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Abstract: A reliable prediction of sustainable energy consumption is key for designing environmen-
tally friendly buildings. In this study, three novel hybrid intelligent methods, namely the grasshopper
optimization algorithm (GOA), wind-driven optimization (WDO), and biogeography-based opti-
mization (BBO), are employed to optimize the multitarget prediction of heating loads (HLs) and
cooling loads (CLs) in the heating, ventilation and air conditioning (HVAC) systems. Concerning
the optimization of the applied algorithms, a series of swarm-based iterations are performed, and
the best structure is proposed for each model. The GOA, WDO, and BBO algorithms are mixed
with a class of feedforward artificial neural networks (ANNs), which is called a multi-layer percep-
tron (MLP) to predict the HL and CL. According to the sensitivity analysis, the WDO with swarm
size = 500 proposes the most-fitted ANN. The proposed WDO-ANN provided an accurate prediction
in terms of heating load (training (R2 correlation = 0.977 and RMSE error = 0.183) and testing (R2

correlation = 0.973 and RMSE error = 0.190)) and yielded the best-fitted prediction in terms of cooling
load (training (R2 correlation = 0.99 and RMSE error = 0.147) and testing (R2 correlation = 0.99 and
RMSE error = 0.148)).

Keywords: energy efficiency; heating loads; heating ventilation; air conditioning; metaheuristic;
consumption prediction; artificial intelligence; deep learning; machine learning; operational research;
big data

1. Introduction

The concerns about reducing energy consumption in smart cities are growing. Indeed,
the rate of energy consumption has risen mainly in the last two decades. For instance, in
buildings, an approximate increasing rate of consumption of 0.9% per year in the USA
was reported by the US Energy Information Administration (EIA) [1]. In this regard, the
residential buildings (as it is the main concern of the present study) consume approximately
38% of electricity energy. Therefore, almost one-fourth of the world’s energy is consumed
in residential buildings [2]. Considering climate change, environmental concerns, as well as
an overall significant contribution of buildings and their high demands on the consumption
of such energy use, new intelligent methods are required to reduce this energy consumption.
The rate of energy consumption of buildings has been investigated by various researchers
such as Zhou, et al. [3], Ahmad, et al. [4], and Mocanu, et al. [5].

1.1. Background of Artificial Intelligence

With recent advances in computational intelligence, many scholars have replaced
traditional methods with new generated machine learning [6–11], deep learning [12–17],
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decision making [18,19], and artificial intelligence-based tools [20–22]. These novel approx-
imation techniques are well employed in various engineering fields such as in evaluat-
ing environmental concerns [19,23–31], implications for natural environmental manage-
ment [32–39], water resources management [28,40–44], natural gas consumption [45–48], en-
ergy efficiency [49–56], image processing [57–59], building construction and design [60–62],
feature selection/extraction [63–67], face recognition [68,69], climate change [70], managing
smart cities [71], and project management [72], while in the field of medical science artificial
intelligence is employed to have a better diagnosis of particular patients [41,73–75], early
diagnosis of them [76], or medical image classification [77]. There have been many novel
algorithms enhancing the current predictive neural network-based models. Metaheuris-
tic algorithms have been highly regarded in various problems that demand an optimal
solution [78]. The hybrid optimization techniques such as differential evolution [79], data-
driven robust optimization [80], the whale optimization algorithm [81,82], harris hawks
optimization [83], the differential edge detection algorithm [84], many-objective sizing
optimizations [85], fruit fly optimization [86], the moth-flame optimization strategy [87],
bacterial foraging optimization [88], ant colony optimization [89], particle swarm optimiza-
tion (PSO) [90–92], chaos enhanced grey wolf optimization [73], and quantum-enhanced
multiobjective large-scale [93].

Zhou, et al. [3] applied a feedforward artificial neural network (ANN) combined with
a hybrid system (for example, considering the multivariable optimization process). The re-
sults obtained from their study showed that the generated ANN-based data-driven training
algorithm is more reliable than the traditional “lsqcurvefit” fitting method. Asadi, et al. [94]
investigated the energy consumption prediction of the building retrofits. They used a com-
bination of the ANN and a genetic algorithm to find the most proper structure of a hybrid
algorithm and to assess the interaction among conflicting objectives. Mocanu, et al. [5]
stated that the deep learning-based solution methods are aimed to enhance the estimation
level of the predictive network by letting a higher level of abstraction be implemented.
Ahmad, et al. [4] stated that the management of energy-efficient buildings and predict-
ing energy consumption for all buildings are critical tasks for decision-makers, in order
to save effective energy as well as to develop smart cities. They reviewed some of the
employed prediction techniques in estimating the building electrical energy using the
most updated artificial intelligence (AI)-based solution. Zhou, et al. [3] investigated the
use of a new hybrid system combined with active cooling, phase change materials, and
hybrid ventilations.

1.2. HL and CL-Related Studies

Many researchers also have aimed to investigate the links between the heating loads
(HLs) and cooling loads (CLs) and their most influential parameters such as the speed
of the wind, the conditions of the environment climate changing, the rate of light, etc.
Budaiwi and Abdou [95] successfully employed the heating, ventilation, and air condition-
ing (HVAC) system operational strategies to deduce the amount of consumed energy in
buildings. In their study, they used an example of buildings with intermittent occupancy.
Nasruddin, et al. [96] studied the HVAC optimization system to measure energy consump-
tion in a particular building dataset. They used ANN as well as a multi-objective GA. Their
findings provided possible design variables that can help to achieve the best-fit HVAC
system. The results proved to be practical in terms of both annual energy consumption
and thermal comfort. Min, et al. [97] explored indirect evaporative cooling energy recovery
systems (for example, to pursue a high-quality indoor thermal environment) through a new
statistical modeling approach. The validation of the proposed model was done using a se-
ries of experimental data. Roy, et al. [98] predicted heating load in buildings by employing
a hybrid model of multivariate adaptive regression splines (MARS) and extreme learning
machine (ELM). Liu, et al. [99] studied hierarchical modeling and temperature interval
techniques to optimize the prediction of a multi-layer hybrid building’s cooling and heating
load. The obtained results are compared with the basic estimation models, showing that the
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accuracy of the proposed models is significantly enhanced [99]. Kavaklioglu [100] proposed
a new rebuts modeling of cooling and heating loads to have an efficient residential building
design. Moayedi, et al. [101] investigated the social behavior of elephant herds in order
to predict cooling load of residential buildings. In this sense, the technique of elephant
herding optimization (EHO) is employed to optimize the trend of the HVAC system. In
the other study, the k-fold cross-validation method was used to validate the proposed
hybrid models, as discussed by Qiao, et al. [102]. Conventional modeling such as ordinary
least squares was employed to have a better comparison between the obtained results and
traditional techniques. The results showed that the developed methods are excellent in
providing links between the influential factors and the target, which were heating and
cooling loads.

1.3. Novelty and Proposed Methods

Based on the applicability of metaheuristic algorithms for a wide range of optimization
techniques (for example, [13,93,103–111]), this study is particularly conducted in the case
of thermal load analysis for residential buildings, where their real operations highly rely
on building design criteria. The building design codes try to reduce the amount of energy
consumption by considering two key terms: CLs and HLs. The HVAC is a well-known
technology for indoor and vehicular environmental comfort. The concept of HVAC is a
key issue in designing residential building structures such as apartment buildings, hotels,
family homes, senior living facilities, office and industrial buildings (for example, medium
to large), hospitals, and skyscrapers. Indeed, the subject of HAVC is not limited to building
only, and it can be considered for the commonly used vehicles such as trains, cars, airplanes,
large ships as well as submarines that work in the marine environments. The main objective
of the HVAC system is to provide acceptable indoor air quality and thermal comfort.
Although there are many new techniques to calculate HLs and CLs, there is still a lack of
proper intelligence techniques in the prediction of these parameters. Studying through the
current literature, numerous studies have used popular optimization methods [112,113]
but the lack of multiobjective consideration of both HL and CL as well as more up-to-date
hybrid intelligent-based solutions can be a suitable gap of knowledge in the subject of
HVAC systems simulation. Therefore, this article recommends three novel multiobjective
intelligent-based solutions on the herding trend of the grasshopper optimization algorithm
(GOA), wind-driven optimization (WDO), and biogeography-based optimization (BBO)
to predict the multi targets of HLs and CLs of residential buildings. These algorithms
enhance the current ANN-based solutions. In this regard, over 33,000 model iterations are
performed to provide the best-fit structure of combined algorithms.

2. Methodology and Theoretical Background

The steps that are taken to fulfill the objective of the current study are illustrated here
as well as in Figure 1:

(a) First, data preprocessing: in this step, the collected dataset of heating loads and
cooling loads are separated randomly into two main sections called the training
dataset and testing dataset. As a well-established train/test dataset selection, 70% of
the whole dataset is used for training the models to create a proper predictive network
and to make the connection between both targets of HLs and CLs and their influential
factors. The rest of the 30% is selected to be the testing and validation datasets. In our
example, we selected 30% for the testing dataset, where none of the testing datasets
were involved in the learning process.

(b) Second, the programming language of MATLAB 2018 is used to (i) define the most
proper structure of the multi-layer perceptron (MLP) neural network (in terms of the
number of hidden neurons), and (ii) building three hybrid models by optimizing the
computational parameters of the MLP (that is, its biases and assigned weights) using
the GOA, WDO, and BBO algorithms. After a series of trial and error parametric
processes (that is, used to find the most appropriate hyperparameters of the hybrid
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models), the best population size is determined for each model. Next, the outputs
(that is, HLs and CLs in our study) are predicted by the proposed models.

(c) In the last step, by employing the remaining 30% of data (that is, called the testing
dataset), the error performance of the proposed models is calculated based on the
differences between the real measured values and the predicted values obtained from
the proposed models.
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Figure 1. The graphical methodology of this study.

The following, sections describe the MLP, GOA, WDO, and BBO algorithms that
were used.

2.1. Multilayer Perceptron

These tools are widely applied for modeling complex engineering issues. Artificial
neural networks (ANNs), (that is, also called neural networks) were first introduced by
McCulloch and Pitts [114]. It is known as a computing system vaguely inspired by the
biological neural networks, whose idea is primary taken from animal brains. This artificial
intelligence (AI)-based technique will try to make a relationship between a series of input
data layers with one or more output layers by establishing non-linear equations [115]. A
common ANN structure includes different elements called input layers, hidden layer(s),
and output layer(s) (Figure 2).

2.2. Grasshopper Optimization Algorithm

Grasshoppers may be seen independently or in a swarm in nature. It is considered as
one of the insects feeding on plants. Noting that such insects are considered as a pest (that
is, any plant or animal detrimental to crops) as they mainly severely harm the crops and
pasture [116]. The idea of the grasshopper optimization algorithm (GOA) is taken from
the natural behaviors of grasshoppers pests; Saremi, et al. [117] developed the GOA for
solving searching optimization issues. Like many previously published natural inspired
algorithms (for example, the whale optimization algorithm; the ant lion optimizer; the
salp swarm algorithm, etc.), the GOA algorithm predicts based on two major steps. The
first step is an exploration whereas the second step is called exploitation. As is taken
from the grasshoppers’ behaviors, such steps are performed to seek a food source. In this
first phase (that is, called the exploitation phase), the agents that are responsible for the
search fly locally over the search area. This process is illustrated in Figure 3. which is
adapted from [117]. According to Mafarja, et al. [118], which explored the behavior of the
relations for different levels of some algorithm parameters, when the distance between two
grasshoppers is between 0 and 2.079, the repulsion takes place between them. Consequently,
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if the distance is out of this range (that is, larger than 2.079), it means that the proposed
grasshopper enters a comforting district.
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Equation (1) expresses the movement of grasshoppers, noting that the term xi is the
position of the ith insect:

xi = r1Si + r2Gi + r3 Ai (1)

where r1, r2, and r3 are random values between 0 and 1. Also, Si, Gi, and Ai denote the
social relationship, the gravity force, and the wind advection, respectively.
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2.3. Wind-Driven Optimization

The technique of wind-driven optimization (WDO) was introduced by Bayraktar, et al. [119].
The early idea of WDO was initially formed for electromagnetics usages. In this sense, the
four most influential forces for this task are a Coriolis force (FC), pressure gradient force
(FPG), frictional force (FF), and gravitational force (FG). The main idea behind the WDO
method is that, for reducing the computational complexity, the air parcels are considered
weightless and dimensionless. Assuming that δV and the ∇P are the finite volume and
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pressure gradient of the air, and Equation (6) shows the main force because of the pre-
defined pressure gradient. The FF (as it is shown by Equation (7)) aims to face the air-
triggered movement by the term FPG. In this regard, the term FG (that is, the gravitational
force illustrated by Equation (8)) pulls the parcels to the earth’s center from every dimension.
Also, the FC (Equation (9)) attributes to the deflection in the air parcel motions.

→
FPG = −∇P·δV (2)

→
FF = −ρ α

→
u (3)

→
FG = ρ·δV·g (4)
→
FC = −2θ ×→u (5)

In Equations (6)–(8), the term
→
u is set to be the velocity vector of wind, ρ is the density of a

short air parcel, g signifies the gravitational constant, θ symbolizes the earth’s rotation and
finally α is a frictional coefficient.

By considering the above-mentioned influential factors and pre-defined forces along
with the ideal gas equation, the finalized equation is provided by Derick, et al. [120]:

→
∇u = g +

(
−∇P· RT

Pcur

)
+
(
−α

→
u
)
+

(
−2θ ×→u RT

Pcur

)
(6)

Since the air velocity mainly depends on the pressure value the velocity gets adjusted
to bring higher pressure for the system.

Therefore, regarding the pressure rank, Equation (10) is adapted. In this sense, due to
the pressure, the known parcels, in a descending sequence, are ranked. Accordingly, the
position and velocity are updated by the following equations when i denotes the rank:

→
Unew = (1− α)

→
Ucur − gxcur +

(∣∣∣∣1− 1
i

∣∣∣∣·(xopt − xcur
)

RT
)
+

C·
→
Uotherdirection

i

 (7)

→
Xnew =

→
Xold +

→
Unew (8)

where in Equations (7) and (8), the terms
→
Ucur and

→
Unew signify the velocity value of the

current and coming iteration, respectively. Note that the term x is defined to be the air
parcel position. In addition, xopt and xcur are set to be the optimal and current positions,

respectively. Meanwhile, the other terms such as
→
Uotherdirection are set to be equal

→
FC while

the C is taken to calculated as C = −2 RT. The clarified progressive process updates until
stopping criteria are met. These criteria can be set by an objective function or even a
pre-defined number of repetitions. Full details of the WDO technique is explained in some
previous studies such as Bayraktar, et al. [119] and Bayraktar, et al. [121].

2.4. Biogeography-Based Optimization

BBO was established based on the nature of different species distribution as well
as their biogeography knowledge. BBO was first developed by Simon [54]. Later it was
expanded by other researchers and more particularly by Mirjalili et al. [55], where the
initial algorithm was enhanced and combined with MLP structure and became BBO-
MLP. Due to its excellent predictivity, many scholars recommended it to be used in many
complex engineering problems [122,123]. A combination with MLP aimed to optimize the
performance of the MLP since the BBO is known as a population search based technique.
The flowchart of the original algorithm before being mixed with MLP is shown in Figure 4.
Which is adopted from [54,55]. Similar to many other population search-based optimization
algorithms, the BBO also gets started by generating a random population called a habitat.
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3. Data Collection and Statistical Analysis

The primary dataset of this study is obtained from Tsanas and Xifara [124] as uploaded
in an open-source machine learning repository (http://archive.ics.uci.edu/ml/datasets/
Energy + efficiency accessed on 26 December 2020). The dataset was prepared according
to the Ecotect computer software [125], where 12 different types of residential buildings
(hypothetically located in Athens, Greece, each containing 7 persons with the area of
771.75 m3 composed of 18 elementary cubes with dimensions of 3.5 × 3.5 × 3.5 m3) with
changes in their influential design parameters simulated. Common material with U-values
of 1.780, 0.860, 0.500, and 2.260 for walls, floors, roofs, and windows, respectively, was
used for simulating the buildings. Calculating the glazing areas as a ratio the floor area,
three areas with the ratios 10%, 25%, and 40% are considered. Applied distributions of this
parameter are as follows:

(a) uniform: with 25% glazing on each,
(b) north: 55% on the north and 15% on each other side,
(c) east: 55% on the east and 15% on each other side,
(d) south: 55% on the south and 15% on each other side, and
(e) west: 55% on the west and 15% on each other side.

Some samples also did not have glazing areas.
The main objective was to measure the values of HL and CL (both in kWh/m2) based

on the designated residential buildings. Each one of the proposed residential buildings
follows a unique structure, such as variation in their design parameters such as relative
compactness, roof area, surface area, wall area, orientation, glazing area distribution,
overall height, and glazing area. For instance, four orientations, five distribution scenarios,
four sets of glazing areas (such as 0, 10, 25, and 40% of the entire floor area), etc. Therefore,
a total of 768 design examples were simulated accounting for eight key design factors. The
targets were both HL and CL that were required for the particular residential buildings.

http://archive.ics.uci.edu/ml/datasets/Energy
http://archive.ics.uci.edu/ml/datasets/Energy
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More description of the employed dataset can be obtained in other related studies such as
Chou and Bui [126] and Tsanas and Xifara [124]. In this article, both of the HL, as well as
CL, are taken into the calculation procedure as the main target variables. The main aim
was that these targets to be predicted by the three proposed hybrid intelligence techniques
including GOA-MLP, WDO-MLP, and BBO-MLP. The main dataset includes 768 samples,
537 rows (i.e., 70%) are chosen for designing the training pattern, and the rest of the 231
rows (that is, 30%) are taken to assess the validation and to test the trained networks. The
scatter plots of Figure 5 show the influential factors that have been used as the main inputs
and their relationship with both chosen targets of HL and CL. To help to understand the
variability of the provided datasets, the descriptive statistics of the input variables are
provided and tabulated in Table 1.
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Table 1. Descriptive statistical indices versus the features that were used.

Features

Descriptive Index

Mean Standard
Error Median Mode

Standard
Devia-

tion

Sample
Variance Skewness Minimum Maximum

Relative
Compactness 0.76 0.00 0.75 0.98 0.11 0.01 0.50 0.62 0.98

Roof Area 176.60 1.63 183.75 220.50 45.17 2039.96 −0.16 110.25 220.50
Surface Area 671.71 3.18 673.75 514.50 88.09 7759.16 −0.13 514.50 808.50

Wall Area 318.50 1.57 318.50 294.00 43.63 1903.27 0.53 245.00 416.50
Orientation 3.50 0.04 3.50 2.00 1.12 1.25 0.00 2.00 5.00

Glazing Area
distribution 2.81 0.06 3.00 1.00 1.55 2.41 −0.09 0.00 5.00

Overall Height 5.25 0.06 5.25 7.00 1.75 3.07 0.00 3.50 7.00
Glazing Area 0.23 0.00 0.25 0.10 0.13 0.02 −0.06 0.00 0.40

4. Results and Discussion

This investigation aimed to predict HLs and CLs in buildings utilizing artificial intelli-
gence according to predictive tools. An ANN multilayer perceptron (MLP) is employed
to estimate the HLs and CLs. The prepared datasets are separated into two sections, for
training and testing the model. The first section that is selected using 70% of the whole
database is considered for training of the ANN models (named training dataset) while
the 30% remaining items are used for evaluation of their network performances (called
the testing dataset). The new testing dataset (that is, selected in each stage of the network
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simulation) is built using data that varies from the training step. Two statistical indices
of the determination coefficient (R2) and root mean square error (RMSE) are employed
to compute the network error efficiency and the regression among the target values and
system outcomes of HLs and CLs. The upper mentioned indices are significantly utilized
and also are presented by Equations (9) and (10), respectively.

RMSE =

√√√√ 1
N

N

∑
i = 1

[(
Yiactual −Yiproduced

)]2
(9)

R2 = 1−
∑N

j = 1

[
(Y)actual,j − (Y)produced,j

]2

∑N
j = 1

[
(Y)actual,j − (Y)mean

]2 (10)

where, Yi actual, Yi produced, and Ymean indicate values considered in each step of the simulation
for the exact, predicted, and the mean values of the shown Pult, respectively. N displays
the number of data.

4.1. Optimization of MLP Model

Before training the models using GOA, WDO, and BBO, a reliable primary structure
of the MLP should be determined. In a multilayer perceptron-based network model, the
number of neurons for the output and input layers is fixed. Such a number is considered to
be equal to the number of outputs and inputs, respectively. It is important to know that this
number in the hidden layer is a different factor that changes relying on the amount of user
data. So, in this step and to create a strong multilayer perceptron-based network structure,
eight different numbers were tested for the hidden neurons. For more trustworthiness, each
of the proposed networks was implemented four times (shown as TR1, TR2, TR3, and TR4
indicating the first, second, third, and fourth effort, respectively), and totally, thirty-two
(= 4 ∗ 8) various structures were built to specify the most proper structure. Figure 6 shows
the results of the considered analysis. This trial and error procedure can help to determine
the best structure of the optimized network. The best structure of the MLP model, having
the minimum error, may be achieved while the number of neurons in each hidden layer
is 5. Accordingly, to have a simplified solution and as shown in Figure 6, the number of
nodes equal to five was selected as the best possible number of neurons that are required
to be chosen in the hidden layers. SO, the network structure is obtained to be 8 × 5 × 2
(that is, eight input neurons, five hidden neurons, and two output neurons).
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Table 1. (b) try 2, (c) try 3, and (d) try 4.

The mathematical-based equation of the obtained MLP structure was given (as a
problem function) to the GOA, WDO, and BBO optimization algorithms to be trained. This
process consists of finding the best set of weights and biases for a raw MLP structure. The
prediction is then executed by the optimized MLP.

The next step deals with selecting the proper cost function, object function, and
assessment techniques (for example, R2 and RMSE). In this step, we try to provide the
best-fit relationships between the actual and predicted values. In the current study, two
simultaneous target simulations were provided for both HLs and CLs. As described, at the
end of each iteration the value of the cost function is taken to assess the accuracy of the
proposed model. In this sense, a sensitivity analysis was then performed for all proposed
models of GOA-MLP and WDO-MLP based on the population size (also known as the
swarm size). It is one of the most critical terms for hybrid intelligent algorithms. Therefore,
the hybrid predictive networks are assessed according to various swarm sizes (for example,
in this study, nine sets of swarm sizes were used), leading to 11,000 iterations for every one
of the proposed hybrid solutions. The swarm size varied between 25 to 500 as shown in
Figure 7. All the algorithms conducted 1000 iterations to find enough chances to decrease
the rate of errors shown here as mean square errors. The convergence curves that are
shown in Figure 7 are the first result of the fitness function after the swarm size sensitivity
analysis. This part is also called the convergence analysis. As depicted in Figure 7a–c,
respectively, for the GOA-MLP, WDO-MLP, and BBO-MLP ensembles, the higher iterations
normally caused a decrease in the rate of MSE errors. Nonlinear swarm-based analysis
for the estimation of the GOA-MLP, WDO-MLP, and BBO-MLP of the heating load in
energy-efficient buildings are tabulated in Tables 2–4, respectively.
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Table 2. Nonlinear GOA-MLP swarm-based analysis for the estimation of the heating load.

Population Size

Network Result Ranking

Total Rank RANKTrain Test Train Test

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
25 0.999 0.152 0.999 0.151 6 4 6 3 19 7
50 0.997 0.147 0.998 0.148 3 6 3 4 16 9
100 0.999 0.146 0.999 0.154 7 8 7 2 24 5
150 1.000 0.153 1.000 0.147 9 2 9 6 26 4
200 1.000 0.144 1.000 0.139 10 9 10 9 38 2
250 0.997 0.146 0.996 0.147 1 7 1 7 16 9
300 0.998 0.156 0.998 0.158 4 1 5 1 11 11
350 0.999 0.149 0.999 0.144 8 5 8 8 29 3
400 0.998 0.153 0.998 0.148 5 3 4 5 17 8
450 0.997 0.142 0.997 0.135 2 10 2 10 24 5
500 1.000 0.044 1.000 0.043 11 11 11 11 44 1

Table 3. Nonlinear WDO-MLP swarm-based analysis for the estimation of the heating load.

Population Size

Network Result Ranking

Total Rank RANKTrain 2 Test 2 Train 2 Test 2

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
25 0.999 0.154 0.999 0.152 6 3 5 4 18 8
50 1.000 0.154 0.999 0.156 10 4 8 3 25 6
100 0.996 0.150 0.997 0.160 1 7 1 1 10 10
150 1.000 0.138 1.000 0.140 11 11 11 11 44 1
200 0.999 0.151 0.999 0.146 8 5 10 7 30 3
250 0.998 0.154 0.998 0.160 2 2 2 2 8 11
300 0.999 0.158 0.999 0.150 9 1 9 5 24 7
350 0.999 0.151 0.998 0.149 3 6 3 6 18 8
400 0.999 0.146 0.999 0.141 7 10 6 9 32 2
450 0.999 0.148 0.999 0.144 4 8 7 8 27 5
500 0.999 0.147 0.999 0.140 5 9 4 10 28 4
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Table 4. Nonlinear BBO-MLP swarm-based analysis for the estimation of the heating load.

Population Size

Network Result Ranking

Total Rank RANKTrain Test Train Test

R2 RMSE R2 RMSE R2 RMSE R2 RMSE
25 0.999 0.151 0.998 0.147 4 4 2 8 18 9
50 0.998 0.152 0.999 0.157 2 1 3 1 7 11
100 0.999 0.145 0.999 0.146 7 11 7 10 35 1
150 0.997 0.147 0.997 0.154 1 10 1 2 14 10
200 1.000 0.150 1.000 0.151 9 5 9 4 27 4
250 1.000 0.148 1.000 0.149 10 9 10 6 35 1
300 0.999 0.152 0.999 0.153 8 2 8 3 21 8
350 0.999 0.151 0.999 0.141 6 3 6 11 26 5
400 0.999 0.150 0.999 0.147 3 6 5 9 23 6
450 1.000 0.149 1.000 0.149 11 8 11 5 35 1
500 0.999 0.149 0.999 0.148 5 7 4 7 23 6

4.2. Assessment of the Proposed Models

The reliability of the proposed models is assessed by evaluating the measured and
predicted values of the HLs and the CLs. Two different sets of error criteria of MSE and
RMSE are used to have an estimation of the error as well as checking the performance of
samples obtained from both training and testing datasets. It is worth noting that the output
fitness from both of the training and testing phases defines the generalization power and
training capability, respectively. The computed error values in the simultaneous HL and CL
prediction for GOA-MLP, WDO-MLP, and BBO-MLP techniques are also shown in Figure 8.
Figure 9 (referred to as GOA-MLP) and Figure 10 (referred to as WDO-MLP) display a
graphical evaluation between the original predicted and measured patterns of the heating
and cooling loads (for both the training and testing datasets). Similarly, the accuracy of
the proposed multitarget prediction BBO-MLP techniques are shown in Figure 11. As is
seen, all proposed models result in a valid estimate of the HLs and CLs patterns: with
the calculated R2 (training = 0.9529, testing = 0.9512) for the GOA-MLP-HLs and R2 of
(training = 0.9998, testing = 0.9998) for the CLs estimation. In the case of WDO-MLP-HLs,
the R2 (training = 0.9551 and testing = 0.9464) was calculated while for the WDO-MLP-
CLs, the R2 (training = 0.9995 and testing = 0.9994) was found. Lastly, for the case of
BBO-MLP-HLs, the R2 (training = 0.9563 and testing = 0.943) and BBO-MLP-CLs, the R2

(training = 0.9981 and testing = 0.9975) were calculated. Considering the three proposed
techniques and after performing a nonlinear swarm optimization process, it can be seen
that the best-fit model is obtained from the proposed structure of BBO-MLP. The result
from the error evaluations also shows excellent accuracy, and this proved the BBO-MLP is
the most effective hybrid technique in training the MLP.
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Figure 9. The graphical results of the GOA-MLP technique between the actual heating and cooling loads. (a) GOA-MLP
training for heating load estimation, (b) GOA-MLP testing for heating load estimation, (c) GOA-MLP training for cooling
load estimation, and (d) GOA-MLP testing for cooling load estimation.
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Figure 10. The graphical results of the WDO-MLP technique between the actual heating and cooling loads. (a) WDO-MLP
training for heating load estimation, (b) WDO-MLP testing for heating load estimation, (c) WDO-MLP training for cooling
load estimation, and (d) WDO-MLP testing for cooling load estimation.
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Figure 11. The graphical results of the BBO-MLP technique between the actual heating and cooling loads. (a) BBO-MLP
training for heating load estimation, (b) BBO-MLP testing for heating load estimation, (c) BBO-MLP training for cooling
load estimation, and (d) BBO-MLP testing for cooling load estimation.

4.3. Simplified Multitarget Equation

To have a more practical formula that can be used to predict both HLs and CLs and
considering the minimum required error, in this section, a simple MLP network (having
two neurons in its hidden layer) is provided. Also, to have a better understanding, the MLP-
best-fit equation is prepared according to the optimized weights and biases. These terms
are unique for any particular database. Noting that to have practical use of this formula,
the well-known mathematical function of Tangent-Sigmoid (Tansig) is also provided. The
Tansig is also the MLP activation function expressed by Equation (14). The R2 accuracy of
the proposed formula for the prediction of multi targets of HLs and CLs simultaneously
were 0.98547, 0.9866, 0.98374 for the training, testing, and validation datasets, respectively.

HL = 2.5988 × Y1 − 2.7980 × Y2 − 1.1800
CL = 2.2978 × Y1 − 2.5449 × Y2 − 1.1861

(11)
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where

Y1 = Tansig(5.7372 × A + 2.0859 × B + 3.1483 × C + 2.1314 × D − 1.7433 × E − 0.0017 × F +0.0034 × G −
0.0051 × H + 2.8682)

(12)

Y2 = Tansig(−0.6890 × A − 0.3583 × B − 0.1591 × C − 1.8659 × D − 1.8637 × E − 0.0034 × F − 0.1021 × G −
0.0128 × H + 0.6117)

(13)

in which A, B, C, D, E, F, G, and H represent relative compactness, surface area, wall area,
roof area, overall height, orientation, glazing area, and glazing area distribution, respec-
tively.

Tansig (x) =
2

1 + e−2x − 1 (14)

4.4. Further Discussion and Future Works

The high significance of predicting the thermal load of buildings has driven many
scholars toward developing sophisticated methods for predicting the heating load and
cooling load. This subject is particularly important when it comes to energy-efficient
buildings [127]. The findings of this study are in accordance with earlier efforts regarding
the applicability of artificial intelligence models for simulating the HL and CL. These studies
have focused on various types of buildings including office, residential, and industrial
buildings [128,129].

Data-driven methods (for example, MLP ANN) are capable of analyzing the relation-
ship between a number of effective parameters with a target parameter that is aimed to
be predicted. The HL and CL of a residential building were successfully modeled in this
study using three hybrid techniques. Each model represented an MLP neural network opti-
mized with a metaheuristic algorithm. The optimizer components were the grasshopper
optimization algorithm, wind-driven optimization, and biogeography-based optimization.
These algorithms can globally find the solution to a given problem. In this work, evaluating
different population sizes for the mentioned hybrids (Figure 7) showed that although the
results of similar population sizes are somewhat close the effect of this parameter is better
investigated to use an appropriate configuration.

Having a look at the dataset that was used (Figure 5), most of the inputs (for example,
glazing area distribution) do not show an explicit correlation with the target parameters;
this indicates the complexity of the problem. In such cases, a powerful algorithm can
prevent the network to be misled. As the results showed, the GOA, WDO, and BBO could
nicely deal with this problem; meaning that they could predict the loads for buildings with
both high and low inputs.

Due to the excellent performance of all algorithms that were used, determining the
best-fitted model can be disputable, but overall, considering both correlation and error
evaluations for both targets, the BBO-based model was slightly better. It indicates that the
MLP parameters optimized by the bio-geography theory are more efficient compared to
those found by the grasshopper optimization algorithm and wind-driven optimization.

The formula provided at the end of this research is reliable due to the excellent corre-
lation of its products. However, considering the dataset that was used, it may be subjected
to residential buildings. As explained supra, the data of this study was obtained from a
computer simulation for various types of residential buildings. An idea for future work
can be utilizing the type of buildings as an input to archive a more generalizable solution.

5. Conclusions

This article is concerned with the simultaneous calculation of HLs and CLs of resi-
dential buildings through the HVAC system. To limit the drawbacks of MLP technique,
hybrid intelligent techniques are implemented. The focus of the three proposed models
abbreviated as GOA-MLP, WDO-MLP, and BBO-MLP was to introduce several reliable
novel hybrid models to simulate both HLs and CLs. Overall, and after 33,000 iterations of
the three proposed algorithms, it was shown that all three hybrid techniques (GOA-MLP,
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WDO-MLP, and BBO-MLP) can nicely deal with the prediction task. However, the accuracy
of the BBO-based model was slightly higher. Moreover, assessing the results revealed that
the CLs results are associated with higher accuracy. Since the CLs prediction was almost
equal to the real values, the main comparison was made based on the values of predicted
HLs. Although the findings of this paper led to three novel sophisticated approaches for
the indirect modeling of building thermal load, the comprehensiveness of the proposed
models can be improved by using the data of other types of buildings as well.
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