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Abstract

An analysis of events with large missing transverse momentum in association
with jets is presented using 139.0 b~ ! of proton-proton collisions at a centre of
mass energy of 13 TeV, delivered by the Large Hadron Collider and recorded
by the ATLAS detector. The dominant Standard Model process contributing
to this signature is the invisible decay of the Z boson as well as the leptonic
decay of the W boson where the charged lepton is outside the detector
acceptance. The similarities between these processes and the leptonic decays
of the Z and W bosons are exploited in dedicated 1-lepton and 2-lepton
regions where the in-acceptance leptons are treated as though they were
invisible in order to constrain the modelling and minimise the experimental

and theoretical uncertainties.

The analysis is performed in three jet phase-spaces that are sensitive to
different mechanisms of dark matter production; the > 1 jet, > 2 jet and
VBF phase-spaces. Fiducial cross-sections are presented single and double
differentially as a function of missing transverse momentum and other jet
kinematics, in events with zero leptons, one lepton and two leptons and
in each of the jet phase-spaces. Ratios of cross-sections are also presented
to facilitate comparisons between the regions. The data is corrected for
detector effects via the iterative bayesian unfolding technique, making the
measurements readily available for comparison to new physics models without

the need of a detector simulation.



Impact Statement

Since the discovery of the Higgs boson in 2012, high energy physics has been one of the
most exciting areas of research, drawing the interest of academic research institutes and
captivating the imagination of the general public. Often referred to as particle physics, the
discipline studies the most fundamental building blocks of matter and their interactions, offering
glimpses into the fundamental nature of reality itself. The theory describing this subatomic
world, known as the Standard Model of particle physics, is one of the most celebrated theories
ever developed, successfully passing seemingly every experimental test thrown at it. Still,
cosmological observations show that there are phenomena in the universe that the theory cannot
explain - the existence of additional invisible matter particles, commonly referred to as dark

matter.

The work presented in this thesis is part of the ongoing effort to test the Standard Model with
extreme precision and search for evidence of dark matter production at the Large Hadron Collider.
Data collected at the ATLAS detector are analysed using novel techniques, disentangling the
measured data from current modelling methods and correcting them for detector effects, allowing
for multiple models predicting new physical phenomena to be experimentally tested. The
research carried out in this thesis - and by the wider particle physics community - pushes
the frontiers of our understanding of the universe and of the subatomic world, while the
technologies developed in the context of high energy physics have far and wide applications,
with the development of new cancer treatment methods and the world wide web being only a

few examples.
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Introduction

In 1897, while studying the properties of cathode rays, J.J Thomson made the first discovery
of a subatomic particle. Though the term ‘Standard Model” would not be coined until seven
decades later, that discovery marked the beginning of one of the most ambitious research
endeavours in physics, aiming to fully describe the behaviour of all fundamental particles in one
single theory. The result of this research is the quantum field theory known as the Standard
Model of particle physics. Since the discovery of the electron, an additional eleven fundamental
building blocks of matter have been discovered, accompanied by five force-carrier particles
mediating their interactions. The experimental research conducted in the last few decades has
expanded our understanding of how the universe fundamentally works and has lead to countless
technological advancements, immensely affecting both the practical aspects of every-day life

and our ideas about the nature of reality.

Though the Standard Model has been extremely successful in describing physical phenomena,
it fails to provide an explanation for cosmological observations that point to the existence of
a new type of gravitating matter. This new type of matter is known as dark matter since it
does not interact electromagnetically or through the strong nuclear force, making it invisible to
current detectors and telescopes. Still, dark matter could interact weakly with SM particles and
different experimental setups around the world aim to detect and study these interactions. One
such experiment is the ATLAS experiment, located at the Large Hadron Collider and collecting
data from proton-proton collisions. Dark matter particles are not expected to interact with the
detector’s apparatus which makes their detection non-trivial. Nevertheless, the production of
dark matter particles would result in an energy imbalance in the transverse plane of the detector,

assuming that they are produced in association with, and recoiling from, other detectable
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SM particles. Such an energy imbalance can also be the result of Standard Model processes
involving neutrinos, which are also invisible to the detector. Deviations from the Standard
Model prediction for the rate of production of invisible particles could indicate the production

of dark matter.

This thesis presents measurements of differential cross-sections in regions of phase-space
that are largely populated by well-known SM process but are also expected to be sensitive to
the production of dark matter particles or other beyond the Standard Model physics. A novel
approach is taken in this analysis, with measurements defined in terms of final-state particles
rather than in terms of a particular physical process. The measurements are also corrected
for detector effects so that they are easily and directly comparable to new physics models
without the need of a detector simulation, making them optimally useful long into the future

and available for quick reinterpretation studies.

The thesis begins with Chapter 1, where an overview of the theoretical framework of the
Standard Model is given. Evidence and possible models for dark matter are also briefly discussed
here, along with an introduction to the physics of proton-proton collisions. Chapter 2 gives a
brief description of the Large Hadron Collider and the ATLAS detector, followed by a description
of the reconstruction and identification techniques for physics objects. The analysis strategy
for the measurement of regions sensitive to dark matter production is discussed in detail in
Chapter 3. Sources of theoretical and experimental systematic uncertainties are discussed here
and the detector-level results of this analysis are presented. Chapter 4 describes the procedure
used to correct the measurements for detector-effects and discusses additional systematic
uncertainties and biases arising from this procedure. The detector-corrected differential cross-
sections are finally presented and discussed in Chapter 5. A conclusion of the work presented

in this thesis is given in Chapter 6.

Contributions

The work presented in this thesis was performed as part of the ATLAS Collaboration, in

an analysis team with contributions from multiple international institutes. The bulk of the

11



Contents Contents

author’s contribution to this analysis is documented in this thesis and has benefited greatly from
the work of others. Most notably, the theoretical systematic uncertainties used in this thesis
were kindly provided by Christian Giitschow and Aidan Kelly. The QCD multijet background
estimates were provided by Sebastian Weber. The software framework used for the full analysis

chain was developed jointly by the author and Christian Giitschow.

12



Part 1
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Chapter 1

Theoretical Framework

1.1 The Standard Model of particle physics

The Standard Model (SM) of particle physics is the theoretical framework describing the
fundamental building blocks of nature and their interactions. It is a relativistic quantum
field theory, with particles emerging as excitations of quantum fields defined at all points in
space-time. Matter, as described in the SM, is comprised of two types of particles; particles that
make up every-day structures, known as fermions, and particles that mediate the interactions
between them, known as bosons. The SM bosons are the force-carriers of the three fundamental
forces the theory describes: the electromagnetic (EM), weak and strong nuclear force. Figure 1.1
summarises the particle content of the SM and their properties. In the figure, the hypothetical
graviton is also included, assumed to be the mediator of the fourth fundamental force, the

gravitational force. In reality, the SM does not provide any description of gravity.

Fermions are governed by Fermi-Dirac statistics, obey the Pauli exclusion principle and
have half-integer spin. Additionally, each fermion has its own antiparticle, with identical mass
but opposite electric charge. The fermions can be arranged into three generations, with the
first generation making up everyday matter. The fermions of the second and third generations
have a higher mass than their equivalent first generation particle but otherwise have identical

quantum properties. The fermionic content of the SM can be further divided into two groups;
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1 Theoretical Framework 1.1 The Standard Model of particle physics
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Figure 1.1 The particle content of the Standard Model. Particles can be arranged into groups depending

on their quantum properties [1].

the quarks and the leptons. Quarks have an electric charge of 2/3 or —1/3 and carry a color
charge, allowing them to interact via all three fundamental forces. Leptons carry an electric
charge of —1 (charged leptons) or 0 (neutrinos). Charged leptons are massive where neutrinos
are predicted to be massless in the SM and neither of them carry a color charge. Hence, charged
leptons interact through the EM and weak force and neutrinos interact only through the weak

force.

The force-carrying bosons are also known as vector bosons because of their unit spin. The
photon mediates the EM interaction by coupling to electrically charged particles and it is
electrically neutral and massless. The W* and Z° bosons mediate the weak interaction and are
both massive, with the Z % boson being slightly heavier than the W*. The W™ bosons carry
a unit electric charge of +1 where the Z° boson is electrically neutral. The SM is completed
by the Higgs boson which is a scalar boson with spin 0. The Higgs is massive and electrically

neutral and provides mass to the W* and Z° bosons by breaking the electroweak symmetry.
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1 Theoretical Framework 1.1 The Standard Model of particle physics

Requiring that the interactions between SM particles satisfy global symmetries guarantees
that conservation laws are obeyed in the SM. Additionally, interactions in the SM are described
by the local gauge symmetry group, SU(3)s x SU(2);, x U(1)y. Each one of the terms of the
gauge group loosely represents one of the fundamental forces, with SU(3)¢ describing QCD
interactions through the strong force [2], SU(2);, describing weak interactions [3] and U(1)y
replacing the U(1) gauge symmetry of electromagnetism in the electroweak unification model.
In order for the interactions to be invariant under the transformations of each Lie group,
additional fields are introduced. These fields are interpreted as gauge bosons, mediating the

interactions between particles.

Quantum Electrodynamics, electroweak unification and the Higgs mechanism

Quantum Electrodynamics is the quantum field theory described by the U(1) unitary gauge
group, initially developed to describe electromagnetic interactions. The interaction of a charged

fermion v with the electromagnetic field can be summarised in the Lagrangian

. 1 Y
EQED = w(ZVNDu - mW - EF,LWFM (11)

where 4" are the Dirac matrices, m is the mass of the charged fermion, D,, is the gauge invariant

derivative given by
D, =0,+1ieA, (1.2)

where e is the coupling constant equal to the electric charge of the fermion, A, is the electro-

magnetic field and F),, is the electromagnetic field tensor given by

F,=0,A,—9,A

i w (13)

n

and representing the kinetic energy term of the excitation of the field.

The electromagnetic force is unified with the weak force in the electroweak model, forming

a combined gauge theory represented by the SU(2);, x U(1)y gauge symmetry group. In order

16



1 Theoretical Framework 1.1 The Standard Model of particle physics

for the Lagrangian to be invariant under transformations of the SU(2) symmetry group, three
additional gauge fields must be introduced, Wﬁ, W,f and Wi, setting up the foundations of the

gauge bosons of the weak interaction.

Though it is tempting to identify each of these gauge fields as the W', W~ and Z° bosons,
experimental evidence shows that parity is violated in charged weak current interactions,
meaning that only left handed particles interact with the charged w* bosons, while both left
and right handed particles couple to the Z boson through neutral current weak interactions.
The left handedness of the weak force can be achieved by adding both a vector and and axial
vector (V — A) component to weak interactions, modifying SU(2) into an SU(2);, symmetry.
The weak isospin charge, Iy, is introduced, with Iy, = % for left-handed fermion doublets and

Iy, = 0 for right-handed fermion singlets.

The coupling of the Z bosons to right handed particles is restored by unifying the SU(2)y,
and U(1) symmetry groups into a combined SU(2);, x U(1)y symmetry. In this unification,
the original U(1) symmetry which introduced the electromagnetic field A4, is replaced with a
new U(1)y local gauge symmetry, which replaces 4, with B,,. U(1)y also gives rise to a new

quantum number, the weak hypercharge Y, which is defined as
Y =2(Q - Iy) (1.4)

where @) is the electric charge of the fermion and I%/ = :t% is the third component of the
fermion’s weak isospin. The Wf , Z,, and A, fields of the weak and electromagnetic force can
then be expressed as combinations of the W{*, W4, Wi" and B,, gauge fields of the combined

SU(2);, x U(1)y symmetry, with

1
4 .
W, = —Q(W,} FiW3) (1.5)
A cosfy,  sinfy B

"l = ! (1.6)
Zy —sinfy, cosfy, Wi
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1 Theoretical Framework 1.1 The Standard Model of particle physics

where 6y, is the weak mixing angle. The weak mixing angle can be used to express the relation

between the couplings of the photon (e), W (gy) and Z (gz) bosons
€ =Jgw Sil’lew :gzsiHQWcOSGW (17)
as well as the masses of the W and Z bosons,

myy = my cos Oy . (1.8)

The three gauge bosons of the weak force acquire their mass through the Higgs mechanism [4—
6]. The mechanism introduces a complex scalar field ¢ into the Lagrangian, with a potential

given by
V=i (60) + N6 (19)

where p and A are scalar constants. For real solutions of Equation 1.9 the potential has non-zero
vacuum expectation values which spontaneously breaks the SU(2);, x U(1)y symmetry and
introduces an additional massive particle, known as the Higgs boson. The interactions of the
Higgs field with the Lagrangian of the SU(2);, x U(1)y sector results in mass terms to appear
for all bosons except the photon. The masses of the bosons can be related to the properties of

the Higgs with

my = 5\ v(giv + 95) (1.10)

2
where v? = MT The mechanism described above results in the bosons of the electroweak

symmetry acquiring mass. For SM fermions to also become massive, additional terms must be
introduced into the Lagrangian known as Yukawa couplings, coupling the Higgs field to the

fermion fields.
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1 Theoretical Framework 1.1 The Standard Model of particle physics

Quantum Chromodynamics

Quantum Chromodynamics is the quantum field theory based on the SU(3) gauge symmetry
describing the interactions of particles through the strong nuclear force. The generators of
the group are related to the Gell-Mann 3 x 3 matrices, resulting in three additional degrees of
freedom corresponding to the three colour charges of the strong interaction: red, blue and green.
Local gauge transformations of the SU(3) symmetry group are made invariant by introducing
eight new boson fields, known as the gluons. In the SM only quarks and gluons carry a colour
charge and can interact through the strong force. Because of the non-commutation of the SU(3)

generators gluons can also self interact.

The coupling strength of the strong interaction, oy, depends on the energy scale of the

interaction, ), with approximately

1
g (Q) m(Q/A) (1.11)

where A is the QCD scale. The running coupling of QCD results in a large coupling strength at
low energies (or, equivalently, large distances) and a weaker coupling strength at high energies
(or small distances). The large coupling strength at large distances leads to the phenomenon
of confinement where free quarks and gluons are never observed free in nature but are always
found in bound, colourless states. This results in the process of hadronisation, where in the
presence of a pair of free propagating quarks, a quark anti-quark pair will be produced from the
vacuum, each one bounding to one of the initial quarks and forming a hadron. Hadronisation is
a low-energy process and so it cannot be described by pertrubation theory. Instead, different
effective theory models are used in simulations to form hadrons from free quarks produced in

proton-proton collisions.

Conversely, the weak coupling strength of QCD at small distances leads to the phenomenon
of asymptotic freedom, where the strong interactions between quarks and gluons at high energies
become small and the particles become asymptotically free. At this energy scale, perturbation

theory is able to approximate final states.
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1 Theoretical Framework 1.2 Phenomenology of proton-proton collisions

1.2 Phenomenology of proton-proton collisions

The energies at which the LHC is operating are large enough to resolve the internal structure
of the proton which is composed of one down and two up quarks. Vacuum fluctuations can
also add additional quarks (known as sea quarks) and gluons to the constituents of the proton.
In reality, collisions at the LHC take place between these constituents, collectively known as
partons. In such collisions, the process of interest is called the hard-scattering and it is the one

where a large transfer of energy Q2 between the two colliding partons occurs.

The probability of particle(s) X to be produced in a proton-proton collision is given by the
cross-section of the process divided by the total proton-proton cross-section. The cross-section

of pyps — X is given by

Ok = Y 033) [ [ doiduafu, @a i) o s ilowsx  (L12)

n=0

where n denotes the order of the calculation, up = @ is the renormalisation scale at which « is
evaluated and o_, x is the cross section of the ab — X process. The functions f, /,, (24, ,LL%?) and
Jo/p, (Tt u%) represent the parton distribution functions (PDFs) which give the probability of
parton a/b carrying the momentum fraction x, ;, of proton p; /2, given the scale of the interaction
/ﬁw, also known as the factorisation scale. The factorisation scale can be interpreted as the
energy scale at which the treatment of the interaction by the PDFs stops and perturbation theory
can be used to calculate the matrix element (ME) of the cross-section. Both the renormalisation
and factorisation scales are unphysical and their introduction into the cross-section calculation

is accompanied by a theoretical uncertainty.

The matrix element of the hard-scattering is approximated at small distances, where «,
is small, using a perturbative expansion in «g. Higher order terms of the expansion (n > 1)
represent real and virtual corrections to the leading order (LO) calculation (n = 0). Real
corrections at next-to-leading order (NLO) or higher materialise as parton emissions while
virtual corrections are represented by parton loops. Higher order corrections often diverge when

integrating over the full energy phase-space, causing the perturbative series to not converge.
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1 Theoretical Framework 1.8 Physics beyond the Standard Model

Additional parton emissions usually diverge at small angles, also known as the collinear limit,
while virtual loops can diverge at both small and large momenta, known as the infrared limit
and the ultraviolet catstrophe respectively. Divergences in the collinear and infrared limit often
cancel out and residual remainders can be treated using a method known as resummation
where the most important terms in the expansion are summed up in a single factor. Ultraviolet
catastrophe divergences are treated with a dimensional regularisation and the introduction of

the renormalisation scale.

Initial and final state partons that participate in the interaction can radiate additional
partons, referred to as initial and final state radiation (ISR and FSR). At high energies where
o, is small, the cascade of partons can be described by parton shower models [7, 8] as it evolves
in time and the energy scale of the process decreases. Emissions of additional partons are often
accounted for in the higher order corrections of the ME calculation. and multiple techniques
exist so that the parton shower is matched and merged to the ME without double counting.
Parton shower models break down at the energy scale of a few GeV where « is no longer small
and perturbation theory no longer holds. Hadronisation models are then used to combine the

free colour-charged partons into a final state of colourless hadrons, also known as a jets.

During the hard scattering process the proton breaks up and its colour-charged remnants
are also evolved using parton shower and hadronisation models. This is known as the underlying
event and it accounts for all particle production that is not associated with the hard-scattering.
The underlying event also accounts for multiple parton interactions (MPI), where more than

one hard interaction occurs in the same proton-proton collision.

1.3 Physics beyond the Standard Model

Even though the SM has been extremely successful at predicting phenomena observed in nature,
it is still not a complete theory. Aspects of the theory itself seem suspicious, in the sense that
parameters of the SM appear to be fine-tuned to values necessary for certain phenomena to arise.

One such parameter is the relatively small mass of the Higgs boson, measured at my ~ 125 GeV
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1 Theoretical Framework 1.8 Physics beyond the Standard Model

even though higher order corrections could result in it being orders of magnitudes larger. The
large differences in the masses of other SM particles and differences in the coupling strengths
of the EM, weak and strong forces also raise issues of fine-tuning, known as the hierarchy
problem. The values of such parameters do not originate from theoretical reasoning but are

rather assigned their values from experimental observations.

Additional problems arise from the experimental observation of neutrino oscillations, which
require neutrinos to have both flavour and mass eigenstates. The SM itself does not predict
massive neutrinos and additional parameters need to be added to the theory to accommodate for
that. Even then, the masses of the neutrinos seem to be much smaller than the rest of the SM
particles. Other caveats include the inability of the theory to incorporate a quantum field theory
of gravity in its mechanisms and to fully explain the matter-antimatter asymmetry observed in
the universe. Lastly, the SM has not been able to explain the existence of dark energy and,
most relevant to this work, it has been unable to provide a possible particle candidate for dark

matter.

Evidence for dark matter

Evidence for the existence of dark matter is found mainly in astrophysical observations. One of
the first indications for the existence of unaccounted matter came from the measurement of the
rotational curves of galaxies, showing the velocities at which gas and stars rotate around the
centre of a galaxy. These rotational velocities were measured as a function of 7, the distance
of an object from the galactic centre, and were expected to decrease with oc \/1/r given the
distribution and amount of visible matter inside their orbit and following Newtonian mechanics.
It was observed however that rotational velocities remain constant outside the central galactic
region for increasing values of r, suggesting the existence of additional matter in a halo around
the galaxy. This additional non-luminous matter was not visible to telescopes, suggesting that

it does not interact electromagnetically and so it is referred to as dark matter.

Evidence for the existence of dark matter is also present in gravitational lensing measure-

ments. Gravitational lensing occurs when the path of light from a distance light source is
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1 Theoretical Framework 1.8 Physics beyond the Standard Model

bent as it travels towards an observer, because of the presence of a massive structure in its
path bending space-time. The intensity of the lensing effect is proportional to the mass of the
structure. Effects of gravitational lensing appear as distortions of far away objects around the
lensing structure and can be used to measure its gravitational pull. Observations show that the
gravitational pull of galaxy clusters far exceeds the one corresponding to their visible baryonic
matter. A notable example of such a measurement is the bullet cluster case, where two galaxy
clusters are in the process of separating after colliding. In the bullet cluster, visible matter
slows down and remains close to the point of collision. Gravitational lensing however indicates
that the largest fraction of gravitating matter has already moved away from the collision point

in the form of dark matter.

Studies of the Cosmic Microwave Background (CMB) also provide strong evidence for the
existence of dark matter particles. The CMB is the thermal black body radiation left over from
the early stages of the expansion of the universe, after the cosmological era of recombination.
Though it is almost completely isotropic at a temperature of ~2.7 K, small temperature
deferences can be observed, believed to be originating from gravitational and baryonic pressure
differences in the early universe. The power spectrum of these anisotropies has been extensively
measured and it can be used to constrain cosmological parameters of the ACDM model (also
referred to as the Standard Model of cosmology) such as the curvature and the baryonic density
of the universe. The ACDM has been very successful at describing the evolution of the universe
but in order to match observations it requires the existence of cold dark matter and dark
energy, where the former is predicted to be a non-relativistic, heavy particle and the latter is
represented by the cosmological constant A. Possible candidates for cold dark matter are weakly
interacting massive particles (WIMPs) which, as the name suggests, interact only through the
gravitational and weak force. According to the ACDM model only ~ 5% of the energy density
of the universe is attributed to visible matter. The rest is predicted to be ~ 70% due to dark

energy and ~ 25% due to dark matter.
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1 Theoretical Framework 1.8 Physics beyond the Standard Model
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Figure 1.2 Feynman diagram showing three possible ways dark matter could be interacting with the

SM. The arrows show the approach of different experiments [9].

1.3.1 Searches for dark matter

Experiments around the world exploit the fact that dark matter could be interacting with SM
particles, albeit weakly. Three different approaches exist to search for such interactions: direct
detection, indirect detection and collider searches. The type of interactions these approaches

aim to detect are summarised in the feynman diagram of figure 1.2 [9].

A direct detection experiment aims to detect the recoil of a SM particle when a dark
matter particle passes through the detector and scatters off it [10, 11]. Different noble gasses
are used as the active material of these detectors and the energy transfer of the interaction
is measured from the recoil of the nucleus using ionisation or scintillation techniques. Such
experiments need to be built deep underground to shield the apparatus from cosmic rays and
both cosmic backgrounds and backgrounds coming from the material of the detector itself must

be thoroughly understood in order to reach the required sensitivity.

Indirect detection experiments aim to detect the production of SM particles through the
annihilation of dark matter particles. A possible signature for such experiments would be an
excess of cosmic rays coming from inside or outside the solar system and so detectors are often

placed in space. These type of experiments often suffer from large astrophysical backgrounds
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1 Theoretical Framework 1.8 Physics beyond the Standard Model

that are hard to constrain. Another possible signature for indirect detection experiments
are neutrinos produced from dark matter annihilation inside the sun. For these, earth based

neutrino detectors search for an excess of neutrino fluxes above the expected backgrounds.

Collider searches look for the production of dark matter particle pairs through the collision of
SM particles. Even though dark matter particles are not expected to interact with a detector’s
apparatus, they are expected to be produced in association with SM particles. The signature of
such a production is an imbalance of energy in the transverse plane of the detector. Dark matter
searches at the LHC look for SM particles recoiling off missing momentum in the transverse
plane (pP™)" and are usually referred to as pp™ + X searches, where X denotes the SM
particle(s). Past searches at the LHC have searched for the production of p** in association
with an electroweak boson (V) emitted from one of the incoming quarks [12-14]. The pP™
+ V signatures where the boson decays leptonically provide a clean signal with low backgrounds
but suffer from poor statistics. Searches looking for the p=™ + W signature where the W
decays leptonically also face complications from the neutrino adding to the invisible energy of
the event [15, 16]. A popular signature with much higher production cross-section is the p%liss
+ jets one, where the dark matter particles recoil off an energetic jet [17]. Another popular

signature to look for is the invisible decay of the Higgs boson, H — x, with the Higgs decaying

to dark matter particles [18].

1.3.2 Dark matter models

Multiple theories aiming to incorporate dark matter particles into the SM have been developed
so far and efforts to do so are still ongoing. New physics models can be fully developed,
self-consistent theories postulating the existence of a plethora of new particles and providing
possible dark matter candidates. One such theory is the Minimal Supersymmetric Standard
Model (SUSY). Other theories, such as effective field theories (EFTS), are model-independent
and extend the SM by adding the minimum amount of particles required for interactions

between the SM and the dark sector. EFTs are approximations of fully developed theories and

1Missing transverse momentum is interchangably referred to as MET or pITniss.
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usually describe SM interactions with dark matter particles using contact operators instead
of mediating bosons. Two more new physics model types relevant to this work are described
below. In all cases new physics models are required to make as few assumptions as possible

and to be consistent with the symmetries of the SM.

Simplified mediator models

Simplified mediator models are particularly popular in collider searches and predict dark matter
particles that couple to the SM through mediators whose masses are within the energy limits
of the LHC. Simplified models introduce as few parameters as possible into the SM Lagrangian
and assume that additional particles of more fully developed theories do not affect SM-dark

matter interactions and can be integrated out.

Simplified models usually extend the SM by postulating the existence of a dark matter
particle, x, and introducing a new U(1) gauge symmetry which is then spontaneously broken,
giving rise to a new massive mediator, A,,, that couples the dark matter particles to SM quarks,
q. Popular models couple the two sectors through the s-channel, as shown in the feynman
diagram of Figure 1.3a. Different models can have spin-1 mediators with vector or axial-vector
couplings or spin-0 scalar or pseudo-scalar mediators. Here, a spin-1 axial-vector mediator is
considered. The Lagrangian terms describing the interactions of such a mediator with quarks

and dark matter particles are given by

Lav D gAY Y x + Y 9,407 (1.13)
q

where g, and g, are the couplings the mediator to dark matter particles and quarks. In order
for the limits that collider searches set on smiplified models to be comparable, the couplings
are usually set to g, = 1 and g, = 0.25. Constraints can then be set on the remaining two
parameters of the model, the mass of the mediator, m 4, and the mass of the dark matter
particle, m, . Exclusion limits are usually presented on the m4 —m, plane. Figure 1.4 shows
the latest exclusion limits for such a model from multiple dark matter searches at the ATLAS

experiment [19].

26



1 Theoretical Framework 1.8 Physics beyond the Standard Model
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Figure 1.3 Feynman diagrams for the (a) production of a dark matter mediator, A, and dark matter
particles, x, through the s-channel, (b) production of dark matter particles through the decay of a VBF
Higgs, (c¢) production of dark matter particles through VH associated production [20].
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Figure 1.4 Regions in a mediator mass-dark matter mass plane excluded at 95% CL by visible and
invisible searches at the ATLAS experiment, for an axial-vector mediator simplified model with couplings

gy = 1 and g, = 0.25 [19].
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Invisible Higgs decay models

Another scenario explored in collider searches is the one where the Higgs boson decays invisible
to dark matter particles. In the SM the Higgs boson can decay invisibly only by first decaying to
two Z bosons that subsequently decay to neutrinos. The branching fraction of H — ZZ — vvvw
is approximately ~ 0.1% which is too small for searches at the LHC to be sensitive to. The
observation of a larger branching fraction than this would suggest that the Higgs couples to

dark matter particles, acting as a portal between the SM and the dark sector.
The Lagrangian terms describing the mass term of a scalar dark matter particle and its
coupling to the Higgs are given by

1 1
Ly D §u2x2 + 59H_XXQIHI2 (1.14)

where gp_, is the coupling of the Higgs to the dark matter particle. Other models exist that
predict the existence of fermionic dark matter particles which couple to a new scalar mediator
mixing with the Higgs. The production mechanism most sensitive to the Higgs invisible decay
is the one where the Higgs is produced through the vector boson fusion (VBF) mechanism
due the distinctive signature of the VBF process. The associated vector boson-Higgs (VH)
production mode is also explored in this work, where the Higgs decays to invisible particles and
the vector boson decays to quarks. Feynman diagrams for both of these production mechanisms

are shown in Figure 1.3.
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Chapter 2

Experimental Setup

The data presented in this thesis were collected by the ATLAS detector which records and
measures the properties of particles produced in high energy proton-proton collisions. This
chapter describes the experimental apparatus and analysis techniques involved in obtaining these
data and reconstructing the observed particles. Section 2.1 describes the experimental setup of
the Large Hadron Collider which provides the proton-proton collisions. Section 2.2 discusses the
ATLAS detector and its main components. The techniques and software algorithms involved in

reconstructing various physics objects are discussed in Section 2.3.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [21] is the world’s largest and most powerful particle
accelerator. Located at the European Organization for Nuclear Research (CERN) in Geneva,
Switzerland, it is a circular accelerator built in a tunnel 100 m underground, accelerating
beams of protons in opposite directions in a 27 km circumference ring before colliding them at
different interaction points. The LHC is designed to collide protons at a centre-of-mass energy

of \/5 = 14 TeV', though it has only been operating at energics of up to /s = 13 TeV so far. It

'This thesis uses the natural units system where A, the reduced Planck constant and ¢, the speed of light are
both equal to unity. Energy, momentum and mass are all expressed in units of eV.
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2 FExperimental Setup 2.1 The Large Hadron Collider

is currently in its second long shutdown, having completed Run-1 and Run-2, to allow for the

accelerator complex to be upgraded, in preparations for Run-3.

The energy of the proton beam is increased incrementally using a system of sub-accelerators
shown in Figure 2.1 [22], until it has the required energy of 450 GeV [23, 24] to enter the
LHC ring. The procedure begins by ionising hydrogen atoms and stripping them of their
electrons using an electric field, producing protons. The first accelerator in the chain, LINAC
2, accelerates these protons to 50 MeV. The protons are then accelerated to 1.4 GeV using the
Proton Synchrotron Booster and further accelerated to 25 GeV by the Proton Synchrotron. At
this point, the protons are already travelling at ~99.9% of the speed of light. The proton beam
is then passed on to the 7 km long Super Proton Synchrotron, where its energy is increased still
further to 450 GeV. At this stage, the proton beam is split into the two beam pipes of the LHC,
with one part circulating clockwise and the other circulating anti-clockwise. The two beams
spend ~20 minutes circulating the 27 km long LHC ring, reaching their final energy of 6.5 TeV
(~99.999999% of the speed of light). The beams are accelerated using a series of superconducting
radiofrequency cavities and they are bent into their circular orbit by superconducting dipole

magnets. Higher order multipole magnets are used to focus the beams.

The protons in the beams are grouped into bunches, with each beam containing up to 2808
bunches, and with each bunch containing up to 1.1 x 10" protons. Bunch crossings occur every

25ns at the interaction points.

There are four main independent physics experiments situated around the LHC ring;
ATLAS (A Toroidal LHC ApparatuS) [25], CMS (Compact Muon Solenoid) [26], LHCb (LHC
beauty) [27] and ALICE (A Large Ion Collider Experiment) [28]. ATLAS and CMS are general-
purpose detectors with a varied physics program, conducting precision measurements of SM and
searching for BSM physics. LHCb specialises in heavy flavour physics while ALICE investigates

heavy-ion collisions.
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Figure 2.1 The CERN accelerator complex in 2018 [22].
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Luminosity

The instantaneous luminosity £, is a measure of the rate at which the LHC delivers collisions
and is given by

nng

27¥, 3,

L =nyf, (2.1)

where n; is the number of bunches, f, is the LHC revolution frequency, n; and n, are the
number of protons per bunch in each beam and ¥, and ¥, are the mean beam width in the x
and y direction. To determine ¥, and ¥, dedicated beam-separation scans are conducted, also
known as van der Meer scans [29]. £ is measured in units of inverse cross-section per time. The
time integral of the instantaneous luminosity L = [ Ldt over a data-taking period is known as
the total integrated luminosity and is a measure of how much data has been collected. The

number of delivered events can then be given by
N=o0L= U/Edt (2.2)

where o is the total proton-proton inelastic cross-section.

For the Run-2 data-taking period between 2015 and 2018, the LHC has been colliding
protons at a centre-of-mass energy of /s = 13 TeV, delivering 156 fb~! of integrated luminosity.
Figure 2.2 shows the luminosity delivered by the LHC and recorded by the ATLAS detector,
as well as the fraction of the dataset that was certified by ATLAS as having good quality for
physics analyses, over the whole Run-2 period. The difference in delivered, recorded and good
for physics luminosity comes from inefficiencies of the data acquisition system, and from the
detector only collecting data during high-quality beam conditions and only when all detector

components are in good quality.
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Figure 2.2 Delivered, recorded and good for physics integrated luminosity from the LHC and AT-
LAS [30].

2.2 The ATLAS detector

The ATLAS detector [25] is one of the main physics detectors at CERN, used by the ATLAS
collaboration to collect data from the proton-proton collisions provided by the LHC. It has a
cylindrical geometry, with the collisions taking place at the centre of the detector (also known
as the interaction point). The detector is comprised of several components and subsystems,
built symmetrically around the proton beampipe, as shown in Figure 2.3. The subsystems
are designed to measure and identify properties of the outgoing particles and their combined
information is used to reconstruct the full underlying physics event. A brief description of the

detector’s coordinate system and of each subsystem is given below.

2.2.1 ATLAS coordinate system

The coordinate system used by ATLAS is a right-handed Cartesian system, with the origin at
the interaction point at the centre of the detector. The z-axis is defined along the beampipe,

the positive z-axis is defined as pointing from the origin to the centre of the LHC ring and the
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Figure 2.3 Schamatic of the ATLAS detector highlighting major components within it [31].
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positive y-axis is defined as pointing away from the the centre of the earth. The x — y plane is
referred to as the transverse plane and it is widely used in physics analyses. The azimuthal
angle ¢ is defined in the transverse plane, starting from the z-axis and rotating around the
beam pipe, while the polar angle 0 is defined as the angle from the z-axis. A particle’s energy

is denoted by FE and its invariant mass is denoted by m. An object’s momentum is expressed as

P = (P2, Py P2), (2.3)

where p,, p, and p, is the momentum in the z, y and z directions.

The pseudorapidity 7 is a useful transformation of the polar angle 6 that is frequently used

in particle physics and is defined as

n = —log | tan (g) . (2.4)

In the relativistic particle limit where m ~ 0, the pseudorapidity is equivalent to the rapidity y,

with

1 E+p,
=21 . 2,
y 20g<E_pZ> (2.5)

As the form of Equation 2.4 shows, for a particle travelling along the beampipe the rapidity
tends to infinity,  — oo, while for a particle travelling perpendicular to the beampipe n = 0. It
is useful to define the projection of a particle’s momentum and energy on the transverse plane,
with the transverse momentum defined as pr =|p|sin (0) and the transverse energy defined as
Et = Esin(f). The ¢ — n space is used do define distances between objects in the detector,

with

AR =\/A¢* + An. (2.6)
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2.2.2 Inner Detector

The Inner Detector (ID) is the innermost subsystem of the ATLAS detector and the one closest
to the interaction point. It provides precise position and momentum measurements of charged
particles by reconstructing their tracks using points, or “hits”, along their trajectories. The 1D
is immersed in a 2 T magnetic field parallel to the beampipe, provided by a solenoid magnet.
The magnetic field bends the trajectories of charged particles, forcing them into curved paths.
The momentum and charge of a particle is determined by measuring the curvature and bending
direction of its path. The ID consists of three main subsections; the silicon pixel detector, the
semiconductor tracker (SCT) and the gas based transition radiation tracker (TRT). These
subsections are positioned symmetrically around the proton beampipe as shown schematically
in Figure 2.4. A relatively new addition to the ID is the Insertable B-Layer (IBL), a silicon
pixel layer, designed to improve the overall tracking performance of the ID [32]. Additional
SCT and TRT end-cap parts are positioned in the plane perpendicular to the beampipe, with
multiple discs on each side of the main barrel section of the ID, to allow for the reconstruction

of particle tracks in the high-n space.

The silicon pixel detector provides a coverage of |n| < 2.5 and consists of three cylindrical
pixel layers in the central barrel region and three end-cap discs on each side of the barrel. With
1744 sensor modules, each containing 47232 pixel sensors and each pixel covering 50 x 400 ,um2
of the ¢ x z plane, the pixel detector provides a resolution of 10 pym in the ¢ direction and 115

pm in the z direction in the barrel.”

The SCT provides a coverage of |n| < 2.5 and contains 15912 silicon microstrip sensors.
Surrounding the pixel detector, it is arranged into four layers of silicon microstrip pairs in the
barrel region and nine double layers per side in the end-caps. A single measurement in the
SCT is reconstructed by combining information from the front and back sides of a microstrip
layer. The barrel region of the SCT provides a resolution of 17 ym and 580 pm in the ¢ and z

directions respectively3.

®The dimensions of the pixels and the resolution of the pixel detector in the end-caps are identical, with the z
replaced with the R direction.

®As in the pixel detector, the resolution of the SCT in the end-caps is identical to the one in the barrel region,
with the z replaced with the R direction.
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Figure 2.4 Schematic of the ATLAS Inner Detector highlighting major components within it [33].
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The outermost subsystem of the ID, the TRT, provides a coverage of |n| < 2.0. It consists of
4 mm thick polymide straw tubes, arranged parallel to the beampipe in the barrel and radially
in the end-caps. The straw tubes are filled with a Xenon-based gas mixture, which is ionised
as charged particles pass through the TRT. With the wall of the tubes kept at a negative
voltage and a wire in the middle of each tube acting as central anode, ionised electrons are
accelerated towards the anode, producing an electrical signal used for drift-time measurements.
The space between the straws is filled with different polymer materials which cause the particles
passing through to emit photons (transition radiation) which amplify the signal in the drift
tubes. Relativistic particles such as electrons emit much more transition radiation than heavier
hadrons when passing through the TRT and so this information is used to help differentiate
between the two. The TRT provides a resolution of 130 pm in the ¢ direction, with an average

of ~35 hits per track.

Information from the entirety of the ID is used to measure the momentum and charge of a
particle. The target track momentum resolution o, of the ID, defined as a function of the

particle’s transverse momentum pr, is given by

Ter _ 0.05% x pp @ 1% (2.7)
br

2.2.3 Calorimeter system

A system of calorimeters surrounds the ID, providing up to |n| < 4.9 of coverage. The calorimet-
ers stop particles, absorbing and measuring their energy in the process. The Electromagnetic
calorimeter (ECAL) is designed to measure the energy of electrons and protons while the
Hadronic calorimeter (HCAL) measures the energy of hadrons. Both of them are sampling
calorimeters, meaning they measure only a fraction of a particle’s energy and absorbe the rest.
The full energy is calculated using the measured fraction and a pre-determined calibration. The
calorimeters consist of layers of active material and high-density metal (absorbing material).
Incoming particles interact with the metal causing a “shower” of secondary charged particles

that then ionise the active material, allowing the initial particle’s energy to be measured.

38



2 Experimental Setup 2.2 The ATLAS detector

The ECAL and HCAL are briefly discussed below, as well as the Forward calorimeter system
(FCAL).

Electromagnetic calorimeter

The ECAL uses liquid argon (LAr) as the active material and lead as the absorbing material
to measure the energy of photons and electrons’. With an accordion geometry, it provides
complete coverage in ¢. The barrel part provides a coverage of |n| < 1.475 while a pair of
end-cap discs on each side of the detector extend the coverage to 1.375 < |n| < 2.5 and

2.5 <|n| < 3.2.

A calorimeter’s size is often defined in terms of the absorbing material’s radiation length
X, which is the distance over which an electron travelling in the material will deposit all but
1/e of its energy. The ECAL has a transverse length of more than 22X, in the barrel and more
than 24X, in the end caps, enough to fully absorb the energy of a particle shower. The energy

resolution of the ECAL is given by

o5 _ 0% o7y (2.8)

E  VE
Hadronic calorimeter

The HCAL consists of a central barrel with an extended barrel region around the ECAL barrel
and two end-cap parts, one on each side of the ECAL end-caps. The central barrel uses steel
absorbers and scintillator tiles as the active material while the end-caps use copper as the
absorbing material and LAr technology for energy measurements. As in the ECAL, the HCAL’s
depth can be defined in terms of A, which is the distance over which a hadron travelling in the
HCAL will deposit all but 1/e of its energy. The central barrel region consists of three layers

with depths of 1.5\, 4.1\ and 1.8\ and a coverage of |n| < 1.7 °. The end-cap discs extend the

“Muons interact with the calorimeter system minimally due to their larger mass which reduces the effect of
bremsstrahlung.
®The three layers in the extended barrel region have depths 1.5\, 2.6\ and 3.3\.
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coverage to |n| < 3.2, with a 12X\ depth. The energy resolution of the HCAL is given by

(o 5 - 50%

E  VE

® 3% (2.9)

Forward calorimeter

The FCAL is a combined electromagnetic and hadronic calorimeter system, using LAr as the
active material. It has three layers of absorbing material; a copper layer for absorbing EM
showers and two tungsten layers for hadronic showers. The FCAL has a depth of 10\ and
extends the coverage of the calorimeter system to the range 3.1 < |n| < 4.9. The energy

resolution of the FCAL is given by

100
op _ 100% o 1o (2.10)

E  VE

2.2.4 Muon spectrometer

The muon spectrometer (MS) is the outermost part of the ATLAS detector, designed to measure
the paths of muons. It is immersed in a non-homogeneous magnetic field, ranging from 0.2 TeV
to 3.5 TeV, produced by a series of toroidal magnets. A muon’s momentum is calculated using
the bending of its path as the muon travels through the magnetic field. The MS consists of a
central barrel part and two end-cap regions, together covering |n| < 2.7. Monitored drift tubes
are used for precision tracking over the full MS coverage with a position resolution of 35 pum
in the axial plane. Cathode strip chambers are also used in the 2.0 <|n| < 2.7 range with a

resolution of 40 pum in the radial plane.

For the muon triggers system, resistive plate chambers are used in the range |n| < 1.05
and thin gap chambers in the end-caps are used in the region 1.05 <|n| < 2.4. With a timing
resolution of a few nano-seconds, the muon trigger system can also be used for bunch crossing

association.
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2.2.5 Trigger system

The LHC collides proton beams at the centre of the ATLAS detector every 25 ns. This is
equivalent to a bunch crossing rate, or “event” rate, of about 40 MHz, too high for the ATLAS
detector to record due the detector’s readout capability and bandwidth and storage limitations®.
A trigger system is thus used in ATLAS in order to identify and only record events of interest,
bringing the event rate down to 1 kHz. These events of interest are usually events containing
high-pt leptons, photons and jets or events with large missing transverse momentum. The
trigger system is split into two levels; the Level 1 trigger (L1), a hardware based trigger and

the High Level Trigger (HLT), a software based trigger [34].

The L1 trigger uses information from the calorimeters and the muon spectrometer to
identify Regions of Interest (Rols) in the detector, where signatures of high-pt objects have
been detected. Only considering events satisfying these criteria reduces the event rate from

40 MHz to about 100 KHz. The Rols are then passed on to the HLT for further processing.

The HLT uses software procedures to further identify events of interest, reducing the event
rate to about 1 kHz, low enough for recording. With information from the Rols, it applies
online analysis techniques on only parts of the detector, reducing the amount of data transferred

to the readout system. Offline algorithms are then used to fully reconstruct an event' .

Multiple triggers are in use in ATLAS, each one reflecting different physics goals and
optimised to identify distinct final states of particles in the detector. This list of triggers defines
the ATLAS “trigger menu”. Since the total rate of events available for readout is limited to
below 1 kHz, triggers can be “prescaled”, meaning that only a fraction of events satisfying
the trigger will be recorded. Taking into account detector and LHC conditions, triggers can
be disabled or have the rate of events passing their selection reduced or increased. Primary
triggers identifying events for physics analysis are usually kept unprescaled, allowing for all of
the events satisfying them to be recorded, while support triggers used for detector monitoring

and calibration are usually assigned a small prescaled bandwidth.

®Each recorded event requires ~1.5 MB of memory.
"Online algorithms refer to software used for triggering and data acquisition (DAQ). Offline algorithms refer to
software used on the recorded data.
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D ECAL HCAL MS

Figure 2.5 Signatures of different particles in the detector’s subsystems. Solid lines represent energy

deposits while dashed lines represent no energy deposits [35].

2.3 Object reconstruction and identification

Objects in the detector, such as leptons, photons and hadronic jets, are reconstructed using
and combining the signals recorded from each subsystem. Figure 2.5 [35] shows the signatures
different particles leave in the sub-detectors. This section describes how each particle is

reconstructed and identified using those signals.

2.3.1 Tracks

As a particle traverses through the detector, it deposits energy in multiple detector elements.
The track of a particle can be reconstructed using information from all the energy deposits, or

“hits”, mapping out in this way the path it followed in a 3D space [36].

Three-point hits in the pixel layer or SCT that are consistent with a single track form a

track seed. Moving away from the interaction point, the track is extended by adding hits from
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other subsystems that are compatible with the shape of the initial track seed. Particles can
also be produced in secondary interactions, away from the interaction point. For these, track
seeds are formed in the TRT and are backwards extended to the SCT and pixel layer using a

back-track algorithm.

Ambiguities involving hits that can be associated with more than one track are resolved by
ranking tracks based on their momentum, their constituent hits and on how well the hits can
be associated to each other. Additional information is used by considering how many expected
hits are missing (“holes”) from a track. Tracks are usually required to have a very small number

of holes and tracks with less than 7 hits or pp < 400 MeV are discarded.

2.3.2 Primary Vertex reconstruction

Multiple proton-proton collisions take place in each bunch crossing, resulting in tracks in the
detector that originate from more than one interaction point or vertex. The reconstructed
tracks are used to identify a possible vertex seed and tracks that are not associated with the
seed are temporarily removed and the vertex position recalculated. The vertex position is fixed
once it passes the required quality criteria. The procedure is repeated with the removed tracks
to identify secondary interaction vertices. A vertex is characterised by > p%, the sum of the
squared transverse momentum of all associated tracks. The vertex vst/riz?listhe highest sum is

established as the primary vertex and is considered to be the vertex that the hard scattering

has originated from.

2.3.3 Jets
Reconstruction and clustering

Jets are common objects resulting from the production of gluons and quarks in pp collisions
and are widely used in physics analyses. They are formed by first clustering energy deposits in

calorimeter cells to form topological clusters. Each cell is characterised by its energy significance,
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0., defined as

Energy deposited in cell

= 2.11
Oc Background noise level in cell (2.11)

where the background noise level depends on different instrument and beam conditions sources”.
A topological cluster starts as a cell seed, where the cell is required to have o, > 4. Neighbouring
cells are added to the cluster if they satisfy o, > 2. The clustering stops when o, falls below 2,

with the remaining neighbouring cells being added to the cluster if they satisfy o, > 0.

Jets are reconstructed from topological clusters using the anti-k; jet clustering algorithm [37].
In the algorithm, the distance between two clusters, as well as the distance between a cluster and
the beam, is gauged using the cluster’s transverse momentum, its position in the calorimeter
and a jet-radius parameter R, related to the radius of a jet and typically set to R = 0.4.
Topological clusters that are closer to each other than the beam are combined together and
treated as a new cluster. A cluster that is closer to the beam than another cluster is defined as

a “jet”. The procedure is repeated until all topological clusters are clustered into jets.

Calibration

The energy of a jet needs to be calibrated to correct for effects such as energy losses in the
detector and pile-up. Additionally, the response of the calorimeters to electromagnetic showers
is usually higher than their response to hadronic showers, an effect known as non-compensation
which needs to be accounted for. Jet calibration is performed with the procedure outlined

below [38].

The direction of the jet is corrected so that it points back to the primary vertex. A pile-up

correction is then applied using an area-based subtraction process.

A jet energy scale (JES) correction derived from MC simulation is applied to correct the
energy of the jet from the electromagnetic scale to the hadronic particle-level scale [39]. This

is achieved by matching particle-level and reconstructed jets in simulated events and forming

8 . . . .
Electronic noise and pile-up are common background noise sources.
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2 Ezperimental Setup 2.8 Object reconstruction and identification

a ratio of the jet’s energy at the two levels as a function of the particle-level energy of the
jet and the jet’s n value. Calibration factors derived from this ratio can then be applied
on reconstructed jets in the data to correct their energy and n value back to the hadronic

particle-level scale.

Additional corrections are applied to correct for differences in the jet energy response
depending on the origin of the jet and the jet energy resolution (JER) [40]. Parton cascades
originating from quarks are expected to include less, but more energetic, partons than ones
originating from gluons. This results in narrower quark-jet shower shapes and wider gluon-jet
shower shapes. The shape of the jet showers and the distribution of the jet’s energy in the
calorimeter are used in the global sequential calibration (GSC) procedure to identify the origin

of a jet.

Finally, in-situ corrections are applied to correct for differences between the data and MC
and to correct for differences in the detector response between different 7 regions [41]. These
corrections are derived using Z-+jets events for jets with pp up to 500 GeV and ~ + jets events
for jets with pp up to 950 GeV. In both cases, the jets recoil off the well understood decay
systems of the « or Z boson, making these processes ideal for jet calibration. Jets that have
been already calibrated using these techniques are used to calibrate jets with pp > 950 GeV in

a jet balance technique.

Jet cleaning and pile-up

Jet cleaning refers to the process of rejecting jets that do not originate from the hard scattering.
These jets can be traced back to non-collision background, such as cosmic-ray showers produced
in the atmosphere, beam induced backgrounds or large scale noise in the calorimeters. Non-
collision background jets, also known as fake jets, can be rejected using two sets of jet quality
criteria, LooseBad and TightBad with efficiencies ranging from 99.5% to 99.9% and from 95%
to 99.5% respectively, depending on the pr of the jet [42]. Jets not associated with the hard
scattering can also originate from secondary pp interactions (pile-up interactions). These can

be rejected using the jet-vertex-tagger (JVT) algorithm [43], which uses the fraction of tracks
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2 Ezperimental Setup 2.8 Object reconstruction and identification

coming from the primary vertex and a two-dimensional likelihood to determine the origin of the
jets. In the forward region with |n| > 2.5, the forward JVT (fJVT) algorithm is implemented,

which uses timing, shape and topological information to reconstruct the origin of the jets.

2.3.4 Electrons

Similar to jets, electrons are reconstructed from energy clusters in the EM calorimeter with the
additional requirement that a candidate electron cluster is associated with a track in the ID.
The sliding window algorithm [44] is used to cluster calorimeter cells by combining cells within
a window of 3 x 5 in units of An x A¢ = 0.025 x 0.0245 ”. Clusters are required to have energy
deposits in the transverse direction Ep > 2.5 GeV to be classified as seed clusters from which
an electron will be reconstructed. If no tracks can be associated to a seed cluster, the cluster is
discarded. If multiple tracks are matched to the seed cluster, the tracks are ranked based on
their spacial separation from the cluster and their number of hits. The highest ranking track is

considered to be the electron track.

The electron candidate is required to be prompt, meaning to be associated with the primary

vertex. Their compatibility is quantified and ensured by requiring that

d
ol <5 and |Azgsinf] < 0.5 mm (2.12)
O'do

where dj is the smallest distance between the primary vertex and the track, o4 is the uncertainty
on dy, Az is the distance between dy and the primary vertex in the z-direction and 6 is the

polar angle of the track.

Identification and isolation

Fake electrons originating from hadronic showers in the calorimeter mimicking an electron
shower can be suppressed using identification algorithms. A likelihood based method uses

information on the shape of the EM shower and on the quality of the track to discriminate

“This corresponds to the granularity of the second layer of the EM calorimeter.
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between real and fake electrons. Three likelihood identification working points can be defined,
with increasing fake rejection and decreasing real electron acceptance; Loose, Medium and
Tight. All three working points are used for different purposes in this analysis and have an
electron identification efficiency of 97%, 95% and 91% respectively and a fake rejection rate
of 99.7%, 99.8% and 99.9%. Fake electrons can be further suppressed by requiring electron
candidates to pass a list of isolation criteria. Isolation criteria can be based on the sum of the
transverse momenta of tracks in a cone around the candidate electron track (track-based) or on
the sum of the transverse momenta of EM clusters in a cone around the candidate electron
cluster (calorimeter-based). The analysis presented here requires that electrons satisfy the
FCHighPtCaloOnly isolation WP which requires that the sum of the p of energy clusters in
the EM calorimeter within AR < 0.2 of the candidate electron is less than 3.5 GeV. The WP
r

provides a good background rejection in the high electron pr region [45] with a fake rejection

rate of 90% and a prompt electron selection efficiency of 95%.

2.3.5 Photons

Similar to electrons, photons are reconstructed from energy clusters in the EM calorimeter.
As photons are neutral particles they leave no tracks in the ID, making them distinguishable
from electrons. It is possible for electrons to produce photons through bremsstrahlung and
for photons to convert to pairs of electrons. Information from the EM calorimeter and the
tracks present in the ID is used to disentangle these processes and reconstruct the final state
particles. A set of photon identification working points is defined based on the properties of the
topo-clusters in the EM calorimeter, with varying efficiencies. In this analysis, energy deposits
originating from photons are accounted for in the reconstruction of jets and no further photon

selection is needed.

2.3.6 Muons

Muons are reconstructed using track information from the MS and the ID. Muon tracks are first

reconstructed separately using hits in the MS and the ID. A combined muon track candidate is
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is then formed by fitting to matching tracks in the MS and the ID [46]. Muons are required to

be prompt by satisfying

o] <3 and |Azysinf] < 0.5 mm . (2.13)

O'do

Identification and isolation

Hadron decays, such as pion and kaon decays, can mimic the presence of a prompt muon.
Real but non-prompt muons can also originate from semi-leptonic decays of heavy flavour
hadrons or highly energetic hadrons that were not contained in the hadronic calorimeter and
left tracks in the MS. Track quality criteria and variables based on the charge and momentum
of the muon candidate are used to reject fake and real non-prompt muons. A list of muon
identification working points is defined using the above information: Loose, Medium, Tight and
High-pt. Muons are further required to pass isolation criteria based on the sum of the transverse
momenta of tracks in a cone around the candidate muon track (track-based) or on the sum
of transverse momenta of topological clusters in a cone around the muon in the calorimeters.
Similar to the isolation of electrons, a list of muon isolation working points can be defined using
both track-based and calorimeter-based information, tailored to different physics analysis goals
and offering varying rejection and acceptance efficiencies. The analysis presented here uses
muons satisfying the Loose identification working point with a prompt muon selection efficiency
of 98.1% and a non-prompt muon rejection efficiency of 99.2%. Muons are also required to
satisfy the Loose-Track isolation working point, which uses a running cut on the sum of the py
of tracks within a varying radius around the selected muon depending on its momentum, in

order to ensure a prompt muon selection efficiency of 99%.

2.3.7 Taus

The tau is the heaviest of the leptons and the only one heavy enough to decay into hadrons.
Taus decay into a W boson and a neutrino where the W boson can then decay leptonically

or hadronically. Leptonically decaying taus are reconstructed as electrons or muons in this
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analysis. Hadronically decaying taus usually decay into one or three hadrons, each mode known
as one-prong and three-prong respectively. They are reconstructed using jets as seeds, which
are reconstructed using the the anti-k; algorithm with R = 0.4 as described in Section 2.3.3.
The tau jet seeds are required to have pr > 10 GeV and |n| < 2.5 and are calibrated to the
hadronic scale by having the Local Hadronic Cell Weighting (LCW) calibration applied on their
constituent topo-clusters [47]. The visible energy of the tau lepton is defined by the total energy
of the topo-clusters within a cone of AR < 0.2. Hadronically decaying taus are distinguished
from jets using Boosted Decision Tree (BDT) algorithms and taus that are matched to an
electron within a cone of AR < 0.4 and a large electron likelihood score are discarded. As with
electrons and muons, three tau identification working points are defined (Loose, Medium and
Tight), tailored to different analysis goals. The analysis presented here uses taus satisfying the
Loose identification working point, with a selection efficiency of 85% for one-prong and 75% for

three-prong taus.

2.3.8 Missing transverse momentum

The missing transverse momentum, pe™, is defined as the vector momentum imbalance in the
transverse plane. For the law of conservation of momentum to uphold, the vectorial sum of
momenta in the transverse plane should sum to zero. An imbalance of transverse momentum
is introduced when invisible particles are produced, such as neutrinos, or due to the limited
acceptance of the detector, resulting in a non-zero p%ﬁss. The p%ﬁss reconstruction uses energy
deposits from the calorimeter and muons reconstructed in the muon spectrometer. Tracks are
used to recover momentum from low pr charged particles which are missed in the calorimeters,
and muons reconstructed from the inner detector are used to recover muons in regions not
covered by the muon spectrometer. Calorimeter energy deposits are associated with a calibrated
high-pt parent object in a specific order: electrons (e), photons (v), hadronically decaying
7-leptons (7), jets and muons (x). The components of p™ in the z and y coordinates are

calculated as

miss miss, e miss, 7y miss, T miss, jets miss, u miss, soft

Pa(y) = Patyy T Poy) TPo) tTPuy)  TPaw) T Pauy (2.14)
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where each component is defined as the negative vectorial sum of the momenta of the recon-

miss, soft

structed objects. The soft term, Pay)

, is defined as the vectorial sum of all remaining
objects in the detector not passing the selection of the main physics objectslo. The missing

transverse momentum is given as a function of its z and y components by

p%ﬁss _ \/( gliss)2 + (p;niss)2 . (215)

' These include low momentum tracks in the ID or energy deposits in the calorimeter not matched to a hard
object.
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Chapter 3

The p™5% 4+ jets analysis

The physics programme at ATLAS largely involves making measurements of Standard Model
(SM) processes and searching for evidence of physics beyond the Standard Model (BSM), with
analyses traditionally focusing on one of the two. The analysis presented in the next three
chapters does both by performing a measurement of differential cross-sections in regions of
phase-space that are largely populated by well-known SM processes but are also expected to
be sensitive to BSM physics and more specifically to the production of dark matter particles.
Section 3.1 outlines the analysis strategy and Section 3.2 describes and motivates the observables
that are being measured. Section 3.3 and Section 3.4 discuss the physics object and event
selections at the particle and detector-level respectively. Section 3.5 describes the datasets and
MC simulation samples being used for the SM and BSM predictions. Section 3.6 discusses the
experimental and theoretical systematic uncertainties and Section 3.7 presents the detector-level

results.

3.1 Analysis strategy

Dark matter particles are not expected to interact with the detector’s apparatus which makes
their detection non-trivial. Instead of aiming to directly observe dark matter, searches at the
LHC use p%liss, the missing transverse momentum in an event, as a proxy for evidence of the

production of dark matter and other invisible particles. As discussed in Section 2.3.8, p'=™™ is
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8 The p%iss + jets analysis 3.1 Analysis strategy

defined as the negative sum of the transverse momenta of all visible particles in the detector
and, in a collision where all the final-state particles are visible, it is equal or close to zero since
there is no initial momentum in the transverse plane. The production of invisible particles
results in an energy imbalance in the transverse plane, assuming that the invisible particles
are produced in association with, and recoiling from, other visible objects. Jets are the most
common high-pr objects produced at the LHC and so this analysis presents a measurement of
the cross-section of events with large missing transverse momentum in association with jets

(P?iss + jets). An example Feynman diagram involving the production of dark matter with a

PSS 4 jets final state is shown in Figure 3.1a.

The production of invisible particles is not restricted to BSM processes and there exist SM
processes with a p%liss + jets final state. One such process is the production of a Z boson in
association with jets, where the Z boson decays to a pair of neutrinos as seen in the feynman
diagram of Figure 3.1b. Background processes that result in final states indistinguishable
from the one being measured are often referred to as “irreducible backgrounds”. A novel
approach is taken in this analysis with measurements defined in terms of final-state particles
rather than in terms of a particular physical process. Irreducible backgrounds that satisfy
the selection requirements of a final state are then treated as part of the signal. In the case
of the prrfliss + jets final state, in addition to the Z(— vv)+jets process, large contributions
come from the production of a W boson in association with jets, where the W decays to a
neutrino and a charged lepton (figure 3.1d). While the definition of the p%liss + jets final
state vetoes the presence of charged leptons, leptons can be produced in phase-spaces that
are out-of-acceptance of the detector, resulting in a final state identical to the one being
measured. Traditionally, such contributions would be treated as backgrounds and subtracted
from the measured result. Following the final-state particle measurement definition approach,
contributions from Z(— vv)+jets and out-of-acceptance W+jets events are both considered
part of the SM signal. The reason for treating irreducible backgrounds as part of the signal
definition is that it disentangles the modelling of SM backgrounds, known to often be imprecise,

from the data measurement. A measurement defined in terms of final-state particles, also known

as a fiducial measurement, guarantees that the data remain uncontaminated from shortcomings
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8 The p%iss + jets analysis 3.1 Analysis strategy

in current SM theoretical predictions and that future improvements and updates to these

predictions can be considered and the published data reinterpreted. An additional reducible

background originates from QCD multijet production where the mismeasurement of a jet’s

momentum can lead to a momentum imbalance in the transverse plane of the detector and fake
miss

a pp  + jets event. This background needs to be estimated using data-driven techniques since

the MC has been shown to perform poorly in modelling multijet events.

In the absence of new physics, the cross-section of events in the p™ + jets region will

correspond to the cross-section of SM events with a p%liss + jets final state and the region
will be mainly populated by events with invisibly decaying Z bosons and out-of-acceptance
W bosons. This motivates the measurement of four regions containing charged leptons and
targeting final states that have SM contributions similar to the ones in the p%liss + jets region.
The lepton regions are used to constrain the systematic uncertainties in the p?iss + jets region
coming from detector effects and from theoretical modelling. Additionally, the lepton regions
can be used to search for, and place limits on, new physics models with final states involving

leptons. The lepton regions are grouped based on the number of leptons they target and are

listed below.

e 24 + jets and 2e + jets: These predominantly contain Z(— pu)+jets and Z(— ee)+jets
events respectively which are very similar to the dominant Z(— vv)+jets process in the
miss

pr . 4+ jets final state, making them ideal for constraining theoretical uncertainties in

this region. An example feynman diagram of this final state is presented in Figure 3.1c.

e 1 + jets and 1le + jets: These predominantly contain W(— uv)+jets and W(—
ev)+jets events and exploit the similarities of events containing W and Z bosons at the
LHC to constrain the Z(— vv)+jets process in the p%iss + jets region. An example
feynman diagram of this final state is presented in Figure 3.1d. These lepton regions
benefit from the relatively large cross-section of the W+jets process (almost 10 times
larger than that of Z+jets) leading to increased statistical precision. They also benefit

from reduced systematic uncertainties associated with lepton efficiencies since the final

state contains only one lepton. While the theoretical uncertainties between the 14 +
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8 The p%iss + jets analysis 3.1 Analysis strategy

jets and the p%ﬁss + jets final states are not as correlated as in the case of the 2¢ + jets

final states, these lepton regions are still useful for constraining contributions from both
miss

Z(— vv)+jets and W (— fv)+jets events with out-of-acceptance leptons in the pp +

jets region.

The final state leptons in each lepton region are marked invisible, meaning that they are not

included in the negative vector sum of the p?iss calculation set out in Equation 2.14. This

results in a new observable known as “pseudo-p*” which in the lepton regions acts as a proxy
for the pp of the boson producing the leptons, in the same way that real p%iss acts as a proxy
miss

for the pr of the invisibly decaying boson in the pp + jets region. All regions can then be

easily compared to each other.

Three different phase-spaces are considered in this work. The phase-spaces aim to be
sensitive to different dark matter production mechanisms and are defined by the jet kinematics

of the event as described below. They are further discussed in Section 3.2 and Section 3.3.

1. > 1 jet: aims to be as inclusive as possible, requiring only the presence of at least one
high-pt jet. This is similar to the monojet signature, used by other popular dark matter
searches, which requires the presence of a single energetic jet. An example Feynman
diagram showing the production of dark matter in association with an initial state
radiation gluon is shown in Figure 3.1a where the phase-space takes advantage of the

strong coupling of the gluon to the initial state quark.

2. > 2 jet: requires the presence of at least two high-pt jets so that two-jet variables can
be measured. This phase-space is also sensitive to the associated vector boson-Higgs
(VH) production, shown in the Feynman diagram of Figure 3.1f, where the Higgs decays

invisibly and the vector boson decays hadronically.

3. VBF': requires the presence of at least two high-pp jets and has additional selection
requirements on the jet system aiming to enhance sensitivity to VBF processes. The
phase-space aims to be sensitive to dark matter models where new mediator particles do
not couple directly to quarks, as seen in the Feynman diagram of Figure 3.1e. It is also

sensitive to the invisible decay of a VBF produced Higgs boson.
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8 The p%iss + jets analysis 3.1 Analysis strategy

Each region is measured differentially and double-differentially with respect to a number
of variables that are appropriate to the phase-space being considered. These variables are
discussed in detail in Section 3.2. Measuring distributions differentially allows for the shape
information of each variable to be exploited, increasing the sensitivity of the measurement to
BSM physics. The differential distributions are then corrected for detector effects and the
measurements are presented as particle-level differential cross-sections, in a process known as
unfolding. Presenting a measurement in terms of particle-level objects allows it to be easily
and directly comparable to particle-level predictions. The measurements can then be rapidly
compared to BSM simulations without the need to simulate the ATLAS detector, making them
optimally useful long into the future and available for quick reinterpretation studies. The
unfolding technique used in this work is the [lterative Bayesian Unfolding method and it is

discussed further in chapter 4.

This analysis extends the work done in [48], an analysis with similar goals and set-up that
was performed using 3.2 fb~! of 13 TeV data. In that analysis only the 2u + jets and 2e +
jets lepton regions were considered, with both of the regions suffering from large statistical
uncertainties. Furthermore, only single-differential distributions were measured and only of the
ratio of the p%liss + jets region and the lepton regions. The ratio is again measured here, in
addition to measuring each region separately. The measurements of the individual cross-sections
of each region are useful for constraining new physics models that contribute to the lepton
regions as well as the pF™ + jets region. In the absence of BSM physics, the individual

measurements also allow mismodelling of the SM to be probed. The ratio of cross-sections is

defined as

Ogd (p%iss + jets)
aﬁd( X + jets)

Rmiss _ (31)

where the numerator is the fiducial cross-section of the p?iss + jets final state and the denomin-
ator can be the fiducial cross-section of any of the lepton regions. This way the unobserved
miss

system that produces the p1 in the numerator is replaced with a similarly produced observed

one-lepton or two-lepton system in the denominator (with the leptons marked invisible in
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Figure 3.1 Feynman diagrams for the (a) production of a dark matter mediator, A, and dark matter

particles, x, with a monojet signature, (b) invisible decay of the Z boson, (c) leptonic decay of the Z

boson, (d) leptonic decay of the W boson, (e) production of dark matter particles through the VBF

process, (f) VH associated production.
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the calculation of p™** after being selected). The similarity of the two processes significantly

reduces the theoretical uncertainties in the ratio measurement since any mismodelling of the
physics processes will affect the numerator and denominators in a similar way. Furthermore, by
requiring that the jet systems in both the numerator and denominators satisfy very similar
selection criteria, the systematic uncertainties originating from various calibration procedures
involving the jet system are also reduced. As with the individual cross-section measurements of
each region, the ratio is measured differentially with respect to various particle-level observables’
that are discussed in the next section. The presence of new physics in the numerator would

lead to a discrepancy between the measured ratio and the one predicted by the SM.

3.2 Measured variables

Each region is measured differentially and double-differentially with respect to various ob-
servables. The choice of observables and phase-spaces together are designed to maximize the
sensitivity of the measurement to differing dark matter production models. The variables

chosen to be measured in each phase-space are listed and motivated below.

> 1 jet phase-space

The production of dark matter would lead to an excess of events with missing transverse

momentum and so cross-sections in the > 1 jet phase-space are measured as a function of pp >

(or pseudo—p%iss if in a lepton region). Many BSM models often involve higher energy scales

and larger mediator masses than those in the SM, resulting in a harder p%ﬂss spectrum. The

P distribution is then expected to have increased sensitivity to new physics in the higher

miss m

pr  range. In addition to the pTiSS distribution, a double-differential measurement is also

performed where the p%liss spectrum is measured as a function of the pr of the leading jet of the

event, pgrl. The p™ vs pjf distribution would help differentiate between similar dark matter
production models with different jet topologies, should a signal be observed. For example, in

an event where a dark matter mediator is produced recoiling off a single jet then p%liss and pzrl

'"When referring to the variables being measured, ‘variables’ and ‘observables’ will be used interchangeably.
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Figure 3.2 (a) Production of p™* recoiling off a single jet, (b) production of p#™** with additional jets

miss

in the same direction as pjfl, (¢) production of pp° with additional jets in the opposite direction as pjf.

will be similar, as seen in figure 3.2a. If, however, the mediator is produced with additional jets
miss

in the same direction as pzrl, pjT1 will be smaller than pt (figure 3.2b). In the same way, if

a mediator is produced with additional jets in the opposite direction as pgfl then pz'fl will be

ss miss i1

larger than p%i (figure 3.2¢). The pt > vs pZF distribution has the capability of discriminating

between the two cases.

> 2 jet phase-space

For similar reasons to the ones outlined above, cross-sections in the > 2 jet phase-space are

measured again as a function of p%liss. By requiring the presence of at least two high-pt jets,

the > 2 jet phase-space has the potential to probe hadronically decaying vector bosons in

association with p™. One such process is the associated vector boson-Higgs (VH) production

where the Higgs boson decays invisibly producing a large p%liss and the vector boson decays

into two quark jets. The dijet system from the hadronic decay of the vector boson can be

used to probe V + p1™™ events and so cross-sections in this phase-space are also measured as a

function of the invariant dijet mass, m.;, and the difference between the azimuthal angle of the

35>
two jets, A¢;;. The m;; distribution includes a dedicated bin centred on the midpoint of the
W and Z boson mass resonance, specifically designed to probe the VH channel, and extends
into higher m;; values so that it can be sensitive to possible dark matter production models

J

with a higher m;; signature. The azimuthal correlation between the two leading jets often
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3 The prTniss + jets analysis 3.8 Particle-level object and event selection

depends on the spin of the dark matter mediator and so the A¢;; distribution can further be
used to differentiate between new physics models if a signal is observed. In calculating Ag;;,
the two jets are first ordered in rapidity and the azimuthal angle of the least forward jet is
subtracted from the most forward one”. This allows the A¢;; observable to be additionally
sensitive to CP-even and CP-odd models [49]. In events with large m;;, A¢,; is also shown
to be a powerful discriminant between spin-0 s-channel simplified dark matter models. To
cover this wide range of possible new physics models, cross-sections in this phase-space are also

measured double-differentially as a function of both A¢,; and m;;, with the lower m; slices

Ji»
being sensitive to the VH process with the Higgs decaying invisibly and the higher m,; slices

sensitive to spin-0 s-channel simplified dark matter models.

VBF phase-space

As in the > 2 jet phase-space, cross-sections in the VBF phase-space are measured differentially
as a function of pi™*, mj; and Ag¢;; and double-differentially as a function of A¢,; vs m;.
The measured variables in this phase space have similar justifications as above but are here
motivated by their sensitivity to VBF-like models and processes, such as the production and
invisible decay of the Higgs boson through vector-boson fusion. VBF processes lead to a
harder m;; spectrum than processes involving the strong production of dijets or a vector boson
decaying to two jets and so the tail region of the m;; distribution is expected to be the most

sensitive to BSM physics. The double-differential A¢;; vs m;; distribution is also shown to

offer increased sensitivity to the VBF Higgs production.

3.3 Particle-level object and event selection

The object definition and event selection at the particle-level define the fiducial space to which
the ATLAS data are corrected. The kinematic criteria that define each of the three phase-spaces

are also discussed in more detail in this section, as well as the definition of each region.

>This is often referred to as the signed A¢.
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3.3.1 Particle-level object selection

Electrons and muons are required to be prompt, in that they do not originate from the decay
of a hadron. Dressed leptons are used, meaning that the four-momenta of photons within a
cone of AR < 0.1 are added to the four-momentum of the lepton. Electrons are required to
have pp > 7 GeV and |n| < 2.47, excluding 1.37 < || < 1.52 which corresponds to the crack

region at the end of the ECAL barrel. Muons are required to have pp > 7 GeV and |n| < 2.5.

Only hadronically decaying taus are considered since leptonic decays are included in the
selection of electrons and muons. They are also required to be prompt and to have pp > 20 GeV
and |n| < 2.47, excluding again the crack region at 1.37 <|n| < 1.52. Any jets that contain a

hadron coming from the decay of a tau are classified as hadronically decaying taus.

Jets are reconstructed using the anti-k; jet clustering algorithm with a radius parameter of
0.4, which clusters the four-momenta of particle-level objects. All stable final-state particles are
used as input to the jet algorithm except neutrinos, other invisible particles and the dressed

leptons. Jets are required to have pp > 30 GeV and rapidity |y| < 4.4.

The particle-level p%ﬁss is defined as the magnitude of a vector, which is the negative sum of

the transverse components of the momentum of all visible final-state particles within || < 4.9.
This excludes muons with |n| > 2.5 as these contribute only negligibly to the prrfliss, since their
contribution is only included via the momentum recorded in the ID. In the lepton regions,

final-state leptons are treated as invisible and are not included in the negative vector sum of

the p%liss calculation.

An overlap removal procedure is applied to the particle-level objects to match the one
applied at the detector-level. The procedure is performed in five steps. First, jets that are
within a cone of AR < 0.2 around an electron are removed. Electrons are then removed if they
are within a cone of AR < 0.4 around a jet. Following that, jets are again removed if they are
within a cone of AR < 0.2 around a muon and then muons are similarly removed if they are
within a cone of AR < 0.4 around a jet. The last step removes jets that are within a cone of

AR < 0.2 around a tau lepton.
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3.3.2 Particle-level event selection

As mentioned before, the analysis considers three different phase-spaces that are defined by the
jet kinematics of the event and five different regions, defined in terms of the number, flavour
and kinematics of the leptons. The selection and kinematic criteria required for jets and leptons

in each phase-space and region are described in this section.

Phase-space event selection

Each phase-space provides different sensitivity to different BSM physics models, enhanced by

the selection outlined below and summarised in table 3.1.

miss

All three phase-spaces require that events have pr > 200 GeV, motivated by the large
p%liss expected in dark matter production events, the efficiency of the trigger and the existence of
large multijet backgrounds in events with p™ below this cut. An angular separation between
the four leading jets in pp and the p?iss vector, Ag(jet,, p%liss) > 0.4, is also required to match
the one applied at the detector-level. The requirement aims to suppress contributions from

multijet events, where mismeasured jets can result in fake pt™ aligned with one of the jets.

In events with at least one jet, the invisibly decaying Z boson or dark matter mediator
producing the p%iss is expected to be largely balanced by the leading jet. This motivates the
kinematic cuts defining the > 1 jet phase-space where a high energy leading jet is required in

the central |n| region of the detector, with pp > 120 GeV and |n| < 2.4.

The > 2 jet phase-space enables the measurement of two-jet variables by requiring the
presence of at least two jets, with pp > 110 GeV for the leading jet and pp > 50 GeV for the
sub-leading jet. The asymmetry in the cuts comes from the requirement that at least one of the
jets is high-pr to help suppress contributions from QCD backgrounds. This phase-space has
increased sensitivity to BSM models where a hadronically decaying vector boson is produced
back-to-back with an invisibly decaying system, resulting in two or more jets balancing the

miss
T .
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The VBF phase-space targets events where two vector bosons, initially produced from two
jets scattering off each other, fuse to produce a third, invisibly decaying, vector boson. As in
the case of the > 2 jet phase-space, the two leading jets balance the invisible system and are
required to have pr > 80 GeV and pt > 50 GeV, with the asymmetry in the cuts required for
the same reasons as above. The jets are also expected to be produced with a large angular
separation which is enforced by the cut on the rapidity between the jets, |[y| > 1. The cut
on the invariant mass of the dijet system, m;; > 200 GeV, ensures that the measurement is
sensitive to regions of phase-space with high m;; and suppresses contributions from diboson
events where one of the bosons decays hadronically. Finally a veto on events with additional
jets in the rapidity gap of the two leading jets is applied. It is possible for two incoming quark
jets to radiate gluons, which are produced back-to-back with a vector boson through a QCD
mechanism, resulting in a signature similar to the VBF one. The in-gap jet veto reduces the
background coming from the QCD production of vector bosons and enhances the contributions

coming from the colourless exchange involved in the VBF mechanism.

Region event selection

miss

The analysis considers five different regions: the pt + jets region and the le + jets, 1u + jets,
2e + jets and 2u + jets lepton regions. The lepton regions are used to constrain theoretical
and systematic uncertainties originating from the detector in the p%liss + jets region and can
also serve as dedicated search regions for physics models predicting the production of BSM
particles in association with leptons. Regions are also used together to construct R™*. The

selection and kinematic criteria for the lepton system in each region are outlined below and

summarised in table 3.2.

The p%liss + jets region requires that there are exactly zero leptons present in the final state
of an event. Any events containing electrons or muons as defined in Section 3.3.1 are rejected.

Events containing hadronically decaying tau leptons are also vetoed.

+

The le + jets and 1u + jets lepton regions require exactly one electron (e or e ) or exactly

one muon (,u+ or u~ ) respectively. Any events containing additional leptons or hadronically
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decaying taus are rejected. In the le + jets lepton region, electrons are required to have
pr > 25 GeV and || < 2.47 (excluding the crack region). In the 1 + jets lepton region, muons
are required to have pp > 7 GeV and |n| > 2.5. The higher lepton pt requirement in the le +
jets region is due to the fact that trigger scale factors are only available for electrons with
pr > 25 GeV. Events containing muons are selected using p** triggers as muons are invisible
to the HLT system. This allows for the lower lepton pr requirement in the 1 + jets region and
is further discussed in section 3.4.2. The le + jets region has an additional real—p%ﬂsS > 45 GeV

requirement which is necessary to suppress contributions from multijet events”.

The 2e + jets and 2u + jets lepton regions require exactly one pair of opposite-charge,
same-flavour leptons (6+67 or ,LLJF,LF respectively). Any events containing additional leptons or
hadronically decaying taus are rejected. In both regions the leading lepton is required to have
pr > 80 GeV and the sub-leading lepton is required to have pp > 7 GeV. The leading lepton
pr cut is motivated by the fact that the pp of the lepton needs to be large enough to suppress
backgrounds from top-pair events but still less than half of the targeted Z boson p (which is
at least 200 GeV). Finally, the selected dilepton system is required to have an invariant mass of
66 < my < 116 GeV, which is a 50 GeV window around the mass of the Z boson. The myy, is
designed to minimise contributions coming from +* — ¢7¢~ events and associated interference

terms.

3.4 Detector-level object and event selection

The object definition and event selection at the detector-level are outlined in this section, follow-

ing the object reconstruction, identification and calibration methods described in Section 2.3.

5The real-pr 5= calculation treats leptons as visible particles and represents the p of actual invisible particles.
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> 1 jet > 2 jet VBF
(Modified) pHh's® > 200 GeV
Agb(jeti,p%iss) > 0.4, where ¢ = 1,...4 runs over the four highest pr jets
lead jet pr > 120 GeV | > 110 GeV | > 80 GeV
sub-lead jet pp | — > 50 GeV | > 50 GeV
lead jet |n| <24 <44 <44
sub-lead jet |y| | — <44 <44
mj; - - > 200 GeV
| Ayl - - > 1
In-gap jets - - None with pp > 30

Table 3.1 Selection cuts defining the > 1 jet, > 2 jet and VBF phase-spaces. These cuts apply to the
miss

pr  + jets and all lepton regions. The in-gap jet veto is applied to jets inbetween the rapidity region of

the two-leading jets.

p%iss + jets 14 + jets 20 + jets
Required leptons Exactly none | Single et,e, u+ or [t Pair of eTe™ or /ﬁ/f
Additional muons None with pp > 7, || < 2.5
Additional electrons None with ppr > 7, 0 < |n| < 1.37 or 1.52 < |n| < 2.47
Hadronic taus None with pp > 20,0 < |n| < 1.37 or 1.52 < || < 2.47
lepton |n| (muons) — In] < 2.5
lepton |n| (electrons) | — 0<|nl <1.37o0r 1.52 < |n| <247
leading lepton pr — > 25 GeV for e, > 7 GeV for u | > 80 GeV
sub-leading lepton pp | — — > 7 GeV
di-lepton mass — — 66 < my < 116 GeV
real-pp — > 45 GeV for e only —

Table 3.2 A summary of the lepton selection cuts defining the lepton-based signal and p?iss + jets
and lepton regions. These cuts apply to the > 1 jet, > 2 jet, and VBF regions.

3.4.1 Detector-level object selection

Objects at the detector-level are required to satisfy the same kinematic requirements as the
ones at the particle-level outlined in Section 3.3, with some additional requirements described

below.
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Electrons are required to have good object quality, ensuring that all the instruments in the
ECAL involved in the electron reconstruction were fully functional during data taking. In
this analysis electrons can either be classified as “signal” electrons, meaning that they are
selected to satisfy the lepton presence requirements of the le + jets or 2e + jets regions, or
“base” electrons, meaning that their presence is used to veto the event in an appropriate region.
Base electrons are required to satisfy the Loose likelihood working point for all regions. Signal
electrons in the 2e + jets region are required to satisfy the Medium likelihood working point
while signal electrons in the le + jets region are required to satisfy the Tight likelihood working
point in order to reduce contributions from multijet events in this region. It is ensured that
all electrons originate from the primary vertex by requiring that they satisfy the longitudinal
impact parameter and transverse significance requirements outlined in equation 2.12. Finally,
electrons are required to satisfy the FCHighPtCaloOnly isolation working point which is shown
to perform better than other working points in reducing the multijet background in the le +
jets lepton region. The selection and rejection efficiencies of each working point are given in

section 2.3.4.

Muons are required to have type Combined or Segment-tagged. They must also satisfy the
Loose identification working point, which offers the highest reconstruction efficiency, and pass a
list of track quality requirements to suppress backgrounds from fake tracks and muons from
hadron decays. Similar to the electron requirements, muons are required to have originated from
the primary vertex by satisfying the longitudinal impact parameter and transverse significance
requirements outlined in equation 2.13 of Section 2.3.6. Lastly, muons are required to be
isolated by satisfying the LooseTrackOnly isolation working point. The selection and rejection

efficiencies of each working point are given in section 2.3.6.

Hadronically decaying taus are required to have pp > 20 GeV and |n| < 2.47, excluding the
crack region of 1.37 <|n| < 1.52. They must satisfy a set of Loose selection criteria, have 1 or 3
associated tracks corresponding to the one-prong and three-prong tau decay mode and have an
absolute charge of one. Taus that are matched to an electron within a cone of AR < 0.4 and a
large electron likelihood score are discarded. Leptonically decaying taus are reconstructed by

their electron or muon products and are included in the electron and muon reconstruction.
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Jets are reconstructed from topological clusters of calorimeter cells using the anti-k; al-
gorithm, with a jet radius parameter of R = 0.4. They are required to have py > 30 GeV
and |y| < 4.4 and are calibrated following the procedure described in Section 2.3.3. All jets
are required to satisfy the Medium working point of the JVT algorithm, corresponding to a
JVT > 0.64 cut. The Medium JVT working point is found to be 92% efficient at selecting
jets originating from the primary vertex with a 2% fake rate from pile-up jets. Forward jets
with |n| > 2.5 are also required to satisfy the Tight operating point of the fJVT algorithm,
which selects jets originating from the primary vertex with an efficiency of 79.9% for jets with

20 < pr < 30 GeV and an efficiency of 94.6% for jets with 40 < pr < 50 GeV.

The missing transverse momentum, p™°, is defined as the vector momentum imbalance
in the transverse plane, obtained from the negative vector sum of the momenta of all visible
particles. At the detector-level the p™ is calculated following the method described in
Section 2.3.8, with objects that were reconstructed following the methods outlined in this
section used as the input to Equation 2.14. In this analysis, photons are treated as jets in the

P calculation. As in the particle-level p™™ | signal leptons in the lepton regions are treated

as invisible and are excluded from the negative vector sum of the detector-level p?iss calculation.
Jets that overlap with a muon and have low track number and a low track pr are assumed to

originate from photon bremsstrahlung from the muons and are also marked invisible. This step

is equivalent to using dressed leptons in the particle-level definition of p?iss in Section 3.3.1.

An identical overlap removal procedure to the one performed at the particle-level and

described in section 3.3.1 is also applied to the detector-level objects listed in this section.

3.4.2 Detector-level event selection

The jet and lepton kinematics that define the event selection at the particle-level also define the
event selection at the detector-level. The two levels are designed to be as similar as possible to
reduce the extrapolation to different topologies in the unfolding procedure. The lepton-based
region event selection for events containing single leptons or lepton-pairs at the detector-level

follows that given in table 3.2 at particle-level. The same applies for the detector-level definition
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of the jet phase-spaces defined in table 3.1. Events are further required to satisfy the additional

criteria discussed below.

Event and jet cleaning

Reconstructed events are required to have a primary vertex with at least two associated
tracks. The associated tracks are also required to satisfy a list of quality requirements. Events
must pass the Good-Runs List (GRL) requirement, meaning that only events that occurred
during high-quality beam conditions are considered and only if the ATLAS detector was fully
operational and in good quality. This ensures that corrupted luminosity blocks are rejected
and that only good quality data are considered. If any errors are reported from the SCT or
LAr and Tile calorimeters, it is assumed that the ATLAS detector was not in good quality and
the events are discarded. Events that were partially reconstructed due to a TTC restart are

also discarded.

Events containing any number of bad quality jets are rejected, in a process known as “jet
cleaning”. These are jets that are suspected to have originated from non-collision backgrounds
or calorimeter noise. The selection is enforced by requiring that all jets pass the LooseBad
selection working point. Non-collision backgrounds are further reduced by requiring that the
leading jet in each event also passes the TightBad selection working point which has more

stringent criteria than the former one.

Trigger selection

Two types of triggers are used to select the events for this analysis. As the main feature of the
p%liss + jets final state is the large amount of missing transverse energy, events in this region are
selected using the lowest unprescaled p° trigger in every run period of the years 2015, 2016,
2017 and 2018. The second level of the trigger system, the HLT, does not use information from
the muon systems in the calculation of the trigger-level p%liss. Muons are therefore invisible to
the trigger algorithm and events containing muons can be selected using the p*° triggers. For

this reason, events in the 1u + jets and 2u + jets regions are selected using the same triggers
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as the ones in the p%liss + jets region. Events in the le 4 jets and 2e + jets regions are selected
using the lowest unprescaled single electron trigger in every run period of the whole Run-2 data
taking period. The triggers used for each region in each year of data taking are summarised in

table 3.3.

3.5 Datasets and Monte Carlo simulation

The datasets used in this analysis were collected by the ATLAS experiment during the Run-2
data taking period, in the years 2015, 2016, 2017 and 2018. The complete dataset corresponds
to an integrated total luminosity of 139.0 b of proton-proton collisions at a centre-of-mass
energy of \/s = 13 TeV as shown in Figure 2.2 of Section 2.1. Only data that were collected
during high quality beam and detector conditions are considered, following the requirements
described in section 3.4.2. The uncertainty on the total integrated luminosity is derived from

the calibration of the luminosity scale using z-y beam separation scans [29].

Standard Model processes contributing to the fiducial phase-space considered in this analysis
are simulated using dedicated Monte Carlo chains known as the ATLAS simulation framework.
The simulation chain begins with the event generation, where the matrix element (ME) of a
scattering process is calculated at leading order (LO) or next to leading order (NLO) using
a dedicated parton density function (PDF) set, which describes the distribution of partons
inside the proton. The underlying event, describing low-energy processes resulting from the
proton-proton collision additional to the hard scattering process, is also calculated. Secondary
particle emissions are evolved in time using a parton shower model which describes both the
initial and final state radiation of the event (ISR and FSR). Models of hadronization are
then employed, combining free quarks and gluons to form colourless particles. Additional
proton-proton collisions in the same bunch crossing (pileup) are overlaid. These additional
proton-proton collisions are based on soft QCD processes simulated with PYTHIA 8.186 [50]
using the NNPDF2.3L0 PDF set [51] and the A3 set of tuned parameters [52] over the original

hard-scattering event. Finally, the resulting event is passed through GEANT4 [53, 54] for a full
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Region Trigger requirement
2015:
HLT p™ > 70 GeV
) 2016:
T 4+ jets miss
pr T Jets, HLT p7™* > 90 GeV
1p + jets &
2p + jets _2017'
HLT p7™ > 110 GeV
2018:
HLT p™ > 110 GeV
2015:
Loose electron pp > 120 GeV

Medium electron pp > 24 GeV
2016:

Loose electron pr > 140 GeV
Medium electron pp > 24 GeV
Tight electron pp > 24 GeV
2017:

Loose electron pp > 140 GeV

le + jets &
2e + jets

Medium electron pp > 60 GeV
Tight electron p > 26 GeV
2018:

Loose electron pr > 140 GeV
Medium electron pp > 24 GeV
Tight electron pp > 24 GeV

miss

Table 3.3 A summary of the trigger requirements applied to the pt~ + jets region and the four

miss miss

lepton-based regions. The pp - calculated by the HLT is used to trigger events in the pp + jets and
the two muon regions. The pr of single electrons is used to trigger events in the two electron regions.
Different pp cut-offs are used for electrons satisfying the Loose, Medium and Tight likelihood working

points.
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simulation of the ATLAS detector and is then reconstructed with the same analysis chain used

for the data.

A detailed description of the Monte Carlo samples used in the analysis, along with informa-
tion on the event generators, parton shower and hadronisation models used to produce them

can be found in appendix A.

Monte Carlo event reweighting

Simulated events are often reweighted to correct for various effects. For the simulations used in
this analysis pathological large-weight events in the SHERPA samples that can lead to unphysical
distributions are removed by setting the event weight to unity if the absolute value of the weight

exceeds 100.

The central SHERPA 2.2.1 samples exhibit a difference in the boson pt spectrum for the
electron and muon channels at the level of 5-10 %, with lepton universality being restored
in the bugfix release 2.2.2. The muon channel is observed to be consistent between the two
versions, while the electron channel is not. A reweighting function has been derived from the
ratio of centrally produced Z — ee-to-Z — pp samples and is used to correct the central
SHERPA Z — ee samples for this pp dependence. A similar reweighting function needs to be
applied to the central SHERPA W — er samples but it is not included in this work. This leads

to discrepancies between the le + jets and 1u + jets regions which are discussed in Section 5.2.

The SHERPA V+jets samples have also been reweighted to approximately account for higher-
order electroweak effects. The electroweak corrections are based on a fixed-order calculation at
next-to-leading order accuracy in the electroweak coupling, performed in [55]. The numerical
values from the paper have been made publicly available by the authors and are used in this
analysis to reweight the SHERPA V +jets samples as a function of the inclusive boson transverse

momentum.
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All events are reweighted using multiple scale factors per lepton, to account for known
efficiency differences between data and simulation. The scale factors correct for effects such as

lepton identification, reconstruction, isolation and track-to-vertex-association.

The level of pileup in each event is quantified by the average number of inelastic interactions
per bunch crossing, (u). It can be estimated by using the instantaneous luminosity, the inelastic
pp cross-section and the corresponding beam parameters for the relevant luminosity blocks.
The MC events are weighted to reproduce the distribution of the average number of interactions
per bunch crossing observed in the data, referred to as “pile-up reweighting”. In this procedure,
the (u) value from the data is divided by a factor of 1.03 & 0.04, a rescaling which makes
the number of reconstructed primary vertices agree better between data and simulation and

reproduces the visible cross section of inelastic pp collisions as measured in the data.

Slicing of SM samples

The SHERPA V +jets samples are generated in slices which need to be combined according to their
relative cross-sections. This ensures sufficient statistics in the tails of kinematic distributions.
For W and Z bosons decaying into charged leptons, the slicing is done based on the maximum
of the boson pt and the Ht in the event. For the Z — vv samples the slicing is based on a
combination of the Z boson pp and the dijet invariant mass in events with at least two jets.
These different slicing choices lead to differences in the actual predictions when the slices are
merged and has the potential to affect the unfolded data through the unfolding procedure. This

is further studied in Section 4.8.

Single-top Wt associated production

Two samples for the single-top Wt associated production process are provided, differing in
the subtraction scheme they use to account for interference terms between top-pair and Wt
associated production. These are the Diagram Subtraction (DS) and Diagram Removal (DR)
schemes [56]. Studies on top-enhanced control regions in appendix B.2 show that the DS

subtraction scheme provides better modelling of the top contributions in all of the regions
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considered in this analysis. The MC sample using the DS subtraction scheme is therefore
chosen as the default one to use. The effect of using the alternative DR sample to simulate this

process in the unfolding procedure is studied in Section 4.6.

3.6 Uncertainties

Experimental systematic uncertainties

Each of the methods described in Section 2.3, involving the calibration, energy scale and
energy resolution of physics objects, has an associated experimental systematic uncertainty. To
propagate such uncertainties to the final measurement, each calibration method is assigned
a list of nuisance parameters. Each nuisance parameter is varied by one standard deviation
around its nominal value, corresponding to the uncertainty of the calibration method. The
effect of each uncertainty on the detector-level result is calculated by varying one nuisance
parameter at a time, recalibrating all physics objects and repeating the simulated measurement.
The resulting relative shift of the final distribution compared to the nominal one is taken as

the systematic uncertainty associated with the calibration method being varied.

The dominant systematic uncertainties arising from the jet calibration procedure come from
the in-situ corrections used to correct for differences between the data and the MC and the
modelling of the events used in the calibration. Together with systematic uncertainties coming
from the jet flavour composition, the jet energy scale calibration and the treatment of pile-up
jets, they are grouped into the JES systematic uncertainty. Additional systematic uncertainties
come from the jet energy resolution (JER) calibration, the contribution of soft terms to the

calculation of p%ﬂss and the reweighting of recorded events to account for pile-up effects.

Additional experimental systematic uncertainties arise from the reconstruction and treatment
of leptons, and the differences between the performance of these methods in data and in
simulation. These differences are accounted for by applying a scale factor on the event weight
for each lepton being selected and processed. The scale factors are provided by dedicated

ATLAS performance groups and are estimated in measurements of well-known SM processes.

73



3 The p%iss + jets analysis 3.6 Uncertainties

As before, each scale factor is varied by one standard deviation around its nominal value and
the uncertainty associated with it is propagated to the final result. The analysis presented
here considers experimental systematics arising from the electron and muon energy scale and
resolution, and the electron and muon identification, isolation, reconstruction and trigger
efficiencies. Additional systematic uncertainties arising from the muon track resolution and

muon track-to-vertex-association efficiency are also considered in the muon regions.

A breakdown of how each group of systematic uncertainties affects the MC prediction for
the p%liss distributions of all regions in the > 1 jet phase-space is shown in Figure 3.3. The
dominant systematic in all regions is the one coming from jet calibration techniques. This
uncertainty is expected to be considerably reduced in the construction of R™ since it is

highly correlated between processes. In regions containing leptons, the second most dominant

systematic is the one associated with the lepton efficiencies.

3.6.1 Theoretical systematic uncertainties

Uncertainties on the top-pair, diboson and triboson samples come from PDFs and the renorm-
alisation and factorisation scale choices, the latter of which accounts for missing higher-order
QCD effects. In each case the PDF uncertainty was estimated by taking the standard deviation
of the 100 Monte Carlo replicas of the default NNPDF3.0NNLO set, as well as by reweighting to
the alternative CT14 NNLO [57] and MMHT [58] PDF sets, and taking the envelope of these
contributions as a combined PDF uncertainty. In case of top-pair production, the NLO versions
of the PDF sets are used to match the PDF choice used for the nominal. In addition, upwards
and downwards variations in the strong coupling constant, ag, are evaluated and added in

quadrature with the combined PDF uncertainty.

The scale uncertainties were estimated using seven sets of values for the renormalisation
and factorisation scales obtained by independently varying each to either one half, one, or two
times the nominal value (using the multiweights available in the MC samples). The envelope of

these variations is taken as the uncertainty. For top-pair production, the factorisation scale in
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3.3 Systematic breakdown for pp in the > 1 jet
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the parton shower is varied up and down by a factor of two for ISR and FSR separately. These

two uncertainties are added in quadrature with the other uncertainties.

An additional uncertainty on the top samples comes from the choice of treatment of the
overlap between top-pair and Wt single-top associated production events. This is estimated
by using the recommended alternative prescription to remove the overlap (Diagram Removal

rather than nominal Diagram Subtraction).

For the dominant V +jets samples, a more sophisticated uncertainty model is used, based on
the recommendations in [55]. This includes the PDF uncertainty and the standard seven-point
scale variations, including those in the parton shower. In addition to this, a shape uncertainty
(versus the pr of the boson) due to the scale variations is given. As recommended in this
reference, the scale variations are assumed to be fully correlated between the different processes.
The contribution to the scale uncertainty that is uncorrelated between Ws and Zs is estimated
from the difference in the NLO K-factors’ with respect to the average of the K-factors in the
various channels. The impact of parton showering on the jet-balancing cuts as well as the
central-jet veto in the VBF region is estimated by varying the resummation scale by factors
of two and one half. For the m;; distribution an additional shape uncertainty is estimated by
taking the diffrence in the prediction using the nominal METS scale setter in SHERPA, compared
to the prediction using m;; as the central scale choice. The logic here is that there are actually
two hard scales in the event coming from the pp of the boson and m;;. While the latter is
found to give a reasonable modelling of the m;; distribution, this particular scale choice can
only be constructed for events with at least two additional parton emissions in the matrix

element, which makes it difficult to reweight the nominal prediction.

Theoretical uncertainties mostly affect the particle-level predictions to which the unfolded
data is compared to. There are also small contributions of theory uncertainties to the systematic
uncertainty applied on the unfolded data due to their effect on the unfolding procedure. This

effect is further studied in Section 4.6 for the theory uncertainties arising from the modelling of

“The NLO K-factor of a process is defined as the ratio of cross-sections at NLO and LO for that process.
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V+jets and top-pair production and the treatment of the overlap between top-pair and Wt

single-top associated production events.

3.7 Detector-level results

In this section comparisons between detector-level data and the SM prediction are shown for
the p?iss + jets, le + jets, 1u + jets, 2e + jets and 2u + jets regions. Each of the contributions
to the SM prediction are shown as stacked histograms. Backgrounds from QCD multijet events
are included in the SM histograms for the p%ﬂss + jets region and only for the one-dimensional
distributions. These backgrounds contribute mainly to the low-p1™ and high-A¢;; bins and
only at the level of 1-2%. The estimation of these backgrounds in the lepton regions is still
in progress at the time of writing and so these backgrounds are not included in the following
comparisons. They are expected to contribute mainly to the high—p?iSS region of the le + jets
region with negligible contributions in the rest of the lepton regions. In the bottom panel of each
Figure a ratio of detector-level data to MC is shown where the statistical uncertainties are shown
as error bars. Systematic uncertainties added in quadrature to the statistical uncertainties are
only shown in the ratio panel as a band with hatched lines. The band includes the experimental
systematic uncertainties discussed in Section 3.6. Theoretical systematic uncertainties on the
particle-level SM predictions are shown as a pink band. Large statistical contributions to
the calculation of these uncertainties lead to shape differences in the theory uncertainty band
between regions. These fluctuations are expected to reduce with a more precise calculation
of the theory uncertainties, which is currently in progress. Since this is an ongoing analysis,
the p%ﬁss + jets region is blinded to the 2017 and 2018 datasets to avoid biases in the analysis’
strategy and methodology. Comparisons between data and MC in the p%liss + jets region are

instead shown only using the 2015 and 2016 datasets and the corresponding MC campaign.

Figures 3.4, 3.5 and 3.6 show comparisons between data and MC for p™ and p=™* vs

p%, in the > 1 jet phase-space for all regions. A 10% to 20% discrepancy in the agreement
between data and MC in the p?iss distribution is seen in all regions. However, the shape of the

distribution is reasonably well modelled and deviations from the MC prediction observed in the

7
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data are covered by the theoretical systematic uncertainties. A slightly larger disagreement

between data and MC is observed for low values of p™ in the 2e + jets lepton region compared

to the 2 + jets lepton region. The absence of a QCD background estimate in the le + jets

region leads to an increase in the ratio between data and MC in the tails of the distribution. For

the p™™* versus pgrl distributions the ratio between data and MC decreases with increasing values

1

of p7 for all regions. This is again covered by the band of theoretical systematic uncertainties,

which are estimated using the uncertainty versus pr > in each region.

Figures 3.7, 3.8 and 3.9 show comparisons between detector-level data and MC for p%ﬁss, mjj,

and Ag¢;; for all regions in the > 2 jet phase-space. Figures 3.10 and 3.11 show comparisons

for m;; vs Ag;; for all regions in the > 2 jet phase-space. Overall shifts in normalisation and

shape discrepancies in the p%liss distribution are similar to those seen in the > 1 jet region. The
my; distribution is badly modelled by the MC in all the regions with the MC exhibiting a much
harder m;; distribution than the data. This can also be seen in Figures 3.10 and 3.11 where
the ratio between data and MC decreases for slices with larger m;; values. The theoretical

uncertainties on these Figures are estimated using the uncertainty versus m;; in each region

and cover most of the discrepancies. The fact that this mismodelling is similar for all regions
indicates that using the lepton regions to constrain experimental and theoretical uncertainties
in the p?iss + jets region will be effective. The A¢;; distribution is peaked towards small
values, for jets produced close to each other, with a dip at very low values as the jets cannot be
exactly on top of each other. The data has a slightly more peaked structure than the MC in all
regions. The discrepancy in the shape becomes more pronounced at larger m;; values, as seen

J

in Figures 3.10 and 3.11.

miss

Figures 3.12, 3.13 and 3.14 show comparisons between detector-level data and MC for pp

mj;, and Ag;; for all regions in the VBF phase-space. Figures 3.15 and 3.16 show comparisons

33>

fOI' mJ]

vs A¢;; for all regions in the VBF phase-space. The agreement between data and
MC in the p™* distributions exhibits a similar pattern to those in the > 1 jet and > 2 jet
phase-spaces. The m;; is badly modelled in a similar way as in the > 2 jet phase-space, although
a better agreement is observed in this phase-space. In the VBF phase-space there is a much

larger contribution from the EWK production of V+dijets events compared to the > 2 jet
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phase-space, which appears to be better modelled. The Ag;; distribution has a larger dip at
low values, compared to the same distribution in the > 2 jet phase-space, due to the additional
mj; > 200 GeV requirement in this phase-space. The discrepancies between data and MC are
similar to those seen in the > 2 jet phase-space. The agreement in the m;; vs A¢;; distribution

of Figure 3.15 also exhibits similar patterns as the one in the > 2 jet phase-space.
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Figure 3.4 Detector-level data/MC comparisons for pp®

S

in the > 1 jet phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction. The dominant contributions to the pr

misS | Sets region

at low pT™ come from the Z — vv (~49%), W — (v (~38%) and T (~8%) processes.

80



3.7 Detector-level results

8 The p%liss + jets analysis

ot} smoys pueq £a13 oy, ‘wordax syal +  Ld oty 103 soeds-eseyd 1o 1 < o7y ut {Ld sa

ssTur

[heo]
000€ > ‘d 181 Buipes| > 000T 0001 > ‘d 18! Buipes| > 009 000 > ‘d 18 Buipes) > 02T
T

= 2
3 g 23 o @ N g 2 ~ a w N 3 @ w N N
@ =] =} N © o =] 1=} o N © o =] = © F o
© N I ? @ @ N e e ? ? @ n ? ? @ ?
[=3 o ~ o w i=3 o ©o ~ o w k=3 ~ o @ N
[0} [=3 B © ~ @ [=3 B = © ~ @ i=3 © ~ @ P~y
< S o =3 o o S <) o =3 o o S =3 o o o

(dxe)1s4s 0 ve1s T
(z'zediays) 11 -7z N
(8hdmod) doy aj6uis [

(z'zediays) al —m [0
eleq ——

(Kioay) 1shs [
(zzedsys) i -z [0
uosoqu + uosoqia [
(8hdmod) 1 [l (z'zedidys) ne —m

(z'zediayg) @8 -7
(22 ediays) A ima

(czedioys) a1 - [ (zzedieus) an -z

Sd 18l T 2 'Sjel+egad
ASLET=S) ', G 0'9E = s._.ﬂ
feusol| SYILY

St NTo©
"+ oo

‘uo1parpaxd NG [9AST-0[d11IRd ST} UO SOTJUTRIIIIUN [BIT}OIOAN]) Y} SMOYS pueq Yuld ST ], 'SOIJUILLIOUN DIJEUIIISAS PUR [RIIPSIFR)S JO UOIRUIGUIOD

Ld 103 suostredmion HIN/eyep [049]-1030039( G'¢ 9INIIq

OWrered

SJUDAD JO JaquINN

81



3.7 Detector-level results

3 The p1™™ + jets analysis

‘uo1)a1paid NS [oAS[-9213Ied 9T[} TUO SITPUTRIIIOUN [BII}DI0) OT[} SMOYS pureq uld o], "SOTJUTRLIIIUN DIJBUII)SAS PUE [BII)STIRIS JO UOTJRUIGUIOD ) SMOYS

pueq £013 oy, 'suorde1 syol + 5z pue s19[ + )T oY) 10§ soeds-eseqd 10[ T < o) ur iLd sa  Ld 1

[A99] ssud

199] ssusd

(o]

0007 > “6 191 Buipea) > 0gn

09> *d 1ol Bupes) > o1

002-070T.

prot-6z

bez-oss
15088

bee-00z

002-070T.

prot-ote
T6-06L

ber-ois
15088

2-06L.

bez-ois

1508

pee-ovz

- oo

(zzedieys) 1~z [
(z'zediays) i ~z [0
(8hamog) doy aiburs ([

(dxa) 1545 0 1eis )
(z:zedsous) A sm3a [ uosoqu. + uosoaia ([
(z'zedieys) m —m ([ (8hamod) 1 (I
(z'zediays) ar —m [ eleq

(woau) 15s )

sd1l T2 519l + 1
NSLET=SP' G O6ET = .u._‘ﬂ
fewiBl SYILY

[h9oo]
g g 4 g M 3 q y n
H &8 g & F : I
E & 3 ¢ g g 2 8 8 B

prot-o6:
61015
1508
8€-002

(zzedioys) m ~m ([
(z'zedioys) A sma [
(z'zedipys) a —m [

(dxa)1shs 0 1ess [
(zzedious) 1 7 [l (8hamod) dor aiuss (D
uosoquy + uosoaia ([ (®amod) » [
(z'zedioys) id -z [0 ereq

(Rioau)1shs [

sdl TSl +1ig
NOLET =S QI 06ET = .E.ﬂ
fewRw SYILY

Orerea

S1U2A3 0 J3qUINN

Owrereq

SIU9A 10 JaqUINN

[A99] ssud

1A99] ssisd

oot > “d 13l Buipesy > og0

09> *d 1ol Bupes) o1

prot-o6z

beL-oss
15088

bse-00z

002-070T.

prot-ote
T6-06L

bez-ois
15088

2-06L.

bez-ois

15088

pee-ovz

prz-00z

(z'zedieus) 11 -z [
(zzedioys) @ -7
(8kamod) doi aiurs ([

[CORSIRLEY |

(z'zedious) A sm3a [l uosoquy + uosoaia (I
(zzediys) a ~m [ (84amod) » ([
(czedious) 0o ~m ereq

(hi0au)1shs [

Sd1al 12 sl + a7
ASLET =) ,_enmﬂnﬁ.;
fewBl SYILY

[h9o]

0001 > *d 101 Buipeay > g9

009> “d 101 Bupeay > gz

R EEERE RN

(zzedieys) &~ m [
(z'z edieus) A m3a [
(zzediays) aa ~m

(dxe) s 0 veas [
(zzedious) 11~z [l (©dmod) dor ajburs (D
uosoqu + vosoaia [ (®hamod) » [
(zzediays) 92 ~7 eeq

(Kioaw) 1shs [

Sd el T2 sl + 9z

ASLET =S Q) 06ET = uﬂ.ﬂ
fewll SYILY

o} suostredmiod DA /eep [9A9[-1032019(] 9°¢ 9INSIT

owrerea

S1U8A3 0 J3qUINN

Owrerea

SIU9A3 10 JaqUINN

82



3 The p%liss + jets analysis

3.7 Detector-level results

= T T T T T T T T
3 ATLAS Internal e Daa Wz v sreneza) [ o henaza)
=y [ron=as0m’ =sarev [ wisresaza [ - o resaza [ eoorern
gl s 2P [ e o onrs [ i [ T———
. EWK Vjj (Sherpa 2.2) . 2o wr(snerpaz2) [ 2~ pn (Sherpa 2.2)
[z cesnemaza) [ smasystien  []osttmeon
Q = |
H
] > ST T
'/ '/ '/ '/ '/ '/ '/
700 500 00 T000 1200 1400 1600 1800 2000
Py [GeV]
s T T T T T T T T s T T T T T T T T
<] ATLAS Intemal - [z cecsnemaza [ w- v rem2a) <} ATLAS Internal e D [0 2 wssrepaz) [ - w sverpaze)
3 X ) "
= 13900 i = =) - -
ai J;:‘:e ‘:3)9 :J:l '; f 137ev [ B [ oveson ivoson. [ ewrvi shepaz) i {:1]9[ :3)9 20:[ '.’ SE 13Tev Wcorn [ ovoson« rvoson. [ v vi svema 22y
ks 2 v ° e - -
W oo [z snenaza - semes W 5o poer [z srenaze) [ o sneraza
st 0 syst (exp) D syst (heory) st 0 syst (exp) D syst (teory)
] g 14F
K] 3 12f
5 7
[=} [=]
700 500 800 000 1200 1400 1600 1800 2000 700 500 500 T000 1200 1400 1600 1800 2000
Py [GeV] Py [Gev]
s T T T T T T T T s T T T T T T T T
<] ATLAS Intemal — [w-evnemza [ sroe o corern <] ATLAS Internal e Dan Wy v sremzn [ o o
3 N P e = - =
5 Jursmon' Gorrey s e veemsn [l ccmmzn o Junmowt ovey gy - vz [ msemza
i, £,
L le +jets, = 2jet PS Bl% 1u+jets, 2 2jet PS
® [ ovosn - Toseson. [ evcvisreraz) [z v shepaza) < [l ovosn - Tesoson. [ vy sremazay [z v sremaza)
stal 0 syst (exp) D syst (teory) st 0 syst (exp) D syst (heory)
o E = | (8]
g 14 T Q
s 1 2E e » Ligssy & s
4 . (270 L 4
a 1] a
08 3 08
0. 06
S i St |
200 700 500 800 000 1200 1400 1600 1800 2000 200 700 500 500 T000 1200 1400 1600 1800 2000
o (Gev] o (GeV]

Figure 3.7 Detector-level data/MC comparisons for p

S

® in the > 2 jet phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

miss

uncertainties on the particle-level SM prediction. The dominant contributions to the p1> 4+ jets region

at low pT'™> come from the Z — vv (~43%), W — fv (~37%) and I (~15%) processes.
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Figure 3.8 Detector-level data/MC comparisons for m; in the > 2 jet phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction.
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Figure 3.9 Detector-level data/MC comparisons for A¢,; in the > 2 jet phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction.
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Figure 3.12 Detector-level data/MC comparisons for p%ﬂss in the VBF phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction. The dominant contributions to the pr

misS | Sets region

at low pT™ come from the Z — vv (~48%), W — (v (~40%) and T (~4%) processes.
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Figure 3.13 Detector-level data/MC comparisons for m,; in the VBF phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction.
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Figure 3.14 Detector-level data/MC comparisons for A¢;; in the VBF phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction.
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Chapter 4

Correcting for detector effects

4.1 Introduction

Measurements can be presented in terms of particle-level objects so that they are easily and
directly comparable to particle-level predictions. These can also be rapidly compared to BSM
simulations without the need to simulate the ATLAS detector, making them optimally useful
long into the future and for quick reinterpretation studies. Any improvements to precision
predictions of SM background processes can also be included and the data can be re-interpreted
taking those into consideration. Measurements at the particle-level are usually presented
as differential cross-sections and are determined by correcting the reconstructed differential
distributions of events for detector effects, in a process known as “unfolding”. These effects
include the acceptance, efficiency, resolution and calibration of the detector. Some useful

terminology involved in the unfolding procedure is defined below:

¢ Reconstruction efficiency Due to the efficiency and acceptance of the detector, only
a fraction of particle-level events will be reconstructed and included in the measured
distribution. The reconstruction efficiency (€) accounts for this and is defined as the ratio
of simulated events which pass both the particle and detector-level selections to all events
passing the particle-level selection, as a function of the particle-level value of the variable

being unfolded.
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e Fiducial fraction Due to the resolution of the detector, events which do not pass the
particle-level selection can still pass the detector-level selection and be included in the
measured distribution. The fiducial fraction (¢) accounts for these “fake” events and
is defined as the ratio of simulated events passing both the particle and detector-level
selections to those which pass only the detector-level selection, as a function of the

detector-level value of the variable being unfolded.

e Migration matrix Events in a specific bin in a particle-level distribution can migrate
to a different, neighbouring bin in the measured distribution. This is due to the variable
of interest being reconstructed with a higher or lower value than its true value, resulting
in the event filling a different bin. The migration matrix (M) maps the particle-level
distribution on to the detector-level distribution by keeping track of the final bins of events
passing both the particle-level and detector-level selections. The elements of the migration
matrix give the probability that an event in a particle-level bin 7 will be reconstructed at

detector-level in bin <.

e Fiducial purity This is equivalent to the diagonal of the migration matrix. The fiducial
purity (p) gives the probability that an event will be found in the same bin at the particle

and detector-level.

The information above can be used to define the response matrix (R),

Rij = Mje;; (4.1)

which, together with the detector-level distribution of the reducible background (b), relates the

detector-level measured distribution r to the particle-level distribution ¢,

(VA

where ¢ and j indicate the bin indices at the detector and at the particle-level respectively.
In a similar way, an unfolded distribution u can be related to the detector-level measured

distribution by inverting the same response matrix and using the background-subtracted
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measured distribution,
u; = Ry, (r; — by) (4.3)

At this step, unfolding by matrix inversion becomes non-trivial. Even if the response matrix is
invertible, solutions to the above equation can be unstable due to the nature of the measured
values r;, which are random variables following Poisson distributions. Statistical fluctuations in
the measured distribution can lead to large statistical uncertainties in the unfolded particle-level
distribution when the fiducial purity is low and the off-diagonal elements of the response matrix

are large. This can be dealt with by adding a regularisation process in the unfolding procedure.

In this analysis, the Iterative Bayesian Unfolding method is used along with Bayes’ theorem
to invert the response matrix and add this regularisation step. Extracting the reconstruction

efficiency and fiducial fraction out of the response matrix, equation 4.3 can be re-written as

1

u; = Z P(in true bin j | in reconstructed bin i)(r; — b;) (4.4a)
6]' i
1 Z P(in reconstructed bin i | in true bin j)P(in true bin ])( b) (4.4b)
= r; — b :
€0 P(in reconstructed bin ) v

which introduces a prior particle-level distribution t©. The above equation can be more

compactly expressed as

(0)
m_ 1 Rijt;
uy ! = (r; — b;) (4.5)
J ej ¢1 i zq: qut((lo)

The particle-level distributions t*) and the unfolded distributions u*) are identical, with the

only difference being that u®

)

is nonsensical since a prior unfolded distribution does not exist.

Contrarily, +(© (1)

2)

can be modelled using MC simulations. Using u'"’ as the prior, a second solution

u'” can be computed and so on, with every iteration using the previous unfolded result as the
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(0) (0)

prior and ¢"” as u*’. Equation 4.5 then becomes

(k—1)
W _ 1 Riju;
’ €% T Y Riquék_l) | ) o
q

where the number of iterations k is the regularisation parameter.

The regularisation bias, which is introduced when using the MC-calculated prior truth
distribution t(o), is reduced with every iteration as the shape of the detector-level data distri-
bution is used to calculate the next prior. Increasing the number of iterations decreases the
regularisation bias and the dependance of the result on #© but comes with the drawback that
as k increases so do the statistical uncertainties on the unfolded result. In practice, two or

three iterations are usually enough for the regularisation bias to be negligible.

4.2 Optimising the number of unfolding iterations

Optimising the regularisaion parameter k reduces to finding the minimum number of iterations
for which the regularisation bias converges, preferably to a neglibible value. A non-negligible
regularisation bias is treated as a systematic uncertainty and is propagated to the final unfolded
result. The regularisation bias can be quantified and estimated using the data-driven method

described in detail in [59] and summarised below.

First, a smooth polynomial function is obtained by fitting the agreement between the
measured data and the detector-level MC. Events that pass both the particle and detector-level
selections are then identified and reweighted at the particle-level using the smooth polynomial,
such that the resulting reweighted detector-level distribution matches the measured data. This
reweighted detector-level distribution is then unfolded using the nominal response matrix
from the un-reweighted MC, keeping the efficiency and fiducial fraction at unity so as not
to introduce any additional effects coming from the migration of events in and out of the
phase-space. The regularisation bias is defined as the ratio between the unfolded reweighted

MC and the reweighted prior particle-level distribution.
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Figure 4.1 Statistical and regularisation bias systematic uncertainties for multiple values of k for
(a) PT5, (b) m;; and (c) A¢,;; in the VBF phase-space in the 2 + jets region. The regularisation bias

converges to a minimum for k£ = 2.

The statistical and the regularisation bias systematic uncertainty for multiple values of &k
are shown in Figure 4.1 for three different observables in the 2u + jets region. The setting
k = 1 represents the first iteration of Equation 4.6, where the particle-level distribution 0 i
taken as the prior. From the figures it can be concluded that 2 iterations are enough for the
bias to converge to a minimum. The same applies to the rest of the observables considered in

this analysis.
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4.3 Binning optimisation

The binning of a distribution is usually preferred to be kept as fine as possible so that the
features of the shape of a distribution are resolved. This is not always possible since extremely
fine binning can lead to large migrations of events between neighbouring bins. This would
result in a low fiducial purity and large off-diagonal elements in the response matrix which, as
discussed in Section 4.1, lead to large statistical uncertainties in the unfolded result. Bins must
also be wide enough so that they are well populated. The binning of both the one-dimensional
and the two-dimensional distributions measured in this analysis is optimised by requiring the

following criteria:

e The fiducial purity of each bin must be at least 60 %.

e Each bin must have at least 20 expected events so that the expected statistical uncertainty

is always < 25 %.

This is achieved by initially binning the p%liss and m;; distributions with 10 GeV width
bins and then sequentially merging bins until the purity and the expected number of events
satisfy the above criteria. The p™ and m; observables are expected to have steeply falling
distributions due to the limited number of events involving very energetic invisible systems.
This results in a finer binning at low values of the observables and a wider one in the tails of
the distributions. The shape of the Ag;; distribution is expected to be relatively flat and so
a binning with 20 equal width bins is chosen, spanning from —7 to +m. The Ag;; binning
satisfies the criteria set out above, with wider bins than what the minimum requirements
allow. Nevertheless, the chosen binning is expected to be fine enough to differentiate between

possible new physics models and be sensitive to CP-even and CP-odd models, while keeping

computational memory consumption at a minimum.

Requiring that the binning of the two-dimensional distributions satisfies both of the above
requirements leads to having to choose slightly different binning between the slices of the
miss

secondary observable. For the pp " vs p%l distribution, different pairs of p%iss bins have to be

merged in each slice of pZE so that the fiducial purity is at least 60 % in every bin. For the A¢,;
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vs my; distribution, bins of A¢;; have to be merged in the first two slices of m;; in the > 2 jet

phase-space so that all bins are populated with at least 20 events.

4.4 Detector response

As seen in Equation 4.6, three different pieces of information are needed to perform the unfolding
and obtain a particle-level measurement from a detector-level one: the migration matrix, the
reconstruction efficiency and the fiducial fraction of the region in consideration, as a function
of the observable being unfolded. These are all obtained from simulation as described in the

introduction and together they define the detector response.

Migration matrices for p™ in the > 1 jet phase-space are shown for all regions in Figure 4.2.
Identical binning is used at the detector and particle-level to keep the extrapolation to different
topologies at a minimum during the unfolding process, resulting in square-shaped migration

matrices. The reconstruction efficiency, fiducial fraction and fiducial purity as a function of

P are shown in Figure 4.3 for all regions. Corresponding figures and migration matrices for

all other observables and phase-spaces can be found in appendix C.

The efficiency is lowest for the 2e + jets region due to the inefficiency of reconstructing
miss

both electrons. The efficiency in this region decreases further in bins with large values of pp

This is because in events with large p%ﬂss (and hence large Z boson pr) electrons are produced

close to each other causing calorimeter based isolation criteria to fail. The highest efficiency is

seen in the p%liss + jets region which has no leptons to reconstruct. This pattern is seen in the

efficiency plots of all observables. The fiducial fraction is lowest in the p%iss + jets region due to

the presence of W events with in-acceptance leptons. These events are considered as part of the

signal and are included in the p%ﬂss + jets region at the detector-level when the detector-level

lepton is not reconstructed due to inefficiencies of the detector. However, since the lepton is

in-acceptance, these events are not included in the p%liss + jets region at the particle-level,

causing the region to have a lower fiducial fraction. The le + jets fiducial fraction is also lower

than the other regions, which could be due to migrations in the real p** cut that is applied
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only in this region. The migration matrices and purity plots are similar between all regions
as migrations between neighbouring p't™ bins are very similar between all regions. The same

patterns are seen for the rest of the observables in the > 2 jet and VBF phase-space.

4.5 Uncertainties

The statistical uncertainty on the unfolded data is evaluated using the bootstrap method [60, 61]
where a detector-level data distribution is poisson fluctuated, producing 2000 replicas. Each
replica is then unfolded using the nominal detector response, resulting in 2000 unfolded
distributions. The root-mean-square (RMS) of the results per bin is taken as the statistical
uncertainty in that bin. The bootstrap method allows for statistical correlations between bins,
introduced in the iterative part of the unfolding, to be properly propagated to the unfolded

result.

Two groups of systematic uncertainties must be accounted for and applied to the unfolded
data. The first group consists of experimental systematic uncertainties that affect the detector-
level measurement and have to be propagated to the unfolded measurement. These are discussed
in subsection 4.5.1. The second group consists of systematic uncertainties that are associated
with the unfolding method itself. These are discussed in subsectons 4.5.2 and 4.5.3. Theory
systematic uncertainties affect the particle-level predictions used in data and MC comparisons
but can also affect the unfolded data through the modelling of the detector response. These

effects are studied in sections 4.6 and 4.8.

4.5.1 Experimental systematic uncertainties

The systematic uncertainties that affect the detector-level measurement are discussed in
section 3.6 and listed in tables 77 and ?7. The effect of each systematic uncertainty on the
unfolded measurement is determined by using the systematically varied MC to construct the
detector response and repeating the unfolding procedure with the varied detector response

as input to Equation 4.6. This effectively produces one unfolded result for each systematic
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Figure 4.3 (a) Reconstruction efficiency, (b) fiducial fraction and (c) fiducial purity of the pT

distribution in the > 1 jet phase-space for all regions.
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variation. The relative shift of the unfolded result produced with the varied detector response
compared to the one produced with the nominal detector response is taken as the unfolded
systematic uncertainty. A breakdown of how each group of systematic uncertainties affects the
unfolded measurement is shown in figure 4.4 for the p't™ distributions of all regions in the > 1
jet phase-space. The effect of each systematic group on the unfolded data follows the same
trend as the one seen on the detector-level results, with the dominant systematic in all regions
coming from the jet calibration techniques. In regions containing leptons, the second most
dominant systematic is the one associated with the lepton efficiencies. Similar figures showing
how each group of experimental systematic uncertainties affects the rest of the observables can

be found in appendix D.

4.5.2 Hidden observables systematic

The regularisation step of the Iterative Bayesian Unfolding method requires a prior particle-level
distribution which is taken from simulation. This introduces a dependance of the unfolded
result on the modelling of the variable being unfolded which is quantified in the regularisation
bias systematic and minimised in the iterative part of the method as discussed in Section 4.2.
However, the unfolded result is also indirectly dependent on the modelling of variables different
than the one being unfolded, often referred to as “hidden observables”. This can be quantified
in a hidden observable systematic by following the same procedure outlined in Section 4.2
but this time reweighting events at particle-level so that the detector-level MC distribution
of the hidden observable matches the one measured in the data. Figure 4.5 shows the hidden
observable systematic coming from the modelling of the leading jet p in the 2e + jets region
for three observables of interest. For the chosen number of iterations, k = 2, the systematic is

at the sub-percent level for all observables.

4.5.3 Systematic for event migrations into the fiducial space

The particle and detector-level phase-spaces are defined using a number of selection requirements,

based on different kinematic observables of an event. Due to resolution and acceptance effects,
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Figure 4.4 Systematic breakdown for p?iss in the > 1 jet phase-space for all regions.
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Figure 4.5 Hidden observable systematic coming from the modelling of the leading jet pt in the 2e +
jets for different values of the regularisation parameter k, for (a) pr™, (b) m;; and (c) Ag;; in the VBF

phase-space. Statistical uncertainties are also shown as a function of k.
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Figure 4.6 The fiducial fraction after reweighting is divided by the fiducial fraction before reweighting

miss

for pt " in the > 1 jet phase-space for the 2e + jets regions. Events were reweighted so that the

miss

detector-level distribution of p matched the one measured in the data, with the requirement relaxed

from p™ > 200 GeV to p™ > 150 GeV. The systematic is found to be negligible.

events that pass these criteria at the detector-level are not identical to those that pass the
selection at the particle-level. If the underlying distribution, for an observable that is used to
define a selection requirement, is not well modelled by the MC, then migrations in and out of the
phase-space will not be properly modelled. In order to account for this effect, each requirement
can be relaxed so that the agreement between the data and the detector-level MC prediction of
an observable can be studied outside the measurement’s phase-space. A reweighting function
can then be obtained and applied to MC events that pass the detector-level selection criteria so
that the detector-level distribution of the observable in question matches the one measured
in the data (with the selection requirement based on the observable relaxed). The effect is
quantified by comparing the fiducial fraction of the main observable being unfolded, before and
after reweighting. Figure 4.6 shows this comparison for p%iss in the > 1 jet phase-space in the
2e + jets region, where events where reweighted so that the detector-level distribution of the
miss

pr  observable matched the one measured in the data, with the requirement relaxed from

PSS 200 GeV to pR™ > 150 GeV. The systematic is found to be completely negligible.
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4.6 Process composition variations

Since the SM MC used to unfold the data consists of various different SM process contributions
in each region, the unfolding is dependent on the modelling of the process composition. In
miss

particular, in the p1~ + jets region, contributions from W processes and top processes will

have different detector corrections than those from Z — vv.

The relative contributions of different SM processes are only known to a certain accuracy.
A systematic uncertainty from the knowledge of the relative contributions is found by varying
each contribution in the detector response and determining the resulting effect on the unfolded
results. MC pseudo-data is formed from the nominal composition and then unfolded using
the varied detector response. A closure test is performed where the unfolded pseudo-data
from the nominal composition sample is compared to the truth distribution from the nominal
composition sample. Any residual difference is taken as a systematic uncertainty. Three process

composition variations are investigated below.

W +jets contributions

miss

The W — ev, W — puv and W — v contributions to the pp~ + jets region are varied with a
variation determined using a data driven technique that is sensitive to any differences between
data and MC, regarding the number and kinematics of leptons used to veto events in the p%liss
+ jets region [62, 63]. This is in turn sensitive to the relative contribution of W-jets events
with out-of-acceptance leptons in the p%liss + jets region. This study concludes that the best
agreement between data and MC is achieved if the W — ev contribution is scaled by a factor
of 0.9, the W — uv contribution is unscaled and the W — 7v contribution is scaled by a factor
of 1.2. For W — ev and W — 7v these scaling factors are much larger than the uncorrelated
theoretical uncertainties between the different V+jets processes that contribute to this region.
Figure 4.7 shows a comparison between the nominal detector-level MC and the composition
s

varied MC at the detector-level to show how the distributions differ. This is shown for p™** in

the > 1 jet and VBF phase-spaces. The resulting bias in the unfolded distributions in shown in

107



4 Correcting for detector effects 4.6 Process composition variations

Figure 4.8. It amounts to a negligible change for the W — ev variation and a 1% effect for the

W — tv variation. The latter is included as a systematic uncertainty.

tt contributions

The ¢t process contribution in all five regions is varied with a variation obtained by combining
the theoretical uncertainties on the top production modelling, as described in Section 3.6.1.
The maximum variation in the cross-section is 25% or less for all regions. As a very conservative
approach the top contribution is varied by 25%. Studies in appendix B.1 show that this variation
is also large enough to account for the differences observed between data and MC in top-enhanced
control regions. Figures 4.9, 4.11, 4.13 show a comparison between the nominal detector-level
MC and the composition varied MC at the detector-level to show how the distributions differ.
This is shown for pp™, m;; and Ag;; in the VBF phase-space. Figures 4.10, 4.12, 4.14 show
the comparison between unfolded and particle-level nominal composition MC to demonstrate
the size of the bias from this effect. For all variations and all distributions the effect is negligible,
demonstrating that the unfolding is robust against exact knowledge of the process composition.

No uncertainty is thus assigned to this variation.

Single-top Wt associated production contributions

An additional uncertainty depending on the subtraction scheme used to account for interference
terms in different top processees (Diagram Subtraction (DS) or Diagram Removal (DR)) is
studied by using either MC sample to simulate the Wt associated production contributions in the
detector response. The effect of this on the unfolded results is shown in figures 4.15, 4.16, 4.17
for piss, mj; and Ag;; in the VBF phase-space for the P 4 jets, le + jets and 1p + jets

regions. The effect is negligible for all distributions and well within the theory uncertainties on

the top production modelling in these regions.
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Figure 4.7 Nominal detector-level MC compared to process composition varied detector-level MC for
miss

pr  in the p%ﬁss + jets region for the > 1 jet and VBF phase-spaces. The W — ev cross-section is

scaled by a factor of 0.9 and the W — 7uvcross-section is scaled by a factor of 1.2.
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Figure 4.8 Resulting bias in the unfolded distribution following variations of the W — ev, W — uv

and W — 7v cross-sections, for p*° in the > 1 jet phase-space, ph™, m;; and Ag;; in the VBF

phase-space.
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Figure 4.9 Nominal detector-level MC compared to process composition varied detector-level MC for
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® in all regions for the VBF phase-space. The top cross-sections are varied by & 25%.
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my; in all regions for the VBF phase-space. The top cross-sections are varied by + 25%.
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Figure 4.15 Comparisons between unfolded data distributions in the p?iss + jets (left), le + jets

(middle) and 1 + jets (right) region using either the DR or DS single-top subtraction scheme for p™™
in the VBF phase-space.
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Figure 4.16 Comparisons between unfolded data distributions in the p7™ + jets (left), le + jets

(middle) and 1p + jets (right) region using either the DR or DS single-top subtraction scheme for m;

in the VBF phase-space.
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Figure 4.17 Comparisons between unfolded data distributions in the p?iss + jets (left), le + jets

(middle) and 1 + jets (right) region using either the DR or DS single-top subtraction scheme for m;

in the VBF phase-space.
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4.7 Signal injection tests

If the data contains BSM physics then the SM MC used to construct the detector response in
the unfolding will not be representative of the data. In order to test if the unfolding is biased
by possible BSM signal in the data, various BSM processes are injected into the SM MC, which
is then treated as pseudo-data and unfolded with a detector response constructed from the
nominal SM MC. In the following plots two samples of VBF produced Higgs events decaying
invisibly (to four neutrinos via two Z bosons) with the branching fraction of the Higgs to this
decay channel set to 100%, are used, testing a very extreme Higgs to invisible particles scenario.
The two samples correspond to two different Higgs masses: 125 GeV and 750 GeV. Figure 4.18
shows comparisons between detector-level SM+BSM and SM only MC for m;; and A¢;; in the

miss

VBF phase-space in the pp + jets region. A clear enhancement is seen at large m;; and small
Ag¢;; values. Figure 4.19 shows the unfolded SM+BSM MC compared to truth SM+BSM MC
for the same distributions. The bias in the unfolded results is negligible for all but the high

m;; bins, where it reaches up to 10%.

miss

The test is repeated for pp in the > 1 jet phase-space, where four BSM samples are used.
Figure 4.20 shows comparisons between detector-level SM+BSM and SM only MC using the

following s-channel DM models:
e DM model with a spin-1 axial-vector mediator with m, = 1 GeV and m4 = 50 GeV.

e DM model with a spin-1 axial-vector mediator with m, = 1 GeV and m 4 = 700 GeV.

X

e DM model with a spin-1 axial-vector mediator with m, = 355 GeV and m 4 = 700 GeV.

X

e DM model with a spin-0 pseudo-scalar mediator with m, = 1 GeV and m, = 50 GeV.

A large enhancement is seen for the two axial-vector mediator models with m, = 1 GeV.
Figure 4.21 shows the unfolded SM+BSM MC compared to truth SM+BSM MC. A small bias

of up to about 10% is seen at large p'™ for the two models mentioned above.

The effects on the unfolded distributions are likely to come from the differences in fiducial

fraction and efficiency depending on the processes contributing to p%liss + jets region. When
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Figure 4.19 Unfolded SM+BSM MC compared to truth SM+BSM MC for m,; (left) and A¢,; (right)

miss

in the pp

+ jets regions for the VBF phase-space. The unfolding is done with SM only MC.

BSM models with no leptons in the final state are injected into the MC process composition,

there is a larger fraction of Z — vv-like events and hence the overall fiducial fraction increases.

When unfolded with SM-only MC, this leads to a decrease in the unfolded event yield. All

of the above models describe extreme BSM scenarios and in order to have any non-negligible

effects on the unfolding procedure, a BSM signal would need to be completely inconsistent with

the data.
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4.8 Z — v + jets slicing method bias

The effect the two different slicing schemes for Z — v + jets mentioned in Section 3.5 have

on the unfolded result is investigated by using either of the schemes to construct the detector

response used in the unfolding procedure. Figure 4.22 shows comparisons for the contributions

of the Z — v + jets samples in the p%liss + jets region at the detector-level using either of the
miss

two schemes. The comparisons are shown for pt and m;; in the VBF phase-space. Large

differences between the two schemes are observed for large m;; values. Figure 4.23 shows

J
comparisons between unfolded data distributions using either of the two slicing schemes in the

detector response. No significant bias on the unfolded result is observed.
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Chapter 5

Results

5.1 Detector corrected differential cross-sections

This chapter presents the results of the analysis discussed in this thesis. Detector corrected
differential cross-sections measured in the data are compared to particle-level SM predictions.
In the p%ﬁss + jets region, these are also compared to predictions assuming the presence of
additional BSM models. Backgrounds from QCD multijet events in the prTniSS + jets region are
subtracted from the data prior to the unfolding. Contributions to the SM prediction are shown
as stacked histograms. In the bottom panel of each Figure a ratio of unfolded data to MC is
shown where the statistical uncertainties are shown as error bars. Systematic uncertainties
added in quadrature to the statistical uncertainties are only shown in the ratio panel as a band
with hatched lines. The band includes the experimental systematic uncertainties discussed
in Section 4.5 as well as the effect of the theoretical systematic uncertainties on the unfolded
data discussed in section 4.6. Theoretical systematic uncertainties on the particle-level SM
predictions are shown as a pink band. As observed in the detector-level results, large statistical
contributions to the calculation of these uncertainties lead to shape differences in the theory
uncertainty band between regions. These fluctuations are expected to reduce with a more
precise calculation of the theory uncertainties, which is currently in progress. Since this is

an ongoing analysis, the p*% + jets region is blinded to the 2017 and 2018 datasets to avoid

biases in the analysis’ strategy and methodology. Comparisons between data and MC in the
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5 Results 5.1 Detector corrected differential cross-sections

miss

pT  + jets region are instead shown using only the unfolded 2015 and 2016 datasets and the

corresponding MC campaign.

Figures 5.1, 5.2 and 5.3 show comparisons between unfolded data and particle-level SM
predictions for p™ and p** vs pjf respectively, in the > 1 jet phase-space for all regions.
The unfolded data in the p?iss distribution are also compared to three simplified models
of WIMP production with an s-channel exchange of an axial-vector mediator coupling to
quarks and WIMPs. Three combinations for the mass of the WIMPs (m,,) and the mass of the
mediator (m ) are considered: m, =1 GeV and m4 = 700 GeV; m, = 1 GeV and m 4 = 50 GeV;
m, = 355 GeV and my = 700 GeV. Similarly to the detector-level distributions, a 10% to
20% discrepancy is observed between the unfolded data and MC in the p=™* distribution in all
regions. However, the shape of the distribution is reasonably well modeled and deviations from
the MC prediction observed in the data are covered by the theoretical systematic uncertainties.
A slightly larger disagreement between unfolded data and MC is observed for low values of

miss

in the 2e 4+ jets lepton region compared to the 2u + jets lepton region. For the pt~ vs

miss
T
pr distributions the ratio between unfolded data and MC decreases with increasing values of

pr for all regions. This is again covered by the band of theoretical systematic uncertainties,

which are estimated using the uncertainty versus pr > in each region.

Figures 5.4, 5.5 and 5.6 show comparisons between unfolded data and particle-level SM

S

predictions for prrflis , mj;, and Ag;; for all regions in the > 2 jet phase-space. The unfolded

data are also compared to three BSM models representing the Higgs boson decaying to invisible
particles with 100% branching fraction, where the Higgs is produced in association with a

vector boson: W, W™ and Z. Figures 5.7 and 5.8 show comparisons for m;; vs Ag;; for all

regions in the > 2 jet phase-space. Overall shifts in normalisation and shape discrepancies in

the p%ﬁss distribution are similar to those seen in the > 1 jet region. The m; distribution is

badly modeled by the MC in all regions with the MC exhibiting a much harder m;; distribution
than the unfolded data. These discrepancies are again covered by the theoretical systematic

uncertainties. This can also be seen in the m;

jj vs Ag;; distributions of Figures 5.7 and 5.8

where the ratio between data and MC decreases for slices with larger m;; values. The theoretical

uncertainties on this Figures are estimated using the uncertainty versus m;; in each region
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and cover most of the discrepancies. The A¢;; distribution is peaked towards small values, for
close together jets, with a dip at very low values as the jets cannot be exactly on top of each
other. The unfolded data has a slightly more peaked structure than the MC in all regions. The

discrepancy in the shape becomes more pronounced at larger m;; values, as seen in Figure 5.7.

Figures 5.9, 5.10 and 5.11 show comparisons between unfolded data and particle-level SM

miss

predictions for pp ", m;;, and Ag;; for all regions in the VBF phase-space. The unfolded data

35>
are also compared to two BSM models representing the Higgs boson decaying to invisible particles
with 100% branching fraction, where the Higgs is produced with a mass of my = 75 GeV and
mp = 750 GeV respectively. Figures 5.12 and 5.13 shows comparisons for m;; vs A¢;; for all
regions in the VBF phase-space. The agreement between data and MC in the p=** distributions
exhibits a similar pattern as the one observed in the > 1 jet and > 2 jet phase-spaces. The m;
is badly modeled in a similar way as in the > 2 jet phase-space and as in the detector-level
distributions. It is observed that the contributions from the EWK production of V+dijets events
at the particle-level are larger in the VBF phase-space compared to the > 2 jet phase-space.
The Ag;; distribution has a larger dip at low values, compared to the same distribution in the
> 2 jet phase-space, due to the particle-level m;; cut in this region. The discrepancies between
data and MC are similar to those seen in the > 2 jet phase-space and are largely covered by

the theoretical systematic uncertainties. The agreement in the m;; vs Ag;; distributions of

Figures 5.12 and 5.13 also exhibits a similar pattern as the ones in the > 2 jet phase-space.
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Figure 5.4 Particle-level data/MC comparisons for p?iss in the > 2 jet phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction.
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Figure 5.5 Particle-level data/MC comparisons for m;; in the > 2 jet phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction.
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Figure 5.6 Particle-level data/MC comparisons for A¢,; in the > 2 jet phase-space. The hatched lines
show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction.
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Figure 5.9 Particle-level data/MC comparisons for pp

in the VBF phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction.
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Figure 5.10 Particle-level data/MC comparisons for m; in the VBF phase-space. The hatched lines

show the combination of statistical and systematic uncertainties. The pink band shows the theoretical

uncertainties on the particle-level SM prediction.
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5.2 Detector corrected R™S°

The detector corrected differential cross-sections of the previous section are used here to construct
the R™" ratio. R™ as introduced in Section 3.1, is defined as the fiducial cross-section for

miss

pr . + jets events divided by the fiducial cross-section for events in any of the le + jets, 1u +

miss

jets, 2e + jets and 2u + jets regions. In the following figures, R is presented as a function

miss

of pr 7, m;; and A¢;; in each region and each phase-space, to demonstrate the strength of

J

miss

the method. The results are also compared to predictions of R, assuming the presence of

the BSM models introduced in the previous section. In the bottom panel of each figure, the

miss miss

agreement between R as measured in the data and R as predicted by the SM is shown.
Statistical uncertainties are shown as error bars. Systematic uncertainties added in quadrature
to the statistical uncertainties are shown as a band with hatched lines. Experimental systematic
uncertainties originating from the jet calibration procedure are significantly reduced in the
ratio due to the similarity of the jet systems in the p%liss + jets region in the numerator and
the lepton regions in the denominator. The lepton efficiency systematics only affect the lepton
regions in the denominator and are the dominant experimental systematic uncertainties on the
R™S ratio. The effect of of each group of systematic uncertainties is shown in appendix E

where the cancellation of experimental systematic uncertainties arising from the treatment of

jets is clearly demonstrated.

Theoretical systematic uncertainties on the particle-level SM predictions are shown as a
pink band. These are also significantly reduced in the ratio because of the similarity of the
processes in the numerator and the denominator. A slightly weaker cancellation of theoretical
uncertainties is observed here compared to the previous measurement of Rmiss, published in [48].
This is expected since all regions in this thesis are defined in terms of final-state particles instead
of a particular process, resulting in the p%liss + jets region being populated by both Z4jets
and W+jets events. Both of these processes introduce theoretical uncertainties that have
uncorrelated components between the P + jets region and the 2¢ + jets (mainly populated

by Z+jets events) or 1¢ + jets (mainly populated by W+jets events) regions. Statistical

contributions to the shape of the theory uncertainties also lead to an overestimation of these
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uncertainties in poorly populated regions of phase space. This is most evident in the tails of the

P and m;; distributions in all phase-spaces. In reality, theoretical uncertainties on R™S are

expected to be at the level of a few percent in all bins, as demonstrated in the studies of [55].

miss

A more precise calculation of the theoretical uncertainties on R is currently in progress.

Figure 5.14 shows comparisons between R™S a5 measured in the data and as predicted

by the MC, using either of the lepton regions in the denominator, as a function of p%liss in

the > 1 jet phase-space. Figures 5.14a and 5.14b show R™ using the 2e + jets and 2u +

jets lepton regions in the denominator. The SM prediction shows a large R™SS at low p%liss

for both, at approximately 14.5 and 12.5 respectively, which decreases for bins with higher

miss

pT . to approximately 6.5 and 6, approaching the SM ratio of branching fractions between the
Z — vv and Z — {0 processes of 5.9. The higher value of R™SS ig mainly due to the effect
of Wjets contributions to the pT*5 + jets region, which are much larger at low p™. The
shape is also affected by the fiducial requirements on the charged leptons in the denominator.
At higher p%liss, the leptons have larger pr and are more central, making them more likely to
pass the selection criteria of the 2¢ + jets regions, thus increasing the fiducial cross-sections

miss

of the denominators. The shape of R as measured in the data is reasonably well modeled

by the MC, however a discrepancy between the data and MC of up to 10% is observed when

using the 2e + jets region in the denominator, with the MC overestimating the value of RMiss

at low p%iss. This discrepancy is not covered by the theoretical systematic uncertainties in the
first two bins. A similar discrepancy of up to 5% is observed with the 2y + jets region in the

denominator, though that is covered by the theoretical uncertainties.

Figures 5.14c and 5.14d show R™ using the le + jets or 1p + jets lepton regions in the

miss

denominator, for the same observable as above. The SM prediction shows a higher R at low

p%liss for both at approximately 1.6 and 1.0 respectively, which decreases for bins with higher
p%liss to approximately 0.7 and 0.65, approaching the SM ratio of branching fractions between
the Z — v and W — fv processes of 0.6. The shape of R™* in both cases is the result of the
effects discussed above. QCD multijet events are not subtracted from the data in the lepton

miss

regions prior to unfolding. These are expected to contribute mainly to the tails of the pp

distribution in the le + jets, which leads to a decrease in the bottom panel ratio of Figure 5.14c.
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A flat agreement is expected when those backgrounds are taken into account. The ratio is
also shown to be higher when using the le + jets region in the denominator. This is because
of the additional real-p%ﬁss > 45 GeV requirement in the le + jets region, which results in a
smaller cross-section for this region. Differences between the two ratios also originate from
differences observed in the central SHERPA 2.2.1 V +jets samples, used in the particle-level SM
prediction here. The samples exhibit a difference in the boson pr spectrum for the electron
and muon channels and while a reweighting function was used to correct the central SHERPA
Z — ee samples for this difference, a reweighting function for the central SHERPA W — ev
samples has not been derived yet. At the time of writing, these were the most up-to-date
samples available and new samples restoring the lepton universality in the V +jets process are
being produced. The two ratios are expected to be in agreement with each other when a more

miss

updated set of SM predictions is used to construct R . As shown in Section 4.6, the unfolding
method is robust against the exact knowledge of the process composition of a region and so the
discrepancies observed in the central SHERPA V +jets samples do not affect the unfolded data.
The shape of R™ a5 measured in the data is again reasonably well modeled by the MC and

small discrepancies are covered by the theoretical uncertainties.

An increased sensitivity to the three BSM models is evident in the bottom panel of each
figure, compared to what is observed in figure 5.1 of the precious section, demonstrating
the strength of the R™S ratio. The advantage of using R™S rather than using differential
cross-sections for setting limits on BSM models will be even more apparent with the use of a

more realistic theoretical uncertainty on the particle-level SM predictions in the future.

Figure 5.15 shows comparisons between R™* as measured in the data and as predicted
by the MC, using either of the lepton regions in the denominator, as a function of = in the
> 2 jet phase-space. The shape of R™S is similar to the one seen in the > 1 jet phase-space.
Overall shifts in normalisation and shape discrepancies in the agreement between data and MC

are also similar to those seen in the > 1 jet phase-space.

miss

Figure 5.16 shows comparisons between R as measured in the data and as predicted

by the MC, using either of the lepton regions in the denominator, as a function of m;; in the
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> 2 jet phase-space. The mismodelling observed in the m;; distributions of Figure 5.5 in the

miss

previous section largely cancels out in the construction of R°. The SM prediction shows a

miss

relatively flat R™ with a bump (dip) in the ratio at around 100 GeV when using one of the
20 + jets (1€ + jets) regions in the denominator. In the top two figures, this is because of an
increase in contributions from top-pair events to the p%iss + jets region. In the bottom two
figures, this is because of an even larger increase in contributions from top-pair events to the
le + jets and 1p + jets regions. A divergence from a flat ratio is also observed in the tails

of the distributions, possibly because of the different slicing method used in the Z+jets MC

samples compared to the rest of the V+jets samples.

Figure 5.17 shows comparisons between R™ as measured in the data and as predicted
by the MC, using either of the lepton regions in the denominator, as a function of A¢;; in
the > 2 jet phase-space. Figures 5.17a and 5.17b show R™®° using the 2e + jets or 2u + jets

lepton regions in the denominator. The SM prediction shows a flat R™*

in the central region
which increases for large positive and negative A¢;; values. This is because the removal of jets
overlapping with charged leptons described in Section 3.3.1 mostly affects Z — ¢/ events with
large A¢;;, where a hard jet balances the Z boson and a softer one overlaps with one of the
leptons from the Z decay. Removal of jets in such a topology leads to events failing the selection
criteria of the 2/ + jets regions and a reduced cross-section in the denominator. Figures 5.17c
and 5.17d show R™* using the le + jets or 1u + jets lepton regions in the denominator. A

decrease in R™°

is seen for large positive and negative values of A¢;; as well as in the central
region. Large contributions from top-pair events can be seen in these topologies of the 1/ +
jets regions in figure 5.6 of the previous section, resulting in an increased cross-section in the

denominator of R™**

and a smaller overall ratio. The MC models these effects well, resulting in
a flat agreement between the data and MC in all regions. A slightly more peaked structure is
observed in the data in figure 5.17c where RS using the le + jets region in the denominator

is shown. This leads to a discrepancy between data and MC of up to 10%, which is not covered

by the theoretical systematic uncertainties.

Figures 5.18, 5.19 and 5.20 show comparisons between R™5 as measured in the data and

as predicted by the MC, using either of the lepton regions in the denominator, as a function
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Statistical uncertainties are shown as error bars and the total statistical and experimental
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miss

of pp 7,

m;; and A¢;; in the VBF phase-space. Overall shifts in normalisation and shape

discrepancies are similar to the ones observed in the > 1 jet and > 2 jet phase-spaces. The

data is found to be in agreement with the SM prediction within uncertainties. An increased

sensitivity to the two BSM models is again observed here.
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Figure 5.15 Particle-level data/MC comparisons for R™ as a function of p'p'® in the > 2 jet phase-

space. Statistical uncertainties are shown as error bars and the total statistical and experimental

systematic uncertainty is shown as hatched lines. Theoretical systematic uncertainties are shown as a

pink shaded band.
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Figure 5.16 Particle-level data/MC comparisons for R™ as a function of m;; in the > 2 jet phase-

space. Statistical uncertainties are shown as error bars and the total statistical and experimental

systematic uncertainty is shown as hatched lines. Theoretical systematic uncertainties are shown as a

pink shaded band.
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Figure 5.17 Particle-level data/MC comparisons for R™ as a function of Ag;; in the > 2 jet phase-
space. Statistical uncertainties are shown as error bars and the total statistical and experimental
systematic uncertainty is shown as hatched lines. Theoretical systematic uncertainties are shown as a

pink shaded band.
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Statistical uncertainties are shown as error bars and the total statistical and experimental systematic
uncertainty is shown as hatched lines. Theoretical systematic uncertainties are shown as a pink shaded
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Chapter 6

Conclusions

This thesis presents a measurement of differential cross-sections in regions of phase-space
that are largely populated by well-known SM process but are also expected to be sensitive to
the production of dark matter particles or other beyond the Standard Model physics. The
differential cross-section of events with a p?iss + jets final state is measured, along with the
cross-sections of four regions containing charged leptons: 2e + jets, 2u + jets, le + jets and
1y + jets. The lepton regions can be used to constrain the systematic uncertainties in the
p%liss + jets region coming from experimental inefficiencies and from theoretical modelling.
Additionally, the lepton regions can be used to search for, and place limits on, new physics
models with final states involving leptons. The measurements are performed in three different
phase-spaces, defined by the jet kinematics of the events, aiming to be sensitive to different dark
matter production mechanisms. Each region is measured differentially and double-differentially
with respect to a number of observables, allowing for detailed structures in the data to be
studied. A ratio of cross-sections is also presented as a function of numerous observables,
allowing for structures in the data and in the modelling of these regions to be compared to each
other. Experimental and theoretical systematic uncertainties are also significantly reduced in
the ratio measurement. The measurements are corrected for detector effects and are presented

at the particle-level, making them readily available to be compared to particle-level predictions

without the need of a detector simulation.
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6 Conclusions

The detector-corrected measured data are found to be consistent with the SM particle-level
predictions within experimental and theoretical systematic uncertainties though discrepancies
are observed in some of the regions. The MC samples used in the comparisons between the
data and the SM prediction are known to suffer from inconsistencies between the V+jets
processes and the production of a new set of particle-level predictions is currently under way.
The unfolding method used to correct the data for detector effects has been shown to be
robust against the exact knowledge of the process composition of the SM predictions and so

inconsistencies in the MC samples do not affect the unfolded measurements.

A strong cancellation of experimental and theoretical systematic uncertainties is demon-

strated in the construction of the R™®S

ratio, leading to a much more precise measurement.
The R™* ratio is also shown to offer an increased sensitivity to BSM models, indicating that
stronger limits can be set on BSM models using ratio measurements rather than individual
differential cross-sections. Due to statistical fluctuations in poorly populated regions of the
distributions, the theoretical systematic uncertainties don’t exhibit as strong a cancellation as

it is suggested from previous studies. This is expected to improve with future calculations of

these uncertainties that use higher statistics.

148



Part 111

Appendix

149



150



Appendix A
Monte Carlo samples description

The appendix describes the Monte Carlo samples used in this analysis using the standard
description provided by the ATLAS collaboration.

A.1 MC samples for SM processes

V+jets

Events containing a single W or Z/4" bosons in association with jets are simulated with the
SHERPA v2.2.1[64] parton shower Monte Carlo generator. In this setup, NLO-accurate matrix
elements for up to two jets, and LO-accurate matrix elements for up to 4 jets are calculated
with the COMIX [65] and OPENLOOPS [66, 67] libraries. The default SHERPA parton shower [68]
based on Catani-Seymour dipoles and the cluster hadronisation model [69] are used. They
employ the dedicated set of tuned parameters developed by the SHERPA authors for this version
based on the NNPDF3.0NNLO set [70].

The NLO matrix elements of a given jet-multiplicity are matched to the parton shower
using a colour-exact variant of the MC@QNLO algorithm [71]. Different jet multiplicities are then
merged into an inclusive sample using an improved CKKW matching procedure [72, 73] which
is extended to NLO accuracy using the MEPS@QNLO prescription [74]. The merging cut is set
t0 Qeut = 20 GeV.

The V+jets samples are normalised to a next-to-next-to-leading order (NNLO) predic-
tion [75]. Details on the full process configuration for V+jets are given in the recent PUB
note [76].

Matrix elements for the ££55, fvjj and vvjj final states have been generated using SHERPA
v2.2.1 with up to two additional parton emissions at LO accuracy beyond the first two jets. The

matrix elements are merged with the SHERPA parton shower using the MEPS@QLO prescription.
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A Monte Carlo samples description A.1 MC samples for SM processes

These samples were generated in the G, scheme using, ensuring an optimal description of pure

electroweak interactions at the electroweak scale.

Dibosons

Fully leptonically decaying diboson samples are simulated with the SHERPA v2.2.2 [64] generator.
In this setup multiple matrix elements are matched and merged with the SHERPA parton shower
based on Catani-Seymour dipole [65, 68] using the MEPS@QNLO prescription [71-74]. The
virtual QCD correction for matrix elements at NLO accuracy are provided by the OPENLOOPS
library [66, 67]. Samples are generated using the NNPDF3.0NNLO set [70], along with the
dedicated set of tuned parton-shower parameters developed by the SHERPA authors.

Semileptonically decaying diboson samples are simulated with the SHERPA v2.2.1 [64]
generator. In this setup multiple matrix elements are matched and merged with the SHERPA
parton shower based on Catani-Seymour dipole [65, 68] using the MEPS@QNLO prescription [71-
74]. The virtual QCD correction for matrix elements at NLO accuracy are provided by the
OPENLOOPS library [66, 67]. Samples are generated using the NNPDF3.0NNLO set [70], along
with the dedicated set of tuned parton-shower parameters developed by the SHERPA authors.

Tribosons

Triboson production is simulated with the SHERPA v2.2.2 [64] generator. In this setup multiple
matrix elements are matched and merged with the SHERPA parton shower based on Catani-
Seymour dipole [65, 68] using the MEPS@QNLO prescription [71-74]. The virtual QCD correction
for matrix elements at NLO accuracy are provided by the OPENLOOPS library [66, 67]. Samples
are generated using the NNPDF3.0NNLO set [70], along with the dedicated set of tuned parton-
shower parameters developed by the SHERPA authors.

Details on the full process configuration for multi-V" processes are given in the recent PUB
note [77].

Top events

The production of ¢¢ events is modelled using the POWHEG-BOX [78-81] v2 generator at NLO
with the NNPDF3.0NLO [70] parton distribution function (PDF) and the Agamp parameter’
set to 1.5 my; [82]. The events are interfaced with PYTHIA 8.230 [50] using the A14 tune [83]
and the NNPDF2.3L0 PDF set. The NLO tt inclusive production cross section is corrected

'The hdamp Parameter controls the transverse momentum pr of the first additional emission beyond the
leading-order Feynman diagram in the parton shower and therefore regulates the high-pt emission against
which the tt system recoils.
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A Monte Carlo samples description A.2 MC samples for BSM processes

to the theory prediction at next-to-next-to-leading order (NNLO) in QCD including the
resummation of next-to-next-to-leading logarithmic (NNLL) soft-gluon terms calculated using
Topr++2.0 [84-90].

Single-top tW associated production is modelled using the POWHEG-BOX [79-81, 91] v2
generator at NLO in QCD in the five flavour scheme with the NNPDF3.0NLO [70] parton
distribution function (PDF) set. The diagram subtraction scheme [92] was employed to handle
the interference with ¢¢ production [82]. The events are interfaced with PYTHIA 8.230 [50] using
the A14 tune [83] and the NNPDF2.3L0 PDF set. The inclusive cross section is corrected to
the theory prediction calculated at NLO in QCD with NNLL soft gluon corrections [93, 94].

Single-top t-channel production is modelled using the POWHEG-BOX [79-81, 95] v2 generator
at NLO in QCD in the four flavour scheme with the NNPDF3.0NLOnf4 [70] parton distribution
function (PDF) set. The events are interfaced with PYTHIA 8.230 [50] using the A14 tune [83]
and the NNPDF23LO PDF set. The inclusive cross section is corrected to the theory prediction
calculated at NLO in QCD with Hathor v2.1 [93, 94].

Single-top s-channel production is modelled using the POWHEG-BOX [79-81, 96] v2 generator
at NLO in QCD in the five flavour scheme with the NNPDF3.0NLO [70] parton distribution
function (PDF) set. The events are interfaced with PYTHIA 8.230 [50] using the A14 tune [83]
and the NNPDF2.31.0 PDF set. The inclusive cross section is corrected to the theory prediction
calculated at NLO in QCD with Hathor v2.1 [93, 94].

A.2 MC samples for BSM processes

A number of BSM samples are generated for comparisons with the data and to test the ro-
bustness of the unfolding procedure in the presence of BSM physics. The following models are

simulated:

Dark Matter s-channel interactions:
Weakly Interacting Massive Particle (WIMP) signals of type xx + jet, where x is the DM
candidate. These are simulated with POWHEG-BOX using the following two implementations

of simplified models:
1. xx production with spin-1 axial-vector mediator exchange, at NLO precision.
2. xx with spin-0 pseudo-scalar mediator exchange with a quark loop, at LO precision.

Renormalisation and factorisation scales are set to Hr/2 on an event-by-event basis, where
Hy = ‘/m?cx + p%,jl + prj1- Events are generated using the NNPDF30 PDFs and interfaced
to PYTHIA 8.205, with the ATLAS 14 tune. Couplings of the mediator to DM particles and
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A Monte Carlo samples description A.2 MC samples for BSM processes

Standard Model quarks are set to g, = 1 and g, = 1/4 for the axial-vector mediator model. For
the pseudo-scalar model, both couplings are set to 1. A grid of samples is produced for the DM
masses ranging from 1 GeV to 1 TeV and the mediator masses between 10 GeV and 10 TeV.
Invisible decays of the Higgs:

Higgs samples are generated with the branching ratio of the decay to four neutrinos (via two
Z bosons) set to 100% to provide simulations of Higgs bosons decaying invisibly. These are
generated at different Higgs masses (75 GeV, 125 GeV and 750 GeV) for VBF production and
125 GeV for VH production. These samples are simulated using the Powheg-Box v2 generator
interfaced with Pythia 8.212 for hadronization and parton shower modelling by using the
AZNLO tune. The VH samples have the MiNLO (Multiscale Improved NLO) procedure applied
and the CT10 PDF set. The VBF samples use the NNPDF30 PDF set.
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Appendix B
Top-enhanced control regions

In order to study the uncertainties associated with top event contributions in each phase-space,
top enhanced control regions are defined for the p?igs + jets, le + jets and 1u + jets regions,
where requirements on the presence of b-jets are made in addition to the base-line cuts. Top
enhanced control regions requiring > 1 or > 2 b-jets were selected. A b-jet is defined as a jet
with pp > 30 GeV, | n | < 2.5 and with the MV2¢10 tagger corresponding to the 60% efficiency

working point.

B.1 tt contributions

The top row of figures in figure B.1 shows top enhanced control regions with > 1 b-jets for
P in the VBF phase-space, in the pi™ + jets, le + jets and 1y + jets regions. The second
panel of each Figure shows the fraction of # and single-top events in the region where the
nominal DS sample is used to simulate the Wt associated production. A first-order polynomial
is used to fit the Data/MC agreement in each top enhanced control region, which is then used
as a reweighting function for # event contributions to each main region. Comparisons between
nominal and top-reweighted curves for each region are shown in the bottom row of figures. The
shift in the Data/MC agreement of each region after reweighting is shown in the fourth panel.
The procedure is then repeated using top enhanced control regions with > 2 b-jets (figure B.4).
The systematic uncertainty associated with top event contributions and quantified in the shift in
Data/MC agreement after reweighting is found to be well within the top contribution variation

applied in the studies of Section 4.6.
The procedure is repeated for the following observables:

Figure B.2: Top enhanced control regions requiring > 1 b-jets for m;; in the VBF phase-space.
Figure B.3: Top enhanced control regions requiring > 1 b-jets for A¢;; in the VBF phase-space.
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B Top-enhanced control regions B.2 Single top uncertainties
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Figure B.1 Top row figures: pp = + jets (left), le + jets (middle) and 1p + jets (right) top enhanced

control regions (requiring > 1 b-jets) for p?iss in the VBF phase-space. Bottom row figures: Comparisons

between nominal and reweighted p7™™ + jets (left), le + jets (middle) and 1u + jets (right) regions,
where the top contributions are reweighted with the polynomial fit of the corresponding top enhanced

control region.

miss

Figure B.4: Top enhanced control regions requiring > 2 b-jets for pr in the VBF phase-space.
Figure B.5: Top enhanced control regions requiring > 2 b-jets for m;; in the VBF phase-space.
Figure B.6: Top enhanced control regions requiring > 2 b-jets for A¢;; in the VBF phase-space.

B.2 Single top uncertainties

Two distinct methods are used to simulate single top contributions: Diagram Subtraction (DS)
and Diagram Removal (DR). Figure B.7 shows comparisons between detector-level distributions
of pT in the > 1 jet phase-space for > 1 b-jet top-enhanced p™ + jets, 1y + jets and le +
jets control regions when using either of the two methods. The second panel of each Figure
shows the fraction of single-top events in a region (using either DS or DR) and the third panel
shows the Data/MC agreement (using either the DS or DR). Equivalent comparisons using >
2 b-jet top-enhanced control regions are shown in Figure B.8. The DS subtraction scheme is

found to provide better modelling of these regions and so it is chosen as the nominal.
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B Top-enhanced control regions B.2 Single top uncertainties
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Figure B.2 Top row figures: py = + jets (left), le 4 jets (middle) and 1p + jets (right) top enhanced
control regions (requiring > 1 b-jets) for m;; in the VBF phase-space. Bottom row figures: Comparisons
between nominal and reweighted pt™™ + jets (left), le + jets (middle) and 1u + jets (right) regions,
where the top contributions are reweighted with the polynomial fit of the corresponding top enhanced

control region.
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B Top-enhanced control regions B.2 Single top uncertainties
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Figure B.3 Top row figures: pp = + jets (left), le + jets (middle) and 1p + jets (right) top enhanced
control regions (requiring > 1 b-jets) for A¢,; in the VBF phase-space. Bottom row figures: Comparisons
between nominal and reweighted pt™™ + jets (left), le + jets (middle) and 1u + jets (right) regions,
where the top contributions are reweighted with the polynomial fit of the corresponding top enhanced

control region.
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Figure B.4 Top row figures: pr = + jets (left), le 4 jets (middle) and 1p + jets (right) top enhanced

control regions (requiring > 2 b-jets) for p%iss in the VBF phase-space. Bottom row figures: Comparisons

between nominal and reweighted pt™™ + jets (left), le + jets (middle) and 1u + jets (right) regions,
where the top contributions are reweighted with the polynomial fit of the corresponding top enhanced

control region.
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Figure B.5 Top row figures: pr = + jets (left), le 4 jets (middle) and 1p + jets (right) top enhanced

control regions (requiring > 2 b-jets) for m;; in the VBF phase-space. Bottom row figures: Comparisons

miss

between nominal and reweighted pp°>° + jets (left), le 4+ jets (middle) and 1p + jets (right) regions,
where the top contributions are reweighted with the polynomial fit of the corresponding top enhanced

control region.
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Figure B.6 Top row figures: pp = + jets (left), le + jets (middle) and 1y + jets (right) top enhanced
control regions (requiring > 2 b-jets) for A¢,; in the VBF phase-space. Bottom row figures: Comparisons
between nominal and reweighted pt™™ + jets (left), le + jets (middle) and 1u + jets (right) regions,
where the top contributions are reweighted with the polynomial fit of the corresponding top enhanced

control region.
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Figure B.7 Comparisons between detector-level distributions in the p%ﬂss + jets (left), 1e + jets (middle)
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Figure B.8 Comparisons between detector-level distributions in the p'™™ + jets (left), le + jets (middle)

and 1p + jets (right) top-enhanced control regions (> 2 b-jets) using either the DR or DS single-top

subtraction scheme for p™™* in the > 1 jet phase-space.
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Appendix C

Detector response: migration matrices,
reconstruction efficiencies, fiducial fractions

and fiducial purity

Migration matrices as well as the reconstruction efficiency, fiducial fraction and fiducial purity
of all regions in all phase-spaces are shown in this appendix.

1

miss V]
VS Pt

Figure C.1 shows migration matrices for pr for all regions in the > 1 jet phase-

space.
miss

Figure C.2 shows the fiducial purity, reconstruction efficiency and fiducial fraction for pt ~ vs

p%} for all regions in the > 1 jet phase-space.

Figure C.3 shows migration matrices for p%iss for all regions in the > 2 jet phase-space.
Figure C.4 shows the fiducial purity, reconstruction efficiency and fiducial fraction for p%liss for
all regions in the > 2 jet phase-space.

Figure C.5 shows migration matrices for m; for all regions in the > 2 jet phase-space.
Figure C.6 shows the fiducial purity, reconstruction efficiency and fiducial fraction for m; for
all regions in the > 2 jet phase-space.

Figure C.7 shows migration matrices for A¢;; for all regions in the > 2 jet phase-space.
Figure C.8 shows the fiducial purity, reconstruction efficiency and fiducial fraction for Ag;; for
all regions in the > 2 jet phase-space.

Figure C.9 shows migration matrices for Ag;; versus m;; for all regions in the > 2 jet phase-
space.

Figure C.10 shows the fiducial purity, reconstruction efficiency and fiducial fraction for A¢;;

versus m;; for all regions in the > 2 jet phase-space.
Figure C.11 shows migration matrices for p'=™ for all regions in the VBF phase-space.

Figure C.12 shows the fiducial purity, reconstruction efficiency and fiducial fraction for p%liss for

all regions in the VBF phase-space.
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and
fiducial purity

Figure C.13 shows migration matrices for m;; for all regions in the VBF phase-space.

- for

Figure C.14 shows the fiducial purity, reconstruction efficiency and fiducial fraction for m;

all regions in the VBF phase-space.

Figure C.15 shows migration matrices for A¢;; for all regions in the VBF phase-space.
Figure C.16 shows the fiducial purity, reconstruction efficiency and fiducial fraction for A¢;;
for all regions in the VBF phase-space.

Figure C.17 shows migration matrices for Ag;; versus m;; for all regions in the VBF phase-
space.

Figure C.18 shows the fiducial purity, reconstruction efficiency and fiducial fraction for A¢;;

versus m;; for all regions in the VBF phase-space.
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Figure C.7 Migration matrices for A¢;; for prp
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and

fiducial purity
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Figure C.8 Fiducial purity, reconstruction efficiency and fiducial fraction for Ag;; for all regions in

the > 2 jet phase-space.

172



C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and
fiducial purity
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and

fiducial purity
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and
fiducial purity
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and
fiducial purity
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176



C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and

fiducial purity
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Figure C.13 Migration matrices for m; for pp
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and
fiducial purity
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and

fiducial purity
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and
fiducial purity
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Figure C.16 Fiducial purity, reconstruction efficiency and fiducial fraction for Ag;; for all regions in

the VBF phase-space.
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and
fiducial purity
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Figure C.17 Migration matrices for A¢;; versus m;; for le + jets (top left), 1y + jets (top right),

2e + jets (bottom left) and 2u + jets (bottom right) in the VBF phase-space.
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C Detector response: migration matrices, reconstruction efficiencies, fiducial fractions and

fiducial purity
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Appendix D

Unfolded systematic uncertainties

The effect of the systematic uncertainties on the unfolded results are shown in this appendix for

all observables. Systematics coming from the jet energy scale and resolution show significant fluc-

tuations in bins with low statistics and so Friedman’s “super smoothing” technique [97] is used to

smooth these systematics. Jet energy resolution systematics are only provided with an upward

variation. The down variation for each one is estimated by mirroring the upward variation. For

the A¢;; observable in both the > 2 jet and VBF phase-spaces, the uncertainties for positive

Ag¢,; are the same as those for negative A¢;;, and so they are symmetrised along this dimension.

The grouped systematic uncertainties are shown in the following:

miss

Figure D.1 shows the systematic breakdown for pt ~ in the > 1 jet phase-space.

miss

Figure D.2 shows the systematic breakdown for pt vs pgfl in the > 1 jet phase-space.

miss

Figure D.3 shows the systematic breakdown for pr ~ in the > 2 jet phase-space.

Figure D.4 shows the systematic breakdown for m;; in the > 2 jet phase-space.

Figure D.5 shows the systematic breakdown for A¢;; in the > 2 jet phase-space.

Figure D.6 shows the systematic breakdown for Ag;; vs m;; in the > 2 jet phase-space.

miss

Figure D.7 shows the systematic breakdown for p1 > in the VBF phase-space.

Figure D.8 shows the systematic breakdown for m;; in the VBF phase-space.

Figure D.9 shows the systematic breakdown for A¢;; in the VBF phase-space.

Figure D.10 shows the systematic breakdown for A¢;; vs m;; in the VBF phase-space.
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Figure D.8 Systematic breakdown for m; in the VBF phase-space for all regions.
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Appendix E
Systematic uncertainties on R™"

The effect of the systematic uncertainties on the R™iss

ratio are shown in this appendix for

all observables. Experimental systematic uncertainties originating from the jet calibration

procedure are significantly reduced in the ratio due to the similarity of the jet systems in the

miss

pr . + jets region in the numerator and the lepton regions in the denominator. The lepton

efficiency systematics only affect the lepton regions in the denominator and are the dominant

miss

experimental systematic uncertainties on the R ratio.

The systematic uncertainties on the R™ ratio are shown as follows:

Figure E.1 shows the systematic breakdown for p%lis

miss

Figure E.2 shows the systematic breakdown for pt ~ in the > 2 jet phase-space.

Figure E.3 shows the systematic breakdown for m.. in the > 2 jet phase-space.

Jj

Figure E.4 shows the systematic breakdown for A¢;; in the > 2 jet phase-space.

miss

Figure E.5 shows the systematic breakdown for pt in the VBF phase-space.
Figure E.6 shows the systematic breakdown for m;; in the VBF phase-space.
Figure E.7 shows the systematic breakdown for A¢,; in the VBF phase-space.

® in the > 1 jet phase-space.
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regions in the denominator.
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Figure E.6 Systematic breakdown for m;; in the VBF phase-space for R™iss using any of the lepton

regions in the denominator.
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Figure E.7 Systematic breakdown for A¢,; in the VBF phase-space for R™iss using any of the lepton

regions in the denominator.
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