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Dynamo action is considered in the region between two differentially rotating infinite discs. The boundaries may be insulating, perfectly
conducting or ferromagnetic. In the absence of a magnetic field, various well-known self-similar flows arise, generalising that of von
Kármán. Magnetic field instabilities with the same similarity structure are sought. The kinematic eigenvalue problem is found to have
growing modes for Rem > Rc ≃ 100. The growth rate is real for the perfectly conducting and ferromagnetic cases, but may be complex
for insulating boundaries. As Rem → ∞ it is shown that the dynamo can be fast or slow, depending on the flow structure. In the slow
case, the growth rate is governed by a magnetic boundary layer on one of the discs. The growing field saturates in a solution to the
nonlinear dynamo problem. The bifurcation is found to be subcritical and nonlinear dynamos are found for Rem & 0.7Rc. Finally, the
flux of magnetic energy to large r is examined, to determine which solutions might generalise to dynamos between finite discs. It is found
that the fast dynamos tend to have inward energy flux, and so are unlikely to be realised in practice. Slow dynamos with outward flux
are found. It is suggested that the average rotation rate should be non-zero in practice.
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1 Introduction

The generation of a magnetic field by the motion of electrically conducting fluids is important in many
geophysical and astrophysical problems. An extensive review of the subject can be found in Roberts and
Soward (1992). Simple analytical models, especially those which extend into the nonlinear regime, are in
short supply. Recently Vaz et al. (2018) showed that in terms of cylindrical coordinates (r, θ, z), flows in
an annulus of the form

u =

(
−ψ(r)

r
, zw(r), z

ψ′(r)

r

)
in a < r < b (1)

could generate a magnetic field with the same structure

B =

(
−χ(r)

r
, zC(r), z

χ′(r)

r

)
. (2)

The similarity in structure of the Navier-Stokes and magnetic induction equations permitted fully nonlinear
solutions of that form. The governing PDEs reduce to ODEs, enabling detailed investigation.
Another class of flows with this property, this time linear in the radial rather than the axial coordinate,

are of the Von Kármán (1921) type,

u =
(
−rH ′(z), rG(z), 2H(z)

)
in 0 < z < 1. (3)

These describe the motion between two infinite discs at z = 0, 1 and are typically driven by differential
rotation, G(0) ̸= G(1). These flows depend on two parameters and are known to give rise to more than
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one solution branch. They have been examined by a number of authors, for example Batchelor (1951),
Stewartson (1953), Hewitt and Al-Azhari (2009) and are reviewed in Zandbergen and Dijkstra (1987). In
this paper we demonstrate that these flows may give rise to spontaneous growth of magnetic fields, that
is, they constitute a fluid dynamo. We also determine nonlinear steady states, where the field reacts back
on the driving flow.
It is not easy in the laboratory to attain a magnetic Reynolds number large enough for dynamo action,

but various experiments have achieved this, such as those in Riga (Gailitis et al. 2001) and Karlsruhe
(Stieglitz and Mller 2001). The geometry closest to the idealisation of this paper is the Von-Kármán-
Sodium (VKS) experiment (Nore et al. 2018, Berhanu et al. 2010, Monchaux et al. 2009), which generated
a dynamo between two finite, counter-rotating discs of high magnetic permeability. The spherical geometry
of Zimmerman et al. (2013) also bears some similarity to Von Kármán flow.
We shall not consider all possible dynamo modes. Rather, we investigate fields with the same spatial

similarity structure as the velocity field. This reduces the problem to a set of coupled ODEs. It has
the further advantage that we can readily consider nonlinear interactions of the Lorentz force with the
(laminar) flow. We are therefore able to obtain solutions to the full, nonlinear dynamo problem without
further assumptions. Since both velocity and magnetic fields are axisymmetric it might be expected that
dynamo action would be ruled out by Cowling’s theorem Cowling (1933). However this is not the case
because of the unbounded domain in the radial direction. We discuss in section 5 the extent to which our
results apply to finite discs in a larger container with a decaying external field. Some of the solutions involve
an energy flux away from the discs, which are likely to form dynamos in the larger system. However, others
involve an energy flux inwards from infinity, and should not really be considered dynamos. We nevertheless
refer to all growing modes as “dynamos” in this paper. We find that exactly counter-rotating discs are not
ideal for dynamo action, which has implications for the design of experiments.
We consider three types of boundary conditions on the discs, insulating, perfectly conducting and highly

permeable. For the kinematic dynamo, the growth rates are shown to be real for the perfectly conducting
and permeable cases, but they may be complex when the exterior is an insulator. Saturated steady solutions
to the full dynamo problem are found. These persist below the critical value of Rem for kinematic dynamo
action.
The outline of this paper is as follows. In section 2 we derive the governing equations for the nonlinear

dynamo. In section 3 we investigate the kinematic dynamo problem, and seek the range of Rem for which
magnetic growth occurs. The behaviour at large Rem is analysed. When the flow is away from one disc

and towards the other, it is shown that the dynamo is slow, with the growth rate behaving as Re
−1/3
m

as Rem → ∞. However, fast dynamo modes, with λ ̸→ 0 can occur when the flow is directed towards
each disc. This behaviour is confirmed numerically. It is demonstrated that the ferromagnetic boundaries
encourage the dynamo.
In section 4 steady solutions of the fully nonlinear system are sought. Several solution branches are

found. Nonlinear subcritical solutions are found for Rem < Rc. When the boundaries are perfectly
conducting, it is found that as Rem increases the nonlinear solution approaches a purely hydrodynamic
flow with a constant current in the z-direction. For insulating boundaries, however, the nonlinear
solution persists as Rem → ∞. In section 5 we investigate the flux of magnetic energy to large values
of r, to determine which solutions might form genuine dynamos in a finite system. We conclude in section 6.

2 Governing equations

We consider an incompressible Newtonian fluid of kinematic viscosity ν confined between two infinite discs
separated by a distance d. We nondimensionalise lengths with respect to d and work with dimensionless
cylindrical polar coordinates (r, ϕ, z) in the domain 0 < z < 1 as depicted in figure 1. We also scale the
angular speed of the disc at z = 0 to unity, so that the rotation rate of the upper disc is s = ω2/ω1. The
hydrodynamic Reynolds number then takes the form Re = d2ω1/ν. The hydrodynamic problem therefore
depends on the two parameters s and Re.
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Figure 1. The geometry and field decomposition.

In kinematic dynamo theory the velocity field is regarded as given and self-excited solutions of the
magnetic induction equations are sought (Roberts and Soward 1992). In non-dimensional form, using
scales d and ω−1

1 for length and time respectively, these are given by

∇·B = 0, (4a)

∂B

∂t
= ∇× (u×B) + Re−1

m ∇2B. (4b)

Here B is the magnetic field, t is time and the magnetic Reynolds number Rem = d2ω1/η where η is the
magnetic diffusivity. We use the Alfvén scale B0 for the magnetic field, where B0 =

√
ρµ0ω1d, where ρ is

the fluid density and µ0 the magnetic permeability. The Lorentz force is thus formally of the same order
as inertial terms in the Navier-Stokes equations

∂u

∂t
+ u · ∇u = −∇p+ (∇×B)×B +Re−1∇2u, ∇ · u = 0. (5)

We shall seek steady solutions to equations (4a,b), and (5) of the form

u =
(
−rH ′(z), rG(z), 2H(z)

)
(6)

and correspondingly

B =
(
−rP ′(z), rT (z), 2P (z)

)
. (7)

These clearly satisfy the solenoidal conditions ∇·u = 0 = ∇·B. Substitution in (4b) yields respectively
for the toroidal and poloidal components

2HT ′ − 2G′P = Re−1
m T ′′, (8)

2HP ′ − 2H ′P = Re−1
m P ′′. (9)

The field is associated with a current density

J = ∇×B = (−rT ′, −rP ′′, 2T ) (10)

and a Lorentz force J ×B. Taking the ϕ-component of equation (5) we have

G′′ = 2Re(HG′ −GH ′ − PT ′ + P ′T ), (11)

while the ϕ-component of the vorticity equation leads to

H ′′′′ = 2Re(HH ′′′ +GG′ − TT ′ − PP ′′′). (12)
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2.1 Boundary conditions

The fluid satisfies no slip on the walls so that

H(0) = H(1) = H ′(0) = H ′(1) = 0, G(0) = 1, G(1) = s. (13)

The magnetic field may diffuse out of the fluid layer and so its boundary conditions are less straightforward
than those on the velocity. We consider three cases:

2.1.1 Perfectly conducting walls. At an interface, the normal magnetic field and the tangential electric
field must be continuous. Inside a perfect conductor the electric field must be zero else it would drive an
infinite current. It follows that the tangential electric field on the discs must be zero, which from Ohm’s
law in the fluid translates to the tangential current must be zero,

B·k = 0, J × k = 0, (14)

where k is a unit vector in the z-direction. From the form of equations (7) and (10) this requires

P = 0 and T ′ = 0 on z = 0, 1. (15)

We note that the other tangential current component P ′′ is automatically zero on the walls due to the
nonslip condition and equation (8).

2.1.2 Insulating boundaries. If the exterior is an insulator, then clearly J = 0 within it, which requires
from (10) T ≡ 0 and P ′′ ≡ 0 in z < 0 and z > 1. At the boundaries the magnetic field is continuous and
so the appropriate conditions are

T = T ′ = 0 on z = 0, 1. (16)

Inside the insulator we can consistently have P ′′ = 0 or P = A+Cz. With regard to (7) this corresponds
to a uniform field in the z direction of strength A and a magnetic neutral point of strength C.

2.1.3 Ferromagnetic boundaries. The VKS experiment was successful when the rotors were made of
iron with a high magnetic permeability µ ≃ 100µ0, (Monchaux et al. 2009). At a boundary where the
permeability is discontinuous, the normal component of B and the tangential components of B/µ must be
continuous. As the tangential B within the iron cannot be excessive, this requires that within the liquid,
the tangential component of B should be small. From (7), as µr ≡ µ/µ0 → ∞, this translates to

P ′ = 0 and T = 0 on z = 0, 1. (17)

2.2 Numerical methods

We solve the ODE system (8), (11) and (12) together with (13) and one of (15), (16) or (17) using the
MATLAB ODE solver bvp4c, described in Shampine et al. (2003). For the eigenvalue problem, when it
reduces to Sturm-Liouville form we employ the package of Ledoux et al. (2005). Otherwise, we introduce an
extra equation λ′ = 0 and an arbitrary inhomogeneous, possibly complex, boundary condition normalising
the eigenfunction. We use 2000 grid points between z = 0, 1 and work to a tolerance of at most 10−6 in
all cases.
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Figure 2. Multiple solution branches for B ≡ 0 at Re = 1000 and s = 0.5 (left) and s = −1 (right), H(z) is drawn for each solution.
Middle: Flow on the Batchelor branch (blue in left panel) for Re = 1000, s = 0.5, with H0 = 10H. Away from the walls, the flow is close
to solid body rotation, with the z-velocity directed towards each wall. The blue curve in the left panel corresponds to the yellow one in
the middle.

2.3 Hydrodynamic flows

Physically, in the absence of magnetic field, variations in the swirl velocity G lead to radial pressure
gradients which drive a poloidal flow. H may be of single sign or may reverse somewhere in the interior.
In this paper we shall regard s and Re as given and investigate the resultant solutions for differing

values of Rem. Nevertheless, we must take into account the existence of different hydrodynamic solution
branches. For moderately high Re the Batchelor (1951) branch, shown in the middle panel of figure 2, is
characterised by a core flow close to solid body rotation with Ekman-like layers on the walls. Here H is of
one sign and H ′ has opposite signs on the walls, so that flow is directed away from one wall and towards
the other. In contrast, on the Stewartson (1953) branch, for the same parameters G ≃ 0 away from the
walls and H ′ < 0 on each wall. The z-velocity is therefore directed towards each wall. These two flows
are found to exhibit different dynamo behaviour. The Stewartson branch is found to give rise to a higher
kinematic growth rate. However, in §5 we argue that it is unlikely to function as a dynamo when the discs
are finite. There is a third solution, which behaves like the Stewartson branch at the walls. When s < 0
even more branches can occur. For Re = 1000 ssand s = −1, five different solutions are shown in the right
panel of figure 2. Only the Stewartson solution retains the anti-symmetry of the configuration, and the
others may be reflected to provide four other solutions. All these solutions have H ′ < 0 on both walls,
which we will see below improves dynamo action.

3 Kinematic Dynamos

When the field is very weak, the Lorentz force can be neglected in (5) and we have a pure Von Kármán
flow. In this section G and H are regarded as given. We seek growing solutions for the magnetic field of
the form B = (rP ′, rT,−2rP ) exp(λt) where the growth rate λ may be complex. We have the eigenvalue
problem

λT + 2HT ′ − 2G′P = Re−1
m T ′′, (18)

λP + 2HP ′ − 2H ′P = Re−1
m P ′′ (19)

with the boundary conditions of (15), (16) or (17). We note that (18) and (19) are only weakly coupled as
there is no T in the second equation. This reflects the common difficulty in dynamo theory of generating
poloidal from toroidal field. In contrast, differential rotation (G′) can wind poloidal field (P ) into toroidal
field (T ).
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Figure 3. Growth rates for perfectly conducting boundaries, for different branches at Re = 1000. Left: s = 0.5, Right: s = −1. The
Batchelor branch (blue) in the left is slow, while the Stewartson (red) and 3-cell (yellow) branches are fast, in agreement with (23). All
the branches on the right are fast. However, in §5 we find only the slow blue branch has an outward energy flux.

3.1 Perfectly conducting dynamo

If the boundary conditions are P = T ′ = 0 on the boundaries z = 0, 1, the T -equation decouples and we
have a single ODE to solve,

λP + 2HP ′ − 2H ′P = Re−1
m P ′′, P (0) = P (1) = 0. (20)

This is an unusually simple dynamo problem, which can be written in Sturm-Liouville form. It follows
that all the eigenvalues λ(Rem) are real. Only the poloidal velocity is important, although it should not
be forgotten that H ̸= 0 only because of the existence of G in (5). Once λ and P (z) have been found, T (z)
can be found from the inhomogeneous problem with forcing PG′

λT + 2HT ′ − 2G′P = R−1
m T ′′, T ′(0) = T ′(1) = 0. (21)

It is worth noting that there is another family of eigenvalues, for which P ≡ 0 and λ and T are determined
from (21). These modes can be shown always to have λ 6 0 and so are not dynamos. The trivial solution
with λ = 0 and T constant should be recognised. This corresponds to a uniform current in the z-direction
in the fluid, which then spreads out as a radial surface current along the perfectly conducting walls. It is
not a growing mode, but it will be important when we consider nonlinear steady-states in section 4. It
also demonstrates that sometimes our similarity solutions can be driven by conditions as r → ∞.
The eigenvalues for (20) are easily found numerically. For the flows of figure 2 corresponding to Re = 1000

and s = 0.5 or s = −1, the largest eigenvalue is given in figure 3. A growing mode is found for Rem > 109.5
for the Stewartson branch when s = 0.5. When s = −1, with the increased shear this value is reduced,
and the hybrid branch is the first to manifest growth. As Rem → ∞, it is found that λ may either tend to

a constant or, for the Batchelor branch, λ→ 0 as Re
−1/3
m . We confirm this latter behaviour analytically.

As Rem → ∞, away from the boundaries we see that P ∝ H is a solution to (20) for small λ. However,
near say z = 0, we have H ∼ αz2, where α is determined from the Navier-Stokes solution (5). The right-
hand side of (20) is therefore non-zero, and so the solution for P must adapt across a layer of thickness δ
say. In this layer, if we introduce a scaled coordinate Z = z/δ, (20) becomes

λP + 2αδZ2P ′ − 4αδZP =
P ′′

Remδ2
,

P (0) = 0, P ∼ CZ2 as Z → ∞,
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where ′ now denotes d/dZ. This suggests the balance δ = Re
−1/3
m , so that

µP + 2αZ2P ′ − 4αZP = P ′′,

P (0) = 0, P ∼ CZ2 as Z → ∞,
(22)

where µ = λRe
1/3
m . An essentially identical equation is appropriate next to the upper disc at z = 1, where

H ∼ β(1 − z)2, in terms of the scaled variable Z = Re
1/3
m (1 − z). Equation (22) can be solved in terms

of triconfluent Heun functions. The crucial result is that as Z → ∞, the two independent solutions scale
as P ′ ∼ Z and P ′ ∼ exp(23αZ

3). Thus if α < 0 there is no trouble matching with the field away from
the boundary, for any value of µ. However, if α > 0, then a solution is only possible if the exponentially
growing solution has zero coefficient, which will only happen for discrete values of µ. Similarly near z = 1,
the layer is unconstrained if β > 0 but determines the eigenvalue if β < 0. Now for the Batchelor flow in
figure 2, near z = 0 we find α < 0, whereas on z = 1 we have β < 0. In this case the growth rate µ is
determined by the layer on the upper plate, while the layer on the lower plate is passive. If s > 1, these
roles are reversed. In general we conclude that for flows of this type it is the layer on the more slowly
rotating disc which determines the growth rate.
The above analysis relies on the poloidal flow H being towards one of the plates and away from the

other, as occurs in the Batchelor branch of figure 2. For the Stewartson branch in the left and all branches
on the right of figure 2, the H-flow is towards each boundary, and so the wall layers do not constrain λ.
However, there is now necessarily an internal value z = z0 at which H vanishes. Looking at equation (20),
we can see that as Rem → ∞, a regular solution would require λ = 2H ′(z0). Such a dynamo would be fast
as λ ̸→ 0 as Rem → ∞. In this limit we can integrate (20) to find

P = H(z) exp

[
−H ′(z0)

∫ z dZ

H(Z)

]
. (23)

It can be confirmed that P (z) is regular providedH(z) is negative for 0 < z < z0 and positive for z0 < z < 1
with α < 0, β > 0 and λ = 2H ′(z0) > 0. Cases with fast dynamos are shown in figure 3.
For given flow parameters Re and s there is a critical magnetic Reynolds number, Rem = Rc, above

which dynamo action occurs. The behaviour of Rc as Re and s vary is shown in figure 4 for perfectly
conducting walls. When s = 1 the flow is a solid body rotation which does not drive a dynamo, and
so Rc → ∞ as s → 1 for all Re. A kink is observable on one curve. This relates to a switching of the
underlying flow branch. It can be seen that the lowest Rc occur for counterrotating discs, when s < 0. The
increased shear improves dynamo action. It should be remembered that when |s| > 1, the problem can be
rescaled with respect to the greater angular velocity to a mathematically equivalent problem with |s| < 1
with corresponding reductions in Re and Rem. It it also the case that increasing Re reduces Rc until an
asymptotic flow structure is reached. For this reason, we shall concentrate below on moderately high Re.

3.2 Dynamos with insulating walls

When the walls are insulating, equation (15) applies and we have two boundary conditions on T and none
on P . We could eliminate P between (18) and (19) to obtain a fourth order ODE for T , but it is as easy to
deal with the two second order ODEs. A parallel could be drawn with writing the 2D vorticity equation
in terms of a streamfunction, when there are two boundary conditions on the streamfunction but none on
the vorticity. This case behaves in a manner more common for kinematic dynamos: the eigenvalues need
not be real, while both toroidal and poloidal field components are important.
The growth rate for the Stewartson branch for Re = 1000 and s = −1 is shown in figure 5(a), with a

critical Rem ≃ 108. It will be shown below that subcritical nonlinear solutions exist considerably below
this value, even for Rem & 25.
The eigenfunctions for perfectly conducting, insulating and ferromagnetic walls are shown in figure 6

for s = −1 and Re = 100 for Rem = 100. In each case the unstable mode is symmetric. It should be
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Figure 4. Critical magnetic Reynolds number as a function of Re and s for perfectly conducting boundaries. Left: Re varies for several
s. Right: s varies for several Re.
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Figure 5. Left: Growth rate for Stewartson branch, Re = 1000 and s = −1. Middle: Subcritical saturated states for Re = 1000, s = −1.
As Rem approaches critical value of the left panel, the field is quenched. Right: Re = 100 and perfectly ferromagnetic boundaries for
s = −1, 0, 0.5. Growth occurs for all Rem. The dynamo is fast for s = −1, but s = 0 has the largest growth rate as Rem → 0.
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Figure 6. The growing eigenfunctions for Re = 100 = Rem and s = −1. Left: insulating, middle: perfectly conducting walls, right:
ferromagnetic boundary conditions

remembered that the scale and sign of the field are arbitrary at this stage.

3.3 Ferromagnetic dynamo

The VKS experiment found a dynamo when the rotors were made of iron with a relative permeability
µr ≃ 100. We might therefore anticipate that the boundary condition (17) would favour dynamo action.
Indeed, we find numerically that any Rem > 0 drives a dynamo. This can be shown by writing the Sturm-
Liouville system in variational form, or more directly if we assume P > 0 for 0 6 z 6 1. Dividing equation
(8) by P 2 and integrating across the domain, it follows that

λ

∫ 1

0

dz

P
= 2

[
H

P

]1
0

+Re−1
m

∫ 1

0

P ′′

P 2
dz = 2Re−1

m

∫ 1

0

(P ′)2

P 3
dz, (24)
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Figure 7. Saturated states for perfectly conducting plates at Re = 100, Rem = 100 and s = 0. Left: flow, Right: magnetic field.

where we integrate by parts and employ the boundary conditions, H = 0 and P ′ = 0. As P > 0 by
assumption, it follows that λ > 0 and we have growth. As Rem → 0, we can readily obtain the solution as
a regular perturbation series

P = 1− 2Rem

∫ z

0
H(s)ds+O(Re2m), λ = 8Rem

∫ 1

0
H2dz +O(Re2m). (25)

This growth rate is confirmed numerically. The variation of λ with Rem is shown in figure 5(c) for 3 values
of s. It is surprising to find a dynamo for small Rem, but the physical mechanism is clear. Constant P
corresponds to a uniform field in the z-direction, and this is distorted by the poloidal flow H to give a weak
radial field, and then by the toroidal flow G to give a weak azimuthal field. The ferromagnetic boundaries
then amplify these fields within the iron boundary, generating a large z-component, which feeds back to
the fluid by continuity. Thus the dynamo at very low Rem is a consequence of the infinite permeability of
the boundary. If the relative permeability of the boundary, µr is large but finite, the critical Rem scales

as µ
−1/2
r .

In broad terms, these results are consistent with the experimental observation that constructing the
rotating boundaries from ferromagnetic material improves the dynamo action.

4 Nonlinear saturated dynamos

We have demonstrated that the von-Kármán velocity fields support kinematic dynamos in an unbounded
domain. What happens once the field grows is not clear, a priori. Periodic oscillations or more complicated
time-dependent behaviour could occur, even for our simple laminar flows. It is also possible however, that
steady hydromagnetic equilibria may occur with the structure given by (3) and (7). It is a great advantage
of this ansatz that we can easily investigate the fully nonlinear behaviour, without further approximation.
In this section we therefore seek solutions to the system (11), (12) and (8). Various solution branches are
found, depending to some extent on which initial flow branch is used.
In figure 7, a saturated equilibrium is drawn for Re = 100, Rem = 100 and s = 0. As might be expected,

there is more activity near the rotating disc than the stationary one. Once an equilibrium has been found,
its solution branch may be tracked by slowly varying the parameters. For the case of equal and opposite
rotation rates (s = −1), the behaviour of the maximum values of P , T and H is shown in figure 8 for
Re = 100 as Rem varies. G always attains its maximum on the boundary and so is not drawn. In the left
panel, the boundaries are perfectly conducting. As Rem increases, at a certain value the solution branch
terminates at an essentially hydrodynamic flow with P ≡ 0 and T uniform. These solutions have a uniform
z-current in the fluid which then spreads out as a radial surface current on the boundaries. It is not obvious
why this branch terminates at that particular value of constant T . Such solutions feel somewhat artificial
and they do not exist for the insulating case. Equilibria are found for Rem > 70, even though the critical
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Figure 8. L∞-norm of saturated solution as a function of Rem for Re = 100, s = −1. Left: Perfectly conducting boundaries. As Rem
increases the branch terminates with P → 0, constant T ̸= 0. Non-zero fields exist for Rem = 70 < Rc ≃ 109.5, suggesting that the
dynamo bifurcation is subcritical. Middle: & Right: insulating boundaries. Again subcritical solutions are found for Rem > 37.
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Figure 9. Symmetric steady state for Re = 100, s = −1 and Rem = 140 and insulating boundaries. Left: flow, right: magnetic field.
The field is even about z = 0, while the flow is odd.

value for a kinematic dynamo is Rem ≃ 109.5. The dynamo instability is therefore subcritical and the
system exhibits hysteresis.
The subcritical behaviour is illustrated in figure 5(b) for insulating boundaries with Re = 1000 and

s = −1. Equilibria are found for Rem & 30 with an amplitude which tends to zero as the critical Rem is
approached from below. The kink in the curve is an artefact of the maximum norm. If P has two maxima
then the position of the overall maximum may flip as Rem varies.
In the right two panels of figure 8, two solution branches are shown for the insulating case. One of these

displays the expected symmetry about z = 0.5, but in the other, symmetry is broken. These branches
continue for large Rem. Once more, hydromagnetic solutions are found as Rem decreases below Rc, the
critical value for a kinematic dynamo.
In the insulating case, the solutions for Rem = 100 are drawn in figure 9. Already the signs of an

asymptotic structure are there. There is an active region about z = 0 for the symmetric case and near the

boundary for the nonsymmetric case, of thickness O(Re
−1/2
m ). Outside this region, G attains its constant

wall value, while P is quadratic in z. This solution does not satisfy P ′′ = 0 on the actual boundaries, and
so there is an additional thin layer near these boundaries, which is most visible in the blue curves. As Rem
increases further, the structure becomes more pronounced.

5 Are these real dynamos?

We have demonstrated that fields of the form (7) can be supported by flows of the form (3) in a self-
sustaining manner even in the nonlinear regime. We have referred to this as dynamo action. However, our
domain is unbounded in the radial direction and both the flow and magnetic field grow linearly with r. In
this section we discuss the extent to which these solutions can be considered dynamos in the usual sense.
First of all, from a mathematical perspective, the kinematic dynamo problem can be rewritten in a
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Figure 10. Second, symmetry-breaking steady state for Re = 100, s = −1 and Rem = 140 and insulating boundaries.

bounded domain, 0 < r < R, together with some homogeneous boundary conditions on r = R, say

∂Bz

∂r
= 0,

∂

∂r

(
Bθ

r

)
= 0. (26)

These boundary conditions do not necessarily drive a solution which grows with r; however neither do
they preclude it. Our solution will then hold in 0 < r < R, with these boundary conditions. We note that
as Br ̸= 0 on r = R, there will also be (potential) field in r > R. This field will be bounded and so the
dynamo solution makes mathematical sense, given these boundary conditions.
However, the above boundary conditions would be difficult to arrange in practice, and so we should

consider the relevance to a physical problem. In particular, if we were to replace our infinite discs with
large but finite ones, and embed the entire system in a stationary box with decaying field outside it, would
it still exhibit growing solutions?
This is difficult to answer definitively, as our simplifying structure would naturally be destroyed by these

distant boundaries. However, what we can easily examine is whether our solutions involve an inward or
outward flow of energy at large r. If our solutions involve an influx of magnetic energy from infinity, then
while they describe interesting local hydromagnetic equilibria, we could not regard them as local generators
of magnetic field. Conversely, if our solutions involve an outward energy flux, then field is being generated
at low r and transported towards infinity. It is then arguable that our solutions could approximate the local
behaviour of a larger dynamo structure. We shall therefore assume that our solution is valid to leading
order for r < R and investigate the fluxes across the boundary r = R. Note that R may be smaller than the
actual disc radius. It represents a value below which our solution is assumed to be a good approximation
to the full solution. We shall also assume R≫ 1, so that the discs are larger than their separation distance.
If we begin with the purely hydrodynamic problem, it is intuitively obvious that the flow is being driven

by the differential rotation of the discs and opposed by the distant boundaries. We would therefore expect
the von Kármán flows to apply for small r. Explicitly, if we take the scalar product of the Navier-Stokes
equation with u and integrate over 0 < z < 1, 0 < r < R, we obtain

d

dt

∫
1
2 |u|

2 dV = −
∮ (

p+ 1
2 |u|

2
)
u·ndS − viscous terms. (27)

The viscous terms include both the driving stress on the discs and the volume dissipation. Now on the
cylindrical boundary at r = R we have u·n = −RH ′(z), while |u|2 = R2H ′2+R2G2+H2 ≃ R2(G2+H ′2)
for large R.
Substituting (3) into (5), we find from the z-component that pz is O(1) as r → ∞, while from the

r-component we have pr = O(r). It follows that the pressure in (27) is a constant times R2 plus O(1)
terms. The pressure therefore does not contribute at leading order as the integral of H ′ vanishes since



December 17, 2020 16:21 Geophysical and Astrophysical Fluid Dynamics GGAF-2020-0032-Mestel

12 A. Arslan and A. J. Mestel

H = 0 on both discs. Thus the kinetic energy flux across r = R is determined to leading order by

K̂ ≡ πR4K where K =

∫ 1

0
(G2 +H ′2)H ′ dz. (28)

If K < 0 then energy is flowing outwards. This we find to be the case for all parameter values. Thus
the von Kármán flow can be expected to be a good model of the flow between two discs inside a larger
container.
We now consider the magnetic energy flux. From Faraday’s Law, ∇ × E = −Bt, taking the scalar

product with B and integrating over our domain, we have

d

dt

∫
1
2 |B|2 dV =

∮
(B ×E)·ndS −

∫
(∇×B)·E dV, (29)

where E denotes the electric field. Using the non-dimensional Ohm’s Law, E = J−Rmu×B and Ampere’s
Law, ∇×B = J , the last term contributes the Joule dissipation rate −|J |2 and the work done by the fluid
−u·(J ×B). The boundary integral of the Poynting vector E ×B indicates the direction of the energy
flux. Now for large r, J ∝ r, while u×B ∝ r2. Furthermore, from (10) and (7), J ×B is to leading order
perpendicular to the radial direction. The dominant term at large r is thus

M̂ =

∮
(B ×E)·ndS ≃ −Rm

∮ [
|B|2 u− (u·B)B

]
·ndS. (30)

If M̂ > 0 then energy is flowing in across the boundary at large r, but if M̂ < 0, the energy flow is
outwards and we consider the dynamo functional. At large r = R, recalling u = (−rH ′, rG, 2H) and

B = (−rP ′, rT, 2P ), we have |B|2 = R2(P ′2 + T 2) + O(1), the magnetic energy flux M̂ = 2πR4RmM
where

M =

∫ 1

0

[
(P ′2 + T 2)H ′ + (−P ′)(P ′H ′ + TG)

]
dz =

∫ 1

0

[
T 2H ′ − P ′TG

]
dz. (31)

Note that the azimuthal components of u and B contribute to M .
For each of our solutions, we can evaluate M . We find that some of our solutions have M > 0, and

are not real dynamos by this criterion. The fast dynamos are in this category, as illustrated in the left of
figure (11). The kinematic growth rate for the Stewartson branch with s = −1 at Re = 500 is depicted
above the corresponding inwards magnetic energy flux. We can also see that this flux increases at large
Rm because of the boundary layer structure. However, more interestingly, for some flows we find M < 0
indicating outwards energy flux, and these we consider to be local dynamos. The case on the right of figure
(11) relates to the Batchelor branch for s = 0.5 at Re = 500 and is of particular interest, as the sign of M
varies with Rem. Usually, M remains single-signed as Rem varies, but here three different regimes can be
identified.
The nonlinear equilibria can also be categorised in this way. In the left panel of figure 12 K and M are

shown as functions of Rem for the saturated solutions between insulating discs at Re = 100 and s = −1.
The kinetic energy flux is outwards, but above the dynamo threshold we find that there is an inwards
magnetic flux from infinity. The right-hand panel is for Re = 1000 and s = 0.8 and insulating discs. In this
case, we have an outwards energy flux at all Rem. It appears that breaking the z-symmetry of the flow is
more likely to lead to an outwards magnetic energy flux. This is probably because when s ̸= −1 there is
non-zero swirl away from the discs at least in the Batchelor branch, which contributes to the maintenance
of the dynamo. This observation may be important for the design of experiments.
When our discs are embedded in a larger container, magnetic energy is generated between the discs will

be transported outwards where it will be dissipated in the less favourable environment. It should not be
forgotten that M < 0 does not guarantee a global dynamo. Indeed, we know that if the remainder of the
configuration is exactly axisymmetric than Cowling’s theorem will apply. That is a topological result, and
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does not hold for relatively small variations from axisymmetry at high Rem. In general, it is physically
likely that the local mechanism for field generation will overcome the distant Joule dissipation, for high
enough Rem.

6 Concluding remarks

It has long been recognised that differentially rotating flows are good candidates for dynamos, and the
VKS experiment (Nore et al. 2018, Berhanu et al. 2010, Monchaux et al. 2009) has demonstrated that
these are realisable in the laboratory, at least for soft-iron rotors. We have shown how a simple, laminar
flow can to some extent describe such dynamos, even into the nonlinear regime. In reality, the flow would
be turbulent, but we would hope that at least qualitative features of the laminar description would apply.
The finite extent of experimental rotors also limits the practical applicability of our model.
Ferromagnetic boundaries are found to be conducive to dynamo action. We find the laminar dynamos

with fastest growth occur for high Re and for counter-rotating discs. These are advantageous not just
because of the increased shear, but also because the induced poloidal flow is usually directed towards each
disc, which supports a fast dynamo. However, such flows tend to be associated with an inward magnetic
energy flux at infinity and so may not create a functioning dynamo when the system is embedded in a
finite container. Our study predicts that for dynamo action the average rotation rate of the two discs
should ideally be non-zero to enable swirl between the discs.
Our dynamos saturate in a steady state. As Rem → ∞ at constant but large Re, for perfectly conducting

walls, the magnetic activity is quenched apart from a uniform current within the fluid. For insulating walls,
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however, an asymptotic state is approached in which the dynamo action localises about one or other of the
discs, even for the exactly symmetric configuration. Admittedly, this limit corresponds to a high magnetic
Prandtl number and so is of questionable physical relevance.
The laminar model between infinite discs is surprisingly simple. The most unstable mode may have a

different spatial structure to that we have assumed, and may well not be even approximately axisymmetric.
The critical Rem we have found must therefore be interpreted as an upper bound. For the kinematic
problem, it would be possible to consider fields ∝ eimθ. However, a simple radial structure would only
apply in the high Rm limit. Other azimuthal modes would naturally be excited in the nonlinear case.
The greatest limitation on our model will derive from the behaviour at large r for finite rotors, when

apart from anything else Cowling’s theorem may apply unless appropriate symmetry-breaking steps are
taken. We have shown that in some parameter ranges magnetic energy is being drawn in from infinity, and
these solutions cannot be considered dynamos in the usual sense. However, in many cases the magnetic
energy flux is outwards and these local solutions could well drive a full nonlinear dynamo.
There are parameter ranges with more than one hydrodynamic solution where one is associated with

outward magnetic energy flux and the other inward. In a finite domain, we have argued that the first may
give rise to a dynamo when the second does not. If that is true, it is conceivable that the dynamo could
act as a switch. An initial flow could give rise to a dynamo which reacted back on the flow knocking it
into a state which quenched the magnetic field entirely, leaving a different hydrodynamic state. This is all
speculative, as we have not investigated time-dependent flows in the nonlinear regime, while the precise
conditions at large r will be important.
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