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Abstract 
 

In order to establish a generic framework for the rapid development and 

optimisation of scalable fermentation processes, a novel methodology for 

simplifying model building was explored. This approach integrates small-scale 

fermentations with model-based experimental design (DoE) and predictive 

control strategies. In this study, four 1.4 litre vessels were characterised for 

power input, volumetric oxygen transfer coefficient (KLa) and mixing, to 

assess its potential for replicating cell culture rapidly. Engineering 

characterisation results showed excellent propeller operation over a range of 

400-1200 rpm and up to the maximum motor output and under various air 

flow rates in fluid densities up to 4.21 Cp/mPa s (1.211 g/cm3). Limits were 

reached using glycerol (99%) at fluid viscosities of 500Cp/mPa s (1.253g/cm3) 

at 800 rpm and no air flow, hence experiencing the most resistance. This was 

the most taxing condition in terms of energy input into the system. 

Furthermore, we determined the efficient gas dispersion which is considered 

important for oxygen bubble dispersion in viscous fluids. The potential gas 

dispersion could be calculated as a function of both impeller speed, airflow 

rate, and the fluid viscosity. The calculations provided a working impeller 

speed of >263 rpm for >0.5 vvm air flow rate as preliminary parameters in our 

advanced modelling section. The key outcome of the KLa study was that the 

results showed suitable potential for mass transfer for high cell density 

fermentations, for each of the parallel stirred tank bioreactors. To assess the 

usability of the parallel bioreactors be used for bioprocess rapid development 

purposes Escherichia coli W3110 was characterised in the 1L WV vessels. So 

overall the experiments included testing the performance of the vessels 

engineering parameters and also the biological fermentations confirming that 

the system was suitable for parallel operation with high reproducibility.  

 

For model building, especially suited for the 4-reactor set up the parallel 

bioreactors a fractional factorial design was used, in which models could be 

rapidly built and implemented for further research. The screening and model 
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optimisation helped to reduce the development time by using the parallel 

equipment. Batches of four reactors could be completed in parallel in which 

comparable experimental results were obtained rapidly for new fermentation 

models.  

 

Optical density measurements provided a quick off-line analysis of the growth 

curve of microbial populations, as compared to cell plate counts or dry 

weights that require more time. For the model development and the 

establishment of our integrated software modelling tool, a modified logistic 

model was developed to predict microbial growth kinetics. First-order kinetic 

models, logistic, and Gompertz models were used and comparatively 

analysed to assess the model fit to test batch data. The logistic model was 

favourable for mapping and simulating the later phases of bacterial growth, 

while the well-established exponential growth model predicted the early lag 

phase in our stoichiometric growth simulation software tool better.  

 

The initialisation of the previous fermentation model allowed us to build a 

statistical model, which was based on the engineering characteristics for 

optimisation of biomass. Therefore, batch nutrient supply with the aid of 

stoichiometric models could be tested and modelled. DoE model data was 

improved with metabolic flux analysis to develop an advanced feeding 

strategy by testing various metabolic pathways and the nutrients used in 

experimentation.  

 

Bacterial growth predictions and media optimisation were tested for 

maximising microbial biomass yields. We then modelled the dissolved oxygen 

concentration and substrate utilisation. The techniques and principles of 

dynamic flux balance analysis, mechanistic modelling, and stoichiometric 

mass balancing were used. The aim was to create and validate our integrated 

software based on advanced modelling for the parallel bioreactor systems 

and tested through application for E. coli fermentations. Optimising microbial 

biomass was the main target in this project, with the data collected from 



 6 

fermentation being the strongest comparator and validator. A new software for 

the integration of DoE and Dynamic flux balance analysis (DFBA) techniques 

with the intention of creating a working fermentation platform for the Multifors 

equipment via simulation and fermentation optimisation was the novel 

outcome of this research. The tool could provide functions for speeding up 

development time and control of parallel bioreactors. 
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1 Introduction  
 

1.1 Project Motivation 
 

Miniature bioreactors have been receiving increasing attention because of 

their scale-up potential and volumetric advantages in experimentation and 

testing of suspended microbial cultures. Parallel miniature bioreactors have 

further advantages when applied to model-based experimental design (DoE) 

and rapid research completion. Several studies on oxygen transfer and power 

input have also been conducted for microbial fermentation processes (Gill et 

al., 2007; 2008; Betts et al., 2006). Previous research using miniature 

bioreactors focussed on the following key engineering parameters: 

 

• Quantification and modelling of oxygen mass transfer rates (Doig et al., 

2005)  

• Impact of oxygen mass transfer rates on process performance (Doig et 

al., 2002; Elmahdi et al., 2003; Ferreira-Torres et al., 2005).  

• Liquid phase mixing time (Micheletti et al., 2006). 

• Energy dissipation rates (Micheletti et al., 2006).  

 

 

The aim was to use the engineering principles established in previous 

research to identify the specific characteristics of a 4 x 1L parallel bioreactor 

system (Multifors). Thereafter, utilise the characteristics in two applications to 

explore methodologies that integrate small-scale microbial cell fermentations) 

with model-based experimental design and predictive control strategies. This 

approach will be used to optimise biomass production of E.coli grown in a 

defined medium. 
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The objectives of the project are outlined below: 

 

1) Engineering characterisation of Multifors reactors  

2) Rapid process optimisation using model-based DoE approaches 

3) Integration of advanced modelling tools with Infors reactor control 

software (IRIS) and model development  

4) Establishment of model-based control strategies and optimisation of 

fermentation protocols 

 

 

Prior to this project, there was a need to restructure and develop a platform 

for bioprocess modelling. The ideal platform is one that can integrate the 

mathematical, computational, and biological fields. This cross-over is required 

to, for instance, integrate multidisciplinary bioinformatics resources with lab-

scale miniature parallel bioreactors and control software. This project also 

needs to answer an important research question: “Is there any economic 

potential or impact?” Addressing this commercial impact is valid for 

engineering but not within the main scope of this research. 

 

Lastly, the validation, critique, and review of the protocols for this project from 

an engineering perspective will improve the structure and strength of the 

research outcomes. Figure 1 below shows a diagrammatic overview of 

research needs as individual components: 
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The diagram in Figure 1 indicates the framework for this research project, 

Evaluation of current software and hardware limitations, where applications 

can be optimised and lastly the current software and control can be 

enhanced. Research problems like those mentioned earlier improve 

bioreactor functionality, so Infors HT can target a wide audience. This 

diagram is also applicable to bioprocesses at various scales. 

 

As there was a need to establish a robust framework for rapid fermentation 

process optimisation, this project used a small-scale parallel bioreactors 

Proposed	Research	Framework
Components

Bioprocess
Initialisation	

and	
Evaluation

User	
Specifications

Economics

Optimisation

Experimental	
design

Characterisation

Automation
and	Control

Predictive	
modelling

Figure 1 Proposed framework and constituent topics on which this research 
project is built upon 
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(Multifors) in combination with DoE and advanced predictive modelling 

approaches. 

 

New process automations need to be validated and verified. Predictive 

extrapolation is a function of building models that mimics process data. 

Furthermore, this can also help control process parameters based on process 

trajectory and mathematical algorithms. However, each type of automation is 

unique to a process and can go in either of the two directions given below:  

 

1) Towards a simplified or a generalised model-based design (black box 

design). 

 

2) Towards the incorporation of different sets of information for complex 

modelling to gain a better insight into the process (as many examples 

of complex model designs exist).  

 

Even though the ideas and field are well established, it is difficult to get useful 

information to construct online robust models for model predictive control. 

Therefore, bioprocess automation is arguably more challenging than for many 

other technical industries and it is difficult to carry out programmatically 

without accurate and validated information (Chang, Liu & Henson, 2016).  

 

Implementing model predictive control is also a challenging factor for scale-

up. Creating calibrated models for a range of bioreactor scales can lead to a 

cost benefit when predicting fermentations at scale, and if models are relevant 

and predictive, they may reduce the risk of product loss or batch failure with 

the use of better integrated controls.  

 

This project attempts to overcome the difficulties faced with both modelling 

directions by looking at the implementation of generalised stoichiometric 

model and by advancing predictive techniques into a platform software. The 

project considers the engineering factors by defining appropriate engineering 
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bases for the rapid and accurate reproduction of cell growth and product 

kinetics.  

 

Another goal was to elucidate the other problems faced at bench-top scale, 

namely high-density microbial growth, optimising product kinetics, and 

predicting the process trajectory with models created for defined microbial 

systems. For scale-up, closing the gap between miniature and larger scale is 

highly sought after, and this platform allows exploration by eventually 

implementing finite model predictive controls, process optimisation, and for 

future work scale translation.  
 

 

1.1.1 Research aims and objectives 
 

The initial project goals are to improve controls for suspended E. coli culturing 

and identify more effective performance solutions or in silico testing of 

metabolic models. There is a potential to work with engineered cells or 

various microorganisms in fermentations.  
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Figure 2 Overview of the project scope. This diagram follows the development of the integrated 

software and applications in this project (blue square boxes). The Multifors parallel bioreactor 

and control software IRIS was all that was established prior to this project.  

 

This project will help to improve or help elucidate: 

  

• Complex metabolic models  

• Data visualisation 

• Use of experimental design packages with reactor control software 

• Using bench top reactors in parallel systems for exploring 

improvements in research capacity 

• Reactor characterisation techniques to gain an advanced 

understanding of reactor performance 

• Current operation of the Multifors reactors by automatically controlling 

parameters while aiming to improve interoperability between software 

programmes and reactor hardware with new interfaces, advanced 

bioprocess software, and integration  

• Validation and data verification for software used with bioreactors and 

upstream applications 
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The objectives of the project are outlined below: 

 

• Engineering characterisation of Multifors reactors  

• Rapid process optimisation using DoE approaches 

• Integration of advanced modelling tools with IRIS software and model 

development  

• Establishment of model-based control strategies and optimisation of 

fermentation protocols 

• Implement a Quality by Design approach with respect the software 

development and fermentation development as described in 6.1.1. 

 

1.2 Thesis Structure 
 

The thesis is structured as follows: 

 

In chapter 1, the initial research problem is stated and the project motivation 

and relevance of the research questions covering academic, economic, and 

societal impacts are also established. In chapter 2, the materials and methods 

used for the entire project are described.  

 

For the following results chapters, each results chapter (3-5) starts with the 

purpose and context within the scope of the project problem and/or objective 

being met. The principles, scientific theory, and other relevant information are 

included in each research section with further work being summarised 

 

In chapter 3, the fundamentals of research experimentation are briefly 

reintroduced for engineering characterisation. These experiments were based 

on methods developed at UCL (e.g. Gill et al., 2008a). These established 

methods are then applied in practice to the Multifors parallel 1L stirred tank 

reactors. The Multifors reactor will be characterised in terms of power input, 

mixing times, and oxygen mass transfer and checked for consistency across 
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batch fermentations in the parallel bioreactor system. This is a crucial step as 

it tests modelling assumptions and establishes the parameters used in the 

subsequent sections. These are described in each section. 

 

In chapter 4 these present our integrated software development and 

experimental testing, to build the initial fermentation model. It also includes a 

model-based DoE tool for the Multifors system and an appraisal for 

integrating statistical software packages for bioreactors. 

 

In chapter 5, here the focus is on building upon the gained model knowledge 

and modelling methodologies for fermentation set up, operations, and 

outcomes in one integrated software tool. The protocols will be revisited and 

updated with the improvements from this model development. 

 

Lastly, the research implementation and its impact are briefly investigated. 

Validation and commercialisation analysis of the new technology are also 

presented, covering industrial learning outcomes with future work suitable 

from this research. 
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2 Materials and Methods 
 

2.1 Materials  
All chemicals were obtained from Sigma Chemical Co, Ltd. (Dorset, UK) and 

was of analytical grade. Reverse osmosis (RO) water was used throughout.  

 

2.2 Microbial Strain 
Cell banks of Escherichia coli w3110, a laboratory strain of E. coli K-12, were 

prepared using two shake-flask cultures. Lysogeny broth (10 g/L tryptone, 5 

g/L yeast extract, 10 g/L NaCl) was autoclaved at 121°C. Shake-flask cultures 

were incubated overnight at 37°C and 200 rpm on a shaking incubator 

(Manufacturer details). They were then aseptically transferred to sterile 1-mL 

Eppendorf tubes (0.5 mL culture aliquots with sterile 0.5 mL 50% glycerol 

solution) for freezing at -80°C.  

 

2.3 Low-density Fermentation Medium   
1 mL aliquots from the cell bank were thawed for seed culture/train in a shake 

flask culture (100 mL) for the final mini bioreactor 500-mL working volumes. 

 

2.3.1 Media Composition and Preparation 
Minimal media (M9) was used for low cell-density fermentations. For the 1L 

M9 media fermentation – Firstly 200ml of a sterilized M9 salt stock solution 

(consisting of reverse osmosis (RO) water, ammonium chloride (final 

concentration 1 g/L), disodium hydrogen phosphate (final concentration 6 

g/L), potassium dihydrogen phosphate (final concentration 3 g/L), sodium 

chloride (final concentration 0.5 g/L) was added.  Finally, 1% (v/v) 1M 

magnesium sulphate solution, and final 0.1% (v/v) 1M calcium chloride 

solution and more RO water to make the volume up to 1L. The pH was not 

adjusted for the seed train. 
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2.3.2 Fermentation set up and operation 
Fermentation set up and operation was carried out according to the standard 

operating procedures provided in the appendix section 8.1. Rotation speed, 

air flow via feedback dissolved oxygen (DO) measurement using a 

polarographic electrode (manufacturer), pH using a pH probe (Details) and 

antifoam (PPG) were controlled by the Infors IRIS software, linked via a OPC 

connection to the Multifors touch screen control panel. The maximum speed 

that could be attained when working volume of media inside was 1200rpm. 

Where otherwise stated, pH was controlled to 7.0±0.05 by controlled addition 

of alkali and acid.  

 

2.3.3 Optical density measurements and maximum specific 

growth rate 
Optical density OD was measured off-line using a spectrophotometer 

(Thermo-Fisher scientific, USA) at 600 nm throughout the fermentation. 

Exponential regression was used in Microsoft Excel to determine the 

maximum specific growth rate from the OD data.  

 

2.4 Power Measurement 
Both the un-gassed and gassed torque/power measurements from the 1.4-L 

miniature bioreactor motor were carried out using a dynamometer located on 

the upper quartile section of the propeller shaft. Two Rushton turbine 

propellers were used in this experiment and the diameter of the glass vessel 

was dt = 90 mm. The fill volume for each of the different tests was 1000 mL, 

carried out at 30°C. Glycerol was used to provide a range of viscosities in 

which motor torque was measured for each liquid medium.  

To determine the power (W):  

 

P(W) = Torque(Nm)* Speed(rpm)/9.5488 

Equation 1 
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The gassed power was measured using the same liquid with air being 

sparged through the ring sparger. 

 

2.5 KLa Measurements 
 

The static dynamic gassing out method was utilised with an air and deionised 

water system (Stanbury & Whitaker, 1995). The probe response time was 

defined as the time taken to reach from 100% to 36.8% in a step-change from 

an oxygen-saturated environment to an unsaturated oxygen environment 

using nitrogen gas. 

 

The DO data gathered from the IRIS software were outputted to Microsoft 

Excel and were corrected using the solver in Microsoft Excel by minimising 

the mean residuals between the square error of the raw data and corrected 

results (MSE), to produce kLa. The conditions tested for Van’t Riet equation 

were for a range of aeration (vvm) and agitation rates (rpm) (Van’t Riet, 1979; 

Stanbury and Whitaker, 1995): 

 

kLa = k.(Pg/V)α . (vs)β   
Equation 2 

 

2.6 Mixing Time 
 

pH method:  

 

The experiments were carried out at 20°C in a 1.4-L bioreactor with a 600 mL 

fill volume containing a Mettler Toledo pH probe for localised reading. The 

probe was submerged from the top plate. 95% homogeneity values were 

used for the calculation of the significant change in pH. The mixing time was 
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noted using a stop watch, from when the pH rose three levels from pH 4 to pH 

7 using 1-M NaOH and to readjust the pH back down to pH 4 and below by 

adding 2-M phosphoric acid at a volume of 3 mL. The stirrer speeds for the 

local pH method were chosen to be 200 and 600 rpm and across aeration 

values of 0–1.5 vvm.  

 

Decolourisation method:  

 

Bromocresol purple pH indicator for global mixing method was added at 0.005 

g per 600 mL fill volume in the reactor vessel. The measurements were again 

visually timed for a change in the colour. Bromocresol purple is purple at a 

range of pH 7 or above and it decolourises to yellow at ranges of 5.4 and 

below after addition of 1.5 mL of 3-M phosphoric acid. The pH was adjusted 

again to pH 7 with 1-M NaOH and the acid addition repeated (Bryant, 1977). 

The additions were made at the same height as the top plate to the working 

volume.  

 

 

2.6.1 Logistic Model and Data Fitting 
The mean squared error (MSE) (Equation 3) is calculated as the sum of the 

mean of the squared residuals between the experimental and the theoretical 

values.  The smaller the MSE the closer the model fit to the data. 

 

Mean squared error = (1/n) × (sum of squared 

residuals) 

 
Equation 3 
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2.7 DoE software and implementation 
The DoE interface and final tool used for the creation of the experimental set 

up for parallel bioreactors was programmed in Matlab. Development in Matlab 

allowed implementation of the statistical toolboxes necessary for developing 

relevant fermentation models. The software components are diagrammatically 

shown in the Figure 2 project scope. 
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3 Engineering Characterisation of the Multifors 
 

3.1 Summary 
 

For this engineering characterisation section, the fundamentals used for 

research experimentation are described by the methods previously developed 

at UCL (e.g. Gill et al., 2008a). The engineering characterisation 

methodologies were applied to the parallel 1-L Multifors stirred-tank reactors 

and the results and discussions focus on the specific characterisation of 

power input, mixing times, and oxygen mass transfer. The Multifors was 

checked for consistency across batch fermentations in the parallel bioreactor 

system. Growth conditions were based on pre-established protocols (see 

methods section 2). 

 

3.2 Research Context 
 

Many glass and stainless-steel bioreactors at a small scale (1L–7L) are 

available for the cultivation of microorganisms. The design and specifications 

of these reactors are varied so suitable characterisation is needed for good 

scale translation and comparisons between equipment. Some of the main 

differences occur with gassing, mixing strategies, and power input (Meusel et 

al., 2016).  

 

When comparing solutions for scale-up criteria, one of the leading causes of 

confusion seems to be the set engineering characterisation objectives, 

assumptions, and methods themselves. The problems that arise are common 

when engineering characterisation methods are conditioned to a given 

vessel(s) or when there are varied methods being employed between studies. 

As such, there should be a standardisation of the relevant parameters in the 

studies, validation, standard operating procedures (SOPs), models employed, 

and set criteria for scale translation. Guidelines could then be employed to 
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single-use systems as well as reusable glass and stainless-steel reactors 

(Meusel et al., 2016). Picking the right operating conditions for a given 

application can be made easier through characterisation although potential 

applications may also be enhanced and optimised using characterisation and 

models in conjunction.  

 

Biological data are not the only key information needed in each bioprocess 

as, for example, process-related information is also required. This is usually 

presented in the form of process parameters. Some are obtained through the 

initial selection, dimensioning, and design of the bioreactor; others (like the 

operation conditions) can be obtained through calculations (Meusel et al., 

2016). 

 

The routine experiments that can be easily measured are summarised below: 

 

Process parameters generated through operational conditions and medium 

properties: 

 

• Flow regimes (Reynolds number, for given laminar and turbulent 

zones). 

• Fluid velocity (e.g. tip speed). 

• Superficial gas velocity (residence time of gas front and the distribution 

of gas phase). 

 

Process parameters generated through empirical data: 

 

• Power consumption 

• Mixing time 

• Particle (shear) stress 

• Volumetric oxygen mass transfer coefficient (KLa) 
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The measurements requiring specialised knowledge and expertise are listed 

below:  

 

Most of the listed parameters above can be determined through 

computational fluid dynamics and experimentation including energy 

dissipation rate and residence time distribution.  

 

Computational fluid dynamics is known for its detailed spatial and time-related 

dependencies that provide a lot of information about the process (Loffelholz et 

al., 2011). With computational fluid dynamics and an engineering 

characterisation process, critical limitations (e.g. mixing and oxygen limitation) 

can be overcome quickly using verified and validated models albeit the 

limitations are worsened at a larger scale. More specialised knowledge is 

needed to carry out these experiments (Meusel et al., 2016). 

 

The dynamic methods used to measure the volumetric mass transfer 

coefficient KLa have become more widely accepted to determine KLa. One 

advantage is it allows measurements to be taken with the actual fermentation 

culture several times to address the efficiency across a number of time points 

(Doran, 1995). The mechanism involves adequate supply of oxygen to 

saturate the liquid broth. The supply is then shut off and the resulting drop of 

oxygen tension is measured. By using the polarographic oxygen probe in the 

broth, it is assumed KLa is inversely proportional to the specific oxygen uptake 

rate of the cells (assuming a closed system that is homogenous) (Garcia-

Ochoa & Gomez, 2009; Gill et al., 2008b; Doran, 1995).  
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3.3 Fundamentals in Engineering Characterisation 
 

3.3.1 Geometry and Design 
 

One key function of a bioreactor is to control the biochemical environment for 

cells to survive and grow exponentially. This is achieved by facilitating mass 

transfer of nutrients, oxygen, and metabolic products to and from the cells 

(Chen and Hu, 2006). Difficulties in bioprocess operation may arise when 

there are poor design choices for a given process: mass transfer problems, 

incomplete knowledge of the system or incorrect implementation of control 

software (Salehi-Nik et al., 2013). The mathematical modelling of these 

bioreactors can provide a greater understanding of how design can impact a 

given bioprocess. Experimental design methods for various bioreactor 

geometries and designs would normally flow into process optimisation.  

 

The scale of the bioreactor is an important part of design and geometry 

because scale can be related to cost-determining factors for research and 

development and, ultimately, costs in overall production. The geometry of a 

bioreactor should be similar, for any additional scale-up/down equipment. Any 

necessary adjustments identified during the bioreactor characterisation and 

modelling for scale-up/down should be applied.  
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Figure 3 The STR vessel dimensions for the Multifors borosilicate glass vessels used for 

microbial cultures (scale 1L working volume) with permission for in-house purposes only 

(Adapted from Infors-HT, 2012a) 

 

 
Figure 4 The top plate mechanical design for port space and location. Note the typical 

sensors/ports used for microbial culture listed. Used with permission and for in house purposes 

only (Adapted from Infors-HT, 2012a) 
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The baffled vessel used in this work was made from borosilicate glass, with a 

total volume of 1.4 L. The height to diameter ratio was 2.4:1 (Figure 3). 

Baffles were included as were two 6-bladed Rushton turbine impellers of 

diameter 0.038 m. Air was sparged through a bottom ring loop sparger 

located under the magnetic coupling attached to the bottom of the impeller 

shaft. The IRIS software, which was integrated into the control system and 

together with a flowmeter included with the Multifors™ (InforsHT, 

Switzerland), controlled airflow rate. A polarographic electrode was used for 

DOT measurements.  

 

The reactor design shown in Figure 3 and Figure 4 allows for the 

accommodation of hardware sensors and probes on the top plate which is 

used for monitoring the culture during operation and for sampling. The top 

plate can be fastened onto the glass vessel via a clamp (not shown) and 

allows for the vessel to be sterilised in an autoclave. The exit gas port can be 

fixed to a mass spectrometer for gas analysis. The OPC client (networked 

controller) can then relay and receive information back from analysers to 

initiate automatic predefined controller inputs or cascade controls. Baffles 

were included in our experiments and these baffles  fit into the glass vessel 

(not shown) (Infors HT, 2012a). 

 

3.3.2 Power Consumption 
 

Oxygen mass transfer coefficients (kLa) and power input per unit volume (P/V) 

are popular choices, among others, for scale-up (Gill et al., 2008b). These 

criteria will be the basis on which a process framework for scale-up is 

developed. It is also assumed that the geometric height to diameter ratio is 

important for the empirical models to be valid. Other criteria that seem to be 

less important presently are maintaining mixing properties, shear stresses, 

impeller tip speed, gas velocity, and heat transfer capacity (Ju & Chase, 

1992). Nonetheless, these are still useful parameters that are needed to keep 
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the microenvironment and physiological characteristics similar and make the 

cell physiology and CQA outputs repeatable. More complex models, where 

relevant, are needed to incorporate an increased number of scale-up criteria. 

This would entail the control software being updated and better applied. 

Predictive models could also be implemented.  

 

Pg/V is one key parameter that can be used for process scale-up. The 

disadvantage of using this criterion for scale-up in process design is that the 

automatic controls usually cannot satisfy the high oxygen mass transfer 

demand from fast-growing organisms like E. coli (Gill et al., 2008a), making it 

difficult to predefine the ranges for automatic control. Plain water and air 

systems are a useful way to test the maximum power input values for 

bioreactors. Conclusions can be based on the relationship between the 

empirical un-gassed to gassed power ratios (Gill et al., 2008a). One 

disadvantage is that this power consumption may not necessarily reflect the 

power consumption with microbial cells at high cell densities although the 

same methods using torque measurements and gassing out techniques can 

be used to measure the un-gassed power input. Numerous operating 

conditions will have to be managed to better correlate engineering factors for 

high cell densities but this is still done through experimental means and is at 

best still an approximation (Gill et al., 2008b). 

 

Power consumption and transfer of energy to kinetic motion and dissipation 

as heat to the liquid are key engineering parameters (Gill et al., 2008b). Other 

parameters include the superficial gas velocity, bubble size, and viscosity 

needed for mass transfer when Pg/V is kept constant for scale-up (Gill et al., 

2008a; Miller, 1974).  

 

The power number (P), also known as the Newton number, is a 

dimensionless number used to assess the performance of the stirrers used in 

a bioreactor:  
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Equation 4 

Gill et al. (2008a) suggested that the bioreactor Pg/V performance was 

influenced by the overall number of impellers. In their investigation, the power 

number was multiplied by the number of stirrers in the calculation of the Pg/V 

to account for the new power efficiency input into liquid. There is a useful rule 

for a scale-up framework when using three impellers as outlined below as: 

 

Power number of a single Rushton design impeller * the number of impellers 

used in the fermenter. N is power number of a single Rushton impeller. These 

values have been obtained before (Van’t Riet and Smith, 1975). The factor 

1.1 in Equation 5 is used for correct calculation of the power number for non-

viscous liquids at high Reynolds numbers above >1 x 104 . 

 

(𝑛) ∗ 3/1.1 = 	𝑁𝑝 
 
Equation 5 

The rule of thumb or correction was needed as previous studies looked at the 

power number of single Rushton impeller when a Di/Dt of 0.33 was used (Gill 

et al., 2008b). It was found that low agitation rates cause a drop in final 

biomass yields between different scales when the fermentation DOT ≤0 (Gill 

et al., 2008b). 

 

It was also found that their low energy input (657 W/m3) was not optimal for 

achieving high oxygen transfer for efficient growth (DO dropped). This 

condition may be considered as being inappropriate for designs, especially for 

high cell densities in the Infors equipment. More specifically, effective oxygen 

mass transfer may not be achievable or reproducible and therefore not a good 

condition for scale-up. One course of action would be to compare the Infors-
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HT data from experiments under high cell densities to those that are modelled 

by Hughmark (1980) or Cui et al. (1996), as cited in Gill et al. (2008b), using 

water/air systems to determine whether the assumptions are still valid. 

 

One final area that can be characterised is the nature of gas dispersion during 

fermentation. It is challenging to accurately predict the hydrodynamic forces at 

various scales but this can be accomplished using computational fluid 

dynamics (CFD).  

 

3.3.3 Fluid Flow and Mixing 
 

Characterisation of the mixing efficiency is a useful step as it describes the 

physical process in which blending; dispersion; suspension; and transfer of 

mass, temperature, or immiscible liquids occurs (Doran, 1995). Power input 

into the system and fluid properties are key to understanding the mechanics 

behind fluid deformation and fluid flow. Fermentation liquid properties can 

affect the suitability and success of scale-up in the presence of cells, 

substrates, biological products, and air. Exponential growth and further 

survival in culture will occur unless there is very little access to substrates or 

huge concentrations of gradients are present. Equally so, survival is also 

affected if there is not a uniform suspension of biomass. Impeller mixing is the 

most typical method for carrying out this mixing operation.  

 

3.3.3.1 Mixing Mechanisms 

 

Maintaining and modelling turbulent flow patterns is important when large 

operating volumes are required and even more when the conditions inside a 

bioreactor are not at a steady state (Richardson & Peacock, 1994). Non-

turbulent flow has been problematic within feedback control loops because 

mixing times and void times of solution additions can cause controller 

feedback issues, overall mixing inefficiencies, and further difficulties in 

modelling a system (Richardson & Peacock, 1994).  
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Turbulent flow regimes are currently used between laboratory, pilot scale and 

industrial scale to provide a basis for localised environments that are 

assumed to be well mixed and properly dispersed (Henzler et al., 2000). This 

is especially important during batch and fed-batch fermentation to reduce the 

risk of any spatial gas-liquid or liquid-liquid mass transfer limitations. These 

mass transfers are crucial for microbial cell growth (Henzler et al., 2000).  

 

 
Figure 5 The oxygen-diffusion pathway theory from gas bubble through respective interfaces 

and films to reach bulk liquid and transportation to individual cells. Note: It is assumed the rate 

of oxygen mass transfer through the film layer around the individual cells is negligible. The (ii) 

pathway is assumed to be under well mixed conditions and, as such, the oxygen molecule 

diffusion is ultimately rate limited by the size of the liquid film layer surrounding the gas bubble 

(Adapted from Doran, 2012). 

Diffusion-based micro-mixing is a deterministic model of a readily available 

supply of oxygen to the cell for aerobic cell metabolism, as indicated above. 

As such, physical stresses act upon particles in three dimensions owing to the 

space-dimensional relationship of particles – microbial cells in this case 

(Doran, 1995). This affects the cells’ abilities to flocculate, adhere to surfaces, 

and rupture at cell scale.  
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Physical stresses also work within the broth as can be seen by the breaking 

up of gas bubbles to dissolve into liquid more easily. Gas dissolving is more 

efficient if the ratio of the surface area of the gas bubble is proportionally 

higher to the gas bubble volume. One way of providing this effect is through 

physical stresses via the impeller at high speeds (Doran, 1995). 

 

Energy dissipation theory has been used to model the fluid dynamics 

expected during a unit operation (Lamping et al., 2003). Energy dissipation 

characterisation is useful for building models to relate any correlation of power 

draw. Energy dissipation is specific to the type of liquid broth: whether it is 

aerated, its volume and its turbulent flow, the reactor geometry, and 

operational parameters that are to be controlled for scale up (Gill et al., 

2008a). 

 

The next suitable step is to correlate models for high cell densities. 

Optimisation studies using computer software are becoming readily available 

and more popular for increasing throughput. More effective mathematical 

models are needed to increase the predictive simulations that can be used for 

advancing fermentation control at varying scales of operation.  

 

3.3.3.2 Turbulence 

 

The term “eddies” is used to describe kinetic energy dissipation from 

mechanical input via convective motion. This mechanical stirring and energy 

input creates the physical stresses to 

the start flow and energy dispersion in liquid. Likewise, the particle stresses 

acting via turbulence can be modelled on a Kolmogorov scale as shown in 

Equation 6. 

ƛ = (
𝒗𝟑

∈
)𝟏/𝟒 

 
Equation 6 
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The smallest eddies provide the highest power dissipation over time and 

considering most microbial cells are likely to be smaller than these eddies, 

they will cause the highest particle stress. This is summarised in Figure 6 

(Leipe, 1988, cited in Henzler et al., 2000).  

 

 

 
Figure 6 The simplified non-uniform distribution of energy associated with the smallest eddie 

formation at Kolmogorov micro scales. Note: The dissipation and inertial ranges can be 

modelled under linear (or close to linear) conditions (as it is based upon empirical evidence). 

The transitional period that has the non-linear region must be generalised (adding more 

inaccuracy) to characterise the isotropic turbulence (Referenced from Henzler et al., 2000). 

 

The small micro-scale eddies provide the least amount of distribution, known 

as macromixing, so depending on the type of impeller, turbulent zones occur 

mostly around and behind the impeller blades and have the highest particle 

stresses locally. Owing to this localisation effect, it can be considerably 

difficult to characterise the exact maximum energy dispersion (Henzler et al., 

2000). Additionally, the further the cells are from the blade the lower the 

impact of particle collisions and stress on the cells (Henzler et al., 2000).  
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Macro- and micro-scale turbulence should be treated as independent forces. 

This ensures an insignificant diffusion rate limit whilst warranting sufficient 

bulk mixing at high Reynolds numbers. This can validate the models 

described in Figure 6 (Henzler et al., 2000; Miller, 1974). Therefore, scale 

translation provides macro-mixing times that are relatively similar. This 

relationship for power input and mixing can be used for scaling-up purposes 

when calculating the maximum energy dissipation that a particular bioreactor 

can theoretically achieve (Henzler et al., 2000; Doran, 2012).  

 

The maximum energy dissipation is then proportional to the mass mean 

power input in (Equation 7), as cited by Henzler et al. (2000). 

  

∈=
𝑷
𝝆𝑽
	 

 
Equation 7 

The power number must be determined experimentally and correlated into 

Equation 8 (Garcia-Ochoa & Gomez, 2009). 

 

P = 	
𝑁𝑒𝑤𝑡𝑜𝑛	𝑛𝑢𝑚𝑏𝑒𝑟(	Ne	or	PIJ)

ρ ∗ 	n& ∗ 	dN(
 

Equation 8 

To use Equation 8, the Reynolds number must be under turbulent regime 

within a non-aerated system. In aerobic conditions, when modelling for the 

aerated parameter, dimensionless equations can be used to relate particle 

stress in reactors at various scales with the Froude number (Fr) and gas 

throughput number (Q) (Garcia-Ochoa & Gomez, 2009): 

 

𝐹𝑟 = 𝑠𝑡𝑖𝑟𝑟𝑒𝑟	𝑠𝑝𝑒𝑒𝑑(
1
𝑠
)S ∗

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟	𝑜𝑓	𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟	(𝑚)

𝑔𝑟𝑎𝑣𝑖𝑡𝑦	(𝑚𝑠S)
 

Equation 9 
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𝑄 =
𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐	𝑔𝑎𝑠	𝑓𝑙𝑜𝑤	𝑟𝑎𝑡𝑒 𝑚&

𝑠

𝑠𝑡𝑖𝑟𝑟𝑒𝑟	𝑠𝑝𝑒𝑒𝑑 1
𝑠 ∗ 𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟	𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟	(𝑚)&

 

  
Equation 10 
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where Pug is ƒ(x)=Froude number 

 
Equation 11 
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Equation 12 

 

To relate the gassed-to-ungassed power input, the ratio model could be used 

(Equation 11) (Miller, 1974; Henzler et al., 2000; Garcia-Ochoa & Gomez, 

2009) although it should be noted that Pmin is the lowest possible Newton 

number achieved by allowing the gas throughput number to be significantly 

high. In this way, Pmin becomes relatively constant (and reaches its 

asymptote) with any further increases to Q.  

 

Another correlation previously described by Hughmark (1980) included the 

additional impeller width (W) parameter as seen in Equation 12. At this 

current technological point, a model like this seems reasonable to use to 

correlate gassed to un-gassed power requirements (Henzler et al., 2000: 

Hughmark, 1980; Doran, 2012). This equation was also used by Gill et al. 

(2008) to correlate their miniature scale-down bioreactor power requirements. 
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Once the power of the aerated vessel is determined, then the power input per 

unit volume can be simply calculated to be used for scale-up. One additional 

point is that “mixing times will increase while keeping Pg/V constant” and can 

be accounted for during controller feedback (Doran, 2012).  

 

Mixing time as a scale-up criterion is often not used for scaling up owing to 

the amount of extra power needed to drive larger impellers at larger scales, 

making some microbial bioprocesses uneconomical (Miller, 1974; Garcia-

Ochoa & Gomez, 2009). 

 

Finally, dissipation modelling is dependent on the particles’ ability to deal with 

those physical stresses exerted in the turbulent region.  

 

Characterisations are needed to determine good mixing for specific types of 

microorganisms at various scales. This could highlight the dependence that 

shear stress has on cell viability when fermentation liquid is turbulent and high 

cell densities are required. This also relies on empirical means to correlate 

and create relationships but gives some degree of information to use for 

simulation studies (Henzler et al., 2000). Gassed power input per unit volume 

is also a volumetric empirical correlation which has been reported to be easily 

used for rapid scaling owing to the simplification of the environment 

characteristics into scalable terms (Gill et al., 2008b). 

 

 

3.3.3.3 Mixing Time Assessment 

 

Mixing time, i.e. the rate of bulk flow mixing, is the parameter used to 

compare the efficiency of macro mixing at various scales (Doran, 1995). 

Homogenous mixtures require a certain time (t) to reach the desired non-

gradient state. Liquid tracers and relevant detectors are used to measure the 

mixing time. These can be in the form of addition of acids, bases, or 

concentrated salt solutions (Doran, 1995). The difficulty lies in deciding the 
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mixing time required for a given degree of homogeneity and uniformity. 

Usually, this is when the tracer concentration is less than 10% from when it 

initially started (Cfinal–Cstart) (Doran, 1995). The factors influencing the mixing 

time of large-scale equipment is based on the reactor design. This links the 

need to characterise the reactor and the mixing time as scale-up parameters. 

Estimated predictions can be made by understanding the relationship 

between the size of the tank and the impeller, rotational speed, and fluid 

properties in Equation 13 (Doran, 1995). This correlation was chosen 

because high Reynolds numbers can be achieved at the scale of the parallel 

bioreactors used.  

 

𝑁o𝑡n = 	
1.54	𝑉
𝐷o&

	𝑎𝑡	ℎ𝑖𝑔ℎ	𝑅𝑒o 

Equation 13 

 

3.3.3.4 Oxygen Mass Transfer 

 

Cell growth, cell maintenance, and metabolite production in aerobic 

bioprocesses require oxygen as a substrate for some specific metabolic 

reactions. It is important to note that reaction rates could either be rate limiting 

to the metabolic reaction kinetics or to the transport of substrate to the site of 

reaction (Garcia-Ochoa & Gomez, 2009).  

 

Keeping the substrate (oxygen) concentration above the minimum rate for 

determining mass transfer threshold can be challenging at a large scale. As 

such, process performance can be affected by a poorly aerated liquid growth 

medium (Garcia-Ochoa & Gomez, 2009). Maximising overall process 

performance has a large relevance in the industrial bioprocesses.  

 

Unsurprisingly, the aeration potential and metabolic pathways can be 

impacted by the scale and vessel geometry (ratio of height:diameter ratio of 

the vessel) in the very first phase of vessel design. The sensitivity of the 
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reactor design should be considered early on. Therefore, it is important that 

the oxygen transfer rate be correctly estimated for each vessel used in each 

bioprocess (Garcia-Ochoa & Gomez, 2009). Measurement of the mass 

transfer rate can also be challenging owing to many phenomena occurring at 

the same time during fermentation. 

 

Aeration potential and oxygen uptake of cells can be limited by the fact that 

oxygen is a notably poorly dissolvable gas both in water and liquid medium 

containing salts and organic substances. Other factors like the fluid properties 

also affect the dissolvability of gases (Garcia-Ochoa & Gomez, 2009).  

 

3.3.3.5 KLa Determination 

 

The maximum mass transfer rate of oxygen transfer (OTR) from gas bubble 

to bulk liquid can be calculated by the product of the volumetric mass transfer 

coefficient (KLa) and the saturation concentration of oxygen in liquid medium 

(C*) (Garcia-Ochoa & Gomez, 2009). 

 

OTR = KLa.C* 
 
Equation 14 
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Figure 7 Garcia-Ochoa & Gomez’s (2009) schematic view of the rates of transportation 

influencing oxygen transfer rate in a bioprocess 

 

In Figure 7, the oxygen diffusion pathway schematic shows the sum of the 

rates at which oxygen is diffused. Oxygen diffusion through phase 

boundaries, layers, and films into the bulk liquid and to the cell is defined as 

the oxygen transfer rate (Equation 14) (Doran, 1995). This rate is a function of 

the concentration known as the driving force between the global saturated 

concentration of oxygen and the actual mean concentration of oxygen in the 

liquid. Considering that during fermentation, oxygen is constantly being 

consumed, coupled with the poor solubility of oxygen, the driving force 

remains rather small (Garcia-Ochoa & Gomez, 2009). The overall oxygen 

mass transfer coefficient is then a good criterion to match for scale-up as KLa 

is influenced by both engineering and biological factors. The factors include 

gas interfacial area, mass transfer coefficients, concentration gradients, 

bubble hold up, bubble diameter as well as operational conditions (Garcia-

Ochoa & Gomez, 2009) 
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3.3.3.6 Antifoam 

 

It has been noted that antifoam, such as polypropylene glycol (PPG), is more 

likely to reduce the capacity for oxygen transfer than simple electrolyte 

solutions (Stanbury, 1995). This is due to the antifoam increasing the air 

bubbles’ surface tension, thereby making it harder for small bubbles to be 

created. Oxygen mass transfer is then influenced by resistance of the size of 

the gas-liquid film layer which slows down oxygen dissolution, as shown in 

Figure 7 (Garcia Ochoa & Gomez, 2009). 

 

3.3.3.7 Gas Blending 

 

Gas blending with a higher content of oxygen is usually needed for high cell 

density culturing. This method allows the supply of enough oxygen at later 

stages of fed-batch or continuous fermentations to maintain cell viability and 

metabolism by providing a DOT that does not fall below a critical level. 

Blending on a cascade control was recommended as a suitable strategy in 

this study as it is easier to operate automatically instead of judging when to 

manually start this type of control. 

 

3.3.3.8 Functions of KLa  

 

A well-established empirical correlation has been used to relate the KLa with 

the superficial gas velocity and mean power input over time (see Equation 

15). The constant “c” can be found from previous literature studies, e.g. Gill et 

al. (2008) or Van't Riet (1979) or data fitting. The exponents α and β can be 

determined experimentally.  

 

𝐾{𝑎 = 𝑐 ∗
𝑃]
𝑉

|

∗ 	(𝑣})~ 

  
Equation 15 
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It has been suggested that KLa is a function of Pg/V, superficial gas velocity, 

Froude number (Equation 9), gas throughput number (Equation 10), kinematic 

viscosity, oxygen solubility/diffusivity, broth density, and the hydrodynamic 

pressure inside the vessel (Gill et al., 2008b). These functions have led 

previous studies to include the gas throughput number instead of the 

superficial gas velocity (Moresi & Patete, 1988). It has been found to provide 

better dependence for active cells in larger volume vessels, which has been 

corroborated in recent studies (Cants et al., 2005). 

 

3.3.3.9 Functions for Larger Reactors 

 

KLa-determining functions for larger vessels can be used with equations 

based on averages across the fermenter, mainly at the inlet and outlet as 

represented below: 

 

 

𝐾{𝑎 = 	

𝑂𝑇𝑅
ↄ∗𝑖𝑛	 − 	𝐶{ −	 𝐶∗𝑜𝑢𝑡	 − 	𝐶{

𝑙𝑛 𝐶∗𝑖𝑛	 − 	𝐶{
𝐶∗𝑜𝑢𝑡	 − 	𝐶{

 

 
Equation 16 

C* represents the total oxygen concentration saturation and CL is the local 

concentration after converting local oxygen partial pressures to dissolved 

oxygen concentrations (Doran, 1995).  

 

𝐾{𝑎 = 	
𝑙𝑛 𝐶

∗ − 𝐶_
𝐶∗ − 𝐶S
𝑡S −	𝑡_

 

 
Equation 17 
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(C* is oxygen saturation conc. in liquid. “Cin” is equal to the local electrode 

reading of DO at gas inlet and “Cout” is the local electrode reading of DO at 

gas outlet. C1 is DO at time point t1 and C2 is DO reading at time point (t)2).  

 

It will be beneficial if KLa can be determined via the computer/controller during 

fermentation with the option to graphically show the values. This would be 

ideal in conjunction with dynamic gassing out or dynamic pressure 

measurement techniques (Doran, 1995).  

 

3.3.3.10 Probe Response Characterisation 

 

Methods used to determine the KLa include the static gassing out technique 

based on oxygen tension from 100% saturation to 66%. This is done to 

assess the mass transfer capability, assuming the DOT probe response time 

is negligible. As oxygen diffuses locally close to its membrane and crosses 

the polarographic layer to be detected, errors can be introduced from the 

probe response time. This must be accounted for when measuring the partial 

pressure of oxygen in the reactor (Garcia-Ochoa & Gomez, 2009). 

 

Other methods that are often overlooked for bioreactor KLa characterisation 

are chemical methods using sodium sulphate, primarily because of the 

hydrodynamic changes and the need to control the concentration of ions in 

the liquid. These changes usually occur at higher cell densities and tend to 

overestimate the KLa as compared to other techniques. It has not been 

commonly adopted as a framework for scale-up (Doran, 1995). This is the 

case with the CO2 absorption-determination method (Garcia-Ochoa & Gomez, 

2009).  

 

As long as the mass transfer of 1/KLa is at least a magnitude higher than the 

probe response time, no further corrections incorporating the lag into the 

formula are required. However, when dealing with fast-growing organisms, 

there has been the need to correct for probe response times, necessitating 
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the need to get accurate values of the mass transfer coefficient (Garcia-

Ochoa & Gomez, 2009). Gill et al. (2008b) utilised this dynamic gassing out 

method to determine the mass transfer coefficient. Further studies will be 

needed to characterise the KLa for higher cell density cultures with this 

dynamic gassing out method. 

 

3.4 Results and Discussion 
 

3.4.1 Power Input and Energy Dissipation 
 

Understanding the gassed to un-gassed power ratio is important to find 

correlations specific to the Multifors system. We need to understand how 

much energy is being dissipated into the mixed system. This experimentation 

allows for an insight into the maximum resistant forces that the reactor can 

operate at to create suitable correlations, which can be used to evaluate how 

best to control a batch operation at this scale or for scale-up/down. Based on 

previous research, the gassed to un-gassed power ratio can vary between 

30% and 100% (Gill et al., 2008). The aim of the experiment is to define the 

operating parameters for E. coli batch fermentation and provide input 

parameters for the simulation tool such as the power input for advanced 

modelling. The experiment was set up by making fresh glycerol solutions (1L) 

w/w for each density, bringing solution to temperature, setting agitation and 

aeration conditions, then take motor current reading after 10 minutes using a 

calibrated ampmeter and have a total of 36 experiments for the reactor Two 

standard Rushton Turbines in fully equipped vessel was used and a standard 

bacterial ring sparger. 

 

The results in Figure 8, Figure 9, and Figure 10 show the measured power 

requirement of the gassed and un-gassed liquids for each of the various 

viscosities: 0.8, 4.21, and 500 Cp/mPa·s. For all aeration rates tested, the 

relationship of the power requirements was positive and almost exponential, 
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there was a difference in the correlations between the highest viscosities and 

the low viscosities, which indicates that viscosity has impact on the aeration in 

the vessel. This means that an increase in both rpm and viscosity led to 

increased power requirements. The maximum power consumption 

established was 10.68 W for 1 vvm at 1200 rpm for 500 Cp/mPa·s.  

 

At two points, too much fluid resistance was experienced from the most 

concentrated glycerol experiments (see Figure 10). After operating conditions 

were set and increased to the higher rotational speeds they gradually led to 

the failed agitation measurements as the shaft stopped rotating. Moreover, 

this was seen visually when too much stress was applied to the magnetic 

coupling on the base of the shaft. This occurred under the conditions at 500 

Cp/mPa·s, glycerol density of 1.253 g/cm3, and 1200 rpm. 

 

 
Figure 8 Un-gassed and gassed power requirements for the two impellers setup with a 1-L fill 

volume for water in the Multifors™ vessel. The water viscosity measured was 0.8007 Cp/mPa s. 

The water density was 0.996 g/cm3. The experiment was carried out at 30°C. 
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Figure 9 Glycerol (50%); ungassed and gassed power requirements for the two impellers setup 

with a 1-L fill volume for glycerol solution in the Multifors™ vessel. The viscosity measured was 

4.21Cp/mPa·s. The density was 1.211 g/cm3. The experiment was carried out at 30°C. 

 

 

 
Figure 10 Glycerol (99.5%); Ungassed and Gassed power requirements for the two impellers 

setup with a 1-L fill volume for water in the Multifors™ vessel. The water viscosity measured was 

500 Cp/mPa s. The water density was 1.253 g/cm3. The experiment was carried out at 30°C. 

 

It was found that the un-gassed power requirements were, on average, 32% 

higher than the maximal gassed power input at 1.5 vvm. Under highly viscous 

conditions, gassed power requirements were 24% less at 500 Cp/mPa·s than 
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un-gassed ones. When comparing the results to other research, there was a 

small difference between established observations of 0.3–0.4 of the Pg:Pug 

ratio (Gill et al., 2008). This is further explained in the discussion. 

 
Figure 11 Power number and Reynolds dimensionless number correlation between different 

glycerol concentrations  

 

For the un-gassed power requirements, the power number relationship in 

Figure 11 was correlated to the dimensionless Reynolds number. The power 

number (Np) was calculated using Equation 18. 

𝑃𝑢𝑔 = 𝑁𝑝. 𝜌. 𝑁&. 𝑑𝑖( 

Equation 18 

Here, Pug (W) is the measured un-gassed power input, ρ (kg/m3) is the 

density of the liquid, N (m/s) is the agitation rate, and di (m) is the impeller 

diameter (Gill et al., 2008a).  
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3.4.2 Gas Dispersion 
 

The goal of this part of the study was to understand the gas dispersion for the 

parallel bioreactors under different fluid viscosities. This is a follow-on study 

from the power input characterisation. The gassed to un-gassed ratio can give 

insight on the gas dispersion in the types of media used to characterize the 

power input. The types of impeller and aeration rate are factors affecting the 

power decrease for gassed operation (Aiba et al., 1973). The gas flow 

number can be used to describe the nature of the gas dispersion within the 

liquid (see Equation 19) 

 

Fl=Q/Ndi
3 

 
Equation 19 

 

Where the Q is the volumetric gas flow rate, N is the agitation, di is the 

impeller diameter (Gill et al, 2008a). The following figures show the gassed to 

ungassed ratio with the Fl (flow number). The experimental values determined 

were all between 0.5-1. Gassed to un-gassed ratios have been previously 

described within a range of 0.3-1 (Gill et al, 2008a).  
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Table 1 Calculated minimum agitation rates and flow numbers for complete 

gas dispersion using Equation 19. 

 

  
Air flow rate (vvm) 

 

0.5 1 1.5 

Calculated minimum agitation rate for 

successful gas dispersion (rpm) (see Equation 

20).  

263 372 456 

Minimum flow number that should be attained 

for complete gas dispersion, using only 

respective air flow rate and minimum agitation 

speed in Equation 19.  

0.035 0.049 0.060 

At higher agitation speeds (1000 rpm), the flow 

number for the experimental data for gas 

dispersion achieved for water (0% glycerol). 

0.008 0.018 0.027 

At higher agitation speeds (1000 rpm), the flow 

number for the experimental data for gas 

dispersion achieved for 50% glycerol. 

0.009 0.018 0.027 

 

For Equation 20, a correlation for the minimum agitation rate for which 

complete gas dispersion is achieved. This is valid for vessel dimensions up to 

1.8m in diameter (Nienow et al, 1977). 

 

Nc=4*(Qg
0.5dT

0.25)/di
2 

 
Equation 20 
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Where Nc is the rotational speed of the minimum agitation rate for complete 

gas dispersion (rps). Qg the volumetric gas flow rate, dT is vessel diameter, 

and di is the diameter of the impeller. 

 

This correlation was chosen because of the importance of the vessel 

dimensions of the parallel bioreactors.  
 

 
 
Figure 12 Flow number against gassed/ungassed ratio for water 

 

 
Figure 13 Flow number against gassed/ungassed ratio for 50% glycerol concentration 
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Flow numbers were calculated using minimum set points of the air flow rate 

and the agitation rate (see Table 1 and Figure 12, Figure 13). Gas dispersion 

was correlated to be fully dispersible and hence the most effective for mass 

transfer at the point where Pg/Pug was the lowest (Gill et al., 2008). Gill et al. 

(2008) suggest that a difference in the flow number needed for gas dispersion 

is likely due to the impeller blade thickness.  

 

Reynolds numbers below 10,000 would not have desirable gas dispersion at 

those speeds. For the pure glycerol (99.5%) concentration, the Pg/Pug 

showed the lowest Reynolds numbers; at an agitation rate of 800 rpm, 

laminar flow was observed (see Figure 11). Therefore, concluding that 

complete gas dispersion for 99.5% glycerol concentration was not achieved. 

 

Small differences in the minimal flow number were found shown in Figure 12 

and Figure 13and table 1 for each of the experiments. These small 

differences are accounted for by the correlation chosen, such that, increased 

agitation speeds N in equation 19 affects the flow number. This suggests that 

the agitation rate and vessel dimensions have the most influence on gas 

dispersion. 
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Figure 14 Parity plot of measured Pg/V against the predicted Pg/V using Equation 21 

The next part of the characterisation was to describe the measured power 

input values versus the calculated values for different liquid viscosities. (see 

Figure 14). Luong and Volesky (1979) described a correlation (see Equation 

21) that was used to estimate Pg/Pug with a viscosity component. When 

substituting the correlation Pug = (𝑁". 𝜌. 𝑁&𝑑o() into it and with it a power 

number of 5.8 (originally determined by Van’t Riet, 1979) for 3 impellers. This 

third impeller is an important choice in our parity plot in Figure 14. It was 

added because in our experimental set up we had one magnetic stirrer bar 

attached inside the vessel and concluded that this had impact on the 

estimation of the power input, since viscous liquids were used the correlations 

show that there was impact on the power input. Two Rushton impeller 

turbines were included in the reactor set up as normal. This new estimated 

Pg/V using Equation 14 was calculated and compared against the measured 
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Pg/V in a parity plot. Figure 14 indicates how well the correlation predicted the 

empirical data except for the highest power input and high viscosity. 

 

PJ = 0.497
Q
NdN&

`q.&� NSdN&ρ
σ

`q._�

(N�. ρ. N&dN() 

Equation 21 

 

Furthermore, Figure 14 highlights the differences in the rheological properties 

of the measured gassed power input to those of the correlation for Pg/V. It 

does consider rheological factors in the correlation and makes it easier to 

relate the correlation for gassed power input to viscous liquids. This 

correlation was a better fit to more viscous liquids of our measured data 

typical of non-coalescing systems that are similar to media broths of high 

viscosity (Luong & Volesky, 1979). 

 

3.4.3 Power Input discussion 
 

The gassed-to-un-gassed ratio gave insight into the gas dispersion for the 

types of media used to characterise the power input. Impeller type and 

aeration rate are factors in the power decrease for gassed operation (Aiba et 

al., 1973, cited in Gill et al., 2008a). The gas flow number (Fl) can be used to 

describe the nature of the gas dispersion within the liquid as shown in the 

equation below: 

 

𝐹𝑙𝑜𝑤	𝑛𝑢𝑚𝑏𝑒𝑟 = l
��c

�
   

Equation 22 

 

Q is the volumetric gas flow rate, N is the agitation, and di is the impeller 

diameter (Gill et al., 2008). The following figures show the gassed-to-un-

gassed ratio with the Fl. All of them are between 0.5 and 1, but the gassed-to-

un-gassed ratio has previously been found within the range of 0.3–1 (Gill et 
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al., 2008). Equation 23 shows the correlation for the minimum agitation rate 

for which complete gas dispersion is achieved. This is for vessels up to 1.8 m 

in diameter (Nienow et al., 1977). 

 

Nc = 4*(Qg
0.5dT

0.25)/di
2 

 

Equation 23 

 
Nc is the rotational speed of the minimum agitation rate for complete gas 

dispersion (rps). Qg denotes the volumetric gas flow rate, dT, the vessel 

diameter, and di, the diameter of the impeller. 

 

The Multifors system (InforsHT, Switzerland) has an upper recommended 

rotational limit of 1200 rpm. The system has this limitation owing to the power 

rating of the motor, and the control system has been programmed to not 

exceed this limit. It is beneficial to limit the rotational speed so as not to cause 

overflow of the contents inside the reactor during operation, mainly during 

aeration.  

 

The gassed power measurements were lower than the corresponding values 

under un-gassed conditions. When the process parameters were being 

generated, the parameters were dependent on changes in fluid density 

occurring between conditions. There could have been a risk of gas bubbles 

not being adequately dispersed in highly aerated systems (Van’t Riet & Smith, 

1973). Hence, three repeats were conducted to mitigate the errors being 

introduced into the calculations. Another effect of having an aerated system is 

less resistance at the point of the impeller as the impeller hits the gas for easy 

rotation (less power to rotate at a maintained speed) (Van’t Riet & Smith, 

1973). 
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After the experiments, the calculations for the power number with respect to 

the impeller type were approximated. This is a good way to verify that the 

power number is in line with other literature. Careful consideration was given 

to the influence of the impeller bar on the mixing. There was a concern that 

the magnetic bar, located at the bottom of the shaft, influenced the overall 

power distribution. This bar was likely to contribute to the distribution of power 

input into the liquid.  

 

After the careful consideration of the influence of the magnetic stirrer bar a 

rule of thumb or correction was needed for the power input studies.  Previous 

studies have looked at the power input using a single Rushton impeller (Gill et 

al., 2008b). It was found that a low energy input (657 W/m3) was used which 

was not optimal for achieving high oxygen transfer for efficient growth (DO 

dropped). and the low agitation rates cause a drop in final biomass yields 

between different scales when the fermentation DOT ≤0 (Gill et al., 2008b). 

 

Their operating conditions would be considered as being inappropriate for 

certain processes, especially for high cell density cultures in the Infors 

equipment. More specifically, effective oxygen mass transfer may not be 

achievable or reproducible and therefore not a good condition for scale-up. 

One course of action would be to compare the Infors-HT data from 

experiments under high cell densities to those that are modelled by Hughmark 

(1980) or Cui et al. (1996), as cited in Gill et al. (2008b), using water/air 

systems to determine whether the assumptions are still valid. 

 

One final area that was characterised was the nature of gas dispersion during 

operation. It is challenging to accurately predict the hydrodynamic forces at 

various scales without using computational fluid dynamics (CFD). The 

correlation of Pg/Pug against the gas flow number was conclusive by indicating 

the gas dispersion in the experiments because of the power input varies more 

so under aerobic conditions; it decreases from 1 to about 0.3. Furthermore, 
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this can be applied to rapid bioreactor design for prediction of aerobic culture 

conditions (Gill et al., 2008b). 

 

The un-gassed power requirements were finally divided by three (because of 

the two Rushton impellers and the magnetic stirrer bar) to give a better 

approximation of the power number for each impeller. 

 

The magnetic bar/impeller would still naturally exhibit resistance and create 

agitation because it is in contact with the liquid; it did not matter whether it 

was water or a viscous solution. The fact that the stirrer bar is a uniquely cut 

and coated magnet with a plated disk and with opposite facing 45° circular 

wings on top, it was likely designed to help in the distribution of gas. The gas 

sparger was located below the magnetic impeller. All of the additional objects 

in the bioreactor are likely to cause concerns related to the distribution of gas, 

power, and overall homogeneity.  

 

During the experiment, the magnetic bar was going to increase torque in the 

shaft, giving higher torque values than would be expected if the impellers 

were top driven and not magnetically coupled to the motor at the bottom of 

the vessel. Further investigation would be required in that case.  

 

This experiment included an estimation of the force being exerted on the shaft 

during fermentation by using viscous liquids, as the experiment required a 

torque meter to measure the resistance. The vessel was set up by removing 

the top plate and fitting an all-in-one shaft and torque meter into the vessel. 

 

The gassed-to-un-gassed ratio is dependent on the impeller type and gas flow 

rate. It has been observed that blade thickness, depth, and location also 

affect the gassed-to-un-gassed ratio (Gill et al., 2008a; Betts et al., 2006).  

 

The estimated power number for the water environment in Figure 11 in 

turbulent flow was between 4.8 and 5.9, with an average of 5.39 for a single 
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impeller. However, this value was slightly lower than that found in the 

literature of 5.7 (Nienow et al., 1994). It was reported that the geometric 

parameters of the propellers could be characterised with respect to their effect 

on the power number (Bujalski et al., 1987, as cited in Gill et al., 2008; 

Rutherford et al., 1996). A correlation between the blade thickness and the 

diameter impeller was described by Rutherford et al. (1996), with a new 

power number in the following form: 

 

Np = 6.57 – 54.771 (Bt/Di)  
Equation 24 

 

This calculation using a blade thickness of 1.6 mm and a 38-mm impeller 

diameter gave the power number 4.26 which is much lower than the value 

shown in Figure 11. The increase in the additional power requirements is 

likely due to the thickness of the magnetic coupling exerting a higher degree 

of resistance. This highlights the difference and the need for further 

(individual) characterisation of the power input considering the number and 

type of the agitators, and magnetic coupling. It will be necessary to 

characterise the power requirements in terms of the location of these 

impellers on the shaft (Caberet et al., 2008). 
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3.4.4 Volumetric Mass Transfer Coefficient Determination 
 

The static gassing out method used relies on the use of polarographic 

electrode/oxygen sensors. They accurately measure the partial pressure of 

the dissolved oxygen once conditioned and calibrated. However, there is a 

limitation where sudden changes to the partial pressure will experience some 

degree of delay in measurement, which is referred to as the probe response 

time. For these sets of experiments, it was assumed that the mixture was set 

under well mixed conditions. The volumetric oxygen mass transfer coefficient, 

kLa, was determined from the measured dissolved oxygen–time profiles 

accounting for probe response time according to (Gill et al, 2008) in equation 

22; 

 

𝐶" = 	
1

𝑡n −	𝜏"
	 𝑡n exp

−𝑡
𝑡n

−	𝜏n exp
−𝑡
𝜏"

 

 
Equation 25 

 

Cp is the normalised dissolved oxygen concentration measured by the probe 

at time t, tm equals 1/kLa and τp is the probe response time (calculated from 
experimental findings see Figure 15, Figure 16, Figure 17 at 37 ◦C) (Gill et al., 

2008). This Equation 22 was used as the first order solution and was 

necessary to obtain the correct mass transfer coefficient. Other assumptions 

made here were that the position of the probe in the reactor was suitable and 

any other hydrodynamic conditions were transient during the measurements.  

 

After a DOT response curve was obtained, a chosen section of the curve was 

used to calculate the KLa based on empirical data for a given set of 

conditions. Firstly, the first-order correction was applied after which KLa could 

be calculated. It is important to note that no more than 30% of the data points 
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were excluded from the lower end of the response curve as recommended in 

the literature (Garcia-Ochoa et al., 2009).  

 

 

 

 
Figure 15 Probe response time for parallel bioreactors were calculated to determine whether a 

correction would need to be applied. The response curve can be determined via experimentation 

by a step change from an aerated environment to an immediate non-aerated environment and 

measuring the Dissolved oxygen over time. The orange triangle is the calculated probe response 

time to be used in the correction equation 22.   
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Figure 16 Probe response time for parallel bioreactors were calculated to determine whether a 

correction would need to be applied. The response curve can be determined via experimentation 

by a step change from a aerated environment to an immediate non aerated environment and 

measuring the Dissolved oxygen over time. The orange triangle is the calculated probe response 

time to be used in the correction equation 22.   

 

Figure 17 Probe response time for parallel bioreactors were calculated to determine whether a 

correction would need to be applied. The response curve can be determined via experimentation 

by a step change from a aerated environment to an immediate non aerated environment and 

measuring the Dissolved oxygen over time.. The orange triangle is the calculated probe 

response time to be used in the correction equation 22.  The difference of these three figures are 

each reactors probe response time. 
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Probe response times were calculated above in Figure 15, Figure 16, and 

Figure 17 with the highest calculated value of 18.9 s at the highest 1200 rpm 

agitation rate. This agitation was supplied by the magnetically coupled 

bottom-driven stirrer bar. The highest stirrer speed was used owing to the 

known effect that agitation has on probe response times (PRT) where higher 

rotational speeds have been previously shown to decrease the PRT. This 

effect is likely due to the gas-liquid layer boundary getting thinner as agitation 

increases (Betts et al., 2006). 

 

 
Figure 18 Measurement of the DOT% with respect to the effect of changing VVM and RPM on the 

oxygenation of the Multifors vessel. Experiments were performed at 37 degrees Celsius in water. 

 

Measurement of the DOT with respect to the effect of changing aeration and 

agitation rates on the oxygenation of the Multifors vessel was measured next 

(Figure 18 and Figure 19). Figure 18 and Figure 19 illustrate the two different 

types of systems: using either water or defined M9 salts medium that exhibit 

significantly different lengths of time (averaging M9 results to be >1.5 longer 
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than the water experiments) to reach the DOT plateau. When the probe is 

precisely calibrated, the liquid is almost completely saturated with oxygen. 

 

For the water system, the profiles and the curvature of the response curves 

are characteristically like those in other studies, whereby the changes in 

agitation have the largest impact on the DOT. This means the DOT curves of 

function of agitation rate become steeper at a faster rate than the DOT 

profiles as function of aeration rate. Again, this is probably due to the thinning 

of the liquid boundary (Betts et al., 2006). 

 

 
Figure 19 Measurement of the DOT% with respect to the effect of changing VVM and RPM on the 

oxygenation of the Multifors vessel. Experiments were performed at 37° Celsius in defined M9 

media. 

 

The media system in this case exhibited a larger impact when changing the 

aeration rate while keeping the agitation rate constant. This was likely since 

the non-aqueous surfactant layer (which would be typically used in a 

fermentation to prevent foaming) would create resistance to the transfer of 
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oxygen from gas bubble to liquid. Since a higher agitation rate creates a 

larger surface area for the surfactant to impact mass transfer, it is likely to 

impede the mass transfer. Therefore, more gas bubbles were present at the 

higher aeration rates, resulting in better mass transfer under these conditions. 
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Figure 20 KLa determination for 1 L at 1 vvm. Calculated mass transfer coefficients against 

power input for the in-parallel bioreactors using water as the fluid in the experimental set-up. 

 
Figure 21 KLa determination for 1L at 0.75 vvm. Calculated mass transfer coefficients against 

power input for the in-parallel bioreactors using water as the fluid in the experimental set-up.. 
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Figure 22 KLa determination for 1 L at 0.5 vvm. Calculated mass transfer coefficients against 

power input for the in-parallel bioreactors using water as the fluid in the experimental set-up.. 

Experimentally derived KLa values, over the range of conditions used, 

resulted in a close linear trend. Figure 20 and Figure 21 show an approximate 

linear trend for all three reactors. In Figure 20 there were high aeration rates 

providing gas bubbles and in general increasing the potential available 

oxygen to the system ready to be dissolved, however the agitation has had a 

larger effect upon the KLa. Indicating agitation having a greater impact on the 

oxygen mass transfer. This we measured an increase in the DOT% over time 

in Figure 18, when agitation rates were kept the same and aeration rates 

were increased. The DOT% over time effect with the most impact was at the 

higher (1000, 1200 rpm) agitation speeds.  
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Table 2 Corrected volumetric mass transfer coefficient averages, standard deviation, and 

percentage error for 1 vvm and ~1200 rpm conditions in the water system at 37°C  

 

~1200 
rpm 1 L/min  Alpha Beta       

 
Pg/V Vs     K 

KLa=K((Pg/V)
^𝛼) × (Vs^𝛽)   

 
            

KLa  
(per hour) 

Reacto
r A 1935 0.0026 0.564 0.379 0.013 0.104 373 
Reacto
r B 1930 0.0026 0.539 0.479 0.028 0.095 343 
Reacto
r C 1954 0.0026 0.460 0.566 0.083 0.094 338 
Reacto
r D 1935 0.0026 0.434 0.519 0.082 0.099 357 

      
    

      
Average 353 

      

Standard 
deviation 13.48 

      

Percentage 
deviation 3.82 

 

Further experiments were conducted using the four bioreactors in parallel. 

The objective was to show the reproducibility with statistical relevance. Table 

2 shows an average KLa of 353/h with the highest value being 373/h. 

Furthermore, overall differences between the reactors were experimentally 

determined to be at 3.82% deviation. Deviation was calculated by subtracting 

the experimental KLa value from the mean and then dividing the result by the 

experimental value and multiply by 100. Since the deviation was less than 5% 

it was a suitable threshold of significance, the differences between the KLa 

values were insignificant for the four bioreactors. These values show good 

reproducibility across the reactors.  

 

The volumetric oxygen mass transfer coefficient (KLa) was described in the 

fundamentals section as the reciprocal measure of time for the transfer of 

oxygen from the gaseous to the liquid phase (Meusel et al., 2016). The 

investigation looked at the stirrer speed and airflow rate on KLa. It is known 
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that these parameters affect the KLa through changes to gas bubble size, 

number of gas bubbles, and gas distribution. Since many fermentation 

processes require oxygen as a substrate for respiration, this study used 

aerobic microbial fermentation, as it was important to determine the efficiency 

in the Multifors bioreactors. This was done to enable comparison of the 

criteria for scale-up.  

 

It is important to note that no more than 30% of the data points were excluded 

from the lower end of the response curves, as recommended in the literature 

(Garcia-Ochoa & Gomez, 2009). Calculating the KLa from the response curve 

should be carried out at the steepest parts of each response curve. The 

beginning of the curve is flatter making it not entirely useful in the calculation 

of the KLa profile. This leads to some concerns about the accuracy of the KLa 

estimation, especially where aqueous and broth solutions are not properly 

represented in the KLa estimation.  

 

During fermentation, liquid broth would contain salts and since it is a non-

coalescing liquid, it is likely to experience a decrease in oxygen solubility and 

have a detrimental effect on the overall mass transfer coefficient (Garcia-

Ochoa & Gomez, 2009). It is best to characterise the system using both water 

and media to better represent the likely conditions of fermentation. 

 

3.4.5 Mixing Characterisation 
 

The aim of the mixing experiment was to characterise the time taken for fluid 

distribution and whether this could be used as scale up criterion and 

determine the impact at this scale using agitation speeds set below and 

above the optimal operating conditions determined from section 3.4.2 and the 

power input studies. The experiment was set up for mixing using either 

concentrated acid, base, or colour dye.  
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The determination of the mixing time was the focus of this study. The mixing 

time is related to the geometry, impeller features, size, and liquid properties of 

a bioreactor (Meusel et al., 2016). Inhomogeneous addition of solution to a 

95% homogeneity level was sufficient for determining the mixing time. 

 

 
Figure 23 Mixing time using the pH global method in 600 mL fill volume (with 200 rpm, maximum 

Pg/V’s were estimated at 57 W/m3 with 0 vvm and 600 rpm, Pg/V estimated at 1531 W/m3 again 

with 0 vvm. Error bars represent the standard deviation about the mean (n =3). 
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Figure 24 Mixing time using global colour method in 600 mL fill volume (with 200 rpm Pg/V 

estimated at 57 W/m3 and 600 rpm Pg/V estimated at 1531 W/m3). Error bars represent the 

standard deviation about the mean (n=3). 

It is necessary to check whether the mixing time is sufficient by being well 

mixed and completely homogenous. This is also the assumption used in the 

KLa determination using the dynamic gassing out method. Figure 23 and 

Figure 24 demonstrate that with an increase in the Pg/V, the mixing time was 

significantly reduced. The effect of the aeration rate on mixing time was 

minimal at higher speeds, in correlation to the gas flow characteristics being 

above the minimum speed for complete gas dispersion. At lower speeds, the 

increase in aeration rate allowed for a slight reduction in the overall mixing 

time, as shown in Figure 24. 

 

In this research section, various methodologies were used to characterise the 

vessel. The aim was to determine what the bioreactors can achieve in terms 

of mixing and mass transfer under expected operation conditions and the 

ideal criteria for scale-up. So, firstly established correlations that improve the 

understanding of the equipment with power input, volumetric mass transfer, 
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and mixing and how each element affects the performance of the bioreactor, 

i.e. power needed to maintain rotational speed under stress and the break-up 

of coalescing bubbles used for mass transfer. The power number was 

calculated specifically with the three impellers, i.e. two Rushton-type impellers 

and one non-standard impeller, because of the inclusion of the magnetic 

stirrer bar acting as an impeller when being driven by the motor, as it is 

thought to be contributing to the power input into the liquids involved, 

especially at higher viscosities. 

 

Gas flow was examined where the minimum speeds for sufficient gas 

dispersion were calculated from the flow number. A parity plot was used to 

show the comparison of an empirical gassed power correlation (Hughmark, 

1980) to the experimental values measured. There was a fairly good fit to the 

experimental data, but it better described liquids with viscosities higher than 

just typically water, which is relevant in the culturing of cells. Again, the Pg/V 

was recommended as the criterion for scale-up in future fermentations.  

 

A limited set of conditions were tested which would likely be used for mixing 

and controls for cell culture tests designed for water, glycerol, and defined 

media. We included the media environment to make the tests relevant in this 

section which involves the use of microbial cell culturing. This section 

concludes with the understanding of significant consistency between the 

multiple bioreactors ready for cell culturing in parallel operation. 
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4 Model-based Experimental Design Screening 
Experiment 

 

4.1 Introduction 
 

4.1.1 Addressing the Research Problem 
 

The next question or research area addressed is “What can we do next to 

take advantage of the parallel bioreactor system? What can we improve 

upon?” A model-based design specifically geared towards taking advantage 

of the Multifors capacity will be established in this chapter.  

 

 
 
Figure 25 A review of advanced small-scale parallel bioreactor technology for accelerated 

process development: current state and future need (Adapted from Bareither, R. & Pollard, D., 

2011).  
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The Multifors is perfectly suited to “close the gap” between high throughput 

technologies and pilot plant operations outlined in Figure 25. Small-scale 

parallel bioreactor technology can help accelerate process development. 

Relevant insights are needed to make good assumptions and research 

conclusions so that significant parameters that affect culturing/operation can 

be identified at this stage. We can establish a working model and then seek to 

improve upon the knowledge gained from this section.  

 

In this research section, parallel bioreactors for the next platform hardware for 

rapid experimentation and in turn lead to rapid bioprocess development were 

used. Here it was proposed to integrate DoE software tool based in Matlab for 

specific application for this parallel bioreactor format.  

 

4.2 Fundamentals of Experimental Design 
 

DoE is a statistical tool used in the planning of an experiment. Input process 

variables are typically called factors. DoE has been successfully used to 

reduce large number of variables to meaningful, biologically relevant 

information (Wechselberger et al., 2012). This refinement of critical variables 

allows for better model fitting and mechanistic characterisation. Parallel 

systems like the Infors HT Multifors speed up the overall time frame for DoE 

experiments when the design is implemented effectively. This technology is 

somewhat comparable to that of parallel micro-well technologies described by 

Lye et al. (2003). There is an opportunity to integrate DoE into parallel 

systems. 

 

4.2.1 DoE: Factors, Responses, and Design space 
DoE is also useful when the user plans an experiment and the operating 

variables may be controlled, but the effect on the output response is 

unknown. DoE aims to elucidate the unknown effects in a type of process 
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model called “black box” model. In some cases, this could be carried out in 

fewer fermentation processes than first calculated. Experimental models link 

input variables and output responses and move from conceptualisation to 

using real data. Responses can be numerous. Typical modelling-type 

responses encompass  

 

• growth kinetics,  

• mass transfer, or 

• product formation. 

 

It is necessary to quantify and analyse samples and data effectively. The 

effectiveness of the tool is only limited to the input of data and statistical 

relevance in the first place. It is important to assess this in the planning and 

analysis stages. Furthermore, effective DoE may occur when a user intends 

to change or control a small number of process factors. Some examples have 

been identified before by Islam et al. (2007) for biologically relevant factors 

(i.e. media composition). Engineering-based factors (i.e. stirrer speed, 

geometry, or temperature) are also relevant. Wechselberger et al. (2012) also 

focused on a DoE design to establish a regime for the feeding of E. coli 

expressing recombinant proteins. 

 

A DoE tool provides the exact set-up and plans for exploring a design space. 

This is a window of operation which shows the dimensional factor 

interactions. Although it may be preferential to use a small set of factors, DoE 

can be used to handle a larger design space and many factor interactions 

(one that has many variables and/or levels). This reduction of factors is 

commonly known as the screening design.  
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Figure 26 The design spaces which the DoE software will explore before generating a response 

surface model for optimisation. OFAT (right) has the least space explored. Box-Behnken (left) is 

optimal for factors with 3 levels, and central composite designs (centre) describe the design 

space in a shorter amount of experiment runs (Source: NIST/SEMATECH e-Handbook of 

Statistical Methods). 

For example, a 3D space would make use of 3 factors and 3-“level” design in 

the experiment (e.g. one main and two other interacting variables). Each level 

represents a calculated upper, lower, and middle operable parameter. These 

should be realistic and relevant.  

 

A scaling factor and the “real” conditions are converted to create these new 

statistical levels for the chosen design space (the black dots in Figure 26). 

These conditions are normalised operating parameters. Screening designs 

can provide solutions for identifying significant factors from a list of many 

potential ones. If the purpose is to identify significant main effects, rather than 

interaction effects then there are several design options available. Fractional 

factorial designs are one example of this.  

 

Next optimisation designs are the next logical step in identifying interactions 

between the important factors. The basic design options for optimisation are 

summarised below: 

 

• Box-Behnken designs are good for reducing the number of runs and 

predicting a response curve at the centre of the design space and not 

at the corners.  
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• Central composite designs are advantageous for better modelling at 

the corners of the design space.  

• One factor at a time (not a DoE design) is a classical design that does 

not explore the full range and number of resources in a short time 

(Figure 26).  

 

Factors are firstly chosen by the operator. The aim of the experiment would 

be to find the main and interaction effects, for example temperature, media 

composition or inoculation volume. The advantage in all the methods is the 

inclusion of a statistical model using analysis of variance (ANOVA). The 

statistics provide a way of basing predictions and behaviour of significance 

and provides a mathematical model in the end. The limitations for modelling 

lay upon a black box model. Ultimately the design does not detail the 

mechanistic behaviours or chemical pathways of a complex biological system, 

for example biomass formation, protein production, of protein glycosylation 

patterns well enough. Overall the DoE methodology relies on feeding the 

mathematical model inputs and experimental outputs data. Therefore, it is 

advisable that this black box modelling should be used as an initial study for 

rudimentary relationships.  

  

The “black box” models may contain several continuous or discrete factors 

that should be identified and used as initial conditions for experimenting, 

measurable outputs are collected as data. Data collected from the 

experiments known as ‘outputs’ are uploaded to the software, transformed, 

polynomial models are assessed and qualified using a statistical significance 

test and then resultant data and graphs are interpreted by the user. Most 

experimental models contain terms of the first and second order in their 

formulas leading, respectively, to creating a new linear or quadratic empirical 

model for a given biological system. 

 

A user could draw conclusions and identify any of the main effects, 

interactions, or quadratic effects from a statistical model. It is important to 
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remember that experimental error is likely to be part of a model, so 

randomisation of the order in which experiments are run can help mitigate this 

inherent effect. To help with reducing the error introduced into the design 

randomised distribution of operating parameters and inclusion of a number of 

centre points can be used. There is a need for repeat centre points, 

specifically where the effects caused by uncontrollable process variables are 

mitigated as much as possible. Overall, if the model is insufficient, then it 

would signal the need to further characterise the process, requiring more 

money and resources (Konstantinidis et al., 2012). 

 

 

4.3 Set-up for Screening Experiment and Creation of 

the Theoretical Model 
 

The objective of this screening experiment is to build a statistically relevant 

mathematical model that can help identify the main operating variables 

effecting biomass production. The resultant model would ideally provide the 

basis for bioreactor operation for later simulation and rapid process 

development.  

 

The choice of DoE design was the fractional factorial design (FFD) at a 

resolution IV design. This level of DoE design was chosen because it can 

estimate up to four main effects. It is advantageous as none of the individual 

main effects are aliased with two-factor interactions. However, other two-

factor interactions are aliased with each other. Therefore, the initial model will 

have five terms: the intercept term and with four main effects up for 

investigation. 

 

Below are the experimental set up for the chosen fractional factorial design, 

including the output responses and input variable factors. Calculation dictates 

for this chosen 2 level- FFD IV design to have a total of 8 observations. These 
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observations are calculated by two (the number of set levels to be 

investigated) to the exponent power of whatever resolution of the 

experimental design chosen. In this case a resolution of IV equals three. Two 

to the power three equals a total of eight observations in this design choice. 

The summary is listed below in table 3, describing the set up for this 

experiment.  

 

Methods and materials are briefly described here for use in E. coli 

fermentations which were carried out according to the standard operating 

procedures provided in the appendix section 8.1. Rotation speed, air flow via 

feedback dissolved oxygen (DO) measurement using a polarographic 

electrode (manufacturer), pH using a pH probe and no antifoam (PPG) was 

controlled by the Infors IRIS software, linked via a OPC connection to the 

Multifors touch screen control panel. The standard operating procedure and 

the batch fermentation parameters and conditions used for the DoE, was 

initialised by the software tool in Table 4. 

 
Table 3: Description of experimental design choices 

 Values Description  

Suitable Fractional 

factorial design 

 

2(4-1) 

No main effects are 

confounded with any 2-

factor interactions; 

main effects are 

confounded with 

3-factor interactions. 

Number of levels for 

each factor 
2 

Number of factors 4 

Number of 

observations 
8 

Resolution 4 
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Response Variables: 

 

1) Response Variable Y = Optical Density 

2) Response Variable Y2 = Packed Cell Volume 

 

Experimental input factors: 

 

1) Factor 1 (X1) = Glycerol Concentration (final concentration of 

carbon source used in the rapid growth experiment, levels were 60 

and 100 g/L, centre point level of 80). 

2) Factor 2 (X2) = Temperature (a controlled heating system built into 

the Multifors provides heating to the glass vessel; the levels were 

30 and 37°C, with the centre level of 33.5°C). 

3) Factor 3 (X3) = Inoculum cell concentration (the seed train 

concentration being grown to a certain OD before inoculating the 

fermentation vessel; levels were 10% and 20%. 

4) Factor 4 (X4) = Trace element inclusion (this was a categorical 

include or exclude trace element, levels were 0 and 1). 
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The Design Matrix is shown below in (randomised) run order  

 
Table 4 Design matrix for batch fermentation of E.coli using different glycerol conc., temp., 

inoculum conc. and addition of trace elements. 

 

Run 
“Glycerol 

“Temperature” 
“Cell “Trace  “Original  

Concentration” Concentration” Elements” Run Order” 

1 100 30 0.2 1 6 

2 60 30 0.1 0 1 

3 100 30 0.1 1 5 

4 60 37 0.1 0 3 

5 100 37 0.1 0 7 

6 60 30 0.2 1 2 

7 100 37 0.2 1 8 

8 60 37 0.2 0 4 

 

 

4.4 Results of Screening Experiment 
 

We plotted the raw data in several ways to check if any trends or anomalies 

appear that would not be accounted for by the models. 

 

• A quantile-quantile (Q-Q) plot, plots the sample quantiles of OD versus 

theoretical quantiles from a normal distribution. If the distribution of the 

input samples is normal, the plot will be close to linear. Also, the solid 
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line in the Q-Q plot joins the first and third quartiles. A dashed line 

extrapolates the solid line.  

• A normal probability plot graphically assesses whether the data in the 

input sample comes from normal distribution. If the data are normal, 

the plot will be linear. Other distribution types introduce curvature in 

the plot. This normal plot uses midpoint probability plotting positions.  

 

Three of the factors were continuous and one, “TraceElements”, was discrete 

(i.e. categorical using 0 and 1 notation). There are no any centre points for 

this type of two-level design. Fractional factorial designs for two-level 

experiments typically have the desirable properties of being both balanced 

and orthogonal (Islam et al., 2007). 

 
Table 5 Model refinement, raw data in left most column, data refinement, and data transformation 

in the right column Each colour represents each analysis which was carried out on the resultant 

data, known as each ‘Try’. Each colour is then processed as a gradient on how high a value it is. 

This makes it easier to see outliers in our data. 

Response Try 1  

(Optical Density) 

Response Try 2 

After analysis and 

removal of outliers 

Log (Response) Try 3 

after analysis and 

removal of outliers 

3.38 3.37 1.21 

3.76 3.76 1.32 

3.54 3.54 1.26 

16.25 1.33 0.28 

62.76 
Not applicable (data 

removed for analysis) 

Not applicable (data 

removed for analysis) 

4.11 4.11 1.41 

5.16 5.16 1.64 

0.17 0.17 -1.77 
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4.4.1 Quantile and Probability plots 
 

 

  

Figure 27 Normal probability plots graphically assess whether the data in the input sample could come from a normal 
distribution left (a,c,e). Quantile-Quantile plots show sample quantiles of optical density (input samples) right (b,d,f) 

a b 

c d 

e 
f 
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The plots in Figure 28 were divided into three models, the first two being the 

unrefined model (a and b), the second being the model with applying data 

refinement (c and d), and the third having the data transformed using the (log 

y) transformation (e and f).  

 

Starting from the unrefined model (figure 28, graphs a and b):  

 

We can see a potential non-normality within both our Q-Q plot and the normal 

probability plot as they both potentially display non-normal distribution. The 

next best step in the model creation was to remove the outliers in the data 

input. The advantage in excluding the outlier data is to give a much more 

refined mathematical model to work with. The disadvantage was the small risk 

of reducing the overall resolution of the model and introducing error in the 

interpretation of the results. Careful consideration was taken into account for 

this model refinement. 

 

Using coded variables for our models 

 

A = Glycerol Concentration 

B = Temperature 

C = Initial Cell concentration 

D = Trace Elements 

 

General linear regression method results (model 1)  

 

Optical Density ~ -45.113 + 0.572*A + 1.02*B – 81.25*C - 20.5*D 
 

~51% degree of confidence 
 
Equation 26 
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Stepwise Linear Regression results (model 1)  

 

Optical Density ~ -28.2183 + 0.699*A - 30.6767*D 
 

~88% degree of confidence 
 
Equation 27 

 

With the outlier data removed from the initial model a second round of 

modelling started (Figure 28, graphs c and d):  
 

 

General linear regression method results (model 2)  

 

Optical Density ~ 4.527 - 0.005*A– 0.046*B – 6.65*C + 2.58*D 

 

~32% degree of confidence 

 
Equation 28 

 

Stepwise Linear Regression results (model 2)  

 

Optical Density ~ 1.7533 + 2.2917*D  
 

~92% degree of confidence  

 
Equation 29 

 

With the outlier data removed from the initial model and log transformation of 

the data (Figure 28, graphs e and f) yielded:  
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On the next approach, it was thought that data transformation would help 

resolve this negative OD feedback issue. There were two advantages that 

using the natural logarithm of OD as the response might lead to a better 

model. A linear model fit to ln(Y) will always predict a positive distance when 

converted back to the original scale for any possible combination of X factor 

values. This would solve the ‘models negative OD value’ issue. Physical 

considerations suggest that a realistic model for OD might require quadratic 

terms since mixing and settling and gravity play a key role when taking offline 

samples, as taking logarithms often reduces the impact of non-linear terms. 

 

So again, with same run order, row number 5 and 8 (the outliers) omitted the 

raw data would be transformed using natural log functions and fitting by using 

the R2 value (see appendix section 8.2.2). In summary, the resultant graphs 

still show good data spread (see  Figure 28 graph f), with data being positive 

when transformed back to the original data, a criterion we wanted to fulfil.  

 
Table 6 Generalised linear regression model and formula 
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Table 7 Final Linear regression model and formula 

 
 

Using coded variables for our models 

 

A = Glycerol Concentration 

B = Temperature 

C = Initial Cell concentration 

D = Trace Elements 

 

General linear regression method results (model 3)  

Ln(Optical Density) ~ -3.302 -0.007*A -0.043*B – 10.532*C + 1.965*D 

 
~42% degree of confidence 

 
Equation 30 
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Stepwise Linear Regression results (model 3)  

 

Ln(Optical Density) ~ 3.382 + 27.357*(A *D) 
 

~96% degree of confidence 
 
Equation 31 

4.5 Discussion  
 

Simply put the model that gave the factor interactions that had the highest 

significance, based from our experimental results was model 3. Model three 

experimental data were pre-processed for outliers in the data and 

logarithmically transformed. The methods for all of our models were 

calculated using either the general linear regression method (GLRM) or 

stepwise linear methods. The general linear regression method calculates a 

generalisation of multiple linear regression models. The ‘stepwise’ method 

starts with a constant, and adds or subtracts terms one at a time, choosing an 

optimal term each time, until it cannot improve further. Stepwise fitting was 

used to find a good model that had only relevant terms., since this method 

gives a higher degree of confidence. 

 

The original criterion for the model was that it should be logical i.e. that the 

estimate OD output response values from the model would result in positive 

OD values. To determine which method could provide more significance and 

meet the original criterion R2 values were used. As with model calculation 

using experimental results and this ‘black box’ approach, there was always a 

risk that some comparisons may not have had favourable degrees of 

significance. It is upon the user to interpret the quality of the model. Further 

analysis of models 1 and 2 are provided in the appendix.  

 

Recommendations at this stage were to check how significant the lack of fit 

was to the experimental data. We can then say with high degree of 
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confidence how inadequate a model being fitted to the experimental data 

really is in statistical terms. 

 

After pre-processing the data for outliers (Model 2), we used the stepwise 

general linear modelling method to create the model from the actual data; in 

this instance, the non-significant terms were removed and allowed to refit the 

model. It was found that the R2 and R2 adjusted values were still not ideal. 

The ANOVA table showed that the model was not a significant fit, i.e. the 

lack-of-fit test further showed this as a significant calculation (<0.05). In ideal 

cases, we would be looking for no lack of fit in the model. What we would be 

able to do is rerun the model using repetitions and carry out some key 

calculations, such as average, standard deviation, and signal-to-noise ratio. 

 

The quality of the model and results of a good model fit depend on the 

starting model. Starting with more terms can lead to a more complex model 

but one that has a lower mean squared error. The Matlab DoE toolbox is 

limited in that robust options (which is method used to find the optimal model) 

cannot be used alongside stepwise fitting. Robust fitting saves one the trouble 

of manually discarding outliers, so after a stepwise fit, it is necessary to 

examine the model for outliers 

 

For the final model to be used (Model 3), it was possible to introduce the 

stepwise regression method with the transformed data. Again, this allowed 

the fit of the model with a much better R2 value fit a good indicator of a model 

predicting real life data. There was no significant lack of fit of our model, 

which, as discussed, was ideal. 
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4.6 Rapid Microbial Growth Response Surface Model 

Experiment 
 

The goal of this experiment was to optimise the fermentation process based 

upon the screening results in section 4.4. The plan of this experiment was to 

use response surface modelling to see if we could determine the optimal 

conditions for optical density (OD) and packed cell volume (PCV). Packed cell 

volume was used as a way to rapidly take samples which is inexpensive and 

time efficient method of determining increase to packed cell volumes during 

experimentation. 

 

The response variables would be expressed as a function of variables, 

glycerol concentration (between 60 and 100g/L) and ratio of trace elements 

(0, 0.5, 1). This was obtained from the results from initial screening modelling. 

These mentioned factors are our controllable variables for rapid optimisation 

of E. coli fermentations, in an approx. 24-hour period of operation. 

Temperature was kept at 37oc and inoculum volume kept as 0.2 (v/v). 

 

Table 8 Description of experimental design choices 

 

 Value Notes 

Suitable Design 

 

Response Surface 

model 

(Faced) 

 

Number of levels for each 

factor 

3 

Number of factors 2 

Number of observations 11 

Number of design points (8) 

Number of centre points (3) 
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Response Variables: 

 

1) Response Variable Y = Optical Density 

2) Response Variable Y2 = Packed Cell Volume 

 

Experimental Variables: 

 

1) Factor 1 (X1) = Glycerol concentration (final concentration of carbon 

source used in the rapid growth experiment; levels were 60 and 100 

g/L. Note a centre point level of 80). 

 

2) Factor 2 (X2) = Trace elements included ratio levels between 0 and 1. 

Note a centre point level of 0.5 which is set as a volume ratio of trace 

elements stock solution to be added. For example, the centre point 0.5 

would include only half the volume of trace elements compared to a 1.0 

level in the design. 

 

4.6.1.1 The Design Matrix 

 

The chosen design matrix from the properties given in Table 9 is outlined 

below. These runs appear in randomised run order. Included are the first 

response(s) and log(response) Y = optical density values. 
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Table 9 Design matrix for recipes. NaN = data excluded from the analysis. 

Run 
“Glycerol 

Concentration” 

“Trace 

Elements” 

Block 

Number 

“Original 

Run 

Order” 

Response 

Y = 

(Optical 

Density) 

Log(Y) 

(Optical 

Density) 

1 60 0 1 1 41.7 1.62 

2 100 0 1 3 29.267 1.466 

3 60 1 1 2 23.7 NaN 

4 100 1 1 4 NaN NaN 

5 80 0.5 1 9 25.6 1.408 

6 80 0.5 2 11 24.33 1.386 

7 80 0.5 2 10 11.467 1.059 

8 100 0.5 2 6 24.867 1.396 

9 80 1 2 8 15.267 1.184 

10 80 0 2 7 15.033 1.177 

11 60 0.5 2 5 39.833 1.6 

 

Since response curvature, especially for both responses, was a distinct 

possibility for this experiment, an experimental surface design that allowed 

estimating a second order (quadratic) model was needed. A central 

composite-faced (CCF) design was chosen for this purpose. For two factors, 

this design is typically recommended to have 8 runs with 5 centre point runs. 

However, to conserve upon a limited amount of time and resources, the 

design choice was chosen to include only 3 centre point runs. The design is 

still rotatable, but the uniform precision property has been sacrificed.  

 

Recommended steps for fitting a response surface: 

 

1) Fit the full model to the first response, using stepwise regression to 

identify important variables. When selecting variables for inclusion in 

the model, follow the hierarchy principle and keep the main effects that 
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are part of significant higher-order terms or interactions, even if the 

main effect p-value is larger than desirable. 

2) Generate diagnostic residual plots (histograms, box plots, normal plots, 

etc.) for the model selected. 

3) Examine the fitted model plot, interaction plots, and ANOVA statistics 

(R2, adjusted R2, lack-of-fit test, etc.). Use all these plots and statistics 

to determine whether the model fit is satisfactory. 

4) Use contour plots of the response surface to explore the effect of 

changing factor levels on the response.  

5) Repeat all the above steps for the second response variable. 

6) After satisfactory models have been fitted to both responses, one can 

overlay the surface contours for both responses. 

7) Find optimal factor settings. 

 

4.6.2 Analysis of Experiment 
 

At the start, the data were plotted in several ways to determine whether any 

trends or anomalies appear that would not be accounted for by the models. 

 

In Figure 28 both the Q-Q plot and normal probability plots for the 

experimental runs are shown alongside the run order (which was randomised) 

and the box plot of the response values from the experiment. These graphs 

display a non-normal distribution. The run order plot clearly confirms that the 

CCF design was randomised without obvious problems (i.e. there is no 

discernible trend) except for a failed batch in Run 4. There was a wide range 

of data which could likely indicate and further argue that the data may have 

some distribution problems or lack of fit issues. In the appendix section 8.2.4 

to 8.2.6.2 we investigated with further analysis data quality or suitability for 

our CCF model, it was found that the data could be fitted well without 

transforming or pre-processing the data. 
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Figure 28 Data plot diagnostics for response surface design experiment. Run order plot is 

included so as to show that our run order was randomised so analysis of the data can be carried 

out.  
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Figure 29 Output response by factor plots 

Several factors appear to change the average response level, glycerol 

concentration showing the biggest change by far. With all response 

observations in Figure 29 having a large spread at each of the levels, similar 

trend may be found later by the analysis of residuals in appendix section 

8.2.6.2.  
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4.6.2.1 Fitting to a Full Model 

 

Here, the full model to the first response was initially fitted (the experimental 

data using robust fit and regression modelling techniques). Here, several 

unsatisfactory estimated coefficients and score values (the p values) occured. 

This gives us confidence that some of our factors have significance in this 

quadratic model. This depends on whether or not the p values are below 0.1 

(90% confidence of significance) or 0.05 (95% confidence of significance).  

 

 
Linear regression model using robust fit method 

 
 

In the tabulated analysis above, a relatively weak R2 value and the R2 

adjusted value was significantly lower than the R2 value. This indicated that 

the model had a weak fit with all factors and interaction terms being included 

in this quadratic model. Therefore, it was needed to simplify the model by 

using techniques known as stepwise regression methods. 

 

Using coded variables for our models 

 

A = Glycerol Concentration 

D = Trace Elements 
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The initial model was  

 

Optical density ~ 263.5 – 5.704*A – 18.124*D + 0.33*(A *D) + 0.033*A2 – 
15.835*D2 

 

~78% degree of confidence 
 

Equation 32 

 

4.6.2.2 Fitting the Model to Our Data using Stepwise Regression 

 

After the initial fit, the function examines a set of available terms and adds the 

best one to the model. This was based on an F-test by adding the “term” 

which has a p-value 0.05 or less. If no terms can be added, it examines the 

terms currently in the model and removes the worst one, if, an F-test for 

removing it has a p-value of 0.10 or greater. The method was repeated until 

no terms can be added or removed. The function never removes the constant 

term. It may add terms defined by linear, quadratic, or two-way interactions 

among the design factors see initial model in Equation 32. 
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Table 10 Linear regression model and formula testing 

 
 

Here again, a relatively weak R2 value (0.597) and the R2 adjusted (0.481) 

was calculated. The difference this time was that the value gap was now 

closer, giving an indication that it was a little more reliable fit than its previous 

initial quadratic fitting. Of note, there is now a quadratic term in the model in 

Equation 33 

 

The ‘stepwise’ model was  

 

Optical density ~ 238.09 – 5.293*A - 0.033*A2 
 

~96% degree of confidence 
 

Equation 33 

Special circumstances can be explained when stepwise regression method 

selects a model containing the interaction term and only one main effect. It is 

widely accepted by statisticians to go back in the same stepwise fashion until 

all main effects are included. Since “Glycerol Concentration * Trace Elements” 

interaction term was removed from the regression model fitting, this was 

sensible for our modelling purposes.  
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Testing the significance of this model’s fit and how confident we are against 

these models’ lack of fit is next. Testing the model assumptions using 

standard residual graphs were included in the appendix 8.2.6.2. 

 

4.6.3 Test results of our model confidence (model 1) 
 
Table 11 Testing the confidence levels using statistical ANOVA techniques 

 
 

From the output table 22, if a linear model were chosen to help describe the 

process control, then it would have had a confidence level of significance just 

above 85%, meaning up to an additional 7.5% (half of the remaining 

significance approx.) of our estimated output responses from this linear model 

could be known to be erroneous and could have had an impact on the 

process controls chosen for our final optimisation steps. The non-linear, 

quadratic model was a much more likely fit to our experimental data and with 

a higher confidence, i.e. above 95%. 
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4.6.4 Refining the Model (model 2) 
 

4.6.4.1 Design Matrix and Response Values for First Response Variable 

 

Purpose 

 

To improve the fitting of the model by using the R-squared value and then refit 

the model to the experimental data after data transformation (log). 

 

Model Refining 

 

In some cases, it may be beneficial to transform the data. A simple 

transformation of the response variable (Y = "Optical Density") was tried to 

see if the model could be improved. The steps for model fitting were repeated 

for the transformed data using a log to the base 10 transformation.  

 

A linear model fit to log10 (Y) would always predict a positive distance when 

converted back to the original scale for any possible combination of X factor 

values. Once again, physical considerations suggest that a realistic model for 

OD might require quadratic terms since mixing and settling and gravity play a 

key role when taking offline samples – taking logarithms often reduces the 

impact of non-linear terms. 

 

We fit the initial full model using all types of interactions and main effects from 

the transformed data. We obtained p values that lay just below 90% 

confidence of significance. There are terms that are not significant in this 

model, so we repeated the steps involved with the stepwise regression.  
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Table 12 Linear regression model output from DoE software using robust fit methods 

 
 

Using the same coded variables, the first round of model refinement using 

robust fit methods for the first response variable (model 2): 

 

Log10 (Optical density) ~ 5.530 – 0.101*A– 0.096*D + 0.0035*(A *D) + 

0.0006*A– 0.301*D2 
 

~61% degree of confidence 

 
Equation 34 
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Figure 30 Contour response plot derived from model 2 in eq. 33 

The contour plot in Figure 30 shows two highlighted areas. The yellow area is 

the operating space recommended to give above mean average response 

output, in this case, above the mean average output for Log (optical density). 

The green is the opposite: below mean average output. We can adjust this 

threshold later in the optimisation area and visualise the effect it has on the 

ideal operating area and the protocols for bioprocess control optimisation. We 

can use the regions highlighted to set new statistically relevant control set 

points on the fermentation control device for further experiments.  

 

4.6.4.2 Design Matrix and Response Values for Second Response Variable 

packed cell volume 

 

Below, is a summary table of the factor set points. The runs appear in 

randomised order. Included are the second response(s) Y2 = PCV values. 
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Table 13 Chosen design matrix summary for experiment with packed cell volume as our 

response variable Y. NaN are no data points for that run. 

 

We start by plotting the data several ways to check if any trends or anomalies 

appear that would not be accounted for by the models.  

 

4.6.4.3 Analysis of Experiment 

 

In the initial analysis (shown in Figure 31), it had suitable normality within both 

our Q-Q plot and the normal probability plot as they both display an almost 

linear fitting. The run order plot clearly confirms very weak data quality as 4 of 

the data observations were failures i.e. no data points (for run 4, 5, 9, and 10); 

also, with data that was included in the model, there were no obvious trends. 

There was a wide range of data which could likely indicate that the data has 

some distribution problems or lack of fit issues. 

 

 

  

Ru

n 

“Glycerol 

Concentration” 

“Trace 

Elements” 

Block 

Number 

“Original Run 

Order” 

Y = 

(PCV) 

1 60 0 1 1 0.025 

2 100 0 1 3 0.03 

3 60 1 1 2 0.05 

4 100 1 1 4 NaN 

5 80 0.5 1 9 NaN 

6 80 0.5 2 11 0.04 

7 80 0.5 2 10 0.03 

8 100 0.5 2 6 0.045 

9 80 1 2 8 NaN 

10 80 0 2 7 NaN 

11 60 0.5 2 5 0.05 



 101 

 
Figure 31 Data plot diagnostics for second response experimental values. 

 

First fit the initial full model using all types of interactions and main effects 

from the second response data. All the presented terms and interactions 

presented were not significant. This could be evidence for a poor model 

fitting, i.e. it will be difficult to know the response output to the actual 

controllable factors. Still proceeding with modelling, repeating the steps 

involved with the stepwise regression (following up below).  

 

Using coded variables for our models 

 

A = Glycerol Concentration 

D = Trace Elements 
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The initial model 3 build from table 14 was  

 

Packed cell volume  ~ 0.081 – 0.001*A + 0.071*D - 0.0005*(A *D) + 

0.000008 *A 2 – 0.027*D2 
 

~4.2% degree of confidence 

 
Equation 35 

 
Table 14 Linear regression model output using robust fit methods 

 
 

Again, the stepwise regression method was used to model our experimental 

data. We attempted to eliminate the non-significant factor interactions.  
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Mathematical model 4 derived from the stepwise linear regression method: 

 

 

Packed cell volume ~ 0.028 –+ 0.0235*D 

 
~96% degree of confidence 

Equation 36 

 
Table 15 ANOVA tabulated results for second variable response and model 4 

 
 

The stepwise regression modelling method was used to create our model 

from the actual experimental data see Equation 35. In this instance, the non-

significant terms were removed and allowed to refit our model. It was found 
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that the R2 and R2 adjusted values were not ideal. However, there was an 

improvement in the difference between the R2 and R2 adjusted when fitted to 

the full model from this experimental data. The ANOVA in Table 15 shows 

that the model has been fitted as best as possible but was still very weak; the 

lack-of-fit test further shows this as significant with a confidence level of just 

above 30%. Ideally, one would be looking for no lack of fit in a said model.  

 

The regions highlighted could be used to set new control set points on the 

fermentation controller for further experiments. However, these may not be 

statistically reliable, as described by our results; there had been a noticeable 

lack of fit with this model to the experimental response data. The fact that the 

stepwise procedure selected a model for “Trace Elements” containing a term 

that was not significant in the full model indicates that all output generated by 

statistical software should be carefully examined and we did this via the 

diagnostic plots and by testing our assumptions. In this case, the stepwise 

procedure identified the model with the lowest p value, but did not consider 

contributions by individual terms.  
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4.6.5 Response Surface Contours for Both Responses 
 

Preceeding to overling the contour plots, the two responses lead to visually 

comparing the surface responses over the region of interest. 
 

 
Figure 32 Final optimisation parameter chart output from DoE experiment (PCV) 

 
Figure 33 Optimisation overlay plots 
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Figure 34 Optimisation combined plot and recommendations. Yellow regions show the 

conditions in which both output from OD and PCV is optimised. Green areas are the areas where 

optimisation is not achieved based on the response output of our experimental data. 

The models and corresponding contour plots show that a little trade-off can be 

made when trying to achieve above mean average output response for both 

OD and packed cell volumes. The areas coloured in yellow show the 

conditions of operation put in place to achieve the desired optimised 

responses.  

 

4.6.6 Closing statement for this research section 
Specifically evaluating the model, these models only show a black box type of 

modelling and does not describe the interactions mechanistically. It would be 

advisable to seek more detail in what the cell was doing within these 

optimised regions and at the condition boundaries. If stoichiometric modelling 

of a population of cells could be achieved then the motivation behind further 

experimentation and advancing the modelling in chapter 5 becomes 

important. 
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One example question is what nutrients are bottlenecking the overall growth 

and optimisation in these regions? Can it be better described? This question 

arises because of two regions of response optimisation in the Figure 34 and 

at the boundaries between the yellow and green regions. A higher level of 

glycerol concentration is acceptable for cell growth, but it is expected to 

perform better than average OD and packed cell volume responses. This is 

not surprising, as we expect that OD and PCV to increase with adding more 

carbon source for growth under suitable growth conditions. 

 

However, the output response space for lower carbon glycerol concentration 

had a larger output space. Some may consider this to be a more robust 

operating range, as lower concentrations of carbon source with higher ratios 

of trace elements over a short period of fermentation are likely to have the 

same optimised effect. This was not as expected and eludes to other 

metabolic interactions that need describing. Here metabolic flux balance 

analysis would be ideal as we can predict the flow of nutrients and possibly 

answer these questions.  

Verification runs at the chosen conditions should be carried out to confirm the 

output goals of the experiment, as there was some concern over the quality of 

the model for the packed cell volume response. More verification runs will 

confirm the robustness of the proposed process controls, optimisation, and 

model fits. However, these factors have room for improvement in terms of 

elucidating the mechanics and exact metabolism of a carbon source and trace 

elements. This would be explored in the next section on flux balance analysis. 

Since it is  now known that glycerol and trace elements, to a degree of 

confidence, were the most significant factors from our screening experiments 

in chapter 4. This then lead to optimising this specific E.coli w3110 

fermentation process.  We can explore this further in later modelling 

applications. 
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5 Advanced Modelling 
 

5.1 Introduction 
 

5.1.1 Purpose 
 

This chapter builds upon the information created from the DoE model 

initialisation; trace elements and carbon source were deemed statistically 

relevant parameters upon the output response. Here, we will explore and 

create growth trajectory predictions and media optimisation designed for 

maximising microbial biomass. Also, we can then model the dissolved oxygen 

concentration and substrate utilisation using different techniques and other 

principles learned from dynamic flux balance analysis, logistic models, and 

stoichiometric mass balancing. The aim is to help elucidate the metabolism of 

E. coli and determine the effect on the growth. The final goal is to develop soft 

sensors for better batch control and faster optimisation applied to the parallel 

bioreactor system. 

 

5.1.2 Principles of Metabolic Modelling 
 

Fermentation modelling is a complex task and, at the same time, imprecise. 

The process of modelling a microorganism is always dynamic and non-linear. 

Additional variability between runs exists and identifying the trajectory of 

microbial growth can be difficult. 

 

The variability between fermentation runs can be affected by many factors 

including the bioreactor environment and metabolic activity. Microorganisms 

will break down nutrients that can be utilised for survival or duplication at 

different phases, meaning the metabolic activities within the cells affects the 

population dynamically. When performing a fermentation in batch mode, cell 

growth can be divided in several distinct phases. A well-established 
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exponential model of population growth is common in modelling. Whereby a 

population of microorganisms would continue to increase exponentially if the 

environmental and biological needs of a species of microorganism are met 

during growth. 

 

Controlling the addition of inorganic compounds, such as water, acids, bases, 

salts, and organic compounds and carbon-based substrates, becomes more 

important for modelling and balancing at a stoichiometric level. Glucose can 

be supplied as a sugar-based substrate or other carbohydrates can be used 

typically in a batch or fed-batch fermentation and these substrates are key 

components for several biochemical reactions. 

 

The cell duplication process usually involves many chemical reactions and 

utilises both the inorganic and organic substrates. Rate determining reactions 

will influence the growth rate or product formation rate activity. Both genetics 

and nutrition availability affect the doubling time and metabolic activity of a 

microorganism population (Stanbury & Whitaker, 1995). 

 

Aeration is one of the more important factors. Controlling aeration can help 

boost the overall process productivity and help in process optimisation. One 

mathematical model includes the variation in cell number over time x(t). This 

differential equation has an inherent constant, where the specific growth rate 

gives the following form: 

 
𝑑𝑥
𝑑𝑡

= 	𝜇. 𝑥 

Equation 37 

Specific growth rate is a specific metric for individual species of 

microorganisms and the biochemical environment in which an organism is 

growing. The specific growth rate is essentially a function of numerous 

environmental and biochemical factors. Such features include but not limited 

to moisture, pressure, pH, substrate concentrations (oxygen, nitrogen, and 
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carbon sources), temperature, physiology, and energy potential (Doran, 

1995). These factors are important to identify and control as they are involved 

in some assumptions for the modelling.  

 

The phases of the growth cycle are what we are trying to describe to 

ultimately predict the growth trajectory. Therefore, we should review the 

underlying principles and areas of interest and shortfalls for the modelling 

(Figure 35 and Figure 36). 

 

 
 

Figure 35 A diagram of an ideal microorganism growth curve with different phases. 

 
Figure 36 A typical ideal growth cycle with distinct phases and turbidity measurements. 
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Gene evolution of the cell will normally dictate the length of the lag phase. 

The regulation of specific “resource-accumulating” enzymes occurs at this 

stage in the growth cycle at the cost of biomass production. Naturally, the 

enzymes that are involved in biomass production are not fully activated. The 

ribosomal genes and rapid amino acid biosynthesis are blocked/locked, 

preventing cell growth until sufficient quantities/concentrations of primary 

resources have built up inside the cell (Schultz, 2013). Before optimal 

biomass production can occur, this enzymatic bottleneck would need to be 

reduced/shortened through better medium controls as well as by regulating 

the initial inoculum size. This is the first step in understanding where the 

modelling could go wrong, where we try to predict a trajectory that would be 

ultimately bottlenecked by the enzyme regulations. The model must be 

“feasible”. 

 

The strategy to be employed here is that of comparing the factors that can 

significantly reduce the lag time. Small changes can increase the time in 

which optimal biomass is reached during exponential growth as well as the 

consumption of these resources in the process. Lag phase cells usually show 

a small increase in size but no exponential growth. These cells in their new 

environment are undergoing adaptation.  

 

Exponential phase (also known as the log phase) 

 

After the accumulation of metabolic intermediates necessary for fast growth, 

cells start dividing at their maximum specific growth rate. This can be 

calculated empirically. This maximum specific growth rate is usually of great 

interest because growth rates can be used to help distinguish the “cause and 

effect” relationship between varying environmental conditions for rapid 

growth, especially in time-sensitive productions or optimisation. 

 

The exponential phase also is where the biggest increase of cell numbers 

occurs. This increase in cell number, and sometimes linked to increases in 
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biomass, continues until the environment becomes inhibitory (usually by 

metabolic products accumulating) or a rate-determining substrate is 

consumed. Many metabolic models include pathways and there are tools that 

minimise certain pathways from producing products that would cause growth 

inhibition. Metabolic engineering can be used as another source of species 

optimisation for growth and biomass. 

 

Equally important is the characterisation, design, and choice of engineering 

factors affecting oxygen mass transfer during cultivation. If the biological 

oxygen demand cannot be met for the maximum specific growth rate, then 

inherently, the growth rate will decrease or become limited to the amount of 

dissolved oxygen in the culture medium and the number of rate limiting steps 

of mass transfer into the cells. 

 

As like the schematic in Figure 35 and Figure 36, plots of population growth 

often show a linear relationship with time from which the specific growth rate 

and doubling time can be calculated, but the data of the population size must 

be transformed into the logarithmic scale. 

 

During the stationary phase, net growth is balanced with the number of cells 

that are dying and lysing. Endogenous metabolism occurs when the external 

nutrients are consumed, and for maintenance metabolism for as long as 

possible in the attempt to survive. This type of metabolism occurs throughout 

the population growth cycle at various levels (Maier, 2000). As the specific 

growth rate as well as the actual population size starts to slow down, it can be 

seen as a plateau in the OD measurements. The curve becomes asymptotic.  

 

As the culture enters the death phase, this is specifically where the rate of 

multiplication of the cells falls below the rate of death of cells. Progression of 

cell population is towards death is characterised by the decline in the number 

of viable cells. 
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5.1.3 Sigmoidal Models of Growth 
 

One of the aims of data fitting and modelling is to minimise the gap between 

estimated values and actual data. Membership functions are a useful way of 

doing this efficiently. Mapping the input values where it is not clear as to what 

they are going to be categorised as is called fuzzy logic. The biomass plateau 

is set on several “if” statements: if the concentration of carbon source or 

substrate is limiting, then the degree of membership will show a value 

between 0 and 1. Since the concentration of the limiting substrate occurs over 

a continuous period, the membership function is also likely to follow a 

continuous membership function.  

 

 
Equation 38 

 

Equation 38 above shows the sigmoidal membership function. This formula 

was used in the development of the growth model to create a sigmoidal curve. 

This function has mathematical membership with the Monod equation. This 

was based on the growth rates of the microbial cell system and the relevant 

stoichiometry.  

 

Cell growth was measured with variables such as dry cell weight, colony 

forming units (CFU), OD (although it is useful to represent the data in a 

biologically relevant manner other than OD), and protein concentration over 

time.  

 

Sigmoidal patterns under the right conditions relate to the growth phases of 

microbial cells in the lag, log, and asymptotic, stationary phases. Sigmoidal 

growth patterns and models are only an approximation at best to the 

experimental data that we could fit. 
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We will consider using the log plot of a population size relative to the starting 

population size. Sigmoidal plots such as the Gompertz and logistic plots see 

Table 16 which has specific parameters for calculating the lag, log, and 

asymptote. The models in Table 16 are commonly based on empirical models 

being fitted to data. There are some mechanistic models available that 

describe microbial growth also (Yilmaz 2011; Zwietering et al. 1990; Fujikawa 

et al, 2004). 

 

The equations in Table 16 have been further developed and modified in a way 

to accept new terms that include dynamic temperature changes during 

growth, lag times during the initial cell adjustment to new media at the time of 

inoculation and various chemical environments with respect to pH and water 

activity (Zwietering et al, 1990). The problem with using unmodified model 

data is that for example lag time has to be determined from empirical data, 

instead of the model intrinsically estimating the lag times of new bacterial 

cultures.  

 

Table 16 adapted from Zwietering et al (1990) detailing a number of empirical 

modelling algorithms for prediction of bacterial cell growth. 
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All the functions have three or four parameters that need to be calculated to 

apply the model. What we can do statistically is evaluate the necessity or 

benefit of having extra (four instead of three) parameters describing the data 

in the model. 

 

The first parameter of the growth curve models (a) in Table 16 starts at the 

intersection on the x-axis, specifically the intersection point at which the cell 

growth is at its steepest. This is best known for its relationship with the 

maximum specific growth rate.  

 

The second parameter described is the asymptote where the last data value 

is taken as the asymptote infinity (b). This excludes the fact that the death 

phase could occur and is not ideal. Unless you have large amounts of data 

points to choose from for the asymptote parameter, this is usually the last 

point taken in the plateau.  

 

The third (c) and the lastly the extra parameters (d…) can be calculated by 

using the smallest difference between experiment and model data. This is 

calculated by the residual sum of squares analysis between data and model 

functions. This is best done programmatically to minimise the risk of error.  

 

Kinetic modelling 

 

Compounds are converted within the biochemical reactions. These reactions 

follow reversible, irreversible, and catalytic reactions. 
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Figure 37 Network diagram of reaction pathways 

 

The reactions can be modelled and when rates are predicted, these can be 

used to optimise production of a specific metabolite or output.  

 

The steps involved in this study were to use and identify biochemical 

pathways specific for creating biomass and carbon source consumption. 

Then, assumptions based on kinetic expressions were made and mass 

balances for the specific species were carried out using a library of pathway 

information from the EcoCyc and KEGG repository. Next, the parameters 

needed to mimic and generally fit the empirical data were calculated.  

 

Reactions networks can be broken down into two types: 

 

• Closed networks – these networks reach equilibrium when the reaction 

rates are zero. This is also the point at which the reaction rates are at a 

steady state.  

• Open networks – This is where the input and output components are 

transferred continuously. When the metabolite conversion rates within 

the network system are continuous, the production of metabolites to be 

transferred out of the system network is dynamically equilibrated with 

the input substrates. Essentially, the reaction rates are not zero. These 

networks are the most realistic to the culture. This includes nutrient 

supply to the network and the secretion of metabolites and waste into 

the surrounding broth (off gases are usually dissolved components).  

 

Reaction networks are governed by the direction of the reactions in the 

network. This is where reversible, irreversible, and catalytic reactions are 
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important for defining rates and applying assumptions/constraints when 

creating predictive models. This allows to dynamically calculate the fluxes 

around the network. Identification of reaction rates is the next important 

component of reaction network and model construction. Reaction rates will 

determine how one component will be converted into the next component or 

waste product. Reaction rates are calculated over a period and ordinary 

differential equations (ODE) are used to calculate the differences between 

reaction rates. Reaction rates will likely include nonlinear terms and there are 

solvers that can be used to calculate the expressions. Approximation is a 

factor to be aware of when creating solutions to the network flux problems in 

the model. The input values for the reaction expressions and the time scale 

for the reaction rates are needed for non-linear terms. 

 

ODE equations require all reaction rates to be identified. The production 

rates, which are deemed additive to the reaction profile, and consumption 

rates, which are deemed subtractive to the reaction profile, are used to 

balance each metabolite in a network. 

 

Mathematical models require all possible reactions and rates for production 

and consumption. Current research is exploring models of larger, whole 

microbial species networks, but some biochemical or chemical networks are 

currently unavailable publically owing to the time and investment needed for 

research and inputting and validating libraries of data. However, smaller 

network sections or compartments can be explored individually 

(Schellenberger, et al., 2011). 

 

5.1.4 Mass Action Kinetics 
 

Guldberg and Waage proposed a kinetic scheme for chemical reaction 

networks in 1864. Their work describes chemical reaction rates to be 

proportional to original reactant chemical concentrations. It is a widely used 

generalised assumption. For chemical networks, there are products and 
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reactants that have kinetic orders. There are exponents that represent these 

kinetic orders. Kinetic orders represent the question “How does this specific 

compound effect these reactions?” We can start looking at the effect on 

reaction rates, other compound modifiers to the reaction, specific compound 

concentrations, reaction direction, and reactant conversion. These can be 

described by the power rate law.  

 

 
Equation 39 

 

Alpha represents the forward reaction direction rates interacting with 

compound S. Similarly, beta represents the reverse reactions; ‘h’ and ‘g’ in 

the power rate law, represent the kinetic effects which are usually specific to 

the reaction and product stoichiometry. They may have positive or negative 

integers, representing positive or negative effects, respectively, on the 

reaction. No effect is represented by zero. 

 

Under the most popular set of mass action assumptions, directed reaction 

graphs can be used to describe the chemical reaction networks. These 

graphs are also known as Kirchoff matrices. Usually, the rate of a reaction is 

determined uniquely by the stoichiometry of the reactant complex: 

 
𝑁	 = 	 (𝑆, 𝐶, 𝑅) 

 
Equation 40 

 

In the Kirchoff matrices (Equation 40), the reactant stoichiometry underpins 

the rate of a reaction. These are represented in complexes, C, and the 

reaction sets, R, in the reaction network as a table format. The Kirchoff matrix 

systematises the reaction connections and kinetic orders (the effects that 
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compounds have on the reaction). The Kirchoff reaction matrix has 

connections with the dynamics of a given mass action system. In biological 

systems, these dynamics correspond to the system behaviour at a local state. 

Steady state systems can be represented as linear problems that researchers 

can solve by using linear programming and ordinary differential equations. 

These are described later. Mass action laws are the generalisation of power 

law. 

 

5.1.5 Biochemical Networks 
 

Enzymes are the primary basis for all biochemical reactions. They are used in 

biochemical networks to speed up otherwise lengthy reactions. Factors are 

limited to the properties of each enzyme, the mechanism of action, and 

reaction rate (Schmid et al., 2001; Nelson & Cox, 2008). The two 

classifications of enzymes are for catabolic reactions and anabolic reactions. 

Anabolic reactions create larger compounds for biomass synthesis and the 

catabolic reactions metabolise and break down the nutrients into smaller 

products and generate energy for cell growth and metabolism. Both are 

needed to construct the entire metabolism of a cell.  

 

Reaction kinetics can show which substrates are efficient or not, and this can 

be effective in creating an optimised nutrient feed. It is known that the 

enzymes are not consumed while calculating reaction kinetics. 

 
[𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒] 	+	 [𝐸𝑛𝑧𝑦𝑚𝑒] 	↔ 	 [𝐸𝑆	𝑐𝑜𝑚𝑝𝑙𝑒𝑥] ↔ [𝐸𝑒𝑛𝑧𝑦𝑚𝑒] 	+ [𝑃𝑟𝑜𝑑𝑢𝑐𝑡] 

 
Equation 41 
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5.1.6 Flux Balance Model 
 

Flux balance analysis (FBA) uses mathematical equations, under a set of 

limiting constraints to understand metabolite flow for a large-scale model (e.g. 

genome scale). Its approach is one that focuses on optimisation of an 

objective. In some cases, this is the maximum cell growth. Once this objective 

is identified and a large biochemical network is configured to explore the 

assumed solution space, it would be possible to predict the rate of cell growth. 

Another way in which this can be applied is with metabolic engineering. In this 

case, the outcome could lead to the production of a metabolite or e.g. again 

changes to the growth rate of the organism. 

 

After the representation of the metabolic network, reconstruction is an 

important step in metabolic calculation and analysis. The widely available tool 

called the constraint-based reconstruction and analysis (COBRA) in the 

Matlab toolbox (Orth et al., 2010) enforces these metabolic representations 

into ordered stoichiometric matrices (S). Metabolites would flow freely 

(programmatically speaking) through this network, but it is the stoichiometric 

reactions that enforce the flow constraints. 

 

The stoichiometric calculations are then applied to the objective function (Orth 

et al., 2010). There needs to be a check on the balance of input and outputs 

to make the network valid. The stoichiometric constraints fulfil this role by 

ensuring flux is being balanced. Lower and upper bounds are applied to each 

reaction to indicate what reaction fluxes are allowed or appropriate. These 

reaction bounds would essentially balance the input and outputs but the 

bounds can be set to represent inequalities (Orth et al., 2012). The reaction 

matrix represents the mass. This means under assumed steady state 

conditions, the consumption and production levels of a metabolite are equal. 

For the matrices (S) to be confined, these steady state assumptions are key 

in FBA, allowing the metabolic fluxes (v) to be constrained and identified as  
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𝑆 ∗ 𝑣 = 0 

 
Equation 42 

S is the matrix containing a stoichiometry of the internal catabolic reactions 

that will take place, while v is the reactions rates constructed as a vector. The 

net metabolite uptake in this steady state case would be 0. 

 

See step 3 of the FBA formulation path below. 

 
Table 17 Steps involved in metabolic pathway analysis and FBA 

 

Step 1 Metabolic reactions are first 
defined in a genome scale 
metabolic reconstruction. 
These are essentially a set 
of stoichiometric reactions 
that are specific to the 
organism of interest. The 
letters below represent the 
different reaction substrates 
and products .  
 
e.g.A à B+C;  
B+D à F; 
C+E+G à H 
 

 

Step 2 Metabolic reactions are 
then represented into a 
mathematical matrix. The 
matrix is  
set into rows and columns 
(“I” x “j”). The different 
metabolites are formulated 
in rows (j) and the reactions 
in each column (i).  
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Step 3 We use mass balance and 
stoichiometric boundaries to 
define the limits of the 
matrix and reaction 
schemes. The lower and 
upper bounds are applied 
and allow the flux of 
metabolites through each 
reaction to be bound by the 
S * v = 0 equation.  

 

Step 4 Then, we apply an objective 
function (z) that highlights 
the highest reaction 
contribution “c”, also known 
as the weight; “v” is the 
reaction rate in the matrix in 
step 2: 
“Z = cTv” 
 

 

Step 5 We optimise for or reduce 
the contribution effect to the 
final objective function by 
using linear programming 
techniques. The constraints 
can be observed at this 
stage for better analysis of 
the mass balance equations 
and reaction bounds. 

 

Additional 
notes 

Models can be constructed for prediction but must have the a 
priori knowledge of a species genome to work out step 1. 
Programming for automation of the controls for the fermentation 
conditions will continually be checked and limited by the mass 
balance assumptions made in step three. 
Further characterisation of metabolic states can be obtained by 
comparing the theoretical and experimental data to improve 
models. 
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External metabolic rates (growth rate, substrate uptake, and product 

accumulation rates) related to the specific organism are additionally 

constrained (i.e. complimented with the stoichiometric matrices of reactions) 

to successfully determine the overall (pseudo) steady-state system. To make 

the estimations relevant to the specific organism, measured metabolic rates 

(r) are applied to the metabolic fluxes to give: 

 
𝑅 ∗ 𝑣 = 𝑖 

Equation 43 

Again this time the R is the matrix containing a stoichiometry of the internal 

catabolic reactions that will take place, while v is the reactions rates 

constructed as a vector. The net metabolite uptake would be ‘i’. 

 

Least squares regression methods are used next, allowing the equations to 

be solved simultaneously.  

𝑚𝑖𝑛	𝑆𝑆𝑅	 = (𝑟 −	𝑟n)S /𝜎jS 

Equation 44 

 

The result is the estimation of the metabolic flux for a determined system. The 

determined system is the system that contains all the necessary external rate 

experiments (Antoniewicz, 2015). 

 

The objective function is usually defined as the production of biomass, as was 

the case in this study. It can be used to predict microbial growth and the 

biomass components (lipids, nucleic acids and proteins). The constraints can 

be set programmatically to suit our modelling. This makes the whole FBA 

feasible, matching the real-life fermentation counterpart. 

 

Mass and energy balancing model development is useful for general 

description of cellular metabolism. Flux balance analysis (FBA) takes this 

further into modelling the metabolism of the cell (Feist and Palsson, 2008 
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from Meadows et al, 2010)). FBA can be adapted to include several 

applicable constraints to overcome metabolic engineering problems. 

Examples of constraints include levels of metabolic transcription, 

thermodynamics, intracellular crowding problems. Other challenges come in 

with estimating multiple carbon source consumption and other in situ 

engineering problems associated with industrial scale fermentations 

(Meadows et al, 2010). The aim in using this FBA is to help elucidate 

experimental data and understand bioprocess behaviour.  

 

5.1.7 Dynamic Flux Balance Analysis  
 

Dynamic flux balance analysis is an extension of FBA. The aim is to 

understand metabolite flow and biomass or product formation without masses 

of kinetic information. The method of DFBA is quite similar to FBA but can be 

applied to batch or fed-batch applications and does not merely describe 

dominant measurable metabolites (Hjersted & Henson, 2009; Nikdel & 

Budman, 2016). Since typical bioprocesses have transient behaviour, 

dynamic flux balance analysis aims to fix this problem of describing the global 

system for large- and small-scale operations. This problem is usually set up 

as an optimisation problem where the goal is to minimise the differences 

between experimental and in-silico data. The concept is to solve the FBA at a 

set number of times or sampling intervals (Nikdel & Budman, 2016). This 

problem is solved again, usually by the least squared method and solves the 

objective function within the boundaries and constraints of the reactions. It is 

important to note the challenges in finding global solutions to these proposed 

model problems.  

 

The advantages of DFBA are that fewer input arguments are needed, i.e. just 

the limiting metabolites, as opposed to the kinetic data needed for 

determining system flux balances. Then, the rest of the flux problems are 

solved as constrained stoichiometric relationships. 
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Unstructured models typically use the growth rate capacity as a function of a 

limiting substrate, where it is most applicable to batch operations without 

many changing conditions (Hoffner, 2013). DFBA has a broader approach to 

the analysis of metabolism and environment interactions. When compared to 

models that are unstructured, it is difficult to apply predictive approaches.  

 

DFBA can also be used for animal, bacterial, and plant species (Hoffner, 

2013). Dynamic metabolic engineering and batch or fed-batch control 

optimisation at small- and large-scale are the other applications of DFBA 

(Hoffner 2013). 

 

Metabolic flux balance analysis assumes that the metabolism is at steady 

state. This becomes more problematic and tools like COBRA tool box have 

the ability to determine metabolites that are not at metabolic steady state 

(Antoniewicz, 2015). A time series order of events is calculated for 

extracellular concentration and rate: 

  

 
 

(Antoniewicz, 2015) 

 

Another assumption for the DFBA is that the transients are slow in the order 

of seconds to minutes. This allows the fluxes to be processed at discrete time 

intervals. Concentration measurements of metabolites are taken from average 

external rates for each discrete time event. The final step in describing the 
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culture component concentrations is to take each discrete FBA event and 

create a timed profile of the transient fluxes (Antoniewicz, 2015). 

 

Data smoothing is an alternative method when deciding which time intervals 

are to be taken or are required. Assuming that when measurements are 

taken, the flux of transients is slow, the accuracy and validity may end up 

being irresolute without the application of data smoothing (Antoniewicz, 

2015). Data smoothing can be applied in the form of splines, linear, or 

polynomial fitting, and smoothed data can be derived. Recent developments 

have tried to overcome this problem of having to manually select the time 

intervals or pre-process the data (Leighty & Antoniewicz, 2011). But, this is 

still a major challenge because of the inherently stoichiometric balancing 

needed for the model, it has the same limitations as classical FBA. These 

limitations include parallel, cyclic, and reversible pathways and reactions 

(Antoniewicz, 2015). 

 

Flux balance analysis is used to understand, map and reconstruct 

biochemical networks. It is possible to predict several metabolic reactions 

from a cell and its reconstructed genome (Orth et al., 2010). DFBA is 

expected to provide better predictive capabilities than a structured cell model. 

The objective is to obtain values for cell growth and product yields using this 

systematic approach. There are many reconstructions available on the web 

today that have been increasing rapidly. This advance is due to improved 

bioinformatics tools and experimental procedures. The applications related to 

DFBA can be used in bioreactor design and analysis. It can also help in the 

simulation of many fermentation and diagnostic problems. The only way to 

test the validity of the simulations is to perform the fermentation under the 

same conditions that the simulation is modelling or conditions that are of 

interest. 

 

Where this fits into the scheme of DFBA and the Multifors is that the parallel 

bioreactors can be used to evaluate multiple conditions at the same time, 
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speeding up the model validation process and meeting the need for 

alternative (albeit small scale) culture technologies for model development 

and validation. The reconstructed model was based on iY75_1357 version 20 

(Available at: http://bigg.ucsd.edu/models/iY75_1357) (King et al., 2015). At 

the time, the iY75_1357 model metrics contained 1358 genes, 2760 

intracellular reactions, and 1953 metabolites that were balanced (King et al., 

2015). 
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5.2 Methods 
 

5.2.1 Analytics 
Optical density was measured using a spectrophotometer (Thermo-Fisher 

scientific, USA) at 600 nm for fermentation samples taken. The OD 

measurements were performed offline. Samples where pipetted into 1ml 

cuvettes, and dilutions were used where appropriate to keep the readings 

below 1.000 on the spectrophotometer. Microsoft Excel was used to 

determine the maximum specific growth rate using the built-in solver 

application with the OD experimental data at 600 nm.  

 

 

5.2.2 Validation of Growth Estimator 
The mean square error method (MSE) was used to determine the difference 

between the simulation model output and the actual experimental value. The 

MSE was calculated as the sum of the mean of the squared residuals; 

experimental values were used to evaluate the proposed logistical regression 

and exponential models during the lag and stationary phases. The smaller the 

value the closer the model fit to the data. 

 
𝑀𝑒𝑎𝑛	𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑒𝑟𝑟𝑜𝑟	 = 	 (1/𝑛)	𝑥	(𝑠𝑢𝑚	𝑜𝑓	𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠) 

 
Equation 45 

 

5.2.3 Model Data 
Predictions of biomass, glycerol, chloride, phosphorus, and sodium which 

form the components of minimal media M9 used in fermentation were made 

from the dynamic flux balance analysis.  

 

All simulations were carried out using Matlab 2015b and the COBRA tool box 

for dynamic flux balance analysis using the GLPK linear programming solver. 
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SBML and libSBML tool boxes for Matlab are also required elements of the 

software package. Installation and compiling were carried out on a Windows 

PC and MacBook pro laptop. The Cobra tool box is a freely available research 

toolbox available at Opencobra; all Git versions are available at that location. 

 

The DOT% experiments were set up with the medium containing glycerol as 

the primary carbon source, and contained a defined nutrient medium with 

salts, phosphorus, sulphur, potassium and nitrogen. The process was 

operated as a batch culture, dO% was controlled at 40% air saturation. pH 

was controlled by the automated pump with ammonium hydroxide additions. 

Broth samples were taken and optical density was measured at 600nm 
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5.3 Results 
 

5.3.1 GUI Application 
The GUI application was developed with Matlab. The building of the GUI 

included building a mass balance calculator in matlab. Then using the 

optimisation tool as a built-in optimisation toolbox. This is essentially a solver 

for stoichiometric mass balance equation and currently requires starting data 

input from user. 

 

Matlab script used to compute stoichiometric coefficients with the ‘Fzero’ 

ordinary differential equation method. In the future scope, there should be 

further automated integration with other data collecting programs through the 

use of application programming interface API’s.  
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GUI INTERFACE 

 

 
Figure 38 User interface built for growth modelling simulations, data input and DOT% estimation. 

 

The second feature developed was a graphical output/user information input 

GUI see Figure 38. The information outputs were designed to give information 

on DOT% profile, which has the ability to show data in the graph area, and 

microbial growth, using either sigmoidal or exponential growth kinetics. 

 

 

5.3.2 DOT% Profile Estimator 
The DOT% estimator is a dynamic representation of the consumption of 

oxygen substrate based upon the dry biomass of E. coli and the growth 

kinetics, stirrer speed, and gas velocity parameters.  
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kLa = k.(Pg/V)α . (vs)β 

 

Equation 46 

 

OTR = kLa (C* - C) 

 
Equation 47 

C= ψ.DOT%/100 

 
Equation 48 

OUR = (μ/Yx/O2).X + mX 

 
Equation 49 

dDOT%/dT = (OTR-OUR)*(100/(kLa* ψ)) 

 
Equation 50 

 

 

 

Ψ = fraction of oxygen in air – specific solubility. KLa = volumentric mass 

transfer coefficient. Alpha and beta are exponents. Vs = gas velocity. OTR = 

oxygen transfer rate. C = fraction of dissolved oxygen as a percentage in 

liquid. DOT%= dissolved oxygen tension percentage. X = biomass. mX is 

biomass maintenance energy requirements. Y(x/O2) = yield of biomass on 

oxygen. OUR = oxygen uptake rate. T = time.  

 

5.3.3 Growth Kinetics and curve fitting 
 

We adapted a simple logistical model that takes into consideration an 

additional exponential curve fitting parameter (Equation 51): 
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𝑂𝐷 = 𝑂𝐷� = 𝑂𝐷��q +	
1

1
𝑂𝐷� 

− 𝑂𝐷��q + 𝐶� (𝑒`¡	¢	�p)
 

 
Equation 51 

 

OD at 600 nm, t = time, tf = at final time, n = sample number. C and D were 

curve fitting parameters that, by using either Matlab or Excel, can solve the 

model to fit to the experimental data gathered for a simulated future growth 

trajectory. This was done using the minimising mean squared error (MSE) 

method by taking maximum and minimum optical density data points, and 

finding a minimum point where all sample points were as close to the logistic 

curve as possible using MSE. 

 

This model in Equation 52 is the exponential growth model under non-limiting 

substrate conditions and non-inhibitive oxidative microbial growth. N is the 

number of bacteria; μ is the specific growth rate; t is the time in hours 

(Stanbury & Whitaker, 1995). 

 

The exponential growth equation is the differential equation  

 

𝑑𝑁
𝑑𝑡

= 𝑘𝑁			(𝑘 > 0) 

Equation 52 

 

Its solutions are exponential functions of the form:  

 

𝑁 = 	𝑁q ∗ 	𝑒¥� 
Equation 53 

 

where 𝑁q = 	𝑁 0 	is the initial value of N. 
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Also can be compared using the base model (Gompertz Equation 54) to the 

simplified logistical regression model (our work). 

 

Gompertz:   

 

𝑁 = 𝑎 ∗ 𝑒`¦(m§¨©)  
 
Equation 54 

We have separately looked at the initial lag phase and stationary phase to 

help determine the applicability of a simplified logistical empirical model for 

speeding up developmental times for a new bioprocess. 

 

Mini-bioreactors that have the function to run in parallel and operate 

simultaneously may to some degree increase the rate of experimental 

development. There is potential to reduce times and costs. Characterising the 

phases is essential in bacterial population growth in a stirred tank reactor to 

know when, for example, induction and genetically engineered protein 

expression is optimal after reaching a maximum biomass or specific growth 

rate during log phase.  

 

The aims of this experiment were: 

 

1) Compare how well the established models (exponential and Gompertz) 

are able to describe exponential growth trajectories against experimental 

data.  

 

2) Secondly develop logistic curve models that are better at describing the 

key growth phases for Escherichia coli. 
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The experiment was set up using defined media and the Infors Multifors 2 

built in controller for experimental control. Also, pH, pO2, and temperature 

were the controlled parameters in this experiment.  

 

 

According to the maximum optical density of this experiment there was 

acceptably good reproducibility between the 3 reactors operating in parallel, 

the average of the three runs was OD = 3.59 +/- 0.047 with standard 

deviation. This was likely due to the media being defined and good 

automation that the Infors controller provides. 

 

 

 

 

 

 

Table 18 Results of the specific growth rate and MSE of the residual fit to three models, 

exponential growth model, logistic regression for the lag phase, and sigmoidal Gompertz 

growth model 

Parallel 

mini 

bioreactor 

Maximum 

Optical 

Density 

on 

Minimal 

Media 

(OD 600 

nm) 

Specific 

Growth 

Rate 

(h-1) 

Mean 

squared 

error of 

exponential 

curve fit 

(OD 600 

nm) 

Mean 

squared 

error of 

logistic 

curve fit 

(OD 

600 

nm) 

Mean squared 

error of Gompertz 

model (OD 600 

nm) 

 

A 3.54 0.265 0.064 0.043 0.065 

B 3.64 0.300 0.041 0.018 0.020 

C 3.60 0.311 0.043 0.016 0.030 
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Figure 39 (A-C ) Escherichia coli fermentation at 500 mL volume, 2% inoculum. This graph 

includes prediction models for exponential growth and logistic expression as part of a parallel 

series of fermentations: reactor A-C. Note pO2 on secondary y-axis is included for information 

purposes. 
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Three separate bioreactor runs were investigated using the similar inoculation 

start time and initial OD measurements. The pO2 was included to show the 

increase in oxygen requirements during the log phase of fermentation. Here, it 

is likely that the minimal medium supplied the nutrients and necessary 

substrates until hour 15 when primary carbon source, as glycerol in this case 

a key substrate was not available to the cells. This was likely triggering the 

stationary phase. Airflow at 1 vvm was supplied to each vessel, but cascade 

control was initiated when 40% pO2 was reached by increasing the impeller 

speed from 300 to 1000 rpm. The OD measurements were taken with the aim 

to validate the proposed modified logistic model. As this was repeated three 

times, we assumed the n = 3 validation to be adequate under similar 

operating conditions. Measurements were taken from the lag, log, late 

exponential and stationary phases of the life cycle of the E. coli population. 

Figure 39 (A-C) show the fermentation data for broth OD at 600 nm; this was 

used as the growth indicator in these experiments, since the model is 

designed on the basis of the OD measurement units. Dissolved oxygen 

values where included as additional data for comparison and reproducibility 

studies.  

 

The Gompertz model; 

  

 

𝑁 = 𝑎 ∗ 𝑒`¦(m§¨©)  
 
Equation 55 
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Our modified logistic model 

 

𝑂𝐷 = 𝑂𝐷� = 𝑂𝐷��q +	
1

1
𝑂𝐷� 

− 𝑂𝐷��q + 𝐶� (𝑒`¡	¢	�p)
 

 
Equation 56 

 

and exponential bacterial growth equation model  

 

𝑑𝑁
𝑑𝑡

= 𝑘𝑁			(𝑘 > 0) 

Equation 57 

 

In the form:  

 

𝑁 = 	𝑁q ∗ 	𝑒¥� 
Equation 58 

 

were used to validate against experimental data and determine the 

improvements on which the proposed new model could predict data points. 

The data points were again used for OD measurements.  

 

From these results in Table 18 other model comparators were used to check 

how closely fitted the experimental data was across the entire fermentation 

time. From here, it was determined the model with the best fit by using the 

mean squared error values (MSE). This showed that the new modified logistic 

model had the lowest values with best fit. However, noting that these values 

were just a small advantage on the regular Gompertz model. The proposed 

model does have potential for use in these specific conditions. But it does 

require further experimentation for different model creation and curve fittings. 



 139 

This could further highlight whether this small improvement is akin to just 

these conditions. It could be a possibility where there is no further 

improvement than that stated on the Gompertz model. Making the Gompertz 

equation suitable to model growth also. 

 

Further experiments see Table 19 were taken to establish and validate which 

model which type of model was most suitable to describe the lag growth 

phases instead of the entire growth trajectory based again on the smallest 

mean squared error (MSE). The experiment was set up to further validate any 

difference between estimated and actual biomass sample readings for a set 

of fermentations running in parallel in minimal M9 defined media.  

 
Table 19 Results of the specific growth rate and MSE of the residual fit to two models, 

exponential growth model, and logistic regression for bacteria growth curve fitting. 

 

The results in Table 19 for the mean squared error of exponential curve fit - 

OD_600nm shows that the exponential model can describe the experimental 

OD data better in the lag phase. Since its MSE difference was lower than the 

logistic curve fit. Results from Table 18 show the exponential model failed to 

describe the changes towards the late stationary phase. For simulation 

purposes the exponential model was the most inaccurate overall but 

advantageous in estimating the lag phase. 

Parallel 

mini 

bioreactor 

Final optical 

density at 23 

hours (OD 

600 nm) 

Specific 

growth rate 

(h-1) 

 

Mean squared 

error of 

exponential 

curve fit 

(OD_600 nm) 

Mean 

squared error 

of logistic 

curve fit 

(OD_600 nm) 

A 4.32 0.252 0.0273 0.0072 

B 4.46 0.251 0.0014 0.0028 

C 4.56 0.263 0.0300 0.0301 

D 4.51 0.252 0.0028 0.0035 
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The proposed modified logistic model has an additional exponential 

parameter (D) see Equation 56. Due to the MSE method chosen for 

describing the difference between experimental data and model the extra 

parameter helps better describe the curvature across multiple growth phases 

(lag log and stationary phase) instead of favouring fewer growth phases like 

the other models do. The MSE fit of each of the models in Table 18 to the 

data favours the modified logistic model (Equation 56).  

 

Overall sigmoidal models tend to better describe later asymptotes. It could be 

argued that more OD measurements could further refine the model and 

reduce the risk in the model. However, the approach of repeating 

simultaneous batch fermentations was adopted to mitigate experimental 

error/risk across more reactors than just relying on one batch to validate a 

model. Repeatability is preferred over single-batch data precision. At this 

stage of experimentation modifying the original logistic model was suitable for 

simulating a simple growth trajectory of a microbial system. 
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5.3.4 DOT% Simulation results 
The DOT% estimator performance was initially evaluated using Matlab, see 

materials and methods section 2. This estimation was verified with the 

experimental results. It is important to note that this estimation incorporates 

cell metabolism, oxygen solubility, engineering parameters, stirrer speed, 

superficial gas velocity, and cultivation media (i.e. the glycerol substrate 

consumption). The low cell density of the OD shows that even for low settings  

 

b 

a 

Figure 40 Matlab constructed results with Graph A and Graph B.  Graph A (top) includes the DOT% 

estimator (‘----’)-calculated on an exponential growth profile. Graph B  (bottom) describes the  

Sigmoidal (logistic) growth profile and its effect of estimating DOT%. The ‘o’ circles are the 

experimental data for DOT% based on a glycerol substrate batch concentration of 10g/L. Other 

details are present below in the simulation panel of the GUI. Low settings are 100 rpm; high settings 

are 1100 rpm; 0.5 vvm. The ‘o’ circles are the experimental data for DOT% based on a glycerol 

substrate batch concentration of 10g/L. Other details are present below in the simulation panel of 

the GUI. Low settings are 100 rpm; high settings are 1100 rpm; 0.5 vvm 
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i.e. the parameter of the stirrer speed being set to 100 rpm (Figure 40- 

unbroken red line). It was insufficient to maintain DOT% above 40%, thus 

cascade control was implemented during fermentation and the high setting of 

1100 rpm was sufficient to maintain a critical DOT level before the carbon 

substrate (glycerol) was assumed to be fully consumed at 19 hours due to a 

rise in the DOT% data.  

 

Graph A in Figure 40 describes the exponential growth profile and the effect it 

has on estimating DOT%. Graph B (right) in Figure 40 describes sigmoidal 

growth profile cellular metabolism and the effect it has on DOT%.  

 

The performance of the DOT% estimator was compared using the sigmoidal 

growth curve model and exponential growth curve. Each of the models used 

the first 3 data points (0, 11, 12 h) to work out the specific growth rate as the 

fermentation was carried out. This enables earlier prediction of the growth 

trajectory. However, assumptions must initially be made to initiate the profile. 

Subsequent trajectory patterns must be inputted to re-evaluate during 

cultivation. The information includes the dry cell biomass composition for a 

microorganism, RQ, fraction of oxygen in air – solubility in liquid, medium 

composition, the kLa, OUR and OTR. 

 

The aim of this experiment using the DOT% was to characterise a ‘profile’ in 

silico and validate it against experimental data. When a profile can be 

established, controls can be predicted ahead of time. In Figure 40 the 

exponential growth profile has a good fit (shown by left blue shaded circle 

region in Figure 40) in the early growth phase when compared to the DOT% 

in the low and high rpm conditions. This was similar to the results of the 

section 5.3.2 whereby the exponential model was very good at simulating the 

lag phase. The sigmoidal growth curve (b, Figure 40) seems to have a lesser 

fit to the initial DOT% experimental data. 
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The model starts off by making one steady state solution of the model. Then 

taking this model solution i.e. output biomass and state variables of interest 

for the next (subsequent) ordinary differential equation (ODE) calculations. 

Each step follows in the similar fashion whereby calculation of uptake rates, 

energy and requirements to maintain the initial objective for biomass 

production occur. Then these calculations are used as constraints for the next 

calculation until end of the process. The ODE’s included in calculations of 

interest for the medium were the OD, concentrations of sodium, phosphate, 

and glycerol. The goal was to mimic cellular metabolism under minimal 

medium conditions, with the non-organic components in the batch and the 

glycerol carbon source to support the predicted biomass growth target in our 

simulation, i.e. not allow the non-organic compounds to become growth 

limiting and determine the flow of metabolites through the metabolic network. 

The uptake reactions that were excluded from the model i.e. the reactions 

metabolites that were deemed not to change during the modelling was the 

carbon dioxide, oxygen, water and hydrogen.  

For uptake flow (i.e. > 0) of metabolites during model setup, the concentration 

was assumed to be high enough to not be limiting. If the uptake rate for a 

nutrient was calculated to exceed the maximum uptake rate, then the 

specified maximum uptake rate 1000 mmol/g dw/h value was given priority 

instead of the calculated one. 

 

Several simulations with various operating parameters were allowed to run, 

this was to understand the robustness and sensitivity of the predicted 

biomass output. When the glycerol was allowed to go unfeasibly high/ almost 

unlimited resource in batch mode, we experienced an impossible biomass 

solution of 100’s of g/L. Under more suitable conditions of the simulation (i.e. 

glycerol at 800 mmol/L concentrations that reflected a real-life counter-part), 

experimental biomass data started to follow the simulations at low 

concentrations at small scale (≤1L). The first set of FBA/exponential model’s 

simulations that were allowed to run, was developed to allow a feedback loop 
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to tell the simulation to stop if the substrates were. depleted). This end of 

phase feedback loop, can be seen in the figures below where biomass 

accumulation is cut off abruptly at the 30-hour mark, to indicate that one or 

more of the substrates have been depleted during the FBA model simulation. 

We also included an estimated exponential growth profile. This was to see 

how similar the two growth trajectories were comparing early lag phase and 

FBA lag models. There were similar profiles up to hour 24 (see Figure 41) 

except the exponential growth profile had a slightly raised estimation of how 

much glycerol was being converted to biomass at maximum specific growth 

rate between 24-30 hours.  

 

 

 
Figure 41 FBA simulation profile example compared with exponential predictive biomass growth 

profiling (using the typical Exponential growth Equation 55). 

It is important to note that the chosen calculations have two distinct features. 

An FBA model that includes glycerol metabolism and exponential biomass 

growth calculation which is not specific to organism biomass production and 

does not factor in the glycerol consumption.  
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As expected having the following insightful points leads to better control 

conditions;  

 

1) How glycerol is being metabolised during culture 

2) The duration or how long the lag phase takes at the start of batch 

3) When the maximum specific growth rate is obtained,  

4) Useful forward- planning for fed-batch process (See chart below at 

the point of the end of batch simulation phase) (Figure 42). 

 

 
Figure 42 E. coli growth simulation using our modified logistic function, including the control 

strategies that could be used for feeding strategy or harvest. Carbon source consumption was 

calculated from stoichiometry of the E.coli cell and relating the increase of cells to a 

consumption rate of the carbon source. 
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Figure 43 FBA multi-metabolite simulation, showing that the fermentation would end at 30 hours 

where the total limiting carbon-based substrate would be consumed (cl(e) are chloride 

compounds available, glyc(e) is the glycerol available, na1(e) is the sodium molecules and pi(e) 

is the phosphorus molecules available for metabolism. 
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Figure 44 Part of the development of a simulation software with which the soft sensor and 

control strategies for fermentation can be visually shown in graph format. This graph is a 

comparative plot between the exponential growth profile and FBA model. 

All of the conditions used for the final simulations are described in the 

Appendix section 8, which are the simulations conditions shown in Figure 

41to Figure 44. Within Figure 44 to Figure 47, initial simulations were started 

with the focus on use of the DFBA. Biomass growth simulation as well as a 

comparison of fermentation batch OD data and predictive OD modelling 

function as described earlier using Equation 56. 

 

Figure 44 is a comparative plot between the exponential growth profile and 

FBA model. Here the model showed the exponential growth profile that was 

higher than the estimated biomass concentration using low concentrations of 

glycerol. Modelling using a non-specific growth calculation, one that doesn’t 

take into consideration complex glycerol metabolism, has limitations leaving 

the conversion to biomass unregulated.  

 

Exponential modelling is fundamentally susceptible to over estimations as it 

favours only looking at trajectories that favour maximum growth calculations. 

Under low glycerol concentrations, the glycerol carbon source in the flux 
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balance model can be regulated with potential to match the real-life 

counterpart and has better biomass estimation.  
 

 

 
Figure 45 Part of the development of a simulation software with which the soft sensor and 

control strategies for fermentation can be visually shown in graph format. This graph shows the 

comparison between our modified logistic function biomass estimation and the experimental 

values. The ‘ ’ symbols refer to the experimental data points of fermentation carried out from 

Table 19. 

Figure 45 shows the comparison between our modified logistic function 

biomass estimation and the experimental values from a real-life fermentation 

performed at 1L scale under the same conditions in the simulation. The 

results (‘o’ dots) show average optical density measurements (n=3) taken 

across a 24-hour period. These measurements show a close resemblance to 

the predicted OD values of the logistic function. 
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Figure 46 Part of the development of a simulation software with which the soft sensor and 

control strategies for fermentation can be visually shown in graph format. Graph using matlab 

dFBA first described in (Schellenberger et al, 2011), looking at the consumption of the main 

metabolite the glycerol carbon source used in minimal media M9 and the outcome of a simple 

optical density optimisation as a criterion. 

 

 
Figure 47 Part of the development of a simulation software with which the soft sensor and 

control strategies for fermentation can be visually shown in graph format. Graph using matlab 

dFBA methods first described in (Schellenberger et al, 2011) looking at the consumption of the 

metabolites used in minimal media M9. 
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Figure 46 and Figure 47 shows the metabolite consumption and optical 

density of the dFBA model based upon the setting we used for the live 

fermentation. One application explored was the creation of a well-planned 

control strategy based on results from: 

 

1) Stoichiometric balancing  

2) Metabolic simulations using the COBRA toolbox 

3) Real fermentation data 

 

The models created using the COBRA toolbox were based on several 

constraints or using an objective function to minimise or maximise a desired 

target. The best way to describe this was from a predefined priority system, 

with carbon being the most important parameter available. 

 

The difference in priority lies in what the model analytics was trying to achieve 

– reducing microbial lag time within the fermentation from the start to reach 

exponential growth quickly. This is another application focus that can be used 

with these models.  

 

The goals to be achieved from the data and simulations above were as 

follows: 

 

1) Expected time taken for batch run to complete: The “minimum” 

focus would be to reach the quickest completion time possible, with 

the “maximisation focus” being on the shortest time taken to 

consume key substrates. Indicators in the simulation and real 

fermentation data are based on consumption of nutrient sources. 

 

2) Value of media components: This is a way of including more 

expensive material components in the medium or for larger scale 

modelling and use of mass quantities. This is important when 
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looking at constraints and planning for budget based or sensitive 

margins of profit. 

 

3) Biomass or OD targets: The criteria for this constraint are based 

upon the desired maximisation of biomass or OD alone. 

 

The optimisation criteria that was used in this set up was the singular optical 

density targets. With this type of application use we obtained model data that 

could mimic a biochemical network, growth trajectory and metabolite 

consumption relatively easy based on stoichiometric and dFBA methods. 

 

Finally looking at the overall limitations of the models is of utmost importance. 

Trust of the models essentially comes down to the inputs, mechanisms and 

validations. Some of the current limitations are addressed in this section. 

Further areas that caused concern for the accuracy of the models were the 

exponential carbon source consumption profile. Calculation of the carbon 

composition of the cell can be calculated experimentally on a cell by cell 

basis. Inaccuracy at this stage would cause simulation error in later stages. 

Other limitations include the need to measure OD and the dry cell weight, and 

simulation parameters when first establishing model simulation. Lastly, the 

oxygen requirements to fully convert the carbon source are large and the 

average air flow may not be reached in high cell-density cultures.  
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6 Project Conclusion 
 

The parallel Multifors miniature bioreactors were characterised in terms of 

power input, mixing times, and oxygen mass transfer and checked for 

consistency across batch fermentations for the parallel bioreactor system. 

This was key to being able to establish insight into the bioreactors and what 

physical impact the have, such that the entire software packages and the 

framework could be built. 

 

In the the project scope described the next layer up of in silico or software tool 

development (shown with connectors in green) i.e. our software management 

process. The design allowed planning for transfer or input and output of data 

between different software tools. One of our original issues to overcome with 

many software packages was the interoperability, which was also one of our 

research goals. The software tools built and tested for integration purposes 

are shown between blue connecters and labelled nodes in the main 

development scope (see Figure 48). 

 

Rapid process optimisation using DoE as a practical tool was useful and 

designed to handle many complex systems but operate in the parallel 

bioreactor set up. A statistically robust DoE tool not only covers E. coli or 

yeast culture investigations in a parallel bioreactor format but also provides 

scope for a full range of applications, including process development, process 

optimisation, scale-up/down, media development, growth studies, toxicity 

testing, and high throughput screening. The first instance of our fermentation 

model was built from basic DoE software tools in Matlab. A model-based DoE 

tool is thus ready for the Multifors and parallel bioreactor systems that 

specifically targets designs that would incorporate 4 reactors set up.  
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Figure 48 Overview of the Project 

A major focus of integration of advanced modelling tools was the integration 

with bioprocess control software data and metabolic flux analysis software. A 

key issue was the development of an interface to enable exchange of different 

sets of data, namely transfer of data from different modelling software and 

conversion into optimised fermentation recipes and sequences. However, the 

program and fermentations were still not fully automated, but can at this point 

give the user the desired feed and strategy for biomass growth. As a proof of 

concept, the initial fermentation model based on DoE data was to be 

improved with metabolic flux analysis to develop an advanced batch feed 

stratagem. 

 

The next objective was to build upon our gained fermentation knowledge and 

statistical modelling for predicting fermentation set up, operation, and 

management in one entire software tool. This was one goal of the industrial 

company, Infors HT who develops the parallel bioreactors. Then with DoE 

model data and with metabolic flux analysis help improve and develop for 

bespoke applications.  
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The outcome of this work was the creation of new DoE and DFBA 

tool/software packages for use with parallel bioreactor systems. We provide 

techniques for simulation, control and fermentation optimisation.  

 

6.1 Software Validation 
 

Consistency was important for testing modelling assumptions and 

establishing parameters to be used for building a mathematical model for E. 

coli growth our test application. This development is important in respect to 

software validation and verification. Software intended for operating control 

and model building should abide by guidelines set out by the regulatory 

bodies.  

 

Formal verification and software review in summary should include test 

procedures, protocols, readiness reviews, and finally qualification. For further 

review and integrated software development code inspection, consisting of 

intensive manual error detecting techniques, is vital and was carried out in our 

project 

 

Minimising risk/errors and ensuring compliance to coding standards set out in 

the validation documentation during inspection are vital steps. Check-listing is 

the most preferable technique. 

 

Software elements are documents that should be produced while software 

development is in progress. This ensures traceability and assurance of 

software verification and validation. Face validity assessments are used to 

give the developer or user a measurable qualitative benchmark. It gives the 

user an idea of how well suited a variable is when used to test out a problem 

or, as in this case, a software programme. A proposed variable or test must 

be subjective and have a degree of measurability and do what it claims to do. 

In this case, DoE’s must be statistically robust. The DFBA should describe the 
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flux of metabolites through each of the reactions, subject to constraints. When 

a test can accurately measure what it is supposed to measure, it is deemed 

valid. Examples of our code elements are provided in the appendix. 

 

Some of the key aims of software validation in this project was identifying 

what management is needed at various stages of the software development 

cycle. These were set as management tasks that include planning and 

resources required to meet both the biological development of the process but 

also the technological development of the software controlling and tools being 

used. Prospective validation was used as an approach for the integrated 

software. Protocols would ideally include test parameters, product 

characteristics, equipment to be used, and acceptable test points. This was 

especially important for encompassing smaller software parts into a larger 

software package. 

 

This prospective validation approach and its implementation was specific to 

our project for: 

 

• Developing software models for fermentation simulations 

• Face-validating the models with real-life data sets 

• Using software models for predicting product quality 

• Integrating statistical software into what is already existing (enhancing 

the existing software) 

• Programming the logic controllers for controlling the reactor equipment 

during fermentation. 

 

The input and outputs from each task, and anomaly reporting was 

documented (see appendix section 8.3 for an example). Off-the-shelf code 

auditing and reviewing software like those used in coding software 

development (e.g. Microsoft visual studio) could have been used further in 

identifying the learning outcomes set by this project. Risks and assumptions 

needed to be identified and allocated to each task set out in the software 
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process cycle were prepared and implemented throughout. Independent code 

review was carried out by Infors HT software team in this case. 

 

6.1.1 Quality by Design 
 

Quailty by design (QbD) approach could allow for an additional layer of 

guidance for future work in modelling and software development for parallel 

bioreactors. The trade-off for higher levels of regulation and employment of 

quality-by-design in a process which could lead to, better product quality, 

reduced process costs, and better time management (McCurdy, 2011). 

 

QbD descriptions are normally quite broad and not directed to a specific 

process or type of manufacturing. QbD is the concept behind predefining and 

planning for new breakthroughs scientifically, yet ultimately planning quality 

before manufacturing starts (Juran, 1992). The QbD practice is useful when 

users build, plan, validate and deploy measures to enhance quality 

assurance, which is an overarching aim for the software development in this 

research study. QbD is the concept behind planning from relevant guidance 

manuals like cGMP, training, PAT, or experimental design. It would 

subjectively improve and move away from out-dated practices into a more 

desired up-to-date state (McCurdy, 2011).  

 

An example of successfully employing QbD is that of “process control” where 

the results of introducing and building upon PAT in real-time feedback provide 

bespoke predictive controls for a given biological process. A typical process 

control element could be the automatic adjustment of the pump-feeding rate 

(the control element). This could be achieved by predicting the nutrient uptake 

rates i.e. feedback element from soft-sensing models and relevant PATs used 

at given points during microbial fermentations. 

 

Scientific understanding is the key to having a well-defined process, requiring 

all variables that are critical to a given process to be characterised and 
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explained. Management of these variables is addressed and can be predicted 

reliably (McCurdy, 2011).  

 

A successful QbD program could be like the one described below. (FDA, 

2003; Rathore & Winkle, 2009) 

 

1) Start by defining an objective for the given process. This can be broad 

like increasing or capitalising on new process capacity or based on 

business benefits, product safety, and systematic development.  

2) Predefine and explain all the variables pertaining to the process inputs, 

e.g. broth purity, delivery rates, acid and base potency, etc.  

3) Explain and manage output quality of variables like cell viability at n-

time or other product or metabolite yields, stability, hydrophobicity, 

impurities, etc. 

4) Complete risk assessment where necessary, considering factors 

(temp, pH) that may affect the outlined product quality variables and 

the original objective(s). Engineering theory such as scale-up and 

translation implications and using scientific theory is a requirement. 

5) Understanding the manufacturing and culture process to show 

significant parameters that interact with and affect identified critical 

quality attributes (CQA) and other critical process parameters (CPP). 

a. Select PAT-approved equipment and practices as best as 

possible (in line/online) that would monitor a time-based 

response to the risk of changes to any CQA. 

b. DoE experimental plan setup: Establish the initial design space 

to map dependency of multiple variables identified from the risk 

assessment. 

c. Highlight the parameters that significantly interact with the CQA. 

6) Use reaction kinetics, mass balance, and other deterministic 

approaches, like stoichiometry, for quantifying CPPs.  

7) Highlight significant risks/threats. 



  

   158 

8) Simplify process into a mathematical equation or model (quite tricky in 

some complex systems).  

9) Check and validate this model.  

10) Implement novel process controls. 

11) Assess and continually improve for desired future QbD programmes 

and process states.  
 

(FDA, 2003; Rathore & Winkle, 2009) 

 

A QbD approach and implementation with respect to its software was a 

research objective. 
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6.2 Future work: Process Automation 
 

Process automation was a key focus from the beginning of the project and 

one that is highly relevant to the future work of this project. Process 

automation with respect to the study was based on how to simplify the 

fermentation procedure for a user. Also, how could we describe what is 

required to reach an optimal bioprocess solution for the user. Is there a need 

to query a complex bioprocess upstream before starting a fermentation 

process? It certainly would be useful. How could we do this? Can I simply 

push a button and optimise the bioprocess? To do this, should we have 

started with one target, i.e. just the E.coli fermentation optimisation or multiple 

objectives, i.e. control software development and fermentation modelling. It 

was with such a query that was focused on multiple objectives to reach this 

research initial goal towards process automation. Process automation is ideal 

for further work.  

 

Process automation would typically aim to integrate computer-based 

knowledge, such as applications and relevant products, and then assess it in 

order to reallocate resources continually throughout a process. Applying 

process automation aims with relevant goals that are specific to bioreactors, 

bioprocess control software, shakers, and fermentation applications can help 

with overall process optimisation and the goals set out in this project. 
 

If qualitative oriented objectives could be applied, to a bioprocess or bio-

products, then this could provide benefits like cost containment or an 

improved risk management. Risk management would help in reducing the 

time taken for a fermentation campaign or planning by simulating or 

preventing many “out of our control” risk factors. 

 

There has been advancement with improved software and hardware within 

the competitive bio-industry in recent years. The execution of relevant 

process automation has resulted in enhanced quality of trust and robustness 
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in a bioprocess. This is evident in the dairy production industry where 

automation and machinery are commonly applied to produce enhanced 

products, consistency, scale, and improved knowledge. The successful 

application of automation has resulted in other industries, including the 

chemical and biochemical industries, adopting this approach (Junker and 

Wang, 2006). 

 

Successful experimental microbial culture requires the identification of many 

complex input and output variables. These complexities include various 

physical and physiological properties, the biochemical environment, and 

engineering principles. Achieving a desired outcome from process input 

variables can be difficult to control and automate in practical terms. To 

address such difficulties, analytical and statistical strategies can be employed. 

Most statistical packages and analytical software used for control purposes 

are in fact isolated; the statistical programmes are not currently integrated 

sufficiently into bioprocess control software. This is usually disadvantageous 

considering that the standalone software is not specific to a unit step or 

process. The licensing of such software products is costly and additional 

training is required. This is because the software is often complex and 

necessitates more than general knowledge to use and draw conclusions from 

results.  

 

Advancing analytical technologies are important as user tools. Requiring more 

understanding and elucidating a process where there are unknowns in the 

bioprocess. Most technologies and statistical software aim to provide models 

and allow for simulations with a good degree of satisfaction. Typically, 

software and the analytics are becoming as complex as the chemical and 

biochemical processes themselves (flux balance analysis, pathway analysis, 

metabolic level modelling, genomic characterisation etc.). These could 

provide detailed knowledge about the process and better control at various 

steps in a bioprocess. However, as many companies have been operating the 
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same equipment for decades, their automation, control software, and 

algorithms will be out of date.  

 

This research includes the characterisation of the limitations faced using 

miniature or bench-top scale bioreactors. Further characterisation and 

successful high cell-density fermentation demonstrations are needed to 

improve the time taken between early and late bioprocess development 

stages. This allows the potential to then actually scale a process up to pilot 

plant scale and commercially larger plants. This understanding would help 

limit the costs to getting scale-up controlled in an acceptable way and have 

outputs that meet the needs of the company or department (stakeholders).  

 

Process development, process analysis, and process control guidelines 

outlined by the FDA encourage innovative development work, and this 

research could provide the innovation needed for process automation (FDA, 

2003). The risk-based approach would typically allow implementation of up-to-

date control strategies to mitigate the risk of poor product quality. In the 

context of this research, this could mean implementing the scientific bases 

and engineering principles for fermentation culture at lab bench scale to 

scale-up for pilot plant processes or manufacturing. The aim would be to 

prevent the risk of unknown factors interfering with consistency and 

robustness for a product going into further development. As such, bioprocess 

modelling, simulations, and improved control strategies are continuously 

growing areas of research. The importance, in summary, is to mitigate the 

risks associated with these complex biological processes using these 

innovative solutions.  

 

In practical terms, the data obtained from experiments would give a better 

understanding when conclusions are drawn rapidly. Critical quality attributes, 

which are usually predefined or identified before experimentation, are the 

typical benchmarks for product quality or performance. Limitations in 

innovation come from the laboratory methods themselves. For example, the 
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approach used for offline samples can be limited to only historical and data-

driven models from previous experiments (Wechselberger, Seifert & Herwig, 

2010). In contrast, live real-world, data-driven methods can provide better 

control strategies to be implemented while in motion or in progress. The result 

could hopefully provide the quality and performance that were originally 

outlined by the critical quality attributes. However, research like this would still 

need to be verified and assured.  

 

Operating boundaries and operating parameters are the fundamental bases 

for process control. An unusual but relevant advantage of adopting PAT and 

quality-by-design (QbD) framework is that it can allow for improved 

robustness while operating at a higher risk. The risk involved is that the 

operating boundaries can be broader, capitalising on the wealth of live data to 

improve while in progress. This would require robust validated algorithms and 

potentially result in, for example, fewer rejected batches. Up-to-date soft 

sensors and hardware technology need to be adopted. The PAT framework is 

a welcome move, despite the discrepancies involved. 
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8 Appendix 
 
Table 20 Summary of initial parameters chosen for the fermentations, calculated stoichiometric 

parameters to be used and lastly assumptions used in both the stoichiometric and FBA models. 

Parameter Value units Comments 
Length of 
vessel (total) 

22 cm Measured value 

Volume of 
vessel (total) 

1.4 L Measured value 

Gas velocity 1 vvm Variable operating 
parameter (to make FBA 
model assumptions valid 

Temperature 37 Degrees Celsius Controlled 
operating parameter 

Stationary 
liquid 
pressure at 
base of 
Vessel (15.7 
cm) 

15.4 mbar Calculated value 
(engineering basis) 

Stationary 
liquid 
pressure at 
lowest point of 
the upper 
impeller (8.1 
cm) 

7.94 mbar Calculated value 
(engineering basis) 

Carbon 
source mass 

3.461 grams Calculated 
(stoichiometry) 

Oxygen mass 1.872 grams Calculated 
(stoichiometric) 

Biomass 1.795 grams Expected result for 
stoichiometric model. 

R quotient 0.7  Expected basal metabolic 
rate quotient assumption. 

Approximate 
biomass 
target 

2 g/L Target value (low for 
minimal medium chosen). 

Ash content 5.5 % (http://systemsbiology.ucs
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d.edu/) 
E. coli 
Stoichiometry 

(1,1.77,0.4
9,0.24) 
[C:H: O::N] 

 mol  

Molar yield 1.91138 mol/mol (Glycerol) Calculated value 
(stoichiometry) 

Molar yield 1.22905 Biomass/oxygen Calculated value 
(stoichiometry) 

Mass yield 0.548967 Biomass/Substrate 
[g/g] 

Calculated value 
(stoichiometry) 

Mass yield 1.01486 Biomass/oxygen  Calculated value 
(stoichiometry) 

Average mass 
per cell 

710 Femtograms Fagerbakke, K., Heldal, 
M. & Norland, S., (1996) 

Average 
carbon Per 
cell 

350 Femtograms Fagerbakke, K., Heldal, 
M. & Norland, S., (1996) 

Average 
oxygen per 
cell 

120 Femtograms Fagerbakke, K., Heldal, 
M. & Norland, S., (1996) 

Volume per 
cell 

3.8 µm3 Fagerbakke, K., Heldal, 
M. & Norland, S., (1996) 

 Average 
number of 
cells/OD 

5x108 cells  

Molar carbon 
ratio in carbon 
source 

0.391  Calculated (Stoichiometry) 

Wet to dry cell 
weight ratio 

3   

Oxygen 
solubility  

0.00106 g/L  

Substrate 
saturation 
constant (Ks) 

0.005 g/L  

Substrate 
(carbon 
based) 
Conversion 
Molecular 
weight 

92 g/mol Molar Mass value of 
carbon substrate 
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Maintenance 
energy 

0.58 mmol/g/h (http://systemsbiology.ucs
d.edu/ 
2013, Accessed; 
16/04/2017) 

Simulation 
Start time 

0 h Simulation parameter 

Simulation 
End time 

<50 h Simulation parameter 

Volume of 
liquid 

0.001 m3 Operating variable 

Starting OD 
measured 

0.15  Operating variable, 
measured at 600nm 

Specific 
growth rate 

0.22 h-1
 Simulation 

parameter/experimental 
data calculation 

Lowest 
specific Kla 
achievable by 
reactor 

33 h-1 
 

Engineering parameter 

Highest 
Specific Kla 
achievable by 
reactor 

827 h-1 Engineering parameter 

DOT cascade 
control level 

20 % Operating 
parameter/simulation 
parameter 
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8.1 Standard Operating Procedure 
 

Multifors 2 

 

 
Figure 49 Picture of the Multifors Bioreactor vessels 

 

Preparation 
SWITCH VESSEL ON. 

 
Is the vessel clean? Vessel O ring ok? 
Check walls for material sticking esp. around the working volume level. 

Remove the clamping ring holding the top plate to the vessel and lift the top 

plate clear check the O-ring on the underside of the top plate, replace if 
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necessary. Ensure when reassembling that the drive shaft sits vertically in the 

ceramic bearing and turns freely. Check for large cracks in the glass and 

replace if needed.  

 

Port fittings? 
Check each port fittings with O-rings and must not be flattened split of kinked. 

Check the glass vessel is seated properly and earthed with the metal prong. 

Secure the vessel by unhinging the clamps. Inoculation membrane (septum) 

fitted place the bottom 13.5Pg port fitting on top of the septum and replace the 

closure port fitting on top ready for sterilisation. Blank off any ports not used. 

Any unused pipe fittings not used not be tied off and looped together if 

needed. 

 

pH calibration 
Calibrate before autoclaving and each time the reactor is used. Do a two-point 

calibration with pH 4 and 7and temperature probe. Select bioreactor and pH 

calibrate on the bioreactor tab. When the reading steadies select confirm. 

Repeat for the second point calibration standard. Rinse with distilled water 

between standards. 

 

Electrodes in place. 
Fit p02 electrode and with O-ring and hand tighten only. Same for pH 

electrode. (these must be stored in 3M KCL so as not to dry out the 

electrodes. 

 
 
Medium  

Add medium to the vessel through an open port and hand tighten the port 

back. Make sure the fill volume is 90% of the WORKING volume, remaining 

space is for inoculum. (can be sterilised with 20 ml of water if heat labile 

media is used).  
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Air filters 
Inlet air filter is fitted with a red filter, and clamped off for autoclaving. Exit gas 

cooler (green ribbon) connected and left open for autoclaving. All filters 

should be covered with a little cotton wool and aluminium foil. 

 
Sample device 
Ensure the sample device is attached to the top plate with silicone tubing and 

a cable tie and clamped off for autoclaving. 

 

Reagents 

Ensure feed and antifoam bottles are correctly filled and labelled and attached 

to the pumps. DO NOT autoclave acid or base. For the autoclaving remove 

the transparent cover shield and place the pump heads on the metal support 

under the bottle holder frame. Ensure the free silicone is attached to the 

vessel (one line into the pump head and one line to the vessel) CLAMP OFF. 

 

Antifoam probe  

Loosen the collar to fit the electrode careful not to damage the transparent 

sheath. Seat correctly at the required height and tighten the clamp 

 

Autoclaving  

• All electrodes capped (with foil) 

The pH electrode can use the red cap to protect from moisture. The pO2 

electrode can be seated with some aluminium foil.  

• Filters covered with cotton wool and aluminium foil. 

• Remove the temp sensor from its pocket 

• Reagent and lines are clamped off 

• Use autoclave tape 

Sterilise at 121oC and allow to cool use gloves to transport the vessel over to 

a trolley. 
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CHECKLIST FOR VESSEL READY FOR USE 
 

Vessel 
Check that the stirrer is seated properly still. Fit the vessel into its holder and 

make sure its earthed properly. Fit the holder back to the Multifors base unit 

and secure the vessel. 

 

Top plate connections 
Fit the exit gas cooler connection (one for supply and return). pH electrode 

connects with its black cable (the one with the red cap). pO2 electrode 

connected. Place the temperature probe fully inserted into its pocket. Fit 

antifoam electrode (red into the electrode and black onto the top plate to 

make a circuit). Remove foil from air inlet and connect the silicone tubing on 

the rotameter (on the base unit).  

 

 

Air and water supply switched on to 0.5vvm 

Remove the clamp on the air inlet. Set the air inlet to 0.5vvm. 

 
Replace peristaltic pumps 

Fit the removable pump heads to the pump motor shafts beneath the vessel. 

Replace the transparent safety cover. 

 

Tubing unclamped and prime the lines. 
Use the switches on the front of the base unit to fill the tubing until the metal 

inlet pipe on the top of the vessel. Keep the sample line remained closed off 

until needed. 

 
Set points limits set correctly. 

For E.coli set the temperature to 37 degrees  and a set point for 300rpm make 

sure the rest of them are set to OFF. Check the stirrer turns freely. 
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Minimum 2 hours elapsed 
3-4 hours would be needed for electrode polarization could leave this 

overnight to inoculate in the morning. 

 

Calibrate oxygen electrode 100% value 
Adjust 1250rpm and 1.5vvm for 10-15 mins and saturate with nitrogen (for 0% 

calibration) and then oxygen (for 100% calibration) go to p02 calibrate and set 

high ref value (for 100%) and low ref point (for 0%) once readings are steady. 

 

Decide which controllers are on or off 

Temperature, stirrer, pH control, p02 control, AF, FEED off initially. Cascade 

controller for stirrer speed set. Select pO2 parameter select cascade, stirrer 

speed and max 1200 and min 300. Move to ON. 

 
START EXPERIMENT; 

With the parameters switched on manually IRIS can be started just before 

inoculation, check the link to the software is OK. SET feed pump rate after 4 

hours if doing a fed batch process. This is set between 2-100% set to 2 

percent for a low feed rate. 

 

 
 

INOCULATION 

This should have been setup the previous afternoon. The medium in the 

flasks should be cloudy compared to the negative controls. Ensure the 

consumables for the first inoculation are ready (this is for aseptic conditions a 

syringe and needle). Make sure that for the first sample OD is to be measured 

with pipette tips and cuvettes). The inoculum is usually 5-10% of the working 

volume. (but usually going to choose 2.5%) for example a 600ml working 

volume this would be 15ml. remove inoculation port closure and add ethanol 

to sterilise septum. Pierce membrane with needle and inject. Spray with 

ethanol again and close the septum with port closure. 
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Sampling  

The clamp is removed from the sample tubing. A syringe is fitted to the air 

filter connected to the short pipe on the head plate of the sample device. 

Another syringe to the draw out solution side. Transfer sample to a bottle if 

required. Or cuvette for OD sampling. 

T2, T4, T6, T8 ready all the way to the end of experiment. 

 

 

Checklist for the end of the experiment. 

Set all parameters to OFF before handling pump tubing. 

 
Pump tubing emptied and washed 

 For each reagent bottle empty out and fill with distilled water. Use the all tab 

to empty reagent tubing and wash out with water into the reactor vessel. Re-

clamp the lines for autoclaving filled with water. 

 

Culture decontamination 

 A more usual procedure is to heat kill with steam in an autoclave.  

The reagent tubing is prepared as above and filled with water. 

The pH and pO2 electrodes are re-capped the exit gas cooler is disconnected 

from the water supply. the temperature probe is removed from its pocket in 

the vessel.  

Latch the side shields together to free the vessels. Cover the filters with foil 

again. 

Place the vessel, holder and bottles in the autoclave at sterilize at 121oc for 

one hour of other time and temperature as directed. 

 

Vessel disassembled and cleaned 

Latch the side shields to free the vessel for removal. Remove the H and pO2 

electrodes carefully, rinse them in distilled water and replace their end caps) 

ensure some electrolyte is in the pH sheath. Remove the sample bottle and 
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clean. The top plate, drive shaft and sparger should be rinsed clean under a 

tap (a deep sink is required). The vessel glass can be removed from the 

holder CARE WITH HANDLING and the heat killed culture tipped out into the 

sink. Do not lose the bottom support with the ceramic bearing.  

 
Post decontamination clean/check 
Reagent bottles emptied but tubing filled with distilled water 

pH and pO2 electrodes stored properly 

vessel dry and re-assembled onto top plate 

Vessel checked for marks, cracks and fouling 

Areas around the bioreactor cleaned and any spills decontaminated and 

wiped up. 

SERVICES (COOLER AIR and NITROGEN) are switched off. 

No waste material left in the sink. 
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8.2 Appendix for Chapter 5 Design of Experiments 

analysis: Factor Input vs. Response Output 

Interactions 
Below are the typical factor response box plots that are made from a DoE 
experiment. These indicate the data spread across the design space and the 
larger the box plot the larger the degree of interaction between the data 

Figure 50 Optical density box plots showing the interaction between the variable inputs and the response value 
outputs. The graphs are organised vertically per model refinement. Left column (unrefined model), central 
column (data-refined model), right column (data-transformed model). 

a

b 

c

d 
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h 

i 

j 

k 

l 
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collected from the responses to the input parameters.  
 

Here, we look again at dividing the plots in Figure 50 into three columns, in 

order of the models we tried to build. To summarise, the first column of 

interaction box plots (a,b,c,d), refers to the raw unrefined data model creation 

before removal of the outliers. Second middle column set of graphs (e,f,g,h) 

show the model with data refinement (i.e. outliers removed).  and the third 

column in Figure 50 the data transformed using the (log y) transformation. 

 

Several factors appeared to have changed the average response level 

between the first and second models. In the first model (the unrefined model), 

only half of the interaction plots have a large spread across each of the levels 

of the design space that we investigated. On refining the model (i.e. data 

refining and initialising the model), the data were found to have a greater 

spread across both levels than with the first unrefined model.  

 

At the final attempt, we found that the factors appeared to have changed the 

average response level, whereas previously, only half had a large spread at 

each of the levels, this time, the data had an almost original spread across 

both levels.  
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8.2.1 Model Initialisation with no Data Refinement or 

Transformations (Model 1) and ANOVA 
 

Table 21 Generalised linear regression model (GLRM) model 1 initialisation and significance of 

main factor effects on Optical density. 

 
 

 

Factor (unbalanced 2-level factor design) with 

all data. 

Probability of confidence 

(%) 

 

'GlycerolConcentration' 65.66 

'Temperature' 25.06 

'CellConcentration' 28.31 

'TraceElements' 47.16 

 

 

On examining the p-values of the 5 model coefficients in Table 21, no terms 

appear significant at our desirable 0.1/90% confidence level. However, 

obviously being cautious, these terms fell at only 51% confidence or above 

using the GLRM method. The stepwise method produced results 
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Further analysis of for our first model 1 but instead using stepwise regression 

methodology yielded: 

 

Method: 

 

We used the stepwise general linear modelling method to create our model 

from the actual data. In this instance, the non-significant terms were removed 

see (steps above) and allowed to refit our model. It was found that the R-

squared and R-squared adjusted values were still not ideal. The ANOVA table 

shows us that the model was not a significant fit, and the lack-of-fit test further 

shows this as significant (<0.05). In ideal cases, we would be looking for no 

lack of fit in our model. 

 

We used stepwise linear modelling to calculate a model and to fit parameters 

to the model. Stepwise method started from one model, the constant, and 

subtracted terms one at a time (although addition of terms can also be 

applied), choosing an optimal term each time in a greedy fashion, until it 

cannot improve further. Using stepwise fitting to find a good model, which is 

one that has only relevant terms. 

 

The result depends on the starting model. Usually, starting with a constant 

model leads to a small model where a constant model has been used by 

default. Starting with more terms can lead to a more complex model but one 

that has lower mean squared error. You cannot use robust options along with 

stepwise fitting. Robust fitting saves you the trouble of manually discarding 

outliers so after a stepwise fit, examine your model for outliers. 

 

The results of fitting for model 1 yielded steps that tested all main factors 

using a “stepwise” general linear fitting method. The resultant steps taken 

were as follows; 
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Table 22 Stepwise regression method individual step calculations 

Order Action Factor Interaction F Stat P 
value 

1 Removing GlycerolConcentration:Temperature NaN NaN 
2 Removing GlycerolConcentration:CellConcentration NaN NaN 
3 Removing GlycerolConcentration:TraceElements NaN NaN 
4 Removing Temperature:CellConcentration Inf NaN 
5 Removing GlycerolConcentration^2 -Inf NaN 
6 Removing Temperature^2 Inf NaN 
7 Removing CellConcentration^2 NaN NaN 
8 Removing Temperature:TraceElements 0.7037 0.5557 
9 Removing Temperature 0.1072 0.7744 
10 Removing CellConcentration:TraceElements 0.8863 0.4160 
11 Removing CellConcentration 0.0853 0.7848 
 

Estimated Coefficients include the results as follows: 

 
Table 23 Statistical analysis and estimated coefficients using the stepwise method for model 

fitting to raw data as model 1 

 Factor 

Interaction 

Estimate Standard 

error 

tStat pValue 

1 Intercept -28.2183 24.6478 -1.11449 0.3041 

2 Glycerol 

Concentration 

0.6993 0.3324 2.1042 0.0893 

3 Trace 

Elements 

-30.6767 13.2940 -2.3076 0.0691 

 

 Values 

Number of observations 8 

Error degrees of freedom 5 

Root Mean Squared Error 16.3 

R-squared 0.566 

Adjusted R-Squared 0.393 

F-statistic vs. constant model  3.26 

p-value 0.124 
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The model had a weak R-squared value (0.566) but the fact that R-squared 

adjusted is considerably smaller indicates that there was undoubtedly 

previously had some terms in this model that were not significant (see 

stepwise removal steps above). Scanning the column of p-values showed 

these glycerol concentration and trace elements at the 0.10 confidence level. 

The combination of estimate values and the weak correlation of this model 

suggests that the model is still not suitable to accurately predict a response 

from our experimental data.  

 

Recommendations at this stage were to include checking how significant the 

lack of fit was to the experimental data. After this percentage of confidence 

was calculated.  

 

After removing the non-significant terms from the model and refitting the 

following analysis of variance table was produced; 

 

 
 

Using coded variables for our models 

 

A = Glycerol Concentration 

B = Temperature 

C = Initial Cell concentration 

D = Trace Elements 

 

General linear regression method results (model 1)  
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Optical Density ~ -45.113 + 0.572*A + 1.02*B – 81.25*C - 20.5*D 

 

~51% degree of confidence 

 
Equation 59 

 

 

Stepwise Linear Regression results (model 1)  

 

Optical Density ~ -28.2183 + 0.699*A - 30.6767*D 

 

~88% degree of confidence 

 
Equation 60 
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8.2.2 Model Refinement with Data Refining only (model 2) and 

ANOVA 
 

With outliers removed and the model refitted to the experimental data, the 

results of fitting the trial model that included all the main factors using a 

“stepwise” general linear fitting method involved the following steps: 

 
Table 24 Generalised linear regression model (GLRM) model initialisation and significance of 

main factor effects on Optical density. 

 
 
Table 25 Confidence levels for each chosen factor using GLRM 

Factor (unbalanced 2-level factor design) with 

all data 

Probability of confidence 

(%) 

 

'GlycerolConcentration' 5.64 

'Temperature' 11.49 

'CellConcentration' 23.37 

'TraceElements' 49.68 
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The results of fitting for model 2 yielded steps that tested all main factors 

using a “stepwise” general linear fitting method. The resultant steps taken 

were as follows; 

 

 

Order Action Factor Fstat pValue 
1 Removing GlycerolConcentration:Temperature NaN NaN 
2 Removing GlycerolConcentration:CellConcentration NaN NaN 
3 Removing GlycerolConcentration:TraceElements NaN NaN 
4 Removing Temperature:CellConcentration NaN NaN 
5 Removing Temperature:TraceElements NaN NaN 
6 Removing GlycerolConcentration^2 Inf NaN 
7 Removing Temperature^2 Inf NaN 
8 Removing CellConcentration^2 NaN NaN 
9 Removing GlycerolConcentration 0.0127 0.9285 
10 Removing Temperature 0.0274 0.8838 
11 Removing CellConcentration:TraceElements 2.1527 0.2386 
12 Removing CellConcentration 0.4182 0.5531 
 
Table 26 Linear Regression model and formula 
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As with the stepwise method chosen, the obvious outliers where excluded 

from fitting the model to the experimental data. In some cases, it was difficult 

to ascertain a good general linear model fit, as evident in this case. This was 

realised when the ANOVA analysis had no significant terms left over after 

data fitting, i.e. all the p values were above 0.1. We used the stepwise general 

linear modelling method to create our model from the actual data; in this 

instance, the non-significant terms were removed and allowed to refit our 

model. It was found that the R2 and R2 adjusted values were still not ideal, i.e. 

0.509 and the adjusted 0.411. However, the model generally shows an 

improvement over the previous model and will be accepted as possibly the 

best that could be done without conducting a new experiment designed to fit a 

quadratic model at this stage of model processing. The ANOVA table showed 

that the model had a significant fit of over 90% confidence, i.e. the lack-of-fit 

test was not a problem. As with ideal cases, we would be looking for no lack 

of fit in our model; we have one ideal case for our model fit to data.  

 

Using coded variables for our models 

 

A = Glycerol Concentration 

B = Temperature 

C = Initial Cell concentration 

D = Trace Elements 
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General linear regression method results (model 2)  

 

Optical Density ~ 4.527 - 0.005*A– 0.046*B – 6.65*C + 2.58*D 

 

~32% degree of confidence 

 
Equation 61 

 

Stepwise Linear Regression results (model 2)  

:   

 

Optical Density ~ 1.7533 + 2.2917*D  

 

~92% degree of confidence  

 

 
Equation 62 
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8.2.3 Further Analysis of Model Refinements 
 

Testing the model assumptions using residual graphs for model 1 

 
To examine the assumption that the residuals are approximately normally 

distributed, are independent, and have equal variances, we generated several 

plots. 

 

 
Figure 51 Diagnostic information for the model development (round 1) 
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Here in this analysis, the aim was to determine whether there was serial 

correlation among the residuals. The scatter plot shows more crosses in the 

upper-right and lower-left quadrants than in the other two quadrants, 

indicating positive serial correlation among the residuals. Another potential 

issue is when residuals are large for large observations. There is some 

tendency for larger fitted values to have larger residuals. Perhaps, the model 

errors were proportional to the measured values.  

 

Testing the model assumptions using residual graphs for model 2 

 

 
Figure 52 Diagnostic information for the model development (round 2) 
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Again, analysis of the residuals was conducted to determine whether there 

was serial correlation among the next model (2) residuals. The scatter plot 

shows equal crosses in the upper-right and lower-left quadrants than in the 

other two quadrants, indicating neutral serial correlation among the residuals. 

Another potential issue is when residuals are large for large observations. 

There is now a very low tendency to overestimate lower values. Again, 

perhaps, the model errors were proportional to the measured values. 

 



  

   193 

Testing the model assumptions using residual graphs for model 3 
 

 

 
Figure 53 Diagnostic information for the model development (round 3) 

 

Lastly this set of residual analysis once again aims to determine whether 

there was serial correlation among the model (3) residuals. The scatter plot 

shows equal crosses in the upper-right and lower-right quadrants than in the 

other two quadrants, indicating neutral serial correlation among the residuals. 

There was now a very low tendency to overestimate around the middle 
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(centre points) of these values. Again, perhaps, the model errors were 

proportional to the measured values. There is excellent symmetry of the 

residuals around their median – this was as linear as possible.  

 

Testing the model assumptions for distribution, probability and case 
order (model 1) 
 

 

 
Figure 54 Diagnostic information for the model development (round 1) involving testing model 

assumptions 

 

The values above 20 in Figure 54 histogram of residuals are potential outliers. 

It is difficult to understand from the normal probability plot the data distribution 
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and its effect on the linearity of the probability, implying a suboptimal fit to 

normally distributed residuals. From the histogram of residuals, the residuals 

are not normally distributed.  

 

Testing the model assumptions for distribution, probability and case 
order (model 2) 
 

 

 
Figure 55 Diagnostic information for the model development (round 2) involving testing model 

assumptions 
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The histogram of the residuals for model 2 helped in identifying the symmetry 

of the data around the zero point. The new residuals plot looks weakly 

symmetric, without the obvious problems from before. However, the normal 

probability plot of residuals showed a much better linear correlation. This was 

now a lot better than the previous model. However, there might be a degree 

of serial correlation among the residuals, resulting in the need to create 

another set of data before using similar methods in this model fitting (going 

from model 2 to model 3). 
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Testing the model assumptions for distribution, probability and case 

order (model 3) 
 

 

 
Figure 56 Diagnostic information for the model development (round 3) involving testing model 

assumptions 
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Our histogram of the residuals for model 3 helped us identify the symmetry of 

the data around the zero point. The new residuals plot looks a lot better, the 

best in fact, without the obvious problems from before in trial fitting model 1. 

Moreover, the normal probability plot of residuals shows a much better linear 

correlation. The residuals were also evenly distributed across each of the row 

numbers without any obvious pattern. 

 

Testing for other model assumptions (model 1) 
 

 
Figure 57 Diagnostic plots for model development (round 1) involving testing model 

assumptions 
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There were a few points with high leverage for this further residual analysis 

for model 1, but this did not reveal whether the high-leverage points were 

outliers. A case-order plot of Cook’s distance and Cook’s distance 

factorisation helped us identify one point with a large Cook’s distance. We 

would be removing these data, and this is the method with which we could 

identify outliers against the model assumptions.  

 
Testing for other model assumptions (model 2) 

 

 
Figure 58 Diagnostic plots for the model development (round 2) involving testing model 

assumptions. 
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Again, as mentioned before, this residual analysis for model 2, the residual 

estimates tended to overestimate the scaled change in the fit to the model – 

this is seen at row 2 of the x-axis row number in the graphs above. For model 

1 the leverage identified obvious outliers, and this time in model 2, the 

leverage was more evenly distributed. Of note, the outlier was excluded from 

the model this time. This showed us a better model fit with the estimate 

residuals. 

 

Testing for other model assumptions (model 3) 

 

 
Figure 59 Diagnostic plots for the model development (round 3) involving testing model 

assumptions 
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As mentioned previously, there will always be a tendency of residual 

estimates overestimating a scaled change in fit to the model, evident at row 2 

of the x-axis when the same data were transformed. In the previous model 

fitting (i.e. model 1), the leverage identified obvious outliers, this time, the 

leverage was more evenly distributed. Again, data of row 5 were excluded 

from the model this time, as in the case of model 2. This model 3 showed us 

the best model fit with the estimate residuals. 
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8.2.4 Appendix for chapter 5 model 1 supplementary results: 

Testing the Model Assumptions using Residual Graphs 
 

To examine the assumption that the residuals are approximately normally 

distributed, are independent, and have equal variances, we generated several 

plots. 

 

 
Figure 60 Residual diagnostic plots 

Here this residual analysis for the DoE experiments aimed to determine 

whether there was serial correlation among the residuals. The scatter plot 
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shows an almost even distribution of residuals in all of the quadrants, 

indicating neutral or no serial correlation among the residuals. Another 

potential issue is when residuals are large for large observations. There is 

some tendency for larger fitted values to have larger residuals. This is 

probable as shown here in the above fitted vs. residuals diagnostic plot. The 

symmetry plot was also not linear, so our data maybe non-uniform and non-

normally distributed. The two key assumptions for our model fitting were 

undertaken. The next set of diagnostic plots would aim to check if this was 

true.  
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Figure 61 Residual diagnostic plots for DoE optimisation experiment for OD responses. 

 

There might be possible outliers below 10 for these residual analysis. From 

the normal probability plot, it is difficult to understand the data distribution and 

its effect on the linearity of the probability; however, it looks skewed below the 

zero point, implying a probably suboptimal fit to normally distributed residuals. 

From the histogram of the residuals, the residuals are not normally 

distributed. 
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Figure 62 Residual diagnostic plots 

 

There was one point with high leverage.in Figure 62. However, this did not 

reveal whether the high-leverage points were outliers. A case-order plot of 

Cook’s Distance and Cook’s Distance Factorisation helped us identify one 

point with a large Cook’s distance. We removed these data, as there was no 

obvious pattern to the data during the experiments while in the designated run 

order.  
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8.2.5 Appendix for chapter 5 model 2 supplementary results. 
 

 

 
Figure 63 Data plots and diagnostics for log transformed data responses for chapter five first 

response (model 2) 

 

There was good distribution of data and no obvious trends and patterns in the 

data in the run order that was designed. This was confirmed by the histogram 

and normal probability plots (not shown for simplicity).  

 

Again, stepwise regression method was used to model the experimental 

fermentation data. The non-significant factor interactions were eliminated and 

were left with the same significant regression model terms, specifically 

including a quadratic term. 
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Table 27 Linear regression model and formulation 

 
 

 
Table 28 Confidence level testing using ANOVA statistical methods 

 
 

 

Table 27 and Table 28 show here the statistical evidence of our model 2 fit 

using p values as our degree of confidence in the model fitting as per usual. If 

a linear model had been chosen to describe our process control, then it would 

have an even worse-off estimation effect of our model fit than when compared 

to the previous model fitting. The non-linear, in fact, quadratic interaction term 

included in the model would result in curvature of the 3D plot and contour 

plots.  
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8.2.6 Appendix for chapter 5 model 3 supplementary results. 

 

8.2.6.1 Statistical analysis of model fitting our second variable packed cell 

volume with experimental results. 

 

 

 
Figure 64 Data plot diagnostics for second response packed cell volume for the optimisation 

DoE experiment.  

 

Potentially, there was normality within both our Q-Q plot and the normal 

probability plot as they both display an almost linear fitting. The run order plot 

clearly confirms very weak data quality as 4 of the data observations were 

failures (run 4, 5, 9, and 10); also, with the data included in the model, there 

were no obvious trends. There was a wide range of data which could likely 

indicate that the data has some distribution problems or lack of fit issues. 
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Next there was a statistical fit to the initial full model using all types of 

interactions and main effects from the second response data. All the 

presented terms and interactions presented were not significant. This could 

be seen with a poor model fitting, i.e. it was difficult to know the response 

output to the actual controllable factors. However, while proceeding with the 

modelling, the steps involved with the stepwise regression was repeated.  
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8.2.6.2 Test the Model Assumptions using Residual Graphs for the Second 

Response 

 

To examine the assumption that the residuals are approximately normally 

distributed, are independent, and have equal variances, we generated several 

plots. 

 
 

Figure 65 Residual plot diagnostics for second response packed cell volume for optimisation 

DoE experiment. 
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This analysis again looks at the serial correlation among the residuals in 

Figure 65. Here there was serial correlation among the residuals. The 

symmetry plot is also linear, and so the data was deemed uniform and 

normally distributed. The two assumptions for this model fitting were 

undertaken.  

 

 
Figure 66 Additional residual diagnostic plots for second response packed cell volume for 

optimisation DoE 
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There might be possible outliers below -0.01 for the residuals (see Figure 66). 

The linearity of the residuals in the normal probability looks good. The 

underlying assumptions were not violated in these diagnostic plots.  

 

 
Figure 67 Additional residual diagnostic plots for second response 

There was one residual with high leverage (in Figure 67). However, the data 

in the Cook’s Distance did not necessarily reveal any outliers. It was difficult 

to determine a trend in the residual diagnostic plots above, as it is highly likely 

that the data was too poor of a quality leading to low precision.
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8.3 Appendix for Chapter 6 – example code review, 

validation and documentation for software 

development. 
 

Function Help for EasyDoE  

F1,F2,F3,AutoDiagnosis,F4,F5,F6 classes  

F1 class ChooseDesign  

function name in ChooseDeisgn F1 Examples  

[OutputHiLo,RecipeDesignList,NameOfFactors] = 
ChooseDesign(2,2,4,'GlycerolConcentration',60,100,'Temperature',30,37) 
[OutputHiLo,RecipeDesignList,NameOfFactors] = 
ChooseDesign(3,3,4,'GlycerolConcentration',60,100,'Temperature',30,37,'CellConcentration',2.5,5) 

 
F1 Input (3+varargin)  

NumberOfFactors = NumberOfRuns = DesignResolution =  

(pick 1-10)  (2, 3 or more) (note: it is 2^K) (3-8)  

 
varargin steps (3 at a time) Factorname1 = (e.g.'factor1' or 'temp' or 'feedrate') (note: string) Factorname1Lo = (e.g. 
40) (note: double) Factorname1Hi = (e.g. 80) (note: double)  

Repeat varargin steps for each factor (must be a minimum of 2+)  

F1 output (3 output 'var's)  

OutputHiLo = [M by N] double array which are Hi (1) and Lo (-1) coded factor points. where M = length of 
NumberOfFactors, and N = 2^K where K = Number of Runs.  

RecipeDesignList = [M by N] double array which consists of the  parameterised recipe set point, equivalent to the Hi 
and Lo codes above.  

NameOfFactors = The output var (MWCellArray) type of the varargin factor name steps.  

F2 class known as GetAnova  

function name in GetAnovaAndProbability  % UPDATE: this has now been fixed for rank Defiency in missing data 
and/or small sample sets for fractional factorial deisgns.(02/11/2015)  

F2 usage  

[prob2,tbl,stats,ResponseResults] = 
GetAnovaAndProbability(NameOfFactors,RecipeDesignList,ResponseResults) Example [prob2,tbl,stats, 
ResponseResults] = GetAnovaAndProbability(NameOfFactors,RecipeDesignList,[1,2,3,4]')  

F2 Input (3 inputs)  

NameOfFactors = output from F1 (note: MWCellArray of Strings)  
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RecipeDesignList = smae as F1 output  ResponseResults = ie. a Numeric array matching the same order as the 
randomised  

runs.  

F2 output (4 output 'var's)  

 
prob2 =  

tbl = Stats =  

[M by N] (MWCellArray containing String in the first coloumn probability numbers from 5 to '95%' in the second 
column.) MWCellArray containing strings of the ANOVA results information MWStructure (type) (of the ANOVA 
results, used primarily for compatibility of future diganostics and Advanced user section.)  

ResponseResults = [1 by N] (double array results entered from earlier.)  

F3 class known as DiagnosticsF3  

function name is diagnosticsAndOutput  

F3 usage  

[mdlstep,tblAnova4,coefficientsNames1,coefficients4model,modelFormula, mdl] = ... 
diagnosticsAndOutput(OutputHiLo, RecipeDesignList,NameOfFactors,logicalVarsToInclude,... 
ResponseName,ResponseResults,CatergoricalBoolean,CatergoricalLogicalArray)  

Example: for 3 factors with 2 levels (Hi Lo) and one of these are Catorgorical Factor(s) we want to show graphical 
output for variable 1 and 3 (see logicalVarsToinclude).  

[mdlstep,tblAnova4,coefficientsNames1,coefficients4model,modelFormula, mdl] = ... 
diagnosticsAndOutput(OutputHiLo, RecipeDesignList,NameOfFactors,[1 0 1],{'OpticalDensity'),... 
ResponseResults,true,[0 1 0 0])  

Example: for 3 factors with 2 levels (Hi Lo) and NONE of these are Catorgorical Factor(s)we want to show graphically 
factors 1 against 2 this time.  

[mdlstep,tblAnova4,coefficientsNames1,coefficients4model,modelFormula, mdl] = ... 
diagnosticsAndOutput(OutputHiLo, RecipeDesignList,NameOfFactors,[1 1 
0],{'OpticalDensity'),ResponseResults,'','')  

F3 Input (6 - 8 Input 'var's Depending on catorgories)  

 
  

OutputHiLo = RecipeDesignList = NameOfFactors = LogicalVarsToInclude =  

ResponseName = ResponseResults =  

*Note:* CatergoricalBoolean =  

CatergoricalLogicalArray=  

double array as similar to output from F1  same as F1 output same as F1 output Essentially going to be a logical array 
(M by  1) numerical array which is filled with 1 (true:include) or 0 (false:exclude), please see examples.  

MWCellArray of (1 by 1) length and must be a  string with no trailing or white spaces. MUST be the output of F2 in a [M 
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by 1]  numerical array (this is automatic if going from F2 to F3).  

either written as just ~ true or '' depending  on whether to include which logical catorgorical factors in the diagnostics 
and statistics.  Essentially a logical array of [1 by M]  numeric array consisting on 1 (true:isCatorgical:include) or 0 
(false:notCatorgorical:exclude)BE SURE TO ADD AN EXTRA 0  ontop of the number of factors. AT THE END TO 
MAKE THIS WORK.  

F3 output (6 output 'var's and possibly some Graphical pop-ups please be aware of error's)  

 
mdlstep = tblAnova4 =  

coefficientsNames1 =  

coefficients4model =  

modelFormula = mdl =  

Matlab LinearModel:Type:Class structure thingy not sure what this will be in c sharp language. New Anova Summary 
table type array, this  might be a MWCellArray or just a MWArray  

type in the .Net Assembly.  [1 by N] cell array of strings. These  strings are the terms or Matlab quick 'syms' which are 
used in the  new Anova model (second Anova that we discussed about)  that is generated from calling F3 function  [M by 
1] 'double's numeric array type of  the coeffecients generated from the model called from the Anova private method of 
this function  Matlab LinearModel:Type:Class structure thingy again not sure what this will bei n c sharp language. 
Matlab LinearModel:Type:Class structure  thingy but this time its included in this .Net Assembly for future compatibility 
of advanced user section for Diagnostics.  

Autodiagnosis class for Screening  

function name in AutoDiagnosisAndOutput AutoDiagnosis Examples  

[mdlstep,tblAnova4,coefficientsNames1,coefficients4model,modelFormula, mdl] = ... 
AutoDiagnosisAndOutput(OutputHiLo, 
RecipeDesignList,NameOfFactors,logicalVarsToInclude,ResponseName,ResponseResults,Catergorical
Boolean,CatergoricalLogicalArray)  

PLEASE REFER TO DiagnosticsAndOutput function Above, (it does exactly the same input and output but has a 
different mechanism in the function.  

 
 

AutoDiagnosis Input (8)  

F3 Input (6 - 8 Input 'var's OutputHiLo = RecipeDesignList = NameOfFactors = LogicalVarsToInclude =  

ResponseName = ResponseResults =  

Depending on catorgories)  double array as similar to output from F1  same as F1 output same as F1 output Essentially 
going to be a logical array (M by  1) numerical array which is filled with 1 (true:include) or 0 (false:exclude), please see 
examples.  MWCellArray of (1 by 1) length and must be a  string with no trailing or white spaces. MUST be the output of 
F2 in a [M by 1]  

  
*Note:* CatergoricalBoolean =  

CatergoricalLogicalArray=  

either written as just ~ true or '' depending  on whether to include which logical catorgorical factors in the diagnostics 
and statistics.  Essentially a logical array of [1 by M]  numeric array consisting on 1 (true:isCatorgical:include) or 0 
(false:notCatorgorical:exclude)BE SURE TO ADD AN EXTRA 0  ontop of the number of factors. AT THE END TO 
MAKE THIS WORK.  
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numerical array (this is automatic if going from F2 to F3).  

AutoDiagnosis output (6 output 'var's and possibly some Graphical pop-ups please be aware of 
error's)  

 
mdlstep = tblAnova4 =  

coefficientsNames1 =  

coefficients4model =  

modelFormula = mdl =  

F4 class  

Matlab LinearModel:Type:Class structure thingy not sure what this will be in c sharp language. New Anova Summary 
table type array, this  might be a MWCellArray or just a MWArray  

type in the .Net Assembly.  [1 by N] cell array of strings. These  strings are the terms or Matlab quick 'syms' which are 
used in the  new Anova model (second Anova that we discussed about)  that is generated from calling F3 function  [M by 
1] 'double's numeric array type of  the coeffecients generated from the model called from the Anova private method of 
this function  Matlab LinearModel:Type:Class structure thingy again not sure what this will bei n c sharp language. 
Matlab LinearModel:Type:Class structure  thingy but this time its included in this .Net Assembly for future compatibility 
of advanced user section for Diagnostics.  

 
function name in ChooseOptimisationDesign F4 Examples  

[NameOfCCDFactorsConcat, CodedDesignListBlockRandomised, 
CCDRecipeDesignBlockRandomised] = ChooseOptimisationDesign ... 
(NumberOfCCDFactors,CenterPointsNo,CCDtype,blocksize, FactorNameCellArray, 
FactorLowCellArray, FactorHighCellArray)  

|[NameOfCCDFactorsConcat, CodedDesignListBlockRandomised, CCDRecipeDesignBlockRandomised] = F4Coded 
(3,6,'faced',8, {'factor1','factor2','factor3'},[9,19,29],[11,21,31]|  

 
F4 Input(7)  

NumberOfCCDFactors = CenterPointsNo =  

CCDtype =  

Blocksize = FactorCellArray = FactorLowCellArray =  

FactorHighCellArray =  

F4 output (3)  

NameOfCCDFactorsConcat =  

This is the This is the the design This is the 'inscribed'  

Number of Factors to be looked at in the design  the number of center points that need to be added to  

Design type ('circumscribed','faced' or  

 
This is a number of runs (number of batches) expected to be within each block Normally 4 or 8  MWCellArray of 
string's with no trailing or white spaces of the factor names.  

Numerical array of "Lo" values for the design space. This  must be the same number of factors chosen in 
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NumberOfCCDFactors  

Numerical array of "Hi" values for the design space. This  must be the same number of factors chosen in 
NumberOfCCDFactors  

These are the Names of the Optimisation Design Factors with Factor 1, Factor 2, ...Factor n, 'Blocks' 'Original Run 
Order'  

 
CodedDesignListBlockRandomised =  

CCDRecipeDesignBlockRandomised =  

F5 class  

Is the coded design list of hi and lows. (then which block it is in and then The original run order.  

Is the parameter (recipe set points) design list of hi and lows. (then which block it is in and then The original run 
order.  

 
function name is OptimisationDiagnosticsAndOutput F5 Examples  

[mdlstep,tblAnova4,coefficientsNames1,coefficients4model,modelFormula, mdl] = ... 
OptimisationDiagnosticsAndOutput(CodedDesignListBlockRandomised, 
CCDRecipeDesignBlockRandomised, NameOfCCDFactorsConcat,[1 1 0 0 
0],{'OpticalDensity'},[1,1,2,3,4,5,1,2,3,4,5,1,2,4,3,5,5,5,5,5]','','')  

 
F5 Input (8)  

CodedDesignListBlockRandomised = CCDRecipeDesignBlockRandomised = NameOfCCDFactorsConcat =  

LogicalVarsToInclude =  

ResponseName = ResponseResults =  

This is the output from F4, (example; -1.64,-1,0,1,1.64)  This is the output from F4, (not coded but recipe like 
properties).  This is the output from F4, (this is a cell based  array of strings containing the factor names, and the block 
and original run order. Essentially going to be a logical array (M by  1) numerical array which is filled with 1 
(true:include)  or 0 (false:exclude), please see examples.  MWCellArray of (1 by 1) length and must be a  string with no 
trailing or white spaces.  [M by 1]numerical array of in a downward 0 dimension = M length direction.  

  
Note:  

CatergoricalBoolean = CatergoricalLogicalArray=  

either written as just ~ true or '' depending  on whether to include which logical catorgorical factors in the diagnostics 
and statistics.  

Essentially a logical array of [1 by M]  numeric array consisting on 1 (true:isCatorgical:include) or 0 
(false:notCatorgorical:exclude)  

 
F5 output (6 output 'var's and possibly some Graphical pop-ups please be aware of error's)  

 
mdlstep = tblAnova4 =  

coefficientsNames1 =  
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coefficients4model =  

modelFormula = mdl =  

F6 class  

Matlab LinearModel:Type:Class structure thingy not sure what this will be in c sharp language.  

New Anova Summary table type array, this might be a MWCellArray or just a MWArray type in the .Net Assembly. Im 
not entirely sure.  

[1 by N] cell array of strings. These  strings are the terms or Matlab quick 'syms' which are used in the new Anova 
model (second Anova that we discussed about)  that is generated from calling F3 function  

[M by 1] 'double's numeric array type of  the coeffecients generated from the model called from the Anova private 
method of this function  

Matlab LinearModel:Type:Class structure thingy again not sure what this will bei n c sharp language.  

Matlab LinearModel:Type:Class structure  thingy but this time its included in this .Net Assembly for future compatibility 
of advanced user section for Diagnostics.  

 
function name in DualOptimisation F6 Examples  

DualOptimisation(CCDRecipeDesignBlockRandomised, NameOfCCDFactorsConcat,[1 1 0 0 0], 
{'OpticalDensity'}, [1,1,2,3,4,5,1,2,3,4,5,1,2,4,3,3,6,6,6,6]','true',2.5, {'OpticalDensity2'}, 
[1,4,3,2,1,1,5,4,3,2,1,5,4,2,1,3,3,3,3,4]','true',3) DualOptimisation(CCDRecipeDesignBlockRandomised, 
NameOfCCDFactorsConcat,[1 1 0 0 0], 
{'OpticalDensity'},[1,1,2,3,4,5,1,2,3,4,5,1,2,4,3,3,6,6,6,6]','false',2, 
{'OpticalDensity2'},[1,4,3,2,1,1,5,4,3,2,1,5,4,2,1,3,3,3,3,4]','false','') 
DualOptimisation(CCDRecipeDesignBlockRandomised, NameOfCCDFactorsConcat,[1 1 0 0 0], 
{'OpticalDensity'},[1,1,2,3,4,5,1,2,3,4,5,1,2,4,3,3,6,6,6,6]','true','', 
{'OpticalDensity2'},[1,4,3,2,1,1,5,4,3,2,1,5,4,2,1,3,3,3,3,4]','false',2) 
DualOptimisation(CCDRecipeDesignBlockRandomised, NameOfCCDFactorsConcat,[1 1 0 0 0], 
{'OpticalDensity'},[1,1,2,3,4,5,1,2,3,4,5,1,2,4,3,3,6,6,6,6]','false','', 
{'OpticalDensity2'},[1,4,3,2,1,1,5,4,3,2,1,5,4,2,1,3,3,3,3,4]','true','')  

 
F6 Input (11)  

CCDRecipeDesignBlockRandomised =  

This is the output from F4, (not coded but recipe like properties).  

This is the output from F4, (this is a cell based  array of strings containing the factor names, and the block and original 
run order.  

Essentially going to be a logical array (M by  1) numerical array which is filled with 1 (true:include)  

 
NameOfCCDFactorsConcat LogicalVarsToInclude =  

ResponseName = ResponseResults = R1maxBoolean =  

R1Target =  

ResponseName2 = ResponseResults2 = R2maxBoolean =  

R2Target 

0 (false:exclude), please see examples. string with no trailing or white spaces.  
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[M by 1]numerical array of in a downward 0 dimension = M length direction.  

Must be either 'true' or 'false' to help the user find the  target (+see below) or mean data criteria (default if target value 
is not entered by the user) for optimisation  

Must be either a specified double type numeric or '' blank if blank then the mean value of the experiemental data will 
be used. if target value is entered then this will be used for optimisation criteria.  

MWCellArray of (1 by 1) length and must be a string with no trailing or white spaces.  

[M by 1]numerical array of in a downward 0 dimension = M length direction.  

Must be either 'true' or 'false' to help the user find the target (+see below) or mean data criteria (default if target value 
is not entered by the user) for optimisation  

Must be either a specified double type numeric or '' blank if blank then the mean value of the experiemental data will 
be used. if target value is entered then this will be used for optimisation criteria.  

or  MWCellArray of (1 by 1) length and must be a  

F6Optimisation output (0) just graphical data. %intentionally left blank  
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