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Abstract
Climate change is driving a rise in the intensity and frequency of extreme weather events.
Such events are characterised as thresholds beyond which cereal yields significantly
change. We apply a threshold model to district-level data collected in India over 1966–
2011 and objectively identify thresholds, measured by the Standardised Precipitation-
Evapotranspiration Index, before estimating their yield effects, for rice, wheat, maize,
millet, sorghum and barley. Heterogeneous, crop-specific thresholds are identified for all
crops except wheat. Thresholds are identified at normal climatic conditions but have
smaller negative marginal effects than those of thresholds identified at dry conditions.
The extent to which agro-ecological conditions and irrigation influence the location of
thresholds and the size of their marginal effects varies by crop. Thresholds identified at
dry climatic conditions severely reduce yield yet are rarely crossed; those at normal
conditions moderately affect yield but are frequently crossed. A threshold’s total impact
on production is found to be inverse to the severity of its marginal effect. Severe-effect
thresholds have been crossed with increasing frequency over time, contributing to growth
in the size of total impacts. Our results have welfare implications and have the potential to
inform predictions about the impacts of extreme weather events.
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1 Introduction

Climate change is driving a rise in the intensity and frequency of extreme weather events,
specifically droughts and floods, with critical implications for climate-vulnerable sectors (IPCC
2012; Easterling et al. 2000). Of particular concern is agriculture in drought- and flood-prone
regions, such as in the Indian subcontinent, where it remains an important source of income and
livelihoods (De et al. 2005). India is particularly vulnerable to changes in the intensity and frequency
of extremeweather events due to climate change.Key to understanding how extremeweather events
translate into impacts on agriculture is our ability to estimate these impacts given the existence of
nonlinearities in social-ecological systems (Liu et al. 2007).

Previous research suggests evidence of nonlinearities in the relationship between the
conditions underlying extreme weather events and their impacts on agricultural outcomes.
Absent universally agreed definitions of such events, especially droughts, nonlinearities are
typically characterised as thresholds along the range of one or more weather variables,
sometimes combined in the form of an index. Temperature thresholds, often crop-specific
and objectively determined, define the temperature beyond which yields are severely affected
(e.g. Tack et al. 2017a; Schlenker and Roberts 2009; Lobell et al. 2011a). Although these
thresholds have the capacity to capture both heat stress and intra-seasonal extreme weather,
they do not capture rainfall. Indeed, temperature is considered less relevant than evapotrans-
piration for measuring meteorological drought (Benami et al. 2021), defined as the atmospher-
ic conditions resulting in a moisture deficit over a given time period (Hao et al. 2017), and
altogether inadequate for identifying excessive rainfall or floods (Benami et al. 2021).

Temperature variables are not used as drought triggers unlike rainfall thresholds. Rainfall
shortages, along with higher evapotranspiration and soil moisture deficits, have critical effects
on crop growth and development. Yet, rainfall thresholds do not capture heat stress—also
critical for crop growth—caused by rising temperatures. Despite this shortcoming, rainfall
thresholds are applied widely in research and policy. The former adopts rainfall thresholds
typically based on deviations from climatic norms (e.g. Auffhammer et al. 2012; Li et al. 2019;
Pandey et al. 2007). In practice, rainfall thresholds and indices, applied in many countries, are
often arbitrarily defined with little or no scientific justification (Hao et al. 2017, WMO 2018;
Steinemann and Cavalcanti 2006; Steinemann 2003). Threshold values are thus not deter-
mined by their empirical relationship with agricultural outcomes. Potential crop-specific
heterogeneity is also disregarded.

Indices that measure evapotranspiration, capturing both rainfall and heat stress, are well-
suited for analysing drought impacts on agricultural production (e.g. Vicente-Serrano et al.
2012; Zipper et al. 2016). In this paper, we adopt the Standardised Precipitation-
Evapotranspiration Index (SPEI), which measures the impact of higher temperatures on water
demand (Vicente-Serrano et al. 2010), and identify thresholds in the relationship between
seasonal SPEI values and cereal yield in India. A panel threshold regression approach (Hansen
1999) is applied to district-level data collected annually over 1966–2011. The advantage of our
approach is that, in contrast to previous work using rainfall or evapotranspiration indices (Chen
et al. 2016; Udmale et al. 2020; Leng and Hall 2019), it enables a data-driven search for
thresholds beyond which progressively drier conditions drive significant changes in yield. It
provides estimates of where thresholds lie in the relationship between climatic conditions and
yield but without imposing a priori assumptions on this relationship.

With increasingly dry climatic conditions, as measured by a marginal decline in the SPEI,
our methodological approach can detect yield shocks. Thresholds are identified at observed
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SPEI values where significant changes in the SPEI-yield relationship occur. Conditional on the
thresholds identified and coefficients estimated, we calculate the impacts of the SPEI on yield
for rice, wheat, barley, maize, sorghum and millet, which in India collectively account for 70%
and 60% of the total caloric intake of rural and urban households, respectively (Deaton and
Drèze 2009). Cereal production is dependent on rainfall during the kharif season (June–
September) (Revadekar and Preethi 2012), when much rice, maize and millet are cultivated,
whereas crops grown in the rabi season (October–March), such as wheat and barley, are
predominantly grown under irrigated conditions. Irrigation compensates for rainfall deficiency
and potentially mitigates some of the negative effects of heat stress (Zaveri and Lobell 2019;
Tack et al. 2017b).

We first identify thresholds for each crop before examining the extent to which these thresholds
vary depending on agro-ecological zone and the extent of irrigation. Millet and sorghum grow in
areas where other crops fail and are, to varying degrees, considered drought tolerant and resistant to
hotter temperatures (Assefa et al. 2010; Maman et al. 2003; Serba and Yadav 2016; Tack et al.
2017a). We would therefore expect critical thresholds for these crops to occur at lower SPEI values
than rice, which has much higher water requirements (Singh et al. 2017; DeDatta 1981). For maize,
both positive and negative deviations from climatic norms have been shown to affect yields, so we
might expect thresholds to occur in bothwet (positive) and dry (negative) ranges of the SPEI (Zipper
et al. 2016; Li et al. 2019). Despite critical soil moisture provided by rainfall at the end of the kharif
season, thresholds for wheat and barley are more likely to emerge in the rabi rather than the kharif
season because the post-monsoon months (October and November) are included in the rabi season
SPEI (Prasanna 2014).

Our empirical approach, applicable to other outcome measures as well as other types of
extreme weather event, demonstrates how crossing thresholds identified in the data translate
into predicted, average yield losses. To illustrate how the existence of thresholds affects
welfare, we compare the average revenue loss per hectare and total revenue losses against
several different counterfactuals. We thus distinguish between the additional revenue loss per
hectare associated with crossing a particular threshold and its total revenue loss, which
depends both on the per hectare effect and the frequency of districts crossing a particular
threshold in a given year. In the remainder of the paper, we first discuss the measures used to
analyse the impacts of extreme weather events, in Section 2, before detailing our data and
methods in Section 3. Our results are presented in Section 4, which are then discussed in
Section 5. Section 6 concludes.

2 Measuring the impacts of extreme weather events

There is no universal definition of what constitutes an extreme weather event. Temperatures
and rainfall below and above certain thresholds are known to harm crop yields. Yet, temper-
ature thresholds aside (e.g. Schlenker and Roberts 2009), a lot of ambiguity remains regarding
the measures used to define extreme weather events and their effects on agricultural outcomes.
This is illustrated by more than 150 definitions of ‘drought’ proposed in the literature (Wilhite
and Glantz 1985). A key issue is defining how deficient weather conditions need to be to be
considered ‘extreme’. Consequently, a wide range of indices and metrics have been used to
analyse the impacts of extreme weather events. These range from simple weather-based
indices, favoured by policymakers, to very data-intensive multidimensional measures
(Mishra and Singh 2010). When researchers and policymakers consider the impacts on
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agricultural outcomes, the most commonly used are measures of temperature or rainfall, or
measures that account for both temperature and rainfall.

Research on temperature thresholds shows that, beyond a certain point, high temperatures
have acute effects on crop growth. Temperatures thresholds estimated at 29 and 30 degrees
reduced county-level maize yields in the USA and Africa, respectively (Schlenker and Roberts
2009). Higher still are temperatures above 34 degrees, which were found to be harmful for
wheat yield (Aiqing et al. 2018; Lobell et al. 2012; Tack et al. 2017b; Tack et al. 2015), with
changes in sowing times (Lobell et al. 2013) and irrigation (Tack et al. 2017b) critical for
offsetting the effects of extreme heat. Research on rice indicates that temperatures in the 30–
35-degree range negatively affected yields (Wang et al. 2014; Zhang et al. 2016;
Bheemanahalli et al. 2016) and that rice is sensitive to both minimum and maximum
temperatures (Welch et al. 2010; Peng et al. 2004). Similarly, research on sorghum suggests
thresholds of around 33 degrees (Tack et al. 2017a; Miller et al. 2020).

Definitions of extreme weather events using rainfall measures, however, vary. One ap-
proach defines a specific threshold with respect to the long-term average. In India, studies of
drought impacts on rice yields defined droughts as departures of 15%–20% below the long-
term mean, finding negative impacts (Auffhammer et al. 2012; Pandey et al. 2007).
Auffhammer et al. (2012) also found that excess rainfall negatively impacted rice yields. In
the USA, both extreme rainfall and extreme drought, defined as −2 and + 2.5 standard
deviations from the mean, respectively, had comparable effects on maize yields (Li et al.
2019). Leng and Hall (2019) analysed the effects of drought on wheat, rice and maize crop
failure in various countries, using the Standardised Precipitation Index (SPI). Their results
suggest that drought, at and below a SPI value of −0.8, nonlinearly increased the probability of
crop failure. Rainfall thresholds and indices are also used in drought monitoring systems. In
India, for example, negative deviations of 20% from the long-term monsoon rainfall repre-
sented the threshold for declaring a drought at the district level (Gupta et al. 2011). According
to the World Meteorological Organization, the SPI index has been used in research, or in
operational situations, in more than 70 countries (WMO 2012).

Recognising the importance of temperature and its increasing role in drying trends world-
wide (Vicente-Serrano et al. 2014), an increasing number of indices that incorporate both
rainfall and temperature have been proposed (Vicente-Serrano et al. 2012; Yu and Babcock
2010; Fontes et al. 2020). Of these, researchers have been turning to the Standard Precipitation
Evapotranspiration Index (SPEI), which captures both precipitation and temperature (Vicente-
Serrano et al. 2012; Zipper et al. 2016). Much of the literature using the SPEI has, so far, used
sharp cut-off values to define a drought event, often around a value of −1 (Chen et al. 2016;
Udmale et al. 2020).

Our study adopts the SPEI over alternative measures, although all measures have advan-
tages and disadvantages depending on application. Compared to precipitation and evapotrans-
piration indices, temperature variables better capture both heat stress and intra-seasonal
extreme weather (when using degree-day variables). Thus, temperature variables are particu-
larly relevant for climate change projections because climate change-induced changes in
rainfall are less certain, more geographically heterogeneous and possibly smaller than temper-
ature increases associated with global warming (Fishman 2016; Lobell et al. 2011b; Lobell and
Burke 2008). However, temperature variables do not account for excessive rainfall and are a
less adequate proxy than evapotranspiration for measuring meteorological drought (Benami
et al. 2021). The inability to detect potential excessive rainfall thresholds has been shown to be
important in crops such as maize (Li et al. 2019; Zipper et al. 2016).
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Although favoured by policymakers, rainfall indices fail to capture heat stress, a crucial
determinant of crop yields. This is especially problematic because increases in temperature,
rather than the increased intensity of low rainfall events, seem to account for observed drying
trends (Vicente-Serrano et al. 2014). As such, indices that measure evapotranspiration, cap-
turing both precipitation and heat stress, are critical for analysis of the impacts of extreme
weather events on agricultural production (Mishra and Singh 2010; Vicente-Serrano et al.
2012). Recent research has also shown that the SPEI has typically outperformed rainfall
indices, such as the SPI, when examining impacts on yields (Chen et al. 2016; Vicente-
Serrano et al. 2012).

3 Data and methods

3.1 Data

The SPEI is a multi-scalar index that relies on the concept of a climatic water balance. It is
calculated as the difference between precipitation and evapotranspiration over a given period
of time (see SI - 1). Following the calculation of the water balance, its value is then
standardised using a log-logistic distribution and computed at different timescales. The SPEI
therefore captures both precipitation and temperature and is comparable across time and space.
Negative (positive) SPEI values denote dry (wet) climatic conditions and are used to categorise
extreme weather events (Labudová et al. 2017). SPEI values between −0.99 and 0.99 denote
normal climatic conditions, while values in excess of −1 (1), −1.5 (1.5) and − 2 (2) denote
moderate, severe and extreme drought (wet) conditions, respectively. Our SPEI data are
sourced from Vicente-Serrano et al. (2010).

Our empirical model, described below, is only capable of detecting a threshold for a single,
continuous variable.1 Aggregation is therefore necessary. Specifically, we condense the
seasonal information into one index, and adopt the SPEI with a 4-month lag in September
for the kharif season and with a 6-month lag in March for the rabi season, thus capturing the
cumulative climatic water balance over each of these two periods. Although we are unable to
identify the months during the season when deviations in the climatic norms are most likely to
affect yields, our SPEI lags are consistent with widely used definitions of both the kharif and
rabi seasons, e.g. Mall et al. (2006), Revadekar and Preethi (2012), Auffhammer et al. (2012),
Rao et al. (2014), Prasanna (2014), Gumma et al. (2019) and Mahto and Mishra (2020). The
SPEI measures are compiled at district scale for each year between 1966 and 2011, the values
of which are shown in Fig. S.1. Ideally, we would create a more granular district-crop specific
lag. This, however, requires information about the growing periods of different crop varieties
and the share of the crop sown or harvested in a given month, all of which are likely to have
changed over our 46-year sample period. To our knowledge, such granular information is
unavailable.

Our agricultural data are drawn from the ICRISAT Meso-level Database, which contains
information on a range of agricultural and socioeconomic variables at the district level
(ICRISAT 2012). We use data for the years 1966–2011. Since 1966, several districts have

1 According to Hansen (2000), there is no known distributional theory for models that use multiple threshold
variables. To our knowledge, no threshold models for multiple threshold variables have been developed for a
panel data setting.

Climatic Change (2021) 165: 26 Page 5 of 20 26



split into smaller districts. To maintain spatial consistency over time, district splits are
addressed by returning split districts to their parent districts in 1966. Out of the 311 available
in the database, 242 districts are used to create a balanced panel for generating our main
results. Data are available on annual crop production and area, which we use to construct crop
yield variables for rice, wheat, maize, barley, sorghum and millet. These crops are produced
across the country (Fig. S.2), although there has been a shift away from the cultivation of
sorghum, barley and millet towards rice, wheat and maize over our study period (Fig. S.3). For
each crop sample, we create additional sub-samples according to agro-ecological zone and the
extent of irrigation. The former is defined as either arid or humid (see SI – 1 and Fig. S.4). The
latter defines ‘low irrigation’ (‘high irrigation’) as districts where the average share of irrigated
area for a given crop is below (above) the median. Table S.1 provides summary statistics of
some of our key variables.

3.2 Empirical approach

To estimate the impact of the SPEI on yield, we employ a threshold regression estima-
tion strategy with fixed effects (Hansen 1999). Our empirical approach is broadly
applicable, both to other types of extreme weather events as well as other outcome
variables, assuming that (i) the outcome variable is stationary, (ii) the threshold variable
is continuous and (iii) the expected threshold is not in the trimmed section. The threshold
model augments the standard linear fixed effects model by estimating how the effect of
the SPEI on crop yield differs for different ranges of the SPEI. It is estimated by utilising
Stata code described in Wang (2015).

Equation (1) formalises the model in the case of a single threshold qit of the SPEI for district
i in year t: SPEIit is the SPEI value; ln(yit) is the natural logarithm of crop yield; αi is a district-
level fixed effect; λit and μit2 are, respectively, district-specific linear and quadratic trend
variables; and eit is the error term.2 In several specifications, as a robustness check (see below),
we also include a set of control variables (Xit,).

lnyit ¼ αi þ SPEI jit qit < γð Þβ1 þ SPEI jit qit ≥γð Þβ2 þ Xitδ þ λitþ μit
2 þ eit ð1Þ

where:

lnyit ¼ αi þ SPEI jitβ1 þ Xitδ þ λitþ μit
2 þ eit if qit < γ

αi þ SPEI jitβ2 þ Xitδ þ λitþ μit
2 þ eit if qit≥γ

�
ð2Þ

Rather than the effect of changes in the SPEI being constant across all values of the threshold
variable (ranges of the SPEI, qit), the threshold model estimates the value of one or more
thresholds (qit = γ), for which the marginal effect of changes in the SPEI has a different effect
on yields (see also SI – 2). This method allows us to test whether such a threshold exists and if
so, enables us to estimate threshold values and compute different coefficients for different
ranges of the SPEI.

When searching for a threshold, we need to eliminate (trim) the largest and smallest
n% of the threshold variable (Hansen 1999). As in Hansen (1999), we trim the top and
bottom 1%, and the remaining values of the threshold variable constitute the searchable

2 We also test for stationarity of the dependent variable and apply several panel unit root tests (Table S.2). In all
cases, the null of a unit root is rejected at the 1% level.

26 Page 6 of 20 Climatic Change (2021) 165: 26



range of values for a threshold.3 To test for the statistical significance of a threshold, this
method implements a likelihood ratio test of whether the coefficients are equal on both
sides of the threshold (i.e. H0 : β1 = β2). A bootstrap procedure ran over 1000 iterations is
used to construct the p-values for this test. If we fail to reject H0, the model is equivalent
to the linear fixed effects model. The method also allows us to compute multiple
thresholds, with Stata allowing for a maximum of three.4

A benefit of using panel data to measure impacts of deviations in the SPEI is that it allows
us to control for the influence of time-invariant district-specific factors that could influence
yields, such as different soil types, altitude or institutional differences that have persisted over
the sample period. District-specific quadratic time trends are included to account for different
trends in yields across districts. Standard errors are clustered at the district level. The number
of districts, in excess of 50, is sufficient to ensure that the asymptotic assumptions for
clustering are satisfied (Cameron and Miller 2015). Compared to other methods, the threshold
model has several advantages. First, it does not impose a global linear relationship between the
independent variable and the dependent variable as in the case of a linear regression. Second, it
does not impose symmetry in the functional relationship between the SPEI and yield as in a
quadratic model,5 nor does it impose a strict functional form as is the norm in the case of
higher-order polynomial regressions (see also SI – 2).

3.3 Robustness checks

We undertake several robustness checks on our results. First, we test the sensitivity of our
results to changes in the trimming cut-off point (at 0.5, 1.5 and 2.5%). Second, to test the
sensitivity of our standard errors, we re-run all of the regressions using different clustering
variables (by year and state-year) and estimate Conley (1999) standard errors, which account
for spatial and temporal correlation, using the code provided by Hsiang (2010). Third, we test
the sensitivity of our results to changes in the SPEI lag for the kharif season. While most of
India’s rainfall falls in June–September, climatic conditions in other months (e.g. October and
November) have also been shown to be important for crop yields (Auffhammer et al. 2012).
We therefore adopt alternative lag specifications of the SPEI, using a 5-month (June–October)
and a 6-month (June–November) lag. Fourth, we test the sensitivity of our results to the
inclusion of control variables (cropped area, rural population per hectare, fertiliser used and
proportion of land under irrigation). However, given that our method requires a balanced
panel, we lose many districts.

Estimated yield losses from our threshold model are also compared to estimates from a
model using dummy variables to capture the effects of the SPEI on our yield variables at
different percentiles or increments of the SPEI index (‘bins’ approach). Our preference is to
use the percentiles approach (see SI - 3) but we also test the sensitivity of our results by using
coarser bins (increments of 0.25 and 0.5 of the SPEI), to alleviate concerns related to imprecise

3 A 1% cut-off was selected because there is a trade-off in allowing the identification of thresholds as close as
possible to the extremes (requiring a low trimming cut-off) and having a sufficient number of observations to
allow for identification (requiring a higher cut-off). A similar cut-off was used by Hansen (1999) with a dataset of
a similar size to our dataset.
4 In our case, we identify a maximum of two threshold values in all samples, with the model always rejecting the
possibility of a third threshold.
5 In the case of yields, there is a good reason to believe that impacts of the SPEI may be asymmetric. Thus, a
model that does not impose symmetry in the SPEI-yield relationship is desirable.
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estimates of more granular bins.6 The bins approach is a suitable robustness check because it
also does not, a priori, impose a shape on the SPEI-yield relationship and, with small bins,
allows us to visually identify whether the ‘jumps’ and thresholds identified by the threshold
model are reflected in the data. Thus, unlike a quadratic functional form, it allows the
relationship to be asymmetrical around a given turning point.

However, to address our research question, we prefer the threshold model over the
bins approach for several reasons (see also SI – 3). First, the bins approach is more
subjective than the threshold model. The results and the ability to identify thresholds
hinge on both the choice of baseline category and the coarseness of the bins. Second,
identifying the location of the SPEI at which the yield-SPEI relationship is likely to
change is problematic using bins. Granular bins, which allow us to visualise ‘jumps’, are
estimated more imprecisely, whereas coarser bins, although estimated more precisely,
may render the range of the identified threshold too large to be meaningful.7 Third, the
baseline category could prevent a threshold from being identified if the threshold falls
within this category, thus potentially generating underestimates in the costs of extreme
events.8 Fourth, near the extremes, where there are typically fewer observations but
where extreme event thresholds are most likely to be located, it would be very difficult to
identify thresholds using a bins approach. Too few observations imply noisier estimates.
The threshold model improves on the bins approach because it is both more objective
and allows for the identification of thresholds near the extremes. That said, the confi-
dence intervals will typically be larger for such thresholds.

3.4 Estimating the per ha and total revenue losses

Our yield loss estimates are multiplied by national-level crop prices reported in 2005 to obtain
the average revenue loss per hectare.9 The predicted revenue loss associated with a 0.1
decrease in the SPEI value at each identified threshold is estimated using different specifica-
tions, specifically a log-linear and a quadratic model for the negative range of the SPEI, as
alternative counterfactuals against our threshold model (see SI - 4). To obtain total revenue
losses, we multiply estimates of district- and year-specific yield losses by cultivated area and
crop prices for all observations with a negative SPEI. The procedure for calculating the
marginal and total revenue losses is detailed in the SI (4). Finally, we compare our estimates
with those generated from a number of plausible counterfactuals, starting with the quadratic
and log-linear specifications, where for each the SPEI threshold is set first at 0 and then at −1.
Two more counterfactuals are generated, using the bins approach (increments of 0.5) and from
a rainfall dummy consistent with India’s district-level drought declaration threshold, that is, a
20% rainfall deviation from long-term average rainfall (Gupta et al. 2011).

6 Note, however, that using coarser bins results in a loss of granularity which makes it more difficult to assess
whether our linear relationship changes at the identified SPEI value.
7 For example, the difference in return periods between a SPEI value of −1 and − 2 is very large (in the range of
4–6 years and 50–60 years, respectively, in our samples). Therefore, knowing that the threshold lies somewhere
between −1 and − 1.5 or between −1 and − 2 may not be very useful for policy-makers.
8 Here we note that it is possible to avoid this by changing the range of the SPEI used as the baseline category.
9 We choose 2005 because it is a recent year with relatively few drought-affected districts, so national prices were
less likely to be affected by drought. A fixed year was chosen to ensure comparability of costs over space and
time (see also SI – 4).
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4 Results

Figure 1 shows the number of events per district below (above) a SPEI threshold of −1 (1) and
− 1.5 (1.5). Over the sample period, northern and eastern India, where districts tend to cultivate
rice, wheat, barley and, to a certain extent, maize, have experienced a higher number of events
in which the SPEI has been below −1 or − 1.5. Wet years, events in which the SPEI has been
above 1 or 1.5, have occurred more frequently in southern and north-western India, where
more millet, sorghum and, to a certain extent, rice are produced. We estimate the impacts of a
marginal decline in the SPEI on yield. A SPEI-yield threshold is identified (at a SPEI value)
when the marginal effect has a significantly different impact on yield either side of the
threshold. For all results, we report the percentage yield changes associated with a 0.1-unit
fall in the seasonal SPEI value, on either side of each identified threshold. Figures 2 and 3
present the crop-specific threshold results (from Table S.3).10 Crop-specific results by irriga-
tion extent and agro-ecological zone are presented in Tables S.6–S.10 (see also SI – 3).
Vertical lines indicate the location of the thresholds: when two are identified, the one with the
lowest SPEI value is denoted T1 (solid red line), followed by T2 (dashed red line). No
threshold implies a linear relationship between the SPEI and log-yield. All estimated coeffi-
cients are statistically significant at the 1% level unless stated otherwise.

Starting with rice, we identify two thresholds during the kharif season: −1.348 (T1) and
0.339 (T2) (Fig. 2a). Above T2, a 0.429% yield loss is observed. Between T2 and T1, yield
loss jumps almost threefold to 1.331%, increasing to 2.032% below T1. In the rabi season, one
threshold is identified: 0.890. Above, yield declines by 0.192% (Fig. 2b); below, yield loss
almost trebles to 0.544%. By irrigation extent (Table S.6), we find thresholds at lower SPEI
values in districts with higher levels of irrigation and smaller marginal effects. Across agro-
ecological zones, thresholds occur at lower values of the SPEI index and marginal effects are
more severe in arid areas, a result that holds for both kharif and rabi rice.

Millet also has two thresholds during the kharif season (Fig. 2c): −1.724 (T1) and 0.689
(T2). A 0.050% yield loss is observed above T2, although this impact is not significantly
different from zero. Between T2 and T1, yield loss is 1.677%. Below T1, yield loss grows to
2.892%. We do not find large differences depending on irrigation extent (Table S.7). Although
impacts are slightly smaller in districts with higher shares of irrigated millet, this is expected
due to the very low share of irrigated area for millet in both high- and low-irrigation sub-
samples. We find much higher marginal effects in arid areas as opposed to humid areas. Only a
small proportion of millet is grown during the rabi season, and hence, the model is not
estimated. For a similar reason, the model is not estimated for maize during the rabi season.

In contrast to rice and millet, the marginal effect at higher SPEI values is associated with
yield increases of maize and sorghum in the kharif season; at lower values, the marginal effect
is negative. Maize has two thresholds: −1.746 (T1) and − 0.358 (T2) (Fig. 2d). We observe a
0.769% yield increase above T2. Between T2 and T1, this becomes a 0.672% yield loss.
Below T1, yield loss more than doubles to 1.688%. This is a pattern we observe across all
irrigation and agro-ecological sub-samples (Table S.8). Interestingly, whereas in arid areas
maize yields are affected by both high and low values of the SPEI, in humid areas, wet
conditions seem to have larger negative impacts on maize yields.

Sorghum also has two kharif thresholds: −1.702 (T1) and − 0.205 (T2) (Fig. 2e). Above T2,
we report a 0.657% yield increase. Between T2 and T1, this becomes a yield loss of 1.653%,

10 Threshold tests and the confidence intervals of thresholds are presented in Tables S.4 and S.5.
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rising to 2.561% below T1. We also find two thresholds in arid areas but only one in humid
areas (Table S.9). While low SPEI values seem to have the largest negative effects on yields in
arid areas, the coefficients in humid areas suggest that high SPEI values are likely to be equally
problematic in humid areas. No threshold for sorghum is identified in the rabi season (Fig. 2f).

No thresholds are identified for wheat in either season (Fig. 3a–b), except for the low-
irrigation and humid sub-samples in the rabi season (Table S.10). Both sub-samples indicate
that wet years are likely to lead to larger impacts than dry years. For barley, we find no
threshold during the kharif season (Fig. 3c) but identify two thresholds in the rabi season:
−0.674 (T1) and 0.600 (T2) (Fig. 3d). Above T2, we report a 0.040% increase in yield,
although this impact is not significantly different from zero. Between T2 and T1, yield loss is
0.997% and below T1, 0.419%. We do not compute barley results by sub-sample because the
samples are too small.

Fig. 1 The number of events per district with a SPEI below or equal to (above or equal to) − 1 (1) and − 1 (1.5),
1966–2011. Note: Figure 1 maps the district frequency of events with a SPEI value: below -1 (panel a), below -
1.5 (panel b), above 1 (panel c), and above 1.5 (panel d)
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4.1 Robustness checks

Our results remain very similar when we change the trimming cut-off points, cluster at
different levels, and account for spatial correlation (Tables S.11 and S.12). We test the

Fig. 2 Threshold regression results for rice, millet, maize and sorghum. Note: The panels in Figure 2 show the
following results: Panel (a) – Rice (kharif), Panel (b) – Rice (rabi), Panel (c) - Millet (kharif), Panel (d) - Maize
(kharif), Panel (e) - Sorghum (kharif), and Panel (f) - Sorghum (rabi). The black line denotes the predicted
change in log-yields from the threshold model when compared to a reference SPEI value (set to zero), and
corresponds to the left-hand y-axis. The dashed grey line denotes the estimated coefficients (marginal effects)
associated with a specific SPEI value over its whole range, and corresponds to the right-hand y-axis. The vertical
lines indicate the thresholds’ locations. When two thresholds are estimated, the one with the lowest SPEI value is
a solid line shaded red denoted T1, followed by T2 (dashed line shaded red). The dotted red lines denote the 95%
confidence interval ± 1.96 s.e
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robustness of the kharif results to alternative lag specifications of the SPEI, using a 5-month
(June–October) and a 6-month (June–November) lag (Table S.13). Overall, we find no
differences in the number of identified crop thresholds for all crops grown mainly in the kharif
season. For wheat, changing the lag of the SPEI changes the number of estimated thresholds but
this is due to the inclusion of post-monsoon months, which is likely to affect wheat yields
(Prasanna 2014). Potential omitted variable bias is addressed by including time-varying
controls in our threshold models (Table S.14), and the fit of the threshold model is checked
by application of a bins approach using different increments (percentiles, 0.25 and 0.5 incre-
ments; see Figs. S.5-S.10). The results are consistent with our main results in Figs. 2 and 3. The
line depicting the threshold model follows the scatter dots from the coefficients of the different
‘bins’ specifications very closely. Thus, these two specifications generate similar results.

4.2 Revenue losses: severity versus frequency of threshold effects

Figure 4 shows estimates of the additional revenue loss per hectare (evaluated at the threshold)
attributable to thresholds, by comparing the predicted revenue losses generated by the

Fig. 3 Threshold regression results for wheat and barley. Note: The panels in Figure 3 show the following
results: Panel (a) - Wheat (kharif), Panel (b) - Wheat (rabi), Panel (c) - Barley (kharif), and Panel (d) - Barley
(rabi). The black line denotes the predicted change in log-yields from the threshold model when compared to a
reference SPEI value (set to zero), and corresponds to the left-hand y-axis. The dashed grey line denotes the
estimated coefficients (marginal effects) associated with a specific SPEI value over its whole range, and
corresponds to the right-hand y-axis. The vertical lines indicate the thresholds’ locations. When two thresholds
are estimated, the one with the lowest SPEI value is a solid line shaded red denoted T1, followed by T2 (dashed
line shaded red). The dotted red lines denote the 95% confidence interval ± 1.96 s.e
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threshold model with estimates from a log-linear model (a) and a quadratic model (b). For all
samples, except barley during the rabi season, the T1 are associated with the highest increases
in the revenue loss per hectare compared to the T2.

Most of the T1 are identified at low SPEI values, −1.3 to −1.8 (moderate to severe drought), which
implies that districts rarely cross T1. Return periods (the average frequency that an event, as or more
severe, is likely to occur) range between 9.3 and 25.6 years for the kharif crop samples (Table S.3). By
contrast, most of the T2 are identified at SPEI values characterising normal climatic conditions and are
likely to be crossed every 1.3 to 2.3 years (Table S.3). That such ‘crossing events’ often occur at least
partiallywithin ranges of the SPEI defining climatic norms implies that they are likely to be overlooked
by policymakers. The estimated coefficients from the threshold regression associatedwith these events
are, in most cases, much smaller (barley aside, they are 30–70% lower), but these events occur more
frequently. This implies that, although each eventmight be associatedwith a low revenue loss, the total
revenue loss could be high if events occur frequently.

We illustrate how the frequency of crossing thresholds combine with revenue loss per event
to generate total revenue losses in Fig. 5 a and b, which show the additional total revenue
losses associated with crossing the T2 (but staying above the T1) and the T1. Despite lower
revenue losses per hectare, the much lower return periods for the T2 in comparison to those for
the T1 generate higher total revenue losses. Also, total revenue losses due to districts crossing
thresholds have risen over our study period, particularly after 2000 (see Figs. S.11 and S.12
using alternative counterfactuals). Rising total revenue losses are due to rising cereal yields
over time and an increase in the frequency of districts crossing the T1.

To emphasise the policy relevance of our estimates, Fig. 6 compares the estimated revenue
losses from our threshold models not only with those from the quadratic and log-linear models
but also with two alternative yet arbitrarily defined thresholds that have been adopted in
research and policy, namely, rainfall deviations below 20% of long-term mean (‘rainfall
dummy’) and SPEI values below −1. Compared to a SPEI of 0, all of these counterfactuals
underestimate revenue losses to some extent, from around 5% (quadratic) to approximately
60% (log-linear using a SPEI threshold of −1).

Fig. 4 Revenue loss per hectare by crop and threshold. Note: Figure 4 shows the revenue loss per hectare by crop
and threshold against a log-linear counterfactual (panel a) and a quadratic counterfactual (panel b). Predicted
losses to the left of the red vertical line are for kharif season thresholds; those to the right are for rabi season
thresholds. For the quadratic counterfactual for T1 rice, the bar is almost completely black because the two
specifications give almost the exact same result (3.378 for the threshold model vs. 3.388 for the quadratic model)
and as a result the grey bar is “hidden” behind the black bar
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5 Discussion

Extreme weather events in India, specifically drought, are characterised as thresholds, the
crossing of which generate large, asymmetric shocks to the marginal effect on yield. Consis-
tent with previous research using text-based impact reports (Bachmair et al. 2016), we found
no evidence for thresholds that could be uniformly applied in heterogeneous agro-ecological
conditions and to different crops, except possibly across crop cluster groups (e.g. millet and
sorghum) in areas with similar conditions. This implies that the application of a uniform,

Fig. 5 Total revenue loss per time sub-period. Note: Total costs per sub-period are estimated by summing the
predicted yields given the observed SPEI value vs. predicted yields at SPEI equal 0 for each crop for which a
threshold is found. The difference implied by the threshold is estimated by comparing the implied yields under
the threshold model given observed SPEI values against the implied yields given observed SPEI values using an
alternative specification: (a) vs. quadratic; (b) vs. quadratic (threshold at SPEI = -1)

Fig. 6 Comparison of estimated revenue losses across counterfactuals. Note: Total costs per sub-period are
estimated by summing the predicted yields given the observed SPEI value vs. predicted yields at SPEI equal 0 for
each crop for which a threshold is found. The difference implied by the threshold is estimated by comparing the
implied yields under the threshold model given observed SPEI values against the implied yields using different
counterfactuals. The comparison across counterfactuals is obtained by dividing the average difference between
the threshold model and a given counterfactual by the average predicted revenue loss using the threshold model
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arbitrarily defined threshold, as is commonly used in many countries (Hao et al. 2017; WMO
2018), potentially misidentifies the impacts of drought on yield and leads to incorrectly
targeted policy responses.

Consistent with rice’s substantial water requirements and despite being mostly grown in humid
areas, drier conditions reduced yield substantially, even at positive SPEI values. The identification of
thresholds within climatic norms can be explained by the fact that most of our districts have seasonal
rainfall below the optimal for rice (Ratnasiri et al. 2019; Singh et al. 2017; DeDatta 1981). The crops
considered best suited to dry conditions, millet and sorghum, are often grown in more arid regions
under non-irrigated conditions. We estimated moderate impacts on millet yield at SPEI values
characterising normal climatic conditions, a result that is consistent with drought being the major
abiotic stress tomillet production in India (Murty et al. 2007) andwith research in other settings, e.g.
China (Chen et al. 2016).

Millet and sorghum, along with maize, had T1 with SPEI values close to −2 (extreme
drought), thus generating very severe yield losses. These values indicate a high capacity for
drought tolerance but also show where the limits to tolerance lie, which in arid areas suggests a
need for new cultivars and innovation in strategies to adapt sorghum (Tack et al. 2017a) and
maize to extreme drought conditions. Consistent with previous research on maize and sorghum
(Zipper et al. 2016; Assefa et al. 2010; Li et al. 2019; Tack et al. 2017a),11 we also found a
negative effect on sorghum and maize yields along the positive range of the SPEI.

Wheat aside, two thresholdswere identified for every crop in at least one season.Although a lower level
of rainfall during the previous kharif season increased wheat’s dependence on rainfall in the rabi season
(Zaveri et al. 2016), we found no evidence of thresholds in either season. This we attribute to irrigation.

Across the irrigation sub-samples, we only found substantial differences in thresholds and
coefficients for those crops, namely, wheat and rice, where there was considerable variation in the
share of irrigation. Consistent with research showing that irrigation mitigates both heat and water
stress, smaller marginal effects were estimated in districts where irrigationwasmore prevalent (Tack
et al. 2017b; Zaveri and Lobell 2019). Another consistent finding is that thresholds occurred at lower
SPEI values in the ‘high irrigation’ sub-sample, suggesting evidence for the important role of
irrigation mitigating the impacts of extreme weather. Yet, the effectiveness of, and potential for,
expanding irrigation is likely constrained by rapidly depleting groundwater reserves since ground-
water has increasingly been used as a buffer (Zaveri and Lobell 2019; Siegfried et al. 2010). If
resilience to crossing thresholds is built upon unsustainable water management practices, this may
simplymean that districts are trading current for future resilience. In such cases, to develop resilience
to a warming climate, rules are needed that potentially improve water management, to help
determine the use rights of surface water in wet years and those of groundwater in dry years
(Siegfried et al. 2010).

A consistent finding across agro-ecological zones is that, although thresholds tended to occur at
lower values of the SPEI in arid areas, yield impacts in humid districts in both seasons were
noticeably smaller for all crops at low values of the SPEI. In arid districts, with harsher growing
conditions, we estimated large marginal effects even at SPEI values characterising normal climatic
conditions. To some extent, this is consistent with the finding that SPEI impacts are larger at high
temperatures (Matiu et al. 2017) and that the impacts of heat stress are amplified by drought
conditions (Lobell et al. 2011a). Since arid districts are generally hotter and drier, a lowSPEI value is
likely to represent both substantial heat and water stress.

11 The estimated rainfall-yield relationship estimated in Tack et al. (2017) indicates that above 500-600 mm,
additional rainfall may decrease crop yields.
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In general, lower SPEI values were associated with higher yield losses in the kharif than in
the rabi season, in line with kharif being India’s main cropping season. In the rabi season, for
certain crops, our results suggest that wet, rather than dry conditions, had a larger overall effect
on yields. Indeed, in the wet range of the SPEI, we observed larger negative impacts on yields
in humid districts: the thresholds identified for wheat in the rabi season and sorghum in the
kharif season highlight the threat of excessive wetness for yields.

6 Conclusion

Between 1966 and 2000, SPEI values rarely fell below T1, with a low proportion of revenue
losses attributed to crossing T1. Yet, between 2000 and 2011, the likelihood of the SPEI value
crossing T1 increased in frequency, as shown by the increased share of revenue losses
attributable to events below T1, with critical implications for agricultural production, incomes
and livelihoods. Given climate change projections of increasingly erratic rainfall and rising
temperatures in India (IPCC 2014), there is a risk of more intense and frequent yield losses
potentially inflicting further revenue losses.

Yet, our current understanding of the impacts of extreme weather events in general, and
drought in particular, remains constrained by our limited capacity to identify the point at which
the intensity of the impacts of evapotranspiration significantly worsens thus triggering a
drought. Knowledge of the differences in sensitivity to deviations in the SPEI would help
make drought triggers more objective and improve our understanding of potential climate
change-induced drought impacts. While acknowledging that thresholds are likely to change in
the future, our results could help identify when the conditions underlying drought might start
significantly increasing the magnitude of yield losses. Given evidence of asymmetric impacts,
our results also suggest how adaptation policy might be cost-effectively targeted, for example,
to reduce the impacts of frequently crossed T2.

Our methodology can be extended to estimate threshold values and yield losses for a given
month, although we are yet able to condition a monthly value on the previous month’s value.
Hence, it can partially but not fully address the intra-annual or -seasonal deviations characterising
the response function between the SPEI and yield. Forecasting models also stand to benefit from
extensions of our methodology. Threshold values and their coefficients could be combined with
forecasted SPEI values to help predict future impacts, with the generated yield-response functions
used to simulate the nonlinear impacts of climate change scenarios on yield. Finally, our
methodology can be extended to the estimation of impacts on other outcome variables and,
assuming a threshold characterised as a plausibly exogenous biophysical process or extreme
weather event, it could also be applied to threshold identification in other socio-ecological systems.
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