, Jim Rich, Julien Guy, Mat Pieri, Nicolas

Busca, Stephen Bailey, Suk Sien Tie, Thomas Etourneau; thank you for your feedback, your

suggestions, and your time spent answering my questions. You have provided me with wonderfully

varied points of view, and have been instrumental both in helping to form the work presented in

this thesis, and in making the many collaboration meetings we have shared highlights of my PhD.

Beyond research, I owe a great deal to the support of the Group A community at UCL. Thanks

to Constance, Harry, Luisa and Martin for showing me the ropes and guiding me to seminars

through the labyrinthine passages of UCL in my first months; to Andrei and Krishna for making

our walking tour of San Francisco so much fun; to Benjamin for demonstrating what a true love of

coffee looks like; to Catarina for your endlessly appreciated positivity; to Chris for being a great

sounding board for thoughts on both the Lyα forest and the Premier League; to Francesca for your

many offers of assorted biscuits and cakes; to Max for your exceptionally valuable enthusiasm and

laughter; to Roger (a de facto member of UCL now) for great times in Berkeley and Ohio; and to

Xie for providing wonderfully varied lunchtime discussions. Together, you have helped to make

9



Acknowledgements

my time at UCL unforgettable, and I only wish that it was not over so soon.

The intensity of a PhD necessitates the occasional break from the world of academia, and I have

been fortunate to have a wonderfully supportive network around me for those moments. Thank you

first to all those at Hampstead and Shamley Green cricket clubs for providing ample opportunities

to stand in fields around London and Surrey, and to reward our “efforts” in the bar afterwards. And

of course, thank you to Catherine, Chris, Fay, Iwan, Ninghui and Simi for our friendship through all

these years. Our adventures in Cambridge, London, Wales and beyond have made so many special

memories, and been integral to keeping me happy and healthy.

A list of thanks would not nearly be complete without mentioning those closest to me. To

Jane and Ian Price, thank you for welcoming me into your family so wholeheartedly, for providing

me with an exceptional office space to write parts of this thesis through lockdown, and for your

incredible support over many years. To my Mum, Dad, Rosie and Katharine, thank you for creating

such a wonderful home environment, and for 26 years (and counting) of joy. The curiosity you

have instilled in me has no doubt driven me through this PhD, and your love and support have been

essential in allowing me to explore the world of cosmology with so much freedom. And finally,

thank you to Amy, for indulging my occasional cosmological diatribes, for providing welcome

reality checks where necessary and, most importantly, for being alongside me at every moment.

This journey would not have been possible without you, and it has been a true pleasure to share it

with you.

10



C O N T E N T S

A B S T R AC T 5

I M PAC T S TAT E M E N T 7

AC K N OW L E D G E M E N T S 9

P R E F AC E 19

I B AC K G R O U N D & C O N T E X T 23

1 T H E H O M O G E N E O U S U N I V E R S E 25

1.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Redshift & distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5 Thermal history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 T H E E V O L U T I O N O F I N H O M O G E N E I T I E S 41

2.1 Perturbations to homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Formation of linear structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Beyond linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 O B S E RVA B L E S & M E A S U R E M E N T S 53

3.1 Cosmic microwave background . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Large-scale structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Cosmological constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11



CONTENTS

4 S P E C T R O S C O P I C S U RV E Y S P R E S E N T A N D F U T U R E 69

4.1 Approaches to Lyα forest observations . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 The Dark Energy Spectroscopic Instrument . . . . . . . . . . . . . . . . . . . . . 71

II C L A S S I F Y I N G Q UA S A R TA R G E T S P E C T R A 77

5 O P T I M A L C L A S S I F I C AT I O N S T R AT E G I E S 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Data and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 QSO target classification in the Dark Energy Spectroscopic Instrument . . . . . . 88

5.4 Summary & conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

III P R O D U C I N G M O C K D ATA S E T S 103

6 M A K I N G M O C K S W I T H LyaCoLoRe 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Making the mocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Verifying the mocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Adding secondary astrophysical effects . . . . . . . . . . . . . . . . . . . . . . 124

6.6 Summary & conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

IV A P P L I C AT I O N S , C O N C L U S I O N S A N D F U R T H E R W O R K 131

7 A P P L I C AT I O N S 133

7.1 Applying QuasarNET to initial DESI data . . . . . . . . . . . . . . . . . . . . . 134

7.2 The use of LyaCoLoRe mocks in eBOSS . . . . . . . . . . . . . . . . . . . . . . 140

7.3 H0 and BAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 C O N C L U D I N G R E M A R K S 159

8.1 Classifying QSO target spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2 Lyα BAO mock datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.3 Cosmological conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12



CONTENTS

V A P P E N D I C E S 167

A S U P P L E M E N TA R Y M AT E R I A L F O R C H A P T E R 5 169

A.1 Technical tests of QuasarNET . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B S U P P L E M E N TA R Y M AT E R I A L F O R C H A P T E R 6 177

B.1 The quasar auto-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 Redshift-space distortions: implementation details . . . . . . . . . . . . . . . . . 178

B.3 The Lyα-HCD cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B I B L I O G R A P H Y 183

13





L I S T O F F I G U R E S

0.1 Historical and modern depictions of galaxies beyond our own. . . . . . . . . . . 20

1.1 The original “Hubble diagram” measuring local cosmic expansion. . . . . . . . . 29

2.1 Evolution of perturbations to the gravitational potential at different scales. . . . . 45

2.2 The evolution of an adiabatic perturbation to form the BAO scale. . . . . . . . . 50

3.1 Planck sky maps showing the temperature, polarisation and lensing fields. . . . . 56

3.2 Three quasar spectra at different redshifts, demonstrating IGM evolution. . . . . . 61

3.3 Large-scale structure hubble diagram residuals, relative to Planck. . . . . . . . . 67

4.1 Forecast errors on the BAO distance scale from current and future surveys. . . . . 75

5.1 Summary of the performance of individual QSO target classifiers. . . . . . . . . 87

5.2 Performance of different strategies when selecting high-z QSOs for reobservation. . 91

5.3 Performance of different classification strategies when constructing a QSO catalogue. 95

6.1 Transformation of a sample skewer through the main stages of LyaCoLoRe. . . . . 111

6.2 The 1D power spectrum as measured from one realisation of LyaCoLoRe mocks. 118

6.3 Combined correlation functions measured from 10 realisations of LyaCoLoRe. . . 123

6.4 Combined correlation functions measured from 10 realisations of LyaCoLoRe,

demonstrating additional astrophysical effects. . . . . . . . . . . . . . . . . . . . 128

7.1 Sky map showing the locations of tiles observed by DESI’s “SV0” programme. . 135

7.2 Scatter plot of VI vs classifier redshift for QSOs in tile 68002. . . . . . . . . . . 137

7.3 Performance of strategies when selecting high-z QSOs for reobservation using

single exposures from tile 68002. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4 An example mock spectrum as used in the eBOSS DR16 Lyα BAO analysis. . . 144

15



LIST OF FIGURES

7.5 Lyα auto-correlations measured from mocks and from eBOSS DR16 data. . . . . 147

7.6 Covariance matrices measured from mocks and from eBOSS DR16 data. . . . . . 148

7.7 Contours in the Ωm-H0rd plane from a selection of recent BAO measurements. . . . 151

7.8 Contours in the Ωm-H0 plane from combining results from BAO and BBN. . . . . 155

7.9 Forecast cosmological constraints from DESI’s full survey. . . . . . . . . . . . . 156

A.1 Performance of QuasarNET models with varying training set sizes. . . . . . . . . . 171

A.2 Performance of QuasarNET models with different numbers of exposures in the

training and testing data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B.1 The auto-correlation of QSOs, as measured from 10 realisations of CoLoRe. . . . 178

B.2 The Lyα-HCD cross-correlation, plotted against r‖ for different bins of r⊥. . . . 180

B.3 Diagram showing the geometry of the setup when measuring the Lyα-HCD cross-

correlation between two near-parallel skewers. . . . . . . . . . . . . . . . . . . . . 181

16



L I S T O F TA B L E S

4.1 Breakdown of target classes within DESI. . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Fitted parameters from mock Lyα auto- and Lyα-QSO cross-correlations. . . . . 124

6.2 Details of additional absorption transitions that can be used in LyaCoLoRe. . . . 127

6.3 Biases of the metal absorbers measured from mock correlations, with equivalent

(e)BOSS values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Mean fitted parameter values and errors from correlations measured from LyaCoLoRe

mocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

17





P R E F A C E

Curiosity about the origin and evolution of the Universe has inspired human thought for millennia,

resulting in countless ideas both scientific and otherwise. For much of history, interpretations of

the objects seen in the night sky drew as much on philosophy and religion as they did on physics,

yielding a host of speculative deductions about the Universe beyond Earth (for example, the left

panel of Figure 0.1). Indeed, it is only in the 20th Century that our curiosity grew into the subject of

cosmology that we recognise today.

At the start of the Century, many astronomers believed that the Universe was “static” in its

evolution, and that observing galaxies beyond our own was not possible (forming one side of

the “Great Debate”: Shapley and Curtis, 1921). 100 years later, however, and the combined

efforts of theoretical and observational cosmologists has yielded a radically different picture. The

introduction of General Relativity (GR, Einstein, 1915) provided a coherent theoretical framework

with which to model our Universe, and the rapid development of astronomical instrumentation

enabled the cosmological models permitted by GR to be constrained. Over the course of the century,

the visible Universe was found to include galaxies beyond the Milky Way (Hubble, 1926), to be

expanding (Hubble, 1929), and at an accelerating rate (Riess et al., 1998; Perlmutter et al., 1999).

Thus by the end of the 20th Century, the observed Universe appeared much larger and more dynamic

than it had done at the start.

Over the first two decades of the 21st century, cosmology has undergone another major transfor-

mation. As the digital age has unfolded, it has brought with it datasets of unprecedented size and

quality from a range of observational fields, marking the advent of the “precision cosmology” era.

Perhaps most famously, the cosmic microwave background (CMB) has provided a window onto the

Universe in its youth, while large-scale structure (LSS) measurements have tracked the statistical

distribution of matter through its late-time evolution. Of particular note within the study of LSS has

been the use of baryon acoustic oscillations (BAO). Acting as a “standard ruler”, the BAO scale has
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Preface

Figure 0.1. Left: the first depiction of multiple galaxies to be printed in a book. Each
galaxy is represented by a spherical shell with inward-pointing volcanoes distributed over
its surface, which are observed from the inside as stars; Right: a modern representation
of galaxies beyond our own, with each coloured point representing a galaxy or quasar
observed by the Baryon Oscillation Spectroscopic Survey (Dawson et al., 2013) during
the first two years of its five-year survey. Figure credit: Wright (1750) via Linda Hall
Library; Michael Blanton and the Sloan Digital Sky Survey (SDSS) via the SDSS blog.

enabled high-precision measurements of late-time cosmic expansion, providing complementary

information to the CMB and helping to constrain a broader class of potential cosmologies.

The development of these late-time BAO measurements has been driven by the increasing

power of spectroscopic surveys, which can distinguish the BAO feature in three dimensions thanks

to precise redshift determinations of the objects they observe. At low redshifts, spectroscopic

surveys may target a range of different galaxy types, but above z' 1 the observed number density

of galaxies becomes low. Instead, quasars (QSOs) — typically very bright due to their active

galactic nucluei — may be targeted to extend the boundaries of spectroscopic observations, and

thus probe the Universe in different phases of its evolution. Recent instruments have conducted

extensive QSO surveys, and in the coming years, the Dark Energy Spectroscopic Instrument (DESI)

20
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will take up this baton. DESI’s main survey will begin in 2021 and will last for five years, over

which time it will observe approximately 2.4 million QSOs (DESI Collaboration et al., 2016a)

across a range of redshifts, allowing DESI to produce exceptional measurements of LSS. This will

expand upon the work of DESI’s predecessors by pushing cosmology to higher levels of precision,

allowing finer distinctions to be made between cosmological models, and thus holding the potential

to uncover new physics. In order to make best use of this wave of new data, the advancement of

observational and analytical methods is crucial, and it is these methods which we seek to develop

through this thesis.

T H E S I S O U T L I N E

This thesis begins in Part I with a summary of the background and context of modern cosmology.

Chapter 1 addresses the Universe homogeneously, deriving its behaviour on large scales assuming

that the “Cosmological Principle” holds throughout, and building a basic cosmological model. We

then introduce inhomogeneities in Chapter 2, deriving key results on the evolution of structure in

a perturbative framework. In Chapter 3, we address modern methods of measuring our Universe,

including via the CMB and LSS. We describe the measurements which have been made, and their

ability to constrain cosmology. Finally, we conclude our introductory discussion in Chapter 4,

where we focus on spectroscopic QSO surveys past, present and future.

Part II and Part III constitute the bulk of the work of this thesis. Both are constructed with DESI

in mind, and address problems relevant to DESI’s science goals. In Part II, we discuss optimal

strategies for providing classifications and redshifts of QSO target spectra in spectroscopic surveys.

We describe the landscape of existing classifiers and construct high-performing classification

strategies using their outputs. Then, in Part III, we address the production of mock datasets for use

in the Lyα BAO analyses of spectroscopic surveys. We present a new tool — LyaCoLoRe — for

generating synthetic data, and verify that its outputs are suitable for a DESI-like survey. Further

details for Part II and Part III are addressed in Appendix A and Appendix B respectively.

The thesis draws to a close with Part IV. In Chapter 7 we present three short discussions,

addressing the application of our QSO classification strategies to initial DESI data; the use of the

LyaCoLoRe mocks in the final Lyα BAO analysis of the extended Baryon Oscillation Spectroscopic

Survey; and the use of BAO results more generally in constraining the Hubble constant. Finally, in

Chapter 8, we summarise the findings of this thesis, discuss the onward journey of this thesis’ work

and conclude.
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PA R T I

BA C K G R O U N D & C O N T E X T





C H A P T E R 1

T H E H O M O G E N E O U S U N I V E R S E

We begin Part I by constructing a simplified model of our Universe. We do so within the central

underlying theory of modern cosmology: General Relativity (GR, Einstein, 1915). The GR

framework provides a coherent description of gravity in our Universe, linking the Universe’s

geometry to its contents and describing how they interact. We use GR to model the behaviour of our

Universe on large scales, treating it as homogeneous to understand its origins and expansion. In this

Chapter, we summarise the basic principles of GR and its application to our Universe, developing a

simple model to explain large-scale phenomena that we observe today. From this baseline model,

we then consider the formation of structure on smaller scales in Chapter 2 and their observational

signatures in Chapter 3, before focusing on the details of spectroscopic surveys in Chapter 4.

The structure of this chapter is as follows. In § 1.1 we outline selected elements of this theory,

presenting key equations and their interpretations. In § 1.2, we examine some geometrical properties

that can be derived from GR, while in § 1.3 we explore the dynamical effects of different matter

sources on our Universe’s behaviour. We then discuss the need for an inflationary period in § 1.4,

before finally summarising the thermal history of the Universe in § 1.5. Throughout, we use units

with c = 1. The content in this chapter has been reviewed extensively in the literature, and we

follow the summaries provided by Dodelson, 2003 and Weinberg, 2008.
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Chapter 1. The homogeneous Universe

1 . 1 G E N E R A L R E L AT I V I T Y

1 . 1 . 1 T H E C O S M O L O G I C A L P R I N C I P L E

At the centre of General Relativity is a key guiding idea, known as the Cosmological Principle.

First formally put forward by Newton in the 17th Century, this proposes that we as observers do not

sit at a unique, or “special” point in the Universe, and thus that the Universe appears the same to

all other observers on sufficiently large scales. This imposes two key properties on the large-scale

Universe:

Isotropy: The Universe appears the same in every direction

Homogeneity: The Universe appears the same at every point in space

Mathematically, these properties are equivalent to rotational and translational symmetries in space;

we will take advantage of these symmetries shortly.

1 . 1 . 2 T H E F R I E D M A N N - L E M A I T R E - RO B E RT S O N - WA L K E R M E T R I C

In General Relativity, the three dimensions of space and single dimension of time are fused into a

four-dimensional manifold known as spacetime. On this manifold, we define a metric gµν with

signature (−,+,+,+), allowing us to measure distances in spacetime by converting coordinates

X µ = (t,xi) into the line element

ds2 = gµνX µXν =−dt2 +dl2. (1.1)

Here dl2 is the spatial line element, and we use the Einstein summation convention to sum over

all repeated indices. In general, g = g(t,xi) is a function of spacetime, with the precise nature of

this dependence determined by the distribution of matter in the Universe. This dependence can

be complex, and so we rely on the symmetries implied by the Cosmological Principle to derive a

tractable metric for our Universe.

In particular, these symmetries allow us to decompose spacetime into a sequence of time-

ordered three-dimensional spatial “slices”, each of which is homogeneous and isotropic. These

slices must then have uniform curvature given by a parameter K. By rescaling our coordinates

with a positive “scale factor” a, we can impose that K takes values from the set {−1,0,+1},

corresponding to Universes with negative, flat and positive curvatures respectively. These three

options describe qualitatively different Universes, which we will explore in later stages of this
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1.2. Redshift & distances

chapter. We can then write the spatial line element dl2 as

dl2 = a2
γi jdxidx j, where γi j ≡ δi j +K

xix j

1−Kxkxk . (1.2)

Here, γi j is the spatial part of our spacetime metric gµν , and may take various forms dependent

on choice of coordinates. In order to derive our gµν , we may substitute eq. (1.2) into eq. (1.1),

allowing our scale factor a to vary with time as a(t). Using spherical polar coordinates, this yields

ds2 =−dt2 +a2(t)
[

dr2

1−Kr2 + r2dΩ
2
]
, (1.3)

where dΩ2 = dθ 2 + sin2
θdφ 2 is the solid angle element. This defines the Friedmann-Lemaitre-

Robertson-Walker metric, which, through comparison with eq. (1.1), can be seen to be diagonal in

these coordinates. It is sometimes helpful to simplify eq. (1.3) via two coordinate transformations.

We define the comoving distance χ via dχ = dr/
√

1− kr2 and the conformal time τ via dτ =

dt/a(t). Using these two quantities, the line element becomes:

ds2 = a2(τ)
[
−dτ

2 +dχ
2 +S2

K(χ)dΩ
2] , (1.4)

where

SK(χ) =


sinh χ, K =−1

χ, K = 0

sin χ, K =+1

. (1.5)

This form of the metric is especially useful when considering the movement of light in our Universe,

as light travels along paths with ds2 = 0, and so we may simply ignore the a2(τ) prefactor in our

calculations.

1 . 2 R E D S H I F T & D I S TA N C E S

Particles falling freely through spacetime move along paths called geodesics, which can be calcu-

lated by solving the geodesic equation

Pν
∇νPµ = 0, (1.6)
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where ∇ν is the covariant derivative. Evaluating the µ = 0 component of this equation and applying

our assumption of homogeneity, we may derive that the three-momentum of any particle p must

scale according to the inverse of the scale factor of the Universe: p ∝ 1/a(t). For photons, quantum

mechanics tells us that p = E = h/λ , and thus λ ∝ a(t). As such, a photon emitted at time te with

wavelength λe, and observed at time t0 has wavelength

λ0 =
a(t0)
a(te)

λe. (1.7)

We use this relationship to define a key quantity in observational cosmology: redshift z. This

describes the proportional shift in wavelength of a photon:

z≡ λ0−λe

λe
=

a(t0)
a(te)

−1 =
1

a(te)
−1, (1.8)

where in the final equality we have made use of the conventional rescaling of a(t) to set its current

value a(t0) to 11.

We can expand a(te) in a power series by writing a(t) = a(t0)+ ȧ(t0)(t− t0)+ . . . . For nearby

objects and with c = 1, the physical distance d is simply equal to t0− te. We thus use eq. (1.8) to

write z = H0d, where H0 ≡ ȧ(t0)/a(t0) is the local Hubble constant, describing the current rate of

cosmic expansion. As shown in Figure 1.1, this measurement was first made in Hubble (1929), and

there has been substantial debate about its precise value in recent years (see § 3.3).

At greater distances, this approximation does not hold. Indeed, in an expanding universe, the

“distance” to an astrophysical object is not a trivial quantity, and can be defined in a number of ways.

In eq. (1.5), we defined SK(χ), which is known as the transverse comoving distance, also written

dm. Within this equation, we have also made use of the comoving distance χ , defined by

χ(te) =
∫ t0

te

1
a(t)

dt =
∫ ze

0

1
H(z)

dz. (1.9)

These two distances follow naturally from our metric definitions but, crucially, are not observable.

An alternative, observable distance can be derived by considering a distant luminous object,

with absolute luminosity L. In a static, Euclidean space, the flux received by an observer F at a

distance d from a source is defined straightforwardly by F = L/4πd2, as the total flux through

a spherical shell around the source must be constant. However, in our FLRW spacetime, we

must modify this to account for potentially non-zero curvature and the expansion of the Universe

1If we do so, then the curvature K no longer takes values in {−1,0,+1}, as that requires a different rescaling of a.
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Figure 1.1. The original plot of Hubble’s data from his 1929 paper (Hubble, 1929).
On the horizontal axis is the distance of the galaxies d, and on the vertical axis is the
recession velocity v (derived from each object’s redshift). The Hubble parameter H0 is
taken as the gradient of Hubble’s line of best fit, and gives a value of∼500 km s−1 Mpc−1.
Modern measurements, however, tend to lie in the region of 70 km s−1 Mpc−1. Despite
the numerical inaccuracy, the data shown in this plot still represents a crucial first step
towards our current understanding of the universe. Figure credit: Hubble (1929).

during the photons’ journeys. In such a spacetime, the area of the spherical shell is given by

4πd2
m, and so we exchange d for dm in our previous equation for F . Equally, in an expanding

Universe, both the rate of arrival of photons and the energy of each photon are reduced by a factor

a(t1)/a(t0) = (1+ z)−1, where t1 and t0 denote the time at which photons leave their source and

arrive at the observer respectively, and z is the redshift of the source relative to the observer. As

luminosity represents the energy radiated by a source per unit time, we must multiply L in our

previous relation by a factor of (1+ z)−2, obtaining

F =
L

4πd2
m(1+ z)2 ≡

L
4πd2

L
, (1.10)

where we have defined dL = dm(1+ z) as the luminosity distance to mimic the form of our initial

equation.

In subsequent chapters, we will consider observations of structures of fixed physical size (which

we label by d for now), which appear to observers as occupying an angular interval ∆θ on the sky.
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Chapter 1. The homogeneous Universe

Again, we consider first a static, Euclidean universe, which would imply a distance dA = d/∆θ .

Here, dA is known as the angular diameter distance. Transitioning to our FLRW spacetime once

again, we can deduce that

d = a(te)SK(χ)∆θ =
dm∆θ

1+ z
, (1.11)

which yields dA = dm/(1+ z), and thus dL = dA(1+ z)2. Defining these two distances dL and dA

provides us with observable quantities to link our measurements back to quantities more natural to

the underlying theory.

1 . 3 DY N A M I C S

1 . 3 . 1 G OV E R N I N G E Q U AT I O N S

Having considered the geometrical properties of our Universe, we now consider how it evolves

dynamically. This behaviour is determined by the Einstein Field Equations, a set of partial

differential equations defined by:

Gµν = 8πGTµν . (1.12)

This relates the geometry and curvature of the Universe — described by the Einstein tensor Gµν —

to the matter distribution of the Universe — described by the energy-momentum tensor Tµν . Gµν

can be computed from the FLRW metric gµν via a series of protracted calculations. Ultimately,

these yield non-zero components:

G0
0 = 3

[(
ȧ
a

)2

+
K
a2

]
, and Gi

j = 3

[
2

ä
a
+

(
ȧ
a

)2

+
K
a2

]
δ

i
j. (1.13)

We now turn our attention to Tµν . By imposing the twin requirements of homogeneity and

isotropy, we may constrain the form of Tµν to that of a perfect fluid as seen by a comoving observer:

T µ

ν = (ρ +P)U µUν −Pgµ

ν =


−ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 . (1.14)

Here, ρ and P are the density and pressure of the fluid in its rest frame respectively, and Uµ =

dXµ/dτ is its four-velocity relative to the observer. Subsequently, by imposing conservation of

30



1.3. Dynamics

energy and momentum densities on Tµν , we may derive the continuity equation:

ρ̇ +3
ȧ
a
(ρ +P) = 0. (1.15)

Then we may combine our forms of G and T in eq. (1.13) and eq. (1.14) respectively via eq. (1.12).

With some manipulation, this yields the Friedmann equations:

(
ȧ
a

)2

=
8πGρ

3
− K

a2 (1.16)

ä
a
=−4πG

3
(ρ +3P) , (1.17)

where ρ and P here correspond to the total energy density and pressure of the Universe, each of

which receives contributions from a variety of different component fluids.

1 . 3 . 2 C O S M I C I N G R E D I E N T S

There are numerous important components to the energy density of our Universe that behave in

qualitatively different ways. Most importantly, each fluid may have a different equation of state

w = P/ρ , which we assume to be uniform. Here, we describe the key properties of several such

“cosmic ingredients”, as well as highlighting major open questions.

– Photons: As purely relativistic particles, the energy density of photons is entirely kinetic,

yielding an equation of state P = ρ/3. Thus they provide a source of pressure, which may

oppose gravity and yield oscillatory behaviour in primordial fluids thanks to their coupling

to baryons (see § 2.2.2). At a particular point during cosmic expansion, this coupling drops

away, with remnant early-Universe photons then “free-streaming” across the Universe and

forming the cosmic microwave background (CMB), the foremost early-Universe probe used

today (see § 3.1).

– Baryons: Of all cosmological components, baryons are perhaps the most familiar, including

in their ranks the protons, neutrons and electrons2 that make up our immediate surroundings.

Baryons interact gravitationally, collapsing to form large-scale cosmological structures as

well as galaxies, stars and planets. They also interact electromagnetically, and are tightly

coupled to photons during the early Universe. As such, oscillations are also present in

2Despite electrons being leptons rather than baryons, cosmologically speaking they are included under the term
“baryons” for simplicity. They provide a less dominant contribution to the energy density of “baryons” than protons or
neutrons, but their interaction with photons is of vital importance to cosmology.
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their energy density due to pressure from photons, ultimately resulting in the formation of

baryon acoustic oscillations (BAO; see § 2.2.2). Later in cosmic history, baryons and photons

“decouple” (see § 1.5), and so the baryons instead follow dark matter to form cosmic structure.

While stars and galaxies represent clearly visible baryonic presences in our Universe, the

majority of baryonic matter is not found in such objects. Instead, it is distributed through the

Universe as diffuse gas of varying properties, which may be described by terms such as the

inter-stellar medium (ISM), circum-galactic medium (CGM) and the inter-galactic medium

(IGM, see Meiksin, 2009; McQuinn, 2016, for recent reviews).

– Dark matter: Assigned the descriptor “dark” due to its lack of interaction with photons,dark

matter behaves as a pressureless fluid (w = 0), the nature of which is not currently understood

beyond its gravitational influence. Rather than directly observing dark matter — as we

may do baryonic matter — we must infer its presence via a range of methods, including

the rotation curves of galaxies, gravitational lensing and cosmological measurements from

the CMB or large-scale structure (see Roos, 2010, for a review). Efforts are ongoing to

further our understanding of dark matter, including experiments to detect it directly. A

number of theories have been proposed to provide possible dark matter candidates, including

weakly interacting massive particles (WIMPs), massive astrophysical compact halo object

(MACHOs) and axions (see Feng, 2010, for a review). Candidates are generally classed as

“hot” or “cold” — referring to whether the particles are relativistic or not when they decouple

during the early Universe — while “warm” options have also recently entered consideration

(e.g. Menci, Fiore, and Lamastra, 2012). This dark matter “temperature” is defined by the

particles’ typical velocities, and thus by the particles’ mass. It has notable observational

effects as “warmer” dark matter particles will typically travel faster and thus are better able

to escape gravitational potential wells. This defines a mass-dependent free-streaming scale

below which dark matter does not cluster, observable as a cut-off in the power spectrum of

matter. Measurements of small-scale clustering from probes such as the Lyman-α forest may

constrain the scale of this cut-off and thus probe the dark matter particle mass (e.g Viel et al.,

2005; Iršič et al., 2017; Palanque-Delabrouille et al., 2020).

– Neutrinos: Determining the mass of neutrinos is an unsolved problem in science, which

can be attacked from both a particle physics and, more recently, a cosmological perspective

(see Lesgourgues et al., 2013, for a review). Cosmologically, neutrinos affect the growth

of structure on small scales via the sum of their masses, though current measurements are
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precise enough only to impose an upper bound on this quantity. While their exact mass is

unknown, current results point to a small but non-zero value (Planck Collaboration et al.,

2020b). As such, neutrinos behave relativistically in the early Universe before becoming

non-relativistic at later times. Thus their equation of state follows that of photons at early

times as P = ρ/3, before becoming pressureless P = 0 once they become non-relativistic.

Neutrinos interact via the weak nuclear force and via gravity, and hence have very low

interaction rates with other Standard Model particles. Initially, this made them candidates for

dark matter particles, though their early-Universe relativistic behaviour classifies them as

“hot” dark matter, a form strongly disfavoured by modern observations.

– Dark energy: The most mysterious of the cosmological ingredients, dark energy is an inferred

component dictated by the observed late-time acceleration of cosmic expansion. The first

evidence for dark energy came in 1990, when measurements of galaxy clustering were found

to be poorly described by the then-favoured matter-only cosmological model (Efstathiou,

Sutherland, and Maddox, 1990). The most famous evidence for dark energy, however, arrived

almost a decade later, with the use of type-Ia supernovae as “standard candles” uncovering a

redshift-distance relation consistent with a late-time acceleration in cosmic expansion (Riess

et al., 1998; Perlmutter et al., 1999). In order to achieve this accelerating expansion (ä > 0),

eq. (1.17) tells us that ρ < −3P, with current evidence pointing towards a “cosmological

constant” equation of state P =−ρ (see § 3.3). While the behaviour of dark energy has been

(somewhat) constrained, its nature is a complete unknown; famously, quantum field theory

predicts a “vacuum energy density” approximately 120 orders of magnitude different from

that implied by cosmological observations (Weinberg, 1989).

– Curvature: Non-zero cosmic curvature clearly affects geometrical properties of the Universe

such as distances (see eq. (1.1) and § 1.2). Equally, eq. (1.16) demonstrates that curvature can

also be considered as an extra cosmic ingredient with equation of state w =−1/3. Current

evidence points towards a flat Universe (K ' 0) (e.g. eBOSS Collaboration et al., 2020), and

is discussed further in § 3.3.

From the continuity and Friedmann equations, it is clear that the equations of state of the

various contributors to cosmic energy density are directly tied to the behaviour of the scale factor.

Considering cosmological fluids with constant equation of state w=P/ρ in eq. (1.15), we may solve

for ρ(a) to yield ρ ∝ a−3(1+w). We now define three different fluid types to describe the behaviour

of the three qualitatively different equations of state from our list of cosmic ingredients (considering
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curvature separately): pressureless matter (w = 0), radiation (w = 1/3), and a cosmological constant

model of dark energy (w =−1). Substituting these equations of state into our general solution, we

obtain

ρ(a) ∝


a−4, radiation

a−3, matter

a0, dark energy (Λ)

. (1.18)

Of course, alternative models of dark energy are also possible, with different values of w yielding

different forms of ρ(a) and thus different cosmological behaviours. For now, though, we focus on a

cosmological constant model as preferred by recent constraints (eBOSS Collaboration et al., 2020),

and we seek only to highlight important qualitative behaviours.

In reality, our Universe consists of a mixture of different components, and the total energy

density has contributions from fluids with all three equations of state. As such, for a full treatment

of our cosmological inventory we split the energy density and pressure of eq. (1.16) and eq. (1.17)

according to our three components, writing ρ = ρr +ρm +ρΛ to describe the contributions to the

cosmic energy density from radiation, matter and dark energy respectively. At this point, it is

helpful to define the critical density

ρc =
3H2

0
8πG

. (1.19)

Via eq. (1.16), we see that this represents the total energy density of a flat (K = 0) Universe

today3. We use this to define fractional density parameters today: Ωi ≡ ρi/ρc where i represents a

contributor to the total energy density. Thus, using eq. (1.18) and defining the Hubble parameter

H ≡ ȧ/a, we may rewrite eq. (1.16) as

H2 = H2
0

(
Ωr

a4 +
Ωm

a3 +
ΩK

a2 +ΩΛ

)
, (1.20)

where we have further defined ΩK ≡−K/H2
0 .

Over cosmic history, the value of the scale factor a changes by many orders of magnitude, and

so the relative importance of each of the terms on the right-hand side of eq. (1.20) changes too

due to their different scalings with a. Indeed, this observation suggests that the Universe has gone

through distinct phases in its evolution, with long epochs of domination by individual components.

Within these epochs, we may approximate the Universe as containing a single fluid, neglecting

all bar one term on the right-hand side to yield a reasonable approximation of cosmic expansion.

3Sometimes, ρc is written as ρc,0, with the subscript 0 denoting that it represents a value today. We follow the
convention of omitting the 0 for clarity. This is also the case for the subsequently defined quantities Ωi
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Assuming a flat Universe, consistent with current measurements (e.g. eBOSS Collaboration et al.,

2020), the Universe’s energy density is dominated by contributions first from radiation, then matter,

and finally dark energy. In each of these cases, we may use eq. (1.20) to derive a form of a(t) for

that period of cosmic history:

a(t) ∝


t

1
2 , radiation domination

t
2
3 , matter domination

eHt , dark energy domination

. (1.21)

These different solutions then drive different behaviours through cosmic evolution, subsequently

affecting the formation of structure, as described in Chapter 2. Between the eras of single-

component domination, however, lie transition regions, where at least two components have energy

densities of comparable magnitude. These mark key step-changes in the Universe’s history, known

as radiation-matter and matter-dark energy equality. At these times, more complex solutions are

necessary to determine the form of a and to describe the transition between phases of evolution.

1 . 4 I N F L AT I O N

While the cosmological model described thus far is able to achieve a number of notable successes,

it also produces a number of notable issues. These are commonly addressed via the introduction

of a period of rapid expansion known as inflation during the very early Universe. A selection of

the problems ameliorated by inflation are summarised below, along with a brief explanation of

inflation’s influence in each case.

– The horizon problem: Different regions of the Universe are said to be “in causal contact”

if their past light cones intersect, and thus if there exist points in spacetime which could

have influenced both regions. The particle horizon χph is defined as the greatest comoving

distance from which an observer could have received information emitted at some prior

time, and thus defines the size of causally connected regions. At the time of the production

of the CMB (z ∼ 1100), these regions are of a size such that one would expect to see

∼ 30,000 of them in our modern CMB observations. However, we observe the temperature

CMB to be exceptionally uniform, to approximately one part in 105; how could apparently

disconnected regions of the sky “know” to be at the same temperature? Inflation addresses

this by effectively increasing the amount of conformal time before the CMB’s formation,
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dramatically expanding χph such that the entirety of the observed CMB is in causal contact.

– The flatness problem: We currently observe ΩK to be very close to zero (eBOSS Collaboration

et al., 2020). However, this is just the present-day value of the quantity −K/ȧ2. During the

radiation- and matter-dominated phases of the Universe’s history, a(t) is proportional to t
1
2

and t
2
3 respectively, and thus −K/ȧ2 grows during these phases. Given its current value, this

then implies that it must have been even closer to zero before these phases began, requiring

either significant fine-tuning of the Universe’s initial parameters or an alternative physical

mechanism to drive −K/ȧ2 towards zero. Inflation is one such mechanism: exponential

expansion results in an exponential decay in the value of −K/ȧ2. Thus a wide range of initial

values are compatible with the current measurements of ΩK and their corresponding errors.

– Relics: The majority of Grand Unified Theories predict the production of relic particles such

as magnetic monopoles, which are not observed in the Universe today. Inflation reduces the

expected number density of such objects significantly, making it unsurprising that they are

not observed.

While inflation is able to adequately solve a number of cosmological problems, neither its

detailed properties nor an inflationary mechanism have been robustly determined. In general,

inflation may be induced when the Universe is effectively dominated by a fluid with w < −1/3.

There exist many potential models which fit this requirement, and in order to ensure that a given

model is able to address the issues described above, we may derive a number of constraints on its

properties. As an example, we now look a little closer at the popular slow-roll model of inflation.

In this case, combining eq. (1.16) and eq. (1.15) demonstrates that an FLRW spacetime only

corresponds to an inflationary period if

ε ≡− Ḣ
H2 =

dlnH
dN

< 1, (1.22)

where dN = dlna = Hdt measures the number of “e-folds” of expansion, N, during inflation,

equivalent to the logarithmic increase in the scale factor during inflation. This requires that the

proportional change in the Hubble parameter H per e-fold of inflation must be small, but we also

require a certain number of e-folds of expansion — typically around 60 — to sufficiently address the

problems associated with a non-inflationary cosmology. Thus eq. (1.22) must hold for a sufficiently

long period of time, and so the value of ε must remain small for this period. To satisfy this, we also
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require that

|η | ≡
∣∣∣∣dlnε

dN

∣∣∣∣< 1 (1.23)

in order for inflation to last for a sufficiently long time, where η describes the proportional change

in ε with each e-fold.

In addition to these requirements, we also need there to be small quantum fluctuations produced

during inflation, producing slight deviations from homogeneity and isotropy. These then translate

into small perturbations in our matter density field, which grow throughout cosmic evolution to form

the structures visible today (discussed in Chapter 2 and Chapter 3). These are typically referred

to as the initial conditions for structure formation as they seed perturbations that grow in the later

Universe. As such, cosmological observations may allow us to measure these initial conditions and

thus constrain possible models of inflation. The baseline ΛCDM model considers only perturbations

with a uniform ratio between overdensities in radiation and matter. These are known as adiabatic

perturbations, and are the only type of perturbations that may be generated by the slow-roll, single-

field models of inflation mentioned previously. Within ΛCDM, the perturbations are Gaussian

distributed and thus may be fully characterised by their power spectrum. This is referred to as the

primordial power spectrum, and may be approximated to take the form

PR(k) = As

(
k
k0

)ns

, (1.24)

where R denotes the comoving curvature perturbation; As and ns are the amplitude and slope

of the power spectrum respectively; and k0 is a pivot scale. The parameters As and ns form part

of the baseline ΛCDM model, while simple extensions to this may include a “running” of the

spectral index, allowing ns to vary with k by defining a parameter α via ns = ns(k0)+α/2ln(k/k0)

(Kosowsky and Turner, 1995). Alternative models of inflation or theories for the early Universe may

yield different initial conditions; we discuss current constraints on ΛCDM and possible extensions

to it in § 3.3.

Another fundamental outcome of any successful inflationary model is that it must also be able

to produce an end to inflation. This then yields the finite number of e-folds of inflation that we

require, and the Universe may transition into the “Hot Big Bang” phase of cosmology. This consists

of a period of reheating, during which energy is transferred into the Standard Model fields, forming

a “primordial soup” of particles, which goes on to form the Universe we see today.
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1 . 5 T H E R M A L H I S T O RY

We follow the story of this “soup” through time, describing its evolution through a number of

distinct phases. As we follow this process, a key idea is that of different particle types decoupling

from — ceasing to interact with — each other in various ways. The point at which this occurs can

be determined by comparing the rate of interaction between particles, Γ, with the rate of expansion,

H. If Γ� H, then the particles are interacting with each other faster than the Universe expands

between them, and as such the particles will sit in local thermal equilibrium with each other. On

the other hand, if Γ�H, then the Universe is expanding too fast for interactions to keep up, and so

interactions effectively cease. The transition between these two scenarios depends on the forms

of Γ and H. From eq. (1.20), we may deduce that H ∼√ρ/MPl where MPl is the reduced Planck

mass. Dimensionality arguments then yield ρ ∼ T 4, and thus H ∼ T 2/MPl. The form of Γ depends

on the interaction in question. Considering the weak interaction (once electroweak symmetry has

broken), Γ ∼ G2
FT 5 where GF is Fermi’s constant, and so Γ/H ∼ G2

FT 3M2
pl ∼ (T/1 MeV)3. In

our cosmological model, then, we expect weak interactions to sit in equilibrium at early times

when T � 1 MeV. As the Universe expands and the temperature drops, however, we eventually

cross the threshold T ∼ 1 MeV. Below this point, weak interactions slow to a negligible rate, and

weakly-interacting particles decouple.

Immediately after inflation, we start with all particle types coupled tightly in a hot, dense

thermal bath — our “soup”. During this phase of the Universe’s evolution, its energy density

is dominated by relativistic species, and so the scale factor evolves as a(t) ∝ t
1
2 . The Universe

thus expands, and the bath begins to cool. Once the temperature T reaches ∼ 1 MeV, neutrinos

become the first known particle to decouple, though it is possible that dark matter particles would

have done so already. Shortly afterwards, at T ∼ 500 keV, positrons and the majority of electrons

annihilate, heating the surrounding photons slightly. Thus the photons are now at a fractionally

higher temperature than the neutrinos, a difference which should in theory propagate to current

measurements. While the temperature of the relic photons (the CMB) has been measured with

exquisite precision (Fixsen, 2009), direct detection of the cosmic neutrino background has yet to be

achieved and so this prediction is yet to be verified.

As expansion continues, the temperature drops further to T ∼ 100 keV, and the vital process of

big bang nucleosynthesis (BBN) occurs. This is the process by which light elements are generated

from the soup of protons, neutrons, electrons and positrons. Nuclei are formed by sequential

reactions, gradually adding protons and neutrons to first form deuterium, then helium and so on.
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The detailed physics of BBN can be modelled by solving coupled Boltzmann equations, yielding

predictions of the mass fraction of light elements through the Universe’s evolution. These have

been found to be in relatively good agreement with observational measurements, providing key

justification for the big bang theory as a whole.

At T ∼ 0.75 eV, we reach matter-radiation equality, when the energy density of matter takes

over from that of radiation as the dominant component. Expansion thus accelerates slightly, with the

scale factor a(t) ∝ t
2
3 . As the Universe enters this phase, two key events occur in quick succession.

Following the process of BBN, the “primordial soup” now consists primarily of photons, electrons

and nuclei. These are tightly coupled until the temperature becomes low enough for the electrons

and nuclei to combine, forming the first atoms in a process known as recombination. As this occurs,

the number density of free electrons drops dramatically, and thus the rate of interaction between

photons and electrons via Compton scattering follows suit. As such, soon after recombination,

photons decouple from the remaining particles and stream freely through the Universe. This is

known as decoupling, and marks the moment of formation of the CMB.

The next few hundred million years are largely uneventful, cosmologically speaking. The

only photons are those released at decoupling, while baryonic matter exists mostly as vast clouds

of (mostly) neutral hydrogen. These clouds collapse very slowly due to the relatively uniform

gravitational fields that they generate, and so the Universe enters the “cosmic dark ages”. Gradually,

though, matter begins to cluster and structures begin to form.

Eventually, “cosmic dawn” begins to break, with the formation of stars and subsequently

galaxies shining new light through the Universe. While it is not clear how to define the first galaxy

precisely, the processes that form such objects and the point at which they arrive in the Universe are

of great scientific interest (see Barkana and Loeb, 2001; Bromm and Yoshida, 2011, and references

therein for a review). Importantly, these first galaxies begin to ionise the hydrogen around them

in gradually-expanding bubbles. The hydrogen transitions from being almost entirely neutral to

having a neutral fraction of approximately 10−5 by z∼ 3. Initially, the ionisation state fluctuates

in space according to a number of factors including gas density and proximity to nearby ionising

sources, while at later times it can be treated as uniform. Meanwhile, structures continue to develop

via gravity across a range of scales. This formation of inhomogenous structure, both in radiation-

and matter-dominated phases of the Universe, is discussed extensively in Chapter 2.

More recently, a new form of energy has overtaken matter as the dominant contributor to the

Universe’s energy density. From z ∼ 0.4 to the present day, dark energy has driven a phase of

accelerated expansion of the Universe, first observed through measurements of type-Ia supernovae
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Chapter 1. The homogeneous Universe

during the late 1990s (Riess et al., 1998; Perlmutter et al., 1999). While the subsequent twenty

years have yielded extensive research into dark energy, we currently have little understanding of

the physics behind this observed behaviour, and it remains a primary motivation for cosmological

surveys today.
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C H A P T E R 2

T H E E V O L U T I O N O F

I N H O M O G E N E I T I E S

While the homogeneity implied by the Cosmological Principle is observationally evident on the

largest scales, it is equally obvious that on smaller scales our Universe is far from homogeneous,

and that there exists substantial structure. Such structure exists on a wide range of scales, and

encodes valuable information about cosmic evolution. In order to understand these inhomogeneities,

we may introduce perturbations to the homogeneous cosmological model treated thus far, then

tracking the evolution of these perturbations through time to predict the statistical properties of the

Universe that we observe today. On smaller scales, matter can collapse to form dense structures

such as stars and galaxies, but such processes are beyond the reach of perturbative methods and

require different approaches.

In this chapter, we first introduce perturbations to a homogeneous cosmological model in

§ 2.1, making some simplifying assumptions in attempting to convey qualitatively the physical

processes at play. We then apply these methods, tracking the growth of linear perturbations in § 2.2

and discussing baryon acoustic oscillations. Then, in § 2.3, we descend to smaller scales where

non-linear structure forms, addressing the formation of collapsed structures and the development of

galaxies.
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Chapter 2. The evolution of inhomogeneities

2 . 1 P E RT U R B AT I O N S T O H O M O G E N E I T Y

Taking the homogeneous Universe of Chapter 1 as a basis, we would like to introduce perturbations

to all quantities. We assume that perturbations are adiabatic, as predicted by simple models of

inflation and as considered in the baseline ΛCDM model. We express these as deviations from

a homogeneous background, writing X = X̄ +δX for a quantity X (such as an energy density or

a pressure) with background X̄ and perturbation δX . For perturbations to an energy density ρi

for a fluid labelled by i, we then typically use the density contrast δi = δρi/ρi in our subsequent

mathematical treatment. Introducing perturbations to all quantities this way, we may then substitute

into the Einstein field equations (EFEs) of eq. (1.12), separating out background quantities to derive

equations governing the evolution of our perturbations.

We first consider perturbations to the left hand side of the EFEs, perturbing our FLRW metric

gµν . However, we must take care here, as writing such an equation may implicitly choose a

particular set of coordinates. This choice — known as a gauge choice — is non-trivial and can

change the appearance of perturbations. To address this subtlety, we may either define perturbations

so that they are invariant under a change of coordinates, or we may fix our gauge to a particular

choice. Here, we fix to the Newtonian gauge, which yields a perturbed line element

ds2 = a2(τ)
[
−(1+2Ψ)dτ

2 +(1−2Φ)δi jdxidx j] , (2.1)

where Φ and Ψ are now our perturbation variables. By comparison with the weak-field limit of GR,

we see that Ψ plays the role of a gravitational potential. This is a common gauge choice for studying

large scale structure, while those investigating perturbations during inflation may commonly choose

a spatially-flat gauge, and modern simulations often use a synchronous gauge.

Introducing perturbations to the right hand side of eq. (1.12), we write the perturbed energy-

momentum tensor T µ

ν = T̄ µ

ν + δT µ

ν . This introduces corresponding perturbations to the energy

density ρ , pressure P and four-velocity Uν — all of which were defined in eq. (1.14) — while

also introducing the possibility of anisotropic stress. Here, we take the anisotropic stress to be

zero, which enforces Φ = Ψ. By enforcing conservation of the perturbed energy-momentum tensor,

and then substituting our perturbed tensor into the Einstein field equations, we may derive a set of

equations governing the evolution and interaction of our metric and matter perturbations.
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2.2. Formation of linear structure

2 . 2 F O R M AT I O N O F L I N E A R S T R U C T U R E

Assuming that perturbations are small relative to their corresponding mean fields, we may reduce

these equations to linear order in perturbed quantities. The resultant set of equations describe the

evolution of linear perturbations as the Universe progresses, while features that are not able to be

described by the approximation are known as non-linear. This process is governed by the two

competing effects of gravity and pressure. While small initial overdensities will gravitationally

attract nearby matter and thus grow, this effect is resisted by internal pressure which may prevent the

fluid from reaching high densities. Fundamentally, it is the balance between these two mechanisms

which determines the nature of perturbation growth, mediated by the background expanding

Universe. We address this task in Fourier space, considering perturbative modes δi(k) obtained via

a Fourier transform of the configuration space perturbations δi(x):

δi (k) =
1

(2π)3

∫
eix·k

δi (x)d3x, (2.2)

where k is the 3D wavevector, and we write the amplitude of this vector as k = |k|, also referred to

as the wavenumber. We consider perturbations to each type of fluid separately as their different

equations of state result in very different behaviours.

Early in the universe, all perturbation modes are super-horizon: they have kH−1� 1, where

H−1 ≡ (aH)−1 is the comoving Hubble radius. As the Universe evolves, the horizon expands

and modes gradually cross the horizon, then becoming sub-horizon (kH−1� 1). Meanwhile, the

Universe transitions from its post-inflationary radiation-dominated epoch to the matter domination

of late times. The evolutionary behaviour of an individual perturbation mode varies depending

on these two qualitative distinctions at any given point in time: whether the mode is super- or

sub-horizon, and whether the Universe is in its radiation- or its matter-dominated phase.

Quantitatively, the evolution of a mode through these eras is described by the transfer function,

which depends on the wavenumber, k. Equally, we will see shortly that some perturbation modes

grow in amplitude at late times, in accordance with a wavenumber-independent growth function.

As such, it is helpful to consider the schematic equation from p. 183 of Dodelson (2003):

Φ(k,a) = Φprimordial (k)×{transfer function(k)}×{growth function(a)} . (2.3)

Thus by careful calculation of appropriate transfer and growth functions, we may relate inflationary

perturbations to those we observe today. Carrying out such a calculation is the main goal of
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Chapter 2. The evolution of inhomogeneities

perturbation theory, encoding the physics of perturbation evolution to provide a mapping between

initial conditions and late-time observables. A full treatment of this task involves solving numerous

coupled differential equations, typically treated numerically. For the purposes of this thesis,

however, a higher-level discussion is appropriate, and we simply provide a summary of noteworthy

features by making simplifying approximations to study the evolution of perturbations to various

quantities.

2 . 2 . 1 G R AV I TAT I O N A L C O L L A P S E

Evolution of the gravitational field

The gravitational field Φ provides a suitable quantity to demonstrate the key physical ideas when

considering the evolution of perturbations. Assuming adiabatic perturbations, the perturbed Einstein

equations yield a single equation describing the evolution of the gravitational potential:

Φ
′′+3(1+w)HΦ

′+wk2
Φ = 0, (2.4)

where w is the equation of state of the background, and ′ denotes a derivative with respect to

conformal time τ . On super-horizon scales, the final term on the left hand side is much smaller

than the second term, and so can be ignored. This yields one solution that decays rapidly with

conformal time, and a second, “dominant” solution Φ = const upon which we focus. This solution

is independent of w and thus applicable to both radiation- and matter-dominated epochs. Once

modes enter the horizon, we can no longer ignore the term ∝ k2, and the value of w becomes

important. In the radiation-dominated era, we have w≈ 1/3, and so we obtain

Φ
′′+

4
τ

Φ
′+

k2

3
Φ = 0. (2.5)

This is solved by spherical Bessel and Neumann functions, which, on sub-horizon scales, yields a

dominant solution Φ ∝ cos(kτ/
√

3)/(kτ)2, corresponding to decaying oscillations. Equally, in the

matter-dominated era we have w≈ 0, and so we obtain

Φ
′′+

6
τ

Φ
′ = 0. (2.6)

This equation is simpler, yielding a dominant solution Φ = const. Thus in the matter-dominated

era, both sub- and super-horizon modes are constant.
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2.2. Formation of linear structure

Figure 2.1. The evolution of perturbations to the gravitational field Φ at three different
length scales. These scales are chosen such that the modes enter the horizon at three
qualitatively different times in relation to the moment of matter-radiation equality (given
by aeq): long before aeq (k = 2 h Mpc−1), around aeq (k = 0.1 h Mpc−1), and long
after aeq (k = 0.001 h Mpc−1). As a result of these choices, the modes exhibit distinct
behaviours, resulting in wide-ranging values at late-time. Figure credit: Dodelson (2003).

The behaviour of these perturbation modes is illustrated in Figure 2.1, originally published in

Dodelson (2003). Here, the k = 2 h Mpc−1 mode enters the horizon well before matter-radiation

equality, exhibiting strongly damped oscillations and decaying (almost) to zero before equality. As

a result, this mode has very low amplitude through matter domination as well. The k = 0.1 h Mpc−1

mode, however, enters the horizon later, and thus does not decay away completely before matter

domination. Finally, the k = 0.001 h Mpc−1 mode does not enter the horizon until after matter-

radiation equality, and so does not exhibit any decaying oscillatory behaviour. It does, however,

reduce slightly in amplitude — by a factor of 9
10 — over the epoch of equality. Deriving this

effect requires a more mathematically detailed treatment than we present here, but qualitatively

Figure 2.1 provides a suitable illustration of the very different evolutionary paths followed by

modes of different scales.
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Chapter 2. The evolution of inhomogeneities

The Jeans scale

We may now consider a perturbation to a general fluid labelled by i, with equation of state w = P̄i/ρ̄i.

We also define the sound speed c2
s = δPi/δρi. By combining equations describing conservation

of mass and momentum (continuity and Euler equations) on sub-horizon scales, we obtain a

configuration-space evolution equation

δ
′′
i +(1−3w)Hδ

′
i − c2

s ∇
2
δi = (1+w)∇2

Φ. (2.7)

This is the general governing equation for fluid fluctuations, including Hubble friction and pressure

in the second and third terms respectively on the left-hand side, and gravity in the right-hand side.

Then applying a Fourier transform, and using the Poisson equation to remove the dependence on Φ

yields

δ
′′
i +(1−3w)Hδ

′
i + c2

s (k
2− k2

J)δi = 0, (2.8)

where kJ ≡
√

4πGa2ρ̄(1+w)/c2
s is the Jeans scale (Jeans, 1902).

The solutions to this equation depend on the background cosmic behaviour via H, a and

ρ̄ , as well as the properties of the fluid via w and cs. On small scales with k� kJ , eq. (2.8)

becomes a damped oscillator equation, with pressure driving oscillations that are damped by the

Hubble friction. Equally, when k� kJ , it admits growing solutions, the precise nature of which

is determined by the equation of state w. This behaviour of δ prevents structure from growing on

small scales, while allowing larger-scale perturbation modes to grow. Crucially, the value of the

transition scale kJ depends on the behaviour of the fluid in question. For radiation, the sound speed

cs is very large, and so perturbations oscillate on all but the largest scales. For dark matter, however,

cs is very small, and so we would expect most perturbations to grow.

Clustering of dark matter

For pressureless dark matter, w = 0 and cs is very small, so we may neglect the c2
s ∇2δ term in

eq. (2.7), yielding a Fourier-space evolution equation for sub-horizon fluctuations sourced by the

gravitational potential

δ
′′
c +Hδ

′
c =−k2

Φ. (2.9)

where δc is the density contrast for cold dark matter. In the early Universe, Φ is dominated by

contributions from radiation and dark matter (we ignore baryonic effects for now). However, the

radiation density fluctuates very rapidly (see § 2.2.2), and thus we may neglect its contribution
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2.2. Formation of linear structure

in a “time-averaging” approximation (Weinberg, 2002). After some manipulation and use of the

substitution y = a/aeq, we may then deduce that δc evolves according to the analytically tractable

Mészáros equation:
d2δc

dy2 +
2+3y

2y(1+ y)
dδc

dy
− 3

2y(1+ y)
δc = 0, (2.10)

During radiation domination, y� 1 and eq. (2.10) has a dominant solution δc ∝ lna, indicating slow

growth of perturbations. Physically, we may interpret this as gravitational collapse being partially

thwarted by rapid oscillations in the radiation density. During matter domination, y� 1 and the

dominant solution to the Mészáros equation is approximately δc ∝ a ∝ t
2
3 . Here, gravitational

collapse causes perturbations to grow more rapidly, without being held back by radiation.

In the later Universe, the balance of energy densities changes, with dark energy taking over

from matter as the dominant components. Fluctuations in pressure then become negligible, and we

obtain solutions δc = const on all scales. This represents a suppression of growth as the Universe

enters the age of dark energy-domination.

2 . 2 . 2 T H E E F F E C T S O F P R E S S U R E

Evolution of radiation perturbations

We may now analogously consider how perturbations to the radiation energy density evolve, using

the radiation density contrast δr to do so. In this case, w = 1/3, indicating non-negligible pressure

in the fluid. Thus, for adiabatic radiation perturbations, the evolution equation becomes

δ
′′
r +

1
3

k2
δr =−k2

Φ. (2.11)

During radiation domination, the potential Φ decays as a2 ∝ τ2, and so we may find approximate

solutions by neglecting the right-hand side of eq. (2.11). Doing so yields a simple oscillator

equation, with δr ∝ (kτ)2Φ ∝ cos(kτ/
√

3). During the matter-dominated era, Φ ∝ const, and so

we may no longer neglect the driving term on the right-hand side. This change simply shifts

the equilibrium point of our oscillations from zero to −4Φ(k). Thus in both the radiation- and

matter-dominated epochs, fluctuations in the radiation density oscillate due to internal pressure.

Photon-baryon oscillations

Before decoupling, however, baryonic matter and photons are tightly coupled via Compton scat-

tering, and can effectively be treated as a single fluid. As a result, only the combined momentum
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Chapter 2. The evolution of inhomogeneities

density of this photon-baryon fluid is now conserved, and so the conservation equations which

generated eq. (2.7) require modification. Writing R = 3ρ̄b/4ρ̄γ to relate the background densities

of photons and baryons, we may derive a modified version of eq. (2.11) to describe the photon

and baryon density contrasts, written δγ and δb respectively (Peebles and Yu, 1970; Hu and White,

1996; Eisenstein, Seo, and White, 2007):

δ
′′
b +

HR
1+R

δ
′
b− c2

s ∇
2
δb = ∇

2
Φ =

3
4

(
δ
′′
γ +

HR
1+R

δ
′
γ − c2

s ∇
2
δγ

)
. (2.12)

Here, we have defined the sound speed cs in the photon-baryon fluid as c2
s = c2/3(1+R). This

equation describes driven oscillations in the fluid, with the photons providing pressure support to

sustain oscillations in both baryon and photon perturbations. When decoupling occurs, however,

this pressure disappears and so the oscillations freeze, leaving an imprint on the distribution of both

baryons and photons known as baryon acoustic oscillations (BAO). Of course, perturbation modes

are still able to evolve after decoupling, with baryon perturbations growing as δb ∝ a (as was the

case for dark matter).

The BAO signal imprinted upon the baryon distribution can be demonstrated more intuitively

by considering the evolution of an initial, adiabatic, localised overdensity, as in the top left panel of

Figure 2.2. An overdensity in the radiation sector implies an over-pressured region, and this excess

pressure drives a sound wave radially outwards. As the wave travels through the tightly coupled

photons and baryons, it leaves the dark matter overdensity behind, while neutrinos stream away with

relative freedom (top right panel). This continues as the Universe evolves until decoupling begins,

as in the middle left panel. As the photons and baryons decouple, the baryon wave decelerates

rapidly while the photons stream away, yielding an overdensity of baryons at a fixed radial size in

the middle right panel, with the radius determined by

rd =
∫

∞

zd

cs(z)
H(z)

dz, (2.13)

where cs is the speed of sound, and zd ' 1020 is the redshift of the “drag epoch”1. This quantity

depends on the function cs(z), and the value of zd . The sound speed cs is determined by balance

between gravity and pressure, which depends on the photon to baryon ratio via R. Meanwhile,

the drag redshift is determined by the rate of expansion in the earlier Universe, which depends on

1This is the redshift at which baryons decouple from photons, and differs slightly from redshift of last scattering
at which the CMB forms. This difference is not important for the qualitative understanding of the BAO scale we are
interested in here.
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2.3. Beyond linearity

the redshift of matter-radiation equality, as defined by the energy densities of the early Universe.

Current measurements of cosmological parameters yield a value rd = 147.57±0.22 Mpc (Planck

Collaboration et al., 2020b). At this stage, then, we are left with a shell of baryon overdensity at

radius rd , surrounding a central overdensity of dark matter. As the Universe continues to evolve

through the bottom two panels of Figure 2.2, these two overdensities both grow under gravitational

instability, leaving us with a central overdensity of both baryons and dark matter, surrounded by a

spherical “echo”, again of both baryons and dark matter.

In reality, we must consider a superposition of many such initial perturbations, and many

such sound waves, all overlapping as ripples from many stones thrown into a pond. While this

superposition leaves us unable to detect individual spherical shells, we may expect to observe

a “preferred scale” in the late Universe: given an overdensity at one point in space, we would

expect an increased likelihood of observing another overdensity at a certain “preferred” separation,

defined by BAO and cosmic expansion. This ought to express itself in all quantities that trace the

matter density, including galaxy counts and the IGM; we explore such methods of measuring BAO

in Chapter 3. Observing this fixed-length scale enables us to use BAO as a “standard ruler”; by

measuring the apparent size of the scale at a given redshift, we may use our value of its absolute

size to derive the distance to that redshift. Then, by making measurements at many redshifts, we

may directly probe the distance-redshift relation through the Universe’s history, thus constraining

cosmic expansion.

2 . 3 B E Y O N D L I N E A R I T Y

While the growth of linear structures forms a key part of cosmological theory, the differential

equations yielded from the Einstein equation are inherently non-linear. This introduces coupling

between different modes, and can yield complex features from even the simplest of initial conditions.

Indeed, observationally, we make use of highly non-linear structures such as galaxies to look into the

distant Universe, and so some understanding of their formation is important in correctly interpreting

our measurements.

During the early Universe, pursuing a perturbative approach to linear order proves an accurate

approximation, but at later times, non-linear features become apparent. The extent of these non-

linearities depends on the scale involved. On large scales — often referred to as quasi-linear

scales — we may continue pursuing perturbative methods, expanding to higher order terms to

yield increasingly accurate solutions. In recent years, a number of more advanced techniques and
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Chapter 2. The evolution of inhomogeneities

Figure 2.2. The formation of the late-time BAO feature, illustrated by tracking the 1D
evolution of an initially localised, adiabatic perturbation. The process starts in the top
left panel, before moving to the right and then following the same progression in the
middle and bottom rows. The redshift of each snapshot is indicated in each panel. Figure
credit: Eisenstein, Seo, and White (2007).
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2.3. Beyond linearity

mathematical formalisms in this vein have been introduced, proving highly effective in conjunction

with improved computational methods to quantify them. For a review of such approaches, please

see Bernardeau et al. (2002).

Alternatively, analytic approaches built on the back of linear theory can provide surprisingly

accurate predictions of non-linear features of our Universe. Typically, objects such as galaxies and

clusters — crucial to modern cosmological observations — reside in collapsed, self-gravitating

“clumps” of dark matter, known as halos. A number of theories predict the distribution of these

halos by determining the location of proto-halos: areas of slight overdensity in initial fluctuations

which, the theories propose, will eventually collapse to form halos. For example, the Press-Schecter

formalism (Press and Schechter, 1974) defines a threshold overdensity, and proposes that halos

will form at all regions where initial fluctuations meet that threshold. The breadth of this initial

overdensity then determines the mass of the halo, enabling predictions to be made of the halo

number density distribution (Press and Schechter, 1974) and their clustering (Mo and White, 1996).

Advances have been made to extend this method (e.g. Sheth, Mo, and Tormen, 2001; Sheth and

Tormen, 2002), and alternative ideas such as the peak approach have also yielded success (see

Chapter 6 of Desjacques, Jeong, and Schmidt, 2018).

Ultimately, though, with the vastly increased computational power at the fingertips of modern

cosmology, numerical simulations now provide the most precise predictions of structure formation

on non-linear scales. Large-scale simulations may model three main processes: gravity, hydrody-

namics, and astrophysical feedback. Gravity is treated by considering collisionless particles of cold

dark matter, as is consistent with standard theories. A large number of these particles are placed

in a simulation, each with a certain mass, and they are then allowed to evolve under gravity. This

“N-body” approach (see Dehnen and Read, 2011, for a review) typically uses Newtonian approxi-

mations for gravity, though relativistic approaches do also exist. On top of dark matter particles,

hydrodynamic treatments allow the simulation of baryonic gas and its inherent temperature and

pressure. This behaviour is governed by the Navier-Stokes equations, substantially increasing the

complexity of the simulations due to the interplay between gas dynamics and gravity. A number of

methods have been developed to provide tractable yet well-motivated approximations to solutions,

generally following either Lagrangian (e.g. Springel, 2010) or Eulerian (e.g. Teyssier, 2015) ap-

proaches. Finally, the addition of astrophysical feedback to simulations provides a quantification of

an enormous range of astrophysical processes and their impact on the surrounding gas. This causes

great difficulty due to the uncertainty in how to model each of the many forms of feedback, and,

from a computational perspective, the enormous range of scales that these processes cover. Current
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Chapter 2. The evolution of inhomogeneities

research in this area is extensive, with an extensive and growing literature, recently reviewed in

Naab and Ostriker (2017).
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C H A P T E R 3

O B S E RVA B L E S & M E A S U R E M E N T S

In science as a whole, progress relies on the interaction between theory and measurement; either on

its own may be interesting, but it is only the combination of the two which allows us to advance our

understanding. The material of previous chapters provides an introduction to some of the theoretical

concepts which underpin our understanding of the Universe today, and so we now turn to the other

side of the coin, and consider the observations that we may make in order to test this theory. We

introduce a few key measurements, and also summarise the immense observational progress that

has been made in recent decades.

In § 3.1, we introduce the cosmic microwave background, the foremost early-Universe cosmo-

logical probe today. Then, in § 3.2, we focus on later stages of the Universe’s evolution, looking

at a selection of large-scale structure measurements at redshifts z∼ 0.1−4.0. In § 3.3, we assess

the capabilities of our current observations to constrain our cosmological model, focusing on the

“baseline” ΛCDM model and extensions thereof.

3 . 1 C O S M I C M I C R O WAV E B A C K G R O U N D

In § 1.5, we briefly introduced the cosmic microwave background (CMB) as the remnant photons

which decoupled from the matter field at z∼ 1100, around 380,000 years after the Big Bang. This

process of decoupling describes the formation of the “surface of last scattering”: a 2D surface of

fixed radius determined by the distance travelled by light since decoupling. We now observe photons

coming from this surface arriving at Earth from all directions, and may measure the properties of
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these photons in each direction. The CMB was first observed in 1964, as an initially unexplained

residual signal at the Holmdell Horn Antenna in New Jersey (Dicke et al., 1965; Penzias and Wilson,

1965). This followed decades of speculation around its existence and predictions of its temperature.

This temperature — reduced since decoupling by the expansion of the Universe — has now been

measured with exquisite precision as T = 2.726± 0.001 (Fixsen, 2009). On initial inspection,

the uniformity of the CMB across the sky is striking, with fluctuations of order one part in 105.

However, it is within these small deviations from uniformity that a great wealth of information

about our Universe lies. These fluctuations were first observed by the Cosmological Background

Explorer (COBE, Smoot et al., 1992; Bennett et al., 1996), with subsequent improvements in

resolution made by a number of experiments, including the Wilkinson Microwave Anisotropy Probe

(WMAP, Bennett et al., 2003) and Planck (Planck Collaboration et al., 2014). Anisotropies become

apparent via several forms of measurement: temperature, polarisation and gravitational lensing,

each of which is displayed in Figure 3.1.

Captured within the CMB are the imprint of oscillations in the photon-baryon fluid before

decoupling — baryon acoustic oscillations (BAO) — as introduced in § 2.2.2. These oscillations

cause peaks and troughs in the observed power spectrum of CMB anisotropies; a perturbation with

a given wavenumber will enter the horizon and thus begin oscillating at a particular time before

decoupling. Depending on whether the perturbation is reaching a maximum or a minimum in its

oscillatory amplitude at the time of decoupling, we expect to see a peak or a trough respectively in

the power spectrum at the scale corresponding to that particular wavenumber. These features are

also affected by diffusion damping around the time of recombination and decoupling (Silk, 1968),

which occurs both due to the non-zero diffusion length of photons while still coupled to baryons, as

well as the finite duration of the recombination process. Ultimately, this reduces the amplitude of

the peaks on small scales, leaving those at larger scales relatively unaffected (Hu and White, 1997).

Additional anisotropies may also be added to the CMB during the time since decoupling

via a number of different sources. The shape of the gravitational potential at decoupling may

cause photons to be red- or blue-shifted at the formation of the CMB, known as the Sachs-Wolfe

effect (Sachs and Wolfe, 1967). A similar occurence — the integrated Sachs-Wolfe effect (Rees

and Sciama, 1968) — is caused by time-varying gravitational potentials in the late Universe.

Alternatively, high-energy electrons either in galaxy clusters — known as the Sunyaev-Zel’dovich

effect (Sunyaev and Zeldovich, 1970; Sunyaev and Zeldovich, 1980; Ostriker and Vishniac, 1986)

— or in the IGM may interact with the CMB photons via inverse Compton scattering. These two

electron sources introduce a dependence of the observed CMB on astrophysical processes through
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3.2. Large-scale structure

cosmic history by affecting the photons’ polarisation. Finally, the integrated distribution of matter

between the surface of last scattering and observation introduces lensing effects in the CMB seen

today (Zaldarriaga and Seljak, 1998; Lewis and Challinor, 2006).

These sources of anisotropy add many layers to the information contained within the CMB.

On the largest scales — for which perturbations remained super-horizon until after decoupling —

we may use the CMB to measure the initial perturbations seeded by inflation (or an alternative

theory), constraining the amplitude As and tilt ns of the primordial power spectrum. At intermediate

sales, we observe the peaks and troughs of BAO, the nature of which depend on combinations of

energy density parameters (Hu, Sugiyama, and Silk, 1997). Different combinations determine both

the acoustic properties of the primordial photon-baryon fluid, and the nature of cosmic expansion

since recombination. These then define the projected size of the sound horizon at recombination,

which sets the observed locations of the peaks in CMB power spectra. The locations also depend

on the nature of the primordial seed perturbations, which may shift the peaks though does not affect

their spacing. Beyond peak locations, the relative amplitudes of the BAO peaks are affected by

the balance between baryons and radiation in the photon-baryon fluid, with baryon drag acting to

enhance compression (even) peaks relative to rarefaction (odd) ones. In conjunction, measurements

of the locations and amplitudes of the BAO peaks may be used as a “standardisable” ruler, breaking

internal parameter degeneracies and allowing tight constraints to be made on cosmic energy

densities. At smaller scales, the energy densities of baryons and matter affect the damping scale of

the CMB power spectrum, which may act as a consistency check for the effects of these parameters

on larger scales. For a thorough review of the cosmological dependence of CMB anisotropies,

please see Hu and Dodelson (2002), or for an up-to-date summary of current constraints see Planck

Collaboration et al. (2020a) and Planck Collaboration et al. (2020b).

3 . 2 L A R G E - S C A L E S T R U C T U R E

A great deal of information is encoded within the late-time distribution of both dark and baryonic

matter. A variety of observational techniques are employed to try and capture this information, from

which we may apply a range of analytical techniques to extract cosmological constraints. Here,

we describe three qualitatively different methods to measure large-scale structure, highlighting the

uses of each in a cosmological context.
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-160 160 µK0.41 µK

Figure 3.1. Sky maps from Planck in three different quantities. The top image shows the
temperature map, with a masked region around the galactic plane shown by the grey line.
The middle image represents the polarisation field with small black rods, superimposed
on the temperature map. In this case, both polarisation and temperature are smoothed at a
5◦ scale for visibility. Finally, the bottom panel shows the Planck E-mode lensing map,
which derives information from both temperature and polarisation. Figure credit: Planck
Collaboration et al. (2020a).
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3 . 2 . 1 BAO F R O M S P E C T R O S C O P I C S U RV E Y S

The coupling of baryons to radiation in the early Universe dictates that the BAO signature is present

in perturbations to the baryon energy density at recombination, as well as the radiation density. This

signal is carried in the baryon distribution as perturbations evolve through time, and is imprinted

upon all subsequent structures. It can then be measured from any matter distribution that we observe

in the late Universe. We may calibrate a BAO measurement with a value of rd , allowing us to

measure the absolute distance to a given redshift. The calibration value of rd is typically calculated

using parameters derived from CMB anisotropies, though it is also possible to do so using only

the temperature of the CMB along with a value of Ωb determined from measurements of BBN

abundances (Addison, Hinshaw, and Halpern, 2013; Addison et al., 2018). These two different

approaches to calibration can be considered independent of each other and thus provide useful

checks of consistency between data sources. Alternatively, we may treat rd as a nuisance parameter,

instead using BAO measurements at a number of redshifts to fit the relative cosmic expansion

history.

We may attempt to measure the BAO signal via spectroscopic surveys, which measure the

spectral distribution of light from numerous objects within a survey volume. Observing objects in

this way — as opposed to doing so photometrically — allows spectral features such as emission lines

to be distinguished. Distinctive lines such as the O II doublet may then be identified by their shape,

while a set of broad emission lines may be used to identify a quasar. For an emission line of known

rest-frame wavelength λrest, we may straightforwardly deduce the object’s redshift z= λobs/λrest−1.

Due to the fine sampling of flux as a function of wavelength inherent to spectroscopic observation,

this redshift is considerably more precise than can be obtained from photometric data (see Salvato,

Ilbert, and Hoyle, 2019, for a review of methods to do so). Of course, spectroscopic observations

are also more time consuming per object than their photometric counterparts, but the ability to

determine precise redshifts allows us to confidently measure perturbation modes in three dimensions,

which can offer increased statistical power as well as increased scientific opportunity.

Unlike in the CMB, spectroscopic surveys may make use of this third dimension to measure the

BAO signal in both radial and transverse directions. In the radial direction, we may observe the BAO

scale to correspond to a particular redshift separation ∆z, which can be used to calculate a comoving

separation using eq. (1.9). For a narrow redshift interval, this integral can be approximated to yield

χ ' c∆z/H(z) (reintroducing the factor of c set to 1 previously). Thus for χ = rd , we may directly

measure the Hubble parameter H(z) = c∆z/rd via BAO. Conversely, in the transverse direction
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the BAO scale may correspond to a particular angular separation ∆θ , allowing us to measure the

comoving transverse distance dM = rd/∆θ , as defined in § 1.2. Typically, BAO results are presented

as measurements of dH/rd and dM/rd , where dH = c/H(z) is the Hubble distance. The quantity

dv = (zdHd2
A)

1/3 has been used historically, and is sometimes still used when dealing with low

signal-to-noise ratio measurements.

While the BAO signal certainly ought to be present in the late-time matter distribution, the

gravitational coupling between baryons and dark matter — the latter of which do not carry the

BAO signature immediately after recombination — dictates that the amplitude of this signal is

substantially smaller than in the CMB. Thus a large survey volume is required to suitably recover

the BAO signal. Provided such a volume can be achieved, a number of different structure types can

be used to trace the matter density field.

Discrete tracers

Discrete objects are perhaps the easiest to observe tracer of the matter density at z > 0.1. As such,

they provided the first large-scale structure detections of the BAO signal, using number counts

of galaxies to measure the correlation function and power spectrum of galaxies from the Sloan

Digital Sky Survey (SDSS, York et al., 2000) and 2-Degree Field Galaxy Redshift Survey (2dFGRS,

Colless et al., 2001) respectively. In the subsequent years, a number of similar measurements

have been made, primarily tracing the matter density field with galaxies (e.g. Percival et al., 2010;

Beutler et al., 2011; Blake et al., 2011; Alam et al., 2017) and quasars (QSOs, e.g. Ata et al., 2018)

in redshift ranges z ∼ 0.1− 1.0 and z ∼ 1.2− 1.7 respectively. Recently, the extended Baryon

Oscillation Spectroscopic Survey of SDSS-IV (Dawson et al., 2016; Blanton et al., 2017) provided

the most comprehensive set of BAO measurements to date. It measured the BAO signal in both

Fourier- and configuration-space from two different classes of galaxies, emission line galaxies

(ELGs, de Mattia et al., 2020; Raichoor et al., 2021) and luminous red galaxies (LRGs, Gil-Marı́n

et al., 2020; Bautista et al., 2021) as well as QSOs (Neveux et al., 2020; Hou et al., 2021).

While these discrete objects make suitable tracers of the matter density field, their use in

detecting the BAO signal is not without difficulty. The motion of galaxies during the late Universe

due to bulk flows causes a degradation of the BAO signal, observed as a broadening of the peak in

configuration space or a damping in peak amplitude in Fourier space (Seo and Eisenstein, 2005;

Seo et al., 2008). This broadening does not introduce any systematic bias to the BAO scale in

and of itself, though non-linear effects can introduce systematic shifts in the relative positions of

galaxies. Fortunately, both simulations and theory suggest that this effect is small, shifting the peak
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by . 0.5% (Crocce and Scoccimarro, 2008; Padmanabhan and White, 2009; Seo et al., 2010). Of

course, we must also consider that discrete objects may trace the underlying matter density field

in non-trivial ways, and using a simple linear bias δg = bδm will likely not sufficiently capture

this complexity. Introducing non-linear effects to the biasing may introduce a shift to the BAO

peak (Padmanabhan and White, 2009), but such effects are small (Mehta et al., 2011) and can be

accounted for by calculations of small scale clustering and use of higher order statistics.

These difficulties may be partially addressed by a process known as reconstruction (Eisenstein

et al., 2007). This uses the observed set of galaxies to determine the gravitational potential field,

from which the galaxies’ linear peculiar velocities may be deduced as the gradient of the potential.

We may then employ the Zel’dovich approximation (Zel’Dovich, 1970) — that objects move along

straight-line paths in comoving coordinates at a rate that can be predicted by linear theory — in

reverse, moving galaxies back to the positions they would have occupied if it were not for bulk

flows. This allows us in some sense to “reconstruct” the BAO signal which was present in the

earlier Universe, before broadening, and thus increase the significance of any detection. Having

been refined over many years, reconstruction now allows for nearly all of the theoretically-available

BAO information to be recovered (Seo and Eisenstein, 2007; Seo et al., 2010; Padmanabhan et al.,

2012). Typically, this corresponds to an increase in precision by a factor of ∼ 1.5−2, equivalent to

expanding the volume of a survey by a factor of ∼ 2−4. Reconstruction also helps to address the

systematic shifts described previously, thus improving both the statistical and systematic errors on

discrete-tracer BAO measurements (Padmanabhan et al., 2012; Anderson et al., 2012).

Beyond the challenges of non-linear effects in discrete tracers, a practical limitation is also

present for realistic surveys. In order to push such measurements further back in the Universe’s

history by extending to higher redshifts, the volume of a survey increases dramatically but objects

become fainter due to their increased distance. As such, given a certain limiting magnitude, the

number density of visible objects decreases, and there are insufficient visible objects to produce a

statistically significant BAO detection using discrete tracers. With current, ground-based surveys,

this confines such measurements to z . 1 for galaxies, and z . 1.8 for quasars. In the near

future, the Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016a; DESI

Collaboration et al., 2016b) will push these boundaries slightly higher with a large sample of

emission line galaxies at z . 1.6 (see Table 4.1). Further, data from space-based missions such

as Euclid (Laureijs et al., 2011) and WFIRST (Spergel et al., 2015) will enable the use of slitless

spectroscopy (Glazebrook et al., 2005), yielding galaxy samples large enough to measure BAO to

. 1% precision in the redshift range 1 . z . 2.2.
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The Lyman-α forest

Within the last decade, however, a qualitatively different tracer has emerged in the form of the

Lyman-α (Lyα) forest, allowing the BAO feature to be detected beyond z = 2. The Lyα forest is a

sequence of absorption features seen in the spectra of high-z QSOs, first noted in the 1960s after

observations of the first such QSOs (Schmidt, 1965; Scheuer, 1965; Bahcall and Salpeter, 1965;

Gunn and Peterson, 1965).

To understand the formation of the Lyα forest, we consider a photon emitted towards us from a

QSO at redshift zQSO, with initial wavelength λrest ≤ 1215.67 Å = λα , the wavelength of the Lyα

transition of neutral hydrogen (H I). As the photon travels towards us, it is constantly redshifted and

so its wavelength increases. At some point, its wavelength reaches λα and it may be absorbed by

an H I atom in the inter-galactic medium (IGM). This absorption occurs with a certain probability,

which depends on the density and kinematics of neutral hydrogen in its surrounding region at that

time. This probability then determines the fraction of photons emitted at λrest from the source QSO

which reach us at a wavelength λobs = λα(1+zH I) = λrest(1+zQSO), where zH I is the redshift of the

neutral hydrogen where absorption occurs. Considering now the spectrum of photon wavelengths

emitted by a QSO, we see that this absorption process may result in a whole sequence of absorption

features at a range of different wavelengths λobs < λα(1+ zQSO). These features are collectively

known as the Lyα forest, and they provide a line-of-sight tracer of the density of neutral hydrogen

between observer and the host QSO.

Cosmologically speaking, we are interested in using the Lyα forest to trace the distribution

of matter, but we observe absorption features in QSO spectra. Translating between these two

quantities is non-trivial, as the processes involved are complex. At the most basic level, we may

write the optical depth as an integral over the path between source and observer:

τ =
∫ observer

source
ds nH I(z) σα [ν(z)], (3.1)

where ds is a proper length interval, nH I is the number density of neutral hydrogen atoms, σα is the

Lyα cross section, ν is the photon frequency and z = z(s) is the redshift of a photon as it moves

along its path. Considering an expanding Universe with Hubble parameter H(z), we may use this

to derive the Gunn-Peterson relation (Gunn and Peterson, 1965):

τGP =
πe2

mec
fαλα

nH I

H(z)
, (3.2)
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Figure 3.2. Three quasar spectra shown as a function of source (rest) frame wavelength.
The three quasars are all at different redshifts, resulting in qualitatively different Lyα

forests. At z = 1.3 (top panel), the IGM has been almost entirely reionised, and so there
is relatively little H I absorption and we can make out individual features quite clearly.
At z = 2.9, however, the level of ionisation in the IGM is somewhat lower, and we start
to see a more dense forest. Also indicated here are metal absorption lines, here situated
outside of the Lyα forest. Finally, at z = 5.8, ionisation levels are lower still, resulting in
more H I absorption and a noticeable drop in the mean transmitted flux fraction. Figure
credit: McQuinn (2016).

where fα is the Lyα oscillator strength. This quantifies the local optical depth in terms of the local

density of neutral hydrogen in a uniformly expanding Universe. We may develop this further to

apply to the continuous, fluctuating IGM, and to take into account velocities in the gas beyond

those from expansion alone (i.e. peculiar velocities). As in eq. (1) of McQuinn (2016), doing so

yields

τα(z) = 1.3δb

( xH I

10−5

)(1+ z
4

) 3
2
(

H(z)/(1+ z)
dv/dx

)
, (3.3)

where xH I is the fraction of hydrogen that is neutral, and dv/dx is the line-of-sight velocity gradient

in the gas (including both Hubble and peculiar velocity contributions). This optical depth is then

related to the observable transmitted flux fraction, F , via a non-linear mapping F = exp(−τα).

Through eq. (3.3), it is clear that the Lyα forest we observe depends on fluctuations in three key

quantities: the baryon density, the ionisation of the IGM, and the velocity gradient of the IGM.

The dependence on baryon density and ionisation level is intuitive: the optical depth for photons
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at the Lyα wavelength is directly proportional to the number density of neutral hydrogen atoms.

The dependence on the velocity gradient is perhaps less so. Peculiar velocities in the gas result in

slight deviations from the cosmic distance-redshift relation, causing absorption features to appear

at slightly higher or lower wavelengths than their cosmic redshift would imply. These shifts are

known as redshift-space distortions (RSDs). While uniform gas velocity in a region would cause

all features to shift, introducing gradients to the velocity field causes the features to either spread

out or cluster together. This introduces additional anisotropies to the Lyα flux distribution, but only

along the line-of-sight.

RSDs are, of course, also relevant to measurements of discrete-tracer redshifts. However, the

RSDs in the Lyα forest exhibit an important qualitative difference to those in discrete tracers. While

RSDs may change the apparent positions of discrete tracers, they will not affect the total number

count of objects. In the Lyα forest, RSDs affect the optical depth τ of the IGM, but we measure

the transmitted flux fraction F = e−τ . The non-linear nature of this transformation means that F

is not conserved by RSDs, unlike either the number counts of discrete tracers or τ (McDonald

et al., 2000; McDonald, 2003; Seljak, 2012). This has important consequences for the fitting of

correlation functions, and thus the constraining power of Lyα forest measurements.

When measuring the spectra of QSOs, we do not measure fluctuations in the transmitted flux

fraction δF directly. Rather, we measure the absolute flux received by our telescope f , which we

may use to calculate δF at a particular wavelength λ via

δF(λ ) =
f (λ )

F̄(λ )C(λ )
−1, (3.4)

where F̄ is the mean transmitted flux fraction a wavelength λ , and C(λ ) is the value of the

unabsorbed QSO continuum. Carrying out this conversion can be tricky, particularly in low signal-

to-noise ratio spectra where it is difficult to estimate the QSO continuum. Errors in continuum

estimation can cause large-scale, line-of-sight fluctuations to be erased, and will introduce correlated

errors in the values of δF from the same spectrum. Errors on values from different spectra, however,

will not be correlated, and so ignoring correlations from within the same spectrum removes this

systematic bias.

In addition to the relatively simple picture of the Lyα forest painted above, there are a number of

processes which add layers of complexity to the problem and must be carefully modelled in order to

reliably use the Lyα forest as a tracer for measuring BAO. These include contaminating absorption
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from elements other than hydrogen, referred to as “metals”1; broadened absorption profiles from

regions of high neutral hydrogen column density; and broad absorption features from fast-moving

gas around the centre of the host QSO. It is also important to note that all of the physical processes

described above are of scientific interest in and of themselves, and motivate significant research in

the community (e.g. Pieri et al., 2014; Pérez-Ràfols et al., 2018a; Pérez-Ràfols et al., 2018b). In the

context of BAO, however, they may be considered as systematics, and we seek to minimise any

impact they may have on our measurement of the BAO signal.

Typically, large-scale, 3D clustering in the Lyα forest is quantified by two measurements. The

first of these — the Lyα auto-correlation — measures how values of δF from one spectrum correlate

with values from other spectra. Measuring such a signal was first discussed in (McDonald and

Eisenstein, 2007), while the 3D correlation of flux transmission was first studied in (Slosar et al.,

2011). The BAO signal was first detected from measurements of the Lyα auto-correlation using

data from data release 9 (DR9) of BOSS (Busca et al., 2013; Slosar et al., 2013; Kirkby et al., 2013),

with subsequent improvements in DR11 (Delubac et al., 2015) and DR12 (Bautista et al., 2017),

as well as DR14 (de Sainte Agathe et al., 2019) and DR16 (du Mas des Bourboux et al., 2020) of

eBOSS. The second measurement is known as the Lyα-QSO cross-correlation, which measures

how values of δF correlate with the positions of high-z QSOs and was first measured in BOSS

DR9 (Font-Ribera et al., 2013), with the first detection of BAO coming in DR11 (Font-Ribera

et al., 2014), and improvements made in DR12 (du Mas des Bourboux et al., 2017) and eBOSS

DR14 (Blomqvist et al., 2019) and DR16 (du Mas des Bourboux et al., 2020).

3 . 2 . 2 R E D S H I F T- S PA C E D I S T O RT I O N S F R O M S P E C T R O S C O P I C G A L A X Y S U RV E Y S

The accurate redshifts provided by spectroscopic surveys can also be used to study anisotropic

clustering via RSDs (Kaiser, 1987) in a population of galaxies. As mentioned previously, this

effect describes the apparent shift in galaxies’ radial positions due to peculiar velocities induced

by gravitational potentials, causing the apparent redshifts of objects to deviate from that which

you would expect from cosmic expansion alone. As galaxies will tend to fall towards high-density

regions, these RSDs lead to an apparent increase in the clustering amplitude along the radial

direction relative to that along the transverse direction. The velocities probed by RSDs are the

same velocities that are causing active formation of structure, and so directly measure the rate of

structure formation at the redshift of the measurement. Mathematically, RSDs are used to constrain

1We follow the conventional approach of referring to all elements bar hydrogen and helium as “metals”, despite the
confusion it sometimes causes!
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the product f σ8, where the growth rate f (z) is given by

f (z)≡ dlogD
dloga

=
dlogσ8

dloga
, (3.5)

for D the linear growth function, and σ8 the amplitude of matter fluctuations at a scale of 8 Mpc h−1.

The combination f σ8 corresponds to the amplitude of the RSD power spectrum, and has been

constrained by numerous RSD measurements in recent years, with the most powerful constraints

coming from the recent sixteenth and final data release of eBOSS (de Mattia et al., 2020; Gil-Marı́n

et al., 2020; Neveux et al., 2020; eBOSS Collaboration et al., 2020; Bautista et al., 2021; Hou et al.,

2021).

3 . 2 . 3 W E A K L E N S I N G

The bending of photon paths by gravitational potentials, known as lensing is a key prediction of GR,

and is now observed on a regular basis. Sometimes, galaxies may be lensed strongly, producing

clear visual distortions such as multiple images or visible Einstein rings. However, it is the process

of weak lensing which is best able to probe the growth of large-scale structure. While this may

not produce artefacts obvious to the human eye, weak lensing introduces subtle effects to large

numbers of galaxies due to the presence of foreground matter, integrated along the line-of-sight

(e.g. Blandford et al., 1991; Miralda-Escude, 1991; Kaiser, 1992). We may measure these effects in

two main ways.

– Cosmic shear: The distorting effect of foreground matter introduces correlations in the

cosmic shear measured in background galaxies, which we may attempt to quantify. The

cosmic shear power spectrum has amplitude approximately ∝ Ω2
mσ2

8 in the linear regime,

though this varies dependent on details of the cosmological model, as well as at the non-

linear scales that weak lensing surveys commonly probe (Jain and Seljak, 1997). By splitting

galaxies into tomographic redshift bins and measuring cosmic shear in each bin, a three-

dimensional map of the matter distribution may be recovered. This enables several parameter

degeneracies to be broken as well as more stringent systematic tests to be carried out.

– Galaxy-galaxy lensing: The cross correlation between foreground galaxies and a background

shear map can be measured as an alternative to the shear power spectrum. This reduces

some systematics of the shear power spectrum to noise, yet requires empirically-determined

assumptions about the foreground galaxies.
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Over recent decades, a number of weak lensing measurements have been made, the most recent

coming from the the Dark Energy Survey (Flaugher, 2005), the Kilo-Degree Survey (de Jong

et al., 2013), and the Hyper Suprime-Cam Subaru Strategic Program (Aihara et al., 2018). For a

more extensive description of weak lensing — covering both theoretical and observational bases —

please see, Bartelmann and Schneider (2001), or Chapter 5 of Weinberg et al. (2013).

3 . 3 C O S M O L O G I C A L C O N S T R A I N T S

Modern cosmology has yielded a consistent description of our Universe under the ΛCDM model.

This posits that the Universe evolves with a flat FLRW geometry, in which six cosmological

parameters describe its evolution. We follow the Planck naming for these parameters (Planck

Collaboration et al., 2020b): As and ns, which describe the primordial power spectrum (see § 1.4);

Ωch2, Ωbh2, the physical energy density parameters for cold dark matter and baryons respectively;

τ , the optical depth to reionisation; and θMC, the angular scale of the sound horizon. A number

of other, relevant parameters may be computed from this set, including the fractional density

parameters for cold dark matter, baryons and dark energy Ωc, Ωb and ΩΛ; and H0, the present day

value of the Hubble rate H(z).

The ΛCDM parameters are most strongly constrained by data from the CMB, namely using

both temperature and polarisation results from Planck (Planck Collaboration et al., 2020b). Within

the ΛCDM model, Planck data determines the energy densities of radiation, dark matter and

baryons to ∼ 1% precision, as well as constraining the current rate of expansion to a similar level.

Additionally, when combined with B-mode polarisation data from the analysis of the BICEP2/Keck

field (BICEP2 Collaboration et al., 2018), tight constraints on inflationary models can be deduced.

In particular, the spectral index of primordial fluctuations is found to be scale-free at current levels

of precision, and there is no evidence found for beyond-slow-roll inflation (Planck Collaboration

et al., 2020c).

Results from large-scale structure measurements are also able to constrain ΛCDM parameters,

but the impact of these additional probes is by no means transformational. Of course, we may

naturally want to extend the ΛCDM baseline model in a variety of ways. If we allow ΩK to vary as a

free constant, CMB data alone favours a non-zero value ΩK =−0.044+0.019
−0.014 (Planck Collaboration

et al., 2020b). Equally, we may allow the equation of state of dark energy to vary from its value for

a cosmological constant w =−1, as was presented in § 1.3. Considering this model in the context

of CMB data alone results in a constraint w =−1.58+0.16
−0.35. The lack of constraining power within
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the CMB in these two simple extensions to ΛCDM is due to degeneracies in the cosmological

dependence of CMB anisotropies, but fortunately large-scale structure allows us to break these

degeneracies and thus differentiate between extended models. The extent to which large-scale

structure can do so is quantified and explained in eBOSS Collaboration et al. (2020), from which

visual representations are displayed in Figure 3.3. We summarise briefly the discussion of two

simple extended models below:

– Free ΩK (oΛCDM): BAO measurements at different redshifts measure varying combinations

of ΩK , Ωm and rdH0, and thus the use of multiple redshift bins (from different tracers)

allows these parameters to be measured independently. As such, BAO is able to break

the ΩK degeneracies present in CMB data, prefering a flat Universe in yielding ΩK =

−0.0001±0.0018 when all SDSS BAO data is used alongside data from Planck. Equally,

measurements of the low-z growth of structure are sensitive to cosmological curvature, and

thus constraints from the weak lensing analyses of DES can break the ΩK degeneracy to yield

ΩK =−0.001+0.0043
−0.0038 when combined with Planck. An extensive summary of observational

constraints of curvature can be found in Efstathiou and Gratton (2020).

– Free dark energy equation of state (wCDM): Measurements from BAO or from type Ia

supernovae (SNIa) allow us to break degeneracies when considering models where the dark

energy equation of state wDE is not fixed to −1. While data from the Pantheon SNIa sample

also exhibits a degeneracy when considering such models, it is in an entirely complementary

direction to that of Planck. SDSS BAO data shows much less degeneracy, and thus combining

all three data sets yields w = −1.026± 0.033, consistent with a cosmological constant

theory of dark energy. While not quite as powerful as BAO and SNIa in this respect, RSD

measurements at z & 1 are able to break these degeneracies as well, and combining Planck

results with RSD measurements from SDSS yields w =−1.09±0.11, again consistent with

a cosmological constant model.

Whilst the recent increase in precision of cosmological measurements has generally yielded

excellent agreement between different probes, it has also exposed a number of tensions. The most

well-known of these is the tension between early- and late-Universe measurements of the Hubble

constant H0. While local distance ladder measurements constructed using Cepheid variable stars

and SNIa yield a value of 74.22±1.82 km s−1 Mpc−1 (Riess et al., 2019), measurements of CMB

anisotropies from Planck yield a value of 67.4±0.5 km s−1 Mpc−1 (Planck Collaboration et al.,

2020b). This tension has been known for a number of years, but now sitting at a significance of
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Figure 3.3. Hubble diagram residuals relative to the Planck best-fit ΛCDM cosmology
from large-scale structure measurements. This includes BAO in both perpendicular and
parallel directions from SDSS (top and middle panels, top image), type Ia supernovae
from Pantheon (bottom panel, top image), and galaxy RSDs from SDSS (bottom image).
The coloured lines represent best-fit Planck cosmologies for 1-parameter extensions to
the baseline model, with ΩK (dashed red), wDE (dot-dashed green), and Σmν (solid blue)
allowed to vary freely in each respective line. Evidently, while all of these models are
good fits to Planck data, they are not consistent with the different probes of large-scale
structure, demonstrating the degeneracy-breaking power of such measurements. Figure
credit: eBOSS Collaboration et al. (2020).
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4.4σ , it has become a crucial point of dispute in cosmology. The reason for the divergence in these

measurements is unclear, and there are two main qualitative schools of thought. Many believe that

at least one of the measurements must contain an unaccounted-for systematic error, entering either

as an unknown physical contaminant or as an artefact of analysis methods. However, numerous

re-analyses are yet to yield any evidence of such a systematic (e.g. Zhang et al., 2017; Feeney,

Mortlock, and Dalmasso, 2018; Follin and Knox, 2018), at least not that can explain the magnitude

of the current tension. Alternatively, others consider this discrepancy to be a result of the difference

in cosmological eras probed by the two approaches, and perhaps thus indicative of new physics (e.g.

Bernal, Verde, and Riess, 2016). A host of theoretical models have been proposed to step up to

this mantle, though as yet most introduce as many problems as they solve. While by no means the

only tension in modern cosmology, the H0 discrepancy is perhaps the most widely discussed such

problem, and represents an intriguing challenge as the precision of cosmological measurements

continues its rapid ascent.
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C H A P T E R 4

S P E C T R O S C O P I C S U RV E Y S

P R E S E N T A N D F U T U R E

Hereafter in this thesis, we will focus on observations of our Universe via spectroscopic surveys;

sets of observations of distant objects in which the spectral distribution of light is measured as a

finely-sampled function of wavelength. Broad features of an object such as spectral breaks can

thus be more accurately measured, and we may also detect narrow features such as emission or

absorption lines which would be lost to photometry. We focus on spectroscopic observations of

the Lyα forest, which may be approached in a variety of different ways. Each of these has its

own (dis)advantages and can be preferable for a given set of scientific aims. We direct particular

attention to the Dark Energy Spectroscopic Instrument (DESI): the first Stage-IV1 cosmological

experiment to go on-sky. Once its 5-year main survey begins in 2021, DESI will yield high-precision

measurements of large-scale structure via a range of different tracers, expanding upon the work of

previous surveys and providing dramatically improved cosmological constraints.

We describe the different types of Lyα forest observations in § 4.1, introducing the different

approaches to spectroscopic observations and the science needs that they address. In § 4.2, we

introduce DESI in more detail, discussing its data collecting process and comparing it to previous-

generation experiments in terms of instrumentation, survey strategy and (forecast) cosmological

impact.
1A “Stage-IV” experiment is described by Albrecht et al. (2006) as one which achieves a measurement of dark energy

parameters an order of magnitude more precisely than the Stage-II experiments which were available at the time. This is
quantified by a “figure of merit”, and is described in § 4.2.2.
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4 . 1 A P P R O A C H E S T O LY α F O R E S T O B S E RVAT I O N S

The Lyα forest can be used for a range of different scientific purposes, both cosmological and

astrophysical. Of course, each science goal will have different priorities for the properties of

observational data, and thus will impose different requirements on instrumentation and observational

strategy. This covers a wide range of different variables, the precise details of which we will not

attempt to describe. We will, however, discuss two broad classes of Lyα forest observations in

order to give context to subsequent sections: small-scale/high-SNR, and large-scale/low-SNR.

– Large-scale/low-SNR: Typically used for cosmological purposes, these surveys aim to mea-

sure large-scale properties of the Universe, spectroscopically observing objects to use them as

tracers of the matter density field. In this case, the spectral features are needed to yield more

precise redshift determination than photometric surveys, enabling the measurement of many

more fluctuation modes due to the addition of a precise third dimension. As such, provided

spectral features can be clearly identified and located, there is little benefit to measuring

spectra at high SNR or high resolution (within reason). Meanwhile, the measurement of

large-scale cosmological properties such as BAO or RSD necessitates that surveys cover a

large volume of space, both to gain access to large scale modes and to drive down statistical

noise. As such, collecting large numbers of low-SNR spectra provides an optimal dataset for

the science goals at hand. Recent notable surveys of this kind include SDSS-I (York et al.,

2000), 2dFGRS (Colless et al., 2001), 6dFGS (Jones et al., 2004), BOSS (Dawson et al.,

2013) and eBOSS (Dawson et al., 2016).

– Small-scale/high-SNR: At the other end of the spectrum2, these observations seek to measure

spectral features with high precision, including properties such as the exact profiles of

emission and absorption lines. With this information to hand, measurements can be made

of numerous interesting quantities, including but not limited to: galaxies’ ages and star

formation rates, the dynamical properties of quasars’ structure, the abundance of primordial

elements, and the column density of neutral hydrogen in the IGM. In order to carry out such

measurements with any degree of confidence, it is of great benefit to maximise the resolution

and SNR of the input spectra (again, within reason). While increasing the number of spectra

would also be beneficial in this case the effect is less substantial than increasing the spectral

quality, and thus practical limitations dictate tighter limits on the number of spectra that

such studies may seek to observe. Instruments used in such observations include the HIRES
2Pun not (entirely) intended!
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Galaxy type Redshift Targeting Targets Exposures Good z’s Baseline
range bands used per deg2 per deg2 per deg2 sample

LRG 0.4–1.0 r,z,W1 350 580 285 4.0 M
ELG 0.6–1.6 g,r,z 2400 1870 1220 17.1 M
QSO (tracers) < 2.1 g,r,z,W1,W2 170 170 120 1.7 M
QSO (Lyα) > 2.1 g,r,z,W1,W2 90 250 50 0.7 M
Dark time total — — 3010 2870 1675 23.6 M

BGS 0.05–0.4 r 700 700 700 9.8 M
Bright time total — — 700 700 700 9.8 M

Table 4.1. The breakdown of target classes within DESI, including luminous red galaxies
(LRGs), emission line galaxies (ELGs) and quasars (QSOs). The latter class is broken
into two: QSOs to be used for QSO clustering (“tracers”), and QSOs to be used for
measurements of the Lyα forest (“Lyα”). Also included is the bright galaxy survey
(BGS), a set of nearby objects to be observed during light- and grey-sky time. The
column “Exposures per deg2” contains the total number of exposures assigned to each
target class per square degree. This differs from the number of “Targets per deg2” as
some targets may not be observed at all, whereas others may be included in multiple
exposures. Table credit: DESI Collaboration et al. (2016a).

spectrograph on the Keck telescope (Vogt et al., 1994) and the UVES spectrograph on the

VLT (Dekker et al., 2000), while samples of such spectra are available as part of the KODIAQ

survey (O’Meara et al., 2015; O’Meara et al., 2017).

Given the aims of this thesis, we will now focus on the former category, discussing large-scale/low-

SNR spectroscopic surveys in greater detail.

4 . 2 T H E DA R K E N E R G Y S P E C T R O S C O P I C I N S T R U M E N T

The Dark Energy Spectroscopic Instrument (DESI Collaboration et al., 2016a; DESI Collaboration

et al., 2016b) consists of a new optical corrector and 5000-fibre spectrograph on the existing 4m

Mayall telescope at Kitt Peak in Arizona. It will provide low-SNR spectra from O(34) million

objects across a footprint of approximately 14,000 deg2 in its main survey. These will be broken

down into several target classes: luminous red galaxies (LRGs), emission-line galaxies (ELGs), and

QSOs. Additionally, a bright galaxy survey (BGS) will be conducted when the moon is too bright

to measure distant objects’ spectra accurately. A summary of the number densities and redshift

ranges of each target class is provided in Table 4.1. The DESI main survey is scheduled to start in

early 2021, following delays both due to technical issues and the coronavirus pandemic, and will

last for five years. Following this period, it will provide state-of-the-art measurements of BAO from

clustering in galaxies, QSOs and the Lyα forest, and from RSDs in its galaxy sample.
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4 . 2 . 1 L A R G E - S C A L E S P E C T R O S C O P I C S U RV E Y W O R K F L O W

The workflow of conducting a large-scale spectroscopic survey can be divided into three main

stages, corresponding to pre-, mid-, and post-observation periods. We describe the broad process

of each stage in turn, focusing on the methods that will be used in DESI in the coming years, as

described in DESI Collaboration et al. (2016a) and DESI Collaboration et al. (2016b).

Pre-observation: choosing targets

In order to conduct any spectroscopic survey, one first needs to specify precisely which objects to

measure, rather than simply specifying an area of sky as a photometric survey would need to. The

process of selecting these targets is carried out using photometric data, which can be provided by a

range of instruments. In the case of DESI, three ground-based telescopes have been used to obtain

grz-band photometry over DESI’s footprint: the DECam camera (Flaugher et al., 2015) on the

Blanco telescope at Cerro Tololo; the 90Prime camera (Williams et al., 2004) on the Bok telescole

at Kitt Peak; and an upgraded version of the MOSAIC-3 camera (Dey et al., 2016) on the Mayall

telescope, also at Kitt Peak. Meanwhile, the WISE satellite (Wright et al., 2010) has provided

near-infrared photometry in two bands. These observations have now all been completed, and a

final processing of photometric targeting data has been produced. A more extensive description of

DESI’s imaging data can be found in Dey et al. (2019).

From this data, the next stage is to select targets for each of DESI’s object classes. Traditionally,

this may be done using relatively simple cuts in colour space, as was originally suggested as a

baseline for DESI’s QSO survey (DESI Collaboration et al., 2016a). However, it is also possible

to use more advanced techniques, with a variety of approaches having been explored using SDSS

data (e.g. Richards et al., 2009a; Richards et al., 2009b; Yeche et al., 2009; Bovy et al., 2011;

Bovy et al., 2012), some of which were used during BOSS and eBOSS (Ross et al., 2012; Myers

et al., 2015). Indeed, in DESI, work is underway to use a machine-learning selection tool with

a random forest architecture, as mentioned in DESI Collaboration et al. (2016a). Initial results

from this approach have been successful, and it has now become DESI’s baseline method (Yèche

et al., 2020). In the coming months, this approach and others will be tested during DESI’s survey

validation phase before the final targeting scheme is confirmed.
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Mid-observation: obtaining spectra

In order to obtain an object’s spectrum, we must be able to align the end of a fibre-optic cable with

the object’s position in the sky. This requires alignment both of the telescope’s field of view in

the sky, and of the fibre’s position in the focal plane. Determining the set of telescope positions is

a process known as field selection, while determining exactly which fibre we will use to observe

which object for each pointing of the telescope is known as fibre assignment. The probability that

an object will be assigned a fibre in a given pointing is affected by a number of factors. For example,

each instrument will have a minimum angular separation between two fibres for practical reasons,

affecting the completeness of objects selected in areas of very high target number density. Equally,

the number density of targets for each class will vary across the sky due to factors such as proximity

to the galactic plane. At the same time, objects in different target classes will receive different

observational priorities, and thus the completeness in any one class may be affected by variations in

target density in other classes. Ultimately, these effects may have non-trivial impacts on DESI’s

clustering measurements. Thus, they must be taken into account when designing field selection

and fibre assignment strategies (e.g. Blanton et al., 2017; Pinol et al., 2017; Tao et al., 2018), and

clustering measurements must fully understand the strategies to ensure that no systematic bias

is introduced (e.g. Burden et al., 2017; Bianchi et al., 2018; Smith et al., 2019; Sunayama et al.,

2020).

Post-observation: data processing

Immediately after observations have been carried out, the data must be converted from its raw, 2D,

CCD pixel form to the final, 1D, calibrated spectra. This conversion takes place in the spectroscopic

pipeline, which for DESI will follow the five-phase method outlined in Bolton and Schlegel (2010):

1. Pixel calibration: First, we must calibrate the CCD pixels by measuring the properties of the

detectors themselves, such as the gains, dark currents and the bias. These measurements will

be made with a designated flat field illumination system (DESI Collaboration et al., 2016b),

and will then be used to develop calibration routines to apply to our data in a pre-processing

stage.

2. 2D point-spread function calibration: Calibrating the optical path between photons at the

focal plane to CCD images. This includes measuring the shape and centroid offset of the 2D

point-spread function, using continuum lamp calibration data to locate the spectral traces on

each CCD, and accounting for variation in throughput between fibres.
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3. Spectral extraction: Using the calibrated 2D PSF, we may extract 1D spectra and associated

noise vectors from the 2D CCD images. We also subtract background sky signal from the

spectra. This extraction procedure follows the “spectro-perfectionisim” algorithm of Bolton

and Schlegel (2010).

4. Flux calibration and coadding: Spectra from standard calibration stars will be compared with

physical models to derive correct flux conversion vectors on an exposure-by-exposure basis.

For each object, flux-calibrated spectra from the separate spectrograph arms and exposures

will then be coadded to form a single output spectrum.

5. Redshifting and classification: Output spectra may be classified and their redshifts determined

by a number of methods. In the DESI pipeline, this will be carried out by a “template-fitting”

code named redrock, which attempts to find an optimal fit to each spectrum via linear

combinations of template components. redrock and the classification of QSO targets is

discussed more extensively in Chapter 5.

At the end of the spectroscopic pipeline, we obtain a set of coadded, calibrated spectra with

well quantified noise properties, as well as classifications and redshifts with some degree of error

quantification. These data products will then be processed again before conducting science analyses,

for example via the construction of galaxy/QSO catalogues, or the extraction of δF values from

Lyα QSOs.

4 . 2 . 2 D E S I V S ( E ) B O S S

DESI is a natural successor to the highly successful BOSS and eBOSS programmes, building on

their legacy in a number of ways and making use of the 10 years of experience that they provided.

It marks a significant step forward in terms of its instrumentation over (e)BOSS, making both

quantitative improvements in its capacity as well as introducing new, qualitatively different methods.

Most obviously, DESI will use the 4m Mayall telescope compared to the 2.5m telescope of (e)BOSS,

and will have 5000 fibres per exposure rather than 1000. These fibres will be positioned by robotic

arms rather than by manual plugging into drilled plates, enabling the adoption of more flexible fibre

assignment procedures. Further, DESI’s spectrographs are housed in a temperature-controlled room,

greatly improving the stability of DESI’s optics and reducing the need for constant re-calibration.

Combined with improved software and data reduction capabilities, DESI will thus be able to

substantially improve the per-exposure SNR for a given object, as well as observing far greater

numbers of objects than its predecessors.
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Figure 4.1. Forecast errors on the BAO distance scale from a range of current and future
surveys, presented as a function of redshift. Results for DESI are shown in black, with
the solid line representing the full survey of 14,000 deg2, and the dotted line representing
a reduced survey of 9,000 deg2. Figure credit: DESI Collaboration et al. (2016a).

In conjunction, these developments will allow DESI to increase its survey volume by an order

of magnitude over BOSS. This translates to significant improvements in DESI’s ability to measure

the BAO feature, as illustrated by Fisher forecast predictions in Figure 4.1. These suggest that DESI

will be able to provide constrain the BAO scale to sub-percent levels of precision over the redshift

range z∼0.5–3.0. These contstraints are substantially tighter than those from BOSS and eBOSS,

and cover a greater range of redshifts than the slightly tighter predictions for Euclid and WFIRST.

The precision of these constraints and the range of redshifts which they span will help to

break further degeneracies when exploring models beyond ΛCDM, as was previously discussed

in § 3.3. The ability of DESI to constrain these models can to some extent be quantified by a

figure of merit (FoM). In particular, the Dark Energy Task Force FoM (Albrecht et al., 2006) is

calculated by considering parameter errors when constraining a model extended to allow for a

dark energy equation of state w = wp +(ap−a)wa for a pivot value of the scale factor ap, and in

which ΩK is allowed to vary freely. To be precise, FoM ∝ (σwpσwa)
−1, where σX denotes the error

on quantity X . In DESI Collaboration et al. (2016a), such a calculation is carried out combining

forecast results from DESI with results from Planck and BOSS (in the range 0.45 < z < 0.6, where
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there was initially expected to be little overlap with DESI3). Using DESI’s BAO results from

galaxy clustering and the Lyα forest only, this yields a FoM of 169, approximately four times the

BOSS-only value of 37. Extending to use the full shape of the galaxy power spectrum — thus

capturing information from RSDs and the Alcock-Paczynski test (Alcock and Paczynski, 1979) —

this increases further to 332 or 704, dependent on cuts in wavenumber. This marks a significant

leap in cosmological constraining power, more than satisfying the threshold FoM of 110 set as the

definition of a Stage-IV dark energy experiment set out in Albrecht et al. (2006).

Of course, the impact of DESI is not limited to measurements of the dark energy equation of

state. It will also look to improve constraints of the spectral index of primordial perturbations ns,

as well as its “running” αs = dns/dlnk. Combining results from DESI with existing constraints

from Planck will enable us to differentiate between models of inflation, helping to constrain the

number of inflaton fields and the nature of the inflationary potential. Simple inflationary models also

predict that the initial fluctuations which seed the growth of large-scale structure are near-Gaussian

in nature. This affects the scale-dependent bias of galaxies, and DESI will be able to build on

measurements from SDSS (e.g. Castorina et al., 2019) to provide a measurement of primordial

non-Gaussianities complementary to those from the CMB (Planck Collaboration et al., 2020c).

Finally, DESI is projected to provide a measurement of the sum of neutrino masses with resolution

of σΣmν
= 0.02 eV when combined with Planck (DESI Collaboration et al., 2016a). This will

provide the tightest such constraint available, and may enable a distinction to be made between the

two possible hierarchies of neutrino masses (see Lesgourgues et al., 2013, for a review).

Evidently then, DESI represents a substantial step forward for measurements of large-scale

structure, casting light into areas of the field that are poorly understood today and helping to push

the boundaries of precision cosmology further still. In conjunction with other Stage-IV dark energy

instruments, as well as next-generation dark matter and neutrino experiments, DESI is set to play

an important role in an exciting age for cosmology.

3This is no longer the case, but for the purposes of this discussion it has no qualitative impact.
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O P T I M A L C L A S S I F I C AT I O N

S T R AT E G I E S

In Chapter 4, we described the process of conducting a spectroscopic survey at a high level, dividing

it into pre-, mid-, and post-observation stages. In this chapter, we focus on one part of the post-

observation phase: the classification and redshift determination of quasar (QSO) targets from their

spectra. We consider the tools currently available to carry out this dual task, and use them to test a

selection of classification strategies when addressing two problems relevant to future surveys.

The work shown in this chapter is presented in Farr, Font-Ribera, and Pontzen (2020).

5 . 1 I N T R O D U C T I O N

The value of spectroscopic surveys hinges on their ability to deliver precise redshift determinations

and confident classifications of the objects they observe. Precise redshifts allow clustering analyses

to access additional information from modes in three dimensions, while confident classifications en-

sure that the biases of tracer samples can be accurately assessed. In particular, recent spectroscopic

surveys have observed increasingly large populations of QSOs, using them to study the large-scale

structure of the universe in 3D using the direct clustering of QSOs (e.g. Ata et al., 2018; Neveux

et al., 2020; Hou et al., 2021) and the clustering of neutral hydrogen via the Lyman-α forest (e.g. de

Sainte Agathe et al., 2019; Blomqvist et al., 2019; du Mas des Bourboux et al., 2020). Traditionally,
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the joint task of redshift determination and classification of objects targeted as QSOs has relied on

visual inspection (VI) by humans, requiring both substantial expertise and time in order to obtain

large and reliable sets of classifications. In early surveys, this task was carried out exclusively by

VI (e.g. Schmidt and Green, 1983). Subsequently, varying degrees of automation were introduced

(Hewett, Foltz, and Chaffee, 1995; Croom et al., 2004), but VI was still integral to the success of

these later surveys, with all spectra being inspected in order to eliminate the O(5%) classification

errors that early automatic pipelines introduced (Croom et al., 2001). This continued with the

advent of the Sloan Digital Sky Survey (SDSS, Gunn et al., 2006; Schneider et al., 2007; Schneider

et al., 2010), and in particular the Baryon Oscillation Spectroscopic Survey (BOSS, Dawson et al.,

2013) of SDSS-III (Eisenstein et al., 2011). Over the course of its 5 years of operation, BOSS

produced three QSO catalogues (Pâris et al., 2012; Pâris et al., 2014; Pâris et al., 2017), all of

which relied on VI to classify spectra accurately. The final BOSS QSO catalogue came from the

twelfth SDSS data release (referred to as DR12Q from here on), and consisted of 297,301 visually

confirmed QSOs from a “Superset” of 546,856 QSO targets.

This enormous VI effort has provided a legacy product of immense value to the community due

to the size of its sample and the reliability of its classifications. However, due to the increase in

the number of QSO targets observed during the extended BOSS (eBOSS) programme of SDSS-IV

(Dawson et al., 2016; Blanton et al., 2017), it was deemed infeasible to repeat such an extensive VI

procedure. eBOSS produced two QSO catalogues from the fourteenth and sixteenth SDSS data

releases (Pâris et al., 2018; Lyke et al., 2020), transitioning towards the use of automatic classifiers

(e.g. Bolton et al., 2012; Hutchinson et al., 2016) in carrying out catalogue construction. The

DR14Q and DR16Q catalogues relied on VI for only∼3.7% and∼2.9% of new spectra respectively,

focusing on spectra for which automatic classifiers returned ambiguous results. These automatic

classifiers were based primarily on the fitting of spectral templates to each QSO target spectrum,

determining a class and redshift from the best fit solutions. This approach treats the problem of

classification in a qualitatively different manner to VI, looking to find a minimum χ2 value over a

space of possible templates rather than identifying particular spectral features, as a human would do.

In order to provide a complementary solution to template-fitting options, machine learning methods

can be employed with the aim of replicating the “feature detection” approach of VI. Indeed, the

set of VI classifications from BOSS DR12 provides a rich dataset on which to train and test such

models. Since this dataset was released, two such tools have been developed, QuasarNET (Busca

and Balland, 2018) and SQUEzE (Pérez-Ràfols et al., 2020; Pérez-Ràfols and Pieri, 2020), both of

which are able to at least match the performance of template-fitting methods.
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5.2. Data and tools

Looking to spectroscopic surveys of the future, the number of QSO targets is set to continue its

dramatic increase. Over the course of the 5-year main survey of the Dark Energy Spectroscopic

Instrument (DESI, DESI Collaboration et al., 2016a; DESI Collaboration et al., 2016b), approxi-

mately 3.6 million QSO targets will be observed, within which approximately 2.4 million QSOs

are expected to be found. This number of objects will require automatic classifiers to further lead

the process of classifying QSO target spectra, maintaining extremely high levels of accuracy while

minimising any reliance on visual inspection. Ahead of surveys such as DESI, then, it is vital to

understand how to make best use of the available QSO classification tools. In particular, with a

range of qualitatively different classifiers now available, combining their classifications in order

to take advantage of their differing strengths and weaknesses will be of great importance when

designing optimal classification strategies.

In this chapter, we first assess the current landscape of publicly available QSO target spectra,

and the tools available to classify them. In § 5.2, we provide brief descriptions of the existing data

and classifiers alongside a comparison of classifier performance levels. We then look ahead to

DESI in § 5.3, setting out the key classification tasks that will need to be addressed during its main

survey, and describing broad prioritisations that should be made in each case. In § 5.3.1 and § 5.3.2,

we address the two main QSO classification tasks in turn, considering various strategies to address

them and quantifying the effectiveness of each strategy by testing on BOSS DR12Q Superset data.

5 . 2 DATA A N D T O O L S

In recent years, the largest sets of QSO spectra have been obtained by the BOSS (Dawson et al.,

2013) and eBOSS (Dawson et al., 2016) programmes, which produced five major QSO catalogues

(Pâris et al., 2012; Pâris et al., 2014; Pâris et al., 2017; Pâris et al., 2018; Lyke et al., 2020). These

catalogues were all constructed in different ways, using different techniques to classify observed

spectra of QSO targets. The main BOSS data we use in this chapter is described in § 5.2.1, while a

summary of existing QSO classifiers is given in § 5.2.2.

5 . 2 . 1 B O S S D R 1 2 Q S U P E R S E T D ATA

The final data release from SDSS-III/BOSS was DR12, which included 627,751 spectra from

546,856 objects that were targeted as QSO candidates during the main survey (Ross et al., 2012).

These spectra are each constructed from (on average) four, consecutively-taken, 900-second

exposures, which were calibrated and coadded as part of the data reduction pipeline (Bolton et al.,
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2012). At a later stage of the pipeline, each spectrum was automatically classified and assigned

a redshift. However, they were subsequently re-classified via visual inspection (VI) by an expert

(Pâris et al., 2017) in order to improve the quality of the classification. The full results of VI can

be found in the DR12Q “Superset” catalogue1, with a detailed explanation of the classification

procedure available in Pâris et al. (2017). Each object was classified by VI as a star, galaxy or

QSO (where data was of sufficient quality), and a VI redshift assigned. These redshifts consisted

mostly of values from the automatic pipeline, with corrections applied by the expert during VI

as appropriate. A confidence in the results of the classification/redshift determination procedure

was also given, ranging from 1 to 3 for low to high confidences. This extensive VI effort makes

DR12Q Superset spectra ideal for testing the predictions of automatic classifiers, and indeed we

make use of this opportunity throughout this chapter. We consider only spectra from objects that

were classified with the highest confidence, and thus can practically consider the VI results on these

spectra as “true” classifications.

5 . 2 . 2 E X I S T I N G C L A S S I F I E R S

A number of automatic QSO classifiers have been developed in recent years, using a variety of

different methods. Here, we outline some of the most prominent examples, dividing them into two

sub-groups: those based on the concept of “template-fitting”, and those based on machine learning

methods. Finally, we compare the performance of four classifiers on BOSS DR12Q Superset data.

Template-fitting classifiers

In recent spectroscopic surveys, the most common spectral classification method has been to find the

best fit to a given spectrum from a set of templates, framing the problem as one of χ2 minimisation

(Croom et al., 2001; Bolton et al., 2012). This necessitates a sound understanding of the data and

its associated errors, as well as a broad set of templates that capture the full variety of features

present in the data.

During the BOSS programme, such a classifier was developed as part of the idlspec2d data

reduction pipeline (Bolton et al., 2012). This used a set of templates for each class (star, galaxy or

QSO) constructed from well-understood spectra measured earlier on in SDSS. To construct the QSO

templates, 1,000 QSOs were selected at random from the SDSS DR5 QSO catalogue (Schneider

et al., 2007), enforcing a uniform redshift distribution. Of these, 568 defect-free spectra had been

observed by BOSS, and were selected as the QSO template training sample. Due to the BOSS

1Publicly available at https://data.sdss.org/sas/dr12/boss/qso/DR12Q/Superset DR12Q.fits.
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target selection and observation strategies, the redshift distribution of these spectra was strongly

weighted towards z ≥ 2.2 (see Figure 4 of Bolton et al., 2012). Template source spectra for all

classes were put through a PCA decomposition procedure, with leading principal components

retained and used as a linear basis to fit to each DR12 spectrum. For each spectral type, linear

combinations of the basis components were fitted to each spectrum at each redshift within a suitable

range. From these fits, a best class and a best redshift was determined as the template class-redshift

combination that resulted in the lowest reduced-χ2. As an output, the classifier then provided this

best-fit redshift and class, along with a 1σ statistical error in the redshift and a ZWARNING flag.

This flag was raised for problematic fits, with a variety of possible bits to signify different possible

issues. Most notably, the dominant source of warnings was from spectra where the difference

in reduced-χ2 value between the best and the next-best (with velocity difference greater than

1,000 kms−1) classification-redshift pair was below a threshold of 0.01. These spectra thus had

two possible classification-redshift pairs which achieved approximately the same quality of fit, and

so the classification and redshift were deemed to be insecure. It achieved little contamination at

z≥ 2.2, but at low z it introduced substantial contamination from stars, as well as missing & 5% of

QSOs at all redshifts (see Figure 5.1). As such, its accuracy was not considered sufficient for final

classifications, motivating the extensive VI programme discussed in § 5.2.1.

Recently, DESI has developed a new template-based classifier named redrock to improve

upon several aspects of idlspec2d. When comparing the model to the data, redrock accounts

for the wavelength-dependent spectral resolution of individual fibres. It resamples the model to the

wavelength binning of the data rather than using an average resolution and rebinning the data to the

model grid, a process which introduces covariances that were not fully modelled in idlspec2d. It

also supports the ability to simultaneously fit individual exposures instead of requiring a coadded

spectrum, which can also introduce covariances that were not modelled in idlspec2d. redrock

optionally has the ability to compare the best fits to a suite of galaxy and stellar archetypes, aiming

to identify and remove non-physical fits to those classes, such as those constructed to have negative

emission lines. However, it does not currently include QSO archetypes due to their greater spectral

diversity. Finally, redrock includes a new suite of galaxy and stellar templates. However, as of

version 0.7.2 of redrock-templates2 — as used in this chapter — the redrock QSO templates

are the same as those used by idlspec2d. DESI is developing new QSO templates prior to its

main survey, looking in particular to improve the z < 2.2 QSO performance where the idlspec2d

QSO templates’ training set are underrepresented, but these new redrock templates are not yet

2Publicly available at https://github.com/desihub/redrock-templates.
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available.

Machine learning classifiers

The extensive VI effort carried out on the BOSS DR12Q Superset data (Pâris et al., 2017) provided

a large, human-verified set of spectral classifications, ideal for use as training data for machine

learning algorithms. Two QSO classifiers have since been developed separately, using very different

approaches. Unlike the template-fitting methods described in § 5.2.2, these methods classify each

spectrum as a binary QSO/non-QSO, and so they cannot fulfil the same all-round capabilities

as their template-fitting counterparts. However, for the more specific problem of QSO template

classification, they are able to offer complementary classification channels to the template-fitting

methods described previously, with different areas of strength and weakness.

The first of these classifiers is called QuasarNET (Busca and Balland, 2018), which attempts to

mimic human identification of emission lines. QuasarNET is a deep convolutional neural network

classifier, taking a smoothed spectrum as an input before carrying out four layers of convolutions.

The output from these convolutions is then passed to a fifth, fully-connected layer, before feeding

into a number of “line finder” units. Each of these units consists of a fully-connected layer, trained

to identify a particular emission line. This is carried out by first dividing each spectrum into a

number of wide “boxes”, equally spaced in log-wavelength. When training, each line finder unit

is given a set of binary identifiers for each spectrum which indicate which box its emission line

is in (when the line is present). When making a prediction, a line finder unit attempts to replicate

these binary identifiers with a set of numbers between 0 and 1. We interpret these estimates as

QuasarNET’s confidence as to whether a certain line is in a given box, and we take the largest of

these as the confidence that the line has been found in the spectrum as a whole. The line finder

unit is also trained to predict the offset of the relevant emission line within each box, and we use

the offset within the most confident box to obtain a more precise estimate of the line’s location.

This then allows us to infer a redshift from each emission line. Throughout this chapter, we train

QuasarNET models to detect the Lyα , CIV 1548, CIII 1909, MgII 2796, Hβ and Hα lines. These

are chosen to ensure that at least two emission lines will be present in the BOSS spectrograph

for reasonable QSO redshifts. From QuasarNET’s confidences and redshifts for these lines, we

carry out classification via a simple procedure: if at least ndetect lines are found with confidence

exceeding a “confidence threshold” cth, then the spectrum is classified as a QSO. The most likely

redshift is then taken from the most confidently identified line. Thus, keeping ndetect fixed, choosing

a higher (lower) confidence threshold results in fewer (more) objects being classified as QSOs.
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Equally, keeping cth fixed, increasing (decreasing) ndetect has the same qualitative effect. The

results of varying these two parameters is presented in Figure 2 of Busca and Balland (2018).

QuasarNET is also trained to identify broad absorption line (BAL) QSO spectra, using the same

method as described above for emission lines. It is able to identify BAL spectra with high success

rates (see Figure 4 of Busca and Balland (2018) and surrounding discussion), though does not

currently provide BAL properties such as “balnicity index” as more specialised tools do (e.g. Guo

and Martini, 2019). We do not investigate QuasarNET’s BAL performance in this chapter, instead

focusing on its ability to classify QSO spectra via emission line presence and location.

The classifier SQUEzE (Pérez-Ràfols et al., 2020; Pérez-Ràfols and Pieri, 2020) also attempts

to mimic the human process of identifying QSO spectra, by looking for sequences of emission

peaks. However, its methods are very different to those of QuasarNET. SQUEzE first smooths each

spectrum to remove noise features, and searches for emission peaks above a certain significance

threshold. Spectra for which no peaks are found are discarded, while those with significant peaks

are retained. For each identified peak, SQUEzE then attempts to assign a “trial identity” in order to

determine a redshift, analogous to the way that a VI expert would attempt to associate an observed

peak with a particular emission line. For each possible identity a number of high-level metrics are

computed, including the relative strength of the emission line above the continuum, and the slope

of the continuum around the line (see eq. (1) – eq. (3) of Pérez-Ràfols et al. (2020)). These are then

passed as features to a random forest classifier. By restricting the features seen by the random forest

to high-level metrics, SQUEzE attempts to remove any tendency to learn from spurious features of

the training set such as instrumental defects or pipeline reduction errors. The random forest then

assesses the validity of each trial peak-identity pair, assigning a “confidence” of that pair being a

correct identification. Finally, the spectrum is classified as a QSO if the largest of these probabilities

meets a certain threshold value, which can be chosen according to the specifics of the classification

task at hand.

Performance of classifiers

The classifiers described above all use different techniques, and one would expect variation in

performance on different subsets of the data as a result. In order to summarise the performance of

the classifiers and provide a comparison, we apply each classifier to BOSS DR12Q Superset data

and present the results simultaneously.

We take the results of the DR12 pipeline from the publicly available data in the spAll file3,

3https://data.sdss.org/sas/dr12/boss/spectro/redux/spAll-DR12.fits.
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restricting to QSO targets by including only data corresponding to object identifiers (column name

THING ID) listed in the DR12Q Superset file. We obtain redrock results by running version

0.14.3 of the code4, and using version 0.7.2 of the templates5 on these same QSO target spectra.

For both the DR12 pipeline and for redrock, we do not classify as QSOs spectra which raised

a ZWARN flag6, as classifications for these spectra are likely to be inaccurate (Pâris et al., 2017).

QuasarNET results are obtained by applying models trained on 90% of DR12Q Superset data to all

spectra from objects not included within this training sample. We train 10 such models, choosing

training/testing splits such that all models have mutually exclusive test sets and thus allowing us

to obtain QuasarNET classifications for 504,534 DR12Q Superset spectra. SQUEzE results were

provided by its developers, and were obtained by applying a model trained on ∼3%7 of DR12Q

Superset data to all objects not included in the training set. Our initial test set consists of all DR12Q

Superset spectra for which we have classifications from all four classifiers. To form our final test

set, we restrict to those objects for which we have maximally confident VI results to ensure that we

are comparing to “true” classifications. In total, then, the test set contains 481,201 spectra.

We quantify the classifiers’ performance levels via purity and completeness, which we define

in the same way as Busca and Balland (2018):

purity =
number of correctly predicted QSOs

number of predicted QSOs
, (5.1)

completeness =
number of correctly predicted QSOs

number of true QSOs
. (5.2)

In order for a classification to qualify as a “correctly predicted QSO”, we require the classifier

to have correctly identified a true QSO’s spectrum as that of a QSO, and to have matched the VI

redshift with a velocity error

∆v =
c|z− zVI|
1+ zVI

≤ 6000 kms−1. (5.3)

This tolerance level rules out catastrophic failures — classifications which have mis-identified

emission lines, for example — but does not require a highly accurate determination of the redshift

as QuasarNET and SQUEzE were not designed to provide such a measurement. When calculating

4https://github.com/desihub/redrock/releases/tag/0.14.3.
5https://github.com/desihub/redrock-templates/releases/tag/0.7.2.
6Such flags are named ZWARNING in idlspec2d but ZWARN in redrock. We use the latter name from here on for

simplicity.
7The convergence of the SQUEzE algorithm’s performance with training set size was tested in Pérez-Ràfols et al.

(2020). Using a training set size larger than this ∼ 3% was deemed not to yield any a better-performing model.
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Figure 5.1. Purity as a function of classifier redshift, and completeness as a function of
VI redshift for classifications from a selection of current QSO classifiers when applied to
a subset of BOSS DR12Q Superset spectra. See equations eq. (5.1) and eq. (5.2) along
with surrounding text for definitions of purity and completeness.

the purity, we also allow galaxy spectra identified by a classifier as QSOs to qualify as “correctly

predicted QSOs”, provided the classifier redshift matches that from VI to within 6,000 kms−1. This

allows for the ambiguity as to whether a spectrum should be classified as a galaxy or QSO when a

degree of broad-line emission is observed as a result of AGN activity.

The results of our classifications are presented in Figure 5.1, in which the left panel shows

purity as a function of classifier redshift, and the right panel shows completeness as a function of

VI redshift. It is clear that all classifiers are able to achieve very high levels of purity, with levels

exceeding 97% for the majority of the redshift range. There is a slight dip in purity for all classifiers

in the range 1 < z < 2, perhaps because neither the Lyα nor the narrow OIII 5007 line is present

to aid classification in this region (as noted in Bolton et al., 2012). This dip is less pronounced

for QuasarNET, and indeed it appears that QuasarNET is able to achieve highest purity across the

majority of the redshift range, showing very little variation and achieving & 99% in all bins above

z = 0.5. The other classifiers are able to achieve purities > 99% as well, but are only able to do so

in more limited redshift ranges.

Completeness for all classifiers is also high, though is notably lower than purity and there is

more variation in performance, both between classifiers and between redshift bins. QuasarNET

achieves the highest completeness of the classifiers over the majority of the redshift range, exceeding
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99.5% in the range 2 < z < 4. This value drops slightly at lower redshifts but still exceeds the

other classifiers. A rise in completeness at higher redshifts is also evident for the results from all

other classifiers. SQUEzE shows a peak in completeness in the range 1.5 < z < 4, perhaps related to

the presence of the distinctive Lyα feature for these redshifts. A sharp increase in completeness

is seen at z ' 2.2 for redrock and the DR12 Pipeline. This coincides with the redshift value

above which the idlspec2d template training spectra increase significantly in number, enabling

the template-fitting classifiers to identify a greater range of QSO spectra.

Whilst Figure 5.1 provides a suitable overview of the performance of the different classifiers,

it is not helpful in assessing their complementarity. For example, while all classifiers miss & 1%

of QSOs below z = 2, Figure 5.1 does not indicate whether the different classifiers miss the same

particular set of QSOs. If the intersection between two classifiers’ sets of missed QSOs is small, then

combining the classifiers’ results in certain ways may enable us to find an even greater proportion

of the QSOs in this redshift range. Combining classifications from different classifiers is discussed

extensively in § 5.3.1 and § 5.3.2, taking into account different classification priorities in each case.

5 . 3 Q S O TA R G E T C L A S S I F I C AT I O N I N T H E DA R K E N E R G Y S P E C T R O -

S C O P I C I N S T R U M E N T

The Dark Energy Spectroscopic Instrument (DESI) will begin its main survey during 2021, and will

run for 5 years. DESI will offer significant instrumental upgrades over (e)BOSS; its spectrograph

has 5,000 fibres per exposure rather than 1,000, and it will be mounted to a 4m rather than a 2.5m

telescope (Gunn et al., 2006; DESI Collaboration et al., 2016b). This will allow for a substantial

increase in the number of objects observed: the forecasted number of QSOs in DESI is 2.4×106

(DESI Collaboration et al., 2016a), compared to 7.5×105 in the final combined (e)BOSS sample

(Lyke et al., 2020). There will also be significant differences in the observational methods of

DESI compared to (e)BOSS, with objects targeted using different photometric data and with

different strategies employed to select from these targets. Both the increased dataset size and the

different observing strategies will affect the QSO classification challenges facing DESI, and so new

classification methods will be required.

Ahead of DESI’s main survey, it will go through a period of “Survey Validation” (SV). During

this time, the scientific capabilities of the instrument will be assessed, and decisions will be

made about observational strategy during the main survey. It will involve the measurement of

approximately 50,000–100,000 QSO target spectra, which will be classified via an extensive VI
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effort. During this phase redrock will be run on all spectra, and comparison with VI results will

be helpful for diagnosing and addressing any common failure modes. However, at this stage we

will not yet be able to train new QuasarNET or SQUEzE models on DESI data, and so their use

will be limited. It is possible that models trained on BOSS data will perform well on DESI data,

and so our set of automatic classifiers could be used to “sense check” VI: if automatic classifiers

confidently disagree with a first VI result, then that spectrum could be flagged to go through another

round of VI. This would provide a useful aide to the VI effort, and could also prove instructive in

understanding the classifiers themselves.

Once SV has been completed, we will be able to train new QuasarNET and SQUEzE models

on DESI data, using the VI results from SV as a truth table. We check that these 50,000–100,000

spectra will be sufficient to train high-performing QuasarNET models in § A.1.1. Upon entering

the main survey, QSO classifiers will be required for two main purposes: selecting high-z QSOs

for reobservation, and constructing QSO catalogues. These are discussed in § 5.3.1 and § 5.3.2

respectively. We assess our classifiers’ performance at these tasks using spectra from BOSS DR12Q

Superset. The exact properties of these spectra will differ slightly to those from DESI for a variety

of reasons. For example, DESI will observe QSO targets to approximately 1 magnitude fainter than

BOSS, and will use different target selection strategies. However, the per-pixel signal-to-noise ratio

(SNR) for the faintest objects in BOSS and DESI will be similar, and thus BOSS DR12Q Superset

data can be considered a reasonable approximation to DESI data when testing QSO selection

strategies.

5 . 3 . 1 S E L E C T I N G H I G H -z Q S O S F O R R E O B S E RVAT I O N

Whereas all QSO targets in (e)BOSS were allocated four, consecutively-taken, 900 second exposures

on the same night, DESI will only carry out four observations of spectra considered likely to be

high-z (z≥ 2.1) QSOs, and these will be distributed through the time period of the survey. Such

objects benefit significantly from additional exposures as they are used for Lyα forest analyses,

which use the values of individual pixels in each QSO’s spectrum and so are directly sensitive to its

signal-to-noise ratio (SNR). Other objects — contaminants and low-z QSOs — do not benefit from

additional exposures provided classifications and redshifts can be accurately determined, and so

will not generally be reobserved. This change allows for greater efficiency in DESI’s data collecting,

prioritising observations which will provide greatest scientific yield. However, it also introduces

new challenges; we will need to be able to select high-z QSOs for reobservation from their first

exposures, which will have lower SNR than the final, coadded spectra. This reduction in SNR
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will make spectra harder to classify, necessitating careful thought about optimal selection methods.

Further, the process of selecting for reobservation will need to be conducted entirely automatically,

and should be built into the DESI pipeline in order to maximise efficiency and reduce the possibility

of human error in generating selections. As such, no VI will be involved and we will need to rely

entirely on automatic classifiers.

Ahead of DESI, we would like to assess which selection strategies perform best in this context.

In order to approximately replicate the reduction in SNR, we construct a single-exposure dataset

from BOSS DR12Q Superset data, choosing one exposure at random from each set of exposures

that were coadded to make BOSS’ final spectra. This ensures that our single-exposure dataset

contains the same number of spectra and balance of contaminants as the coadded dataset. Using

this single-exposure dataset, we obtain classifications from redrock and QuasarNET from which

we can build selection strategies. We run redrock using the andmask option, which sets pixels’

inverse variance to zero if they were masked during the BOSS data reduction procedure (due to the

presence of strong sky lines, for example). We then train a QuasarNET model on 10% of spectra

in our single-exposure dataset, a realistic training set size that we can expect from DESI SV (see

§ A.1.1 and § A.1.2 for analyses of the effects of size and SNR of QuasarNET training sets). We

apply this model to all remaining single-exposure spectra from objects that were not included

in the training set. We restrict our redrock classifications to this same set of spectra to ensure

consistency.

In order to assess different classification strategies, we must consider what metrics are most

relevant for the problem at hand. As a primary concern, any selection procedure must ensure that

as great a proportion of true high-z QSOs as possible are chosen to be reobserved. As such, we

certainly would like to measure the fraction of high-z QSOs that are selected by a strategy, a quantity

related closely to completeness (see eq. (5.2) and surrounding discussion). However, unlike when

computing completeness, we are now not interested in whether a strategy is able to determine an

accurate redshift. Rather, we only care that a strategy can correctly identify whether an object is

a QSO and whether it is at high z; we can consider a classification as correct provided these two

criteria alone are met. Of course, any strategy must also avoid selecting too many contaminants for

reobservation in order to ensure efficient use of available fibres. This is best assessed by calculating

the total number density of objects selected rather than the purity, as it allows us to determine

directly whether a strategy is recommending a number density of objects for reobservation that is

feasible for DESI. Within current DESI plans, the number density of fibres that will be assigned

to reobserving high-z QSOs will be approximately 50 sq deg−1. There will a limited degree of
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Figure 5.2. Performance of different strategies when selecting high-z QSOs for reob-
servation, using randomly-chosen single exposures from BOSS DR12Q Superset data.
The x-axis has been normalised here to assume a fiducial true number density of high-z
QSOs of 50 sq deg−1, as is realistic for DESI (indicated by the vertical, dashed, black
line). Here, the “QN” strategy selects objects for which QuasarNET identifies at least one
emission line with confidence exceeding a confidence threshold, while the “RR” strategy
selects objects for which redrock finds a high-z QSO template with ∆χ2

r < ∆χ2
r,th, as

defined in eq. (5.4). In the “QN” and “RR” strategies, the variation in the colour of
the points indicates the choice of confidence threshold and ∆χ2

r,th respectively. In the
“QN|RR” strategy, we select objects identified as high-z QSOs either by QuasarNET or
redrock. Here, we fix ∆χ2

r,th = 2×10−3 — the corresponding point in RR is circled —
and variation in the colour of the points once again indicates the choice of QuasarNET
confidence threshold.

flexibility around this number, however a strategy that selects a substantially higher number density

of objects than this will not be feasible, and so can be discarded.

In Figure 5.2, we place a number of strategies in the plane defined by these two quantities:

the fraction of high-z QSOs selected on the y-axis, and the number density of fibres assigned

to reobservations on the x-axis. Strategies can be defined by the results of a single classifier, or

by combination of results from more than one classifier. The number density of fibres allocated

to reobservations of potential high-z QSOs is normalised by assuming a true number density of

high-z QSOs of 50 sq deg−1, as indicated by the vertical, dashed line. As such, an ideal strategy

would sit at the point (50,100%): it would select 100% of high-z QSOs, while only recommending

a number density of reobservations of 50 sq deg−1 (i.e. including no contaminants). Including

some contaminants in the set of objects recommended for reobservation would then move this
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strategy to the right, while missing high-z QSOs without including contaminants would move

it diagonally downwards and to the left, along the grey line. The hashed region in the upper

left corner of the plot denotes a section of the plane in which a strategy cannot sit: at a fixed

number density of reobservations Nreobs ≤ 50, the maximum fraction of high-z QSOs reobserved is

Nreobs/50 (achieved when no contaminants are included). A realistic strategy includes both some

degree of contamination and fails to select some high-z QSOs, and thus sits in the non-hashed

region of the plane.

Performance of individual classifiers

In Figure 5.2, the results from a strategy using redrock classifications alone are represented by

the set of blue crosses (labelled “RR”). The most straightforward strategy that could be defined

from our redrock results would select all spectra for which redrock returned a high-z QSO as

its best-fit template (i.e. that with the lowest χ2). However, we find that we are able to improve

performance by making two simple changes to this strategy. First, we select based on the reduced

chi-squared value χ2
r = χ2/ν where ν = nd−np is the number of degrees of freedom, defined as

the difference between the number of data points nd and the number of fit parameters np. This

provides a more fair comparison between different spectral types which have different values of np.

Second, we do not select based solely on the template with the lowest χ2
r . Instead, we consider all

templates whose χ2
r values fall close to the minimum, selecting an object for reobservation if at

least one such template corresponds to a high-z QSO. Formally, we consider templates with

χ
2
r −χ

2
r,min = ∆χ

2
r < ∆χ

2
r,th, (5.4)

where χ2
r,min is the minimum χ2

r over all template-redshift combinations, and ∆χ2
r,th is a threshold

value that can be chosen freely. We present results for a range of threshold values in Figure 5.2, from

∆χ2
r,th = 0 to 5×10−3. The value of ∆χ2

r,th at each point is indicated by the corresponding colour

bar to the right of the main panel. The circled point corresponds to a choice of ∆χ2
r,th = 2×10−3,

and is the choice of threshold used when constructing the “QN|RR” strategy presented in § 5.3.1.

One may also consider using redrock’s archetypes option. This compares stellar and galaxy

template fits to a suite of archetypes, penalising fits which show non-physical features such as

negative emission lines. This reduces the number of low-χ2
r stellar and galaxy fits, resulting in

more objects being classified as high-z QSOs. Subsequently, using the archetypes option selects

a greater fraction of high-z QSOs as well as a greater number of contaminants, requiring 49.8
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fibres sq deg−1 to select 96.6% of high-z QSOs. If using redrock alone, this may be deemed a

better performing strategy than the RR points shown in Figure 5.2. However, when combined with

results from QuasarNET (see § 5.3.1), using the archetypes option results in a greater number

density of fibres being assigned to reobservations with negligible gain in the fraction of high-z

QSOs selected. As such, we do not present these results here for clarity.

The results from a strategy using QuasarNET classifications alone are represented by the

sequence of circular points and the line that joins them (labelled “QN”). Here, we select a spectrum

if QuasarNET detects at least one emission line with confidence c > cth, where cth is the confidence

threshold (discussed in § 5.2.2). The colours of the QN points correspond to the choice of this

confidence threshold (as indicated by the colour bar to the right of the main panel), with values

varying from 0.05 to 0.95 in Figure 5.2. The value of cth is free to be chosen: reducing cth produces

a less stringent selection strategy, resulting in a greater fraction of high-z QSOs being selected, as

well as a greater number density of fibres being allocated to reobservations.

The QN strategy performs better than RR when selecting QSOs for reobservation. The pro-

portion of high-z QSOs missed decreases from 4.1–5.2% for RR, to 0.9–1.7% for QN. For the

threshold values shown, the number density of fibres allocated to reobservations depends varies

within 47.8–51.8 sq deg−1 for RR and 49.3–50.3 sq deg−1 for QN, all of which are feasible values

for DESI. As described, the values of ∆χ2
r,th and cth can be varied to alter the properties of these

two strategies. Indeed, values could be chosen automatically to suit the number of fibres available

at any given sky location and on any given night.

Performance of combined strategies

We also define two simple strategies to combine classifications from QuasarNET and redrock.

First, we define a strategy “QN&RR”, which selects an object to be reobserved only if both the QN

and RR strategies do so. This strategy represents a more stringent selection criteria than either the

QN or RR strategies, and so selects fewer high-z QSOS as well as reducing the number density of

fibres allocated to reobservations. In the context of selecting high-z QSOs for reobservation, we

would like to prioritise increasing the fraction of high-z QSOs reobserved over reducing the number

of contaminants reobserved (within reason). As such, the QN&RR strategy is not preferable to

QN or RR as it results in at least 5.0% of high-z QSOs being missed and so we do not present this

option in Figure 5.2.

Next, we define a strategy “QN|RR”, which selects an object to be reobserved if either the

QN or the RR strategy does so. The results for this strategy are represented in Figure 5.2 by the
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coloured, downwards-pointing triangles and their adjoining line. These points sit further to the right

and higher in the plane than either the QN or the RR strategies, reflecting the less stringent selection

criteria of the QN|RR strategy and the greater number of objects selected. Combining QuasarNET

and redrock’s classifications in this way results in a reduced proportion of high-z QSOs that are

missed, with only 0.5–0.9% not selected. At the same time, it does not require a greater number

of fibres be allocated to reobservations: between 50.6 and 51.3 sq deg−1 for different choices of

QuasarNET’s confidence threshold.

As such, provided that 50.6–51.3 fibres sq deg−1 can be assigned to potential high-z QSOs,

adopting a QN|RR strategy would appear to be the ideal strategy of those presented in Figure 5.2.

However, the gain in the fraction of high-z QSOs selected over the QN strategy is not dramatic.

Indeed, if fewer fibres are available for reobservations, then the QN strategy provides a suitable,

high-performing alternative. These results demonstrate QuasarNET alone is able to provide a

high-performing selection strategy, while combining it with results from redrock in a QN|RR

strategy can boost performance further still.

5 . 3 . 2 C O N S T R U C T I N G A Q S O C ATA L O G U E

The second QSO classifier purpose during DESI’s main survey is the construction of QSO cata-

logues. These catalogues will then be used to measure large-scale structure in two ways: via the

clustering of QSOs at redshifts 0.9 < z < 2.1, and via clustering of the Lyα forest at z > 2.1. In both

cases, it is of great importance that the QSO catalogues contain minimal levels of contamination to

ensure that the data used in these analyses truly traces the matter density at the relevant redshifts.

At the same time, we need to ensure that we make maximal use of DESI’s observations, without

discarding significant numbers of spectra unnecessarily. As such, an optimal catalogue construction

method should minimise contamination as a priority, while only maximising completeness as a

secondary concern. In order to improve catalogue purity and completeness, DESI might be able

to include a moderate level of visual inspection, as in the DR14Q (Pâris et al., 2018) and DR16Q

(Lyke et al., 2020) catalogues from eBOSS. This VI can be targeted at specific spectra which

automatic classifiers failed to classify confidently, and can be built into any catalogue construction

strategy according to DESI’s VI capabilities.

In order to test various strategies, we apply classifiers to coadded spectra from BOSS DR12Q

Superset data. We apply redrock to all spectra in this dataset, using redrock’s andmask option

as in § 5.3.1. In this case, as we are working with coadded spectra, this option sets a pixel’s inverse

variance to zero only when it was masked for all exposures used in constructing the coadded
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Figure 5.3. Performance of different classification strategies when constructing a QSO
catalogue. Each column shows the percentage level of contamination in the QSO cata-
logue, divided into different contaminating classes. In the left panel, we show performance
on objects with predicted redshift 0.9≤ z < 2.1, and on the right on objects with predicted
redshift ≥ 2.1. Below the panels, we also display the completeness of QSOs and an
estimated DESI catalogue size for each strategy, in each z-bin. The estimated catalogue
size is based on both the level of contamination and the level of completeness, and
assumes that there will be 1.7×106 true QSOs at z < 2.1, and 0.7×106 true QSOs at
z≥ 2.1 in DESI (DESI Collaboration et al., 2016a).

spectrum. When this is the case, a pixel’s value cannot be considered reliable, and so should not

be used in any fits. We then train a QuasarNET model on 10% of coadded spectra from DR12Q

Superset, a realistic training set size to expect from DESI SV (see § A.1.1). We apply this model to

all remaining coadded spectra from objects that were not included in the training set. Once again,

we restrict our redrock classifications to this same set of spectra to ensure consistency.

In Figure 5.3 we show the level of contamination of QSO catalogues constructed using various

strategies. Results are split into low (0.9 < z < 2.1) and high (z ≥ 2.1) redshift bins in order to

reflect the two separate uses of QSO catalogues in DESI, and to highlight differences in performance

for each case. For each strategy, the level of contamination is broken down into three subsections:
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contamination by stars, by galaxies with incorrect redshifts8, and by QSOs with incorrect redshifts.

Below each column, we also present the level of completeness achieved by each strategy, as well as

combining contamination and completeness to estimate the size of a final DESI catalogue that each

strategy would yield. This catalogue size is constructed by assuming that there will be 1.7×106

true QSOs at 0.9 < z < 2.1, and 0.7×106 true QSOs at z≥ 2.1 amongst DESI’s QSO targets (DESI

Collaboration et al., 2016a).

Performance of individual classifiers

We first construct strategies using the classifiers redrock and QuasarNET individually. We define a

strategy “RR” using only results from redrock. Unlike in § 5.3.1, we are now seeking to minimise

contamination as a priority rather than maximising completeness, and so we do not consider template

fits other than that with the lowest χ2 (redrock’s best fit). However, the “RR” strategy presented

here does incorporate redrock’s ZWARN flags — if a spectrum raises such a flag, it is deemed not

to yield a reliable classification and so is discarded. This strategy results in 2.7% contamination and

89.1% completeness at low z, and 0.7% contamination and 94.3% completeness at high z. At both

low and high z the majority of contaminants are QSOs with incorrect redshifts, with a moderate

number of stars at low z as well. As in § 5.3.1, we could use redrock’s archetypes option

when constructing the RR strategy in Figure 5.3. At low z, this results in a substantial increase

in contamination to 4.8% (from 2.7%), while completeness increases to 94.3% (from 89.1%). At

high z, there is no change in the contamination level (though the proportion of stellar contaminants

increases slightly), and completeness increases to 95.8% (from 94.3%). As such, at low z using the

archetypes option produces a substantially less effective strategy, whereas at high z it increases

performance slightly. As we would like to prioritise low contamination when constructing QSO

catalogues, we present results without using the archetypes option in Figure 5.3.

We then define a strategy using results from QuasarNET only, labelled “QN”. Here, we include

an object in our catalogue if QuasarNET is able to identify at least one emission line in the object’s

spectrum with confidence c > cth = 0.5. This value could of course be varied, but we choose to

present a single value for clarity. Using this value of cth results in 0.8% contamination at low z,

while achieving 97.7% completeness. Here, over half of the contaminants correspond to stars,

while the remainder are mostly QSOs with incorrect redshifts. At high z the level of contamination

drops to 0.1% while completeness rises to 99.5%. Contaminants here are mostly made up of QSOs

8As mentioned in § 5.2.2, the classification of a galaxy spectrum as belonging to a QSO is considered correct provided
the classifier is able to determine the correct redshift.
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with incorrect redshifts, with a small number of stars as well. It is also possible to classify using

ndetect = 2, i.e. requiring that QuasarNET must find at least two emission lines with confidence

greater than cth. For a fixed choice of cth, this results in a more stringent classification criteria,

yielding less contamination and reducing the level of completeness as well. Again using cth = 0.5,

at low z this “2-line” strategy achieves 0.5% contamination at 96.9% completeness, whilst at high z

it achieves 0.09% contamination at 99.4% completeness. We can also require that the two emission

lines identified have consistent redshifts, discarding spectra for which QuasarNET confidently

identifies two lines which would imply drastically different QSO redshifts. This can further reduce

contamination in both high- and low-z catalogues, though the effects are small. Indeed, any number

of more advanced interpretations of QuasarNET’s outputs are possible, and could be motivated by

the properties of the dataset being classified.

These results show a significantly higher level of contamination and lower levels of complete-

ness in catalogues produced by the RR strategy compared to those from QN, both in the low-

and the high-z bins. In particular, there is much less contamination from QSOs with incorrect

redshifts in the QN strategy, though it does introduce a greater level of contamination from galaxies

with incorrect redshifts, and from stars in the high-z bin. This difference in the breakdown of

contaminants suggests that the two classifiers may be able to act in a complementary manner when

combined, as discussed in § 5.3.2. We can also see a substantial difference between the results in

the low- and high-z bins: both classifiers perform significantly better at high redshift. This is cer-

tainly to be expected of the RR strategy as redrock’s templates are built from a high-z-dominated

set of QSO spectra (see § 5.2.2), an issue which is currently being addressed by the developers.

However, this z-dependence is also present in the QN strategy, likely due to the presence of the

Lyα emission line in high-z QSO spectra, a strong and distinctive feature that makes classification

more straightforward.

Performance of combined strategies

As in § 5.3.1, we also consider two strategies to combine outputs from redrock and QuasarNET.

We define a “QN|RR” strategy which classifies a spectrum as a QSO if either QuasarNET has

confidence c > 0.5 that it is a QSO, or redrock finds a QSO template as the best fit without

any ZWARN flags. This strategy uses QuasarNET’s redshift if QuasarNET classifies as a QSO, and

redrock’s otherwise. This redshift choice was found to be more effective than the alternative

of using redrock’s redshift as default, and only using QuasarNET’s redshift where QuasarNET

classified as a QSO but redrock did not. The QN|RR strategy introduces a greater degree of
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contamination to the catalogue than the QN strategy at low z, but less than the RR strategy. This

counterintuitive behaviour is due to the choice of redshift mentioned previously: some spectra

which were correctly classified as QSOs but assigned an incorrect redshift by the RR strategy are

now assigned a correct redshift from QuasarNET instead. At high z, the QN|RR strategy results in

the same level of contamination as the QN strategy, and lower than the RR strategy. At the same

time, it is able to achieve a higher level of completeness than either the RR or the QN strategies at

both low and high z. The gain over the QN strategy in this respect is small, however. As we wish

to prioritise low contamination in our QSO catalogues, it seems that the QN|RR strategy is less

effective than then QN strategy at low z, and thus would not be an advisable strategy. At high z, it

performs negligibly better than the QN strategy.

Similarly, we define a “QN&RR” strategy which classifies a spectrum as a QSO only if both

QuasarNET has confidence c > 0.5 that it is a QSO, and redrock finds a QSO template as the

best fit without any ZWARN flags. We also require that QuasarNET and redrock agree on the

object’s redshift to within 6,000 kms−1. Again, this strategy uses QuasarNET’s redshift for all

objects classified as QSOs. As one would expect, this strategy achieves lower contamination levels

than either then QN or RR strategies, reducing it to 0.3% at low z and 0.03% at high z. The

completeness of the sample is also reduced relative to the individual classifier strategies, and as

a result the predicted catalogue sizes are significantly lower than the true values. The very low

levels of contamination achieved by the QN&RR strategy make it well suited for constructing QSO

catalogues. Of course, it results in significant drop in completeness relative to the QN strategy, but

this may be deemed a necessary sacrifice in order to construct a maximally pure catalogue.

It is also worth noting that both combined strategies perform significantly better at high z

than low, suggesting that there may be benefit to using different classification strategies when

constructing catalogues for different purposes. For example, when constructing a low-z QSO

catalogue for QSO clustering analysis, one may judge that only the QN&RR strategy is able to

construct a sufficiently pure catalogue, despite its modest level of completeness. At high z, the

levels of contamination in either the QN or QN&RR strategies may be considered acceptable, and

so the QN strategy may be favoured in order to make use of the 4.6 percentage point increase in

completeness that this strategy offers. When measuring the clustering of QSOs at low z, however,

understanding the completeness of the QSO sample more deeply is of great importance. The

inclusion of any given QSO in a QSO catalogue depends on a number of other quantities both

physical and observational, such as the photometric properties of the QSO and the position in the

focal plane of the fibre used to observe it (e.g. Reid et al., 2016; Laurent et al., 2017; Ata et al.,
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2018). As such, we emphasise that improvements to completeness must be complemented by future,

detailed modelling of the entire pipeline when performing any clustering analysis.

Role of visual inspection in constructing QSO catalogues

As mentioned previously, DESI will have some capacity for VI when constructing QSO catalogues,

which can be targeted towards spectra for which automatic classifiers were not able to yield a

confident classification. In constructing the eBOSS DR14Q catalogue, approximately 3.7% of new

spectra were visually inspected in this way, chosen via a simple decision tree (see § 3.2 of Pâris

et al., 2018), while in constructing the DR16Q catalogue this dropped to approximately 2.9% (Lyke

et al., 2020). Given the increase in data quantity that DESI will provide, it is likely that VI levels

will need to be reduced further, perhaps to . 1%. The results shown in this section thus far do not

allow for any VI capacity, and could undoubtedly be improved by introducing a system to allow for

spectra to be flagged for VI. There are several ways that this could be incorporated into any given

strategy, and here we discuss two simple options.

Combining QuasarNET with VI, one could define two confidence thresholds clo
th and chi

th, and

classify each spectrum with confidence c as follows:

– c≥ chi
th: QuasarNET is sure that this spectrum is a QSO, thus classify as a QSO.

– clo
th ≤ c < chi

th: QuasarNET unsure whether this spectrum is a QSO, thus send it to VI.

– c < clo
th: QuasarNET is sure that this spectrum is not a QSO, thus classify as a non-QSO.

This sends to VI those spectra which QuasarNET is least able to classify definitively. Adopting

this classification strategy with values clo
th = 0.04 and chi

th = 0.96 results in VI being requested for

1.0% of spectra, an appropriate proportion for DESI. We can estimate its performance by simply

assigning DR12Q Superset VI results to spectra that fall into this category; doing so yields the

results labelled “QN+VI” in Figure 5.3. When compared with the QN strategy from the same figure,

these results show a reduction in catalogue contamination levels by almost 50% in both redshift

bins, alongside an increase in completeness of one percentage point at low z. This combination of

QuasarNET and VI can thus be deemed highly effective, providing contamination rates in between

those of the QN and QN&RR strategies, while exceeding the completeness of either strategy.

Equally, one could combine VI with redrock’s classification results. For example, one could

send all spectra with ZWARN flags corresponding to fitting issues9 to VI. Compared to the RR

9Some ZWARN flags correspond to issues such as broken fibres, and so VI would not be able to help with these issues.
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strategy, this results in substantial improvements to completeness at both low and high z (3.7 and

1.6 percentage points respectively), and only small (< 0.1 percentage point) improvements to

contamination. However, including VI in this way requires 6.7% of spectra to be visually inspected,

a proportion that lies beyond the bounds of feasibility for DESI. Restricting VI to those spectra

for which a ZWARN flag was raised and the best fit spectral type was “QSO”, we require a far more

manageable 0.6% of spectra to be inspected. Here, there is negligible reduction in contamination,

but completeness increases by at least 1 percentage point in both low- and high-z bins.

Evidently, VI can also be built into more complex classification strategies as well. While in

BOSS, all QSO target spectra were visually inspected, in eBOSS, decision trees were built to

combine automatic classifier results with VI. In eBOSS DR14Q (Pâris et al., 2018), a decision

tree was built based on the five templates from the pipeline (idlspec2d) with lowest reduced χ2

values, highlighting spectra as requiring expert VI if the top 5 best-fit solutions were inconsistent,

or if flags denoting low spectral quality were raised (see § 3 of Pâris et al., 2018, for further details).

In DR16Q (Lyke et al., 2020), a similar decision tree was used, with QuasarNET employed to

reduce the VI proportion further still. As a result of these decision trees, only 3.7% and 2.9% of

new spectra were visually inspected in the construction of DR14Q and DR16Q respectively. These

decision trees were built with prior knowledge of idlspec2d’s failure modes and the distribution

of contaminant spectra. For example, applying idlspec2d to QSO target spectra from BOSS

introduced a significant degree of contamination from stars, particularly at low z. As such, the

decision tree was designed to carefully remove stellar spectra for which idlspec2d incorrectly

returned “QSO” as its best fit. When constructing catalogues in DESI, a similar decision tree will

be useful, constructed to take into account both the properties of redrock’s classifications and the

contaminants in the DESI QSO target set. Such a decision tree could be constructed manually (as

in eBOSS), or a simple machine learning approach could be used to assess in greater detail the full

set of template fits from redrock and line identifications from QuasarNET.

5 . 4 S U M M A RY & C O N C L U S I O N S

In this chapter, we have assessed problems of QSO classification relevant for future spectroscopic

surveys such as DESI, and have demonstrated that existing automatic classifiers can be used to

construct highly effective classification strategies. In § 5.2, we summarised the automatic classifiers

currently available. We provided a simple comparison of their performance levels, demonstrating

that QuasarNET is able to out-perform other classifiers over a range of redshifts. In § 5.3, we
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identified the QSO classification tasks that will be relevant to DESI’s main survey: selecting high-z

QSOs for reobservation, and constructing QSO catalogues. We quantified how well QuasarNET

and redrock perform at addressing these tasks by applying them to BOSS DR12Q Superset data,

using QuasarNET models trained on appropriately-sized training sets, and using single-exposure

spectra where necessary.

We then addressed the two classification tasks in turn, first presenting the performance of various

strategies when selecting high-z QSOs for reobservation in § 5.3.1. We found that reobserving all

objects selected by QuasarNET alone provides an effective solution, resulting in approximately

1% of high-z QSOs being lost. This loss can be reduced further — to 0.5% — by reobserving

all objects selected by either QuasarNET or redrock, provided an additional 1 fibre sq deg−1

can be made available for reobservations. In § 5.3.2, we then used coadded spectra to consider

various classification strategies in the context of constructing QSO catalogues. We showed that

using QuasarNET alone for this task is able to offer sub-percent levels of contamination at both

low and high z, simultaneously yielding high levels of completeness. We showed further that

including in a catalogue only QSOs identified by both QuasarNET and redrock reduces levels

of contamination by at least a factor of 2, though a substantial reduction in completeness is an

unfortunate consequence. Alternatively, we considered combining QuasarNET’s outputs with

a small visual inspection fraction, defining a subset of uncertain spectra using two confidence

thresholds. Permitting 1% of spectra to be manually classified in this way reduced contamination to

almost half that when using QuasarNET alone, improving levels of completeness at the same time.

In all, we have demonstrated that QuasarNET alone is able to suitably address the QSO

classification tasks of DESI, and that combining its classifications with those from redrock in

simple ways is able to boost performance further still. The exact performance levels achieved by

the strategies we define may, of course, vary when applied to DESI data. They will be affected by

the distribution of contaminant types through the set of QSO target spectra, and by the instrumental

properties of DESI itself. The precise impact of these differences is not yet clear, though the

similar pixel-level noise in BOSS and DESI’s faintest QSOs indicates that BOSS data represents a

suitable and well-understood proxy to use at the current moment. Further, both QuasarNET and

redrock will evolve ahead of DESI; redrock’s QSO templates are actively being developed to

yield improved performance, while there is potential to extract information more efficiently and

more precisely from QuasarNET’s raw outputs. However, the results presented in this chapter

can offer encouragement that the current range of automatic QSO classifiers are well suited to

addressing the needs of forthcoming spectroscopic surveys, and can safely reduce the historical
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reliance on visual inspection without adversely affecting science outcomes.
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C H A P T E R 6

M A K I N G M O C K S W I T H LyaCoLoRe

Once quasar (QSO) catalogues have been constructed, they may be used in a number of different

ways. In particular, high-z QSO spectra may be used to study the Lyα forest, which we may in turn

use to measure baryon acoustic oscillations (BAO, see § 3.2.1 for details). The analysis process to

carry out such measurements is non-trivial, and requires detailed tests to verify its reliability. In this

chapter, we discuss the construction of mock datasets for this purpose, presenting the LyaCoLoRe

package that we have developed to address this need.

The work shown in this chapter is presented in Farr et al. (2020). The mocks described in this

section are constructed using two key pieces of software, CoLoRe and LyaCoLoRe. Beyond a small

modification relating to interpolation methods, CoLoRe was developed by collaborators rather than

myself. The development of the LyaCoLoRe package, however, was led by myself.

6 . 1 I N T R O D U C T I O N

The late-time measurement of the BAO “standard ruler” (Peebles and Yu, 1970) has become a

key component of modern observational cosmology. As a precise method of measuring large-

scale structure, it provides complementary information to the cosmic microwave background and

thus is able to help constrain a number of extensions to the baseline ΛCDM model (e.g. eBOSS

Collaboration et al., 2020). As discussed in § 3.2.1, the BAO signal has been measured most

frequently using discrete objects such as galaxies at z ∼ 0.1− 1.0 and QSOs at z ∼ 1.2− 1.7 to
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trace the matter density field. Beyond these redshifts, however, the number density of such objects

observed in current surveys is too low to measure the BAO signal at any level of significance, and

so alternative tracers must be found to extend BAO measurements to z∼ 2 and beyond.

In recent years, the Baryon Oscillation Spectroscopic Survey (BOSS, Dawson et al., 2013)

and its extension eBOSS (Dawson et al., 2016) have enabled the use of such a tracer in the form

of the Lyman-α (Lyα) forest: a sequence of absorption features that appears in the spectra of

high-z QSOs as a result of Lyα absorption of light in the neutral hydrogen gas between QSO and

observer. These spectral features thus trace the density of neutral hydrogen gas in the inter-galactic

medium (IGM) along the line of sight (Bi, Boerner, and Chu, 1992). Indeed, analytical models

developed during the 1990s showed that the Lyα forest absorption closely traces the distribution

of dark matter on scales larger than the Jeans length (e.g. Cen et al., 1994; Petitjean, Muecket,

and Kates, 1995; Miralda-Escudé et al., 1996). The Lyα forest should, then, provide a suitable

means to extend measurements of cosmic expansion via BAO to earlier in the Universe’s history.

Measuring such a signal was first discussed in McDonald and Eisenstein (2007), while the 3D

correlation of flux transmission was first studied in Slosar et al. (2011). The BAO signal was first

detected from measurements of the Lyα auto-correlation using data from data release 9 (DR9) of

BOSS (Busca et al., 2013; Slosar et al., 2013; Kirkby et al., 2013), with subsequent improvements

in DR11 (Delubac et al., 2015) and DR12 (Bautista et al., 2017), as well as DR14 and DR16

of eBOSS (de Sainte Agathe et al., 2019; du Mas des Bourboux et al., 2020, respectively). The

cross-correlation between the Lyα forest and QSOs was first measured in BOSS DR9 (Font-Ribera

et al., 2013), with the first detection of BAO coming in DR11 (Font-Ribera et al., 2014), and

improvements made in DR12 (du Mas des Bourboux et al., 2017) and eBOSS DR14 (Blomqvist

et al., 2019) and DR16 (du Mas des Bourboux et al., 2020).

The upcoming Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016a;

DESI Collaboration et al., 2016b) will be able to advance these measurements greatly. Over the

five years of its operation, it will measure approximately 700,000 QSO spectra with z > 2.1 (DESI

Collaboration et al., 2016a), over three times the 210,005 spectra in the final eBOSS dataset (du

Mas des Bourboux et al., 2020). Ahead of such an increase in statistical power, it is vital to be able

to sufficiently test analysis pipelines to ensure that they do not introduce any biases. Equally, it

is important to be able to quantify exactly how secondary astrophysical effects will impact upon

BAO measurements. The best way to carry out both of these tests is through the development

of mock datasets (e.g. Le Goff et al., 2011; Font-Ribera, McDonald, and Miralda-Escudé, 2012;

Bautista et al., 2015) — synthetic realisations of a survey for which cosmological and astrophysical
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parameters can be easily controlled. Producing such datasets must be computationally inexpensive

in order to allow for generation of a large number of realisations, but the data must also provide

realistic representations of the survey itself.

In this chapter, we introduce a package designed to produce mock datasets for current and

future Lyα forest BAO analyses, LyaCoLoRe. In § 6.2, we describe the methods used to generate

such datasets, including the use of a Gaussian random field to generate the 3D correlations and the

subsequent post-processing to yield realistic skewers of transmitted flux fraction. The methods to

determine the optimal values of parameters used in these transformations are detailed in § 6.3. We

then verify that the datasets are able to fulfil their purpose for BAO analyses in § 6.4, measuring

correlation functions in the same way as recent analyses from BOSS and eBOSS. In § 6.5, we

introduce and briefly test additional astrophysical effects that LyaCoLoRe is able to include, before

summarising and concluding in § 6.6.

6 . 2 M A K I N G T H E M O C K S

The requirement of mocks to be computationally inexpensive but also large in volume prohibits the

use of hydrodynamical or N-body simulations in their construction. Instead, Gaussian random field

methods can be used to generate a linear density field in a large box. This method does not capture

non-linear evolution, generating data based solely on an initial power spectrum, but is orders of

magnitude faster than state of the art simulations. Further, the presence of non-linear structure is not

of vital importance to BAO measurements, particularly at z & 2 where the Lyα forest is observed

(Kirkby et al., 2013). As such, Gaussian random field methods are particularly well suited to the

production of Lyα BAO mock datasets. Having generated such a box, tracers such as QSOs can be

placed at peaks in the density field via Poisson sampling according to an input bias and number

density, and line-of-sight skewers can be drawn by interpolating within the box.

Converting these skewers to mimic the transmitted flux fraction of the Lyα forest then requires

a significant degree of post-processing. Despite the speed of Gaussian random field methods,

resolution higher than O(1) Mpc h−1 is not possible within the computational bounds of mock

production due to memory limitations. As a result, the 1D power spectrum of the skewers P1D(k‖)

— the power spectrum measured only from modes lying along the line of sight of each skewer — is

greatly suppressed. This subsequently affects the errors on our BAO measurements, as the 3D flux

power spectrum of the Lyα forest has a significant contribution to its error that is proportional to

the 1D power spectrum, known as aliasing noise (McDonald and Eisenstein, 2007). As such, we
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must boost the 1D power spectrum by the addition of small-scale fluctuations in order to ensure that

our BAO errors behave correctly. Further, we must convert from density to optical depth at each

point of each skewer. The details of this relationship are complex, but in the context of Gaussian

random field mocks we are constrained to using a simple approximation such as the fluctuating

Gunn-Peterson approximation (FGPA, Croft et al., 1998). Finally, we must add redshift-space

distortions to our skewers. These distortions occur as a result of peculiar velocities in the IGM, and

we observe them as an anisotropy in measurements of power spectra and correlation functions.

In this chapter, we use CoLoRe (Alonso et al., in prep.) to generate our initial Gaussian skewers,

as described in § 6.2.1. We then present the package LyaCoLoRe, which is able to convert CoLoRe’s

output into realistic skewers of transmitted flux fraction. The methods used in this transformation are

described in § 6.2.2. Finally, in § 6.2.3, we discuss the computational requirements of running both

of these packages. The output skewers from LyaCoLoRe then require the addition of instrumental

noise and combination with a QSO continuum before they can be considered realistic spectra. This

can be carried out in the context of DESI by a package called desisim1, which is not discussed

here.

6 . 2 . 1 CoLoRe : C O S M O L O G I C A L L O G N O R M A L R E A L I S AT I O N S

The LyaCoLoRe mocks originate from an existing program called CoLoRe2, a highly parallelised

code initially designed to produce large catalogues of multiple tracers with the same underlying

density field (Alonso et al., in prep.). In this chapter, we use CoLoRe’s lognormal density model for

speed, though first and second order Lagrangian perturbation theory methods (LPT/2LPT) are also

available. From this density field, CoLoRe can produce a number of observables such as cosmic

shear, intensity maps, CMB lensing and integrated Sachs-Wolfe maps. Most importantly in the

context of this chapter, it is also able to draw line-of-sight skewers from each object to a central

observer, interpolating the Gaussian field at intermediate points. This final functionality makes

CoLoRe well suited for Lyα forest mocks. The basic steps that CoLoRe takes in computing such

skewers are outlined in the 5-stage process below:

1. Generate a Gaussian random field δC at z = 0 in a Cartesian box according to an input power

spectrum.

2. Compute a corresponding radial velocity in each cell using the gradient of the Newtonian

1Publicly available at https://github.com/desihub/desisim.
2Publicly available at https://github.com/damonge/CoLoRe.
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gravitational potential φ :

vr(z = 0) =− 2 f0

3H2
0 Ωm

(er ·∇)φ(z = 0), (6.1)

where f0 is the logarithmic growth rate at z = 0, H0 is the Hubble constant, Ωm is the matter

density parameter, and er is the radial unit vector.

3. Calculate the redshift of each cell (taking the centre of the box as the observer) using a given

input cosmology, and evolve the fields to that redshift using the corresponding linear growth

factor.

4. Carry out a lognormal transformation of the Gaussian field, and Poisson sample it using an

input number density n(z) and bias b(z) to obtain a set of sources (QSOs in our case).

5. Compute line-of-sight skewers from each source to the centre of the box by interpolating the

initial Gaussian field and the radial velocity field.

The final output from CoLoRe is a set of QSOs and corresponding Gaussian field skewers, as

well as values of cosmological variables along the skewers. The QSOs have the correct two-point

clustering properties in 3D on large scales, as demonstrated briefly in Appendix B.1 and in more

detail in Alonso et al. (in prep.). The skewers also have the correct two-point 3D correlations, as

demonstrated in § 6.4. Correlations beyond two-point statistics will not be reproduced by CoLoRe’s

Gaussian methods. These are relevant to the Lyα forest as our lines-of-sight are not randomly

placed, instead being determined by the locations of QSOs. Such higher-order correlations are

unlikely to inhibit the determination of the BAO scale, but quantitative studies of such effects

should be carried out ahead of DESI to ensure that this is the case. In the future, using CoLoRe’s

LPT/2LPT methods will start to introduce higher-order correlations to our mocks, as discussed

briefly in § 8.2.2.

6 . 2 . 2 LyaCoLoRe

While CoLoRe is able to produce skewers with 3D, large-scale correlations matching a given input in

a short timeframe, its “raw” output requires significant post-processing before it can be considered

a realistic representation of the Lyα forest. To implement these stages of processing, we have

developed a Python module under the name LyaCoLoRe3. This code transforms CoLoRe’s output

3Publicly available at https://github.com/igmhub/LyaCoLoRe.
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into realistic skewers of transmitted flux fraction. The following sections describe the key methods

that LyaCoLoRe uses to do so, with each step represented visually in Figure 6.1.

Adding small-scale power

In order that the memory requirements of running CoLoRe do not become overwhelmingly large,

we are limited to using a grid of 40963 cells. Requiring that this encloses the volume of a

full Lyα survey limits us to using a low-resolution grid, with cells in CoLoRe’s raw output of

O(1) Mpc h−1. In the context of the Lyα forest, we observe clustering on scales down to the Jeans

Length, approximately 100 kpc h−1 (Walther et al., 2018) and an order of magnitude lower than

the resolution we can feasibly achieve. While BAO is a large-scale phenomenon, imposing that

the synthetic data has approximately the right small-scale properties ensures that the covariance

matrices in our final analyses are realistic. We address this by first interpolating CoLoRe’s Gaussian

skewers — labelled as δC — to a smaller cell size, using nearest grid point (NGP) interpolation in

order to avoid introducing additional smoothing.

We then generate a set of new, independent Gaussian skewers δε on the grid of smaller cells

according to an input 1D power spectrum. We take the k-dependence of this 1D power spectrum to

follow that used in McDonald et al. (2006):

P1D(k) ∝ [1 + (k/k1)
n]−1, (6.2)

where the normalisation is chosen to ensure unit variance. The additional skewers are then scaled

by a common factor in order to control the variance in the extra power added. This factor is allowed

to vary along the length of the skewers, effectively adding a redshift-dependency to the extra power.

Hence, we write this factor as σε(z). The parameters n and k1, as well as the function σε(z) are

free, and we choose them according to the process described in § 6.3, aiming to achieve the correct

1D power spectrum across a range of redshifts. The new skewers are then simply added to each of

the existing ones to form our final Gaussian skewers δG:

δG(z,x) = δC(x)+σε(z)δε(x). (6.3)

The top panel of Figure 6.1 shows a sample skewer before and after the extra small-scale power

is added. As the additional skewers are independent from one another, there are no correlations

between the structures added to each of the skewers. When we measure the 3D correlation
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Figure 6.1. A sample skewer shown at the different stages of transformation from “raw”
Gaussian CoLoRe output to a final LyaCoLoRe flux skewer. The top panel shows the
addition of small-scale power to the skewer as described in § 6.2.2, converting δC (dashed)
to δG (solid). The transition to the second panel shows the lognormal transformation
from § 6.2.2, and moving to the dotted line of the third panel shows the fluctuating Gunn-
Peterson approximation (FGPA) transformation from the same section. The application
of redshift-space distortions (RSDs), as described in § 6.2.2, shifts the dotted line to
the solid line in this third panel. The final transformation from optical depth to flux, as
described in § 6.2.2, maps the third to the bottom panel. Here, the Hubble flow is used to
map distances (top horizontal axis) to observed wavelengths (bottom horizontal axis).
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function, we ignore contributions from pixel-pairs in the same skewer and so this process of adding

small-scale power will not affect the 3D correlations of the Gaussian field beyond simply adding

noise.

It is worth noting that we could have chosen to add extra small-scale fluctuations to the velocity

field and achieved the same correct 1D power spectrum. However, allowing parameters describing

extra small-scale velocities to vary freely would require the re-computation of the redshift-space

distortions weights matrix (see p.113) at each step of the tuning process (as described in § 6.3).

This is a considerably more time-consuming procedure than simply carrying out the inverse Fourier

transform of eq. (6.2). As such, we choose to only add small-scale fluctuations to the Gaussian

field and assign to each of the small cells the velocity of the nearest large CoLoRe cell.

Transformation to optical depth

In LyaCoLoRe, the transformation from skewers of the Gaussian field to ones of optical depth

is governed by two equations. The first of these is known as a lognormal transformation. This

approximates the density of the baryonic matter field closely by using a lognormally-distributed

variable (Bi and Davidsen, 1997), introducing a degree of non-linearity. This is normalised so that

we may define a zero-mean deviation δ from the mean density as:

1+δ (z,x) =
ρ(z,x)
ρ(z)

= exp

[
D(z)δG(z,x)−D2(z)

σ2
G(z)
2

]
, (6.4)

where D(z) is the linear growth factor at redshift z; δG(z,x) is the Gaussian field value from

eq. (6.3); σG(z) is the standard deviation of this Gaussian field, and ρ(z,x) is the lognormal density

at redshift z and position x. This transformation is shown by the transition from the top to the

second panel in Figure 6.1.

The second equation allows us to transform these deviations in density into an approximation

of the optical depth at each point. Assuming adiabatic expansion implies a tight relationship

between temperature and density of the form dlnT/dlnρ = γ−1 (Hui and Gnedin, 1997). If we

further assume photoionization equilibrium, the temperature of the gas approximately determines

the number of neutral hydrogen atoms nHI ∝ ρ2T−0.7 for a given baryonic matter density ρ (Hui,

Gnedin, and Zhang, 1997). As the optical depth τ is proportional to nHI (Gunn and Peterson,

1965, see § 3.2.1), these two assumptions allow us to provide an approximation for τ known as the
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fluctuating Gunn-Peterson approximation (FGPA, Bi and Davidsen, 1997; Croft et al., 1998):

τ(z,x) = τ0(z)[1+δ (z,x)]α(z), (6.5)

where τ0(z) is a normalisation determined by the gas temperature and the photoionisation rate,

and α(z) = 2−0.7[γ(z)−1] is determined by the temperature-density relation. These parameter

functions τ0(z) and α(z) are free, and the method for choosing them is described in § 6.3. The

transformation to optical depth is shown by the transition from the second panel to the dotted line

of the third panel in Figure 6.1.

Adding redshift-space distortions

The Lyα forest exists as a sequence of absorption features due to the gradient in the recessional

velocity of the IGM caused by the Universe’s expansion. Features are redshifted according to their

distance from the observer, appearing in a spectrum at an observed wavelength λobs = λα(1+ z)

for λα the Lyα wavelength, and z the absorption redshift. However, peculiar velocities in a region

of gas cause its redshift to differ from that due to expansion alone. These effects are known as

redshift-space distortions (RSDs), and can be induced by a number of different effects. In particular,

RSDs due to gravitationally-induced linear velocities in the IGM are calculated by CoLoRe: as

mentioned in § 6.2.1, it produces velocity skewers quantifying this effect by calculating the gradient

of the Newtonian gravitational potential.

The transition from real- to redshift-space in each skewer can be thought of as an integral over

velocity space of the real-space optical depth field multiplied by a kernel K:

τ(s) =
∫

τ(x)K
(

s− x− vr
[
x|T (x)

])
dx, (6.6)

where x and s are velocity coordinates along the skewer in real- and redshift-space respectively,

vr is the radial peculiar velocity, and T is the temperature. The choice of K depends on the

complexity of the physical effects that you wish to capture. Choosing a suitable Gaussian kernel

allows the inclusion of thermal broadening effects: the apparent spreading of the gas’s optical

depth contribution in redshift-space due to random thermal velocities of the gas atoms. This is

implemented as an option within LyaCoLoRe, the details of which are described in Appendix B.2.

However, we find that the width σv of this Gaussian kernel is often smaller than the typical cell

size used in LyaCoLoRe when adding small-scale fluctuations. Thus, the net effect of accounting
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for this physical process is small, and so for the purposes of this chapter we choose the most

straightforward option, setting K(x) = δ D(x) for δ D the Dirac delta function. This shifts the optical

depth along each skewer according to the peculiar velocity, and does not attempt to include any

further physical effects.

In order to implement eq. (6.6), we determine a matrix of weights Wi j for each skewer to map

its real-space cells τx
j to redshift-space cells τs

i via the matrix equation τs
i = Wi jτ

x
j . The matrix

Wi j depends on the velocities in the skewer as well as the choice of kernel K, and the details of its

calculation can be found in Appendix B.2. Our implementation conserves the integrated optical

depth along each line of sight (ignoring pixels which are shifted to un-observed wavelengths).

The matrix Wi j is near-diagonal and filled mostly by zeros. It can thus be stored in the form of a

sparse matrix, and applied to any additional absorption transitions (see § 6.5.2), reducing both the

computation time and memory requirements of adding RSDs to the skewers.

The addition of RSDs (without thermal broadening) to a sample optical depth skewer is shown

by the transition from the dotted to the solid line in the third panel of Figure 6.1.

Final transmission skewers

In one final stage, we convert from skewers of optical depth τ to transmitted flux fraction F via the

equation:

F(s) = exp
[
− τ(s)

]
, (6.7)

and interpolate onto a wavelength grid of the user’s choice to obtain F(λ ), where λ = λα(1+ z).

These skewers are then written to disc.

This final transformation can be seen in the transition between the solid lines in the third and

fourth panels of Figure 6.1. It is worth noting that, while the signal in the lognormal density

deviation 1+δ and optical depth τ skewers is dominated by over-dense regions, the signal in flux F

becomes saturated (equal to 0) at these points and does not carry a great deal of information. Rather,

the intermediate density regions — where the density is high enough to cause some absorption but

not so high that saturation occurs — are those from which the most information can be gleaned.

6 . 2 . 3 C O M P U TAT I O N A L R E Q U I R E M E N T S

In the realisations presented in this chapter, we specify that CoLoRe generates a 40963 cell box as a

compromise between resolution and memory usage, given the large volume that we must cover in

order to realistically represent a Lyα forest survey. Generating approximately 7.5M QSOs (across
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the whole sky) and drawing subsequent skewers produces a dataset sufficient for a DESI-like survey,

allowing for a significant degree of flexibility in the final survey strategy and number densities. The

computational cost of producing one such dataset is relatively low, provided suitable multi-node,

multi-core computational facilities are available. Running CoLoRe using the input data and options

specified in § 6.4.1 in parallel across 32 Haswell compute nodes (each with 32 cores and 128GB of

memory) on the National Energy Research Scientific Computing Centre’s Cori machine requires

approximately 18 minutes to run, equivalent to approximately 300 CPU hours. The large number

of nodes is necessary to improve the speed of the code and to satisfy its memory requirements — a

total of approximately 920 GB is needed for each run of this size. If such facilities are not available,

then the box size must be reduced or the resolution lowered.

The precise requirements for running LyaCoLoRe depend strongly on the exact choices of

input options. As an example, converting 800,000 skewers — similar to the number that will be

observed by DESI — from CoLoRe’s Gaussian output to realistic transmission skewers including

RSDs (though not thermal broadening effects) requires only 4 minutes when spread across the same

32 nodes mentioned previously. If such computational facilities are not available, then running

LyaCoLoRe is still possible as its memory requirements are much lower than CoLoRe.

A very small test dataset of 1000 skewers is available within the LyaCoLoRe repository. It is

straightforward to run LyaCoLoRe on this data on any standard laptop to generate sample skewers

or to explore the functionality of the code.

6 . 3 PA R A M E T E R T U N I N G

A number of parameters are defined in the various transformations described in § 6.2.2, namely

n, k1, σε(z), τ0(z) and α(z) (see eq. (6.2), eq. (6.3) and eq. (6.5) for definitions). These are all

free parameters, and we would like to be able to choose their values so that our final skewers

have particular properties. Specifically, we aim to match the 1D power spectrum P1D(k,z), mean

transmitted flux fraction F̄(z) and large-scale Kaiser model bias bδ ,F(z) (Kaiser, 1987, see eq. (6.10)

and surrounding discussion for further details) to literature values. Ignoring RSDs and the shape of

the 1D power spectrum would allow the problem to be treated analytically, but unfortunately such

simplifications are unrealistic. As such, it is not obvious how to choose our parameters correctly,

and a more complex process is necessary.

We aim to solve this problem via a minimisation procedure. We first define a function that we

will aim to minimise, and which takes the following steps:
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1. Generate sample skewers in F corresponding to a given set of parameter values using the

methods described in § 6.2.2.

2. Measure the 1D power spectrum, mean flux and large-scale bias of these skewers at a

selection of redshift values.

3. Evaluate the deviation of each measurement at each redshift from literature results.

4. Quantify this deviation with a single number.

In step 2, we measure P1D and F̄ straightforwardly, excluding cells that sit at a rest frame wavelength

above 1200 Å. We measure bδ ,F by calculating the response of F̄ to a small deviation in the average

density field: bδ ,F = (1/F̄) dF̄/dδ (McDonald, 2003). The literature values referred to in step 3 are

the fitting function from the BOSS DR9 P1D measurement from Palanque-Delabrouille et al. (2013),

the fitting function of the mean flux measurement from Becker et al. (2013) and the bias value

and redshift evolution determined by the BOSS DR12 combined Lyα auto- and cross-correlation

analysis in du Mas des Bourboux et al. (2017). Using these literature results as targets, we compute

a weighted error for each measurement at each redshift value. When computing the error on the

P1D, we prioritise the low-k modes by using a k-dependent error weighting. For k < 0.02 s km−1

— where the units indicate that we are working with wavenumbers in velocity space — this is

proportional to 1/(1+(k/k0)
2) where k0 = 0.01 s km−1. This ensures the modes most relevant

for a BAO analysis — those with k . 0.005 s km−1 (McDonald and Eisenstein, 2007; McQuinn

and White, 2011) — are prioritised over less important, high-k modes. Beyond k = 0.02 s km−1,

we ignore any errors as our finite cell size makes it unreasonable to expect realistic power at these

scales, and these modes were not measured by BOSS. We sum the errors in quadrature over all

k-modes using this weighting to produce an overall error on P1D. In step 4, the errors on each

measurement at each redshift value are summed in quadrature, and a single number produced. This

number quantifies how well a given parameter set is able to produce realistic data, as measured by

our specified properties. A standard minimisation routine can then be used to minimise it over the

space of input parameters. We use Minuit (James and Roos, 1975), as implemented by the python

module iminuit4 to do so.

We introduce a number of simplifications to improve the speed of the minimisation. We assume

that logτ0 and logσε follow the functional form:

log(X) = logA0 +A1 log[(1+ z)/(1+ z0)], (6.8)
4Publicly available at https://github.com/iminuit/iminuit.
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where z0 = 3.0, the Ai are scalar parameters, and logarithms are calculated to base ten. In the case of

X = τ0, we fix A1 = 4.5 (Seljak, 2012). Further, we assume that α(z) takes a constant value of 1.65

across redshifts (McDonald et al., 2001). This is equivalent to a value of γ = (2−α)/0.7+1 of 1.5,

in reasonable agreement with literature results (e.g. Ricotti, Gnedin, and Shull, 2000; Hiss et al.,

2018). With these simplifications, we end up with a five-parameter minimisation problem: one

parameter describing the normalisation of τ0(z); two describing the normalisation and z-dependence

of σε(z); and two describing the shape of the 1D power of the small scale fluctuations (n and

k1). At each call of the routine, we produce sample skewers at a point in parameter space, and

compute their 1D power spectra, mean flux and bias parameter values in seven redshift bins of

width ∆z = 0.2 centred at points evenly spaced between z = 2.0 and 3.2. We run this procedure

using ∼ 55,000 skewers to obtain an initial estimate, and increase this to ∼ 220,000 skewers in

order to fine tune the optimisation.

We also introduce a parameter av by which we multiply the velocities in our skewers in order to

match the amount of anisotropy in the clustering of the Lyα forest to literature values. This is not

because the velocities from CoLoRe are incorrect — when using CoLoRe’s unmodified velocities,

we obtain the correct level of anisotropy in the QSO auto-correlation (see Appendix B.1) — but

is a result of the approximations in our recipe to estimate F . We fix av = 1.3 when tuning; it is

computationally costly to leave it free as a change in av requires re-computation of the RSD weights

matrix Wi j (see § 6.2.2). The value is chosen on an ad hoc basis to match approximately the RSD

parameter β (defined in § 6.4.3) measured from BOSS DR12 data (du Mas des Bourboux et al.,

2017).

The final values of the transformation parameters are log[τ0(z)] = log1.48+4.5logx, α(z) =

1.65, log[σε(z)] = log6.02+ 0.276logx, n = 0.732, k1 = 0.0341 and av = 1.3, where x = [(1+

z)/(1+ z0)] and numerical values are rounded to three significant figures where appropriate. These

are the default values used by LyaCoLoRe. The tuning process is effective, matching literature

values of P1D, F̄ and bδ ,F to within 10% at almost all relevant k-modes and z values. As an example,

the P1D measured across ∼ 7.5M skewers is shown in Figure 6.2. We only plot 4 redshift bins and a

limited number of k-modes here for clearer visualisation.

6 . 4 V E R I F Y I N G T H E M O C K S

The primary motivation for creating the LyaCoLoRe mocks is to provide realistic sets of test

skewers for BAO analyses from Lyα forest surveys. Evidently then, it is important to verify that
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Figure 6.2. The 1D power spectrum as measured from one realisation of LyaCoLoRe
mocks. The tuning process aims to match the measured P1D to that from BOSS DR9
data (Palanque-Delabrouille et al., 2013) for k-modes that affect BAO analysis, as de-
scribed in detail in § 6.3. Modes to the left of the dot-dash line at k = 0.01 s km−1 are the
most important in this respect (McDonald and Eisenstein, 2007; McQuinn and White,
2011), and these all lie within 10% of our target P1D, as indicated by the shaded areas.
Modes to the right of the dot-dash line are not prioritised in our tuning procedureand so
are not reproduced as accurately, though these are not important in the context of BAO.

the fundamental physical quantities studied by such analyses are correctly reproduced in the mock

datasets. We thus seek to test that the BAO signal is present and unbiased in our mock datasets.

§ 6.4.1 describes the inputs we use in generating a collection of mock datasets; § 6.4.2 explains how

we measure the correlation functions from each realisation, taking the skewers in F directly from

LyaCoLoRe’s output; and finally § 6.4.3 shows how we fit to a model. We do not visually compare

the correlation functions measured from mocks to those from data, since our mock measurements

are not affected by distortions from continuum fitting, and at this stage we wish to test the methods

of LyaCoLoRe rather than techniques to quantify this distorting effect. Instead we compare fitted

parameter values in order to assess the performance of our mock datasets.

6 . 4 . 1 G E N E R AT I N G R E A L I S AT I O N S

The input power spectrum that we use in step 1 of § 6.2.1 is generated by the Boltzmann solver

CAMB (Lewis, Challinor, and Lasenby, 2000) using the Planck Collaboration’s 2015 parameters for a

flat, ΛCDM cosmology (see column 1 of Table 3 in Planck Collaboration et al., 2016). We generate

the field in a box of 40963 cells, stipulating that this covers a redshift range 0.06 z6 3.79: a volume
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large enough to contain a DESI-like survey. This results in a grid of total size ∼ (9.8 Gpc h−1)3,

with each cell ∼ (2.4 Mpc h−1)3 in dimensions. The QSO number density function is based on

estimates from SDSS-III data in Stripe 82 (Palanque-Delabrouille et al., 2016). This is considered

to represent an optimistic estimate of the photometric capability of targeting for DESI, and results

in ∼ 3.7M QSOs5 above z = 1.8 across the whole sky. We use as an input QSO bias the fitting

function defined in equation 19 of Gontcho A Gontcho et al. (2018), which is based on clustering

measurements from the BOSS DR12 QSO sample (Laurent et al., 2016). When running LyaCoLoRe,

we use a cell size of 0.25 Mpc h−1, and tune the parameters of our transformations according to the

methods described in § 6.3.

For the purposes of this work we generate 10 such realisations, each with unique random seeds,

and stack our results in order to test LyaCoLoRe as stringently as possible. This is approximately

equivalent to 30 times the final number of Lyα QSOs with z≥ 2.1 that will be observed by DESI. It

is worth noting that the signal to noise ratio will be significantly greater than 30 times that of DESI,

as our skewers of F(λ ) do not include any instrumental noise, nor do they require any continuum

fitting (as mentioned in § 6.2).

6 . 4 . 2 M E A S U R I N G C O R R E L AT I O N F U N C T I O N S

We test the BAO signal in our mock realisations in the standard way, by measuring correlation

functions using the contrast in flux transmission:

δF(λ ) =
F(λ )

F̄(λ )
−1, (6.9)

where F̄(λ ) is the mean value of F(λ ) in each pixel over all skewers for which that cell corresponds

to rest-frame wavelength λr ∈ [1040,1200] Å. The skewers of F(λ ) are taken straight from the

processes described in § 6.2, with no further steps such as addition of continua or instrumental

noise. This allows us to test the methods of § 6.2 to as high a degree of precision as possible, but

consequently our covariance matrices may not necessarily be representative of true measurements.

In order to assess the realism of the mocks’ covariance matrices, these additional systematic effects

must be added to our synthetic data, as was done in du Mas des Bourboux et al. (2020), and as is

discussed briefly in § 7.2.

We would like to measure the 3D Lyα auto-correlation and the 3D Lyα-QSO cross-correlation,

5This is lower than the 7.5M quoted in § 6.2.3 as we no longer require the previously mentioned flexibility to adapt to
different observing strategies in our realisations, and thus can reduce the QSO number density to more realistic values
(approximately 59 QSOs per square degree).
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the standard measurements made by recent Lyα BAO analyses from BOSS and eBOSS. Both are

estimated using the Package for IGM Cosmological-Correlations Analyses (picca)6.

We measure these correlations separately in 3,072 HEALPix (Górski et al., 2005) pixels on the sky

for each of the 10 realisations, and treat the resultant measurements as a set of 30,720 independent

subsamples. In order to compute the correlation functions more quickly, we rebin pixels in our

final transmission skewers into larger pixels of width 3× 10−4 log(Å) in log-wavelength. This

enables us to use a larger number of skewers and thus reduce our errors, without compromising the

large-scale properties of the correlations or incurring large computational costs.

Our computation of the 3D Lyα auto-correlation follows that of recent Lyα forest BAO analyses

(Bautista et al., 2017; de Sainte Agathe et al., 2019; du Mas des Bourboux et al., 2020). We first

define a grid of bins in parallel and perpendicular separation between pairs of pixels — r‖ and r⊥

respectively — where each bin is 4 Mpc h−1 × 4 Mpc h−1 in size, and the maximum separation

is 200 Mpc h−1 in each direction. Pixel pairs are assigned to one of these bins by using a fiducial

cosmology to convert from wavelength and angular separations to comoving distances parallel and

perpendicular to the line-of-sight. The correlation is then computed as a weighted sum of products

of pixel pairs of δF within each bin, where the weights depend on a number of factors, as described

in eq. (4) and eq. (7) of du Mas des Bourboux et al. (2020). We restrict ourselves to include

only contributions from the Lyα absorption in the Lyα region, ignoring delta pixels outside the

rest-frame wavelength range [1040,1200] Å. The covariance matrix is estimated straightforwardly

by calculating the scatter between our set of 30,720 subsamples.

The 3D Lyα-QSO cross-correlation is also computed in line with recent analyses of BOSS

and eBOSS data (du Mas des Bourboux et al., 2017; Blomqvist et al., 2019; du Mas des Bourboux

et al., 2020), as a weighted sum of pixels of δF within bins of parallel and perpendicular separation.

We use the same bin size as in the auto-correlation, but are able to extend our minimum value of

r‖ to −200 Mpc h−1 as the pixel-pixel pair symmetry of the auto-correlation is not present in the

pixel-QSO pairs of the cross-correlation. As for the Lyα auto-correlation, we restrict the rest-frame

wavelength range of our δF pixels to [1040,1200] Å, and we estimate our covariance matrix from

the scatter between our 30,720 subsamples.

6 . 4 . 3 F I T T I N G T H E C O R R E L AT I O N F U N C T I O N S

Having measured the 3D Lyα auto- and Lyα-QSO cross- correlations, we fit a model to our

measurements to obtain the location of the BAO peak and check that no significant shift has been

6Publicly available at https://github.com/igmhub/picca.
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introduced. We also seek to measure the bias parameters of our tracers: Lyα flux F and QSOs.

These are defined by the relationship between the power spectra of the tracers, PF(k) and PQSO(k),

and the power spectrum of dark matter P(k) (Kaiser, 1987):

PF(k) = [bδ ,F +bη ,F f µ
2]2P(k) (6.10)

PQSO(k) = [bδ ,QSO + f µ
2]2P(k). (6.11)

Here, the large-scale biases of flux and QSOs are bδ ,F and bδ ,QSO. The parameter bη ,F is the

velocity gradient bias of flux, which serves to quantify the effect of RSDs. This is often expressed

alternatively using β = f bη ,F/bδ ,F . The value of bη ,QSO is 1 by default as QSOs are conserved

under RSDs and so it is held fixed (Kaiser, 1987). This is not the case for Lyα flux F as the

mapping to redshift space occurs in the Lyα optical depth τ , which is then related to our observable,

F , by a non-linear relationship F = e−τ (see McDonald et al., 2000; McDonald, 2003; Seljak, 2012,

and references therein). The Lyα-QSO cross- power spectrum follows naturally from eq. (6.10)

and eq. (6.11) as:

PF×QSO(k) = [bδ ,F +bη ,F f µ
2][bδ ,QSO + f µ

2]P(k). (6.12)

We fit a model of the correlation functions to each of the measurements individually, and then

to both correlations jointly. We use the same models as recent eBOSS analyses (de Sainte Agathe

et al., 2019; Blomqvist et al., 2019) but ignore terms relating to systematics not present in our

realisations, such as metal absorbers and high column density systems (HCDs). As we do not add

continua to our skewers, we need not worry about the distortion of the correlations by the removal

of long wavelength modes in the continuum fitting process, as occurs in real analyses. Thus, we do

not need to consider distortion matrices, the standard method for taking these effects into account

(introduced for the auto- and cross- correlations respectively in Bautista et al., 2017; du Mas des

Bourboux et al., 2017). The relevant terms are described using Kaiser models (Kaiser, 1987), as

described in § 4.1 of de Sainte Agathe et al. (2019) for the Lyα auto-correlation, and § 5.1 of

Blomqvist et al. (2019) for the Lyα-QSO cross-correlation. We use the same cosmology as used to

generate the input power spectrum of CoLoRe to produce the smooth and peak components of the

fiducial model power spectrum.

The fit is carried out leaving free the parameters describing the position of the BAO peak in the
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perpendicular and parallel directions:

α‖ =
DH(z)/rd

[DH(z)/rd ]fid
, α⊥ =

DA(z)/rd

[DA(z)/rd ]fid
, (6.13)

where DH(z) = c/H(z), as well as parameters describing the bias and RSDs of the Lyα-forest, bη ,F

and βF = f bη ,F/bδ ,F . We also leave free 2 parameters that describe the smoothing of the model

power spectrum in the parallel and perpendicular directions, which help to account for the effects

of the low-resolution of our CoLoRe grid. When fitting the Lyα-QSO cross-correlation individually,

we fix the value of the QSO bias bδ ,QSO to the input value in order to avoid degeneracies, though

when we fit jointly with the Lyα auto-correlation we are able to leave it free.

Having defined our models, the fits are then carried out using picca. We fit only on separa-

tions 40 < r [Mpc h−1]< 160 as the lognormal density approximation used in both CoLoRe and

LyaCoLoRe begins to break down on scales smaller than this, and we are not able to fit the shape

of the correlation function well at these separations. Further, the QSOs cannot be expected to be

correctly clustered on the smallest scales due to the low-resolution of the CoLoRe box. To determine

an effective redshift of our measurements, we consider pixel-pixel/pixel-QSO pairs which fall in

bins A which satisfy 80 < rA [Mpc h−1]< 120, i.e. the bins that cover the BAO peak. The value of

zeff is then given by a weighted average of the redshifts of pairs in these bins.

The measured Lyα auto- and Lyα-QSO cross-correlations are shown in the left and right panels

of Figure 6.3 respectively, along with the model from the combined fit7. We plot the correlations

as r2ξ (r) in bins of |µ|= |r‖|/r, where |µ| close to 0 indicates correlations close to perpendicular

to the line of sight, and |µ| close to 1 indicates correlations close to parallel to the line of sight.

In each |µ| bin, we may clearly see the BAO peak at a separation of ∼ 105 Mpc h−1, on top of

a broadband correlation. The anisotropy indicated by the difference between µ bins arises as a

result of RSDs, which affect both the broadband and the peak of the correlation (e.g. Kaiser, 1987;

Kirkby et al., 2013) due to the addition of apparent clustering in the parallel direction. The model

appears to be a good fit to the measurement on the scales that we fit over, and the BAO peak is

correctly placed. The two measurements deviate slightly from the model either side of the BAO

bump in the highest |µ| bin, but this deviation is very small and is noticeable due to the extremely

small error bars on our measurements.

The parameters from the individual and combined fits are shown in Table 6.1. The BAO peak

location parameters α⊥ and α‖ for each fit are all consistent with 1 to within 1σ . Any deviation in

7Note that error bars are present for all points, but are often exceedingly small and thus obscured by the points
themselves.
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Figure 6.3. Correlation functions measured from 10 realisations of LyaCoLoRe datasets
combined, and the best fit lines with parameters as described in the third column of
Table 6.1. The left panel shows the Lyα auto-correlation, while the right panel shows the
Lyα-QSO cross-correlation. Each plot panel shows the same 4 bins in |µ|= |r‖|/r. Note
that the correlations presented here do not have any distortion from continuum-fitting and
so should not be visually compared with the equivalent plots from recent BOSS/eBOSS
data.

the α parameters from 1 is certainly less than 0.2%, and so can be considered insignificant in the

context of a DESI-like survey. Thus, the mock production pipeline up to this stage can be said to

introduce no clear systematic bias within the capabilities of a current or near-future instrument.

In order to compare the values of biases and β s to BOSS DR12 values (table 4 of du Mas

des Bourboux et al., 2017), we first use the published functional forms of each parameter’s

redshift evolution to match the effective redshift of the BOSS DR12 measurements to that of

our measurements. Having done so, we find that the two sets of values are very similar, with

our measurements all lying within the 1σ errors on the BOSS DR12 values. In particular, the

values of bδ ,F in each of our fits are almost identical to the BOSS DR12 value, demonstrating the

effectiveness of our tuning of this parameter (see § 6.3). We do not compare the value of βQSO to

BOSS DR12 measurements as our input QSO bias takes a different value at this redshift. However,

the value of bδ ,QSO deduced from the joint fit is consistent with the input value (as shown at the

bottom of the column showing the Lyα-QSO only fit). As such, we can consider the mocks to fulfil

the basic criteria required of them, and thus they appear sufficient for a DESI-like survey. We do

not assess the χ2 of the fits as we do not expect our covariance matrices to be representative of

those one would expect from a real survey given the lack of noise in our skewers.
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LyaCoLoRe BOSS DR12
Parameter Lyα Lyα-QSO Lyα + Lyα +
name Lyα-QSO Lyα-QSO
α‖ 1.000±0.002 1.001±0.002 1.000±0.001
α⊥ 0.998±0.002 1.000±0.002 0.999±0.001
bη ,F −0.204±0.0004 −0.201±0.0009 −0.203±0.0004 −0.206±0.012
βF 1.627±0.008 1.624±0.012 1.624±0.007 1.650±0.081
βQSO 0.261 0.261±0.0007
bδ ,F −0.121±0.0006 −0.120±0.0009 −0.121±0.0005 −0.121±0.004
bδ ,QSO 3.701 3.700±0.009

Table 6.1. Parameters from model fits of the Lyα auto-correlation and Lyα-QSO cross-
correlation functions measured from 10 realisations of LyaCoLoRe mocks combined. The
relevant results from the BOSS DR12 combined fit (du Mas des Bourboux et al., 2017) —
those to which our values of bδ ,F and bη ,F are tuned — are presented in the rightmost
column at the same effective redshift as our measurements. The parameters in the first
segment of the table are those used in the minimisation process which determines the best
fit to our correlations, while those in the second segment are calculated subsequently. The
value of βQSO is fixed when fitting the Lyα-QSO cross-correlation to avoid degeneracies,
with its value chosen such that bδ ,QSO = f/βQSO matches our input value.

6 . 5 A D D I N G S E C O N D A RY A S T R O P H Y S I C A L E F F E C T S

A key purpose of creating mock datasets is to quantify the impact of secondary astrophysical effects

on our measurements so that we may assess any biases that they could induce in our cosmological

inference. When generating realisations of the synthetic data, we may choose to add or not to add

different effects to each realisation, or to vary the strength of a given effect across a range of values.

The resultant impact on BAO measurements can then be quantified. In Lyα forest analyses, two of

the most pertinent effects are the presence of high column density systems (HCDs) and additional

absorption transitions. LyaCoLoRe is able to compute both of these effects, and the methods it

uses to do so are described in § 6.5.1 and § 6.5.2 respectively (alternative implementations of these

effects are also possible). Once computed, LyaCoLoRe stores skewers of metal absorption and a

table of HCDs in its output. These can then be added to the Lyα skewers during subsequent stages

of the pipeline by packages such as desisim.

We do not present here a full study of the effects of HCDs and additional transitions on a BAO

analysis. Rather, we simply illustrate in § 6.5.3 that their implementations within LyaCoLoRe are

broadly correct and achieve the correct levels of clustering. We leave the study of these effects as

systematics in a BAO analysis for future work.

In addition to HCDs and metal absorption, there are a number of further astrophysical effects
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that we may wish to reproduce in our mock datasets. In particular, the presence of ionising sources

such as galaxies may cause variations in the photoionisation rate in the IGM (e.g. McQuinn, Oh,

and Faucher-Giguère, 2011; Pontzen, 2014; Gontcho A Gontcho, Miralda-Escudé, and Busca,

2014). Equally, on larger scales, the reionisation of helium at z∼ 3 may affect the temperature of

the gas in large “bubbles” around ionising sources (McQuinn, Oh, and Faucher-Giguère, 2011;

Meiksin and Tittley, 2012). Both of these processes induce spatial fluctuations in the Lyα optical

depth that may yield additional contributions to measured correlations, though the impacts are

small compared to HCDs and metal absorption, and we do not attempt to include them in our mock

skewers at this stage.

6 . 5 . 1 A D D I N G H C D S

HCDs occur in particularly dense regions of gas, and contain a number of subclasses determined

by HI column density. Typically, we define regions with column density NHI > 2×1020 cm−2 as

damped Lyα absorbers (DLAs), and regions with column density 1017.2 < NHI < 2×1020 cm−2 as

Lyman limit systems (LLSs, Wolfe et al., 1986). In detailed Lyα forest analyses, it is important to

be able to identify HCDs as their high densities broaden their absorption profiles, impacting on

inferred values of F over a significant wavelength range (Font-Ribera and Miralda-Escudé, 2012;

Rogers et al., 2018). Further, HCDs are of scientific interest in and of themselves (e.g. Pettini et al.,

1997; Prochaska et al., 2002; Padmanabhan, Choudhury, and Refregier, 2016; Pérez-Ràfols et al.,

2018b; Pérez-Ràfols et al., 2018a). As such, being able to add HCDs to our mocks is important in

maximising their realism.

We first determine potential HCD locations by computing a threshold value of the Gaussian

field, set by an input bias bHCD(z). In our realisations, we choose bHCD(z) = 2.0 to be constant

with redshift, and in line with Pérez-Ràfols et al. (2018b). This picks out peaks in the field that

are sufficiently dense to host an HCD. We then Poisson sample the potential locations according

to an input number density nHCD(z). This number density is imported from the default model

of the IGM physics package pyigm8 (Prochaska et al., 2017), which is fitted to a selection of

literature results (summarised in Table 1 of Prochaska et al., 2014). The sampling is carried out

before adding small-scale power (see § 6.2.2), as we would like the HCDs to correlate with the 3D

fluctuations rather than the 1D extra power. A column density is then allocated to each HCD using

a given redshift distribution — again from the default model of pyigm — and a radial velocity is

determined using CoLoRe’s output. The resulting catalogue of HCDs can then be interpreted by

8Publicly available at https://github.com/pyigm/pyigm.
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a package such as desisim, which is able to calculate the absorption profile of the HCD using a

Voigt template, and insert it into the final spectrum.

6 . 5 . 2 I N C L U D I N G A D D I T I O N A L A B S O R P T I O N T R A N S I T I O N S

As with HCDs, absorption from additional transitions are an important level of detail to add to

our mocks and are of significant scientific interest (e.g. Pieri et al., 2014; Blomqvist et al., 2018;

Gontcho A Gontcho et al., 2018; du Mas des Bourboux et al., 2019). Additional transitions have

a rest-frame absorption wavelength different to that of Lyα , and so absorption from gas at the

same redshift appears at different observed wavelengths in spectra. Conversely, absorption from

two different transitions can appear at the same observed wavelength even though the regions of

gas hosting the absorbers are far apart physically. As a result, the presence of such absorption

transitions acts to contaminate our measurements of Lyα flux, and thus our correlation functions

and resultant BAO measurements. Such transitions include Lyman-β (Lyβ ), as well as from silicon,

oxygen and carbon gas, for example.

Similar to the method to add HCDs described in § 6.5.1, it would also be reasonable to place

additional absorption transitions using a Poisson-sampled “density-peak” approach, as metals are

typically produced in high-density regions of the Universe. However, we choose to follow the

methods of previous works (Slosar et al., 2011; Bautista et al., 2015), assuming that the optical

depth of each additional transition is proportional to that of the Lyα absorber. In the context of these

mocks, the most important feature of these additional transitions that we seek to replicate is the

strength of their 3D clustering, as it is this that will quantify any impact upon BAO measurements.

In order to do so, we simply require an absorption strength (relative to Lyα) and a rest frame

wavelength for each additional transition that we wish to include. Having calculated the skewers of

optical depth in real space, we scale them differently for each absorption transition according to the

transition’s relative strength. For an additional transition X , we obtain τX = AX τα , where AX is the

relative strength and τα is the Lyα optical depth as defined in eq. (6.5). We then apply RSDs (using

the same weights matrix Wi j as for Lyα), and convert to FX(λ ) separately for each X according to

its rest frame wavelength. For each line of sight, the separate FX(λ ) skewers are then interpolated

onto a common wavelength grid and are combined multiplicatively.

This method ensures that RSDs are correctly applied to each additional absorption transition,

and we may tune the absorption strength in order to achieve the correct large-scale bias — and thus

the correct 3D clustering — for each transition. A small selection of additional transitions and their

relative strengths are shown in Table 6.2. These are the transitions most important to a Lyα BAO
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Name Rest frame Relative
wavelength [Å] absorption strength

Lyα 1215.67 1.0
Lyβ 1025.72 0.1901
SiII (1260) 1260.42 3.542×10−4

SiIII (1207) 1206.50 1.8919×10−3

SiII (1193) 1193.29 9.0776×10−4

SiII (1190) 1190.42 1.28478×10−4

Table 6.2. Details of a small selection of additional absorption transitions that can be
used in LyaCoLoRe. The absorption strength for each absorber X has been tuned to
match approximately the bias value bδ ,X found in literature (Bautista et al., 2017; du
Mas des Bourboux et al., 2017; de Sainte Agathe et al., 2019). It is possible to add more
absorbers straightforwardly, but the absorption strengths have not been calibrated beyond
those listed above. These absorbers are those included in the skewers from which the
correlation function in Figure 6.4 is measured.

analysis, though further transitions can be added straightforwardly if needed. These strengths have

been tuned to approximately match bias values presented in the literature (Bautista et al., 2017; du

Mas des Bourboux et al., 2017; de Sainte Agathe et al., 2019).

6 . 5 . 3 T E S T I N G A S T R O P H Y S I C A L E F F E C T S

We assess the methods of § 6.5.1 and § 6.5.2 by first computing the 3D Lyα-HCD cross-correlation.

The methods used to do so are largely the same as used to compute the 3D Lyα-QSO cross-

correlation, as described in § 6.4.2. One significant difference is that we restrict the HCDs

in our calculation of the Lyα-HCD cross-correlation to lie in the rest frame wavelength range

[1040,1100] Å, far from the background QSO. This restriction is necessary to prevent the correlation

between Lyα flux and QSOs from significantly affecting our measurements close to the line of

sight, as is discussed further in Appendix B.3. An effect can still be seen in the two µ-bins closest

to the line of sight at large values of r, though this is mostly beyond the fitted range and so we are

still able to measure the degree of clustering in the HCDs well. Future studies may prefer to model

this effect in order to avoid reducing the HCD catalogue in this way, but such work is beyond the

scope of this analysis. As in § 6.4, we measure correlations on each of our 10 realisations, and

combine the measurements.

The measurement of the Lyα-HCD cross-correlation is shown in the right panel of Figure 6.4.

Here, we fit for a model in the same way as for the Lyα-QSO cross-correlation. Carrying out

a combined fit with the Lyα auto-correlation from § 6.4 allows us to measure the HCD bias
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Figure 6.4. Correlation functions measured from 10 realisations of LyaCoLoRe combined,
demonstrating the additional astrophysical effects that can be included in its skewers.
The left panel shows the flux auto-correlation measured from skewers including metal
absorption, from which we measure the metal absorber biases presented in Table 6.3. The
right panel shows the Lyα-HCD cross-correlation. The subtleties of this measurement
— including the discrepancy at large-r — are discussed in Appendix B.3. Note that the
correlations presented here do not have any distortion from continuum-fitting and so
should not be visually compared with the equivalent plots from recent BOSS/eBOSS
data.

bδ ,HCD(zeff) = 2.26±0.02. Strictly, this is not consistent with the redshift-constant input value of

bδ ,HCD = 2.0 (as motivated by Pérez-Ràfols et al., 2018b). There are a number of potential reasons

for such a shift, but given the errors on current measurements of bδ ,HCD from data (approximately

10% in Pérez-Ràfols et al., 2018b), we do not investigate the agreement further at this stage.

We then compute the 3D auto-correlation from skewers of F that include contributions from

the additional absorption transitions in Table 6.2 (on top of Lyα absorption). The method used to

do so is identical to that described for the 3D Lyα auto-correlation in § 6.4.2. We only include

contributions from pixels that lie in the rest-frame wavelength range [1040,1200] Å, and so we do

not include any absorption from the Lyβ absorber as its rest-frame wavelength is below this range.

As such, from here on we refer to the additional absorption transitions as “metals”. As in § 6.4, we

measure correlations on each of our 10 realisations, and combine the measurements.

The measurement of the auto-correlation with metal absorbers is shown in the left panel of

Figure 6.4. By comparison with Figure 6.3, the effect of including these metals in the skewers

is clearly significant, particularly in the near-line of sight 0.95 < |µ|< 1.0 bin. Notably, we can
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bias ×103

Absorber LyaCoLoRe BOSS DR12 eBOSS DR14
SiII (1260 Å) −1.70±0.04 −1.5±1.2 −2.5±1.3
SiIII (1207 Å) −3.3 −3.3±1.3 −8.2±1.0
SiII (1193 Å) −3.28±0.03 −3.5±0.9 −4.6±1.0
SiII (1190 Å) −4.55±0.03 −4.4±0.9 −5.1±1.0

Table 6.3. The biases of the metal absorbers measured from our realisations of
LyaColoRe, along with the values from BOSS DR12 (Bautista et al., 2017) and eBOSS
DR14 (de Sainte Agathe et al., 2019) for comparison. The bias of SiIII (1207) is held
fixed to the DR12 value as the “bump” that it creates in the correlation function is at
r = 21 Mpc h−1, below the minimum separation of 40 Mpc h−1 used in our fits. The
values from LyaColoRe are all within 1σ of those from BOSS DR12, indicating that the
absorption strengths used in our realisations (see Table 6.2) result in the correct levels of
large-scale clustering.

clearly see a peak at approximately 55-60 Mpc h−1 as a result of SiII (1190 Å) and SiII (1193 Å)

absorption, as well as a peak at approximately 21 Mpc h−1 from SiIII (1207 Å). This final peak

is not included in our fit as it is below the minimum separation. Less visually obvious, but more

important to the BAO analysis, is the effect of absorption from SiII (1260 Å), which causes a bump

at 105 Mpc h−1, very close to the BAO peak.

In our fit of this correlation, we model the effect of metal absorbers in the same way as

in de Sainte Agathe et al. (2019), summing contributions to the model power spectrum from each

combination of pairs of absorbers. In Table 6.3, we show the biases for each of our metal absorbers,

as well as the values from BOSS DR12 (Bautista et al., 2017) and eBOSS DR14 (de Sainte Agathe

et al., 2019) for comparison. The bias of SiIII (1207 Å) is held fixed to the DR12 value as the peak

that it creates in the correlation function is at r = 21 Mpc h−1, below the minimum value used in

our fits. The LyaColoRe values sit within 1σ of those from BOSS DR12, demonstrating that the

levels of clustering given by the absorption strengths in Table 6.2 are similar to those found in data.

Of course, each absorption strength can be tuned further so that the bias of the relevant absorber

more closely matches any given value.

6 . 6 S U M M A RY & C O N C L U S I O N S

In this chapter we have presented LyaCoLoRe, a tool for creating mock Lyα forest datasets when

used in conjunction with a Gaussian random field code such as CoLoRe. We first use CoLoRe to

generate skewers from a Gaussian random field, avoiding the use of N-body or hydrodynamical

simulations due to the limited volume and high computational cost of such methods. LyaCoLoRe is
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then able to transform the output into realistic skewers of transmitted flux fraction, with a number

of properties defined by an automatic tuning process. The process is computationally efficient,

making it suitable for generating large numbers of realisations of mocks with different input data

and parameters.

We then demonstrate the effectiveness of LyaCoLoRe’s output, generating a number of skewers

equivalent to approximately 30 realisations of DESI and measuring the Lyα auto- and Lyα-QSO

cross-correlations. Fitting these measurements with an appropriate model gives BAO peak positions

that are consistent with the input cosmologies to within 0.2%, and certainly within the capabilities

of an instrument such as DESI. In addition, the biases of the Lyα forest and of QSOs are shown

to be very similar to those derived from BOSS DR12 data. As such, we conclude that the mock

datasets generated by LyaCoLoRe are suitable for the BAO analyses of current and upcoming

surveys such as eBOSS and DESI.

Finally, we demonstrate two additional capabilities of the LyaCoLoRe package in adding

correlated high column density systems (HCDs) and additional absorption transitions to the skewers.

We leave a full analysis on the impact of such features on a BAO analysis to a future work, but

demonstrate that the HCDs are clustered approximately correctly on large scales, and that the

additional transitions affect the Lyα auto-correlation in the expected manner.

Mock datasets such as those generated by LyaCoLoRe are of use to the BAO analyses of Lyα

forest surveys in a number of ways. They are able to provide robust tests of analysis pipelines, while

they can also help in assessing the impact of astrophysical effects — such as HCDs and additional

absorption transitions — on BAO measurements. Finally, they can be used to provide evidence

when making decisions regarding the planning of large surveys, such as in targeting and survey

strategy. As such, we hope that LyaCoLoRe will be of use for Lyα BAO surveys both present and

future.
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C H A P T E R 7

A P P L I C AT I O N S

Thus far in this thesis, we have discussed strategies, techniques and datasets of direct relevance to

spectroscopic QSO surveys present and future. With the eBOSS survey having recently concluded,

and the first spectra from DESI having been taken in early 2020, we now present applications of

the ideas introduced in earlier chapters to these datasets, both as part of ongoing work and from

existing publications. In § 7.1, we discuss the initial results of applying the QSO selection strategies

of Chapter 5 to DESI’s first QSO target data. We provide a tentative insight into the classifiers’

future performance levels, and suggest some areas for investigation once further data is available.

Then, in § 7.2, we present the use of LyaCoLoRe mock datasets during the Lyα BAO analysis from

the final eBOSS data release, highlighting the verification of the analysis pipeline that they enabled.

Finally, we go on to discuss the application of BAO results to constrain cosmological parameters,

focusing on the Hubble parameter H0. BAO is of particular use in this context as, in conjunction

with data from big bang nucleosynthesis, it is able to constrain H0 independent of other leading

measurements, and may thus help to address the heavily debated “Hubble tension”. In § 7.3, we

explain how BAO is able to provide such a constraint, before demonstrating this approach by

applying it to eBOSS data and DESI forecasts.

The discussion in subsequent sections is based partly on ongoing work, and partly on work presented

in publications of which I am a co-author. At the start of each section, I describe in italics the status

of the project in question, and describe the contributions I have made to it. In each case, I then

summarise important methods and results of the project in my own words.
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7 . 1 A P P LY I N G QuasarNET T O I N I T I A L D E S I D ATA

Between March and September 2020, DESI was shut down due to the coronavirus pandemic, forcing

a substantial delay to operations and preventing any observations from taking place. Fortunately, a

small amount of data was taken before the shutdown, which has provided a tantalising initial test

set for the strategies described in Chapter 5. The number of spectra available is small, but these

early tests are still of great interest in understanding DESI as an instrument, as well as the data

reduction pipeline and the classification tools available to us.

The work presented in this section is ongoing, and I highlight a number of questions which may be

addressed once further DESI data is available. These provide numerous routes to explore ahead of

a potential future publication.

7 . 1 . 1 I N I T I A L D E S I D ATA

During March 2020, DESI’s “SV0” campaign was carried out, marking the beginning of the very

first survey validation (SV) observations. Spectra were taken in ten areas of the sky, known as

“tiles”, in a range of different locations within DESI’s footprint, as shown in Figure 7.1. Targets

for observation were selected from data release 81 of the DESI Legacy Imaging Surveys (see Dey

et al., 2019, for a summary), with three tile chosen to include quasar targets (alongside luminous

red galaxy targets): 68000, 68001 and 68002, displayed in red in Figure 7.1. Within these tiles,

QSO targets were selected in line with DESI’s “baseline” QSO target selection strategy, which

uses a random forest to select objects from photometric colour space. Further targets were then

added to this to produce an “extended” strategy, in which secondary colour cuts were used to

include additional objects, and restrictions were loosened on both the definition of point-source

objects and the limiting magnitudes of objects (Yèche et al., 2020). This extended selection will be

pursued during DESI’s SV phase, and will inform decisions on target selection procedures for the

main survey. It includes in its selection a number of fainter objects than in the baseline selection,

resulting in lower-SNR spectra and potentially a greater fraction of contaminants. With this in

mind, it is worth noting that tile 68002 lies close to the galactic plane, and overlaps the Saggitarius

Stream. As such, it is expected that target selection for this tile may contain a greater level of stellar

contamination than an average DESI tile, for the baseline and extended selections alike.

Observations of these targets were carried out successfully, with excellent observing conditions

yielding above-average SNR in spectra. Subsequently, the spectra were processed by the DESI

1Detailed description available at https://www.legacysurvey.org/dr8/description/.
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Figure 7.1. Sky map showing the locations of tiles observed by DESI during March
2020 as part of the “SV0” programme. Tiles in which QSOs were targeted are shown in
red. Of particular note is tile 68002, spectra from which were put through an extensive
visual inspection process, and which we use to test our QSO target classifiers. Figure
credit: DESI Internal

pipeline, and released to the collaboration. Visual inspection (VI) was then carried out on tile 68002

by a team of DESI volunteers, with QSO experts used to check the classifications and redshifts

provided by the team. Final VI results were shared with the collaboration, including a VI redshift

confidence between 0 and 4, of which classifications with confidence of at least 2.5 were deemed

“confident”. From now on, we consider only spectra from tile 68002, and only those which met this

VI confidence threshold. This left 696 confidently classified QSO targets, which we could use to

test our classifiers and provide further insight into optimal classification strategies. For each QSO

target, we could apply our classifiers either to coadded spectra, or to spectra from one of the three

exposures taken of this tile.

7 . 1 . 2 C L A S S I F I C AT I O N R E S U LT S

As discussed in Chapter 5, the classification of QSO targets from both single-exposure and coadded

spectra are of direct relevance to DESI, for the purposes of selecting high-z QSOs for reobservation

and constructing QSO catalogues respectively. When looking to classify the initial DESI spectra

from tile 68002, we trained two QuasarNET models, one on coadded QSO target spectra from

BOSS DR12 and one on randomly-chosen single exposures of the same objects. In each case,

approximately 63,000 spectra were used for training, roughly equivalent to the number of QSO
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target spectra which will be visually inspected in DESI’s SV phase. As such, these models are

directly equivalent to those used in § 5.3, the only difference being that the BOSS training spectra

were truncated at 9800 Å in this instance, mimicking the upper wavelength limit of DESI. We then

applied these two QuasarNET models and redrock to both the final coadded spectra from tile

68002, as well as the three sets of single exposures, and present our results below.

Coadded spectra

We first use coadded spectra from tile 68002 to provide a brief overview of the performance of

QuasarNET and redrock on DESI data. Here, we use only the 343 spectra from objects selected

by the “baseline” target selection procedure, and we use the QuasarNET model trained on coadded

spectra from BOSS. In Figure 7.2, we show scatter plots in a plane defined by the classifier redshift

on the y-axis, and the “true”, VI-determined redshift on the x-axis. Results for QuasarNET are in

the left panel while results for redrock are in the right panel. For QuasarNET, we classify objects

as QSOs if at least one emission line is identified with confidence c > 0.5, while for redrock

we do so if redrock’s best fit template is a QSO, and no ZWARN flags are raised. These selection

strategies are the same as the “QN” and “RR” strategies used in § 5.3.2. For both classifiers, we

display in this plane the 264 objects confidently identified by VI as QSOs, colouring the markers

according to the success of the two classification strategies. The orange points represent true QSOs

which were correctly identified as such, and for which the redshift was correctly estimated. Here,

we allow for a deviation of up to 6,000 kms−1 from the VI redshift (as used throughout Chapter 5),

which we indicate with a shaded grey region around a central dashed line in both panels. QSOs

which were missed by each classifier are displayed as pale blue crosses, while QSOs which were

correctly identified but received a catastrophic redshift failure are shown as dark blue crosses. In the

bottom-right of each panel, we display the number of QSOs in each of these three classes. Further,

each of these numbers is calculated for QSOs with low and high VI redshifts separately, with the

dividing redshift between these categories set at z = 2.1 and indicated by the vertical, dotted grey

line. These results are then presented in brackets below the full-sample values.

Clearly, the results presented here demonstrate reduced performance levels compared to those

seen on BOSS data. We may calculate the completeness of the sample in each case via the ratio

ncorrect/ntotal, yielding values of 94.3% for QuasarNET and 84.8% for redrock. This is noticeably

lower than the equivalent results for BOSS data, where QuasarNET achieves 99.4% and redrock

91.3%. Of course, these new results based on a sample of only 264 QSOs, and so one would expect

variation due to Poisson noise to be 1/
√

N ' 6%. As such, these reduced performance levels lie on
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Figure 7.2. QSOs observed in tile 68002 of DESI’s SV0 programme under the base-
line target selection, shown as points in the zclassifier-zVI plane for classifications from
QuasarNET and redrock in the left and right panels respectively. In each panel, QSOs
for which the classifier was able to provide a correct classification and redshift are shown
as orange points, while those which the classifier missed are represented by pale blue
crosses. Those which were correctly identified as QSOs by the classifier but for which
the redshift estimate was a catastrophic failure (dv > 6,000 kms−1) are shown as dark
blue crosses. The number of QSOs in each of these categories is shown in the bottom
right of each panel, with low-/high-z splits in brackets beneath the overall numbers.

the boundary of significance, and should be further investigated upon the arrival of additional data.

For a substantial proportion of these failures, redrock was able to provide the correct redshift, but

classified the object as a galaxy rather than a QSO. This is likely due to the sparsity of redrock’s

low-z QSO templates, providing further motivation for the development of improved templates

in this redshift range. Equivalently, QuasarNET was able to correctly estimate the redshift of the

majority of QSOs it missed, but did not identify any emission lines with confidence c > 0.5 and so

did not classify these objects as QSOs. In addition to these objects, redrock also misses a number

of QSOs at 1 . z . 3 which for which it is unable to provide an accurate redshift, most of which

have underestimated redshifts. This is not the case for QuasarNET, for which all bar one of its

missed QSOs have accurate redshift estimates.

While redrock misses a far larger number of QSOs than QuasarNET, it also produces far
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fewer catastrophic redshift failures. In particular, at low redshift, QuasarNET has six such failures

whereas redrock has none. Looking at the QuasarNET results more closely, it appears that the

majority of the catastrophic failures sit just below the lower edge of the shaded grey area, showing

that QuasarNET underestimates these objects’ redshifts with an error of magnitude slightly greater

than 6000 kms−1. This is indicative of a broader trend within the QuasarNET results: we can

see a general tendency for QuasarNET to underestimate QSOs’ redshifts by looking at the orange

points, a trend which is particularly visible at ztrue ∼ 3. This bias in QuasarNET’s redshifts may

be introduced by the difference in wavelength grids in BOSS and DESI data: while BOSS used

a grid spaced evenly in log(λ ), DESI uses a grid spaced evenly in λ . When training and testing

our QuasarNET models, we first rebin all spectra onto a wavelength grid that is coarsely sampled

in log(λ ). For BOSS data, this means that each rebinned pixel receives contributions from the

same number of instrument-pixels. For DESI data, however, the number of instrument-pixels

contributing to each rebinned pixel increases as a function of wavelength. This may affect the

wavelength-dependence of the SNR in the rebinned spectra, perhaps inducing a systematic biasing

in QuasarNET’s redshift estimation. Certainly, training QuasarNET models on DESI SV data once

available will help us to understand this issue further.

Single-exposure spectra

We now apply redrock and our single-exposure trained QuasarNET model to our single-exposure

data from tile 68002. We do so separately for each of the exposures, further considering the two

target selections described in § 7.1.1 separately as well. We present our results in the same way

as in § 5.3.1, as if we are selecting high-z QSOs for reobservation. In each panel, we plot results

for the same strategies considered in § 5.3.1. “QN” selects objects identified as z ≥ 2.1 QSOs

by QuasarNET; “RR” selects any objects for which redrock found a high-z QSO template with

∆χ2
r < 0.002 relative to the best fit; and “QN|RR” selects objects identified as such by either of the

QN or RR strategies. We apply each of these strategies to our three exposures separately, plotting

the results in different shades. For simplicity, we choose to fix the confidence threshold used by

QuasarNET in the QN and QN|RR strategies at cth = 0.35 for the baseline target selection, and 0.4

for the extended target selection. We plot our results in Figure 7.3, quantifying strategies in terms

of the fraction of high-z QSOs they select and the number density of fibres that they allocate to

reobservations (again, as in § 5.3.1). This is carried out for the two target selections, with results for

the baseline DESI selection in the left panel, and the extended selection in the right panel. These

two targeting selections yield different number densities of true high-z QSOs, as indicated by the
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Figure 7.3. Performance of different strategies when selecting high-z QSOs for reob-
servation using single exposures from tile 68002, and with each exposure represented
by a different tone. The strategies presented here are the same as those in Figure 5.2,
only with QuasarNET’s confidence threshold fixed at cth = 0.35 in the left panel, and
cth = 0.4 in the right. We show the equivalent points from tests on BOSS SDR12Q data
in grey in the left panel. The left panel shows results when only considering QSO targets
included in DESI’s baseline target selection, while those in the right panel also include
additional QSO targets that are included in an experimental, “extended” target selection.
This includes targets within extended colour cuts, as well as fainter objects that yield
lower-SNR spectra. The dashed, vertical, black line here represents the true number
density of high-z QSOs for each targeting procedure.

different locations of the vertical, dashed, black lines in the two panels.

Focusing on the left panel of Figure 7.3, we can see once again that performance levels on

initial DESI data are somewhat lower than the equivalent results on BOSS data (see Figure 5.2),

which are represented by the grey points. This is particularly noticeable for the RR strategy,

somewhat less so for QN, and is not apparent for QN|RR. In this panel, our test samples contain

71 high-z QSO spectra for each of the three exposures used, and so we would expect the mean of

these three points to vary by ∼ 7% due to Poisson noise alone. As such, these differences are not

particularly significant, but again mark points to be investigated upon the arrival of more data in

future. Despite this possible drop in performance, the results of Figure 7.3 appear to align with those

from Figure 5.2 in their overarching conclusions. In both cases, the QN strategy outperforms RR,
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while combining the two strategies in QN|RR yields to the best performance, provided sufficient

fibres are available. Indeed, this combined strategy is able to select at least 98.5% of high-z QSOs

from DESI’s baseline target selection, despite using a QuasarNET model which was not trained on

DESI data and the limitations of redrock’s current targets. This high level of performance should

offer further hope that the future versions of QuasarNET and redrock will be well suited to the

task of selecting high-z QSOs for reobservation when combined in this way.

We may also compare the results of this left panel to those in the right panel, which correspond

to applying our strategies to spectra in the extended target selection. Our strategies do not appear to

perform as well on these spectra, as would be expected: this selection includes spectra from fainter

objects, which have a lower average SNR than those included in the baseline strategy. It is thus,

on average, more difficult to determine accurate classifications and redshifts for these objects. As

mentioned previously, the extended targeting regime also uses different cuts in colour space to the

baseline selection, which may impact upon the performance of our strategies beyond just the SNR

of our spectra. Certainly, it would be useful to assess the efficacy of these classification strategies

across a variety of sub-classes of QSO spectra, divided based on average SNR, colour properties or

observing conditions, for example. Of course, the small number of spectra in our sample here are

insufficient for these kinds of analyses, and we must wait for the full SV dataset before conducting

such studies.

7 . 2 T H E U S E O F LyaCoLoRe M O C K S I N E B O S S

When conducting the Lyα BAO measurements from the final eBOSS data release — DR16 — the

LyaCoLoRe mocks formed a key part of the analysis procedure. Numerous mock realisations were

used to study the impact of systematic effects on the analysis pipeline, as well as to verify methods

of calculating covariance methods. This use of mocks represented a substantial advancement over

previous works, ultimately resulting in a more robustly-tested measurement of the BAO scale.

The full eBOSS DR16 Lyα BAO analysis is described in du Mas des Bourboux et al. (2020), of

which I am a co-author. I provided 100 realisations of the LyaCoLoRe mocks for this analysis,

which were then converted into mock QSO spectra and passed through the analysis pipeline by

other members of the eBOSS collaboration. Here, I present in my own words the use of mocks in

this analysis.
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7 . 2 . 1 T H E S D S S LYα S U RV E Y

The BOSS programme (Dawson et al., 2013) of SDSS-III (Eisenstein et al., 2011) and the eBOSS

programme (Dawson et al., 2016) of SDSS-IV (Blanton et al., 2017) provided ten years of spectro-

scopic observations, covering a range of different tracers. In particular, both programmes observed

QSOs at z≥ 2.1 from which the Lyα forest can be extracted, with eBOSS additionally observing

tracer QSOs at 0.8 < z < 2.2. The final eBOSS data release — DR16 — contained all QSO spectra

observed in both BOSS and eBOSS, with the Lyα BAO analysis (du Mas des Bourboux et al.,

2020) measuring correlations using Lyα absorption from 210,005 Lyα QSOs at 2.1 < z < 3.5, and

341,468 QSOs at z > 1.77. This analysis measured Lyα absorption from the high-z QSOs in two

spectral regions of each QSO: the “Lyα” region between the Lyα and Lyβ -O VI emission peaks,

and the “Lyβ” region between the Lyβ -O VI emission peak and the rest-frame Lyman limit. The

equivalent DR14 analyses (de Sainte Agathe et al., 2019; Blomqvist et al., 2019) also used the Lyβ

region, though it was limited to the rest-frame wavelength range 974–1020 Å, considerably shorter

than the range of 920–1020 Å used in DR16. In du Mas des Bourboux et al. (2020), the two sets of

absorption regions were referred to as Lyα(Lyα) and Lyα(Lyβ ) respectively, and are shown in the

example (mock) spectrum of Figure 7.4 as blue and orange lines respectively. The two regions used

to measure four different correlation functions:

– Lyα(Lyα)×Lyα(Lyα): the auto-correlation of Lyα absorption in the Lyα region

– Lyα(Lyα)×Lyα(Lyβ ): the auto-correlation of Lyα absorption in the Lyα and Lyβ regions

– Lyα(Lyα)×QSO: the cross-correlation of Lyα absorption in the Lyα region with QSOs

– Lyα(Lyβ )×QSO: the cross-correlation of Lyα absorption in the Lyβ region with QSOs

These measurements consituted the first analysis of the full SDSS Lyα QSO sample, providing new

insight into the impact of various calibration procedures, improving understanding of the effects

of QSO redshift estimators, and expanding the Lyβ spectral region. In addition, it continued the

development of Gaussian random field mocks, including those from LyaCoLoRe, and it is this use

of mocks that we focus on now.
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7 . 2 . 2 T H E M O C K S U S E D

In conducting the analysis of the eBOSS DR16 Lyα forest dataset, 100 sets of LyaCoLoRe mocks2

were used to validate the analysis pipeline, using v9.0 of LyaCoLoRe3. For each dataset, as in

§ 6.4.1, cosmological parameters for a flat ΛCDM Universe from Planck Collaboration et al. (2016)

were used as inputs to CoLoRe, alongside a corresponding input power spectrum. Equally, the

same QSO number density and bias as in § 6.4.1 were used for all runs of CoLoRe, and the same

transformation parameters were used when running LyaCoLoRe, tuned to approximately match

BOSS DR12 values for the bias and RSD parameter of the Lyα forest (as described in § 6.3). The

only differences between each dataset were the random seeds used, with different seeds chosen for

each dataset both when running CoLoRe and when adding small-scale fluctuations to the skewers.

Thus the 100 mocks represent 100 independent realisations of the same Universe, allowing us to

test our analysis methods to a high degree of precision.

While the output skewers of LyaCoLoRe are accurate representations of the Lyα forest, they

are not sufficient in and of themselves to fully test the analysis pipeline. Indeed, there are several

additional layers of realism which may be added in order to provide an approximation of real data:

– High-column density systems (HCDs): HCDs in the column density range logNH I = [17,22.5]

were generated when running LyaCoLoRe, correlated with the matter density field as de-

scribed in § 6.5.1. These were added to the QSO spectra by simulating a Voigt profile for

each HCD, and combining multiplicatively with the transmitted flux fraction.

– Metal absorbers While metal absorbers were included in the mocks, the method used to do

so differed slightly from that described in in § 6.5.2 as the transmitted flux fraction for each

absorber was calculated outside LyaCoLoRe. First, the Lyα optical depth τα was calculated

from the transmitted flux fraction via τα =− logFα , with the optical depth for each absorber

then calculated by rescaling τα and shifting in wavelength. This is equivalent to rescaling and

shifting the optical depth after applying redshift-space distortions (RSDs), rather than doing

so before RSDs, as in § 6.5.2. This post-RSDs method is perhaps less realistic, as the velocity

used to determine RSDs in the metal absorption should be calculated from the region where

the metal lies. The difference between these methods is comparatively small, however, and at

the time the rescaling values in Table 6.3 had not been finalised, so an alternative approach

was required.

2In du Mas des Bourboux et al. (2020), these mocks are referred to as the “London mocks”.
3https://github.com/igmhub/LyaCoLoRe/releases/tag/v9.0.
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– QSO continuum: Each QSO was assigned a random magnitude according to the distributions

measured in Ross et al. (2013), up to a limiting magnitude of r = 21.3. These were then used

to generate unabsorbed QSO continua using the package simqso4, which constructs continua

by adding emission lines to a broken power-law (see McGreer et al., 2013, for details).

– QSO redshift errors: Random redshift errors were drawn from a Gaussian distribution with

dispersion σv = 400 kms−1, and then applied to the QSOs. This velocity error is an important

feature of real data to replicate, as it causes additional smoothing in the parallel direction in

the Lyα-QSO cross-correlation.

– Instrumental noise: While effects such as spectral resolution and pixelisation are important

to small-scale measurements from the Lyα forest, in the context of a large-scale feature

such as BAO, we need only worry about the level of noise in our spectra. As such, the

readily available DESI simulator specsim (Kirkby et al., 2016) was used to provide an

approximation of the instrumental noise of the eBOSS spectrograph, with an exposure time

chosen to achieve a realistic SNR for eBOSS.

While, ultimately, we would like to test our analysis using maximally realistic mock spectra, it

is helpful to isolate different elements of our methodology by running analyses on several different

sets of mock spectra, each with different systematic effects. In du Mas des Bourboux et al. (2020),

four such sets were used, with increasing levels of realism in each one:

– raw (Lyα only): “Spectra” are simply skewers of transmitted flux fraction, as was used

in § 6.4.2. Analysis of these data provides a baseline, systematic-free measurement, and

quantifies our methods in the case of “perfect” calculation of δF .

– +continuum+noise: QSO continua and instrumental noise are added to the transmitted flux

fraction. We must now carry out continuum fitting — a process made more difficult by the

presence of noise — and take into account in our modelling the distortions that this induces.

– +metals: Metal absorption is added, producing additional correlations near to the line-of-

sight, and requiring further modelling terms to be included.

– +HCDs+σv: HCDs and random QSO redshift errors are introduced as well. HCDs with

logNH I > 20.3 are masked where pixel absorption is greater than 20%, approximately

mimicking the process used in the analysis of real data.

4Publicly available at https://github.com/imcgreer/simqso.
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Figure 7.4. An example mock spectrum from a “+HCDs+σv” dataset. Here, the Lyα

transmitted flux fraction from LyaCoLoRe is shown (multiplied by 10) in grey. Metal
absorption is then added to this, and the combination is multiplied by the unabsorbed
continuum in green. HCDs are then added to the spectrum, as indicated by the dashed
vertical lines in the Lyα (blue) and Lyβ regions. Finally, instrumental noise is added to
the spectrum, yielding the final spectrum in black. Figure credit: du Mas des Bourboux
et al. (2020)

An example mock spectrum from this final set of spectra can be seen in Figure 7.4. Here, the

transmitted flux fraction (multiplied by ten) from LyaCoLoRe is shown in grey, with the unabsorbed

continuum shown in green and the final mock spectrum in black. Two HCD systems are also

indicated by the vertical dashed lines.

7 . 2 . 3 A N A LY S E S O N M O C K S

Full analyses were carried out on ten sets of mock spectra in each of these four varieties, with

90 additional analyses carried out on the second and fourth varieties described above to allow for

greater precision. From each set of mock spectra, the four aforementioned correlation functions

were calculated: the auto-correlations of the Lyα forest in the Lyα and Lyβ regions, and the

cross correlations between QSOs and the Lyα forest in the Lyα and Lyβ regions. Each of these

correlation functions was then fitted individually, as well as jointly across each set of mock spectra.

In each case, the fitted model included factors relevant to the spectra in question, while discarding

any unnecessary modelling. The measurement and fitting of all correlation functions was carried
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out with picca, as in § 6.4.

In Figure 7.5, the Lyα auto-correlation measured from data is shown in blue, and the mean

correlation from the 100 “+HCD+σv” mock datasets is shown in orange. Qualitatively, the mocks

appear to be a fair representation of the data, with very similar overall amplitude, and similar shape

as well. There does appear to be some difference between the mock- and data-based correlations

in the bottom right panel of Figure 7.5, at separations r ∼ 25 Mpc h−1. This is mirrored by

differences in some fitted parameters such as βF , which is measured as 1.48±0.051 from mocks,

but 1.657± 0.088 from the data (du Mas des Bourboux et al., 2020). These deviations may be

caused by differences in the effects of systematics such as metal absorption and HCDs, or by

differences in the clustering at small separations. At this stage, we are not able to provide more

definitive conclusions, and it is certainly an area to be investigated further ahead of DESI.

The shape of the mock auto-correlation function in Figure 7.5 is noticeably different to that

shown in the left panel of Figure 6.3, largely due to the addition of systematic effects to the spectra

used. In particular, the continuum fitting procedure suppresses power on scales larger than the

typical length of Lyα regions used in our analyses, removing such fluctuations by setting the mean

value of δF in each spectrum to zero artificially. The length of the Lyα region is typically around

520 Mpc h−1 (Blomqvist et al., 2015), and power is suppressed for k . 0.01 h Mpc−1. This induces

distortions to the broadband shape of two point correlation function (Blomqvist et al., 2015) that

can be modelled with a “distortion matrix” (Bautista et al., 2017). Equally, astrophysical features

of the Lyα forest such as HCDs and metal absorbers also induce distorting effects (Font-Ribera

and Miralda-Escudé, 2012; Bautista et al., 2015), the latter of which are indicated in the left panel

of Figure 6.4. Side-by-side illustrations of these effects can be seen in in Figures 11 and 12 of

Bautista et al. (2017).

In Table 7.1 are the results of the analyses on mock datasets. It shows the mean value and

mean standard deviation measured from the mock datasets for the two BAO parameters α‖ and

α⊥, the Lyα flux velocity bias bη ,F , and the Lyα flux RSD parameter βF
5. This is presented for

each of the different varieties of mocks, and for each of the different correlations measured. From

these parameters, it is clear that, for all mock datasets and for all correlations, our analysis methods

provide unbiased measurements of the BAO parameters to within the quoted errors, giving us

confidence that our analysis pipeline is able to incorporate various systematic effects accurately.

We can also see that the addition of systematic effects does not significantly alter our determination

5The parameters bη ,F and βF quantify the effect of RSDs on the Lyα flux power spectrum. They are defined and
discussed in § 6.4.3.
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Mock set α‖ σ α⊥ σ bη ,F σ βF σ

Lyα(Lyα) × Lyα(Lyα)

raw (Lyα only) 1.012 0.021 0.985 0.028 −0.200 0.001 1.568 0.021
+cont.+noise 1.003 0.027 0.995 0.040 −0.201 0.002 1.486 0.028
+metals 1.012 0.029 0.987 0.050 −0.202 0.002 1.485 0.030
+HCD+σv 1.004 0.029 1.001 0.041 −0.205 0.003 1.480 0.051

Lyα(Lyα) × QSO

raw (Lyα only) 1.008 0.025 0.999 0.024 −0.189 0.003 1.568 0.041
+cont.+noise 1.008 0.029 0.992 0.033 −0.192 0.004 1.491 0.061
+metals 1.006 0.029 0.994 0.033 −0.193 0.004 1.510 0.063
+HCD+σv 1.003 0.033 0.998 0.033 −0.199 0.007 1.480 0.081

Lyα(Lyα) × Lyα(Lyβ )

raw (Lyα only) 1.005 0.025 0.996 0.034 −0.200 0.002 1.588 0.026
+cont.+noise 1.014 0.049 0.983 0.069 −0.202 0.003 1.509 0.050
+metals 1.020 0.049 0.994 0.065 −0.203 0.004 1.528 0.054
+HCD+σv 1.009 0.054 1.019 0.087 −0.206 0.004 1.502 0.085

Lyα(Lyβ ) × QSO

raw (Lyα only) 1.028 0.042 1.009 0.044 −0.189 0.005 1.595 0.073
+cont.+noise 1.008 0.070 1.015 0.082 −0.193 0.010 1.527 0.146
+metals 0.994 0.071 1.002 0.093 −0.190 0.010 1.495 0.149
+HCD+σv 1.011 0.080 1.013 0.099 −0.192 0.015 1.447 0.186

all combined

raw (Lyα only) 1.009 0.012 0.995 0.014 −0.203 0.001 1.628 0.015
+cont.+noise 1.005 0.017 0.992 0.022 −0.206 0.002 1.553 0.023
+metals 1.010 0.018 0.989 0.023 −0.206 0.002 1.558 0.025
+HCD+σv 1.005 0.019 0.998 0.023 −0.205 0.002 1.464 0.036

Table 7.1. Mean values and mean standard deviations of fits to correlations measured
from mock datasets. We present these values for α‖, α⊥, bη ,F , and βF , as well as the mean
minimised value of χ2 and the mean probability. Results are shown for “raw” mocks
— where no QSO continuum or instrumental noise has been added to the transmitted
flux fraction skewers — and three progressively more realistic mock types, which add
continua and noise; metal absorption; and HCDs and QSO redshift errors to the spectra.
The mean are calculated from 100 mocks for “+cont.+noise” and “HCD+σv” and 10
otherwise. Table credit: eBOSS Collaboration et al. (2020).
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Figure 7.5. Comparison of the auto-correlation function of Lyα absorption in the Lyα

region, measured from eBOSS DR16 data in blue, and from 100 mock datasets in orange.
The correlations from these 100 mock realisations are averaged to produce the points and
error bars shown. Figure credit: du Mas des Bourboux et al. (2020).

of bη ,F , though there does appear to be an impact upon βF . Most notably, there appears to be a

jump in the value of βF when adding QSO continua and noise to our mocks, and a further jump

when adding HCDs and QSO velocity errors. These suggest that our modelling of these systematics

requires further development, though the minimal correlation between βF and the BAO parameters

ensures that our measurements of the BAO scale are not adversely affected by this.

Our suite of mock datasets also allows us to test our methods to measure covariances. As we

have only one real Universe to measure, in du Mas des Bourboux et al. (2020) the covariance

of the measurements from real data is calculated by subsampling across regions of the sky, as

discussed in § 6.4.2. However, with 100 mock realisations available, we may calculate covariances

from our mocks by looking at the “mock-to-mock” variation in correlation functions as well as

via the subsampling approach. By then comparing these two different calculation methods, we

may assess whether subsampling provides an accurate estimator of the true covariance. Figure 7.6

shows three different covariances for the Lyα auto- and the Lyα-QSO cross-correlations each: the

measured subsampling covariance from DR16 data (dashed lines), the subsampling covariance

from “+HCDs+σv” mock datasets (dotted lines), and the mock-to-mock covariance from the same

mock datasets (solid lines). Comparing the solid and dotted lines, we can see that the subsampling

approach yields an identical covariance to the mock-to-mock method at the 1% level, both for the
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Figure 7.6. Covariances calculated for both Lyα auto- (black lines) and Lyα-QSO cross
(red) correlations, and from both eBOSS DR16 data (dashed) and LyaCoLoRe mock data
(dotted and solid). Here, we may compare the subsampling and mock-to-mock covariance
methods on our mock datasets, while also comparing the covariances obtained via the
subsampling method on both data and mocks. Figure credit: du Mas des Bourboux et al.
(2020).

auto- and cross-correlations. This validates the use of the subsampling method on real data.

We may also compare the mock covariances to those from data: while the two data sources

yield covariances with similar overall shapes, there are noticeable differences between the two. This

is at least in part due to the lesser contribution of metal absorption in the mocks, as is also visible in

Figure 7.5. Further, this may be affected by the mock variances, which are measured to be lower

than those from data, by a factor of 2 for the auto-correlation, and 1.5 for the cross-correlation,

largely due to a lack of low-flux QSO spectra in the mocks. This difference in covariances highlights

that there is still substantial potential for improving our mock datasets, both in LyaCoLoRe and

in the subsequent stages to turn flux skewers into realistic spectra. Nonetheless, the use of these

mocks to validate the subsampling covariance method provides a key example of their value as the

arrival of DESI data draws ever closer.
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7 . 3 H0 A N D BAO

The tension between measurements of the Hubble constant by Planck and by the SH0ES programme

has proven a source of much debate in recent years. It has motivated the development of several new,

independent approaches to measuring H0 in an attempt to understand the source of the discrepancy.

Here, we pursue one such method, combining BAO results from eBOSS’ galaxy and Lyα tracers

with results from big bang nucleosynthesis (BBN) to constrain H0. We then provide forecasts for

equivalent results from DESI.

This section is based on work published in Cuceu et al. (2019), of which I was the second author.

I provided initial input on this project, developing a module to include recent Lyα constraints

more accurately in the popular sampling tool MontePython (Audren et al., 2013; Brinckmann

and Lesgourgues, 2018), and contributing to the project’s development via discussion in regular

meetings. In this section, I describe the key details of this project as well as developments since the

publication of Cuceu et al. (2019), all in my own words.

7 . 3 . 1 C O S M O L O G Y F R O M BAO

The BAO feature provides a powerful cosmological probe, helping to constrain cosmic expansion

in the matter- and dark energy-dominated epochs. As mentioned in § 3.2.1, a number of different

tracers may be used to measure the BAO scale, with galaxies, QSOs and the Lyα forest the most

prominent. Here, we assess the relationship between BAO and the parameters of an underlying

cosmological model, and address a recent tension between BAO measurements from different

tracers.

Parameter dependencies

In a flat, ΛCDM cosmology — which we will assume for the remainder of § 7.3 — the dependency

of the late-time BAO scale on cosmological parameters is relatively straightforward. As discussed

in § 3.2.1, we may measure the BAO scale either perpendicular or parallel to the line of sight,

constraining two different quantities:

Perpendicular :
dM(z)

rd
=

1
rd

∫ z

0

c
H(z′)

dz′ (7.1)

Parallel :
dH(z)

rd
=

c
H(z)rd

, (7.2)
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where

H(z)2 = H2
0
[
Ωr(1+ z)4 +Ωm(1+ z)3 +ΩΛ

]
, (7.3)

and flatness imposes that ΩΛ = 1−Ωm−Ωr. At late times, the contribution of the radiation sector

is small, and we model it with a CMB temperature of T0 = 2.7255 K from Fixsen (2009), and a

fixed neutrino sector with Neff = 3.046 including two massless species. A third neutrino species is

assumed to have a mass of 0.06 eV, thus is non-relativistic at the redshifts of interest to BAO, and

contributes to Ωm. With these choices, the two BAO scales depend on three parameters: Ωm, H0

and rd .

At any given redshift, eq. (7.1) and eq. (7.2) clearly indicate that the BAO scale depends on

Ωm differently in the parallel and perpendicular directions. Equally, these dependencies vary with

redshift for measurements in either direction. As such, measuring the anisotropic BAO signal

at several redshifts allows us to constrain Ωm tightly. However, these same equations also show

that H0 and rd only appear as the product H0rd in our observable quantities, and thus these two

parameters are completely degenerate. This makes intuitive sense, as H0 and rd both directly affect

the normalisation of the late-time BAO scale, whereas Ωm determines its evolution with variation

in cosmic expansion rates through time.

Inter-tracer tension

The availability of numerous tracers from which to measure the BAO signal is key to BAO’s

cosmological power, enabling measurements to be made across a range of redshifts and tight

constraints on Ωm to be made. Measurements from these various tracers may be considered to

be independent, and so we may straightforwardly compare their different constraints. However,

when doing so, a mild tension emerges between measurements from galaxies and the Lyα forest:

while results from galaxy BAO are consistent with Planck, the Lyα BAO constraints are in tension.

We provide a visualisation of this apparent tension in Figure 7.7. In the left panel, we show

constraints in the Ωm-H0rd plane for BAO measurements from a number of different surveys and

tracers: galaxies from 6dFGS (Beutler et al., 2011), SDSS MGS (Ross et al., 2015), BOSS (Alam

et al., 2017) and eBOSS DR14 LRGs (Bautista et al., 2018); QSOs from eBOSS DR14 (Ata

et al., 2018); and the Lyα auto-correlation (de Sainte Agathe et al., 2019) and Lyα-QSO cross-

correlation (Blomqvist et al., 2019), also from eBOSS DR14. Then, in the right panel, we present a

combined constraint from all galaxy BAO measurements, along with combined constraints from

Lyα auto- and Lyα-QSO cross-correlation measurements from BOSS DR11 (Delubac et al., 2015;
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Figure 7.7. Contours in the Ωm-H0rd plane from a selection of recent BAO measurements.
In the left panel, results from numerous different sources are presented, across a range of
different redshifts. Meanwhile, in the right panel we zoom in on the black rectangle of
the left panel, highlighting the tension between combined galaxy BAO measurements and
those from several recent Lyα measurements. Figure credit: Cuceu et al. (2019)

Font-Ribera et al., 2014) and DR12 (Bautista et al., 2017; du Mas des Bourboux et al., 2017), and

eBOSS DR14. From this right panel, we can clearly see the aforementioned tension, which is more

significant for the DR11 and DR12 Lyα results than those from DR14.

Quantifying the tension between pairs of complex datasets such as these is, however, a non-

trivial task, and we may choose from a number of different methods to do so (e.g. Inman and

Bradley Jr., 1989; Charnock, Battye, and Moss, 2017; Nicola, Amara, and Refregier, 2019; Adhikari

and Huterer, 2019; Raveri and Hu, 2019). Most commonly used is the evidence ratio (Marshall,

Rajguru, and Slosar, 2006; Trotta, 2008; Verde, Protopapas, and Jimenez, 2013), though this

quantity is proportional to the prior volume shared by the two datasets and so may hide tension

for certain prior choices (Handley and Lemos, 2019b). Alternatively, Handley and Lemos (2019b)

defines the “suspiciousness” between two datasets, which attempts to remove the prior dependence

of the evidence ratio while preserving its desirable characteristics. In conjunction with the Bayesian

model dimensionality (Handley and Lemos, 2019a), this enables us to calculate the probability

of two datasets being discordant by chance. We may thus quantify the tension between recent

Lyα results from DR11 and DR12 of the BOSS programme and DR14 of the eBOSS programme.

For the DR11 and DR12 results, the probability of the discordance being due to chance sits at

1.20±0.15% and 1.31±0.16% respectively. However, for the eBOSS DR14 results we calculate

this probability to be 6.30± 0.61%. As such, while the tension for the DR11 and DR12 results

appears unlikely to be solely down to chance, that from DR14 is consistent with a purely statistical

deviation.

Since the publication of Cuceu et al. (2019), the eBOSS DR16 Lyα BAO results have been
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released (du Mas des Bourboux et al., 2020). The resultant constraints are in mild tension with

Planck (and galaxy BAO), at a slightly reduced significance of ∼ 1.5σ , compared to ∼ 2.5σ and

∼ 1.7σ for DR11/12 and DR14 respectively. In § 7 of du Mas des Bourboux et al. (2020), the

reason for this evolution in the Lyα BAO constraints towards those from Planck and galaxy BAO

is investigated. Re-analysing the BOSS DR12 results with the DR16 pipeline yields only small

changes to the BAO constraints from the combined Lyα auto- and Lyα-QSO cross-correlations,

of significance < 0.25σ . As such, the evolution from DR12 to DR16 can be taken to be due to

differences in the underlying datasets rather than the analysis methodologies. du Mas des Bourboux

et al. (2020) then consider whether this evolution is consistent with the increase of statistical power

in the DR16 dataset: using the DR12 and DR16 covariance matrices, many mock DR12 and DR16

correlation functions are generated and the differences between the BAO constraints from pairs

of correlations are assessed (see § 7 of du Mas des Bourboux et al., 2020, for details). These

comparisons suggest that, due to statistical variation alone, one would expect to see differences

in constraints larger than those observed between the real DR12 and DR16 results approximately

30% of the time. As such, it appears that both the tension observed between the DR12 Lyα BAO

results and other cosmological probes, and the subsequent evolution of the Lyα BAO constraints

are consistent with variation due to statistical fluctuations.

7 . 3 . 2 M E A S U R I N G H0 W I T H BAO

As discussed in § 3.3, the most notable point of contention in modern cosmology lies around the

current rate of expansion of the Universe, represented by the Hubble constant, H0. Dispute over this

value arises broadly between measurements from the local, late Universe at low z, and the distant,

early Universe at high z. Most prominently, measurements using the local distance ladder from the

SH0ES program have yielded H0 = 74.03±1.42 km s−1 Mpc−1 (Riess et al., 2019), while measure-

ments of CMB anisotropies from Planck have provided a value of H0 = 67.36±0.54 km s−1 Mpc−1

within the ΛCDM model (Planck Collaboration et al., 2020b). Despite substantial efforts — investi-

gating both possible systematic effects and new physics — no explanation for this tension has yet

been agreed. Alternative methods to calculate the value of H0 have also been developed in recent

years, aiming to provide measurements independent of either SH0ES’ or Planck’s data. A method

using strong lensing time delays (Wong et al., 2020) agrees with SH0ES, as does an approach using

the Tully-Fisher relation (Tully, Courtois, and Sorce, 2016) though at a much lower significance.

Equally, calculations using the tip of the red giant branch (Freedman et al., 2020) have yielded a

value between those from SH0ES and Planck, and a method based on gravitational wave sirens
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(Abbott et al., 2017) does not yet have sufficient precision to provide any evidence either way.

At intermediate redshifts z∼ 0.1–4.0, a probe of H0 is not immediately apparent. While BAO

provides a tight constraint on Ωm, it exhibits a fundamental degeneracy between H0 and rd . In order

to measure H0 with BAO, then, we must break this H0–rd degeneracy via the addition of non-BAO

information. Typically, this is done via a measurement of rd . In order to calculate rd precisely, we

must solve coupled Boltzmann equations with a programme such as CAMB (Lewis, Challinor, and

Lasenby, 2000). For speed, however, we may instead use an approximation:

rd '
55.154exp

[
−72.3(ων +0.0006)2

]
ω0.25351

m ω0.12807
b

Mpc, (7.4)

where ωX = ΩX h2 for X = ν , m, b is proportional to the physical density field for neutrinos, matter

and baryons respectively, and h = H0 [km s−1 Mpc−1]/100. This approximation is accurate to

within 0.021% (Aubourg et al., 2015). Thus to calculate rd , we need values of Ωm, Ων and Ωb.

As mentioned previously, BAO measurements are able to constrain Ωm tightly, and we assume

a fixed neutrino sector with two massless and one massive species. In general, CMB anisotropy

measurements from instruments such as Planck provide the best constraints on ωb, and are able to

constrain rd directly. Here, though, as we seek a Planck-independent method, we instead follow the

method first used in Addison, Hinshaw, and Halpern (2013) by using measurements of big bang

nucleosynthesis (BBN) to constrain ωb.

We may obtain such a constraint by considering BBN deuterium production, which is strongly

related to ωb (see Cyburt et al., 2016, for a review). As there are no known astrophysical sources

of deuterium production (Epstein, Lattimer, and Schramm, 1976; Prodanović and Fields, 2003),

measurements of deuterium abundance can provide an upper bound on primordial BBN production

(Reeves et al., 1973; Gott et al., 1974). However, deuterium may be destroyed, and so in order

to measure its abundance properly, we must find “pristine” regions of deuterium. These have

not been “contaminated” by post-BBN astrophysical processes, and thus can be identified by

their very low metallicities. Cooke, Pettini, and Steidel (2018) use seven damped Lyα absorbers

(DLAs) for this purpose, measuring the deuterium abundance with 1% precision. A sequence of

calculations is then required to convert this into a measurement of ωb (Cooke et al., 2016), relying on

measurements of various reaction cross sections in the BBN process. These are not straightforward

to measure experimentally, with particular difficulty caused by the cross section of proton capture by

deuterium to produce 3He, denoted d(p,γ)3He. As such, theoretical calculations are generally used,

attaining 1% precision measurements (Cooke, Pettini, and Steidel, 2018) compared to empirical
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measurements with approximately 7% precision (Adelberger et al., 2011). Notably, however, these

two approaches yield conflicting values of ωb:

100ωb = 2.166±0.015±0.011 (theoretical), (7.5)

100ωb = 2.235±0.016±0.033 (empirical), (7.6)

where the first error contribution comes from the measurement of deuterium abundance, and the

second comes from the BBN calculations. Also of interest is the value derived from Planck’s 2018

data (Planck Collaboration et al., 2020b), which is consistent with empirical estimates yet in 2.9σ

tension with the theoretical calculations:

100ωb = 2.237±0.015 (Planck). (7.7)

We will consider both the theoretical and empirical methods to calculating ωb from BBN, and will

compare results from each value, referring back to this tension with Planck.

7 . 3 . 3 C O S M O L O G I C A L R E S U LT S

eBOSS DR14 data

Using the two BBN-based measurements of ωb in turn, we combine with BAO results from

the combined galaxy sample presented in § 7.3.1, as well as those from eBOSS DR14 Lyα

measurements, using Polychord (Handley, Hobson, and Lasenby, 2015a; Handley, Hobson, and

Lasenby, 2015b) to sample parameter space. The constraints obtained from this are presented

in Figure 7.8. In the left panel, results from galaxy and Lyα BAO are presented separately in

the purple and red contours respectively, both of which have been combined with theoretical

measurements of ωb from BBN. Individually, either of these are consistent with the local distance

ladder measurements from SH0ES (indicated by the vertical grey band Riess et al., 2019), though

the Lyα results prefer a substantially lower value of Ωm. Equally, both of these contours are also

consistent with results from Planck. When the two sets of BAO results are combined, however,

the resultant blue contours are no longer consistent with SH0ES at the 3.6σ level, but are highly

consistent with Planck. If we instead combine our BAO results with the empirically determined

value of ωb from BBN, we obtain the green contours in the right panel. Here, again, the results are

consistent with Planck but are in tension with SH0ES, now at the 3.3σ level. As such, no matter

our choice of BBN estimate of ωb, we derive values of H0 consistent with Planck, but in substantial
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Figure 7.8. Contours in the Ωm-H0 plane from combining BAO results with constraints
on ωb from BBN. In the left panel, we show separately contours obtained by using BAO
results from a combined galaxy sample in purple and from eBOSS DR14 Lyα measur-
ments in red, combining each with a theoretical BBN measurement of ωb separately.
We then combine this BBN measurement with both the galaxy and Lyα BAO results
to yield the blue contours. In the right panel, we show the same blue contours as well
as equivalent contours in green when using the empirically-derived ωm estimate from
BBN, and results from Planck in dark red. In both panels, SH0ES constraints on H0 are
represented by a vertical grey bar, with the black line indicating the central value. A
version of the left panel updated to use results from eBOSS DR16 is provided in Figure
4 of eBOSS Collaboration et al. (2020), but there is no qualitative difference with the
results presented here. Figure credit: Cuceu et al. (2019)

tension with SH0ES.

This discrepancy may be recast into a tension in ωb, and subsequently in the abundance of

deuterium. Combining the BAO results with the value of H0 from SH0ES and assuming ΛCDM

and standard BBN physics, we may infer a primordial deuterium abundance of 105(D/H)P =

1.38±0.25. This is 4.5σ below the constraints from Cooke, Pettini, and Steidel (2018). Due to

the aforementioned lack of significant astrophysical sources of deuterium, measurements of the

primordial deuterium abundance have robust lower bounds, rendering the SH0ES+BAO value

above highly unlikely.

Forecast DESI data

In the relatively near future, DESI will be able to provide substantially more precise BAO results

than those available currently, using a range of different tracers. Evidently, this will have an impact

upon BAO+BBN constraints on H0, which we would like to assess. Using forecast uncertainties

on DESI’s BAO constraints for each individual tracer from DESI Collaboration et al. (2016a) and

the “BAO + BBN Empirical” results from Figure 7.8 as a fiducial cosmology, we may calculate
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Figure 7.9. Forecast constraints from DESI’s full survey. In the left panel are contours
in the Ωm-H0rd plane using BAO measurements from each of DESI’s tracer classes
individually, as well as a combined set. These contours are centred on values from
Figure 7.8, with errors taken from the Fisher forecast estimates in DESI Collaboration
et al. (2016a). In the right panel, contours in the Ωbh2-H0 plane are shown. The latest
Planck constraints are shown in dark red, while the “Full DESI” contours of the left panel
are combined with empirical and theoretical BBN constraints of ωb to yield the green
and blue contours respectively. Figure credit: Cuceu et al. (2019)

forecasts of DESI contours in the Ωm-H0rd plane, as displayed in the left panel of Figure 7.9. These

provide a clear demonstration on the power of multi-tracer BAO measurements, with the multiple

redshift bins yielding contours at different angles in the plane, which may then be combined to great

effect. Of course, these contours assume the same central point for each measurement, yielding

very tight constraints when combining the tracers. In reality, the overlap between different tracers

will likely not be so perfect, and there is a possibility that inter-tracer tensions will arise once again,

similar to those shown in Figure 7.7.

In the right panel of Figure 7.9, we then present results from combining the forecast DESI

results with the two BBN-based ωb estimates used previously, showing contours in the ωb-H0

plane. While perfect alignment between BAO tracers is assumed here once again, the constraints

in this panel suggest that BAO+BBN results from DESI will be able to provide constraints on

H0 comparable to those from Planck for either choice of BBN measurement. While the choice

of BBN constraint does not significantly impact results when using current BAO data, this panel

demonstrates that the increased statistical power of DESI will make the choice of BBN constraint

important. Results from the two BBN methods presented here are in 1.2σ tension with each other,

which, while by no means catastrophic, is certainly notable.

Since the publication of Cuceu et al. (2019), new laboratory measurements from the Laboratory

for Underground Nuclear Astrophysics (Kochanek, 2016) have produced improved constraints on
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the d(p,γ)3He reaction rate (Mossa et al., 2020), which yield a value of ωb given by

100ωb = 2.233±0.00036. (7.8)

Notably, this remains consistent with the Planck-derived value of ωb in eq. (7.7), and in tension

with the theoretically derived value in eq. (7.5). This new result will help to improve the BAO+BBN

constraints of H0 in the near future, and also motivates further work into understanding the nature

of the current discrepancy.
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C O N C L U D I N G R E M A R K S

Since its first detection in 2013 (Busca et al., 2013; Slosar et al., 2013; Kirkby et al., 2013), the

measurement of the baryon acoustic oscillation (BAO) feature using fluctuations traced by the Lyα

forest has developed to become an important part of the cosmologist’s inventory. It now provides a

tight constraint on cosmic expansion history at a redshift not probed by other large-scale structure

measurements, and thus plays an integral role in constraining cosmological models. With the arrival

of the Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016a; DESI

Collaboration et al., 2016b), the power of Lyα BAO measurements will continue on its upwards

trajectory, and there is ample motivation to ensure that this power is fully realised via a range of

research opportunities. This will complement improved BAO measurements from DESI’s other

tracers as well as those from space-based experiments such as Euclid (Laureijs et al., 2011) and

WFIRST (Spergel et al., 2015), ensuring that BAO will remain an integral part of cosmology for

the foreseeable future.

In this thesis, we have focused on two key elements of conducting a Lyα forest BAO analysis

from a spectroscopic QSO survey. First, we considered the classification of QSO target spectra,

addressing problems relating to the observation of high-z QSO spectra and the construction of QSO

catalogues. Second, we considered the construction of mock datasets to aid with the verification of

Lyα BAO analysis pipelines, presenting and testing a new tool to produce such datasets. We then

briefly described recent applications of the work in these two areas, along with a complementary

study into the cosmological constraints imposed by BAO measurements. In this final chapter, we
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summarise the work described above, providing a critical assessment and highlighting new areas

into which it could be expanded.

8 . 1 C L A S S I F Y I N G Q S O TA R G E T S P E C T R A

To deliver scientific value, spectroscopic surveys must provide reliable classifications and accurate

redshifts of the objects they observe. When targeting QSOs, sets of observed spectra may contain

substantial contamination from stars and galaxies, which must be filtered out before conducting

cosmological analyses. While traditionally this has been carried out by “visual inspection”, the

increasing size of QSO surveys has rendered this approach infeasible. Indeed, with the advent of

DESI — which will observe ∼ 2.4 million QSOs (DESI Collaboration et al., 2016a) — the need

for automating this task will only grow, and making effective use of existing classification tools

will be vital to successful measurements of large-scale structure.

8 . 1 . 1 S U M M A RY

In Chapter 5, we considered the problem of classifying QSO target spectra in the context of DESI,

focusing on two key QSO target classification tasks: selecting high-z QSOs for reobservation, and

constructing QSO catalogues. For each of these tasks in turn, we compared the performance of

the official DESI template-fitter redrock and the convolutional neural network tool QuasarNET,

using BOSS DR12 QSO target spectra (contained within the “DR12Q Superset”, SDR12Q) as a

test set in the absence of DESI data.

When selecting high-z QSOs for reobservation, we found that QuasarNET out-performs

redrock, while a combined strategy that selects all objects chosen by either QuasarNET or

redrock was able to provide further improved results. Similarly, when constructing QSO cata-

logues, QuasarNET provided catalogues with substantially reduced contamination compared to

those from redrock, but a strategy which includes only QSOs identified by both redrock and

QuasarNET was able to reduce contamination further still. In this second task, we also considered

the inclusion of a visual inspection (VI) programme, demonstrating that catalogue contamination

and completeness can be greatly improved by a moderate VI effort.

These analyses provide evidence that the outputs of available QSO classifiers may be used

to construct QSO classification strategies that address DESI’s QSO classification needs. These

strategies yield high levels of performance, selecting > 99% of high-z QSOs for reobservation and

producing QSO catalogues with < 0.5% contamination when tested on BOSS SDR12Q data. In
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§ 7.1, we went on to test such strategies on the first DESI QSO target spectra, applying QuasarNET

and redrock to 696 such observations with reliable visual inspections. Our conclusions from this

analysis qualitatively agreed with those from Chapter 5, and we suggested some further tests to

conduct once more data is available.

8 . 1 . 2 O U T L O O K

The analyses presented in Chapter 5 are able to demonstrate the effectiveness of existing classifiers

at addressing DESI’s QSO classification needs, but they do not definitively determine the ideal

strategies for use in DESI. While the SDR12Q data used in this chapter provides a reasonable

approximation of DESI data, it is not a perfect substitution. For example, QSO targets will be

chosen differently in DESI, altering the balance of contaminants in the QSO target set, and perhaps

thus affecting the performance levels of classifiers on the dataset as a whole. The work presented in

§ 7.1 suggests that differences such as this will not cause major issues, but the number of DESI

spectra currently available is too small to draw firm conclusions.

With the advent of DESI’s SV phase, however, the number of DESI QSO target spectra will

increase substantially, reaching a total of approximately 50,000–100,000. This will allow for more

extensive tests of classification strategies to be carried out and, crucially, will enable QuasarNET

models to be trained on DESI data. When applying these models to DESI spectra, the greater

similarity between training and testing data ought to provide enhanced performance compared to

models trained on BOSS data. By this point, we can also expect redrock’s set of templates to have

been improved, and it will be instructive to re-test the strategies discussed in Chapter 5 using these

new classification tools and the new DESI SV data.

The availability of these improved classifiers and a representative sample of DESI’s QSO target

spectra will then allow the development of more advanced classification strategies. These could

follow a path analogous to those used in the construction of QSO catalogues from the 14th and

16th data releases from eBOSS (Pâris et al., 2018; Lyke et al., 2020), which used short decision

trees to largely remove the contamination by stars introduced by the eBOSS pipeline classifications.

Alternatively a more advanced, random forest approach could be taken to combine the outputs of

our classifiers, seeking to learn more complex ways of translating sets of classifier results into a

single, confident classification and redshift. This would then take advantage of the complementary

nature of the existing classifiers in a maximally efficient way, diminishing the presence of any

distinct failure modes.

Beyond the arrival of new data, there is substantial potential to develop QuasarNET further
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as a tool. Despite the success of current QuasarNET models (see Figure 5.1), the existing system

of “boxes” used to produce QuasarNET’s features (see § 5.2.2) introduces artificial structure to

QuasarNET’s method. Suitable choices of activation functions appear to largely negate any negative

consequences of this structure, but exploring more “natural” features may enable QuasarNET to

make even more efficient use of its underlying architecture. Perhaps more fundamentally, in its

current form QuasarNET behaves to some extent as a “black box” classifier. It identifies emission

lines each with a certain confidence, but it is not clear how each line has been identified, nor exactly

what this confidence value means. Providing a convincing explanation for the mapping between

the input and output of machine learning models is a challenging problem that requires complex

solutions (see Doshi-Velez and Kim, 2017, for a review), particularly in the context of deep neural

networks such as QuasarNET (e.g. Ancona, Öztireli, and Gross, 2019; Angelov and Soares, 2019;

Fan et al., 2020; Samek et al., 2020). While pixel-level explanations of QuasarNET’s classifications

may not be necessary in the context of large-scale structure surveys such as DESI, estimating

quantities such as redshift errors would certainly prove helpful in understanding the reliability of

QuasarNET’s outputs.

8 . 2 LY α BAO M O C K D ATA S E T S

As measurements of BAO from the Lyα forest grow more precise, the complexity of modelling

required to understand them increases too. In particular, potential sources of systematic errors

must be studied with greater precision, while methods of calculating covariance matrices must

be assessed in greater detail. In any survey, the development of a reliable analysis pipeline is of

vital importance to maximising the scientific value of the data it will provide. This may be aided

by the use of mock datasets: simple simulations constructed to mimic observational data with a

minimal computational footprint. These provide data with a known cosmology and set of systematic

effects, with which we may test certain parts of our analysis pipeline by checking that we are able

to accurately extract cosmological information and associated errors. The small computational

expense of each mock allows for a large number of datasets to be generated, and so pipelines can be

tested to high levels of precision across a range of cosmologies and with varying systematic effects.

8 . 2 . 1 S U M M A RY

In Chapter 6, we presented a method to create such mock datasets. We first use an existing

programme CoLoRe to generate a set of QSO positions and corresponding Gaussian density skewers,
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with appropriate correlations imposed according to an input power spectrum. The Gaussian skewers

are post-processed by a new tool LyaCoLoRe, which we developed for this purpose. This then adds

small-scale fluctuations to the skewers before converting them into skewers of physical density

and then optical depth, subsequently adding redshift-space distortions and finally converting to

skewers of transmitted flux fraction. Within these various transformations are a number of tunable

parameters, which we choose so that measurements of the Lyα forest bias, 1D power spectrum and

mean flux approximately match literature measurements.

We then tested our mock-making process to ensure that the BAO signal remains unbiased

throughout, generating ten sets of full-sky mock data from which we measure the Lyα auto-

correlation and the Lyα-QSO cross correlation. We combined our measurements from the ten

mocks and fitted the combined correlations with a simple model, finding that the position of the

BAO peak remains unbiased to within 0.2%. This measurement is able to achieve far greater

precision than DESI due to the larger footprint of each realisation, the use of numerous realisations,

the high number density of QSOs, the lack of instrumental noise, and the lack of systematic effects

needing to be modelled. As such, it provides a stringent test of our mocks’ basic functionality, and

demonstrates that they introduce no bias to the input BAO signal.

We further addressed two additional astrophysical effects that are implemented in LyaCoLoRe,

and which are important to the Lyα forest: absorption from metals, and high-column density

systems (HCDs). We first described the method used to introduce these effects, and then provided

initial tests of their accuracy by computing the Lyα auto-correlation in the presence of metal

absorption, and the Lyα-HCD cross correlation. These demonstrated that both LyaCoLoRe’s metals

and HCDs have approximately the right large-scale bias, and thus will provide suitable tests of

systematic modelling methods in Lyα analysis pipelines.

Having introduced and verified the methods of our mock datasets in Chapter 6, we then

described their usage in the recent eBOSS DR16 Lyα forest analysis in § 7.2. In this context, they

were used to test the analysis pipeline by computing correlations from mocks with successively

greater numbers of systematic effects, checking that unbiased BAO results were recovered at each

stage. Additionally, they helped to demonstrate the accuracy of the subsampling approach to

covariance estimation, thus providing a key element of the analysis procedure and verifying the

pipeline’s integrity.
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8 . 2 . 2 O U T L O O K

In their current form, the LyaCoLoRe mocks are able to provide a useful tool for testing the Lyα

analysis pipelines of BAO surveys. The analyses presented in this thesis, however, highlight some

areas upon which we would like to improve. While the mocks are able to reproduce the correct BAO

peak position with high precision, the full shape of the correlation function does not quite match that

measured from real data, as shown in Figure 7.5. These deviations could be reduced by improving

our implementation of metal absorbers and HCDs, as well as improving the small-scale realism

of our skewers. The full shape of measured correlation functions contains more cosmological

information than the BAO peak position alone, and surveys such as DESI would like to extract this

information as effectively as possible. To achieve this goal, Lyα mocks with the correct shape of

the full correlation function would be of great value.

Relatively straightforward improvements to the mocks could be brought about by taking

advantage of an existing functionality within CoLoRe. Rather than providing initial skewers from a

3D Gaussian field, CoLoRe is able to apply second order Lagrangian perturbation theory (2LPT) to

this field, displacing the density field along a trajectory determined by the gravitational potential

and cosmological expansion (for a review of perturbation theories, including 2LPT, see Bernardeau

et al., 2002). This then provides skewers of the physical density field that more accurately represent

reality than using a lognormal transformation, and would certainly help to improve the realism of

the mocks on smaller scales. In particular, the QSO clustering from the lognormal mocks shows

deviations on separations r ∼ 20 Mpc h−1 (see Figure B.1), and would be improved by the use of

2LPT. Using this approach would require changes to the existing LyaCoLoRe method: in using

CoLoRe’s 2LPT functionality, we are no longer able to straightforwardly add Gaussian small scale

fluctuations to our skewers as CoLoRe’s 2LPT output will approximate fluctuations in the physical

density field (equivalent to 1+δ , as defined in eq. (6.4) for the Gaussian method). This is by no

means an insurmountable challenge, but would certainly require substantial testing, as presented in

the Gaussian case in Chapter 6.

Introducing the more advanced 2LPT approach would help to address some of the issues seen

in the correlation functions of Chapter 6 at small separations. It would also introduce correlations

beyond those produced by Gaussian fields alone, and would thus provide a suitable testing ground

for large-scale measurements beyond the canonical two-point statistics. Historically, there have

been several studies of the “1D bispectrum” (e.g. Mandelbaum et al., 2003; Viel et al., 2004), which

measures correlations between triplets of flux pixels along the same line of sight. However, large-
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scale, 3-dimensional statistics such as the three-point correlation function (3PCF, Tie et al., 2019)

are yet to be measured from the Lyα forest. While it is not clear exactly what level of accuracy

2LPT mocks would provide for such measurements, they would offer a qualitative improvement

over their Gaussian counterparts, and would enable more reliable tests of 3PCF methods to be

carried out. Such tests could assess the impacts of systematic effects of 3PCF measurements using

a realistic survey design, thus providing useful feedback ahead of attempting to measure such

statistics from real data.

In either the Gaussian or 2LPT scenario, the LyaCoLoRe mocks may also prove useful in

conducting a number of other tests ahead of DESI’s Lyα BAO measurements. As yet, mocks have

only been generated using a single cosmology, and thus producing mocks with varied cosmologies

would constitute a natural extension of our work. This would then provide a more extensive testing

regime for our analysis pipeline, enabling blinded analyses to be carried out and thus helping to

ensure that no bias is introduced across a range of cosmological scenarios. Furthermore, one could

extend the realism of mock Lyα BAO analyses by producing end-to-end survey simulations. These

go beyond the types of spectra used in § 7.2 to simulate additional observational effects such as

fibre assignment and variable observing conditions. This then can provide “snapshots” of DESI’s

data, either partway through the survey or upon its completion, and can enable a more accurate

assessment of DESI’s cosmological power at any stage of its survey.

8 . 3 C O S M O L O G I C A L C O N C L U S I O N S

In § 7.3, we described an approach to measure the Hubble constant, H0, using BAO and constraints

from big bang nucleosynthesis (BBN). This method is independent of both Planck and the local

distance ladder, and so provides an interesting point of comparison when considering the tension

between H0 measurements from these two sources. With the advent of DESI, the BAO+BBN

constraint on H0 is set to tighten substantially, potentially yielding levels of precision similar to

those from Planck.

This increase in precision will, no doubt, be mirrored across many facets of cosmology in the

coming years. New instruments will provide unprecendented quantities of high-quality data, while

advances in computational and theoretical areas will allow for ever more complex analytical efforts

to be carried out. In conjunction, these will enable extensions to the current concordance ΛCDM

model to be tested more stringently, including more complex extensions which cannot currently

be constrained. It may further enable new detections to be made, providing insight into areas
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such as neutrino mass, inflationary mechanisms and the nature of dark energy. Of course, whether

these future measurements are in agreement the ΛCDM model, or whether they lead cosmology

in a different direction remains to be seen. Certainly, though, the BAO feature will remain vital

to cosmology in the immediate future, with measurements from the Lyα forest enabling cosmic

history to be constrained across a broad range of redshifts, and providing an exciting approach to

understanding our Universe.
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A . 1 T E C H N I C A L T E S T S O F QuasarNET

A . 1 . 1 D E P E N D E N C E O F QuasarNET ’ S P E R F O R M A N C E O N T R A I N I N G S E T S I Z E

In Busca and Balland (2018), QuasarNET models were trained on 80% of DR12Q Superset data

(approximately 500,000 spectra), while in Figure 5.1, 90% was used (approximately 560,000

spectra). These training sets are significantly larger than the ∼50,000–100,000 spectra that will be

visually inspected during DESI’s survey validation (SV) period. In order to check that this reduced

number of spectra will be sufficient to train high-performing QuasarNET models, we assess models

trained on varying fractions of the DR12Q Superset data. We consider models trained on 10%

and 5% of this data, approximately equivalent to 63,000 and 31,000 spectra respectively, and thus

corresponding to “realistic” and “worst case scenario” training set sizes that we can expect from

DESI SV. We compare the performances of models trained on datasets of these sizes to a “fiducial”

training set size of 90% of DR12 data, as was used in Figure 5.1. For each training set size, we train

10 models on random subsets of DR12Q Superset data, and for each model, we test performance

on spectra from all objects not in its training set. In Figure A.1, we then plot the mean performance

across these 10 models for the 90%- and 10%-trained models, and the mean performance across

9 models for the 5%-trained models. We exclude one outlying 5%-trained model which showed
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degraded performance relative to the remaining 9 models. It is not clear why this outlier exists,

and it provides motivation to aim for an SV truth table of & 50,000 QSO targets. If this is not

feasible for any reason, then efforts should be made to investigate whether alternative QuasarNET

architectures — fewer convolutional layers, for example — are better suited to smaller training set

sizes.

The upper panel of Figure A.1 shows the levels of purity and completeness achieved by each

model as a function of “confidence threshold” (as explained in 5.2.2). Here, we set ndetect = 1 for

simplicity. Comparing the solid and dashed lines demonstrates that reducing the training set size

from 90% (solid lines) to 10% (dashed lines) of DR12Q Superset has little effect on the model’s

purity, and results in only a small (0.25–0.5 percentage point) drop in the model’s completeness

at any given confidence threshold. The 10%-trained model achieves “optimal” performance —

where purity and completeness are equal — at a confidence threshold of 0.08, where purity and

completeness are both 99.4%. When compared to the 90%-trained model, which achieves purity

and completeness of 99.5% at a confidence threshold of 0.15, it is clear that ∼ 62,000 training

spectra is sufficient for a QuasarNET model to achieve high purity and completeness in its test

sample. Equally, considering the dash-dotted lines, reducing the training set size further to only 5%

of DR12Q Superset results in an additional drop in “optimal” performance of only 0.2 percentage

points, to 99.2% (at a confidence threshold of 0.07). Thus we can conclude that even ∼ 31,000

spectra can be sufficient to achieve high levels of purity and completeness.

The lower panel of Figure A.1 shows a (normalised) histogram of the velocity errors (relative to

VI redshifts) for spectra that QuasarNET correctly classified as belonging to QSOs, with velocity

error less than 6000 kms−1. Once again comparing the solid and dashed lines, we can see relatively

small differences between the results obtained by the 90%- and 10%-trained models. While

predictions from the 90%-trained model have a median velocity error of −8 kms−1 and a standard

deviation of 618 kms−1, results from the 10%-trained model have a median of 18 kms−1 and a

standard deviation of 793 kms−1. As such, both models show no significant bias in the estimated

redshifts, and the spread of velocity errors is 30% larger for the 10%-trained model. This marks a

moderate increase, though it is important to note that QuasarNET is not designed to be a precision

redshift fitter and so such values are not excessive. Finally, using a model trained on 5% of DR12

data results in further spreading of the velocity error distribution, achieving a median velocity error

of −6 kms−1, with a standard deviation of 902 kms−1. Once again, there is no significant bias in

the estimated redshifts for models using this training set size, and the velocity error spread does not

increase to unacceptable levels.
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Figure A.1. Performance of QuasarNET models with varying training set sizes. The
top panel shows purity and completeness as a function of the classification confidence
threshold, while the bottom panel shows a histogram of velocity errors for successful
QSO classifications. Here, the solid and dashed lines — corresponding to training sets
made from 90% and 10% of BOSS DR12Q Superset data respectively — show the mean
performance of 10 QuasarNET models. The dot-dashed line shows mean performance
over 9 models with training sets made from 5% of DR12Q Superset data, excluding one
outlying model which produced degraded performance levels.
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Clearly, when training on DESI SV data, precise performance levels of QuasarNET models may

vary slightly compared to those shown in Figure A.1 due to, for example, differences in targeting

procedures between BOSS and DESI. However, it is reasonable to expect that a QuasarNET model

trained on visually inspected data from DESI SV will be able to achieve similarly high levels of

performance to the 10%-trained model presented here, and as such we can be reassured that the

smaller training set provided by DESI SV will not inhibit our ability to train high-performing

QuasarNET models. Equally, the small drop in performance when using the 5%-trained model

suggests that even in a “worst case scenario” in which DESI SV is impaired, effective QuasarNET

models would still be able to be trained.

A . 1 . 2 D E P E N D E N C E O F QuasarNET ’ S P E R F O R M A N C E O N S I G N A L - T O - N O I S E

R AT I O

As discussed in § 5.3.1, a key task for QSO classifiers in DESI will be to select high-z QSOs

for reobservation. This introduces a number of new challenges, most notably the need to carry

out classification on spectra obtained from single exposures. These spectra will have a lower

signal-to-noise ratio (SNR) than coadded spectra, making classification more difficult. Ahead of

DESI, we need to test how well QuasarNET models are able to classify single-exposure spectra,

and also determine whether a model trained on single-exposures or coadded spectra is preferable

when doing so. In order to answer these questions, we construct a single-exposure version of the

DR12Q Superset data, taking spectra from one exposure chosen at random from each set of coadded

exposures (excluding any low quality exposures). As such, our single-exposure dataset is of the

same size as our coadded dataset, with each spectrum having a direct coadded counterpart, thus

ensuring consistent balance of contaminants. Within each set of exposures used in BOSS’ coadds,

the BOSS pipeline identifies a “best” exposure, that with the highest average SNR. We could have

used these best exposures rather than randomly chosen ones, but this simply improves performance

of all models slightly, without affecting our qualitative conclusions.

In Figure A.2, we show the performance of QuasarNET models trained and tested on coadded

and single-exposure data. In the left column are results for a model trained on coadded spectra

— each made from on average 4 exposures — from BOSS DR12. This is the same model that

was used in § 5.3.2 and § A.1.1, trained on 10% of DR12Q Superset as is appropriate given the

estimated size of the DESI SV dataset. In the right column are results for a model trained on single

exposures from DR12, using 10% of the single-exposure dataset for training, as was used in § 5.3.1.

In the top row of Figure A.2 are results when models are applied to a coadded test dataset, while
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Figure A.2. Performance of QuasarNET models with different numbers of exposures
in the training and testing data. The left column corresponds to a QuasarNET model
trained on data consisting of coadded spectra, whereas the right column corresponds to a
model trained on single-exposure spectra. Both models were trained on ∼10% of DR12Q
Superset spectra (∼ 62,000 spectra), a similar quantity of visually inspected data to that
which will be available from DESI SV. The top row corresponds to results obtained from
applying each model to a coadded dataset, while the bottom row corresponds to a single-
exposure test set. Each panel shows the purity and completeness of the classifications as
a function of QuasarNET’s confidence threshold.
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in the bottom row are results when applied to a single-exposure test dataset. For each model, we

use a test set of DR12Q Superset spectra from all objects that were not included in that model’s

training set. We also exclude from our test sets spectra which were classified with anything other

than maximal confidence by the DR12Q Superset VI procedure. As such, the results shown in the

top left panel are equivalent to the results shown by the dashed lines in the top panel of Figure A.1.

Moving from the top left to the top right panel, we are reducing the SNR in our training data

while maintaining a high SNR in our test data. This change results in a slight increase in the

completeness at a given confidence threshold, but a moderate drop in the purity of ∼0.5 percentage

points. These differences are due to the single-exposure-trained model classifying more objects

as QSOs for a given confidence threshold, of which most are incorrect. Conversely, moving from

the top left to the bottom left panel, we are reducing the SNR in our test data while maintaining a

high SNR in our training data. This results in a substantial drop in completeness (∼5–8 percentage

points) due to the model correctly identifying fewer single-exposure QSO spectra for a given

confidence threshold. Equally, it results in a moderate drop in purity (∼1 percentage point), mostly

due to incorrect redshift determination in the single-exposure QSO spectra that are classified

as QSOs. Finally, moving from the bottom left to the bottom right panel, we are reducing the

SNR in our training data while maintaining a low SNR in our test data. This results in a ∼3–4

percentage point increase in completeness as the single-exposure-trained model is better able to

identify low-SNR QSO spectra, but a ∼0.5–1 percentage point drop in purity due to contamination

both by stellar spectra and incorrectly determined redshifts.

From these four sets of results, we can draw a number of conclusions. When classifying

coadded spectra, a single-exposure-trained model is able to achieve a higher level of completeness

than a coadd-trained model at a given confidence threshold. However, this comes at the expense

of purity, and it is preferable to use a coadd-trained model with a lower confidence threshold if

completeness is a priority. As such, a coadd-trained model is almost certainly preferable. A parallel

conclusion can be drawn when classifying single-exposure spectra. A coadd-trained model is able

to produce a more pure set of QSOs, but achieves substantially lower levels of completeness than

a single-exposure-trained model when using the same confidence threshold. Again, it is almost

always possible to match the coadd-trained model’s purity with the single-exposure-trained model

by simply increasing the confidence threshold, with a higher completeness being achieved at the

same time. As such, it is preferable to use a single-exposure-trained model in this case.

Most importantly, we can be reassured that QuasarNET is able to produce models that perform

well on single-exposure data. From the bottom right panel of Figure A.2, we can see that a single-
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exposure-trained model achieves purity and completeness of 97.7% on single-exposure test data at

a confidence threshold of 0.1. While there is a drop in performance compared to coadded data, this

is to be expected: classifying low-SNR spectra is an inherently more difficult task. In particular, it

is possible that single-exposure spectra classified incorrectly by QuasarNET would not have been

confidently classified by a VI expert either, but we are able to assign that single-exposure spectrum

a classification as our VI results were obtained using coadded data.
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S U P P L E M E N TA RY M AT E R I A L F O R

C H A P T E R 6

B . 1 T H E Q U A S A R AU T O - C O R R E L AT I O N

We measure the quasar (QSO) auto-correlation on 10 QSO catalogues from 10 realisations of

CoLoRe and combine our results. Correlations are computed as the weighted sum of pairs of QSOs

in a grid of parallel and perpendicular separation bins. We divide the sky into HEALPix pixels,

computing “data-data”, “data-random” and “random-random” correlations in each one using a

random catalogue of QSOs. This random catalogue has the same number density distribution of

QSOs as that in the mock data, and is generated by LyaColoRe. The different correlation types are

then combined using the Landy-Szalay estimator (Landy and Szalay, 1993), and the covariance

is estimated via sub-sampling across HEALPix pixelisations of all 10 realisations (as described in

§ 6.4.2). As in § 6.4.2, all correlations are computed using picca1. A Kaiser model (Kaiser, 1987)

is then fitted to the measurement, leaving free parameters describing the location of the BAO peak

and the QSO bias bδ ,QSO. As in § 6.4.3, we also leave free parameters describing the smoothing of

the input power spectrum in the parallel and perpendicular directions. As in § 6.4.3, we fit only in

the range 40 < r [Mpc/h]< 160 as the lognormal approximation begins to break down below this

range. The resultant fit is very good in the fitted region, as shown in Figure B.1. We measure a

1Publicly available at https://github.com/igmhub/picca.
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Figure B.1. The auto-correlation of QSOs, as measured from ten realisations of CoLoRe.
The fit is generally good in the fitted region, though the correlation on smaller scales than
this is evidently too high.

QSO bias of 3.57±0.01 at an effective redshift of z = 2.20, consistent with the input value of 3.56

to within 1σ .

B . 2 R E D S H I F T- S PA C E D I S T O RT I O N S : I M P L E M E N TAT I O N D E TA I L S

As described in § 6.2.2, adding RSDs to our skewers requires the calculation of a matrix of weights

Wi j to map each skewer’s real-space cells τx
j to redshift-space cells τs

i via the matrix equation

τs
i =Wi jτ

x
j . Wi j is determined by representing each cell as a top-hat function in real space, mapping

this profile into redshift space according to the choice of kernel K, and calculating the overlap with

each redshift-space cell:

Wi j =
∫ su

j

sl
j

P(s− xi− vr,i|Ti,di)ds, (B.1)

where sl
j and su

j are the lower and upper boundaries of cell j in redshift-space, and P(x|T,d)

describes the profile of the real-space cell when mapped into redshift space. P(x|T,d) is dependent

on the distance from the centre of the cell x, the temperature of the gas T and the half-width of the

cell d. The form of P is determined by the choice of kernel, K, as defined in eq. (6.6):

P(x|T,d) = 1
2d

∫ d

−d
K(x− y|T )dy. (B.2)
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As such, in the case of K chosen to be a Dirac delta function, the redshift-space cell is represented

by a top-hat function (as it was in real space).

In order to account for thermal broadening when adding RSDs to our skewers, we must instead

choose our kernel K to be defined by

K(x|T ) = 1√
2πσv(T )

exp
(
− x2

2σ2
v (T )

)
, (B.3)

where σv(T ) is the thermal velocity dispersion, which we approximate as in McDonald et al. (2001)

by

σv(T ) = 9.1
(

T
10,000K

)1/2

km s−1, (B.4)

for temperature T (z,x) = T0(z)ρ(z,x)γ(z)−1. As described in § 6.3, for the purposes of this work

we fix γ = 1.5. We also fix T0 = 10,000 K in line with Slosar et al. (2011) and consistent with

literature values (e.g. Ricotti, Gnedin, and Shull, 2000; McDonald et al., 2001; Hiss et al., 2018).

Of course, these values can easily be updated to follow a more complex redshift dependence for

any uses of LyaCoLoRe where thermal broadening effects become significant. Evaluating eq. (B.2)

for this choice of K yields a cell profile in redshift space defined by

P(x|T,d) = 1
4d

[
erf
(

x+d√
2σv(T )

)
− erf

(
x−d√
2σv(T )

)]
, (B.5)

and the matrix of weights can then be computed as per eq. (B.1).

B . 3 T H E LY α - H C D C R O S S - C O R R E L AT I O N

In Figure 6.4, we showed the cross-correlation between Lyα absorption and high column density

systems (HCDs) from 10 realisations of LyaCoLoRe, comparing it to a linear theory model similar

to that used to describe the cross-correlation with QSOs. This model assumes that HCDs have the

same clustering as dark matter halos, with a large-scale bias of approximately 2.0. However, in a

QSO survey, HCDs are only detected when they are absorbing light from a background QSO, and

this observational bias is not taken into account in our modelling. Here, we propose that this bias

results in an asymmetry in the measured correlation function. We present a qualitative description

of this effect and explain our choice to use only HCDs detected far away from the QSO in Figure 6.4

in this context.

In the left panel of Figure B.2 we show the same measurement of the Lyα-HCD cross-correlation

as in the right panel of Figure 6.4, this time plotting the correlation against r‖ in 3 narrow bins
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Figure B.2. The Lyα-HCD cross-correlation, plotted against r‖ for different bins of r⊥.
The left panel shows the combined measurement from ten realisations using an HCD
catalogue that only includes HCDs with rest-frame wavelength less than 1100 Å (as
in the right panel of Figure 6.4). The right panel shows the correlation measured from
one realisation when using an HCD catalogue that includes HCDs in the full rest-frame
wavelength range, up to λLyα = 1215.67 Å. The solid lines in both panels show the same
fitted correlation as in Figure 6.4: the joint fit of the Lyα auto-correlation and Lyα-HCD
cross-correlation from ten realisations of LyaCoLoRe.

of r⊥. The solid lines show the model obtained by fitting this measurement jointly with the Lyα

auto-correlation. The model is generally able to fit the measurement well, though some small

residuals remain at large r‖. These are visible at large separations in the right panel of Figure 6.4,

accentuated by plotting r2ξ (r) in that figure.

In the right panel of Figure B.2 we plot the Lyα-HCD cross-correlation measured on one

realisation of LyaCoLoRe, this time using a full HCD catalogue (with no maximum rest-frame

wavelength). The solid lines are the exact same lines as in the left panel. It is clear from this plot

that there is a strong asymmetry in the data, and the model used to fit the data in the left panel does

not fit this measurement well.

We propose that this asymmetry is a consequence of the observational bias that is inherently

present in our HCD sample, and the dependence on the Lyα-QSO cross-correlation that this induces.

According to the density-QSO cross-correlation, a QSO q will tend to have dense regions of gas

around it. In relation to an HCD X in q’s spectrum, these dense regions will be located at small

r⊥ and r‖ ' rXq, the distance between X and q (as X is constrained to lie directly along the line of

sight between q and the observer). This preferential location of dense regions of gas will imprint a
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To observer

Region 2

q X

Figure B.3. Diagram showing the geometry of the setup involved when measuring the
Lyα-HCD cross-correlation between two near-parallel skewers. Given the proximity of
the QSO q to “Region 1” of the lower skewer, we expect to measure biased values of
δF for cells corresponding to that region. The cells’ values will tend to be reduced or
boosted according to the Lyα-QSO cross correlation, as indicated beneath “Region 1”.
This biasing is then imprinted on the correlation between an HCD X and the skewer.

feature in the correlation between X and neighbouring skewers of δF at these specific separations.

Referring to the diagram in Figure B.3, we can see that the cells of δF in Region 1 will tend to be

significantly biased according to the Lyα-QSO cross-correlation. Thus, we will see a feature in the

correlation between HCD X and its neighbouring skewer corresponding to this region. The shape

of this feature is determined by the shape of the Lyα-QSO cross-correlation at small rt , as shown

beneath Region 1. The cells in Region 2 will not be significantly affected by the presence of QSO

q, and so we would not expect to see a feature here.

Summing over HCD-pixel pairs in order to compute the full Lyα-HCD cross-correlation will

average out most of the signal, but a small, asymmetric residual will remain, as seen in the right

panel of Figure B.2. The contribution from each HCD will carry a similar signature but the signature

will be centred at different values of r‖ due to the different values of rXq for each X-q (HCD-QSO)

pair. Certainly though, the sign of rXq will always be the same as an HCD is always less distant

than its host QSO. Using picca’s definition of the sign of r‖, this means that rXq > 0 for all X and

q. As a result, we will see a reduction of the Lyα-HCD cross-correlation for all r‖ > 0, due to the

strong reduction in δF at the centre of regions such as Region 1 in Figure B.3. This is only apparent

for r⊥ small as the reduced area shown in Figure B.3 is narrow. We also see a secondary effect: a

boost in the Lyα-HCD cross-correlation for small, negative r‖. This is a result of the small boost in

δF on the right-hand side of Region 1 in Figure B.3, which appears at r‖ < 0 for HCDs that are

very close to their host QSOs. This effect extends to larger values of r⊥ due to the greater width of
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the boosted area (relative to that which is reduced).

Whilst interesting, these effects are very small. In order to assess their visibility in current/future

studies, we would need to carry out tests using a more realistic mock dataset. This would involve

using the entire data reduction pipeline — including continuum fitting and the use of a distortion

matrix — and is beyond the scope of this work. As an approximate comparison, we observe that

the size of the deviation of points in the 0.0 < r⊥ < 4.0 bin in the right panel of Figure B.2 is

approximately an order of magnitude smaller than the size of the error bars in the uppermost two

panels of Figure 2 of Pérez-Ràfols et al. (2018b)2.

In order to mitigate this effect in the right panel of Figure 6.4, we measure the Lyα-HCD cross-

correlation using only HCDs in the rest-frame wavelength range [1040,1100] Å. This imposes

a minimum value of rXq in our measurements, and thus pushes the effect described above to

large separations, beyond those over which we fit. Of course, making such an extreme cut in

rest-frame wavelength greatly reduces the number of HCDs in our catalogue. In Chapter 6 we use

approximately 30 times the number of skewers as DESI will have, and so this reduction does not

cause us any concern. For studies from real surveys, however, maximising the scientific value of

their data will be of much greater importance. As such, we would recommend the development

of a new model to account for the effects described above using the measured Lyα-QSO cross-

correlation. Alternatively, a catalogue of random HCDs, uncorrelated with the Lyα forest, could be

generated and used to quantify these effects before accounting for them appropriately. Either way,

further tests are needed in order to understand more fully the effect described in this Appendix,

particularly if new modelling is required for future Lyα-HCD cross-correlation measurements.

2It should be noted that Pérez-Ràfols et al. (2018b) includes only HCDs at least 5,000 kms−1 away from their host
quasar, equivalent to a rest-frame wavelength cut of approximately 1195 Å. We choose to use λr,HCD < λLyα in the right
panel of Figure B.2 in order to explain the relationship between the geometry of the problem and the observed effect
more clearly.
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Prodanović, Tijana and Brian D. Fields (Nov. 2003). “On Nonprimordial Deuterium Production

by Accelerated Particles”. In: ApJ 597.1, pp. 48–56. DOI: 10.1086/378272. arXiv: astro-

ph/0307183 [astro-ph] (cit. on p. 153).

Raichoor, Anand et al. (Jan. 2021). “The completed SDSS-IV extended Baryon Oscillation Spectro-

scopic Survey: large-scale structure catalogues and measurement of the isotropic BAO between

redshift 0.6 and 1.1 for the Emission Line Galaxy Sample”. In: MNRAS 500.3, pp. 3254–3274.

DOI: 10.1093/mnras/staa3336. arXiv: 2007.09007 [astro-ph.CO] (cit. on p. 58).

Raveri, Marco and Wayne Hu (Feb. 2019). “Concordance and discordance in cosmology”. In:

Phys.Rev.D 99.4, 043506, p. 043506. DOI: 10.1103/PhysRevD.99.043506. arXiv: 1806.

04649 [astro-ph.CO] (cit. on p. 151).

Rees, M. J. and D. W. Sciama (Feb. 1968). “Large-scale Density Inhomogeneities in the Universe”.

In: Nature 217.5128, pp. 511–516. DOI: 10.1038/217511a0 (cit. on p. 54).

202

https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/1807.06209
https://doi.org/10.1051/0004-6361/201833887
https://arxiv.org/abs/1807.06211
https://arxiv.org/abs/1807.06211
https://doi.org/10.1103/PhysRevD.89.083010
https://doi.org/10.1103/PhysRevD.89.083010
https://arxiv.org/abs/1402.0506
https://doi.org/10.1086/152650
https://doi.org/10.1093/mnras/stt2218
https://arxiv.org/abs/1310.0052
https://doi.org/10.5281/zenodo.1045480
https://doi.org/10.5281/zenodo.1045480
https://doi.org/10.5281/zenodo.1045480
https://doi.org/10.1086/342354
https://arxiv.org/abs/astro-ph/0206296
https://doi.org/10.1086/378272
https://arxiv.org/abs/astro-ph/0307183
https://arxiv.org/abs/astro-ph/0307183
https://doi.org/10.1093/mnras/staa3336
https://arxiv.org/abs/2007.09007
https://doi.org/10.1103/PhysRevD.99.043506
https://arxiv.org/abs/1806.04649
https://arxiv.org/abs/1806.04649
https://doi.org/10.1038/217511a0


BIBLIOGRAPHY

Reeves, Hubert et al. (Feb. 1973). “On the Origin of Light Elements”. In: ApJ 179, pp. 909–930.

DOI: 10.1086/151928 (cit. on p. 153).

Reid, Beth et al. (Jan. 2016). “SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12:

galaxy target selection and large-scale structure catalogues”. In: MNRAS 455.2, pp. 1553–1573.

DOI: 10.1093/mnras/stv2382. arXiv: 1509.06529 [astro-ph.CO] (cit. on p. 98).

Richards, Gordon T. et al. (Jan. 2009a). “Efficient Photometric Selection of Quasars from the Sloan

Digital Sky Survey. II. ˜1,000,000 Quasars from Data Release 6”. In: ApJS 180.1, pp. 67–83.

DOI: 10.1088/0067-0049/180/1/67. arXiv: 0809.3952 [astro-ph] (cit. on p. 72).

Richards, Gordon T. et al. (Apr. 2009b). “Eight-Dimensional Mid-Infrared/Optical Bayesian Quasar

Selection”. In: AJ 137.4, pp. 3884–3899. DOI: 10.1088/0004-6256/137/4/3884. arXiv:

0810.3567 [astro-ph] (cit. on p. 72).

Ricotti, Massimo, Nickolay Y. Gnedin, and J. Michael Shull (May 2000). “The Evolution of the

Effective Equation of State of the Intergalactic Medium”. In: ApJ 534.1, pp. 41–56. DOI:

10.1086/308733. arXiv: astro-ph/9906413 [astro-ph] (cit. on pp. 117, 179).

Riess, Adam G. et al. (Sept. 1998). “Observational Evidence from Supernovae for an Accelerating

Universe and a Cosmological Constant”. In: AJ 116.3, pp. 1009–1038. DOI: 10.1086/300499.

arXiv: astro-ph/9805201 [astro-ph] (cit. on pp. 19, 33, 40).

Riess, Adam G. et al. (May 2019). “Large Magellanic Cloud Cepheid Standards Provide a 1%

Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics

beyond ΛCDM”. In: ApJ 876.1, 85, p. 85. DOI: 10.3847/1538- 4357/ab1422. arXiv:

1903.07603 [astro-ph.CO] (cit. on pp. 66, 152, 154).

Rogers, Keir K. et al. (May 2018). “Correlations in the three-dimensional Lyman-alpha forest

contaminated by high column density absorbers”. In: MNRAS 476.3, pp. 3716–3728. DOI:

10.1093/mnras/sty603. arXiv: 1711.06275 [astro-ph.CO] (cit. on p. 125).

Roos, Matts (Jan. 2010). “Dark Matter: The evidence from astronomy, astrophysics and cosmology”.

In: arXiv e-prints. arXiv: 1001.0316 [astro-ph.CO] (cit. on p. 32).

Ross, Ashley J. et al. (May 2015). “The clustering of the SDSS DR7 main Galaxy sample - I. A 4

per cent distance measure at z = 0.15”. In: MNRAS 449.1, pp. 835–847. DOI: 10.1093/mnras/

stv154. arXiv: 1409.3242 [astro-ph.CO] (cit. on p. 150).

Ross, Nicholas P. et al. (Mar. 2012). “The SDSS-III Baryon Oscillation Spectroscopic Survey:

Quasar Target Selection for Data Release Nine”. In: ApJS 199.1, 3, p. 3. DOI: 10.1088/0067-

0049/199/1/3. arXiv: 1105.0606 [astro-ph.CO] (cit. on pp. 72, 81).

203

https://doi.org/10.1086/151928
https://doi.org/10.1093/mnras/stv2382
https://arxiv.org/abs/1509.06529
https://doi.org/10.1088/0067-0049/180/1/67
https://arxiv.org/abs/0809.3952
https://doi.org/10.1088/0004-6256/137/4/3884
https://arxiv.org/abs/0810.3567
https://doi.org/10.1086/308733
https://arxiv.org/abs/astro-ph/9906413
https://doi.org/10.1086/300499
https://arxiv.org/abs/astro-ph/9805201
https://doi.org/10.3847/1538-4357/ab1422
https://arxiv.org/abs/1903.07603
https://doi.org/10.1093/mnras/sty603
https://arxiv.org/abs/1711.06275
https://arxiv.org/abs/1001.0316
https://doi.org/10.1093/mnras/stv154
https://doi.org/10.1093/mnras/stv154
https://arxiv.org/abs/1409.3242
https://doi.org/10.1088/0067-0049/199/1/3
https://doi.org/10.1088/0067-0049/199/1/3
https://arxiv.org/abs/1105.0606


BIBLIOGRAPHY

Ross, Nicholas P. et al. (Aug. 2013). “The SDSS-III Baryon Oscillation Spectroscopic Survey:

The Quasar Luminosity Function from Data Release Nine”. In: ApJ 773.1, 14, p. 14. DOI:

10.1088/0004-637X/773/1/14. arXiv: 1210.6389 [astro-ph.CO] (cit. on p. 143).

Sachs, R. K. and A. M. Wolfe (Jan. 1967). “Perturbations of a Cosmological Model and Angular

Variations of the Microwave Background”. In: ApJ 147, p. 73. DOI: 10.1086/148982 (cit. on

p. 54).

Salvato, Mara, Olivier Ilbert, and Ben Hoyle (June 2019). “The many flavours of photometric

redshifts”. In: Nature Astronomy 3, pp. 212–222. DOI: 10.1038/s41550-018-0478-0. arXiv:

1805.12574 [astro-ph.GA] (cit. on p. 57).

Samek, Wojciech et al. (Mar. 2020). “Toward Interpretable Machine Learning: Transparent Deep

Neural Networks and Beyond”. In: arXiv e-prints. arXiv: 2003.07631 [cs.LG] (cit. on

p. 162).

Scheuer, P. A. G. (Aug. 1965). “A Sensitive Test for the Presence of Atomic Hydrogen in Inter-

galactic Space”. In: Nature 207.5000, p. 963. DOI: 10.1038/207963a0 (cit. on p. 60).

Schmidt, M. and R. F. Green (June 1983). “Quasar evolution derived from the Palomar bright quasar

survey and other complete quasar surveys.” In: ApJ 269, pp. 352–374. DOI: 10.1086/161048

(cit. on p. 80).

Schmidt, Maarten (Apr. 1965). “Large Redshifts of Five Quasi-Stellar Sources.” In: ApJ 141,

p. 1295. DOI: 10.1086/148217 (cit. on p. 60).

Schneider, Donald P. et al. (July 2007). “The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth

Data Release”. In: AJ 134.1, pp. 102–117. DOI: 10 . 1086 / 518474. arXiv: 0704 . 0806

[astro-ph] (cit. on pp. 80, 82).

Schneider, Donald P. et al. (June 2010). “The Sloan Digital Sky Survey Quasar Catalog. V. Seventh

Data Release”. In: AJ 139.6, 2360, p. 2360. DOI: 10.1088/0004-6256/139/6/2360. arXiv:

1004.1167 [astro-ph.CO] (cit. on p. 80).
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