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Long-time behaviour of degenerate diffusions:
UFG-type SDEs and time-inhomogeneous hypoelliptic

processes
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Abstract

We study the long time behaviour of a large class of diffusion processes on RN ,
generated by second order differential operators of (possibly) degenerate type. The
operators that we consider need not satisfy the Hörmander Condition (HC). Instead,
they satisfy the so-called UFG condition, introduced by Herman, Lobry and Sussman
in the context of geometric control theory and later by Kusuoka and Stroock. We
demonstrate the importance of the class of UFG processes in several respects: i) we
show that UFG processes constitute a family of SDEs which exhibit, in general,
multiple invariant measures (i.e. they are in general non-ergodic) and for which one
is able to describe a systematic procedure to study the basin of attraction of each
invariant measure (equilibrium state). ii) We use an explicit change of coordinates
to prove that every UFG diffusion can be, at least locally, represented as a system
consisting of an SDE coupled with an ODE, where the ODE evolves independently
of the SDE part of the dynamics. iii) As a result, UFG diffusions are inherently “less
smooth" than hypoelliptic SDEs; more precisely, we prove that UFG processes do not
admit a density with respect to Lebesgue measure on the entire space, but only on
suitable time-evolving submanifolds, which we describe. iv) We show that our results
and techniques, which we devised for UFG processes, can be applied to the study of
the long-time behaviour of non-autonomous hypoelliptic SDEs and therefore produce
several results on this latter class of processes as well. v) Because processes that
satisfy the (uniform) parabolic HC are UFG processes, this paper contains a wealth of
results about the long time behaviour of (uniformly) hypoelliptic processes which are
non-ergodic.

Keywords: diffusion semigroups; parabolic PDE; UFG condition; Hörmander condition; long
time asymptotics; processes with multiple invariant measures; non-ergodic SDEs; distributions
with non-constant rank; stochastic control theory.

*Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7
2AZ, UK. E-mail: thomas.cass@imperial.ac.uk,d.crisan@imperial.ac.uk

†Delft Institute of Applied Mathematics, Delft University of Technology, 2628 XE Delft, The Netherlands.
E-mail: p.dobson@tudelft.nl

‡Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edin-
burgh EH14 4AS, UK. E-mail: m.ottobre@hw.ac.uk

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/20-EJP577
mailto:thomas.cass@imperial.ac.uk,d.crisan@imperial.ac.uk
mailto:p.dobson@tudelft.nl
mailto:m.ottobre@hw.ac.uk


Long-time behaviour of degenerate diffusions

MSC2020 subject classifications: 60H10; 35K10; 35B35; 35B65; 58J65; 49J55; 93E03;
37H10.
Submitted to EJP on February 2, 2020, final version accepted on December 23, 2020.

1 Introduction

1.1 Context and scope of the paper

Consider stochastic differential equations (SDEs) in RN of the form

Xt = X0 +

∫ t

0

V0(Xs)ds+
√

2

d∑
i=1

∫ t

0

Vi(Xs) ◦ dBi(s), (1.1)

where V0, . . . , Vd are smooth vector fields on RN , ◦ denotes Stratonovich integration
and B1(t), . . . , Bd(t) are one dimensional independent standard Brownian motions. The
Markov semigroup {Pt}t≥0 associated with the SDE (1.1) is defined on the set Cb(RN )

of continuous and bounded functions as

Pt : Cb(R
N )→ Cb(R

N ), (Ptf)(x) := E [f(Xt)|X0 = x] . (1.2)

We recall that, given a vector field V : RN → RN , we can interpret V both as a
vector-valued function on RN and as a first order differential operator on RN :

V = (V 1(x), V 2(x), . . . , V N (x)) or V =

N∑
j=1

V j(x)∂j , x ∈ RN , ∂j = ∂xj . (1.3)

With this notation, the Kolmogorov operator associated with the semigroup Pt is the
second order differential operator given on smooth functions by

L = V0 +

d∑
i=1

V 2
i . (1.4)

The Markov diffusion Xt is called hypoelliptic (elliptic, respectively) when the operator L
is hypoelliptic (elliptic, respectively) [4]. The study of diffusion processes of hypoelliptic
type has by now produced a fully-fledged theory, involving several branches of mathemat-
ics: stochastic analysis, analysis of differential operators, (sub-)Riemannian geometry
and control theory. One of the key steps in the development of such a theory has been
the seminal paper of Hörmander [27] and a large body of work has been dedicated for
over forty years to the study of diffusion processes under the Hörmander Condition (HC)
(in one if its many forms), which is a sufficient condition for hypoellipticity. In particular,
the ergodic theory for hypoelliptic SDEs is well developed, see [51, 23, 50, 19] and
references therein – throughout the paper we define a process to be ergodic if it admits
a unique invariant measure (stationary state).

To the best of our knowledge, this is the first paper that attempts to build a framework
for the study of the long time asymptotics of solutions of SDEs which are non-necessarily
hypoelliptic. We will work in the setting in which the vector fields V0, . . . , Vd satisfy a
weaker condition, the so-called UFG condition. The acronym UFG stands for Uniformly
Finitely Generated. We give a precise statement of the UFG condition in Definition 3.1.
For the moment let us just point out that, while the Parabolic Hörmander condition
imposes the following ⋃

j≥1

span{Lj(x)} = RN for every x ∈ RN , (PHC)
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Long-time behaviour of degenerate diffusions

where as customary the hierarchy of operators Lj is defined as L1(x) := {V1(x), . . . , Vd(x)}
and, for j > 1, Lj(x) = Lj−1(x) ∪ {[V, Vk], V ∈ Lj−1, k ∈ {0, . . . , d}}, under the UFG condi-
tion the vector space appearing in (PHC) is not required to have constant rank; roughly
speaking, it is only required to be finitely generated. In particular, we emphasize that
the UFG condition does not impose the vector space in (PHC) to be equal to RN for any
x ∈ RN . Hence, in this sense, the UFG condition is weaker than the parabolic Hörmander
condition. The UFG condition has been long known by the (geometric) control theory
community, although perhaps under other names (see Section 3 for a more detailed
account on the matter), and it is indeed well-studied in the works of Hermann, Lobry and
Sussman [26, 39, 57]. It was then considered by Stroock and Kusuoka in the eighties
[33, 34, 35, 36], though in a completely different context (which we briefly explain
below). The purpose there was to study smoothing properties of the semigroup {Pt}t≥0

under the UFG condition. In this paper we combine the geometric viewpoint with the
functional analytic and probabilistic one to introduce new results on the asymptotic
behaviour of UFG diffusions. In broad terms, the two main achievements of this paper
can be described as follows:

i) We study the diffusion process (1.1) in absence of the Hörmander condition. To this
end, we establish explicit connections between the geometric theory of finitely generated
Lie algebras and the related stochastic dynamics. Because every (uniformly) hypoelliptic
process is a UFG process, our results cover a very large class of SDEs. In particular we
show that our approach can be fruitfully employed to study the asymptotic behaviour of
non-autonomous hypoelliptic diffusions.

ii) We argue that UFG processes constitute a class of SDEs which exhibit, in general,
multiple equilibria and for which one is able, given an initial datum, to determine the
invariant measure to which the dynamics will converge.

Let us further remark on the significance of the latter point: although a large body of
work has been devoted to the study of ergodic processes, the development of a general
framework to understand problems with multiple equilibria is at a very early stage. It is
well known that ergodic processes will, under appropriate general conditions, converge
to their unique equilibrium irrespective of the initial configuration, i.e. they will tend to
lose memory of the initial datum. Clearly this cannot be the case, in general, for more
complicated systems. When the invariant measure is not unique it is typically extremely
difficult to determine the basin of attraction of each equilibrium measure and we are
indeed not aware of any criteria developed to this effect. To be more precise, one can
ask one of the two (complemetary) questions: given an initial datum for the SDE, which
equilibrium measure will the process converge to? Conversely, given an equilibrium
measure µ, one may wish to describe the basin of attraction of such a measure, i.e. the
set of initial data x ∈ RN such that the process X(x)

t
1 converges to µ. Beyond numerical

simulations, no theoretical framework currently exists to tackle this kind of problems.
In this paper we introduce a systematic way to study long-time convergence for

a large class of SDEs which will, in general, admit several stationary states. This
methodology applies to UFG diffusions and hence, because processes that satisfy the
(uniform) parabolic Hörmander condition are UFG processes, our results produce further
understanding on non-ergodic Hörmander processes – we stress here, and we will
emphasize it again in Section 4, that hypoelliptic processes need not be ergodic (see
Section 4 for examples of hypoelliptic processes which are not ergodic).

The Markov diffusions studied here are linear, in the sense that their generators (1.4)
are linear second order differential operators. As a point of comparison, another class of

1We use the notation X
(x)
t to emphasize the fact that the initial datum of the process is X0 = x.
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Long-time behaviour of degenerate diffusions

systems exhibiting multiple equilibria is the class of so-called collective dynamics: in
this case the system is constituted by a large number of particles or agents that interact
with each other. The underlying kinetic-PDEs for this type of models are non-linear
in the sense of McKean and the existence of multiple stationary states here is due to
such a nonlinearity. In our case, the nature of the phenomenon is completely different
and in a way simpler, as multiple invariant measures arise as a result of the non-trivial
control-theory implied by the UFG condition.

In the remainder of this introduction we comment on the implications and significance
of the UFG condition first from an analytic perspective and then from a geometric and
probabilistic viewpoint. In Subsection 1.2 we explain the main results of the paper
and the reasons for studying UFG diffusions; we then conclude the introduction with
Subsection 1.3, where we illustrate the organization of the paper.

As is well known, under the (parabolic) Hörmander condition, the transition probabil-
ities of the semigroup {Pt}t≥0 have a smooth density; furthermore, Ptf is differentiable
in every direction and u(t, x) := (Ptf)(x) is a classical solution of the Cauchy problem

∂tu(t, x) = Lu(t, x)

u(0, x) = f(x).

In the present paper we will relax the hypoellipticity assumption and study the long-time
behaviour of the dynamics (1.1) in absence of the Hörmander condition.

In a series of papers [33, 34, 35, 36, 15, 10, 12], Kusuoka and Stroock first and
Crisan and collaborators later, have analyzed the smoothness properties of diffusion
semigroups {Pt}t≥0 associated with the stochastic dynamics (1.1) when the vector fields
{Vi, i = 0, 1, ..., d} satisfy the UFG condition. Such works showed that, as opposed to
what happens under the PHC, under the UFG condition the semigroup Pt is no longer
differentiable in every direction; in particular it is no longer differentiable in the direction
V0, but it is still differentiable in the direction V := ∂t − V0 when viewed as a function
(t, x) 7→ u(t, x) over the product space (0,∞)×RN . This fact has been proved by means of
Malliavin calculus and in this paper we give a geometric and analytic explanation of such
a phenomenon. Because of differentiability in the direction V, a rigourous PDE analysis
can still be built starting from the stochastic dynamics (1.1). In this case one can indeed
prove that for every f ∈ Cb (continuous and bounded), the function u(t, x) := (Ptf)(x) is
a classical solution2 of the Cauchy problem{

Vu(t, x) =
∑d
i=1 V

2
i u(t, x)

u(0, x) = f(x).
(1.5)

From a geometric and control-theoretical point of view, working with the UFG con-
dition will imply dealing with distributions of non-constant rank.3 If the geometric
understanding of the Hörmander condition is rooted in the classic Frobenius Theorem,
which deals with distributions of constant rank, the geometry of the UFG condition is
described in the works of Hermann, Lobry and Sussman [26, 39, 57]. In these works, the
UFG condition was considered for geometric and control theoretical purposes, in partic-
ular for the study of reachability (i.e., roughly speaking, to answer questions regarding
the set of points that can be reached by the integral curves of given vector fields). In this
respect we should stress that the UFG condition is not optimal from a control-theoretical
point of view (an optimal condition for reachability has been described by Sussmann [57]).
However, it is the closest to being optimal, while still being easy to check in practice.

2The notion of classical solution for the PDE (1.5) and further background material can be found in [14,
Appendix A].

3In this paper we use the word distribution only in geometric sense, see definition at the beginning of
Section 1.2.
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Finally, by a probabilistic standpoint, it is well known that the Parabolic Hörmander
condition (PHC) is a sufficient (and almost necessary) condition for the law of the
process (1.1) to have a density, see [24], and this fact has motivated the large literature
on hypoelliptic SDEs. Again, the understanding of this matter relies on Frobenius
Theorem, as Hörmander himself noted [27]. In his seminal paper [7], Bismut proved
that, when the Hörmander condition is enforced in place of the PHC,4 the law of the
process no longer admits a density on RN ; however, it admits a density on appropriate
time-dependent submanifolds of RN . In this paper we prove that a similar statement
holds, in more generality, for UFG processes, and in Section 8 we explicitly describe the
time-dependent manifolds on which the process admits a law. Throughout the paper we
will make several comparisons between the setting of [7] and the present setting.

1.2 Main results

The main results of this paper are the following: Proposition 4.7, Proposition 5.1
and Proposition 5.7 give a description of the global behaviour of the dynamics (1.1),
under the sole assumption that the vector fields V0, . . . , Vd satisfy the UFG condition;
Theorem 6.6 and Theorem 7.9 describe the long time behaviour of non-autonomous
hypoelliptic processes and of UFG processes, respectively, identifying invariant measures
and characterizing their basin of attraction; finally in Theorem 8.9 we describe appro-
priate manifolds where the process Xt admits a density. Let us give a rather informal
description of such results. Precise notation, assumptions and statements are deferred
to the relevant sections.

A distribution ∆ on RN is a map that, to each point x ∈ RN , associates a linear
subspace of the tangent space TxRN . Given a set D of smooth vector fields on RN , the
distribution generated by D, denoted by ∆D, is the map x 7→ span{X(x) : X ∈ D}. Let
us introduce two distributions, ∆̂(x) and ∆̂0(x), that will play a fundamental role in this
paper. To avoid having to set too much notation and nomenclature, we introduce them
now informally but we will give precise definitions at the beginning of Section 4.5 The
distribution ∆̂ is generated by the vector fields contained in the Lie algebra (PHC), i.e.
the distribution

∆̂(x) =
⋃
j≥1

span{Lj(x)} (1.6)

while

∆̂0(x) = span{Lie{V0(x), V1(x), , . . . , Vd(x)}} (1.7)

= span{V0(x) ∪ ∆̂(x)} . (1.8)

Clearly, ∆̂(x) ⊆ ∆̂0(x) for every x ∈ RN and the two distributions coincide at x if and only
if V0(x) is a combination of the vectors contained in ∆̂. More precisely, we decompose

the vector V0 into a component which belongs to ∆̂, V (∆̂)
0 , and a component which is

orthogonal to ∆̂, V (⊥)
0 :

V0 = V
(∆̂)
0 + V

(⊥)
0 . (1.9)

In other words, V (⊥)
0 (x) is the projection of V0(x) on the orthogonal of the vector space

∆̂(x), so the two distributions coincide if and only if V (⊥)
0 = 0. We will see that the vector

V
(⊥)
0 plays an important role for the dynamics and, ultimately, it is the component of
V0 responsible for the lack of smoothness in the direction V0.6 Therefore, in a way, the

4The difference between the PHC and the HC will be clarified in Section 3.
5In that section we define them differently, but we then prove that the definition we give there is equivalent

to the one we state in (1.6)–(1.7).
6Note that even when V0 is smooth, V

(⊥)
0 need not be smooth, see Note 4.14 on this matter.
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distribution ∆̂ is the one containing all the directions along which the problem (1.5) is
smooth. We will come back to this later.

Under the UFG condition the integral manifolds (see Section 3.3 for definition) of ∆̂0

form a partition of the state space RN . Let S be one such manifold.7 If X0 = x ∈ S
then X

(x)
t ∈ S for all t ≥ 0. That is, if the process starts from one of the manifolds of

the partition, then it remains in the closure of such a manifold; but, crucially, it may
hit the (topological) boundary ∂S := S \S of the manifold S . This is the content of
Proposition 4.7. Such a statement is obtained by combining the known geometric theory
of distributions with non-constant rank with the classical Stroock–Varadhan support
theorem. We further prove that if Xt hits the boundary ∂S of the manifold S , then it
never leaves it, see Proposition 5.1 and Note 5.2. Therefore: i) because the dimension of
the boundary ∂S is smaller than the dimension of S , along the path of X(x)

t the rank of
the distribution cannot increase; ii) if the solution of the SDE leaves the manifold S from
where it started, then any invariant measure can only be supported on the boundary ∂S
of such a manifold, see Proposition 5.7.

Further understanding of the dynamics relies on the results of Section 4.2: in this
section we show that, after an appropriate change of coordinates, any N -dimensional
SDE of UFG-type can be written, at least locally, as a system of the form

dZt = U0(Zt, ζ̂t)dt+

d∑
j=1

Uj(Zt, ζ̂t) ◦ dBjt (1.10)

dζ̂t = Ŵ0(ζ̂t)dt , (1.11)

where ζ̂t solves an ordinary differential equation (ODE), ζ̂t ∈ RN−n,8 Zt ∈ Rn, Ŵ0 :

RN−n → RN−n and Ui : RN → Rn for every i ∈ {0, . . . , d}. Beyond details about the
dimensionality of the ODE component, the important thing is that the solution of the
ODE ζ̂t evolves independently of the SDE part, while the coefficients of the SDE depend
on the evolution of the ODE. We will informally refer to such a representation as being
of the form “ODE+SDE”. In general, this representation is only local. This change
of coordinates has been known for a long time in differential geometry, at least since
Frobenius, see [28]; here we are simply expressing it in a way which is more congenial to
our setting and purposes and we apply it to SDEs. While the change of coordinates itself
is not new, to the best of our knowledge it has been used in SDE theory only by Bismut
in [7, Section 5], to study the density of SDEs that satisfy the Hörmander Condition, but
it has never been used to study the long-time behaviour of SDEs. To clearly compare our
work with [7], let us emphasize that in the notation introduced so far, the HC is satisfied
when the distribution ∆̂0 has rank equal to N at every point (see Section 3 for more
details). In this paper we primarily exploit the representation (1.10)–(1.11) to study the
long time behaviour of SDEs that satisfy the UFG condition (so, as we said already, the
rank of ∆̂0 is not constant) but we also use it briefly in Section 8 to study the density of
UFG processes.9 This local representation is both an important technical tool throughout
the paper and a fundamental element in understanding the evolution of the dynamics.
Referring to the PDE (1.5), we also note here that the change of coordinates gives a
geometric interpretation of the (potential) lack of smoothness in the direction V0 and of
the reason why smoothness is instead maintained in the direction V, see Note 4.13 on
this point.

7By definition of integral manifold, on each one of these manifolds the rank of the distribution ∆̂0 is constant
and it is equal to the dimension of the manifold itself.

8To make a link with the more precise notation that we will use in Section 4.2, we are denoting here by ζ̂t
the components (ζt, at) in (4.8)–(4.9), i.e. ζ̂t = (ζt, at).

9Further comparisons between the setting of [7] and the setting of this paper can be found later in this
section, in Note 8.1 and in Note 7.2.
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In view of the discussed change of coordinates, it makes sense to start by studying
UFG dynamics for which the representation (1.10)–(1.11) is global. For this reason in
Section 6 we consider systems which are (globally) of the form (1.10)–(1.11), where
the ODE is assumed to be one-dimensional and the SDE satisfies a form of Hörmander
condition. More precisely, the dynamics studied in Section 6 are non-autonomous
hypoelliptic SDEs; because the topic is somewhat of independent interest, this section
has been written in such a way that it can be read independently of the rest of the
paper. Non-autonomous SDEs and their associated two-parameter semigroup have been
studied in [9], where a detailed analysis of the law of the process is carried out, in
[13] where the associated semigroup is examined, and in [32, 16], where the authors
introduce some interesting techniques to deal with the analysis of invariant measures
and long-time behaviour of time-inhomogeneous processes. The work [9] assumes that
the non-autonomous SDE is hypoelliptic, while in [32] a uniform ellipticity assumption is
enforced. From a technical point of view, the results of Section 6 extend the approach
of [32, Section 6.1] to the hypoelliptic setting. However the main difference between
our results and the results in [32] is that here we highlight the fact that the process may
admit several invariant measures and we characterize the basin of attraction of each of
them. In this setting convergence to equilibrium is driven by the ODE component. We
will indeed show that the basin of attraction of each invariant measure can be completely
described by just looking at the behaviour of the solution of the ODE. Because the ODE
is assumed to be one-dimensional and autonomous, it can only behave monotonically, so
the analysis of the ODE and of the full problem is relatively intuitive in this setting (see
Section 6 for details).

In Section 7 we consider the general case of UFG processes for which the repre-
sentation (1.10)–(1.11) is only local. While this case is substantially richer than the
previous one, the fact that, locally, we can always represent the SDE (1.1) as a system
of the form ODE+SDE, still means that there is some deterministic behaviour which is
intrinsic to UFG dynamics. It turns out that one is still able to single out the deterministic
behaviour. Recalling the definition of the vector V (⊥)

0 , formula (1.9), we will show that
the (N -dimensional) ODE

dζt = V
(⊥)
0 (ζt)dt

plays, in this more general context, the same driving role that the ODE (1.11) had in the
context of Section 6. Motivated by the above discussion, we introduce the process

Zt := e−tV
(⊥)
0 (Xt).

This process is non-autonomous and, as we will explain, it can be interpreted geomet-
rically as being a projection of the process Xt on an appropriate integral manifold of
the distribution ∆̂. We apply the techniques of Section 6 to the study of such a non-
autonomous process, producing results on the long-time behaviour of Zt. We then relate
the asymptotic behaviour of Zt to the asymptotic behaviour of Xt. Notice that the proce-
dure that we have just described is somewhat the reverse of the one that is traditionally
used (and it is, to the best of our knowledge, new): given a non-autonomous system,
the established methodology consists of increasing the dimension of the state space by
adding time as an auxiliary variable, thereby reducing the given non-autonomous system
to a (larger) autonomous one. Here we do the converse: by projecting the process
on an appropriate manifold, we reduce to a (lower-dimensional) non-autonomous one,
Zt, with the advantage that now the techniques of Section 6 can be adapted to prove
statements on Zt. Once the latter process has been understood, we deduce results about
the autonomous process Xt from those shown for Zt.

From a probabilistic point of view it is clear that, in absence of the Hörmander
condition, we cannot expect the process Xt to have a density with respect to the
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Lebesgue measure. This is made explicit by the local representation (1.10)–(1.11),
which also clarifies that it is the ODE component to be responsible for the lack of
smoothness. Notice also that, in the coordinates (1.10)–(1.11), the vector V (⊥)

0 is given

by V (⊥)
0 = (0, . . . , 0, Ŵ0), i.e. it is precisely the vector driving the ODE behaviour (we

have elaborated on this fact in Note 4.13). However in Section 8 we show that the law of
the SDE (1.1) still has a density on an appropriate time-dependent submanifold, which
can be explicitly described. In order to do so, we correct and then extend the results of
[55].

One may also wish to point out that systems of the form “ODE+SDE” appear as
diffusion limits of some Metropolis-Hastings type of algorithms, see e.g. [31]. It is noted
in [31] that one may use the ODE as a way to monitor convergence. We believe that the
lack of smoothness of UFG processes could be seen as a perk in the context of sampling.
The authors intend to explore this fact in future work. Finally, we mention in passing
that UFG processes play a fundamental role in the study of cubature methods, see [12]
and references therein for a complete account on the matter.

1.3 Organisation of the paper

In Section 2 we introduce the standing notation for the remainder of the manuscript.
To make the paper self-contained, in Section 3 we gather background definitions and
notions. In particular Subsection 3.1 contains details of the UFG condition, while
Subsection 3.3 covers basic definitions and standard results in differential geometry and
(stochastic) control theory. In Section 4 we exploit the existing theory of distributions of
non-constant rank to produce both global and local results about the SDE (1.1), under the
UFG condition. In Section 4.1 we cover the global behaviour of the SDE, in Section 4.2
we study local properties. In Section 5 we introduce several results for UFG-diffusions.
These results are quite general, in the sense that most of them valid under just the
UFG condition. The following Section 6 can be read independently of the rest of the
manuscript: in this section we describe the long-time behaviour of hypoelliptic SDEs
of non-autonomous type. The class of SDEs considered in Section 6 is one for which
the representation of the form “ODE+SDE” is global. This is the first section where we
address the problem of studying the basin of attraction of different invariant measures.10

In Section 7 we instead study the long time behaviour of (1.1) in the general UFG case
(in which the change of coordinates is only local). Section 8 is devoted to the study of
the density of the process, via Malliavin calculus. Finally, for ease of reading, we chose
to relegate almost all the proofs to the appendix. In particular, Appendix A contains
some needed miscellaneous technical facts, Appendix B contains the proofs of all the
statements contained in Section 3 to Section 8.

2 Notation

We will be interested in N -dimensional SDEs, of the form (1.1). The letter N will only
be used to refer to the dimension of the state space. While examples of UFG diffusions
can be found in any dimension, it is fair to say that the theory we develop in this paper
is mostly interesting in dimension N ≥ 2, so we will make this a standing assumption
which will hold unless otherwise stated in specific examples.

If x is a point in RN , we denote the jth coordinate of x by xj , i.e. x = (x1, . . . , xN )

(this is coherent with (1.3)). We will often use a local change of coordinates, presented
in Section 4.2. The change of coordinates will be given by a local diffeomorphism
Φ : RN → RN and the new coordinates will typically be denoted by z, i.e. z = Φ(x). In

10We clarify that throughout this paper by invariant measure we understand this to be a invariant probability
measure, that is any invariant measure µ must have µ(RN ) = 1.
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Long-time behaviour of degenerate diffusions

the new coordinate system it will be of particular importance to distinguish the role of
the first n coordinates of z from the others (n being an appropriate integer, n < N ). In
particular, if N − n > 1, we will use the following notation

z = (z1, . . . , zn︸ ︷︷ ︸, zn+1︸︷︷︸, zn+2, . . . , zN︸ ︷︷ ︸) = (z, ζ, a), (2.1)

z ζ a

where (z1, . . . , zn) = z ∈ Rn, zn+1 = ζ ∈ R and (zn+2, . . . , zN ) = a ∈ RN−(n+1). The last
block of coordinates plays a role which is different from the role of the first two blocks,
as it will be explained (the coordinates in the last block should more be intended as
parameters). If N = n+ 1 then simply z = (z, ζ).

A similar reasoning holds for the vector fields appearing in (1.1): for any j ∈ {0, . . . , d},
Vj = (V 1

j , . . . , V
N
j ) and Ṽj will denote the vector Vj , expressed in the new coordinate

system z = Φ(x). We will show that in the new coordinate system, one has

Ṽj(z) = (Uj(z), 0, . . . , 0) j = 1, . . . , d (2.2)

Ṽ0 = (U0(z),W0(ζ, a), 0, . . . , 0) , (2.3)

where Uj : RN → Rn while W0 is a real-valued function which depends only on the last
two blocks of coordinates of z, i.e. W0 : RN−n → R.

Accordingly, if RN 3 Xt is the solution at time t of the SDE (1.1), then Xj
t denotes the

jth component of Xt. We will sometimes want to stress the dependence of the solution
Xt on the initial datum; when this is the case, we will write X(x)

t if X0 = x. Finally, given
a probability measure µ and a function f which is integrable with respect to µ, we shall
define µ(f) by

µ(f) :=

∫
fdµ.

We shall use the following function spaces throughout the paper. For any N ≥ 1 and
closed set E ⊆ RN ;

• We denote by Cb(E) the space of all functions f : E → R which are continuous and
bounded; this space will be endowed with the supremum norm.

• We say that a real-valued function f is C∞ if it has continuous derivatives of all
orders.

• We denote by C∞c (RN ) the set of all functions f : RN → R which are C∞ and with
compact support.

Given a differentiable function f : RN → RN we denote by Jxf the Jacobian matrix
of f , that is (Jxf)ij(x) = ∂xjf

i(x).

3 Preliminaries and assumptions

3.1 The UFG condition

Fix d ∈ N (here N denotes the set of non-zero integers) and let A0 be the set of all
k-tuples, of any size k ≥ 1, of integers of the following form

A0 := {α = (α1, . . . , αk) : k ∈ N, αj ∈ {0, 1, . . . , d} for all j ≥ 1} .

We endow A0 with the product operation

α ∗ β := (α1, . . . , αh, β1, . . . , β`),
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Long-time behaviour of degenerate diffusions

for any α = (α1, . . . , αh) and β = (β1, . . . , β`) in A0. Set A = A0 \ {(0)}. We emphasise
that all k-tuples of any length k ≥ 1 are allowed in A, except the trivial one, α = (0)

(however singletons α = (j) belongs to A if j ∈ {1, . . . , d}). If α ∈ A, we define the length
of α, denoted by ‖α‖, to be the integer

‖α‖ := h+ card{i : αi = 0}, if α = (α1, . . . , αh) .

For any m ∈ N,m ≥ 1, we then introduce the sets

Am = {α ∈ A : ‖α‖ ≤ m} .

Given a vector field (or, equivalently, a first order differential operator)
V = (V 1(x), V 2(x), ..., V N (x)) on RN , we refer to the functions {V j(x)}1≤j≤N as to the
components or coefficients of the vector field. We say that a vector field is smooth or
that it is C∞ if all the components V j(x), j = 1, . . . , N , are C∞ functions. Given two
differential operators V and W , the commutator between V and W is defined as

[V,W ] := VW −WV .

Let now {Vi : i = 0, . . . , d} be a collection of vector fields on RN and let us define the
following “hierarchy” of operators:

V[i] := Vi i = 0, 1, . . . , d

V[α∗i] := [V[α], V[i]], α ∈ A, i = 0, 1, . . . , d .

This hierarchy is completely analogous to the one constructed in Introduction, here
we just need a more detailed notation. Note that if ‖α‖ = h then ‖α ∗ i‖ = h + 1 if
i ∈ {1, . . . , d} and ‖α ∗ i‖ = h+ 2 if i = 0. If α ∈ A is a multi-index of length h, with abuse
of nomenclature we will say that V[α] is a differential operator of length h. We can then
define the space Rm to be the space containing all the operators of the above hierarchy,
up to and including the operators of length m (but excluding V0):

Rm :=
{
V[α], α ∈ Am

}
. (3.1)

Let C∞V (RN ) denote the set of bounded smooth functions, ϕ = ϕ(x) : RN → R, which
have bounded derivatives of all orders and such that

sup
x∈RN

∣∣V[γ1] . . . V[γk]ϕ(x)
∣∣ <∞ (3.2)

for all k and all γ1, . . . , γk ∈ Am.11 With this notation in place we can now introduce the
definition that will be central in this paper.

Definition 3.1 (UFG Condition). Let {Vi : i = 0, . . . , d} be a collection of smooth vector
fields on RN and assume that the coefficients of such vector fields have bounded partial
derivatives (of any order). We say that the fields {Vi : i = 0, . . . , d} satisfy the UFG
condition if there exists m ∈ N such that for any α ∈ A of the form

α = α′ ∗ i, α′ ∈ Am, i ∈ {0, . . . , d},

one can find bounded smooth functions ϕα,β = ϕα,β(x) ∈ C∞V (RN ) such that

V[α](x) =
∑
β∈Am

ϕα,β(x)V[β](x) . (3.3)

11The definition of the set C∞V (RN ) depends on m as well, but we do not include this dependence in the
notation for simplicity.
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Again we emphasize that the set of vector fields appearing in the linear combination
on the right hand side of the above identity does not include V0. It may be useful
to compare the UFG condition with the Hörmander condition, the uniform parabolic
Hörmander condition (UPHC) and the Parabolic Hörmander condition (PHC), which we
recall. The HC is satisfied if

span (Lie{V0(x), . . . , Vd(x)}) = RN for every x ∈ RN . (HC)

In other words, the HC is satisfied if ∆̂0(x) = RN for every x ∈ RN . The PHC has been
recalled in Introduction, see (PHC). We notice in passing that while the space Rm is in
general different from the space Lm,12 it is the case that ∪j≥1Rj = ∪j≥1Lj . The UPHC
(see [11]) is instead satisfied if

∃ ` ≥ 1 and κ > 0 :
∑
α∈A`

∣∣V[α](x) · y
∣∣2 ≥ κ |y|2 for every x, y ∈ RN . (UPHC)

In the above each term of the sum is the scalar product between the vector V[α](x) and
the vector y ∈ RN . Notice that the UPHC is the strongest of all these conditions, in the
sense that

(UPHC)⇒ (PHC)⇒ (HC)

(UPHC)⇒ (UFG) .

However neither the HC nor the PHC imply the UFG condition (as one may, in general,
need infinitely many fields to satisfy the PHC or the HC). We also note that while the
various Hörmander conditions are imposed on an appropriate Lie Algebra, the UFG
condition is rather a condition on the set of vectors {V[α], α ∈ Am}, seen as a module
over the ring C∞V .

Example 3.2. Consider one-dimensional geometric Brownian motion, that is, the solu-
tion of the following SDE:

dXt = −Xtdt+
√

2XtdBt

= −2Xtdt+
√

2Xt ◦ dBt.

Here V1 = x∂x, V0 = −2V1 and [V1, V0] = 0. These vector fields satisfy the UFG condition
with m = 1 however V0 and V1 vanish when x = 0 so the HC is not satisfied.

Example 3.3. Consider the following first order differential operators on R2

V0 = sinx ∂y V1 = sinx ∂x .

Then {V0, V1} do not satisfy the Hörmander condition (e.g. there is always a degeneracy
at x = 0) but they do satisfy the UFG condition with m = 4. If the role of the fields is
exchanged, i.e. if we set

V0 = sinx ∂x, V1 = sinx ∂y

then {V0, V1} still satisfy the UFG condition, this time with m = 1 (indeed, [V0, V1] =

cosxV1).

Note 3.4. Because the functions ϕα,β appearing in (3.3) belong to C∞V (RN ), if the UFG
condition holds for some m ∈ N then it also holds for any ` ≥ m, ` ∈ N. In other words, if
the UFG condition holds for some m in N then for any V[γ] with ‖γ‖ > m one has

V[γ](x) =
∑
β∈Am

ϕγ,β(x)V[β](x) ,

12V[α] ∈ Lj if and only if ‖α‖ ≤ 1 + 2(j − 1) = 2j − 1, hence R2j−1 = ∪jk=1Lj .
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for some functions ϕγ,β ∈ C∞V (RN ). For this reason it is appropriate to remark that in
the remainder of the paper, when we assume that “the UFG condition is satisfied for
some m”, we mean the smallest such m.

We will consider diffusion semigroups {Pt}t≥0 of the form (1.2); that is, we consider
Markov semigroups associated with the stochastic dynamics (1.1). In particular, we will
be interested in studying the semigroup Pt when the vector fields {V0, V1, . . . , Vd} satisfy
the UFG condition.

As we have already mentioned, the UFG condition is strictly weaker than the uniform
Parabolic Hörmander condition. However one can still prove that, when the UFG
condition is satisfied by the vector fields {V0, V1, . . . , Vd} appearing in the generator (1.4),
the semigroup {Pt}t≥0 still enjoys good smoothing properties: if f(x) is continuous
then (Ptf)(x) is differentiable (infinitely many times) in all the directions spanned by
the vector fields contained in Rm (we recall that the set Rm is defined in (3.1)). See
Appendix A.2 for more details.

3.2 Obtuse angle condition

When the semigroup {Pt}t≥0 is elliptic or hypoelliptic, several works have dealt with
the study of the long and short time behaviour of the derivatives of the semigroup, for a
review see [4, 40]. To the best of our knowledge, the only work addressing the study
of the long-time behaviour of the derivatives of UFG semigroups is [14]. In [14] the
authors identify a sufficient condition for exponential decay of the derivatives of the
solution of (1.5). To be more precise, they proved the following: suppose the vector
fields {V0, V1, . . . , Vd} satisfy the UFG condition and assume there exists λ0 > 0 such that
for all f sufficiently smooth and for every α ∈ Am we have

(V[α∗0]f(x))(V[α]f(x)) ≤ −λ0

∣∣V[α]f(x)
∣∣2 , for every x ∈ RN . (3.4)

It is understood in the above that λ0 is independent of f . If λ0 is sufficiently large then,
for every r > 0 and t0 > 0, we may find a constant ct0,r > 0 such that for any f ∈ Cb(R),
t ≥ t0 and α ∈ Am we have

sup
x∈B(0,r)

∣∣V[α](Ptf)(x)
∣∣ ≤ cr,t0‖f‖∞e−λ(t−t0), (3.5)

for some λ > 0 (which depends on λ0). In the above B(0, r) is the centered ball (of RN )
of radius r. Condition (3.4) was named the Obtuse Angle Condition (OAC) in [14]. Here
we will need a second order version of such a result, as well.

Lemma 3.5. Let {Pt}t≥0 be the semigroup associated with the SDE (1.1) and assume
that the vector fields V0, . . . , Vd satisfy the UFG condition. Suppose moreover that the
following holds: there exists λ0 > 0 such that

(V[α]V[β]f)(x) ([V[α]V[β], V0]f)(x) ≤ −λ0

∣∣(V[α]V[β]f)(x)
∣∣2 , (3.6)

for every x ∈ RN and for all α, β ∈ Am such that α 6= β and α, β /∈ {(1), . . . , (d)}. If λ0 > 0

is large enough then, for any t0 ∈ (0, 1) and any r > 0 there exists a constant ct0,r > 0

such that, for some λ > 0 (which depends, among other things, on λ0 but independent of
f ), one has

sup
x∈B(0,r)

∣∣V[β]V[α](Ptf)(x)
∣∣2 ≤ ct0,r e−λ(t−t0)‖f‖∞, (3.7)

for all α, β ∈ Am, all t > t0 and for every f continuous and bounded.

Proof of Lemma 3.5. The proof is simple and can be done by following the same pro-
cedures presented in [14], using the modifications outlined in [14, comments after
Corollary 4.9]. We do not repeat all the details here
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Example 3.6 (UFG condition and Obtuse Angle Condition for linear SDEs). Consider SDEs
in RN of the form

dXt = (AXt +D)dt+
√

2

d∑
i=1

CidB
i
t , (3.8)

where A is a constant N ×N matrix, B1
t , . . . , B

d
t are one-dimensional standard Brownian

motions andD,C1, . . . , Cd ∈ RN are constant vectors. In this case V0(x) = Ax+D,Vi(x) =

Ci, and
V[i∗0] = [Vi, V0] = ACi, i ∈ {1, . . . , d}.

Because [Vi, Vj ] = 0 for every i, j ∈ {1, . . . , d}, the only relevant commutators are those
of the form V[(i,0,...,0)], i.e. repeated commutators with V0. For simplicity, let αi,k be the

(k + 1)-tuple such that α1
i,k = i and αji,k = 0 for j > 1; then

V[(i,0, . . . , 0︸ ︷︷ ︸
k times

)] = AkCi.

It is now easy to show that, irrespective of the choice of A,D,C1, . . . , Cd as above, the
UFG condition is always satisfied by SDEs of the form (3.8). Indeed, by the Cayley
Hamilton Theorem there is a polynomial p of degree at most N − 1 such that AN = p(A);
so we can write any V[αi,k] as a linear combination of the vectors V[αi,`] with ` ≤ N . For
comparison we recall that (3.8) is hypoelliptic if and only if the Kalman rank condition is
satisfied, namely if

rank[Q,AQ,A2Q, . . . , AN−1Q] = N,

where Q is the overall diffusion matrix of (3.8), see e.g. [40]. As for the OAC (3.4), this
is satisfied if and only if there exists some λ > 0 such that for all f ∈ C1(RN ) we have

(∇f)TAk+1CiC
T
i (Ak)T∇f ≤ −λ0(∇f)TAkCiC

T
i (Ak)T (∇f) ,

for all i ∈ {1, . . . , d} and k ∈ {0, 1, . . . , N − 1}. This holds if and only if

(A+ λ0I)G ≤ 0

for some λ0 > 0, where G = AkCiC
T
i (Ak)T for all i ∈ {1, . . . , d} and k ∈ {0, 1, . . . ,

N − 1}.

3.3 Geometry

In this section we cover some basic notions from differential geometry and geometric
control theory on which the rest of the paper relies. Further details can be found in
the excellent references [56, 28, 57]. For the reader who is already familiar with this
material, we point out that, among the results recalled in this section, Theorem 3.13 is
possibly the one which will play the most important role in the remainder of the paper.

Given a vector field V (x) on RN , we denote by etV (x) the integral curve of V starting
at t = 0 from x, i.e. the curve γ(t) : R→ RN such that γ(0) = x and γ̇(t) = V (γ(t)) for all
t ∈ R such that the curve is defined. In general, integral curves exist only locally. In this
paper we consider only smooth, globally defined and globally Lipschitz vector fields (see
Hypothesis 3.16), so integral curves actually exist for every t ∈ R. As already mentioned,
a distribution ∆ on RN is a map that, to each point x ∈ RN , associates a linear subspace
of the tangent space TxRN . Given a set D of smooth vector fields on RN , the distribution
generated by D, denoted by ∆D, is the map x → span{X(x) : X ∈ D}. Distributions
generated by a set of smooth vector fields are usually referred to as smooth distributions.
When we write ∆D instead of just ∆ it is understood that we are considering smooth
distributions rather than general distributions. As customary, we say that the vector
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field X on RN belongs to the distribution ∆ if X(x) ∈ ∆(x) for all x ∈ RN . The rank of
∆ at x is the dimension of the vector space ∆(x). A piecewise integral curve, γ, of vector
fields in the set D is a curve of the form

γ(t1, . . . , th) = et1X1et2X2 · · · ethXhx h ∈ N, tj ∈ R, x ∈ RN ,

where X1, . . . , Xh ∈ D (and they are not necessarily all distinct). A submanifold M ⊆ RN
is an integral manifold of ∆ if TxM = ∆(x) for every x ∈M . A maximal integral manifold
(MIM) of ∆, M, is a connected integral manifold of ∆ which is maximal in the sense
that every other connected integral manifold of ∆ that containsM coincides withM.
Therefore, two MIMs either coincide or they are disjoint.

Definition 3.7. Let ∆ be a distribution on RN .

• ∆ is involutive if
X,Y ∈ ∆ =⇒ [X,Y ] ∈ ∆ .

• ∆ is invariant under the vector field V if the Jacobian matrix Jx(etV x) maps ∆(x)

into ∆(etV x) for all x and for all t.13

• Suppose ∆ is generated by the collection of vector fields D = {X1, . . . , Xk}, i.e.
∆ = ∆D. Then two points x, y ∈ RN belong to the same orbit of ∆D if there exists
a curve γ : [a, b] → RN such that γ(a) = x, γ(b) = y and γ is a piecewise integral
curve of vectors in D.

In general, the integral manifolds of a given distribution are “smaller” than the orbits;
we refer the reader to [57] for a detailed explanation of this matter, see in particular
[57, Eqn. (3.1)]. Here we just illustrate this fact with a simple but important classical
example.

Example 3.8. In R2, consider the vector fields X = ∂x and Y = ψ(x)∂y where ψ(x)

is a smooth function vanishing on the half-plane x ≤ 0. The orbit of the distribution
generated by X and Y , ∆X,Y , is the whole R2. That is, given any two points in R2

there is a piecewise integral curve of {X,Y } which joins the two points. However the
integral manifolds through points (x, y) with x ≤ 0 are one dimensional. Notice that the
distribution in this example is involutive but it satisfies neither the Hörmander condition
nor the UFG condition. More precisely, in the sense that whether we take X = V0 and
Y = V1 or vicecersa, either way the UFG condition is not satisfied (more precisely, in
the language of Definition 3.10 below, the set {X,Y } is neither locally nor globally of
finite type). The fact that {X,Y } do not satisfy the UFG condition can be either seen
as a consequence of Theorem 3.13 below (if it did, the orbits would have to coincide
with the integral manifolds) or it can be shown with direct calculations (the problem
arising on the line x = 0). For the reader’s convenience this calculation is contained in
the Appendix, see Lemma A.2.

We say that a distribution ∆ on RN satisfies the (maximal) integral manifolds property
if through every point of RN there passes a (maximal) integral manifold of ∆. The
following fundamental result, due to Sussman (see [57, Theorem 4.2]), completely
characterizes the distributions enjoying the maximal integral manifolds property.

Theorem 3.9 (Sussman’s Orbit Theorem). If ∆ = ∆D is a smooth distribution on RN ,
then the following statements are equivalent

(a) ∆D satisfies the maximal integral manifolds property;

(b) ∆D satisfies the integral manifolds property;

13A useful criterion to check whether a distribution is invariant under a vector field will be given in Note 3.11.
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(c) the orbits of ∆D coincide with the integral manifolds of the distribution and the
rank of ∆D at each point x ∈ RN is equal to the dimension of the integral manifold
of ∆D through x;

(d) ∆D coincides with the smallest distribution which contains the Lie algebra gener-
ated by D, Lie{D}, and is invariant under the vectors in D.

In view of the equivalence of (a) and (b) above, when either property hold we
just say that the smooth distribution is integrable. It is clear that in this case every
integral manifold is a maximal integral manifold. Some standard facts about integrable
distributions which are useful to bear in mind and that follow (easily) from what we have
said so far: if ∆D is integrable, then

i) ∆D is involutive;

ii) the state space RN is partitioned into orbits of ∆D;

iii) the rank of the distribution is constant along the orbits (of ∆D, which coincide with
the integral manifolds of such a distribution).

The latter fact is a consequence of the fact that ∆D is invariant under the vectors in D
together with the observation that the maps etV are diffeomorphisms for every fixed
t ∈ R (hence the Jacobian matrix Jx(etV x), which maps the tangent space at x into the
tangent space at etV x, is always invertible).

Definition 3.10 ([57, page 185]). Let D be a set of everywhere defined, smooth vector
fields on RN and ∆D be the associated distribution. The set D (as well as the distribution
∆D) is locally of finite type or locally finitely generated (LFG) if for every x ∈ RN there
exist vector fields X1, . . . , Xk belonging to D and such that

i) span{X1(x), . . . , Xk(x)} = ∆D(x)

ii) for every X ∈ D there exists a neighbourhood U of x and C∞ functions ϕi,j defined
on U such that

[X,Xi] =

k∑
j=1

ϕi,j(x)Xj(x) for all x ∈ Uand every i ∈ {1, . . . , k}.

We emphasize that if ∆D is LFG then the rank of ∆D need not be constant. Moreover,
the choice of k in point i) does depend on x.

Note 3.11. We recall the following useful criterion (see [28, Lemma 2.1.4]): if a distri-
bution ∆ is either of constant rank or locally of finite type, then it is invariant under a
vector field V if and only if [V, τ ] ∈ ∆ whenever τ ∈ ∆.

Definition 3.12. With the same notation and setting as in Definition 3.10, D is globally
of finite type if point i) of Definition 3.10 holds with k independent of x and if for every
X ∈ D there exist C∞ functions ϕi,j defined on RN such that

[X,Xi] =

k∑
j=1

ϕi,j(x)Xj(x) for all x ∈ RNand every i ∈ {1, . . . , k}.

The next theorem gives a sufficient condition for integrability, which is easy to check
in practice.

Theorem 3.13 (Hermann, Lobry, Stephan and Sussman). If D is locally of finite type
then ∆D is integrable; in particular, the integral manifolds of ∆D coincide with the orbits
of the vector fields of the set D.
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Note 3.14 (Comments on Theorem 3.13). Seen from a control-theoretical point of view,
the above statement gives a global decomposition of the state space RN into sets
reachable by piecewise integral curves of vector fields in D. To clarify this fact and
provide some context, it is useful to compare it with the case where the HC holds. Start
by noting that under the HC the Lie algebra generated by the vectors in D is required
to have constant rank (and the rank is assumed to be precisely N at every point). The
control-theoretical meaning of the HC is expressed by Chow’s Theorem, see [5, 8], (and
indeed in control theory the HC is known as Chow’s condition). Chow’s theorem states
that if the vectors {V0, . . . , Vd} satisfy (HC) then any two points in RN are accessible or
reachable in finite time from each other along integral curves of the vectors in D. That
is, given any two points x, y ∈ RN , there exists a piecewise integral curve γ of vectors
in D, and a time t > 0 such that γ(0) = x and γ(t) = y. This is not the case if we simply
assume that D is a LFG set of vector fields. According to the above theorem, if D is LFG
then, for every x ∈ RN , the set of states reachable from x in finite time coincides with
the maximal integral manifold of ∆D through x. Because the rank of the distribution
is not constant, and in particular it need not be N at any point, this implies that, in
general, the orbits of ∆D will be proper subsets of RN (as we have mentioned, they form
a partition of RN ).

We conclude this subsection by recalling the following result, which will be used later
on.

Lemma 3.15 ([28, Theorem 2.1.9]). Let ∆D be a smooth involutive distribution invariant
under a vector field W . Suppose ∆D is locally finitely generated. Let x1, x2 be two points
belonging to the same maximal integral manifold of ∆D. Then, for all t ∈ R, the points
etWx1 and etWx2 belong to the same maximal integral submanifold of ∆D.

To clarify the above statement: under the asumptions of the lemma, if x1, x2 belong to
a given MIM of ∆D, sayM then etWx1, e

tWx2 ∈ M̃, where M̃ denotes another generic
MIM of ∆D. In general M̃ will be different from M (unless W belongs to ∆D). For
example see Example 4.10.

3.4 Assumptions

Throughout the paper we will make the following standing assumptions.

Hypothesis 3.16. Standing assumptions:

[SA.1] All the vector fields we consider in this paper are smooth, everywhere defined
and globally Lipschitz.

[SA.2] In this paper we will consider partitions of RN into submanifolds; each one
of such submanifolds is generically denoted by S , see definition after Propo-
sition 4.3. Throughout, the manifold topology τ (on S ) is assumed to be the
Euclidean topology of S , seen as a subset of RN ; that is, the open sets of S in
the manifold topology τ are sets of the form O ∩S , where O is a Euclidean open
set of RN . In Appendix A.1 we motivate the choice of such a topology and give
further details about this assumption.

[SA.3] When we say that the obtuse angle condition (3.4) (or its second order ver-
sion (3.6), respectvely) is satisfied, we mean that it is satisfied for some λ0 > 0

large enough so that the estimate (3.5) ( (3.7), respectively) follows.

Note 3.17. Assumption [SA.1] will be needed mostly to make sure that all the integral
curves of the involved vector fields are well defined (and to guarantee well-posedness of
the SDE (1.1)). However see Note 4.14 on this point.
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Long-time behaviour of degenerate diffusions

4 Geometrical significance of the UFG condition and implications
for the corresponding SDE

In this section we come to explain how the general results outlined in Section 3.3
apply to the study of the dynamics (1.1), assuming that the vector fields V0, . . . , Vd satisfy
the UFG condition. For clarity, we will compare with the case in which V0, . . . , Vd satisfy
the Hörmander condition. Subsection 4.1 contains global results, Subsection 4.2 is
focussed on local results.

4.1 Global results

Recalling the notation and nomenclature of Section 3.1 and motivated by Theo-
rem 3.9, we introduce two distributions associated with the vector fields V0, . . . , Vd; such
distributions will play a fundamental role in the analysis of the UFG-dynamics (1.1). Let

• ∆̂0 be the smallest distribution which contains the space span{V0, V1, . . . , Vd} and
is invariant under the vector fields {V0, V1, . . . , Vd};

• ∆̂ be the smallest distribution which contains the space span{V1, . . . , Vd} and is
invariant under the vector fields {V0, V1, . . . , Vd}.

Let us denote by n = n(x) the rank of the distribution ∆̂(x). Notice that n = n(x) is a
function of the point x ∈ RN and, as such its value can vary from point to point. As
Lemma 4.1 below demonstrates, if at some point x ∈ RN the rank of ∆̂ is n, then the rank
of ∆̂0 is at most n+ 1. We will typically assume that n < N , where N is the dimension
of the state space RN in which the vector fields V0, . . . , Vd live, see Note 4.12 on this
point. We stress that ∆̂ may not contain the vector field V0 itself (unless for example
V0 is a linear combination of V1, . . . , Vd). Lemma 4.1 below gives a simpler equivalent
description of the distributions ∆̂ and ∆̂0 (which is the one we gave in the introduction).

Lemma 4.1. Let V0, . . . , Vd be d+ 1 vector fields on RN which satisfy the UFG condition
for some m, see Note 3.4. Recall the decomposition (1.9), the definition of Rm, given
in (3.1), and set Rm,0 := Rm ∪ V0. Then

∆̂ = span{Rm} and ∆̂0 = span{Rm,0} . (4.1)

In particular,
∆̂0(x) = span(∆̂(x), V

(⊥)
0 (x)).

Proof of Lemma 4.1. A proof of this lemma in a general setting can be found in [28,
Lemma 1.8.7 and Remark 2.2.3]. For completeness (and to spare the reader from having
to compare and match notations and setting with those in [28]), we have added a proof
in Appendix B.1.

Note 4.2. If the vector fields V0, V1, . . . , Vd satisfy the UFG condition then the distribu-
tions ∆̂ and ∆̂0 are locally of finite type because they are globally of finite type (see
Definition 3.12). This can be checked by using Note 3.4 (and the fact that nested com-
mutators can always be expressed as linear combinations of hierarchical commutators,
see [8, page 11-12]).

Since the UFG condition implies that the sets Rm and Rm,0 are locally of finite type,
we can apply Theorem 3.13 to the distributions given by the span of Rm and Rm,0. By
Lemma 4.1, the distributions ∆̂ and ∆̂0 coincide with span of Rm and Rm,0 respectively.
As a corollary, we have the following proposition.

Proposition 4.3. If the vector fields V0, V1, . . . , Vd satisfy the UFG condition, then both
∆̂0 and ∆̂ enjoy the integral manifolds property. In particular the integral manifolds of
∆̂0 coincide with the orbits of ∆̂0 (and the same holds for the distribution ∆̂).

EJP 26 (2021), paper 22.
Page 17/72

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP577
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Long-time behaviour of degenerate diffusions

We denote by S (S , respectively) a generic MIM of the distribution ∆̂ (∆̂0, respec-
tively). Consistently, Sx (Sx, respectively) will denote the MIM of ∆̂ (∆̂0, respectively)
through the point x ∈ RN . It is easy to see that for every x ∈ RN , Sx ⊆ Sx, so that Sx is
a disjoint union of integral manifolds of ∆̂. Notice that n = n(x) is constant along the
orbits S of ∆̂.

It is important to observe that any deterministic dynamics started on a maximal
integral manifold S of ∆̂0 and following the integral curves of the fields V0, . . . , Vd, will
remain in S for any positive time (see Note 3.14). On the other hand, if X0 = x is the
initial datum of the stochastic dynamics (1.1) and X0 ∈ Sx, then Xt ∈ S x for all t ≥ 0.
This is a consequence of the Stroock and Varadhan support theorem, which we recall
below, see [6] for more details.

Theorem 4.4 (Stroock and Varadhan). Let X(x)
t be the solution of the SDE (1.1). The sup-

port14 of the law of {X(x)
t }t∈[0,T ] in path space, coincides with the closure in

(C([0, T ];R), ‖ · ‖∞) of the set of paths (pt)t∈[0,T ] such that (pt) satisfies the control prob-
lem:

dpt = V0(pt)dt+
√

2

d∑
i=1

Vi(pt)ψi(t)dt, p0 = x , (4.2)

for some ψ1, . . . , ψd : [0, T ]→ R piecewise constant functions.

Informally, Theorem 4.4 says that the stochastic dynamics (1.1) will access in time t
the (closure) of the set reachable in time t by the control problem (4.2), as we vary the
controls ψ1, . . . , ψd in a suitable set of functions.

Excursus 4.5. We would like to further elaborate on the comment started before Theo-
rem 4.4. To this end, consider the following one-dimensional SDE:

dXt = − sin(Xt)dt+ cos(Xt) ◦ dBt .15 (4.3)

Here V0 = − sin(x)∂x, V1 = cos(x)∂x, and [V0, V1] = ∂x, so that these fields satisfy both the
HC and the PHC. According to Chow’s theorem (see Note 3.14), if V0, V1 satisfy the HC
then any two points in R can be joined through integral curves of such fields. However,
if we start the dynamics (4.3) at x ∈ [−π/2, π/2] then the solution Xt never leaves the
interval [−π/2, π/2]. This is not in contradiction to the statement of Chow’s theorem.
The behaviour of the stochastic dynamics (4.3) is related to the control problem (4.2).
On the other hand, when we say that under the HC any two points in RN can be joined
by integral curves of vectors in D, this is equivalent to saying that the set of points
reachable from x by the control system

dpt = V0(pt)ψ0(t)dt+

d∑
i=1

Vi(pt)ψi(t)dt, p0 = x, (4.4)

is indeed the whole space RN (in the above the functions ψ1, . . . , ψd : [0, T ]→ R are say
piecewise constant controls). Clearly, the set of points accessible by (4.2) is a subset
of the set of points accessible by (4.4). In our example, the support of the law of the
solution to SDE (4.3) is given by the (closure of the) set of points reachable by the control
problem

dXt = − sin(Xt)dt+ cos(Xt)ψ1(t)dt.

On the other hand, Chow’s theorem applied to the vector fields V0, V1 refers to the
problem

dXt = − sin(Xt)ψ0(t)dt+ cos(Xt)ψ1(t)dt.

14The support of the law of a random variable X denotes the smallest closed set A such that P(X ∈ A) = 1.
15This is a known example, see for example [24].
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Such a dynamics can indeed be stirred to access the whole real line, no matter where it
is started.

The theory summarised in Subsection 3.3 describes completely the sets accessible by
the control problem (4.4), which are precisely the orbits of the vector fields V0, . . . , Vd. On
the other hand, if we want to study the SDE (1.1) (under the UFG condition) then we are
interested in understanding the behaviour of the control problem (4.2). Unfortunately,
in full generality, one can only state the following (see [28, Section 2.2]).

Lemma 4.6. With the notation and nomenclature introduced so far, let V0, . . . , Vd be
smooth vector fields on RN satisfying the UFG condition. Then the sets of points
reachable from x by the control problem (4.2) is a subset of Sx and it contains at least a
non-empty open subset of Sx.

Combining the above and Theorem 4.4 we obtain the following.

Proposition 4.7. Consider the SDE (1.1) with initial datum X0 = x and assume that the
vector fields V0, . . . , Vd satisfy the UFG condition. Then Xt ∈ Sx for every t ≥ 0.16

Let us reiterate that Proposition 4.7 does not say that X(x)
t will explore the whole set

Sx (that is, it does not imply irreducibility of the process on Sx), it simply means that
the process Xt will not leave such a set.

Example 4.8. Here we consider the Stochastic Geodesic Equation derived in [2]. The
aim of [2] is to study solutions u(t, x) of the stochastic wave geodesic equation on the
unit sphere:

du̇ =

(
∆u+ (|∇u|2 − |u̇|2)u− 1

2
u̇

)
dt+ u× u̇ dBt, |u| = 1, u(0, x) ⊥ u̇(0, x).

Here u̇ denotes the time derivative of u, i.e. u̇(t, x) = ∂tu(t, x). In [2] the authors were
concerned with solutions that are independent of the space variables, i.e. u(t, x) = u(t) =

ut. By introducing an auxiliary process vt which is R3 valued and defined by vt := u̇t
they find that (ut, vt) satisfies the following 6-dimensional Stratonovich SDE:

d

(
ut
vt

)
=

(
vt

−|vt|2ut

)
dt+

(
0

ut × vt

)
◦ dBt. (4.5)

In our notation, Xt = (ut, vt), N = 6, d = 1 and for every (u, v) ∈ R3 ×R3 we have

V0(u, v) =

(
v

−|v|2u

)
, V1(u, v) =

(
0

u× v

)
.

We then have the following commutator relationships:

[V1, V0] =

(
u× v

0

)
, [[V1, V0], V0] = −|v|2V1, [[V1, V0], V1] = V0.

From here we can see that we will generate no new directions by taking further commu-
tators and the distribution ∆̂ satisfies the LFG condition, see Definition 3.10; moreover
we have

∆̂0(u, v) = ∆̂(u, v) = span (V1(u, v), [V1, V0](u, v), [[V1, V0], V1](u, v)) .

Observe the dimension of ∆̂0 is 3 except at the point (0, 0) where all the vector fields
vanish. Define the 3-dimensional manifold

Mr,R = {(u, v) : |v| = r, |u| = R, u ⊥ v}.
16We clarify again that the closure is intended to be in the Euclidean topology.
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Note that the tangent space to Mr,R at the point (u, v) is ∆̂0(u, v) and Mr,R is closed. By
Proposition 4.7, Xt ∈ Mr,R almost surely when Xt = (ut, vt) and X0 ∈ Mr,R. In [2] the
authors consider the case R = 1, i.e. |u| = 1. Notice that since Mr,R is compact, and for
any initial condition x ∈Mr,R the process remains on Mr,R almost surely we obtain that
there exists an invariant measure with the support in Mr,R, that is we recover the results
of [2, Corollary 5.5 & 5.11]. In [2, Theorem 8.1] the authors show that the transition
probabilities are absolutely continuous with respect to the normalised surface measure
on Mr,R we will see that this will follow from Theorem 8.9.

Observe that these vector fields are not globally Lipschitz, however as the solutions
always remain in a compact set for fixed initial conditions our results still hold.17

4.2 Local considerations: an important change of coordinates

Let x ∈ RN be a regular point of a given distribution ∆, i.e. suppose there exists a
neighbourhood of x where the dimension of ∆ is constant, say equal to n. If this is the
case then, locally, there exist n linearly independent vector fields, {X1, . . . , Xn} = Dn,
generating the distribution. Suppose furthermore that ∆Dn is involutive and n < N (see
Note 4.12). For some small enough ε > 0 we can define the map Ψ : (−ε, ε)N → RN as
follows:

Ψ : (−ε, ε)N −→ RN

t := (t1, . . . , tN ) −→ et1X1et2X2 · · · etNXNx ,

where X1, . . . , Xn are as above and Xn+1, . . . , XN are such that

span{X1, . . . , Xn, Xn+1, . . . , XN} = RN

(at least locally). The map Ψ is, at least locally, a diffeomorphism on its image, so it admits
an inverse, which we denote by Φ. Differentiating the obvious identity (Φ ◦ Ψ)(t) = t,
one obtains

(JxΦ)(Ψ(t)) · (JtΨ)(t) = IdN×N .

Let us make the above notation more explicit. The map Φ is a map from (opens sets of)
RN to (opens sets of) RN , i.e.

Φ(x) = (Φ1(x), . . . ,ΦN (x)), x ∈ RN ,

where Φi : RN → R. Therefore the ith row of the matrix JxΦ is the gradient ∇Φi. On
the other hand, the jth column of the matrix JtΨ is the vector ∂Ψ

∂tj
:= {∂Ψ1

∂tj
, . . . , ∂ΨN

∂tj
}T .

The first n columns of the Jacobian matrix (JtΨ)(t) are linearly independent (because Ψ

is a diffeomorphism) and, from the above, we have

∇Φi · ∂Ψ

∂tj
= 0 for all j = 1, . . . , n, i = n+ 1, . . . , N. (4.6)

By the involutivity of ∆Dn the vectors { ∂Ψ
∂tj
}nj=1 belong to ∆Dn ;18 moreover because they

are linearly independent, they span ∆Dn . Therefore the vectors ∇Φi are orthogonal to

17Indeed, fix some initial conditions u, v with |u| = 1, |v| = 1 and construct globally Lipschitz vector fields
Ṽ0, Ṽ1 with the properties: Ṽ0(x) = V0(x) and Ṽ1(x) = V1(x) for any x ∈ R6 with |x| ≤ 2. Let (ũt, ṽt) be the
solution of

d

(
ũt
ṽt

)
= Ṽ0(ũt, ṽt)dt+ Ṽ1(ũt, ṽt) ◦ dBt.

Then we have that (ũt, ṽt) take values in Mr,R almost surely and in particular, |ũt| = 1, |ṽt| = r for all t ≥ 0.
However since V0 = Ṽ0 and V1 = Ṽ1 on the set Mr,R we have that ut = ũt and vt = ṽt by pathwise uniqueness
of solutions to SDEs (see [29, Theorem 5.2.5]). Hence (ut, vt) must take values in Mr,R almost surely also.

18See e.g. [28, item (ii) on page 25]
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every vector of ∆Dn , i.e.

∇Φi · τ = 0 for every τ ∈ ∆Dn and for every i = n+ 1, . . . , N .

Now notice that Φ is (locally) invertible so it can be used as a (local) change of coordinates
z = Φ(x). With these preliminaries in place, we have the following.

Proposition 4.9. Let ∆ be a smooth involutive distribution on RN and x0 a regular point
of ∆. In particular, assume that there exists a neighbourhood of x0 where the dimension
of ∆ is n. Then there exists a change of coordinates Φ (defined locally) such that

i) A vector field V on RN belongs to ∆ if and only if in the coordinates defined by Φ,
the last N − n components of V are zero;19

ii) if ∆ is invariant under a vector field W then, in the coordinates defined by Φ, the
last N − n components of W are functions independent of the first n coordinates.
More explicitly, as per notation introduced in (2.1), let

z = (z1, . . . , zn, zn+1, . . . , zN ) = (z1, . . . , zn, ζ, a) = Φ(x1, . . . , xN )

and let W̃ be the representation of W in the new coordinates. Then

W̃ (z) = (W̃ 1(z), . . . , W̃n(z), W̃n+1(ζ, a), . . . , W̃N (ζ, a)) .

Proof of Proposition 4.9. The proof is deferred to Appendix B.1.

We now want to apply Proposition 4.9 to the vector fields appearing in the SDE (1.1).
We assume that such vector fields on RN satisfy the UFG condition for some m. Let
∆̂0 and ∆̂ be the distributions defined at the beginning of Section 4. We know that the
rank of ∆̂0 is constant along the orbits of ∆̂0 (see comment before Definition 3.10). Let
x ∈ RN and consider the orbit of ∆̂0 through x. In view of Lemma 4.1, if we assume that
V

(⊥)
0 (x) 6= 0 then the rank of ∆̂0 at x is exactly n+ 1. Recall that N is fixed and it is the

dimension of the state space RN , while n = n(x) is the dimension of the orbits of ∆̂ and
it is constant along each one of such orbits. Notice that ∆̂ (and ∆̂0) is also involutive by
construction, so we can use it to apply Proposition 4.9.

With this in mind, let us describe the coordinate change. This is obtained by combin-
ing the following two steps.
• Step one: because ∆̂0 = span(Rm, V0) is the tangent space of an (n+1)-dimensional

submanifold of RN one can always locally express the vector fields V0, . . . , Vd as

Ṽj = (Ṽ 1
j , . . . , Ṽ

n+1
j , 0, . . . , 0), j = 0, 1, . . . , d,

i.e. the last N − (n+ 1) coordinates of the vectors Ṽj are simply zero.
• Step two: apply Proposition 4.9 using the distribution ∆̂ (possibly only to the first

n+ 1 coordinates of the involved fields). Then, because V1, . . . , Vd belong to ∆̂ and V0 is
invariant for ∆̂, one obtains, in the new local coordinates, (and recalling the notation
introduced in Section 2)

Ṽ0 = (Ṽ 1
0 (z), . . . , Ṽ n0 (z), Ṽ n+1

0 (ζ, a), 0, . . . , 0)

Ṽj = (Ṽ 1
j (z), . . . , Ṽ nj (z), 0, . . . , 0), j = 1, . . . , d ,

19If V is any vector, then the vector Ṽ (z) = [(J?Φ) · V (?)] |?=Φ−1(z) is the representation of V after the

change of coordinates Φ. Indeed, if γ(t) = etV x and γ̃(t) = Φ(γ(t)) then the tangent vector to γ̃ is precisely
Ṽ .
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where we keep the same notation Ṽj for the new representation of the vector fields after
this further change of coordinates. This shows that, in the new coordinates, the vector
fields V0, . . . , Vd take the form (2.2)–(2.3).

We now want to express the SDE (1.1) in the new local coordinates. If Xt is the
original process, Zt is the process in the new coordinates. In particular

Zt = (Zt, ζt, at),

where Zt ∈ Rn contains the first n coordinates of Zt, ζt is the (n+ 1)th coordinate of the
process and a contains the remaining N − (n+ 1) components (which do not change in
time, see below). Putting everything together and using the convention (2.2)–(2.3), one
obtains that, in the new coordinates, the SDE (1.1) with initial datum Z0 = (z0, ζ0, a0) is
simply

Zt = z0 +

∫ t

0

U0(Zs, ζs, a0) ds+

d∑
j=1

∫ t

0

Uj(Zs, ζs, a0) ◦ dBjs (4.7)

ζt = ζ0 +

∫ t

0

W0(ζs, a0) ds (4.8)

at = a0 . (4.9)

Notice that from the above one can also deduce that, in the new coordinates, Ṽ0
(∆̂)

=

(U0, 0, . . . , 0) while Ṽ0
(⊥)

= (0, . . . , 0,W0, 0, . . . , 0). Assuming for the moment that at the
initial point x = X0 the dimension of ∆̂0 is exactly n+ 1, the fact that the last N − (n+ 1)

components of the dynamics remain constant reflects the fact that, at least for a short
enough time, the solution of the SDE remains in the integral submanifold of ∆̂0 from
which it started, coherently with Lemma 4.6 and Proposition 4.7.

If at the initial point the rank of ∆̂0 is exactly N , i.e. n+ 1 = N , then one simply has

Zt = z0 +

∫ t

0

U0(Zs, ζs) ds+

d∑
j=1

∫ t

0

Uj(Zs, ζs) ◦ dBjs (4.10)

ζt = ζ0 +

∫ t

0

W0(ζs) ds , (4.11)

and this time Ṽ0
(∆̂)

= (U0, 0, . . . , 0) while Ṽ0
(⊥)

= (0, . . . , 0,W0). In this simpler case it
is clearer that we have locally reduced the SDE (1.1) to an ODE component, ζt (which
evolves independently of all the other components) and an (N − 1)-dimensional SDE. We
emphasize that, because the change of coordinates is local, such a representation will
hold only for small enough t.

Example 4.10 (UFG-Heisenberg). Consider the following dynamics in R3

dXt = −Xtdt

dYt = −Ytdt+
√

2dW 2
t

dZt = −2Ztdt−
√

2Yt ◦ dW 1
t +
√

2Xt ◦ dW 2
t

Here V0 = (−x,−y,−2z), V1 = (0, 0,−y), V2 = (0, 1, x). This example was introduced in
[14] and named the UFG-Heisenberg dynamics (as it comes from a modification of the
Heisenberg group). This is already globally in the form ODE+SDE. The ODE for the
first coordinate can be solved explicitly, giving Xt = x0e

−t. Therefore, if we start the
dynamics at (x0, y0, z0) with x0 > 0 (x0 < 0, respectively), then the system evolves (at
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least for finite time) in the semispace with positive x-coordinates (negative, respectively).
If the initial datum is on the plane (0, y0, z0) then the dynamics remains confined to such
a plane for all subsequent times. This is coherent with the following: for the above set
of vector fields, one has ∆̂0((x, y, z)) ' R3 if x > 0 or x < 0 and ∆̂0((x, y, z)) ' R2 when
x = 0. The distribution ∆̂0 has three orbits, namely the sets

S+ = {(x, y, z) ∈ R3 : x > 0}, S− = {(x, y, z) ∈ R3 : x < 0},
S0 = {(x, y, z) ∈ R3 : x = 0} .

As for the distribution ∆̂, this spans R2 at every point. Moreover, the orbit of ∆̂ through
the point (b, y, z) is the plane x = b. For this reason, when working on this example we
will simply denote by Sb the orbit through the point (b, y, z). In particular, notice that
S0 = S0.

Example 4.11 (Random Circles). Consider the SDE

dXt = −Ytdt+
√

2Xt ◦ dBt (4.12)

dYt = Xtdt+
√

2Yt ◦ dBt, (4.13)

where Bt is a one-dimensional Brownian Motion. This system satisfies neither the HC
nor the PHC, however the UFG condition is satisfied at level m = 1. Indeed we have

V0(x, y) =

(
−y
x

)
, V1(x, y) =

(
x

y

)
and [V1, V0] = 0 .

For every (x, y) ∈ R2, ∆̂(x, y) = span{V1(x, y)}; except for the origin, the orbits of ∆̂

are radial half-lines. That is, S(x,y) = (0, 0) if (x, y) = (0, 0) and S(x,y) = {(sx, sy), s > 0}
otherwise. Indeed, S(x,y) coincides with the set of points accessible by the integral
curves of V1, which can be found explicitly:

etV1(x, y) =

(
x et

y et

)
, t ∈ R .

Moreover, V0 is orthogonal to V1, so V
(∆̂)
0 = 0 and V

(⊥)
0 = V0; therefore ∆̂0(0, 0) =

{(0, 0)}, ∆̂0(x, y) = R2 outside the origin, S(x,y) = R2 \ {(0, 0)} if (x, y) 6= (0, 0) and
S(0,0) = {(0, 0)}. In this example the local change of coordinates in the neighbourhood
of (1, 0) is given by the diffeomorphism

Φ(1,0)(x, y) =

(
arctan

(y
x

)
,

1

2
log(x2 + y2)

)
.

After such a change of coordinates, the SDE (4.12)–(4.13) can be expressed, locally, as

dζt = dt (4.14)

dZt =
√

2dWt (4.15)

Let Ct = (Xt, Yt) ∈ R2. In Figure 1 below we plot the evolution of Ct, i.e. the solution
of (4.12)–(4.13). From the plots it should be clear that (ζt, Zt) are just the polar coordi-
nates of the point Ct: ζt represents the angle, which evolves deterministically with a
simple anticlockwise motion, while Zt (or, to be more precise, exp(2Zt)) is the radius,
which changes randomly according to the SDE (4.15).

Note 4.12. If the dimension n of ∆̂ was equal to N for every x ∈ RN , this would imply
that ∆̂(x) = ∆̂0(x) for every x ∈ RN . In particular, the Parabolic Hörmander Condition
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(a) A plot of (Xt, Yt) for 0 ≤ t ≤ π/2.
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(b) A plot of (Xt, Yt) for 0 ≤ t ≤ π.

(c) A plot of (Xt, Yt) for 0 ≤ t ≤ 3π
2

(d) A plot of (Xt, Yt) for 0 ≤ t ≤ 2π

Figure 1: The process (Xt, Yt) of Example 4.11, with initial condition (X0, Y0) = (1, 0).
The angle of rotation evolves deterministically in counterclockwise sense, while the
radius changes randomly, according to (4.15).

(PHC) would hold. This case is well studied in the literature and we do not wish to
consider it here. For this reason many of the statements of this section are made under
the assumption that n < N . We need to emphasize that it may happen that the two
distributions coincide on a manifold (see Example 4.10, where the two distributions
coincide on the plane x = 0) and it may also happen that they both have full rank N

on a manifold, while they differ on other manifolds (for example, in R2 take V0 = 1A∂x,
V1 = 1Ac∂x, V2 = 1Ac∂y where A is the set A = {(x, y) ∈ R : x ∈ [−1, 1]}.). The case that
is not interesting to our purposes is the one in which they coincide and have full rank
on the whole of RN . Most of our theorems do cover that case as well (unless otherwise
explicitly stated); but they are not really conceived in that framework.

Note 4.13. The change of coordinates illustrated in this section will be an important
technical tool throughout. We would like to point out how such a change of coordinates
gives a different (and complementary) perspective on the smoothness results of Kusuoka
and Stroock and of Crisan et al [33, 34, 35, 36, 10] that we mentioned in Introduction.
As recalled in Section 1.1, in these works the authors show that if f is a continuous and
bounded function then, under the UFG condition, the function (Ptf)(x) is not necessarily
smooth in every direction (as it would be the case under the Hörmander condition), but
it is in general only smooth in the directions V[α], α ∈ Am. In particular, it may not be
differentiable in the direction V0. In view of the decomposition (1.9) and of the change of
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coordinates presented in this section, this result is quite intuitive, as we explain. By (1.9),
it is clear that if V (⊥)

0 = 0 then (Ptf)(x) is differentiable in the direction V0 (as in this
case V0 is a combination of the vectors in Rm) and, as a consequence, it is differentiable
in t as well. The loss of smoothness happens if and only if V (⊥)

0 6= 0. For simplicity (and
without any loss of generality), let us restrict to a manifold where n+ 1 = N , so that the
local change of coordinates gives (4.10)–(4.11). As already observed, the representation

of V (⊥)
0 in the new coordinates is given by Ṽ0

(⊥)
= (0, . . . , 0,W0), where W0 is the function

driving the ODE component. Hence V (⊥)
0 is inherently linked to the deterministic part

of the system, which clearly does not provide any smoothness. This also explains why,
while there is no smoothness in the direction V0, the semigroup will always be smooth
in the direction ∂t − V0 (to be more precise, in the direction ∂t − V (⊥)

0 ), as solutions of
the ODE are constant in this direction. Finally, the deterministic part of the dynamics is
responsible for the lack of density (i.e. for the fact that the law of the process does not
admit a density on RN ). It is useful to the purposes of this discussion to point out that
the one-dimensional transport equation is an extreme example of UFG condition; that is,
consider the PDE ∂tu(t, x) = ∂xu(t, x), (t, x) ∈ R+ ×RN , with initial datum u(0, x) = f(x).
Here V0 = ∂x. As is well known, the solution to such a PDE is just u(t, x) = f(x + t),
hence no smoothing occurs in the space direction. However the solution is smooth
in the direction (∂t − ∂x) = ∂t − V0, as it is constant in such a direction. Therefore,
UFG diffusions include a vast range of behaviours, from smooth elliptic diffusions to
deterministic equations.

Note 4.14. A final note on a technical point: as we have emphasized, to avoid having
problems with the well-posedness of the integral curves, we work under the standing
assumption [SA.1]. After the change of coordinates the coefficients of the vector fields
(in the new coordinates) may grow more than linearly, but they will still be smooth.
Hence, in the neighbourhood in which they are defined, the vector fields will still be
locally Lipschitz. The situation is more delicate with the vector V (⊥)

0 : if V0 is smooth,

this is not the case for V (⊥)
0 as well, see Example 7.11. Whenever this may cause issues,

we will assume that V (⊥)
0 is at least such that the integral curve of V (⊥)

0 through a given
point is unique and well defined (at least on given manifolds).

We conclude this section by stating a couple of technical lemmata which will be useful
in the following.

Lemma 4.15. Assume the vector fields V0, . . . , Vd satisfy the UFG condition. Let S be a
maximal integral manifold of ∆̂0 and S be an integral submanifold of ∆̂ such that S ⊆ S .
Then ∂S := S̄ \ S is contained within ∂S := S̄ \S .20

Proof of Lemma 4.15. The proof is deferred to Appendix B.1.

The statement of Lemma 4.15 would clearly not be true if S and S were two arbitrary
sets, it only holds because of the particular structure of the integral manifolds of ∆̂

and ∆̂0. As a side remark, notice that while S ⊆ S implies ∂S ⊆ ∂S , it is not the
case, in general, that the boundary of S is the union of boundaries of orbits of ∆̂, see
Example 4.10.

Lemma 4.16. With the notation introduced so far, assume the vector fields V0, . . . , Vd
satisfy the UFG condition. Let x0 ∈ RN and recall that x0 belongs to exactly one integral
manifold of ∆̂0, the manifold Sx0 . Consider the vector field V (⊥)

0 (defined in (1.9)) and

assume such a vector field is smooth. Then either V (⊥)
0 (y) = 0 for every y ∈ Sx0

or

V
(⊥)
0 (y) 6= 0 for every y ∈ Sx0

.

20Closures are meant in the Euclidean topology, see Appendix A.1.
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Proof of Lemma 4.16. The proof is deferred to Appendix B.1.

5 Qualitative results on UFG diffusions

In this section we study the behaviour of the diffusion Xt (1.1) under the sole assump-
tion that the vector fields V0, . . . , Vd appearing in (1.1) satisfy the UFG condition. As
observed also in [14, Note 4.3], under the sole UFG condition one cannot expect to make
any quantitative deductions on the behaviour of the process Xt. Neither can one expect
the UFG condition itself to imply any results about existence or uniqueness of invariant
measures, as there are many elliptic diffusions that do not have an invariant measure
(the simplest example being Brownian motion on R). In order to study invariant mea-
sures and decay to equilibrium we will have to make further assumptions. Nonetheless,
the geometric considerations made in the previous sections allow us to prove several
qualitative statements on the behaviour of the diffusion. The main results of this section
are Proposition 5.1, Proposition 5.3 and Proposition 5.7. Collectively, these three results
impart a lot of intuition about UFG dynamics and cointain a lot of useful information.
After each one of these three statements we have inserted a note to comment on the
meaning of these propositions, see Note 5.2, Note 5.4 and Note 5.8. The results of
Section 6 and Section 7 heavily rely on the statements of this section.

Recall that we denote by S (S , respectively) a generic integral manifold of the
distribution ∆̂ (∆̂0, respectively). Consistently, Sx (Sx, respectively) denote the integral
manifold of ∆̂ (∆̂0, respectively) through the point x ∈ RN .

Proposition 5.1. Assume that the vector fields V0, V1, . . . , Vd satisfy the UFG condition
and let Xt be the solution of the SDE (1.1). Let S be a maximal integral manifold of ∆̂0

and let ∂S be the boundary of S , i.e. ∂S := S̄ \S . Then the following holds:

i) If ∂S is not empty, it is a union of integral submanifolds of ∆̂0;

ii) If X0 = x ∈ ∂S then Xt ∈ ∂S for all t > 0 (almost surely) .

Proof of Proposition 5.1. The proof is deferred to Appendix B.1.

Note 5.2. Let us explain the meaning and consequences of Proposition 5.1. Suppose
we start the SDE (1.1) at x ∈ RN . Because the integral manifolds of ∆̂0 partition RN ,
x belongs to one of such integral manifolds, the one which we denote by Sx. As a
consequence of Proposition 4.7 we know that the process will never leave the closure of
Sx; however, if it started in the interior, it could in principle hit the boundary (which
is a manifold whose dimension is lower than the dimension of Sx) and then come back
to the interior. What we prove here is that this is not possible. Furthermore, because
the boundary of Sx is itself a union of integral manifolds of ∆̂0, one could repeat the
previous reasoning once the process enters the boundary (if this is the case). As a result
of iterating this line of thought, we have that, along the path of X(x)

t , the rank of the
distribution ∆̂0 can only decrease (or stay the same). In other words, we have shown
that for every x ∈ RN and t ≤ u, one has

rank(∆̂0(X(x)
u )) ≤ rank(∆̂0(X

(x)
t )).

Before stating the next result we recall that the vector V (⊥)
0 has been defined in (1.9).

We also recall our assumption (see Note 4.14) that etV
(⊥)
0 (x) is well defined for all x ∈ RN

and t ≥ 0.

Proposition 5.3. Let Xt be the solution of the SDE (1.1) with initial condition x0 ∈ RN .
If the vector fields V0, V1, . . . , Vd appearing in (1.1) satisfy the UFG condition then for all
t ≥ 0

X
(x0)
t ∈ S

etV
(⊥)
0 (x0)

, almost surely.
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We clarify that S
etV

(⊥)
0 (x0)

is the closure (in the Euclidean topology) of the integral

manifold of ∆̂ through the point etV
(⊥)
0 (x0) ∈ RN .

Proof of Proposition 5.3. If V (⊥)
0 (x0) = 0 then the result follows immediately from Propo-

sition 4.7 and Lemma 4.1. Indeed, by Proposition 4.7 we know that X(x0)
t ∈ S̄x0 and by

Lemma 4.1 (and Lemma 4.16) we have Sx0 = Sx0 . So we only need to treat the case

V
(⊥)
0 (x0) 6= 0. This will be done by considering the control problem associated with the

SDE (1.1) and by using Stroock and Varadhan Support Theorem. We postpone this part
of the proof to Appendix B.1.

Note 5.4. Proposition 5.3 clarifies the pivotal role of the vector V (⊥)
0 . To convey more

intuition about the role of V (⊥)
0 , let us assume that V (⊥)

0 (x) 6= 0 for every x in Sx0
, x0

being the starting point of the SDE (1.1). We already know by Proposition 4.7 that X(x0)
t

will not leave S̄x0
, so that we can consider S̄x0

to be the state space of the dynamics.
As already observed before Proposition 4.3, every x ∈ Sx0

, belongs to exactly one orbit
S of ∆̂ and, moreover, the union of the manifolds {Sx}x∈Sx0

gives precisely Sx0
. In

other words, the orbits of ∆̂ that belong to Sx0
partition Sx0

. Furthermore, because

V
(⊥)
0 6= 0 on Sx0 and the rank of ∆̂0 is constant on Sx0 , one has (see Lemma 4.1) that

if Sx0 has rank n + 1 then every orbit Sx, x ∈ Sx0 , will be a manifold of dimension n.
In particular, there is no x ∈ Sx0 such that Sx = Sx (so that the partition of Sx0 into
orbits of the distribution ∆̂ is not the trivial one). With this premise, it makes sense
to ask the following question: while we know that the process will not leave S x0

for
every t ≥ 0, if we fix an arbitrary positive time t > 0, can we tell more precisely where,
within Sx0

, X(x0)
t is? In particular, can we determine which submanifold S it belongs to,

i.e. which element of the partition of Sx0
is visited at time t ≥ 0? The answer, given by

Proposition 5.3, is the following: let y = etV
(⊥)
0 x0. Then, while x0 ∈ Sx0

, Xt ∈ Sy. In other

words, the vector V (⊥)
0 will make the SDE move from one submanifold of the partition (of

Sx0
) to another. Another question is whether it is possible that Xt will visit one of such

submanifolds twice or whether it is the case that, once one of these submanifolds has
been visited, it will never be hit again. Example 5.6 below shows that the submanifolds
of the partition can be visited an arbitrary number of times.

Example 5.5. Recall the UFG-Heisenberg SDE introduced in Example 4.10. In this case
V

(⊥)
0 = (−x, 0, 0) and, as we have already mentioned, S(x0,y0,z0) is the plane S(x0,y0,z0) =

{(x, y, z) : x = x0}. If V (⊥)
0 = (−x, 0, 0) then the integral curve of V (⊥)

0 through (x0, y0, z0)

is etV
(⊥)
0 (x0, y0, z0) = (e−tx0, y0, z0) so that

S
etV

(⊥)
0 (x0,y0,z0)

= {(x, y, z) ∈ R3 : x = e−tx0}.

It is therefore clear that if (X0, Y0, Z0) = (x0, y0, z0) then (Xt, Yt, Zt) = (x0e
−t, Yt, Zt) ∈

S(e−tx0,y0,z0).

Example 5.6 (Random Circles, Example 4.11, continued). Let us go back to Example 4.11.
Consider the integral curve of V (⊥)

0 , namely

etV0(x, y) = etV
(⊥)
0 (x, y) =

(
x cos(t)− y sin(t)

x sin(t) + y cos(t)

)
. (5.1)

To fix ideas, let (x0, y0) = (1, 0) be the initial condition of the SDE; then the integral curve

of V (⊥)
0 through (x0, y0) = (1, 0) is the unit circle:

etV
(⊥)
0 (1, 0) = (cos(t), sin(t))
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and S
etV

(⊥)
0 (1,0)

= S(cos(t),sin(t)) is the (open half) radial line at an angle t from the x-

axis; that is, it is the (open half) radial line that intersects the unit circle at the point
(cos(t), sin(t)). On the other hand the solution of the SDE with initial datum (x0, y0) = (1, 0)

is given by

X
(x0,y0)
t = cos(t)e

√
2Bt , (5.2)

Y
(x0,y0)
t = sin(t)e

√
2Bt . (5.3)

Therefore one can again explicitly verify that for every t > 0, (X
(x0,y0)
t , Y

(x0,y0)
t ) belongs

to S(cos(t),sin(t)).

Proposition 5.7. With the notation introduced so far, assume the vector fields V0, . . . , Vd
satisfy the UFG condition and let

Et := {x ∈ RN : Px(X
(x)
t /∈ Sx) > 0}

and
E := {x ∈ RN : Px(X

(x)
t /∈ Sx) > 0 for some t > 0}.

Then, for any invariant measure µ of the SDE (1.1) (should at least one exist), we have
µ(Et) = 0 for every t > 0. As a consequence, µ(E) = 0 as well.

Proof of Proposition 5.7. The proof is deferred to Appendix B.1.

Note 5.8. Informally, Proposition 5.7 says that any invariant measure (should at least
one exist) gives zero weight to the set of points that, under the action of the dynamics
prescribed by the SDE (1.1), leave in finite time the submanifold from which they start.
That is, the set of points x such that X(x)

t /∈ Sx for some time t > 0, has µ-measure zero.
In view of Proposition 5.1 this result is intuitive: in general, if the dynamics leaves a
set it can return infinitely many times to that set (when this happens the set is said
to be recurrent). Because along the trajectories of X(x)

t the rank of the distribution

can only decrease, if the process X(x)
t leaves the integral manifold Sx from which it

started, it will never return to it. The dynamics will therefore spend an infinite amount
of time outside the manifold Sx, so that the invariant measure, if it exists, can only be
supported outside such a manifold. In other words, the theorem says that an integral
submanifold S is a recurrent set if and only if the process never leaves it (once it enters
it). This argument constitutes an informal proof of the theorem. Notice also that this
theorem does not say anything about say geometric Brownian motion (see Example 3.2)
or the UFG-Heisenberg process of Example 4.10, as such dynamics only leave the initial
submanifold in infinite time; for any finite time they stay in the submanifold from which
they started.

Lemma 5.9. Assume the vector fields V0, . . . , Vd appearing in (1.1) satisfy the UFG
condition and that the Obtuse Angle Condition (3.4) holds. Let Pt be the semigroup
defined in (1.2). Then, given a maximal integral submanifold S of ∆̂, we have

lim
t→∞

|Ptf(x)− Ptf(y)| = 0, (5.4)

for all f ∈ Cb(RN ) and x, y ∈ S.

Proof of Lemma 5.9. The proof is deferred to Appendix B.1

Proposition 5.10. Consider the assumptions and setting of the previous lemma and let
S be a maximal integral manifold of ∆̂. Then, among all the invariant measures µ of (1.1)
(assuming at least one such measure exists), there exists at most one such that µ(S) = 1.
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Moreover, if such a measure exists, then it is ergodic (in the sense that Pt1E = 1E for
some Borel set E, implies that µ(E) = 1 or 0) and for every x ∈ S and f ∈ Cb(RN ) we
have

Ptf(x)→
∫
S

f(y)µ(dy) as t→∞. (5.5)

Proof of Proposition 5.10. The proof is deferred to Appendix B.1.

6 Long-time behaviour of UFG processes: the case of “non-auton-
omous hypoelliptic diffusions”

In this section we set N = n+ 1 and study stochastic dynamics in RN = Rn+1 of the
form

dZt = U0(Zt, ζt)dt+

d∑
j=1

Uj(Zt, ζt) ◦ dBjt , (6.1)

dζt = W0(ζt)dt (6.2)

Z0 = z, ζ0 = ζ . (6.3)

In other words, we consider systems for which the representation of the form
“ODE+SDE” (4.10)–(4.11) is global.21 The above system consists of an n-dimensional pro-
cess, Zt ∈ Rn, satisfying an SDE, equation (6.1), which is coupled with a one-dimensional
autonomous ODE, (6.2). As in previous sections, Uj : Rn × R → Rn, j ∈ {0, . . . , d} and
W0 : R → R. The evolution of Zt depends on the evolution of ζt, but the ODE solution
ζt evolves independently of the SDE. For the purposes of this paper, we do not think
of ζt as representing time, but rather as representing an additional space-coordinate.
However notice that if W0 ≡ 1 and ζ(0) = 0 then ζt = t and we recover a standard time-
inhomogeneous setting, i.e. in this case (6.1) becomes a general time-inhomogeneous
SDE, namely

dZt = U0(Zt, t)dt+

d∑
j=1

Uj(Zt, t) ◦ dBjt . (6.4)

Going back to the representation of the form “ODE+SDE” (6.1)–(6.2) under consider-
ation, if we denote by Xt the process RN 3 Xt = (Zt, ζt), then Xt is the solution of an
autonomous SDE. The one-parameter semigroup associated to Xt is, as usual, given by

(Ptf)(x) := E[f(Xt)|X0 = x] = E [f(Zt, ζt)|(Z0, ζ0) = (z, ζ)] , x = (z, ζ) ∈ Rn+1,

for any f ∈ Cb(R
n+1;R). On the other hand one could consider the two-parameter

semigroup associated with the non-autonomous process Zt alone. Indeed, if we solve
the ODE for ζt and substitute the solution back into the SDE for Zt, then we can simply
consider equation (6.1) rather than the whole system. To be more precise, let us denote
by ζζt the solution at time t of (6.2) with initial datum ζ(0) = ζ. That is, ζζt = etW0ζ. Let
also Zs,z,ζt be the solution of the following SDE:

Zt = z +

∫ t

s

U0(Zu, ζ
ζ
u)du+

d∑
j=1

∫ t

s

Uj(Zu, ζ
ζ
u) ◦ dW j

u .

The two-parameter semigroup associated with the above non-autonomous SDE is given
by

(Qζs,tg)(z) := E
[
g(Zs,z,ζt )

]
, z ∈ Rn, s ≤ t ,

21We are not claiming that this representation necessarily results from the change of coordinates presented
in Section 4.2.
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We emphasize that this two-parameter semigroup depends on ζ, i.e. on the initial datum
of the ODE. When we do not wish to stress this dependence we may just write Qs,t. With
this notation, one can equivalently rewrite the definion of Pt as

(Ptf)(x) = E
[
f(Z0,z,ζ

t , ζζt )
]
, x = (z, ζ) ∈ Rn+1. (6.5)

To make explicit the relation between the two-parameter semigroup Qζs,t and the one-

parameter semigroup Pt, fix s ∈ R and let ζ̂ = esW0ζ. Notice that

Z0,z,ζ̂
t = Zs,z,ζt+s

where the equality is intended in law. Therefore, for every f ∈ Cb(Rn+1;R), and z ∈ Rn,
we have

(Ptf)(z, ζ̂) = E
[
f(Z0,z,ζ̂

t , ζ ζ̂t )
]

= E
[
f(Z0,z,ζ̂

t , ζζt+s)
]

= E
[
f(Zs,z,ζt+s , ζ

ζ
t+s)

]
.

Hence,

(Ptf)(z, ζ̂) = (Qs,s+tf(·, ζζt+s))(z) . (6.6)

On the right hand side of the above we mean to say that the semigroup Q is acting on
the function f(·, a) obtained by freezing the value of the last coordinate of the argument.

From now on, unless otherwise specified, we write Zt for Z0,z,ζ0
t . With this set up

in place, we can start commenting on the long-time behaviour. Heuristically, if the
solution of the ODE (6.2) is unbounded, then one can not expect the process Xt to
have an invariant measure (see Proposition 6.8) – though the process Zt may still admit
an invariant measure. So we restrict to the case in which the solution of the ODE is
bounded. However, because (6.2) is a one-dimensional time-homogeneous ODE, if ζt is
bounded then it can only either increase or decrease towards stable stationary points of
the dynamics (a stationary point of the ODE (6.2) is a point ζ̄ ∈ R such that W0(ζ̄) = 0).
We emphasise that there may be many such points. For these reasons, we work under
the assumption that ζt admits a finite limit, i.e. we assume that the initial datum ζ0 ∈ R
is such that there exists a point ζ̄ = ζ̄(ζ0) ∈ R such that

ζζ0t → ζ̄ = ζ̄(ζ0) as t→∞. (6.7)

As customary, the notation ζ̄ = ζ̄(ζ0) is to emphasise the fact that the limit point will
depend on the initial datum (when we do not wish to stress such a dependence we just
denote a stationary point of the ODE by ζ̄). The dynamics (6.1)–(6.2) will, in general,
admit several invariant measures. As pointed out in the introduction, when this is
the case, it is typically extremely difficult to determine the basin of attraction of each
invariant measure. However in the setting of this section the basin of attraction of a given
invariant measure will only depend on the behaviour of the ODE. (In the next section we
will show that, despite the fact that the representation of the form “ODE+SDE” is only
local for generic UFG processes, it is still the case that we can relate in a simple way
the initial datum to the invariant measure to which the process is converging). Given
an initial datum ζ0 for (6.2), let ζ̄ = ζ̄(ζ0) be the corresponding limit point of the ODE
dynamics, as in (6.7). Consider the SDE

dZ̄t = U0(Z̄t, ζ̄) dt+

d∑
j=1

Uj(Z̄t, ζ̄) ◦ dBjt , Z̄0 = z̄, (6.8)
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with associated semigroup

(Q̄tg)(z̄) := E[g(Z̄t)|Z̄0 = z̄], z̄ ∈ Rn, g ∈ Cb(Rn) .

We will assume that the dynamics (6.8) is hypoelliptic, see Hypothesis [H.1] below
for a more precise statement of assumptions. Moreover, under Hypothesis [H.2], the
semigroup Q̄t admits a unique invariant measure, µ̄ = µ̄(ζ̄, ζ0) (see Lemma 6.4). We
emphasise that the asymptotic behaviour of Z̄t is independent of the initial datum z̄, see
Lemma 6.4.

In view of (6.7), it is reasonable to guess that the asymptotic behaviour of Zt = Z0,z,ζ0
t

is the same as the asymptotic behaviour of Z̄t which is the solution of (6.8). This is the
content of Theorem 6.5 below. Theorem 6.5 and Theorem 6.6 are the main results of this
section; the former is concerned with the asymptotic behaviour of the semigroup Qs,t,
the latter describes the related asymptotic behaviour of the semigroup Pt. We set first
the assumptions used in the rest of this section and we comment on their significance in
Note 6.2.

Hypothesis 6.1. With the notation introduced so far, we will consider the following
assumptions:

[H.1] The vector fields V0 = (U0,W0), V1 = (U1, 0), . . . , Vd = (Ud, 0) satisfy the UFG
condition for some m ≥ 1; moreover,

span{Rm} = span{V[α](x) : α ∈ Am} ' Rn, for every x ∈ Rn+1.

[H.2] Define the measures qs,zt by qs,zt (A) := Qs,t1A(z), for any Borel measurable
A ⊆ Rn. Then we require that for each z ∈ Rn the family of measures {q0,z

t : t ≥ 0}
on Rn is tight.

[H.3] The Obtuse angle condition (3.4) is satisfied (with the understanding of Hypothe-
sis 3.16 [SA.3]).

[H.4] The ODE (6.2) has at least one stationary point ζ̄ and the initial datum ζ0 ∈ R
of (6.2) is such that (6.7) holds, for some limit point ζ̄ = ζ̄(ζ0).

Note 6.2. Some comments on the above assumptions, in particular on Hypothesis [H.1].

• We start by remarking on the obvious fact that if Xt = (Zt, ζt), where Zt, ζt are as
in (6.1)–(6.2), then Xt solves an SDE of the form (1.1), with V0 = (U0,W0), V1 =

(U1, 0), . . . , Vd = (Ud, 0).

• With the notation of Section 4 and Section 5, assumption [H.1] implies that the
distribution ∆̂(x) is n-dimensional for every x ∈ RN , with n = N − 1. In the setting
of this section, this is the maximum rank that the distribution ∆̂ can have (as
V0 = (U0,W0) is not contained in Rm when W0 6= 0). In other words, for every
x ∈ RN , the integral manifolds Sx of ∆̂(x) are (N − 1)-dimensional manifolds.
Because of the particularly simple structure of the SDE, such manifolds are just
hyperplanes: for x = (z, ζ), Sx = S(z,ζ) = {u ∈ Rn+1 : u = (z, η), η = ζ, z ∈ Rn}. In
this explicit setting Proposition 5.3 is easy to check.

• To reconcile the present work with the framework of [9] and further elaborate on
the meaning of Hypothesis [H.1], let us assume for the moment that W0 ≡ 1 and
that ζ(0) = 0, so that (6.1) becomes a standard time inhomogeneous SDE of the
form (6.4). In this case the vector fields U0, , . . . , Ud are Rn-valued maps whose
coefficients depend on time, i.e. (z, t) 7→ Uj(z, t) ∈ Rn. For simplicity, let also n = 1.
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Then V0 acts both on space and time, while V1, . . . , Vd act on the space coordinate z
only. That is, V0 = U0(z, t)∂z + ∂t while Vj = Uj(z, t)∂z for j = 1, . . . , d, so that

[V0, Vj ] = [U0, Uj ] + (∂tUj(z, t))∂z j ∈ {1, . . . , d}. (6.9)

One can then rephrase Hypothesis [H.1] just in terms of the fields U0, . . . , Ud;
from (6.9) it is then clear that Hypothesis [H.1] is equivalent to assuming that the
Lie algebra ⋃

k≥1

span{LUk (z, t)},

where LU1 (z, t) := {U1(z, t), . . . , Ud(z, t)} and, for k > 1, LUk (z, t) := {[U,Uj ], U ∈
LUk−1, 1 ≤ j ≤ d} ∪ {[U,U0 + ∂t], U ∈ LUk−1}, should be finitely generated and span
Rnz , for every (z, t) ∈ Rn ×R.

Let us now go back to the general representation of the form “ODE+SDE” (6.1)–
(6.2), without assuming W0 = 1. Recall that in this context the vector fields
Uj are Rn-valued functions of n + 1 variables; that is, we view them as maps
Rn × R 3 (z, ζ) 7→ Uj(z, ζ) ∈ Rn. Set again n = 1 just for simplicity (everything
we write in this comment would be true anyway). Then, as differential operators,
U0, . . . , Uj only act on the variable z, while W0 only acts on the variable ζ, i.e. we
have the correspondence

Uj(z, ζ)←→ Uj(z, ζ)∂z for j ∈ {0, . . . , d} and W0(ζ)←→W0(ζ)∂ζ .

One has for all 1 ≤ j ≤ d

[V0, Vj ] = [U0∂z, Uj∂z] + [W0∂ζ , Uj∂z] = [U0∂z, Uj∂z] +W0(ζ)(∂ζUj)∂z.

If we calculate the second term on the RHS of the above along a solution ζt of the
ODE, we obtain

W0(ζt)(∂ζUj(z, ζt))∂z = ∂t(Uj(z, ζt))∂z.

This suggests that we may evaluate the vector fields along the solution of the ODE
and then think of them as functions of z and time t, rather than as functions of
z and ζ, i.e. Rnz × Rt 3 (z, t) 7→ Uj(z, ζ

ζ
t ) ∈ Rn, j ∈ {0, . . . , d}. If we do so, then

Hypothesis [H.1] can be equivalently rephrased as follows: the Lie algebra⋃
k≥1

span{LUk (z, ζt)}

is finitely generated and spans Rnz for every z ∈ Rn and along any solutions ζt of
the ODE (6.2).22

• As is well known, Hypothesis [H.2] is implied by a Lyapunov-type condition; namely,
if there exists some non-negative function ϕ ∈ C2(Rn) with compact level sets and
such that

Ltϕ(z) ≤ C1 − C2ϕ(z), for every z ∈ Rn, t ≥ 0, (6.10)

then [H.2] is satisfied. Here Lt is the operator

Ltψ(z) = U0(z, ζt) · ∇ψ(z) +

d∑
i=1

Ui(z, ζt) · ∇(Ui(z, ζt) · ∇ψ(z)),

where ∇ = (∂z1 , . . . , ∂zn).

22Given an initial datum, the solution of the ODE is unique. When we say that this should hold along any
solutions, we mean along all the solutions that one can obtain by starting from different initial data.
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• The Obtuse angle condition does not imply tightness; in Example 6.9 we show
that [H.2] does not imply [H.3] and [H.3] does not imply [H.2]. Viceversa,
we also show that [H.3] does not imply the existence of a Lyapunov function,
condition (6.10).

Note 6.3. As already pointed out, if Xt = (Zt, ζt), where Zt, ζt are given by a repre-
sentation of the form “ODE+SDE” (6.1)–(6.2), then Xt solves an SDE of the form (1.1),
with V0 = (U0,W0), V1 = (U1, 0), . . . , Vd = (Ud, 0). Hence V

(⊥)
0 = (0, . . . , 0,W0) (see

definition (1.9)). We note in passing that in this case one has

Zt := e−tV
(⊥)
0 Xt = e−tV

(⊥)
0 (Zt, ζt) = e−tV

(⊥)
0 (Zt, e

tV
(⊥)
0 ζ0) = (Zt, ζ0).

(This is not of much use at the moment, but it will help at the beginning of Section 7 to
make a link between the setting of this section and the setting of the next). Therefore,
while Xt belongs to the hyperplane Hζt := {x ∈ Rn+1 : x = (z, ζt), z ∈ Rn} for each
t ≥ 0, Zt remains, for every t ≥ 0, on the same hyperplane, namely the hyperplane
Hζ0 := {x ∈ Rn+1 : x = (z, ζ0), z ∈ Rn} (which is precisely the manifold Sx0

= S(z0,ζ0),
see second bullet point in Note 6.2) for every t ≥ 0.

Lemma 6.4. Let Hypothesis 6.1 hold. Then the SDE (6.8) admits a unique invariant
measure, µ̄. Moreover,

(Q̄tg)(z)→
∫
Rn
g(z) µ̄(dz), for every z ∈ Rn and every g ∈ Cb(Rn) .

Proof of Lemma 6.4. This is completely standard and we omit it. See for example [17].
We just point out that the existence of the invariant measure comes from assump-
tion [H.2] and the uniqueness is a consequence of Hypothesis [H.3] and Proposi-
tion 5.10.

Theorem 6.5. Let Hypothesis 6.1 hold. In particular, let ζ̄ = ζ̄(ζ0) be a stationary point
for the ODE (6.2) and µ̄ be the invariant measure of the process (6.8). Then, for every
s ≥ 0,

lim
t→∞

(Qζ0s,tg)(z) =

∫
Rn
g(z) µ̄(dz), for every z ∈ Rn and every g ∈ Cb(Rn) .

The proof of this theorem can be found after the statement of Theorem 6.6. Theo-
rem 6.5 describes the asymptotic behaviour of the process Zt. However, in this paper we
are interested in the process Xt. The long-time behaviour of the process Xt is described
by Theorem 6.6 below, which is just a straightforward consequence of Theorem 6.5. In
order to state Theorem 6.6, we clarify the following: while Zt is a process in Rn with
invariant measure(s) µ̄ = µ̄(ζ̄, ζ0) supported on Rn, Xt is a process in Rn+1; so, strictly
speaking, any invariant measure of Xt is a probability measure on Rn+1. However such
a measure is supported on the n-dimensional hyperplane

Hζ̄ := {x ∈ Rn+1 : x = (z, ζ̄), z ∈ Rn}

and it is just a trivial extension of the measure µ̄. That is, let µ = µ(ζ̄, ζ0) be the measure
on Rn+1 such that

µ(A) = µ̄(A ∩Hζ̄) for every Borel set A ⊆ Rn+1. (6.11)

In particular, µ(A) = µ̄(A) if A ⊆ Hζ̄ and µ(A) = 0 if A ∩ Hζ̄ = ∅. Let I0(ζ̄) = {ζ0 ∈ R :

ζζ0t → ζ̄ as t→∞}. Let also I0 = I0(ζ̄) := {x0 ∈ Rn+1 : x0 = (z0, ζ0), ζ0 ∈ I0(ζ̄), z0 ∈ Rn}.
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Theorem 6.6. Consider the process Xt = (Zt, ζt) ∈ Rn+1 satisfying a representation the
form of “SDE+ODE” (6.1)–(6.2) with initial condition (6.3) and associated semigroup
Pt, defined in (6.5). Let Hypothesis 6.1 hold. In particular, according to Hypothe-
sis 6.1 [H.4], let ζ̄ be a (any) stationary point of the ODE (6.2) and µ̄ be the invariant
measure of the corresponding process (6.8); let also µ = µ(ζ̄, ζ0) be the measure on Rn+1

defined in (6.11) and supported on the hyperplane Hζ̄ . Then, for every x ∈ I0 = I0(ζ̄),
we have

lim
t→∞

(Ptf)(x) =

∫
Rn+1

f(u)µ(du) =

∫
Hζ̄

f(u)µ(du),

for every f ∈ Cb(Rn+1). The limit in the above does not hold if x /∈ I0; that is, I0 is the
whole basin of attraction of the measure µ = µ(ζ̄, ζ0).

We now introduce some definitions that will be needed for the proof of Theorem 6.5.
A family {νt}t≥0 of probability measures on Rn is said to be an evolution system of
measures for the two-parameter semigroup {Qs,t}0≤s≤t if for all 0 ≤ s ≤ t and g ∈ Cb(Rn)

we have ∫
Rn
Qs,tg(z)νs(dz) =

∫
Rn
g(z)νt(dz). (6.12)

Let Q∗s,t denote the adjoint of Qs,t over the space Cb(Rn), that is

(Q∗s,tν)(A) :=

∫
Rn
Qs,t1A(z)ν(dz), for any Borel measurable A ⊆ Rn.

Then we can write (6.12) as

Q∗s,tνs = νt, for all 0 ≤ s ≤ t.

Further background on evolution system of measures can be found in [32, 16].

Proof of Theorem 6.5. The proof is in three steps.
• Step 1 : We first construct a tight evolution system of measures, {νt}t≥0, for the

semigroup {Qs,t}0≤s≤t. To this end, take any point z0 ∈ Rn, define ν0 = δz0 and then let
νt := Q∗0,tν0. Now νt is an evolution system of measures; indeed,

Q∗s,tνs = Q∗s,tQ
∗
0,sν0 = Q∗0,tν0 = νt.

(A more general construction of the evolution system is given in [32, Section 5]). To see
that {νt}t≥0 is tight, fix ε > 0; by Hypothesis [H.2] we may take a compact set Kε ⊂ Rn
such that q0,z0

t (Kε) ≥ 1− ε. By definition of νt we then have

νt(Kε) = (Q∗0,tν0)(Kε) = Q0,t1Kε(z0) ≥ 1− ε.

• Step 2 : Qs,tg(z) − νt(g) converges to zero as t tends to ∞ for all s ≥ 0, z ∈
Rn, g ∈ Cb(Rn). We defer the proof of this fact to Lemma B.1. Since {νt}t≥0 is tight, by
Prokhorov’s theorem there exists a diverging sequence t` such that νt` converges weakly
to some probability measure µ0, as t` tends to∞.
• Step 3 : Show that µ0 = µ̄. We defer the proof of this equality to Lemma B.4. If

µ0 = µ̄, then νt converges weakly to µ̄ and the claim of the theorem follows; indeed,

|Qs,tg(z)− µ̄(g)| ≤ |Qs,tg(z)− νt(g)|+ |νt(g)− µ̄(g)| .

The first term converges to zero by Step 2 and the second term vanishes in the limit
since νt converges weakly to µ̄ as t→∞.

EJP 26 (2021), paper 22.
Page 34/72

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP577
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Long-time behaviour of degenerate diffusions

Note 6.7. The statements and proofs of Lemma B.1 and Lemma B.4 are the core of the
proof of Theorem 6.5. The arguments used in the proofs of such lemmata are analogous
in structure to those presented in [1, Section 6]. The main differences arise when dealing
with the regularity of the semigroup, as [1] assumes uniform ellipticity. Lemma B.2
(needed to prove Lemma B.4) is the main place where we take care of the relaxed
regularity assumptions.

Let pxt denote the measure defined by

pxt (A) = Pt1A(x), for all Borel sets A ⊆ Rn+1.

Proposition 6.8. If ζζt →∞ then the family of measures {p(z,ζ)
t }t≥0 is not tight for any

z ∈ Rn (hence, by Prokhorov’s theorem, there is no probability measure µ such that
Ptf(z, ζ)→ µ(f), for all f ∈ Cb(Rn+1)).

Proof of Proposition 6.8. Fix z ∈ Rn and let x = (z, ζ) ∈ Rn+1. Assume by contradiction
that {pxt }t≥0 is tight. Then, for any fixed ε > 0 there exists a compact set Kε ⊂ Rn+1

such that pxt (Kε) > 1 − ε for all t ≥ 0. Since Kε is compact we may take R sufficiently
large such that Kε ⊆ Rn × [−R,R]; then one has

Px

(
|ζζt | ≤ R

)
≥ pxt (Kε) ≥ 1− ε, for all t ≥ 0. (6.13)

However ζζt →∞ so we may take t sufficiently large that |ζζt | > R. This contradicts (6.13),
hence pxt is not tight.

Example 6.9 (UFG-Grušin Plane). We give here a simple example of a process that
satisfies the Obtuse Angle Condition but is not tight. Let d = 1, N = 2 and

V0 = kζ∂ζ , V1 = ζ∂z, k ∈ R .

This corresponds to the SDE

dζt = kζtdt

dZt =
√

2ζt ◦ dBt,

where {Bt}t≥0 is a one-dimensional Brownian motion. Because [V1, V0] = −kV1, we have

([V1, V0]f)(V1f) = −k(V1f)2

therefore the Obtuse Angle Condition, (3.4) is satisfied if and only if k > 0 (it is also shown
in [14, Example 4.4] that, if k > 0, then V1(Ptf)(·) decays exponentially fast with rate
−2k). On the other hand, if k > 0 the process is not tight. Indeed, Hypothesis 6.1 ([H.2])
is satisfied if and only if k < 0, as we come to show. To this end, we first solve the SDE,
and find

ζt = ζekt

Zt = Z0 +
√

2ζ

∫ t

0

eks ◦ dBs.

As a consequence of Proposition 6.8, the whole process (Zt, ζt) is not tight if k > 0.
However in this case also the process Zt, seen as a non-autonomous one dimensional
SDE, is not tight when k > 0. Indeed suppose by contradiction that ([H.2]) holds; then
for any ε > 0 there exists R > 0 such that

Q0,t1[−R,R](z) ≥ 1− ε , for all t ≥ 0. (6.14)
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However if Z0 = z then Zt is normally distributed with mean z and variance ζ2(e2kt−1)/k,
so we may write

Zt = z + ζ

√
e2kt − 1

k
ξ (6.15)

where ξ is a one-dimensional standard normal random variable. Then we have

Qζ0,t1[−R,R](z) = E1[−R,R](Z
0,z,ζ
t ) = P

(∣∣∣∣∣z + ζ

√
e2kt − 1

k
ξ

∣∣∣∣∣ ≤ R
)
, (6.16)

and the right hand side of (6.16) converges to zero as t tends to ∞ which contra-
dicts (6.14). Note that if k = 0 then Zt =

√
2ζBt which is not tight by a similar argument.

However if k < 0 then the process Zt is tight. Indeed, assume that k = −` < 0; to see
that {q0,z

t }t≥0 is a tight family of measures, it is sufficient to apply a Lyapunov criterion
and show that the function ϕ(z) = z2 satisfies suptQ0,tϕ(y) <∞ (when k = −` < 0). To
prove the latter fact, observe that if (Zs, ζ0) = (z, ζ) then, by (6.15), we get

Qζs,tϕ(z) = E[Z2
t |ζ0 = ζ, Zs = z] = z2 +

ζ2e−2`s

`
(1− e−2`(t−s)) ≤ z2 +

e−2`s

`
ζ2.

If k < 0 we see that Xt = (Zt, ζt) converges in law.

Example 6.10. We conclude this section with an example which satisfies all the points in
Hypothesis 6.1 in a non-trivial way, in the sense that it exhibits many invariant measures.
Take k > 1 and consider the following SDE

dζt = − sin(ζt)dt

dZt = −kZtdt+
√

2ζt ◦ dBt.

In this case
V0 = − sin(ζ)∂ζ − kz∂z, V1 = ζ∂z, U0 = −kz∂z, U1 = ζ∂z.

Then we have

[V1, V0] = [ζ∂z,− sin(ζ)∂ζ − kz∂z] = −kζ∂z + sin(ζ)∂z =

(
−k +

sin(ζ)

ζ

)
V1.

Note that the function h(ζ) = sin(ζ)/ζ is bounded and smooth, when extended to the
origin with the value h(0) = 1, so the UFG condition is satisfied at level m = 1. Moreover,

([V1, V0]f)(V1f) = −(k +
sin(ζ)

ζ
) |V1f |2 ≤ −(k − 1) |V1f |2

and hence (3.4) is satisfied. To apply the results of Section 6 we must show that
Hypothesis 6.1 holds. Note that the vector field V1 is non-zero except when ζ = 0

therefore Hypothesis 6.1 [H.1] is satisfied everywhere that ζ 6= 0. To show that Hypoth-
esis 6.1 [H.2] holds we consider a function ϕ ∈ C2(R) such that ϕ(z) = |z| for |z| > 1.
Then, for |z| > 1, one has

Ltϕ(z) = −kzϕ′(z) + ζ2
t ϕ
′′(z) = −kzsign(z) = −kϕ(z).

Therefore ϕ is a Lyapunov function so by Note 6.2 we have that the measures {q0,z
t : t ≥ 0}

are tight for any z ∈ R and Hypothesis 6.1 [H.2] is satisfied. We also have that ζt
converges for any ζ ∈ R and the limit ζ is given by

ζ =


2nπ for ζ ∈ ((2n− 1)π, (2n+ 1)π) for some n ∈ Z \ {0}
(2n+ 1)π for ζ = (2n+ 1)π for some n ∈ Z
0 for ζ ∈ (−π, π).
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Long-time behaviour of degenerate diffusions

Hence for ζ /∈ (−π, π) we may apply Theorem 6.6 to obtain that Xt = (Zt, ζt) converges in
law to a random variable which whose law corresponds to the unique invariant measure
defined on the line R× {ζ(ζ0)}. Moreover, for ζ = nπ for some n ∈ Z \ {0} we see that
ζt = ζ and Zt satisfies the Ornstein Uhlenbeck SDE

dZt = −kZtdt+
√

2ζdBt.

In particular, in this case Zt has a unique invariant measure and this is given by a
Gaussian measure with mean 0 and variance ζ2/k. Therefore for any n ∈ Z \ {0} and
ζ ∈ ((2n− 1)π, (2n+ 1)π) we have that Xt converges in law to ( 2nπ√

k
ξ, 2nπ), where ξ is a

one-dimensional standard normal random variable.23

7 Long-time behaviour of UFG diffusions: general case

In the previous section we investigated the case in which the representation of the
form “ODE+SDE” is global. In this section we study the general UFG-case, in which such
a representation is, in general, only local. That is, we finally address the full problem of
analysing the asymptotic behaviour of (1.1), assuming that the vector fields V0, . . . , Vd
satisfy the UFG condition (see Definition 3.1). This case is substantially richer than the
one considered in Section 6; however the fact that, locally, we can always represent
the SDE (1.1) as a system of the form “ODE+SDE”, still means that we should be able
to identify a suitable ODE which drives the dynamics. We will demonstrate that this is
indeed the case and that such an ODE is the integral curve of the vector field V (⊥)

0 ; that
is, the curve

ζt = etV
(⊥)
0 x0 , (7.1)

where x0 is the initial datum of the SDE (1.1), i.e. X0 = x0. This should not be a
surprise in view of Proposition 5.3. Nevertheless, to understand why this is the case,
it is useful to build an analogy with the setting of the previous section: if the SDE is of
the form (6.1)–(6.2), then V (⊥)

0 = (0, . . . , 0,W0). Therefore in the simplified setting (6.1)–
(6.2), the ODE (7.1) substantially reduces to (6.2). The previous sentence is correct for
less than observing that (7.1) is an N -dimensional ODE, while (6.2) is a one-dimensional
curve. We keep using the notation ζt for both curves only to emphasize the analogy;
however, while the one-dimensional autonomous nature of the ODE (6.2) implies that
its solution has a limit, the zoology of possible behaviours for the curve (7.1) is much
more varied. In this paper we only analyse the case in which the curve (7.1) converges
to a limit and in future work we will treat more general cases.24 However, roughly
speaking, in Theorem 7.12, we prove that a necessary condition for the SDE (1.1) to
have an invariant measure is that the ODE (7.1) should admit one as well (notice that
if the curve (7.1) converges to a limit point x̄, then it admits the Dirac measure δx̄ as
invariant measure).

As anticipated in the introduction, the above discussion motivates introducing the
process

Zt := e−tV
(⊥)
0 (X

(x0)
t ). (7.2)

Clearly Z0 = x0, so Zt and X
(x0)
t start from the same point. This process is time-

inhomogeneous (as we show at the beginning of Section 7.2) and it will have a central
role in what follows, hence further comments on the definition (7.2) are in order:

23Since Zt satisfies a non-autonomous Ornstein Uhlenbeck equation one can also study its asymptotic
behaviour more directly, see e.g. [22].

24For example the curve (7.1) could be periodic, ergodic or chaotic (this is a non-exhaustive list of possibili-
ties).
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• To continue drawing the useful parallel with Section 6, notice that this process
plays in this context an analogous role to the one that Zt (solution of (6.1)) has in
Section 6, see Note 6.3.

• Let us recall that if X0 ∈ Sx0
then Xt ∈ S x0

for every t ≥ 0 (see Proposition 4.7);
more precisely, for every t ≥ 0 Xt belongs to the integral submanifold S

etV
(⊥)
0 (x0)

almost surely (see Proposition 5.3). We will make assumptions to guarantee that
Xt hits neither the boundary of S

etV
(⊥)
0 x0

nor the boundary of Sx0 in finite time (see

Hypothesis 7.5 [A.4], Lemma 4.15 and Note 7.6 for more precise comments on
this). Therefore Zt lives on the manifold Sx0 , for every t ≥ 0. So, in the end, while
Xt takes values in Sx0 , Zt takes values in Sx0 ⊆ Sx0 . One can informally think of
Zt as being a “projection” of Xt on the submanifold Sx0 ⊆ Sx0 , see again Note 6.3.

• Finally, on a small technical point, as we have already observed in Note 4.14, V (⊥)
0

may not be uniformly Lipschitz. However, to avoid problems of well posedness and
uniqueness, throughout this section we assume that V (⊥)

0 is indeed Lipschitz.

We will show that the time-inhomogeneous process {Zt}t≥0 can be studied by means
of slight modifications of the approach used in Section 6 to study the process (6.1).
Therefore the strategy (and one of the main novelties) of this section is to use the auxiliary
time-inhomogeneous process {Zt}t≥0 in order to make deductions on the behaviour of
the time-homogeneous process Xt. We carry out this programme in Section 7.2 below.
Before moving on, we give a simple example which demonstrates that Zt ∈ Sx0

for every
t ≥ 0 and, in Section 7.1, we gather further preliminary results on the process Zt.
Example 7.1 (Random Circles continued). Consider again Example 4.11, in the case in
which the initial datum is (x0, y0) = (1, 0). Using (5.1) and (5.2)–(5.3), we have

Zt := e−tV
(⊥)
0 (Xt, Yt) =

(
Xt cos(−t)− Yt sin(−t)
Xt sin(−t) + Yt cos(−t)

)
=

(
e
√

2Bt cos(t) cos(t) + e
√

2Bt sin(t) sin(t)

−e
√

2Bt cos(t) sin(t) + e
√

2Bt sin(t) cos(t)

)

= e
√

2Bt

(
1

0

)
In particular, Zt takes values in the positive half-line, which is precisely S(1,0) =

S(x0,y0).

Note 7.2. In [7] the author considers the curve etV0(X
(x)
t ) while here we consider the

curve etV
(⊥)
0 (X

(x)
t ). This is due to two things: i) in [7] the author was not concerned

with the dynamics of the process but was instead interested in studying the density of
the SDE; ii) the work [7] assumes that the HC is satisfied, so that ∆̂0 has constant rank
(constant and equal to N ) and the decomposition of state space into integral manifolds of
∆̂0 becomes in that case trivial – there is only one submanifold, which is the whole RN .

When studying the density of the law of the process there is no advantage in using
V

(⊥)
0 over V0 – indeed even though V0 is smooth, V (⊥)

0 need not be continuous, see
Note 4.14. On the other hand, if one is interested in the dynamics of the process (and
the HC is not enforced), then V

(⊥)
0 becomes an indicator of whether the path has left

the integral manifold of ∆̂0 from which it started or not. In other words for us it is
important to know the behaviour of the manifolds S

etV
(⊥)
0 x

as t varies. In particular, we

wish to distinguish between the case when S
etV

(⊥)
0 x

is constant in t which corresponds

to the situation in which V
(⊥)
0 = 0 and when S

etV
(⊥)
0 x

varies in time, see Section 5 and

Lemma 4.16.
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7.1 The auxiliary process Zt and its associated two-parameter semigroup

By differentiating (7.2) we see that Zt satisfies the following SDE

dZt = −V (⊥)
0 (e−tV

(⊥)
0 (X

(x)
t ))dt+

(
Jxe−tV

(⊥)
0

)
(X

(x)
t )V0(X

(x)
t )dt

+
√

2

d∑
i=1

(
Jxe−tV

(⊥)
0

)
(X

(x)
t )Vi(X

(x)
t ) ◦ dBit

= −V (⊥)
0 (Zt)dt+ Ad

tV
(⊥)
0

V0(Zt)dt+
√

2

d∑
i=1

Ad
tV

(⊥)
0

Vi(Zt) ◦ dBit,

where, as customary, we have set (AdtV Y )(x) := (Jxe−tV )(etV (x)) · Y (etV x), for any two
smooth vector fields V and Y . By using (1.9), the elementary property AdtV V = V and
introducing the notation

V0,t := Ad
tV

(⊥)
0

V
(∆̂)
0

Vj,t := Ad
tV

(⊥)
0

Vj , j ∈ {1, . . . , d},
(7.3)

we conclude that Zt satisfies the following SDE with time-dependent coefficients:

dZt = Ad
tV

(⊥)
0

V
(∆̂)
0 (Zt)dt+

√
2

d∑
i=1

Ad
tV

(⊥)
0

Vi(Zt) ◦ dBit

= V0,t(Zt)dt+
√

2

d∑
i=1

Vi,t(Zt) ◦ dBit . (7.4)

As usual, we denote by {Pt}t≥0 the one parameter semigroup associated with {Xt}t≥0;
the two-parameter semigroup associated with {Zt}t≥0 is instead given by

Qs,tf(z) = E [f(Zt)|Zs = z] , z ∈ Sx0
, s ≤ t, f ∈ Cb(RN ).

The semigroups {Qs,t}0≤s≤t and {Pt}t≥0 are related as follows:

Ptf(x) = Qs,s+t(f ◦ e(s+t)V
(⊥)
0 )(e−sV

(⊥)
0 (x)), x ∈ S

esV
(⊥)
0 (x0)

, s ∈ R, t ≥ 0, f ∈ Cb(RN ),

Qs,tg(z) = Pt−s(g ◦ e−tV
(⊥)
0 )(esV

(⊥)
0 (z)), z ∈ Sx0

, 0 ≤ s ≤ t, g ∈ Cb(Sx0
) . (7.5)

We stress that {Qs,t}0≤s≤t is defined on Sx0
(as per Hypothesis 7.5 below). In (7.5) we

consider functions g which are continuous up to and including the boundary of Sx0
for

purely technical reasons (see proof of Proposition 7.4).
In Proposition 7.4 we make some clarifications on the smoothing properties of the

semigroup {Qs,t}0≤s≤t. To state such a lemma, we need to properly formulate some
preliminary facts. Consider the following “hierarchy” of operators:

V[i],t := Vi,t i = 0, 1, . . . , d (defined as in (7.3))

V[α∗0],t := [V[α],t,V[0],t + ∂t], α ∈ A,
V[α∗i],t := [V[α],t,V[i],t], α ∈ A, i = 1, . . . , d .

For each α ∈ A we can view the vector field (z, t) 7→ V[α],t(z) as a vector field on RN ,
the coefficients of which depend on time or as a vector field on RN ×R. We can define
the UFG condition for vector fields in RN ×R in an analogous way to Definition 3.1. In
Proposition 7.3 we prove that the set of vector fields {V[0],t + ∂t,V[1],t, . . . ,V[d],t} satisfy
the UFG condition on RN ×R provided the vector fields {V0, V1, . . . , Vd} satisfy the UFG
condition on RN .
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Proposition 7.3. Assume that the vector fields {V0, V1, . . . , Vd} on RN satisfy the UFG
condition at level m; then the vector fields {∂t + V[0],t,V[1],t, . . . ,V[d],t} satisfy the UFG
condition at level m when viewed as vector fields on RN ×R. Moreover, for any α ∈ Am,

V[α],t = Ad
tV

(⊥)
0

V[α]. (7.6)

Proof of Proposition 7.3. The proof is deferred to Appendix B.3.

Recall from Section 3 that the map z ∈ Sx0 7→ Ptf(z) is smooth (along the directions
V[α], α ∈ Am) for any f ∈ Cb(RN ). In Proposition 7.4 we show that for each fixed s < t

the map z ∈ Sx0 7→ Qs,tg(z) is also smooth in the directions V[α],s for any g ∈ Cb(Sx0)

and α ∈ Am. A key observation to understand the statement of Proposition 7.4 is the
following one:

V ∈ ∆̂ and ∆̂ is invariant under the vector field W ⇒ AdtWV ∈ ∆̂.25 (7.7)

In particular, Vj,t ∈ ∆̂ for every j ∈ {0, . . . , d}.
Proposition 7.4. Assume the vector fields {V0, . . . , Vd} satisfy the UFG condition and

that the vector V (⊥)
0 is uniformly Lipschitz. Then, for any g ∈ Cb(Sx0

), the map (z, s) 7→
Qs,tg(z) is differentiable in the time variable s and in the spatial directions V[α],s for any
z ∈ Sx0

, t > s, α ∈ Am. Moreover Qs,tg(z) satisfies the equation

∂sQs,tg(z) = −LsQs,tg(z), for any z ∈ Sx0 , s < t. (7.8)

Here Ls is the differential operator defined as

Lsψ(z) = V0,sψ(z) +

d∑
i=1

V2
i,sψ(z) ,

for ψ : Sx0
→ R sufficiently smooth.

Proof of Proposition 7.4. The proof is deferred to Appendix B.3.

7.2 Convergence to equilibria

We now turn to the asymptotic behaviour of the process {Zt}t≥0. As we have already
stated, we will concentrate on the case in which the solution of the ODE (7.1) converges.
Let us define the map

W∞ : Dom(W∞) ⊆ RN −→ RN

x −→ lim
t→∞

etV
(⊥)
0 (x).

Here Dom(W∞) is the set of all points x ∈ RN such that the integral curve etV
(⊥)
0 (x)

converges to a finite limit as t tends to∞.

Hypothesis 7.5. Assume the following:

[A.1] The vector fields {V0, V1, . . . , Vd} satisfy the UFG condition.

[A.2] The vector field V (⊥)
0 is uniformly Lipschitz.

[A.3] Define the measures pxt by pxt (A) = Pt1A(x) for any Borel measurable A ⊆ RN .
The family {pxt : t ≥ 0} is tight for all x ∈ RN .

25Indeed, by the definition of invariance (see Definition 3.7), we have that JxetW (x) maps ∆̂(x) to ∆̂(etW (x)).
Therefore JxetW (e−tW (x)) maps ∆̂(e−tW (x)) to ∆̂(x). Now V ∈ ∆̂, so V (e−tW (x)) ∈ ∆̂(e−tW (x)) and we
have that AdtWV (x) = JxetW (x)V (e−tW (x)) ∈ ∆̂(x). That is, AdtWV ∈ ∆̂.
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[A.4] Define the measures qs,zt by qs,zt (A) = Qs,t1A(z) for any Borel measurable A ⊆ Sx0
.

Then we require that for each z ∈ Sx0
the measures {q0,z

t : t ≥ 0} are tight on Sx0
;

that is, for all ε > 0 there exists a compact set Kε ⊆ Sx0
such that q0,z

t (Kε) ≥ 1− ε
for all t ≥ 0.

[A.5] The Obtuse Angle Conditions (3.4) and (3.6) are satisfied (with the understanding
of Hypothesis 3.16 [SA.3]).

[A.6] The initial datum x0 of the SDE (1.1) is such that the curve (7.1) started at x0,
admits a limit, i.e. there exists x̄ ∈ RN such that V (⊥)

0 (x̄) = 0 and etV
(⊥)
0 (x0)→ x̄

as t→∞.

[A.7] Assumptions on the map W∞: the domain of W∞ contains the whole manifold
Sx0

and the image of Sx0
through W∞ is all contained in a submanifold of ∆̂.

More explicitly, there exists an integral submanifold of ∆̂, Sx, such that V (⊥)
0 = 0

on Sx and the image of Sx0
through W∞ is all contained in Sx, W∞(Sx0

) ⊆ Sx.
Furthermore we assume that W∞ is a continuous map from Sx0

∪Sx0
∪Sx into RN .

Note 7.6. Some comments on the above assumptions, in the order in which they are
stated.

• As a general premise, observe that, for every fixed t ≥ 0, Xt ∈ Sx0
if and only

if Zt ∈ Sx0 . Indeed, Xt = etV
(⊥)
0 Zt so if Zt is in Sx0 then in particular it is in

Sx0
and Xt is just obtained by moving along an integral curve of V (⊥)

0 ; hence, by
construction of the manifold Sx0

, Xt is still in Sx0
. The validity of the reverse

implication can be argued similarly (using Lemma 4.15 and Proposition 5.3 as well).
As a consequence, if Zt does not hit the boundary of Sx0

in finite time then Xt does
not hit the boundary of Sx0

in finite time.

• Hypothesis 7.5 [A.4] implies that Zt ∈ Sx0
almost surely, for every t ≥ 0, i.e. it

implies that Zt does not hit the boundary of Sx0
in finite time. Indeed, assume

by contradiction that there exists t0 > 0 such that P(Zt0 ∈ ∂Sx0
) =: ε > 0. Recall

∂Sx0
:= Sx0

\ Sx0
. By the previous bullet point if Zt0 belongs to ∂Sx0

then Xt0 ∈
∂Sx0

. By Proposition 5.1 we then have that Xt is in the boundary of Sx0
for any

t > t0. That is, for any t > t0

P(Xt ∈ ∂Sx0
) ≥ P(Xt0 ∈ ∂Sx0

) ≥ P(Zt0 ∈ ∂Sx0
) = ε > 0.26

We know from [A.3] that, given ε as in the above, there exists a compact set
Kε/2 ⊆ Sx0

such that P(Zt ∈ Kε/2) = qt(Kε/2) ≥ 1− ε/2 for every t ≥ 0. Now using
that Sx0

and ∂Sx0
= S x0

\Sx0
are disjoint, for every t > t0 we have

1 = P(Xt ∈ ∂Sx0
) + P(Xt ∈ Sx0

)

≥ P(Zt0 ∈ ∂Sx0
) + P(Zt ∈ Kε/2) + P(Zt ∈ (Kε/2)C)

≥ P(Zt0 ∈ ∂Sx0
) + P(Zt ∈ Kε/2) ≥ ε+ 1− ε/2 = 1 + ε/2 ,

where in the first inequality we have used the observation in the first bullet point
of this note and (Kε/2)C denotes complement in Sx0

. Hence ε = 0, i.e. Zt belongs
to Sx0

almost surely.

• Hypothesis 7.5 [A.6] is the analogous of Hypothesis 6.1. [H.4].

26The second inequality is an inequality rather than an equality because of Lemma 4.15.
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• Hypothesis 7.5 [A.7] is slightly more complicated to explain, so we observe that it
is satisfied in the representation of the form “ODE+SDE” (6.1)–(6.3) of the previous
section, if ζt = etW0ζ0 converges to some ζ̄. Indeed in that case if x0 = (z0, ζ0) then
Sx0

= Hζ0 and Sx = Hζ̄ (both of these manifolds are n-dimensional hyperplanes
in Rn+1, hence they are closed). Moreover, for every x = (z, ζ) ∈ Sx0

, W∞(x) =

W∞((z, ζ)) = (z, ζ̄), hence the mapW∞ is continuous on Sx0
. If x = (z, ζ̄) ∈ Sx then

W∞(x) = x, so W∞ is continuous on Sx as well. Because in this case the map W∞

is just a projection on the plane Sx, W∞ is continuous on Sx0
∪Sx0

∪Sx = Sx0
∪Sx

(the equality holding because Sx0
⊂ Sx0

).

• By [A.6] V (⊥)
0 (x̄) = 0; using Lemma 4.1, this implies that Sx̄ = Sx̄. Hence, by

Lemma 4.16, V (⊥)
0 (x) = 0 for every x ∈ Sx̄. So in reality [A.6] implies that part

of [A.7] where we require V (⊥)
0 to vanish on the whole Sx̄.

• If we do not make any assumptions on the map W∞, when we look at the set
W∞(Sx0

), it may occur that this is not a connected set and, even if it were con-
nected, it may be contained in more than one submanifold of ∆̂ (see Example 6.9).
If we assume that W∞ is continuous, because Sx0

is connected then also W∞(Sx0
)

is; for simplicity, we are also explicitly assuming that W∞(Sx0
) is contained in just

one submanifold of ∆̂, the manifold Sx. It could also occur that on the limit mani-
fold W∞(Sx0

) we have that V (⊥)
0 (x) 6= 0 for every x ∈ W∞(Sx0

), see for instance
Example 6.10. If this is the case, then one can take such a manifold as starting
manifold and apply the theory that we explain here by taking starting points on this
manifold; i.e. one can sort of “repeat the procedure” illustrated here by starting
the dynamics again on that manifold. So, in conclusion one just needs to study the
case in which V (⊥)

0 (x) = 0 for every x ∈W∞(Sx0
). Again for simplicity, we assume

V
(⊥)
0 (x) 6= 0 for every x ∈ Sx.

• Finally, notice that if W∞ is well defined and continuous on Sx0
then W∞ is also a

well-defined and continuous map from Sx0
to RN . We show this fact in Lemma A.6,

contained in Appendix A.3. Notice also that W∞ is the identity when restricted to
Sx, hence W∞ is always well defined and continuous on Sx. What we are requiring
with the last point of Hypothesis 7.5 is that the map should be continuous not only
on each one of the manifolds Sx0

,Sx0
and Sx, but also that it should be continuous

on the union of these three sets. The reason why we need continuity also on the
closure of Sx0

is, again, technical, see proof of Lemma B.6

Before we consider the behaviour of X(x)
t in the case when etV

(⊥)
0 (x) is convergent,

we must first consider the trivial case, i.e. the behaviour of the process when we start it
from the “equilibrium manifold” Sx, where V (⊥)

0 (x) = 0. We do this in Proposition 7.7
below, which is the analogous of Lemma 6.4.

Proposition 7.7. Let Hypothesis 7.5 [A.1], [A.3] and [A.5] hold. Let S be an integral
submanifold of ∆̂ such that V (⊥)

0 = 0 on S. Then there exists a unique invariant measure
µS of Pt supported on S such that

lim
t→∞

Ptf(x) = µS(f), for all x ∈ S, f ∈ Cb(RN ). (7.9)

Moreover the convergence is uniform on compact subsets of S; that is, for every compact
set K ⊆ S and every f ∈ Cb(RN ) we have

lim
t→∞

sup
x∈K

∣∣Ptf(x)− µS(f)
∣∣ = 0 .

Proof of Proposition 7.7. The proof is deferred to Appendix B.3.
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Note 7.8. The assumption that V (⊥)
0 = 0 on S implies that, if x ∈ S, then the map

t 7→ Ptf(x) is differentiable, for any f ∈ Cb(RN ). Indeed, as explained in the Introduction,
in general we have that Ptf is differentiable in the direction ∂t − V0 and in the directions
contained in ∆̂ (see Appendix A.2) and satisfies

(∂t − V0)Ptf =

d∑
i=1

V 2
i Ptf.

However if V (⊥)
0 (x) = 0 for all x ∈ S then V0(x) ∈ ∆̂(x) for all x ∈ S and hence Ptf is also

differentiable in the direction V0 on S. Therefore we have that Pt is also differentiable in
time, i.e. as a map t 7→ Ptf , and satisfies

∂tPtf = V0Ptf +

d∑
i=1

V 2
i Ptf.

By Hypothesis [A.7] V (⊥)
0 = 0 on Sx so we can apply Proposition 7.7 to the manifold

Sx and throughout the rest of the section we shall denote by µSx the invariant measure
supported on Sx such that (7.9) holds for all x ∈ Sx. Such a measure exists and is unique
by Proposition 7.7. Similarly to what we did in Section 6, equation (6.11), we shall
extend this to a measure µSx defined on RN by setting

µSx(A) = µSx(A ∩ Sx), for any Borel measurable set A ⊆ RN .

For any x ∈ RN , let I0(x) = {x ∈ RN : W∞(Sx) ⊆ Sx}. The set I0 is contained within
the basin of attraction for the measure µSx . Indeed, Theorem 6.5 below shows that for
all x ∈ I0(x) we have that Ptf(x) converges to µSx(f), for all f ∈ Cb(RN ).

Theorem 7.9. Let Hypothesis 7.5 hold. Let x ∈ RN be such that V (⊥)
0 (x) = 0. Then

there exists an invariant measure µSx supported on Sx such that for each x0 ∈ I0(x),
and f ∈ Cb(RN ) we have that Ptf(x0) converges to µSx(f).

Proof of Theorem 7.9. Throughout the proof we fix an arbitrary point x0 ∈ I0. The proof
is split into 3 steps.
• Step 1 : We first construct a tight evolution system of measures, {νt}t≥0, for

the semigroup {Qs,t}0≤s≤t which are supported on Sx0 . This can be done be acting
analogously to what we have done in Step 1 of the proof of Theorem 6.5; in particular
we may define νt := Q∗0,tδx0 .27 Note that νt(Sx0) = 1; indeed by Note 7.6 (second bullet
point) we have that Zt ∈ Sx0 almost surely when Z0 = x0; hence for every t ≥ 0

νt(Sx0
) = Q∗0,tδx0

(Sx0
) = Q0,t1Sx0

(x0) = P(Zt ∈ Sx0
|Z0 = x0) = 1.

Moreover, analogously to Step 2 in the proof of Theorem 6.5, since the family {νt}t is
tight, there exists a diverging sequence {t`}` such that νt` converges weakly to some
probability measure µ0 as t` tends to∞.
• Step 2 : By construction, the measure µ0 is a measure on Sx0 ; we then consider the

probability measure µ0 ◦ (W∞)−1.28 The latter measure is supported on Sx. One needs
to show that µ0 ◦ (W∞)−1 = µSx . Recall that µSx is the restriction of the measure µSx

to Sx. The proof of this fact is deferred to Lemma B.7. Note that this is one of the places
where we use that x0 ∈ I0(x). This implies that νt converges weakly to µSx ◦W∞ as t
tends to∞. Furthermore, by Hypothesis [A.3] we can take a sequence {t`}` such that
t` ↗∞ and px0

t`
converges weakly to some probability measure νx0 .

27Note that using the same argument we could define νt = Q∗0,tδx0 .
28Here (W∞)−1(A) denotes preimage of A.
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• Step 3 : We show that νx0 is supported on Sx and, when we restrict it to Sx, we
have νx0 |Sx = µ0 ◦ (W∞)−1. Lemma B.8 is devoted to proving this fact. Therefore, by
Step 2 and the definition of µSx we have that

νx0 = µSx .

This implies that px0
t converges weakly to µSx as t tends to ∞ for any x ∈ Sx0

, that is,
for every f ∈ Cb(RN ), Ptf(x0) converges to µSx(f) as t tends to∞.

We now give a one dimensional example which satisfies all the assumptions we have
made in this section. In particular, this example fits our framework in a non-trivial way
as it exhibits many invariant measures.

Example 7.10. Consider the SDE

dZzt = sin(Zzt )dt+
√

2(1− cos(Zzt )) ◦ dBt, Z0 = z, Zt ∈ R,

where (Bt)t≥0 is a one-dimensional Wiener process. In this case V0 = sin(z)∂z, V1 =

(1− cos(z))∂z and we have

[V1, V0] = [(1− cos(z))∂z, sin(z)∂z] = cos(z)(1− cos(z))∂z − sin(z)2∂z = −V1.

Therefore the vector fields V0, V1 satisfy the UFG condition; the above also shows that
the obtuse angle condition (3.4) is satisfied, with λ0 = 1. Moreover, it is easy to show
that the function (V1Ptf)(x) decays exponentially fast in time, i.e. λ0 is big enough
that (3.4) implies an estimate of the type (3.5) for the fields V1. Because the coefficients
of the equation are bounded the estimate is uniform on the whole real line, see [14,
Proposition 3.1, Proposition 3.4 and Theorem 4.2] alternatively by a direct calculation,
see [14, Example 4.4]. Since V0 and V1 both vanish whenever z ∈ 2πZ we have that the
point measures δ2nπ are invariant measures for any n ∈ Z. However there also exist
invariant measures supported on (2nπ, 2(n+ 1)π) for any n ∈ Z. Indeed let

ρn(z) :=
exp

(
− 1

1−cos(z)

)
C(1− cos(z))

1(2nπ,2(n+1)π)(z)

where C is the normalization constant and 1(2nπ,2(n+1)π)(z) is the characteristic function
of the interval [2nπ, 2(n+ 1)π)]. By direct calculation one can verify that, for every n ∈ Z,
ρn(z) satisfies the stationary Fokker-Planck equation L∗ρn = 0, where

L∗ρn(z) = −∂z(sin(z)ρn(z)) + ∂z [(1− cos(z))∂z ((1− cos(z))ρn(z))] .

Notice that if X0 ∈ [2nπ, 2(n+ 1)π] (for some fixed n ∈ Z) then Xt ∈ [2nπ, 2(n+ 1)π] for
every t ≥ 0. However, even if we restrict to one of the intervals [2nπ, 2(n + 1)π], the
process still admits three invariant measures on each one of such intervals.

Example 7.11 (Example 6.10 continued). Recall that in this example V0 = sin ζ∂ζ − kz∂z
and V1 = ζ∂z. While V0 is smooth, V (⊥)

0 is not continuous. Indeed, for ζ 6= 0 V
(⊥)
0 (z, ζ) =

− sin(ζ)∂ζ , however for ζ = 0 V
(⊥)
0 (z, 0) = V0(z, 0) = −kz∂z.

We conclude this section by stating and proving Theorem 7.12 below. In order to
state it, let us define the following equivalence relation on RN :

x ∼ y ⇔ x ∈ Sy .

As customary, we denote by [x] the equivalence class of x under the equivalence rela-

tion ∼. Note that by Lemma 3.15, if x ∼ y then also etV
(⊥)
0 x ∼ etV

(⊥)
0 y, therefore the flow

map

[x] −→ [etV
(⊥)
0 x] =: etV

(⊥)
0 [x] (7.10)
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is well defined. Let now q be the map q : RN → RN/ ∼, defined as q(x) = [x]. If we endow
the quotient set RN/ ∼ with the σ-algebra {E ⊆ RN/ ∼ s.t. q−1(E) is a Borel set of RN},
then q is a measurable map. If µ is a probability measure on RN , we define the pullback
measure µ̃ on RN/ ∼ as µ̃(E) = µ(q−1(E)) for all E ⊆ RN/ ∼.

Theorem 7.12. Consider the SDE (1.1) and the associated semigroup Pt and assume
that the vector fields V0, . . . , Vd satisfy the UFG condition. If µ is an invariant measure
for Pt, then µ̃ is an invariant measure for the flow map (7.10).

Proof of Theorem 7.12. Denote by Bb(RN/ ∼;R) to be the set of all bounded and mea-
surable functions f : RN/ ∼→ R. If f ∈ Bb(RN/ ∼;R), then f ◦ q ∈ Bb(RN ;RN ), i.e. f ◦ q
is a bounded and measurable function mapping from RN to RN . By the definition of
invariant measure, we have∫

RN/∼
f([x])µ̃(d[x]) =

∫
RN

f(q(x))µ(dx)

=

∫
RN

(Pt(f ◦ q)) (x)µ(dx)

=

∫
RN
Ex[f(q(Xx

t ))]µ(dx) .

Let us now look more closely at the expected value on the right hand side of the above:
for any bounded and measurable function h we can write∫

RN
Ex[h(Xx

t )]µ(dx) =

∫
RN

µ(dx)

∫
RN

h(y)Px(Xx
t ∈ dy)

=

∫
RN

µ(dx)

∫
S
e
tV

(⊥)
0 x

h(y)Px(Xx
t ∈ dy)

=

∫
RN

µ(dx)

∫
S
e
tV

(⊥)
0 x

h(y)Px(Xx
t ∈ dy)

+

∫
RN

µ(dx)

∫
∂S

e
tV

(⊥)
0 x

h(y)Px(Xx
t ∈ dy) ,

where the second equality follows from Proposition 5.3. Now the second term in the
above vanishes by Proposition 5.7 (easy to prove for positive h, if h is not positive just
split into positive and negative part). Indeed if Xx

t ∈ ∂S
etV

(⊥)
0 x

then Xx
t ∈ ∂Sx (see

Lemma 4.15 for a proof of this fact). Putting everything together we can write∫
RN/∼

f([x])µ̃(d[x]) =

∫
RN
Ex[f(etV

(⊥)
0 ([x]))]µ(dx)

=

∫
RN

f(etV
(⊥)
0 (x))µ(dx)

=

∫
RN/∼

f(etV
(⊥)
0 ([x]))µ̃(d[x]),

where the penultimate equality follows from the fact that the object on the second line is
completely deterministic and the last equality holds by the definition of the measure µ̃.
This concludes the proof.

8 Existence of a density

Analogously to what we did for the study of the long-time behaviour, we split this
section into two subsections. That is, in Section 8.1 we consider the setting of Section 6
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and study SDEs of the form (6.1)–(6.3). In Section 8.2 we consider the general UFG-case.
This section makes use of several notions from Malliavin calculus, we will recall only
some basic facts and refer the reader to [46] for more detailed background material.

Note 8.1. The techniques of proof that we use here are not different from those in
[46, 60, 7]; however our assumptions are significantly more general, so we can not just
quote results and some proofs need to be re-sketched. Moreover, the results of this
section can be seen as a generalization of the results of [7, Section 5.2] to the UFG
case. We indeed recall that in [7, Section 5.2] the author assumes the validity of the
Hörmander condition, which we have recalled in Section 3, as well as boundedness of
the coefficients of the SDE. Here we remove both such assumptions. We emphasize that,
by a geometric point of view, imposing the validity of the Hörmander condition amounts
to assuming that the distribution ∆̂0 is equal to RN at every point.

Let Dk,p ⊆ Lp(Ω) denote the Malliavin Sobolev space, that is the domain of the kth
order Malliavin derivative in the space Lp(Ω). We also define the space

D =
⋂

p>1,k∈N

Dk,p.

We shall denote by D′ the dual space of D, that is the space of all continuous linear maps
from D to R. Let us recall the following lemma, which is quoted from [46, Theorem
2.2.1].

Lemma 8.2. Fix T > 0, let {Xt}t∈[0,T ] denote the solution of the SDE (1.1) and assume
that V0, V1, . . . , Vd are smooth vector fields which are globally Lipschitz. Then Xi

t belongs
to D1,p for any t ∈ [0, T ], p ≥ 1 and i = 1, . . . , N . Moreover, for all 0 ≤ t ≤ T, p ≥ 1

sup
0≤r≤t

E

[
sup

r≤s≤T
|Dj

rX
i
s|p
]
<∞

and the Malliavin derivative Dj
rX

i
t satisfies the following SDE,

Dj
rX

i
t = V ij (Xr) +

N∑
k=1

∫ t

r

∂xkV
i
0 (Xs)D

j
r(X

k
s )ds

+
√

2

d∑
`=1

N∑
k=1

∫ t

r

∂xkV
i
` (Xs)D

j
r(X

k
s ) ◦ dW `

s , (8.1)

for every r ≤ t.
Here we use the notation Dk to denote the Malliavin derivative operator with respect

to the Brownian motion Bk.29 Define the Malliavin matrix Mt = (M ij
t )Ni,j=1 to be

M ij
t =

d∑
k=1

∫ t

0

Dk
s (Xi

t)D
k
s (Xj

t )ds.

Again by [46, Section 2.3] we can rewrite the Malliavin matrix in terms of the Jacobian
matrix Jt := ∂Xt

∂x0
, details can be found in [46, Section 2.3]. There it is also shown that Jt

is an invertible matrix and that the following holds

Mt = Jt

(
d∑
k=1

∫ t

0

J−1
s Vk(Xs)Vk(Xs)

T (J−1
s )T ds

)
JTt = JtCtJ

T
t

29Note that Dk denotes the 1st order Malliavin derivative with respect to the kth Brownian motion and is
not to be confused with the kth-order Malliavin derivative.
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where the matrix Ct is the reduced Malliavin covariance matrix defined as

Ct =

d∑
k=1

∫ t

0

J−1
s Vk(Xs)Vk(Xs)

T (J−1
s )T ds.

8.1 Existence of a density on a suitable hyperplane

In this section we consider the SDE (6.1)–(6.3). We shall also assume Hypothe-
sis 6.1 [H.1], which states that the set of vector fields {V[α](z0, ζ0) : α ∈ Am} span the
n-dimensional hyperplane Hζ0 := {x = (z, ζ) : ζ = ζ0} for all (z0, ζ0) ∈ Rn × R. In this
setting it is clear that the law of Xt = (Zt, ζt) does not admit a density with respect to
Lebesgue measure on Rn+1; indeed for each fixed t, ζt is a deterministic point which
implies that Px (Xt ∈ Rn × {ζt}) = 1 whileRn×{ζt} is a null set with respect to Lebesgue
measure on Rn+1. We prove that for every fixed t ≥ 0 the law of the random variable Zt
admits a density with respect to Lebesgue measure on Rn. In terms of the process Xt

this implies that the law of Xt admits (for every fixed t ≥ 0) a density with respect to the
Lebesgue measure on the hyperplane Hζt := {x = (z, ζ) : ζ = ζt}. Moreover, since from
Section 6 Xt ∈ Hζt almost surely, we have that Hζt is the maximal manifold such that Xt

admits a density with respect to the volume element on such a manifold.30

To prove that the law of Zt admits a density we shall follow the same strategy of
[46, Section 2.3]. Note that by Hypothesis 3.16 and Lemma 8.2 for each t ≥ 0 and
i ∈ {1, . . . , n} we have that Zit and ζt belong to D1,p for all p ≥ 1. First we note that the
solution Xt = (Zt, ζt) admits a Malliavin derivative.

Lemma 8.3. Let Mt denote the Malliavin matrix corresponding to the solution Xt =

(Zt, ζt) of the SDE (6.1)–(6.3). Then Mt has the form

Mt =

(
Mt 0

0 0

)
(8.2)

where the matrix Mt is the Malliavin matrix corresponding to Zt.

Proof of Lemma 8.3. The proof is deferred to Appendix B.4.

In [46] it is shown that if the Malliavin matrix is invertible then the law of Xt admits
a density on Rn+1. We can see from (8.2) that the matrix is not invertible; however we
show that the Malliavin matrix Mt corresponding to Zt is invertible almost surely and
hence the law of Zt admits a density on Rn, for every fixed t > 0.

Proposition 8.4. The reduced Malliavin covariance matrix Ct corresponding to the
solution Xt = (Zt, ζt) of the SDE (6.1)–(6.3) is of the form

Ct =

(
Ct 0

0 0

)
,

where Ct is a random n × n symmetric matrix. Moreover, if we assume Hypothe-
sis 6.1 [H.1] holds then Ct is invertible P-almost surely.

Proof of Proposition 8.4. The proof is deferred to Appendix B.4.

Theorem 8.5. Assume Hypothesis 6.1 [H.1] and let {Zt}t≥0 be the solution of (6.1).
Then the law of Zt is absolutely continuous with respect to the Lebesgue measure on Rn.

30Throughout our discussion we need to fix a canonical reference measure on the manifold. Here, and
subsequently, when we refer to the volume element on a submanifold M ⊂ RN we mean the measure on M
which is determined from the Riemannian density associated to the induced Riemannian metric on M .
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Proof of Theorem 8.5. Note the Malliavin matrix corresponding to Zt is Mt which is
invertible, indeed Mt = JtCtJ

T
t and Ct is invertible by Proposition 8.4 therefore Mt is

invertible since the product of invertible matrices is invertible. By [46, Theorem 2.1.2]
we have that the law of Zt is absolutely continuous with respect to Lebesgue measure on
Rn, for each t > 0.

8.2 Existence of a density on integral submanifolds

We now return to studying the general UFG-case. As in the previous section we
cannot expect that the law of Xt will in general admit a density with respect to Lesbegue
measure on RN and we will instead show that the law of Xt admits a density with respect
to the volume element on a suitable manifold. Indeed, we shall show that the law of
Xt admits a density with respect to the volume element on S

etV
(⊥)
0 (x0)

. Note that by

Proposition 5.3 we have X(x)
t ∈ S

etV
(⊥)
0 (x)

almost surely. In this section we shall assume

Hypothesis 7.5 [A.1] and that Xt cannot hit the boundary of the integral manifold
S
etV

(⊥)
0 (x)

, that is X(x)
t ∈ S

etV
(⊥)
0 (x)

, almost surely. In the first and second comment in

Note 7.6 it is shown that under Hypothesis 7.5 [A.4] implies that Xt cannot hit the
boundary of the maximal integral submanifold.

Recall from Section 7 the process {Zt}t defined by (7.2). Since e−tV
(⊥)
0 is a diffeomor-

phism the law of Xt admits a density with respect to the volume element on S
etV

(⊥)
0 (x0)

if

and only if the law of Zt admits a density with respect to the volume element on Sx0 . Let
V[α],t be defined as in (7.6), then recall that the process {Zt}t≥0 satisfies the SDE (7.4).
Now we wish to apply [55, Theorem 3.4] to show that the law of {Zt}t≥0 admits a density
with respect to the volume measure on Sx0

. However, as noted in [9], there is a mistake
in the proof of [55, Theorem 3.4], in particular the form of the Hörmander condition
given by [55, Assumption (H)] is not sufficient for the conclusions of [55, Theorem 3.4]
to hold. More precisely, they rely upon [20, Theorem 1.1.3] to show that [55, Assumption
(H)] implies a suitable integration by parts formula, which is shown to be incorrect by
[9]. However under our conditions there is an integration by parts formula as shown in
[44, Section 3]. Therefore we may use the strategy given in [55] and the results of [44]
to prove that the law of Zt admits a density with respect to the volume measure on Sx0

.
A vital tool for this argument is the integration by parts formula proved in [44,

Theorem 3.10]; namely, for Φ ∈ D and α1, . . . , αM ∈ Am we have

Ex
[
ΦV[α1] . . . V[αM ]f(Xt)

]
= t

−‖α1‖−...−‖αM‖
2 Ex[Φα1,...,αM (t, x)f(Xt)],

for any f ∈ CV (RN ) and for some random variable Φα1,...,αM (t, x). By taking f =

g ◦ e−tV
(⊥)
0 we have for any g ∈ C∞V (RN )

Ex
[
ΦV[α1],t . . .V[αM ],tg(Zt)

]
= t

−‖α1‖−...−‖αM‖
2 Ex[Φα1,...,αM (t, x)g(Zt)]. (8.3)

Let us denote by E(Sx0) the space of all distributions (in this sentence distribution
is meant in an analytic sense) on Sx0 with compact support. Recall that for any smooth
function f we can view this as a member of E(Sx0), denoted Ff , by setting

〈Ff , φ〉 =

∫
S

f(x)φ(x)λSx0
(dx), for any φ ∈ C∞c (Sx0

)

where λSx0
denotes the volume measure on Sx0

.

Lemma 8.6. Assume that Zt satisfies (8.3). Then there exists a map Ψt : E(Sx0
) → D′

with the following properties
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1. If f ∈ C∞c (Sx0
) then Ψt(f) = f(Zt). Note that f(Zt) is identified as an element in

D′ by setting 〈f(Zt), G〉 = E[f(Zt)G] for any G ∈ D.

2. The map Ψt is continuous as a map from E(Sx0) to D′.

For a proof see [58, Proposition 2.1].
Now we shall state some properties of the map Ψ, as proven in [60, Proposition 2].

Proposition 8.7. Fix t > 0 and let Zt be such that the map Ψt is well defined for every
f ∈ E(Sx0

). Then let I be some open set

1. If I 3 s 7→ Fs is continuous (continuously differentiable), then I 3 s 7→ Ψt(Fs) is
continuous (resp. continuously differentiable). In particular, for every G ∈ D the
map I 3 s 7→ 〈Ψt(Fs), G〉 is continuous and respectively continuously differentiable
and 〈

Ψt

(
dFs
ds

)
, G

〉
=

d

ds
〈Ψt(Fs), G〉 .

2. If I 3 s 7→ Fs is continuous then for every G ∈ D〈
Ψt

(∫
I

Fsds

)
, G

〉
=

∫
I

〈Ψt(Ts), G〉ds

where
∫
I
Tsds is a tempered distribution (here distribution is meant in an analytic

sense) and is defined by 〈
∫
I
Tsds, φ〉 =

∫
I
〈Ts, φ〉ds.

We can show that the law of Zt admits a density.

Proposition 8.8. Assume Hypothesis 7.5 [A.1], and assume that X(x0)
t ∈ S

etV
(⊥)
0 (x0)

almost surely. Then for each t > 0 the law of Z(x0)
t admits a density with respect to the

volume element on Sx0 .

Proof. Note that the map x 7→ δx is smooth, moreover its (weak) derivative with respect
to xi is given by Diδx, where Diδx is defined by 〈Diδx, φ〉 = −∂xiφ(x) for all φ. Therefore
Ψt(δx) is smooth and in particular p(x) := 〈Ψt(δx), 1〉 is smooth. It remains to show that
p(x) is the density of the law of Xt. Take φ ∈ C∞c (S) then∫

S

φ(x)p(x)λSx0
(dx) =

∫
S

φ(x)〈Ψ(δx), 1〉λSx0
(dx)

= 〈Ψt

(∫
Sx0

φ(x)δxλSx0
(dx)

)
, 1〉.

Now for f ∈ C∞c (Sx0
) we have

〈
∫
Sx0

φ(x)δxλSx0
(dx), f〉 =

∫
Sx0

φ(x)〈δx, f〉λSx0
(dx) =

∫
S

φ(x)f(x)λSx0
(dx).

Therefore
∫
Sx0

φ(x)δxλSx0
(dx) = Fφ, and in particular Ψt

(∫
Sx0

φ(x)δxλSx0
(dx)

)
= φ(Zt).

Now we have ∫
S

φ(x)p(x)λS(dx) = 〈φ(Zt), 1〉 = E[φ(Zt)].

Theorem 8.9. Assume the vector fields V0, V1, . . . , Vd are uniformly Lipschitz, satisfy the
UFG condition and assume that X(x0)

t ∈ S
etV

(⊥)
0 (x0)

almost surely.31 Then for each t > 0

the law of X(x0)
t admits a density with respect to the volume element on S

etV
(⊥)
0 (x0)

.

31As we have already mentioned, the latter fact follows for example from assuming Hypothesis 7.5 [A.4].
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A Some technical results

We gather in this appendix some auxiliary results. In particular, Appendix A.1 con-
tains background material about the topology of the orbits of finitely generated smooth
distributions. Appendix A.2 reports some known smoothing results on UFG semigroups,
which are often used in the proofs of Appendix B. Appendix A.3 contains precise state-
ments and proofs of further technical facts which would have been cumbersome (and
detracting from the main line of thought) if presented in the main body of the work.

A.1 Topology of orbits

Here we give a brief justification of the reason why we make the standing assump-
tion [SA.2]. In short, assuming that the manifold topology of the manifolds S is the
Euclidean topology is equivalent to assuming that such manifolds are embedded man-
ifolds. In full generality, as explained in [28, page 78], elements of a global partition
induced by distributions which enjoy the integral manifold property are immersed mani-
folds. We briefly explain the difference between an embedded and an immersed manifold.
A detailed treatment of the matter can be found in [28, Appendix A.2 and Appendix A.4].
Let F :M1 → RN be a continuous mapping of topological spaces and letM2 = F (M1).
M2 can be endowed with two topologies: i) the topology of M2 as a subset of the
Euclidean space RN , so that the open sets in this topology are the sets O of the form
O = O′ ∩M2 for some O′ which is open in the Euclidean topology of RN ; ii) the topology
induced byM1, where the open sets are the sets U of the form U = F (U ′), for some U ′

which is open in the topology ofM1. In general, the latter topology is stronger than the
former. With this premise, one can give the following definition.

Definition A.1. Let F :M1 → RN be a smooth mapping of manifolds. F is an immersion
if it is injective and rank(JpF ) = dim(M1) for every p ∈ M1. F is an embedding if it is
an immersion and the topology induced onM2 = F (M1) by the one onM1 coincides
with the Euclidean topology ofM2 as a subset of RN .

The reason why we consider only the case in which the manifolds of the partition
are embeddings comes mostly from the need to use the Stroock and Varadhan support
theorem: the closure appearing in the statement of such a theorem is intended in
Euclidean sense. If the manifold topology was not the Euclidean topology we would have
to consider two closures, the closure in the Euclidean topology and the closure in the
manifold topology. This would make the exposition much more cloudy. Moreover we
point out that in all our examples the manifolds at hand are embedded manifolds. It is
possible that, under the assumption of this paper that the vector V (⊥)

0 is smooth and

Lipshitz and that the integral curves of V (⊥)
0 are convergent, one may prove that the

orbits S are indeed embedded manifolds. But this is beyond the scope of this paper.

A.2 Known facts about UFG semigroups

In this appendix we gather some known facts that we use frequently.

[F.1] A semigroup Pt of bounded operators is Markov if

Pt1 = 1 and Ptf ≥ 0 when f ≥ 0 ,

where, in the above, 1 denotes the function identically equal to one. Denoting by
‖ · ‖∞ the supremum norm, the above implies that if ‖f‖∞ < ∞ then ‖Ptf‖∞ ≤
‖f‖∞, i.e. the semigroup is a contraction in the supremum norm. Similarly the
two parameter semigroups {Qs,t}0≤s≤t and {Qs,t}0≤s≤t, considered in Section 6
and Section 7, are both contractive in the supremum norm.
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[F.2] Note that if the vector fields V0, V1 . . . , Vd satisfy the parabolic Hörmander condition
then for any f ∈ Cb(RN ), the semigroup Ptf(x) is smooth in all directions in RN

and moreover it is smooth in t. This is not generally the case if we assume the
UFG condition. However we have that for any f ∈ Cb(RN ) and t > 0 the function
x 7→ Ptf(x) is differentiable in the directions V[α] for any α ∈ A. Moreover for any
compact set K, t > 0 there exists C(K) > 0, ω > 0 such that

sup
x∈K

∣∣V[α]Ptf(x)
∣∣ ≤ C(K)eωtt−‖α‖/2 |f |∞ .

If the vector fields V[α] are bounded then the above estimate holds uniformly on
RN , for details see [44, Chapter 3]. In contrast to the case in which the parabolic
Hörmander condition is enforced, when the UFG condition holds Ptf need not
be differentiable in the direction V0; however it is differentiable in the direction
∂t − V0. For more details see [14, Appendix A].

[F.3] For f ∈ C∞V (RN ) (the set C∞V (RN ) has been defined in Section 2) we have that
(x, t) 7→ Ptf is smooth in both x and t, i.e. it is differentiable arbitrarily many
times in every direction, see [10]. When f ∈ Cb(RN ) we may take a sequence
fn ∈ C∞V (RN ) such that Ptfn ∈ C∞V (RN ) and for each compact set K ⊆ RN we
have that Ptfn and V[α1] . . . V[αk]Ptfn converge uniformly over K as n tends to∞
to Ptf and V[α] . . . V[αk]Ptf respectively for each k ∈ N, α1, . . . , αk ∈ A. We shall

denote by D2,∞
V (RN ) the space of all functions that can be approximated with

the procedure just described. From what we have just said, the semigroup Ptf
belongs to D2,∞

V (RN ) for any f ∈ Cb. See [14, Appendix A] for more details.

A.3 Miscellaneous technical facts

Lemma A.2. Let X and Y be as in Example 3.8. Then the vector fields {X,Y } do not
satisfy the UFG condition, in the sense that whether we take X = V0 and Y = V1 or
viceversa, the UFG condition is not satisfied.

Proof of Lemma A.2. In the definition of UFG condition take Y = V0 and X = V1 (the
other case is simple to show) and assume that the UFG condition holds for some m ∈ N.
Denote by adX the map which takes a vector field Z to [X,Z], then note that

(adX)kY = ψ(k)(x)∂y. (A.1)

Here ψ(k) denotes the kth derivative of ψ. Now (adX)kY commutes with the vector field
Y and hence the only non-trivial vector fields in Rm are X,Y and (adX)kY for any k ∈ N.
By the UFG condition there exist smooth functions ϕX , ϕY,k such that

(adX)m+1Y =

m∑
k=0

ϕY,k(adX)kY + ϕXX.

We may write this as follows using (A.1)

ψ(m+1)∂y =

m∑
k=0

ϕY,kψ
(k)∂y + ϕX∂x.

By considering the direction ∂x we have that ϕX = 0, therefore we have

ψ(m+1) =

m∑
k=0

ϕY,kψ
(k).

EJP 26 (2021), paper 22.
Page 51/72

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP577
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Long-time behaviour of degenerate diffusions

Also note that since ψ(x) = 0 for all x < 0 we have that ψ(k)(x) = 0 for all x < 0 and
k ∈ N; as ψ is smooth this gives that ψ(k)(0) = 0 for all k ∈ N. In particular, ψ solves the
following initial value problem

ψ(m+1)(x) =

m∑
k=0

ϕY,k(x, y)ψ(k)(x), for all x ≥ 0

ψ(k)(0) = 0, for all k ∈ {0, 1, 2, . . . ,m}.

However since ψ is smooth and the functions {ϕY,k}k≥0 are smooth, there is a (at east
locally) unique solution to this initial value problem; the function which is constantly
zero clearly satisfies the initial value problem. Therefore we have that ψ ≡ 0 (in a
neighbourhood of zero), which gives a contradiction and hence the UFG condition is not
satisfied.

Lemma A.3. Assume that the vector fields V0, . . . , Vd satisfy the UFG condition. Let S
be a maximal integral submanifold of ∆̂0 and let x, y ∈ S . Assume that x, y lie in the
same coordinate neighbourhood Ux0

of a coordinate transformation Φx0
constructed in

Section 4.2. Then x and y lie in the same maximal integral submanifold of ∆̂ if and only
if Φn+1

x0
(x) = Φn+1

x0
(y).

Proof of Lemma A.3. Assume that x, y both lie in the same maximal integral submanifold
S of ∆̂. Then there is a time T > 0 and a path p : [0, T ]→ S satisfying the following ODE

ṗ(t) =
∑
α∈Am

V[α](p(t))ψα(t), p(0) = x, p(T ) = y

for some piecewise linear input functions ψα : [0, T ]→ R.
Now let p̃(t) = Φx0

(p(t)) and let Ṽ denote the representation of V in the coordinates
defined by Φx0

, then we have

˙̃p(t) =
∑
α∈Am

Ṽ[α](p̃(t))ψα(t).

Now by the properties in Proposition 4.9 we have that Ṽ n+1
[α] = 0 for all α ∈ A, and

hence
Φn+1
x0

(y) = p̃n+1(T ) = p̃n+1(0) = Φn+1
x0

(x).

Now assume that Φn+1
x0

(x) = Φn+1
x0

(y).
Let γ̃ be any smooth curve that is contained in (Φx0(Ux0)) ∩ (Rn × {Φn+1

x0
(x)}), and

let ˙̃γ(0) = ṽ. Define γ = Φ−1
x0

(γ̃) and v = γ̇(0). Now we have

γ̇(0) = JzΦ−1
x0

(γ(0)) ˙̃γ(0) = JzΦ−1
x0

(γ(0))ṽ.

Since γ̃ is contained within Rn × {Φn+1
x0

(x)} we have that ṽ ∈ Rn × {0} and hence

v ∈ ∆̂(γ(0)). Therefore the tangent space to Φ−1
x0

(Im(Φx0) ∩ (Rn × {Φn+1
x0

(x)})) at each

point x′ in this set is ∆̂(x′). Therefore Φ−1
x0

(Im(Φx0
) ∩ (Rn × {Φn+1

x0
(x)})) ⊆ Sx, where Sx

is the maximal integral submanifold of ∆̂ which passes through x. In particular, we have
that y ∈ Sx as required.

Lemma A.4. Assume the vector fields V0, . . . , Vd satisfy the UFG condition. Let x, y ∈ RN
be connected by an integral curve of one of the vector fields V[α], α ∈ Am; that is,

y = eTV[α](x) for some T > 0 and α ∈ Am. Then, for all h ∈ D2,∞
V (RN ),32 we have

h(y)− h(x) =

∫ T

0

(V[α]h)(γ(s))ds.

32We recall that the set D2,∞
V (RN ) has been introduced in Appendix A.2 [F.3].
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Proof of Lemma A.4. By definition of directional derivative, and because h is differen-
tiable in the directions V[α], α ∈ Am, one has

d

ds
h(γ(s)) = V[α]h(γ(s)).

Integrating from 0 to T , and using that γ(0) = x and γ(T ) = y, the statement follows.

Lemma A.5. With notation of Section 6, suppose Hypothesis 6.1 [H.1] holds. For any
g ∈ Cb(R

n) define the functions f(z, ζ) = g(z) and vs(z, t) := Ptf(z, ζs−t). Then vs is
smooth as a map from Rn × (0,∞) to R; moreover it satisfies

∂tvs(z, t) = U0vs(z, t) +

d∑
i=1

U2
i vs(z, t). (A.2)

Proof of Lemma A.5. Note that z ∈ Rn 7→ vs(z, t) is smooth (in any direction in Rn) for
each fixed t > 0 since Ptf is differentiable in all the directions spanned by V[α] for all
α (which span Rn). To see that t 7→ vs(z, t) is differentiable we first consider the case
when f belongs to C∞V (Rn+1) then t 7→ Ptf is differentiable (see Appendix A.2 [F.3]) and
hence t 7→ vs(z, t) is differentiable. Moreover using (B.15) we may differentiate vs to find

∂tvs(z, t) = V0Ptf(z, ζs−t) +

d∑
i=1

V 2
i Ptf(z, ζs−t)−W0(ζs−t)∂ζPtf(z, ζs−t)

= V0Ptf(z, ζs−t) +

d∑
i=1

V 2
i Ptf(z, ζs−t)− V (⊥)

0 Ptf(z, ζs−t)

= (V0 − V (⊥)
0 )Ptf(z, ζs−t) +

d∑
i=1

V 2
i Ptf(z, ζs−t).

Now using the equality V (∆̂)
0 = V0 − V (⊥)

0 (see (1.9)), we have

∂tvs(z, t) = V
(∆̂)
0 vs(z, t) +

d∑
i=1

V 2
i vs(z, t).

Note that, as differential operators, V (∆̂)
0 = U0 and Vi = Ui therefore we have that vs

satisfies (A.2).
To extend the proof to the case when f belongs to Cb(Rn+1) we apply the argument

of [14, Appendix A], so we only sketch this part of the proof. By Appendix A.2 [F.3]
if f ∈ Cb(Rn+1) may take a sequence fn ∈ C∞V (Rn+1) such that fn converges to f and
V[α1] . . . V[αk]Ptfn converges uniformly on compacts of Rn+1 × (0,∞) to V[α1] . . . V[αk]Ptf
for any k ≥ 1, and α1, . . . , αk ∈ Am. By the above argument we have

∂t(Ptfn(z, ζs−t)) = U0Ptfn(z, ζs−t) +

d∑
i=1

U2
i Ptfn(z, ζs−t).

For any h > 0 we have

Pt+hfn(z, ζs−(t+h))− Ptfn(z, ζs−t)

h
=

1

h

∫ t+h

t

U0Prfn(z, ζs−r)

+

d∑
i=1

U2
i Prfn(z, ζs−r)dr ;
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therefore, letting n tend to∞, we obtain

Pt+hf(z, ζs−(t+h))−Ptf(z, ζs−t)

h
=

1

h

∫ t+h

t

U0Prf(z, ζs−r)+

d∑
i=1

U2
i Prf(z, ζs−r)dr.

Letting now h tend to 0 we have that (Ptf)(z, ζs−t) is differentiable with respect to t and
moreover

∂t(Ptf(z, ζs−t)) = U0Ptf(z, ζs−t) +

d∑
i=1

U2
i Ptf(z, ζs−t).

That is, vs is differentiable in both z and t as a map from Rn × (0,∞) to R and satis-
fies (A.2).

Lemma A.6. With the notation of Section 7, if the map W∞ is well defined on Sx0
(in

the sense that Sx0
⊆ Dom(W∞)) and it is continuous when restricted to Sx0

, then W∞ is
also well defined and continuous on Sx0

.

Proof of Lemma A.6. First note that given any point x ∈ Sx0
we can find some s ∈ R

and z ∈ Sx0
such that x = esV

(⊥)
0 (z), in which case we have

W∞(x) = lim
t→∞

etV
(⊥)
0 (x) = lim

t→∞
e(t+s)V

(⊥)
0 (z) = W∞(z). (A.3)

Now W∞(z) is well defined by assumption and hence W∞(x) is well-defined.
To show that W∞ is continuous on Sx0 take {xk}k ⊆ Sx0 and x ∈ Sx0 such that

xk → x as k tends to ∞, then we must show that W∞(xk) converges to W∞(x) as k

tends to ∞. Let xk = eskV
(⊥)
0 (zk) and x = esV

(⊥)
0 (z) for some sk, s ∈ R and zk, z ∈ Sx0 .

Without loss of generality we may assume that s = 0, otherwise consider the sequence

yk := e−sV
(⊥)
0 (xk).

Recall from Section 4.2 that we may take a local neighbourhood Ux of x and a
coordinate transformation Φ. Then for k sufficiently large we have that xk ∈ Ux, and
hence Φ(xk) converges to Φ(x). By the uniqueness of integral curves we have that

Φ(esV
(⊥)
0 (y)) = esṼ0

(⊥)

(Φ(y)).

Recall that
˜

V
(⊥)
0 denotes the representation of V (⊥)

0 in the coordinates defined by Φ.
Therefore

Φ(xk) = Φ(eskV
(⊥)
0 (zk)) = eskṼ0

(⊥)

(Φ(zk)).

Since
˜

V
(⊥)
0 only acts on the last coordinate we have that the first n components of

Φ(eskV
(⊥)
0 (zk)) are equal to the first n components of Φ(zk). In particular, the first n

components of Φ(zk) converge to the first n components of Φ(z). Now zk and z lie on the
same integral submanifold of ∆̂ and hence by Lemma A.3 the last component of Φ(zk) is
equal to the last coordinate of Φ(z). Therefore Φ(zk) converges to Φ(z), and since Φ is a
diffeomorphism we have that zk converges to z.

Now since W∞ is continuous on Sx0
and using (A.3) we have

W∞(xk) = W∞(zk)→W∞(z) = W∞(x).

Therefore W∞ is continuous on Sx0
.

B Proofs

This appendix contains all the proofs that we omitted in the main text.
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B.1 Proofs of Section 4 and Section 5

Proof of Lemma 4.1. First we show that span(Rm) is contained in ∆̂. By definition ∆̂

contains V1, . . . , Vd and is invariant under V0, . . . , Vd, hence by Note 3.11 we have that
V[α] ∈ ∆̂ for all α ∈ Am. By linearity we have that span(Rm) ⊆ ∆̂. We show that ∆̂ is
contained in span(Rm). It is sufficient to show that span(Rm) contains V1, . . . , Vd and is
invariant under V0, V1, . . . , Vd. Since V1, . . . , Vd ∈ Rm it suffices to show that every vector
field in span(Rm) is invariant under V0, V1, . . . , Vd. Every vector field V in span(Rm) can
be locally expressed in the form

V =
∑
α∈Am

ϕαV[α] (B.1)

for some smooth functions ϕα. Therefore, again by Note 3.11, it is sufficient to show
that [V, Vj ] ∈ ∆Rm for V given by (B.1) and j ∈ {0, 1, . . . , d}. Note that

[V, Vj ] =
∑
α∈Am

[ϕαV[α], Vj ] =
∑
α∈Am

ϕα[V[α], Vj ]− Vj(ϕα)V[α].

Now [V[α], Vj ] and V[α] are in span(Rm) and hence span(Rm) is invariant under V0, V1, . . . ,

Vd. Therefore ∆̂ = span(Rm); similarly one can show that ∆̂0 = span(Rm,0).

Proof of Proposition 4.9. Let us start by proving i). Construct Φ as described before the
statement of Proposition 4.9. After the change of coordinates Φ the vector V is expressed
as

Ṽ (z) = [(JxΦ) · V (x)] |x=Φ−1(z) . (B.2)

As we have already observed, the lastN−n rows of the Jacobian matrix JΦ are orthogonal
to vectors in ∆, see (4.6). Since V ∈ ∆, the statement follows.

To prove ii), we first observe that by i), the vector fields {∂zj}nj=1 belong to ∆.

Moreover, by Note 3.11, we have that [W̃ , ∂zj ] ∈ ∆, for all j = 1, . . . , n. The field [W̃ , ∂zj ]

can be calculated explicitly:

[W̃ , ∂zj ] =

[
N∑
i=1

W̃ i∂zi , ∂zj

]
= −

N∑
i=1

∂W̃ i

∂zj
∂zi .

Because [W̃ , ∂zj ] ∈ ∆, one must have

∂W̃ i

∂zj
= 0 for all j = 1, . . . , n, i = n+ 1, . . . , N .

This concludes the proof.

Proof of Lemma 4.15. Since S ⊆ S we have that S ⊆ S , therefore it is sufficient to
show that if x ∈ ∂S then x /∈ S . Assume for a contradiction there exists some x ∈ ∂S∩S .
Since x ∈ S there exists a neighbourhood U ⊆ S which contains x and on which the
coordinate transformation Φ constructed at the beginning of Section 4.2 is well defined.
Now x ∈ ∂S implies there exists a sequence {xk} ⊆ S such that xk converges to x. For k
sufficiently large xk belongs to U and, since the coordinate transformation is smooth, we
have

Φn+1(x) = lim
k→∞

Φn+1(xk) , (B.3)

having used the notation 4.2. However xk all belong to the same maximal integral
submanifold of ∆̂ and hence Φn+1(xk) is constant for k large enough, by Lemma A.3.
However this implies, for k large enough, that Φn+1(x) = Φn+1(xk); so by (B.3) and
Lemma A.3 we have that x and xk lie in the same maximal integral submanifold of ∆̂.
However this gives a contradiction, since xk ∈ S and x /∈ S.

EJP 26 (2021), paper 22.
Page 55/72

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP577
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Long-time behaviour of degenerate diffusions

Proof of Lemma 4.16. We will prove that the set of points K := {x ∈ Sx0
: V

(⊥)
0 (x0) =

0} ⊆ Sx0
is both open and closed in (the topology of) Sx0

, hence it has to be the
whole manifold Sx0

– see [SA.2] and Appendix A.1 for clarifications on the manifold
topology. Such a set is clearly closed (in RN and hence in the manifold topology) as it
is the intersection between Sx0

and the preimage of 0 through a continuous function.
To prove that it is also open, we will show that for any x ∈ K there exists an open
neighbourhood of x, Ox, which is contained in K. Let x ∈ RN such that V (⊥)

0 (x) = 0 and
let n = n(x) be the rank of ∆̂0 at x; then there exist n vectors in ∆̂0(x) which span ∆̂0

at x. Notice that, by construction, such vectors must belong to ∆̂(x), as by Lemma 4.1

∆̂(x) = ∆̂0(x) if V (⊥)
0 (x) = 0. By the smoothness of the vector fields and because x is

a regular point for both distributions, there exists a neighbourhood Ox of x such that
the same n vectors span ∆̂0(y) for every y ∈ Ox. Because V (⊥)

0 (y) is orthogonal to all

the vectors in ∆̂0(y)(= ∆̂(y)), it must be the case that V (⊥)
0 (y) = 0 on Ox (otherwise the

rank of ∆̂0 would increase, which is impossible as the rank stays constant on the orbits).
Therefore Ox ⊆ K and the proof is concluded.

Proof of Proposition 5.1. We emphasize that this proof heavily relies on the fact that the
integral manifolds of ∆̂0 coincide with the orbits of ∆̂0, see Proposition 4.3.
• Proof of i). Let S be one of the integral manifolds of ∆̂0 and suppose x ∈ ∂S . To begin
with, we show that Sx ⊆ S̄ . To this end, let y be any point in Sx. We want to show that
y ∈ S̄ . By Proposition 4.3 the integral manifold Sx is given by the orbit through x of
the vector fields in ∆̂0, and hence y can be written as the end point of a curve which
starts from x and is a piecewise integral curve for vector fields in ∆̂0. By considering
each piece of the integral curve separately, if needed, we may assume that y = eTV (x)

for some T > 0 and V ∈ ∆̂0. Since x ∈ S , there is a sequence {xk}k converging to x and
such that {xk}k ⊆ S . Set yk := eTV (xk) and note that {yk}k belongs to S since S is
an orbit of ∆̂0. We have that yk converges to y since the map z 7→ eTV (z) is continuous.
Therefore y ∈ S which implies that Sx ⊆ S as y is an arbitrary point in Sx. However
S and Sx are both maximal integral submanifolds so they are either disjoint or they
coincide; since x ∈ Sx and x /∈ S they must be disjoint, hence Sx ⊆ ∂S .
• Proof of ii). Note that by the Stroock and Varadhan Theorem, Theorem 4.4, we have
Px(Xt ∈ Sx) = 1 for any x ∈ RN . From the reasoning in the proof of point i), we know
that if x ∈ ∂S then Sx ⊆ ∂S , so that Sx ⊆ ∂S . Therefore for any x ∈ ∂S we have

Px(Xt ∈ ∂S ) ≥ Px(Xt ∈ Sx) = 1.

Proof of Proposition 5.3. Here we consider the case V (⊥)
0 (x0) 6= 0 (which, by Lemma 4.16,

implies V (⊥)
0 (x) 6= 0 for every x ∈ Sx0

). Consider the control problem (4.2) associated
with the SDE (1.1). If we can show that any solution p(t) of (4.2) has the property that
p(t) ∈ S

etV
(⊥)
0 (x0)

for all t, the result then follows by the Stroock and Varadhan Support

Theorem.33 Let us now define the set

C :=

{
t ∈ R : p(t) ∈ S

etV
(⊥)
0 (x0)

}
.

Note that C is non-empty since 0 ∈ C; if we can show that C is open and closed as
a subset of R then we must have that C = R which implies the desired result. Let
us start by showing that C is open in R. To this end, fix an arbitrary point t0 ∈ C;
without loss of generality we may assume that t0 = 0 (otherwise we consider the path

33Note that by Theorem 4.4 the path {X(x0)
t (ω)}t∈[0,T ] is a limit, in C([0, T ], ‖ · ‖∞), of solutions to the

control problem (4.2). Because uniform convergence implies pointwise convergence, for each fixed t ≥ 0 the
point Xt is a limit of {p(t) : p is a solution to (4.2)}.
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Long-time behaviour of degenerate diffusions

q(t) := p(t + t0)). We will show that there exists an open neigbourhood of 0 which is
contained in C. To show this fact we will make use of the (local) change of coordinates
defined in Section 4.2. Let Φx0

: Ux0
→ Ũx0

be the coordinate transformation defined
on a local neighbourhood of x0. Take ε > 0 sufficiently small that p(t) ∈ Ux0

for all
t ≤ ε. It is sufficient to show that p(t) ∈ S

etV
(⊥)
0 (x0)

for all t ∈ (−ε, ε). Let p̃(t) = Φx0
(p(t));

consistently with the notation set in Section 2, we shall denote the first n components of
p̃(t) by z(t), the (n+ 1)th component by ζ(t) and the last N − (n+ 1) components by a(t).
That is, p̃(t) = (z(t), ζ(t), a(t)) = Φx0(p(t)); hence, in particular,

ζ(t) = Φn+1
x0

(p(t)). (B.4)

By Lemma A.3 and (B.4), to prove that p(t) ∈ S
etV

(⊥)
0 (x0)

it is sufficient to show that the

following holds

ζ(t) = Φn+1
x0

(etV
(⊥)
0 (x0)) . (B.5)

Differentiating the equation p̃(t) = Φx0
(p(t)) with respect to t and using (4.2) and (B.2),

we see that p̃ satisfies the equation

dp̃(t)

dt
= Ṽ0(p̃(t)) +

√
2

d∑
i=1

Ṽi(p̃(t))ψi.

Since Vi ∈ ∆̂ for i = 1, . . . , d and ∆̂ is invariant under V0 we have, using Proposition 4.9
(ii) and the notation (2.2)–(2.3),

dz(t)

dt
= U0(z(t), ζ(t), a(t)) +

√
2

d∑
i=1

Ui(z(t), ζ(t), a(t))ψi,

dζ(t)

dt
= W0(ζ(t), a(t)), (B.6)

da(t)

dt
= 0.

(The above is completely analogous to what we have done to obtain (4.7)–(4.9)). From
equation (B.6) we then have

ζ(t) = etW0(ζ(0))
(B.4)
= etW0(Φn+1

x0
(x0)).

In order to prove (B.5) it remains to show that etW0(Φn+1
x0

(x0)) = Φn+1
x0

(etV
(⊥)
0 (x0)). By

uniqueness of the integral curves, to prove this equality we must show

d

dt
Φn+1
x0

(etV
(⊥)
0 (x0)) = W0(Φn+1

x0
(etV

(⊥)
0 (x0))).

This follows from

d

dt
(Φn+1

x0
(etV

(⊥)
0 (x0))) = ∇xΦn+1

x0
x(etV

(⊥)
0 (x0))V

(⊥)
0 (etV

(⊥)
0 (x0))

= W0(Φn+1
x0

(etV
(⊥)
0 (x0))),

where the last equality is a consequence of (B.2) and of the fact that Ṽ0
(⊥)

= (0, . . . , 0,W0,

0, . . . , 0) (see comments after (4.7)–(4.9)). This proves (B.5), so C is open. Now we show
that C is closed by showing that R \ C is open.

Assume there exists t0 such that p(t0) /∈ S
et0V

(⊥)
0 (x0)

. Now we may take ε sufficiently

small that p(t) ∈ Up(t0) whenever |t− t0| < ε. It is sufficient to show that p(t) /∈ C
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whenever |t− t0| < ε. For a contradiction assume that there exists some t ∈ (t0−ε, t0 +ε)

with t ∈ C i.e. p(t) ∈ S
etV

(⊥)
0 (x0)

; then by the same argument as above, we have that

p(t0) ∈ S
e(t0−t)V

(⊥)
0 (p(t0))

. Now by Lemma 3.15 applied to the points p(t) and etV
(⊥)
0 (x0)

and to the vector field V (⊥)
0 we have that

S
e(t0−t)V

(⊥)
0 (p(t))

= S
e(t0−t)V

(⊥)
0 (etV

(⊥)
0 (x0))

= S
et0V

(⊥)
0 (x0)

.

Therefore p(t0) ∈ S
et0V

(⊥)
0

and we have a contradiction since t0 /∈ C therefore there is

no t ∈ (t0 − ε, t0 + ε) ∩ C, hence (t0 − ε, t0 + ε) ⊆ R \ C. That is, C is closed in R and we
have C = R as required.

Proof of Proposition 5.7. For every x ∈ RN and t > 0, let gt(x) := Px(X
(x)
t /∈ Sx) and

notice that Et = {x ∈ RN : Px(Xx
t /∈ Sx) > 0} = {x ∈ RN : gt(x) > 0}. Suppose

the SDE (1.1) admit an invariant measure, µ. Because E = ∪t>0Et, if we prove that
µ(Et) = 0 for every t ≥ 0, then it follows that µ(E) = 0 (as {Et}t≥0 is an increasing
sequence of sets). So we concentrate on proving the first statement. To this end,
define S ` to be the union of all the maximal integral submanifolds of ∆̂0 of dimension
` and notice that ∪N`=0S

` = RN ; moreover, for every (arbitrary but fixed) t > 0, set
E`t := {x ∈ S ` : Px(Xx

t /∈ S `) > 0}. We now proceed in two steps.
• Step 1 : show that

Et =

N⋃
`=0

E`t .

Note that E`t ⊆ Et; indeed, if x ∈ E`t then Sx ⊆ S ` and Px(Xx
t /∈ Sx) ≥ Px(Xx

t /∈ S `) >

0. Therefore x ∈ Et. It remains to show that if x ∈ Et then there exists some ` such that
x ∈ E`t . Fix x ∈ Et and let ` denote the dimension of Sx. By the Stroock and Varadhan
Support Theorem (Theorem 4.4) we have that Px(Xx

t ∈ Sx) = 1 for every t ≥ 0, hence

Px(Xx
t ∈ ∂Sx) = Px(Xx

t /∈ Sx) = gt(x).

By Proposition 5.1 we have that ∂Sx is contained in the set ∪k<`S k. In particular, we
have that ∂Sx is disjoint from S ` and hence

gt(x) = Px(Xx
t ∈ ∂Sx) ≤ Px(Xx

t /∈ S `).

Since x ∈ Et we have that gt(x) > 0 and therefore Px(Xx
t /∈ S `) > 0, which, by definition,

gives that x ∈ E`t .
• Step 2 : show that µ(E`t ) = 0 for all ` ∈ {0, . . . , N}. To this end, set g`t (x) := Px(Xx

t /∈
S `); then the set of x ∈ S ` such that g`t (x) > 0 is the set E`t . Therefore it is sufficient to
show that

∫
S ` g

`
t (x)µ(dx) = 0 for all ` ∈ {0, . . . , N}. Assume this is not the case; that is,

assume there exists some ¯̀such that∫
S ¯̀
Px(Xx

t /∈ S
¯̀
)µ(dx) > 0. (B.7)

We will let ¯̀be the maximum index such that (B.7) holds. Since µ is an invariant measure
we have that

µ(S
¯̀
) =

∫
RN
Px(Xx

t ∈ S
¯̀
)µ(dx) =

N∑
k=0

∫
S k

Px(Xx
t ∈ S

¯̀
)µ(dx). (B.8)

Fix k ∈ {0, . . . , N} and first consider the case when k > ¯̀. Since ¯̀ was chosen to be
maximal such that (B.7) holds we must have∫

S k

Px(Xx
t /∈ S k)µ(dx) = 0 if k > ¯̀.
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This is equivalent to saying that the µ- measure of the set Ekt = {x ∈ S k : Px(Xx
t /∈

S k) > 0} is zero. Since k 6= ¯̀, we have {x ∈ S k : Px(Xx
t ∈ S

¯̀
) > 0} ⊆ Ekt , so the µ-

measure of the set {x ∈ S k : Px(Xx
t ∈ S

¯̀
) > 0} is zero as well. Therefore∫

S k

Px(Xt ∈ S
¯̀
)µ(dx) = 0 for all k > ¯̀,

so that
N∑

k=¯̀+1

∫
S k

Px(Xx
t ∈ S `)µ(dx) = 0 . (B.9)

Now consider the case k < ¯̀. In this case we have

¯̀−1∑
k=0

∫
S k

Px(Xx
t ∈ S

¯̀
)µ(dx) = 0 , (B.10)

as by Proposition 5.1 the dimension of the manifold in which Xt evolves can only either
decrease or stay the same along the paths of the SDE. Putting together (B.8), (B.9)
and (B.10), one has

µ(S
¯̀
) =

∫
S ¯̀
Px(Xx

t ∈ S
¯̀
)µ(dx).

Writing Px(Xx
t ∈ S

¯̀
) as 1− Px(Xx

t /∈ S
¯̀
) we obtain

µ(S
¯̀
) =

∫
S ¯̀
Px(Xt ∈ S

¯̀
)µ(dx) = µ(S

¯̀
)−

∫
S ¯̀
Px(Xt /∈ S

¯̀
)µ(dx),

which gives ∫
S ¯̀
Px(Xt /∈ S

¯̀
)µ(dx) = 0.

This contradicts (B.7) and hence we must have that the statement holds.

Proof of Lemma 5.9. Fix x, y ∈ S and f ∈ Cb(RN ) and assume first that x, y are such
that there exists a path γ : [0, T ]→ RN with γ(0) = x, γ(T ) = y and γ̇(t) = V[α](γ(t)), for
some α ∈ Am. Clearly the final time T will depend on x and y, T = Tx,y. By Lemma A.4
and by Appendix A.2 [F.3] we have

Ptf(y)− Ptf(x) =

∫ Tx,y

0

(V[α]Ptf)(γ(s))ds.

Take a compact set K such that K ⊇ γ([0, Tx,y]), then by (3.5) we have

|Ptf(y)− Ptf(x)| ≤ sup
x∈K

(V[α]Ptf)(x)Tx,y ≤ c
1
2

t0,K
e−λ(t−t0)/2Tx,y‖f‖∞.

Letting t tend to ∞ we obtain the result. For any x, y ∈ S we can take a piecewise
integral curve connecting x and y, hence applying the above argument to each piece of
the curve we obtain (5.4).

Proof of Proposition 5.10. Assume there exists an invariant measure µ with µ(S) = 1; we
must show that µ is the unique invariant measure such that µ(S) = 1. Integrating (5.4)
with respect to µ we obtain

lim
t→∞

∣∣∣∣Ptf(x)−
∫
S

Ptf(y)µ(dy)

∣∣∣∣ = 0, for every x ∈ S. (B.11)
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(Here exchanging the integral and limit is justified by the dominated convergence
theorem and using Appendix A.3 [F.1]). The invariance of µ and (B.11) imply (5.5).
Because (5.5) holds for every x ∈ S, by the uniqueness of the limit we have that µ must
be the only invariant measure supported on S.

It remains to show that µ is ergodic. Suppose there exists t > 0 and a Borel set E ⊆
RN such that Pt1E = 1E µ-almost everywhere. Then by the semigroup property we have
for every n ∈ N Pnt1E = 1E µ-almost everywhere. Now squaring and integrating (5.5)
with respect to µ we have that Ptf converges to

∫
S
fdµ in L2

µ for each f ∈ Cb(RN ). Then
since Cb(RN ) is dense in L2

µ (see [54, Theorem 3.14]), for all f ∈ L2
µ we have

lim
n→∞

∥∥∥∥Pntf − ∫
S

fdµ

∥∥∥∥
L2
µ

= 0.

By taking a subsequence if necessary we get convergence µ-almost everywhere. In
particular, taking f = 1E we get µ(E) = 1E(x) µ-almost everywhere. Hence µ(E) = 0 or
1, and µ is ergodic.

B.2 Proofs of Section 6

We include here the proofs of Lemma B.1 and Lemma B.4, on which the proof of
Theorem 6.5 hinges.

Lemma B.1. Let Hypothesis 6.1 [H.1] and [H.3] hold and assume the semigroup
{Qs,t}0≤s≤t admits an evolution system of measures {νt}t≥0; then, for each g ∈ Cb(Rn),
z ∈ Rn, and s ≥ 0 we have

lim
t→∞

∣∣∣∣Qζs,tg(z)−
∫
Rn
g(y)dνt

∣∣∣∣→ 0. (B.12)

Proof of Lemma B.1. Fix g ∈ Cb(Rn) and let f ∈ Cb(Rn+1) be a function that does not
depend on the last variable and such that f(z, η) = g(z) for every η ∈ R, z ∈ Rn; note
that by (6.6) we have

Qζs,tg(z) = Pt−sf(z, ζζs ). (B.13)

Now for every fixed z, y ∈ Rn we can write

|Qs,tg(z)−Qs,tg(y)| = |Pt−sf(z, ζs)− Pt−sf(y, ζs)|

By Note 6.2 we have that the hyperplane S := {x = (z, ζ) ∈ Rn+1 : ζ = ζs} is the orbit
of the vector fields V[α], α ∈ Am. Since (z, ζs) and (y, ζs) belong to S we may take a
piecewise integral curve connecting them. Without loss of generality we may take an
integral curve γ : [0, T ]→ Rn+1 connecting (z, ζs) and (y, ζs), with γ̇t = V[α](γt). Clearly
the time T will depend on z and y, i.e. T = Tz,y. Let K be a compact set such that
γ([0, Tz,y]) ⊆ K; by Lemma A.4 applied to the function h = Pt−sf , which is in D2,∞

V (RN )

by Appendix A.2 [F.3], we have

|Pt−sf(z, ζs)− Pt−sf(y, ζs)| ≤
∫ Tz,y

0

V[α](Pt−sf(γu))du.

Because we let t→∞, we can restrict to the case t > s. So fix s0 > 0 such that t− s > s0;
by (3.5) we then have

|Pt−sf(z, ζs)− Pt−sf(y, ζs)| ≤ cs0,re−λ(t−s−s0)‖f‖∞Tz,y.

Letting t tend to∞ and using (B.13) we obtain

lim
t→∞
|Qs,tg(z)−Qs,tg(y)| = 0. (B.14)
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The proof can now be concluded as follows: because {νt}t is an evolution system of
measures (see 6.12), we can write∣∣∣∣Qs,tg(z)−

∫
Rn
g(y)νt(dy)

∣∣∣∣ =

∣∣∣∣Qs,tg(z)−
∫
Rn
Qs,tg(y)νs(dy)

∣∣∣∣
≤
∫
Rn
|Qs,tg(z)−Qs,tg(y)| νs(dy).

Using (B.14) and the dominated convergence theorem (which is applicable by Ap-
pendix A.3 [F.1]) we may take the limit as t tends to∞ and obtain (B.12).

In order to prove Lemma B.4, which is the core of the last step of the proof of
Theorem 6.5, we must first prove the following two results, Lemma B.2 and Lemma B.3.

Lemma B.2. Assume Hypothesis 6.1 holds. Then, for each g ∈ Cb(Rn) and z ∈ Rn we
have

Qs−t,sg(z)→ Q̄tg(z)

as s tends to∞ uniformly on compacts of Rn × (0,∞). That is, for every fixed T > 0 and
r > 0 we have

lim
s→∞

sup
z∈Br

sup
[1/T,T ]

∣∣Qs−t,sg(z)− Q̄tg(z)
∣∣ = 0.

Proof of Lemma B.2. Fix g ∈ Cb(Rn) and consider

vs(z, t) = (Qζs−t,sg)(z), z ∈ Rn, t > 0.

Like in the Proof of Lemma B.1, define f ∈ Cb(Rn+1) by f(z, η) = g(z) for all z ∈ Rn and
η ∈ R; then by (B.13) we have

vs(z, t) = Ptf(z, ζs−t). (B.15)

Since (Ptf)(x) is a continuous function, we may take the limit as s tends to infinity to
obtain

lim
s→∞

vs = Ptf(z, ζ̄) = Q̄tg(z) =: v(z, t).

We now wish to show that the above limit is uniform on compact subsets of Rn × (0,∞);
that is, we wish to show that

lim
s→∞

sup
t∈[ 1

T ,T ]

sup
z∈BR

|vs(z, t)− v(z, t)| = 0, for every fixed R > 0, T > 0.

To show this fact we shall use the Ascoli-Arzela Theorem. Indeed, assuming for the
moment that we can apply such a theorem, then we can find a subsequence sk such that
vsk converges uniformly on BR × [1/T, T ]. Since vsk converges pointwise to v we have
that the limit is independent of the choice of sequence hence vs converges uniformly in
BR × [1/T, T ] to v, as s tends to∞. So, if we show that the derivatives of vs are bounded
on BR × [ 1

T , T ], uniformly in s, then we may apply Arzela-Ascoli Theorem and the proof
is concluded by the above line of reasoning. By Lemma A.5 the function vs is smooth in
(z, t) ∈ Rn ×R and satisfies (A.2).

For any point (z, t) ∈ Rn × (0,∞) there exist an open neighbourhood of (z, t) and
smooth functions ϕi,α such that, for any i ∈ {1, . . . , n}, the derivative ∂i ≡ ∂zi can be
expressed as

∂i =
∑
α∈Am

ϕi,αV[α].
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Therefore, to show that the derivatives ∂ivs are bounded on BR × [0, T ] it is sufficient to
show that V[α]vs is bounded in BR × [1/T, T ]. This follows from the estimates recalled in
Appendix A.2 [F.2]. In particular, there exists constants C(R), ω(R) > 0 such that

sup
z∈BR,t∈[1/T,T ]

∣∣V[α]vs(z, t)
∣∣ = sup

z∈BR,t∈[1/T,T ]

|V[α]Ptf(z, ζs−t)|

≤ sup
t∈[1/T,T ]

sup
x∈BR×{ζt:t≥−T}

|V[α]Ptf(x)|

≤ C(R)|T |
‖α‖

2 eω(R)T ‖f‖∞.

Here we have used that ζt is convergent and hence BR×{ζt : t ≥ −T} is a compact subset
of Rn+1. Similarly we may bound the second order derivatives V 2

i vs, and using (A.2) we
obtain a bound for the derivative with respect to t, which is independent of s.

Using the tightness of the family {νt}t≥0, there exists a divergent sequence t` such
that νt`−k converges weakly to some measure µk as ` tends to ∞, for each k ∈ N.
(We emphasise that, by a diagonal argument, the sequence t` can be chosen to be
independent of k). Moreover, {µk}k∈N is tight since {νt}t≥0 is tight (see [1, Step 2 in the
proof of Theorem 6.2]).

Lemma B.3. Assume Hypothesis 6.1 holds and construct {µk}k∈N as above. Then,∫
Rn
Q̄kg(z)µk(dz) =

∫
g(z)µ0(dz),

for any g ∈ Cb(Rn) and every k ∈ N.

Proof of Lemma B.3. We will consider the integral
∫
Rn
Qt`−k,t`g(z)νt`−k(dz) and show

the following: for every k ∈ N∫
Rn
g(z)µ0(dz) = lim

`→∞

∫
Rn
Qt`−k,t`g(z)νt`−k(dz) =

∫
Rn
Q̄kg(z)µk(dz). (B.16)

Let us start with showing the first equality in (B.16). Because {νt}t≥0 is an evolution
system of measures (and taking ` sufficiently large that t` > k), we have∫

Rn
Qt`−k,t`g(z)νt`−k(dz) =

∫
g(z)νt`(dz).

The above, combined with the fact that νt` converges weakly to µ0, gives the first identity
in (B.16). To prove the second equality in (B.16), observe the following:∫

Rn
Qt`−k,t`g(z)νt`−k(dz)−

∫
Rn
Q̄kg(z)µk(dz)

=

∫
Rn

(
Qt`−k,t`g(z)− Q̄kg(z)

)
νt`−k(dz)

+

∫
Rn
Q̄kg(z)νt`−k(dz)−

∫
Rn
Q̄kg(z)µk(dz)

= I1,` + I2,`,

having set

I1,` :=

∫
Rn

(
Qt`−k,t`g(z)− Q̄kg(z)

)
νt`−k(dz),

I2,` :=

∫
Rn
Q̄kg(z)νt`−k(dz)−

∫
Rn
Q̄kg(z)µk(dz).
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Now I2,` converges to 0 as ` → ∞ since νt`−k converges weakly to µk, by definition of
µk. To see that I1,` vanishes when ` tends to ∞ fix ε > 0 and take a ball Br such that
νt`−k(Br) ≥ 1− ε for all ` with t` > k. This is possible since the family {νt : t ≥ 0} is tight.
By Lemma B.2 we know that Qt`−k,t`g(z) converges uniformly on compacts to Q̄kg(z);
hence, if ` is sufficiently large, we have

sup
z∈Br
|Qt`−k,t`g(z)− Q̄kg(z)| ≤ ε.

We can therefore derive the following estimate in I1,`:

I1,` =

∫
Rn

(
Qt`−k,t`g(z)− Q̄kg(z)

)
νt`−k(dz)

=

∫
Br

(
Qt`−k,t`g(z)− Q̄kg(z)

)
νt`−k(dz)

+

∫
Rn\Br

(
Qt`−k,t`g(z)− Q̄kg(z)

)
νt`−k(dz)

≤ ε+ 2‖g‖∞ε.

As ε is arbitrary we have that I1,` converges to 0 as ` tends to∞, and the claim follows.

Lemma B.4. Assume Hypothesis 6.1 holds and, as described before the statement of
Lemma B.3, let µ0 be the weak limit of the sequence νt` . Then µ0 = µ̄.

Proof of Lemma B.4. Take g ∈ Cb(Rn). By Lemma 6.4 we know that Q̄kg(z)→ µ(g) as k
tends to∞ for each z ∈ Rn and g ∈ Cb(Rn). By an argument analogous to the one used
in the proof of Lemma B.2 we have that Q̄kg(z) converges to µ(g) locally uniformly for
z ∈ Rn.

Now fix ε > 0; since {µk}k is a tight sequence, we may take Br ⊆ Rn such that
µk(Br) ≥ 1− ε for all t ≥ 0. Moreover, for k sufficiently large we have

sup
x∈Br
|Q̄kg(z)− µ̄(g)| ≤ ε.

Then ∫
Rn
Q̄kg(z)µk(dz)− µ̄(g) =

∫
Br

[
Q̄kg(z)− µ̄(g)

]
µk(dz)

+

∫
Rn\Br

[
Q̄kg(z)− µ̄(g)

]
µk(dz)

≤ ε+ 2‖g‖∞ε.

Since ε is arbitrary we deduce∫
Rn
Q̄kg(z)µk(dz)→ µ̄(g), as k →∞.

However by Lemma B.3 we also have∫
Rn
g(z)µ0(dz) =

∫
Rn
Q̄kg(z)µk(dz), for every k ∈ N.

Therefore µ̄ = µ0.
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B.3 Proofs of Section 7

Proof of Proposition 7.3. First note to prove (7.6) it is sufficient to show that for any
α ∈ Am,

[Ad
tV

(⊥)
0

V[α], ∂t + V0,t] = Ad
tV

(⊥)
0

[V[α], V0], (B.17)

[Ad
tV

(⊥)
0

V[α],Vi,t] = Ad
tV

(⊥)
0

[V[α], Vi], for any i ∈ {1, . . . , d}. (B.18)

By [38, Proposition 8.30], for any three vector fields U, V,W we have

[AdWU,AdWV ] = AdW [U, V ]. (B.19)

Therefore setting W = tV
(⊥)
0 , U = V[α] and V = Vi for any i ∈ {1, . . . , d} we have

that (B.18) holds. To prove (B.17) note that

[Ad
tV

(⊥)
0

V[α], ∂t] = −∂tAd
tV

(⊥)
0

V[α] = −Ad
tV

(⊥)
0

[V
(⊥)
0 , V[α]] = Ad

tV
(⊥)
0

[V[α], V
(⊥)
0 ]. (B.20)

In the above we have used [56, Lemma 4.4.2] which states that ∂tAd
tV

(⊥)
0

V[α] =

Ad
tV

(⊥)
0

[V
(⊥)
0 , V[α]]. Using (B.19) and (B.20) we have

[Ad
tV

(⊥)
0

V[α], ∂t + Ad
tV

(⊥)
0

V
(∆̂)
0 ] = Ad

tV
(⊥)
0

[V[α], V
(⊥)
0 ] + Ad

tV
(⊥)
0

[V[α], V
(∆̂)
0 ]

= Ad
tV

(⊥)
0

[V[α], V0].

Therefore (B.17) holds. Hence we have that (7.6) holds.
It remains to show that for any α ∈ A there exists smooth and bounded functions

ϕ̃α,β ∈ C∞V (RN ×R) such that

V[α],t(x) =
∑
β∈Am

ϕ̃α,β(x, t)V[β],t(x).

Since the vector fields {V0, V1, . . . , Vd} satisfy the UFG condition (3.3), applying the
operator Ad

tV
(⊥)
0

to (3.3) we have

Ad
tV

(⊥)
0

V[α](x) =
∑
β∈Am

Ad
tV

(⊥)
0

(ϕα,βV[β])(x) =
∑
β∈Am

ϕα,β(etV
(⊥)
0 (x))Ad

tV
(⊥)
0

V[β](x).

Therefore if we show that the functions ϕ̃(x, t) := ϕα,β(etV
(⊥)
0 (x)) are smooth, bounded

and belong to the sets C∞V (RN×R) then we have that the vector fields {∂t+V[0],t,V[1],t, . . . ,

V[d],t} satisfy the UFG condition when viewed as vector fields in both the time variable t

and spatial variables z. Since ϕα,β is smooth and bounded, and V (⊥)
0 is smooth we have

that ϕα,β ◦ etV
(⊥)
0 is smooth and bounded, it remains to show that for any k ∈ N and

γ1, . . . , γk ∈ A we have

sup
x∈RN ,t∈R

∣∣∣(V[γ1],t) . . . (V[γk],t)(ϕα,β ◦ etV
(⊥)
0 )

∣∣∣ <∞
By [38, Proposition 8.30] for every smooth function f we have for all α ∈ A, z ∈ Sx0 ,
s ∈ R that

V[α],s(f ◦ esV
(⊥)
0 )(z) = (V[α]f)(esV

(⊥)
0 (z)). (B.21)

Therefore

sup
x∈RN ,s∈R

∣∣∣(V[γ1],t) . . . (V[γk,t])(ϕα,β ◦ e
tV

(⊥)
0 )

∣∣∣
= sup
x∈RN ,t∈R

∣∣∣(V[γ1] . . . V[γk]ϕα,β)(etV
(⊥)
0 (x))

∣∣∣
= sup
y∈RN

∣∣(V[γ(1)] . . . V[γ(k)]ϕα,β)(y)
∣∣ <∞.

Therefore the UFG condition is satisfied.
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Proof of Proposition 7.4. For f ∈ C∞V (RN ) we have that Ptf is smooth (in every direction,
see [F.3]) so by (7.5) we obtain

V[α],sQs,tf(z) = V[α],s

(
Pt−s(f ◦ e−tV

(⊥)
0 ))(esV

(⊥)
0 )

)
(z)

(B.21)
= V[α]

(
Pt−s(f ◦ e−tV

(⊥)
0 )

)
(esV

(⊥)
0 (z)). (B.22)

By differentiating (7.5) with respect to s we have, with a calculation analogous to the
one in Lemma A.5,

∂sQs,tf(z) = −LPt−s(f ◦ e−tV
(⊥)
0 )(esV

(⊥)
0 (z)) + V

(⊥)
0 Pt−s(f ◦ e−tV

(⊥)
0 )(esV

(⊥)
0 (z))

(1.9)
= −V (∆̂)

0 Pt−s(f ◦ e−tV
(⊥)
0 )(esV

(⊥)
0 (z))−

d∑
i=1

V 2
i Pt−s(f ◦ e−tV

(⊥)
0 )(esV

(⊥)
0 (z))

= −V0,sQs,tf(z)−
d∑
i=1

Vi,sQs,tf(z) = −LsQs,tf(z).

Now by a density argument analogous to the one in the proof of Lemma A.5 we
obtain the result for f ∈ Cb(RN ). To prove the result for g ∈ Cb(Sx0) we may apply the
Tietze Extension Theorem, see [21, Chapter 2 Theorem 5.4], to extend g to a function
f ∈ Cb(R

N ) such that f = g on Sx0 (this is where we need g to be continuous up
to and including the closure of Sx0 , as functions that are continuous on open sets do
not necessarily admit a continuous extension to the whole RN , i.e. Tietze Extension
Theorem would not apply). Since Zt takes values in Sx0 for every t ≥ 0 we have that
Qs,tg(z) = Qs,tf(z) for any z ∈ Sx0 , hence the claim follows.

Proof of Proposition 7.7. By Hypothesis 7.5 [A.3], the family of measures {pxt }t≥0 is
tight and hence, by Prokhorov’s theorem, there exist a measure µS and a diverging
sequence {tk}k such that pxtk converges weakly to µS as tk ↗ ∞. Note that in general
the sequence tk and the measure µS may depend on the choice of x ∈ Sx0

; however, by
Lemma 5.9, pxtk(·) = (Pt1{·})(x) converges weakly to µS for any choice of x ∈ S. We now
show that such a convergence is also independent of the choice of divergent sequence.
Let sk be a sequence such that sk ↗∞ and fix f ∈ Cb(RN ) and x ∈ S; then

Ptkf(x)− Pskf(x) =

∫ tk

sk

∂tPtf(x)dt =

∫ tk

sk

LPtf(x)dt.

By (3.5) (and (3.7)) there exists a constant C = C(t0, x) > 0 such that for all t > t0 we
have ∣∣∣V (∆̂)

0 Ptf(x)
∣∣∣ ≤ C(t0, x)‖f‖∞e−λt,

∣∣V 2
i Ptf(x)

∣∣ ≤ C(t0, x)‖f‖∞e−λt.

Using that V (⊥)
0 = 0 we have that there exists a constant C = C(t0, x) > 0 such that

|LPtf(x)| ≤ C(t0, x)‖f‖∞e−λt, for all t > t0.

Therefore

|Ptkf(x)− Pskf(x)| ≤ C(x, t0)‖f‖∞
∣∣∣∣∫ tk

sk

e−λtdt

∣∣∣∣ =
C(x, t0)‖f‖∞

λ

∣∣e−λtk − e−λsk ∣∣ .
Letting k tend to ∞ we have that |Ptkf(x)− Pskf(x)| vanishes in the limit and hence
Pskf(x) converges to µS(f). Therefore Ptf(x) converges to µS(f) as t tends to∞.
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To show that µS is an invariant measure take an arbitrary s > 0 and f ∈ Cb(RN ); then
for every s ≥ 0

µS(Ps(f)) = lim
t→∞

PtPsf(x) = lim
t→∞

Pt+sf(x) = lim
t→∞

Ptf(x) = µS(f).

Hence µS is an invariant measure. To show that the convergence is uniform on compact
subsets of S we apply Arzela-Ascoli. Indeed fix a compact set K ⊆ S then it is sufficient
to show that Ptf(x) has bounded derivatives uniformly in t on K. However x 7→ Ptf(x)

is differentiable in the directions V[α] for all α ∈ A which span the tangent space of S
and, by the Obtuse Angle Condition, Assumption [A.5], we have for all t > t0 that (3.5)
holds. Hence we have that Ptf(x) converges to µS(f) uniformly on compact subsets
of S. Note that since (7.9) holds for all f ∈ Cb(R

N ), there is at most one measure
satisfying (7.9).

We now move on to prove Lemma B.7 and Lemma B.8, which are the backbone of the
proof of Theorem 7.9). Throughout this section, for any f ∈ Cb(Sx), we let

f̂ = f ◦W∞. (B.23)

In order to prove Lemma B.7 we first state and prove the following two results.

Lemma B.5. Let Hypothesis 7.5 [A.1], [A.2], [A.7] and [A.6] hold. For any fixed
f ∈ Cb(Sx), define f̂ as in (B.23). Then for any compact K ⊆ Sx0

and T > 0 we have

Qt−s,tf̂(z)→ Psf̂( lim
τ→∞

eτV
(⊥)
0 (z)) (B.24)

uniformly for s ∈ [1/T, T ] and z ∈ K, whenever limτ→∞ eτV
(⊥)
0 (z) exists for all z ∈ K.

Proof of Lemma B.5. The proof is analogous to the proof of Lemma B.2, so we only
sketch it and point out the main differences. Note that Ptf̂ is continuous, using (7.5) we
have that (B.24) holds pointwise. To obtain convergence uniform on compact subsets of
Sx0
× (0,∞), we use Arzela-Ascoli and the following estimate.
Fix a compact set K ⊆ Sx0

and T > 0 then using (B.22) and the short time estimates
from [44, Corollary 3.13] (which have been recalled in [F.2]), there exists some constant
C(K,T ) such that the following holds:

sup
z∈K,s∈[1/T,T ]

|V[α],t−s(Qt−s,tf̂)(z)|

(B.22)
= sup

z∈K,s∈[1/T,T ]

|V[α](Ps(f̂ ◦ e−tV
(⊥)
0 ))(e(t−s)V (⊥)

0 (z))|

= sup

s∈[1/T,T ],x∈e(t−s)V
(⊥)
0 (K)

|V[α](Ps(f̂ ◦ e−tV
(⊥)
0 ))(x)|

= sup
s∈[1/T,T ],x∈K′

|V[α](Ps(f̂ ◦ e−tV
(⊥)
0 ))(x)|

≤ C(K ′, T )‖f̂‖∞;

here K ′ is defined as K ′ =
⋃
τ≥−T e

τV
(⊥)
0 (K). The set K ′ is compact under out assump-

tions, as for each τ the diffeomorphism x→ eτV
(⊥)
0 (x) is a continuous function, the curve

eτV
(⊥)
0 x is convergent and the map W∞ is assumed continuous.

Define µk to be the probability measure such that νt`−k converges weakly to µk, this
measure is constructed analogously to the comment above Lemma B.3.
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Lemma B.6. Let Hypothesis 7.5 [A.1] and [A.7] hold, and assume the semigroup
{Qs,t}s≤t admits a tight evolution system of measures {νt}0≤t supported on Sx0

. Then∫
Sx

Pkf̂(x) (µk ◦ (W∞)−1)(dx) =

∫
Sx

f(x) (µ0 ◦ (W∞)−1)(dx),

for any f ∈ Cb(Sx) and f̂ defined as in (B.23).

Proof of Lemma B.6. This proof is completely analogous to the proof of Lemma B.3, so
we only point out the main differences. It suffices to prove the following two expressions∫

Sx0

f̂(z)µ0(dz) = lim
`→∞

∫
Sx0

Qt`−k,t` f̂(z)νt`−k(dz) =

∫
Sx0

Pkf̂(W∞(z))µk(dz), (B.25)

compare to (B.16) for comparison. Let us start with the first equality in (B.25). Since
{νt}t≥0 is an evolution system of measures we have∫

Sx0

Qt`−k,t` f̂(z)νt`−k(dz) =

∫
Sx0

f̂(z)νt`(dz).

Since νt` converges weakly to µ0 and W∞ is a continuous map from Sx0
to RN , by the

continuous mapping theorem we have that νt` ◦(W∞)−1 converges weakly to µ0◦(W∞)−1

and hence we obtain (B.25). To prove the second equality in (B.25) like in the proof of
Lemma B.3 we write∫

Sx0

Qt`−k,t` f̂(z)νt`−k(dz)−
∫
Sx0

Pkf̂(W∞(z))µk(dz)

=

∫
Sx0

(
Qt`−k,t` f̂(x)− Pkf̂(W∞(x))

)
νt`−k(dz)

+

∫
Sx0

Ptf̂(W∞(z))νt`−k(dz)−
∫
Sx0

Ptf̂(W∞(z))µk(dz)

= I1,` + I2,`,

having set

I1,` :=

∫
Sx0

(
Qt`−k,t` f̂(z)− Pkf̂(W∞(z))

)
νt`−k(dz)

I2,` :=

∫
Sx0

Pkf̂(W∞(z))νt`−k(dz)−
∫
Sx0

Pkf̂(W∞(z))µk(dz).

Observe that on the image of W∞ we have V (⊥)
0 = 0, by Hypothesis 7.5 [A.7], and hence

Pkf̂(W∞(z)) = Pkf(W∞(z)) therefore we can rewrite I2,` as

I2,` =

∫
Sx

Pkf(z)
(
νt`−k ◦ (W∞)−1

)
(dz)−

∫
Sx

Pkf̂(W∞(z))
(
µk ◦ (W∞)−1

)
(dz).

Now I2,` converges to 0 as `→∞ since νt`−k ◦(W∞)−1 converges weakly to µk ◦(W∞)−1.
The term I1,` can be studied analogously to what we have done in the proof of Lemma B.3,
up to modifications in the same spirit of those made so far, so we omit the details.

Lemma B.7. Suppose Hypothesis 7.5 holds. Let µSx be defined as in the comment above
Theorem 7.9. Then µ0 ◦ (W∞)−1 = µSx .

Proof of Lemma B.7. This proof is completely analogous to the proof of Lemma B.4 so
we omit the details.

EJP 26 (2021), paper 22.
Page 67/72

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP577
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Long-time behaviour of degenerate diffusions

Lemma B.8. Assume Hypothesis 7.5 holds, let x0 be an arbitrary point in I0(x) and
let {νt}, µ0 be constructed as in the proof of Theorem 7.9. Let {t`} be a divergent
sequence such that px0

t`
converges weakly to some probability measure νx0 . Then νx0 |Sx =

µ0 ◦ (W∞)−1.

Proof of Lemma B.8. First we note that νx0 and µ0 ◦ (W∞)−1 are both supported on Sx.
Indeed for the measure µ0 ◦ (W∞)−1 this follows from Lemma B.7. It is sufficient to
show that given a function f ∈ Cb(RN ) such that f(x) = f(y) whenever x ∈ Sy then
νx0(f) = f(W∞(x0)). Let f be such a function then by Proposition 5.3 we have

Pt`f(x0) = Ex0
[f(Xt`)] = Ex0

[f(et`V
(⊥)
0 (x0))] = f(et`V

(⊥)
0 (x0)).

Now letting ` tend to∞ we have νx0(f) = f(W∞(x0)) and hence νx0 must be supported
on Sx. We now show that νx0 and µ0◦(W∞)−1 coincide on Sx. Take a function f ∈ Cb(RN )

and let f̂ = f ◦W∞ then it is sufficient to show that νx0(f̂) = µ0(f̂). This follows from

νx0(f̂) = lim
`→∞

Pt` f̂(x0) = lim
`→∞

Q0,t`(f̂ ◦ et`V
(⊥)
0 )(x0)

= lim
`→∞

Q0,t` f̂(x0) = µ0(f̂).

B.4 Proofs of Section 8

Proof of Lemma 8.3. Recall that Vi = (Ui, 0) for i = 1, . . . , d and V0 = (U0,W0) where W0

is independent of the variable z. By (8.1) we have

Dj
rX

n+1
t = Dj

rζt =

∫ t

r

∂xn+1W0(ζs)D
j
r(ζs)ds.

The only solution to this differential equation is Dj
rζt = 0. Therefore we have M i,n+1

t = 0

and M n+1,j
t = 0 for any i, j = 1, . . . , n+ 1. Hence Mt has the form (8.2). The (i, j)th entry

of the matrix Mt is

M i,j
t = M ij

t =

d∑
k=1

∫ t

0

Dk
s (Xi

t)D
k
s (Xj

t )ds =

d∑
k=1

∫ t

0

Dk
s (Xi

t)D
k
s (Zjt )ds.

Therefore Mt is the Malliavin matrix corresponding to Zt.

Proof of Proposition 8.4. Note that Jn+1,i
t = ∂

∂xi ζt = 0 for any i ∈ {1, . . . , n} therefore Jt
has the form

Jt =

(
J̃t a

0 b

)
for some random real numbers a, b and a random n× n invertible matrix J̃t. This implies
that

J−1
t =

(
J̃−1
t −J̃−1

t ab−1

0 b−1

)
Now by Lemma 8.3 we have that

Ct = J−1
t Mt(J

−1
t )T

=

(
J̃−1
t −J̃−1

t ab−1

0 b−1

)(
Mt 0

0 0

)(
(J̃−1
t )T 0

−J̃−1
t ab−1 b−1

)
=

(
J̃−1
t Mt(J̃

−1
t )T 0

0 0

)
.

Let Ct = J̃−1
t Mt(J̃

−1
t )T then it remains to show that Ct is invertible.
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It is sufficient to show that ker(Ct) = {0} almost surely, that is if there exists v(ω) ∈ Rn
such that vTCtv = 0 implies v = 0 almost surely. Note that

0 = vT (ω)Ct(ω)v(ω) =

d∑
k=1

∫ t

0

|vTJ−1
t Vk(Xs, Ys)|2ds.

Therefore if v(ω) ∈ ker(Ct(ω)) then v is orthogonal to the space Ks := span{J−1
r Vk(Xr) :

0 ≤ r ≤ s, k = 1, . . . , d}. Hence it is sufficient to show that Ks = Rn.
Note that the family of vector spaces {Ks : s ≥ 0} is increasing and setK0+ := ∩s>0Ks.

By the Blumenthal zero-one law, see Theorem 7.17 in [29], K0+ is a deterministic space
with probability one. Define the stopping time

τ = inf{s > 0 : dimKs > dimK0+}.

Note that τ > 0 with probability one. Let v be orthogonal to K0+ and non-zero, then we
have v ⊥ Ks if s < τ , that is,

vTJ−1
t Vk(Xs, Ys) = 0, k ∈ {1, . . . , d}, s < τ.

This follows since K0+ ⊆ Ks for all s > 0 and for s < τ we have that dim(K0+) = dim(Ks).
Recall the set Rm was defined in (3.1), we shall denote by ∆k(x) to be the vector

space spanned by the vectors of Rk evaluated at the point x.
By following the proof of [46, Theorem 2.3.2] we obtain that v is orthogonal to ∆k(x0)

and hence obtain that ∆k(x0) ⊆ K0+ for all k ∈ N. By setting k = m we have that
Rn ⊆ K0+ ⊆ Ks ⊆ Rn. Therefore ker(Ct) = {0} and we have that Ct is invertible.

References

[1] L. Angiuli, L. Lorenzi, A. Lunardi. Hypercontractivity and asymptotic behaviour in nonau-
tonomous Kolmogorov equations.
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