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Abstract

We introduce two extensions of the canonical Feller–Spitzer distribution from the class
of Bessel densities, which comprise two distinct stochastically decreasing one-
parameter families of positive absolutely continuous infinitely divisible distributions
with monotone densities, whose upper tails exhibit a power decay. The densities of the
members of the first class are expressed in terms of the modified Bessel function of the
first kind, whereas the members of the second class have the densities of their Lévy
measure given by virtue of the same function. The Laplace transforms for both these
families possess closed–form representations in terms of specific hypergeometric
functions. We obtain the explicit expressions by virtue of the particular parameter value
for the moments of the distributions considered and establish the monotonicity of the
mean, variance, skewness and excess kurtosis within the families. We derive numerous
properties of members of these classes by employing both new and previously known
properties of the special functions involved and determine the variance function for
the natural exponential family generated by a member of the second class.
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Introduction
The discovery of new infinitely divisible distributions with regularly varying tails is
important for the development of distribution theory per se as well as for mathematical
modelling, and applications in statistics and to decision theory. Ideally, they should have
tractable probability density (or mass) functions (i.e., the p.d.f. and the p.m.f., respectively)
and/or Laplace transform. Here, we introduce the following two different stochastically
decreasing one-parameter families of positive absolutely continuous infinitely divisible
distributions whose upper tails have a power decay.
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Definition 1 Given the real-valued parameter ρ > 1/2, consider the following class of
positive functions of argument x ∈ R1+ := (0,+∞):

fρ(x) := (2ρ − 1)�(ρ)2ρ−1 · e
−xIρ(x)
xρ

. (1)

We define them at the origin by continuity such that

fρ(0) := lim
x↓0 fρ(x) = (2ρ − 1)/(2ρ). (2)

It is shown in “Properties of the class Xρ” section that each such function constitutes the
p.d.f. of its own non-negative absolutely continuous random variable, which is hereinafter
denoted byXρ and referred to as the generalized ρ-order Feller–Spitzer r.v. of the first type.

Definition 2 Consider a class of positive infinitely divisible distributions which is
indexed by the real-valued parameter ρ > 1/2, has the following density of its Lévy
measure ν

(2)
ρ ({·}) on R1+:

τρ(x) := 2ρ−1 · �(ρ) · e
−xIρ−1(x)

xρ
with x > 0, (3)

and does not have a drift component. Note that a combination of assumption (3) with the
well-known asymptotics of the modified Bessel function of the first kind Ir (introduced by
(104)) at 0 and +∞ yields the fulfillment of (Bertoin (1996), condition (3.2)). Hence, such
r.v., which is hereinafter denoted byYρ and called the generalized ρ-order Feller–Spitzer r.v.
of the second type, is well defined and generates its own subordinator whose corresponding
Laplace transform is as follows:

LYρ (λ) := E exp{−λYρ} = exp{−�ρ(λ)}
= exp

{
−

∫ ∞

0
(1 − e−λx) · τρ(x)dx

}
, where λ ≥ 0.

(4)

For each real ρ > 1/2, the non-negative r.v. Yρ is absolutely continuous on R1+ (see
Theorem 5.i). Hereinafter, we denote its p.d.f. by pρ(x).
It is interesting that the Laplace transforms of members of these two new classes of

distributions are related by virtue of the integral representation (60), which in turn is
closely related to the concept of ρ-function of the generic member of a certain subclass
of infinitely divisible distributions considered in (Steutel and van Harn (2004), formula
(V.2.3)). (Note that the parameter ρ employed throughout this paper is not related to the
letter ρ used in the concept of ρ-function due to Steutel and van Harn (2004).)
Both these families which are thoroughly studied in “Properties of the class Xρ” and

“Properties of the class Yρ” sections, respectively, were derived as an outgrowth of the
well-known distribution presented in Definition 3 of “Review and some new results for
the Feller–Spitzer class of Bessel densities” section, which is hereinafter referred to as the
canonical Feller–Spitzer distribution (compare to Examples 1 and 2). This probability law
first appeared in (Spitzer (1964), p. 236), but its major properties were presented by Feller
(1966a) and Feller (1966b) who termed a wider class the Bessel densities.
It should be pointed out that (Johnson et al. (1994), Section 12.4.4) considered the so-

called Bessel function distributions such that the p.d.f. of the generic member of such a
class involves an exponentially tilted modified Bessel function of the first type (104) with
an odd value of the index (see formula (12.95) therein). However, in contrast to the p.d.f.’s
and Lévy densities (i.e., densities of the corresponding Lévy measures) which emerge in
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this work, the power term of the p.d.f.’s from (Johnson et al. (1994), Section 12.4.4) has
a positive exponent, whereas it is negative in our case. Hence, the Bessel function dis-
tributions considered in (Johnson et al. (1994), Section 12.4.4) should not be confused
with ours. See also “Review and some new results for the Feller–Spitzer class of Bessel
densities” section for more detail on the terminology.
Each member of the two families introduced in Definitions 1–2 can be used as a mixing

measure to generalize the corresponding Poissonmixture with a comparable tail behavior
of its p.m.f. However, a detailed consideration of their properties is beyond the scope of
this paper. See also (Paris and Vinogradov (2020a), formula (1.2)).
In this paper, we will frequently utilize several special functions including the modi-

fied Bessel function of the first kind given by (104) as well as the Gauss hypergeometric
function and its generalization, which are introduced by Definitions 4 and 5, respec-
tively. For the reader’s convenience, numerous definitions and results on special functions
employed in this paper are deferred to “Appendix” section. In particular, it contains two
new inequalities (108) and (109) for Bessel functions.
This article is not self-contained. Hence, we refer to Letac (1992) and Jørgensen (1997)

for a comprehensive description and important examples of natural exponential families
(or NEF’s), and to Olver et al. (2010) for more detailed information on the relevant special
functions. The proof of some subtle analytic results on new properties of the modified
Bessel function of the first kind (104) including the inequalities (108) and (109) are given
in our work Paris and Vinogradov (2020b).
To conclude the Introduction, we summarize some notation and terminology that will

be used in the sequel. First, we follow the custom of formulating various statements of
distribution theory in terms of the properties of r.v.’s, even when such results pertain only
to their distributions. The acronym “ch.f." is used for a characteristic function. In what
follows, the sign “ d=" will denote the fact that the distributions of (univariate) r.v.’s coin-
cide, whereas the symbol “ d→” will stand for weak convergence. In the sequel, log stands
for the natural logarithm of the real or complex argument (In the complex case, log z is
understood as its principal value). An empty sum is interpreted as zero.

Review and some new results for the Feller–Spitzer class of Bessel densities
First, we present the following analytic result that can be derived from Feller (1966a).

Lemma 1 Given real λ ≥ 0,
∫ ∞

0
(1 − e−λx) · e

−xI0(x)
x

· dx ≡ − log
∫ ∞

0
e−λx · e

−xI1(x)
x

· dx

= − log
(

1
2(λ + 1)

· 2F1
(
1
2
, 1; 2;

1
(λ + 1)2

))
.

(5)

The above lemma will be used to relate formulas (6), (7) and (8). Separate parts of (5)
give an outgrowth to Definitions 1–2 as well as the main concepts of “Properties of the
class Xρ” and “Properties of the class Yρ” sections.
It is known that the identity (5) is closely related to an important positive absolutely

continuous infinitely divisible distribution which we call the canonical Feller–Spitzer dis-
tribution, since it was first considered by (Spitzer (1964), p. 236), Feller (1966a), and Feller
(1966b). It is introduced as follows:
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Definition 3 The canonical Feller–Spitzer positive absolutely continuous r.v. U1 is
defined by virtue of its p.d.f.

f1(x) := x−1e−xI1(x), where x ∈ R1+. (6)

By Feller (1966a) and Feller (1966b), r.v. U1 is infinitely divisible having the following
density τ1(x) of its Lévy measure (or its Lévy density):

τ1(x) ≡ x−1e−xI0(x), where x ∈ R1+. (7)

In view of (5), the Laplace transform of U1 acquires the following form for λ ≥ 0:

LU1(λ) := Ee−λU1 = exp
{
−

∫ ∞

0
(1 − e−λx)τ1(x)dx

}

= λ + 1 −
√

λ2 + 2λ = 1
2(λ + 1)

· 2F1
(
1
2
, 1; 2;

1
(λ + 1)2

)
.

(8)

The variance functionV1(μ) of the NEF constructed starting from the canonical Feller–
Spitzer r.v. U1 with p.d.f. f1(x) is as follows:

V1(μ) = μ2 ·
√

μ2 + 1, where μ ∈ (0,+∞] . (9)

The validity of (9) was stated by (Letac (1987), p. 154) in his discussion of (Jørgensen
(1987), Example 2.1). This also follows from a combination of (Jørgensen (1997), formula
(2.18)) with the fact that the inverse of the mean-value mapping for a NEF generated by
r.v. U1 equals

1 −
√
1 + 1/μ2 ≤ 0 with μ ∈ (0,+∞] . (10)

We refer to (Jørgensen (1997), p. 48) for more detail on the variance function of a generic
NEF and a related concept of the mean-value mapping.
The motivation behind the consideration of r.v. U1 in (Spitzer (1964), p. 236) and (Feller

(1966a), Subsection II.7.b) was partly because it emerges as the law of the first passage
time of level 1 for the so-called continuous–time symmetric Bernoulli random walk which
is characterized by mean 1 exponential time in between the jumps. More specifically, if
{B�, � ≥ 1} are i.i.d.r.v.’s such that P{B� = ±1} = 1/2 independent of a Poisson process
{N (t), t ≥ 0} with unit intensity, consider the (continuous-time and discrete space) com-
pound Poisson Lévy process S(t) d= B1 + ... + BN (t) and the corresponding first passage
time of positive integer level n ≥ 1:

Tn := min (t ≥ 0 : S(t) = n).

Then the r.v. Tn has the p.d.f. f ∗n
1 (u) of the nth partial sum U1(1)+ ...+U1(n) of n i.i.d.r.v.’s

with common canonical Feller–Spitzer distribution U1 with the p.d.f. f1(u).
The p.d.f. f ∗t

1 (u) was found by (Spitzer (1964), p. 236), Feller (1966a); Feller (1966b) to
be as follows:

f ∗t
1 (u) = t

u
· e−uIt(u), where u ∈ R1+. (11)

(It is straightforward to check that the expression which emerges on the right-hand side
of (11) constitutes a legitimate p.d.f. on R1+ for an arbitrary real-valued t ∈ R1+.)
The cumulant-generating function (or the c.g.f.) of the corresponding compound

Poisson-Bernoulli r.v. S(1) equals

cosh θ − 1 = (eθ + e−θ )/2 − 1 where θ ∈ R1. (12)
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Subsequently, in view of a slight modification of (Jørgensen (1997), pp. 124–125, Exer-
cise 3.15.4), the variance function of the NEF constructed starting from the r.v. with c.g.f.
(12) equals

√
μ2 + 1, where μ ∈ R1. (13)

Remark 1 It is straightforward to verify that the pair of the variance functions given
by formulas (13) and (9) constitutes the reciprocal pair in the sense of (Letac and Mora
(1990), Theorem 5.2.iii). In turn, this is consistent with a comment concerning the fluctu-
ation properties of the right-continuous random walk in Spitzer’s sense, which was made
in the paragraph that precedes (Letac and Mora (1990), Theorem 5.6). See also (Spitzer
(1964), Definition 1.2.3) for the definition of the latter random walk as well as a comment
that follows this definition.

Note in passing that Feller considered a more general class of p.d.f.’s on R1+, some of
which became important in applications. For instance, it contains the distribution of the
busy period inM/M/1 queue (compare to (Stewart (2009), p. 530)).

Properties of the classXρ

First, recall that this class was introduced in Definition 1 of “Introduction” section.
Next, the integrability of fρ(x) to one follows from the fact that in the case where s = 0,

the expression that emerges on the right-hand side of (39) equals 1. Hence, fρ(x) is a
legitimate p.d.f. By (Olver et al. (2010), formula (10.30.4))), it exhibits the following power
decay as x → +∞:

fρ(x) ∼ (2ρ − 1)2ρ−3/2
√

π
· �(ρ)

xρ+1/2 . (14)

It follows from the closed-form representations (1)–(2) with the help of Mathematica
that for arbitrary fixed ρ > 1/2 and y ∈[ 0,+∞),

P{Xρ ≤ y} =
∫ y

0
fρ(x) · dx = 1 − 1F1(ρ − 1/2; 2ρ;−2y). (15)

Hereinafter 1F1(·; ·; ·) denotes the confluent hypergeometric function (see, for example,
(Slater (1960), formula (1.1.8))).
The following assertion stipulates that the family {Xρ , ρ > 1/2} possesses an impor-

tant property of stochastic monotonicity. The interested reader is referred to Cohn
(1981) and Lee et al. (2009) for a connection between this concept and various con-
vergence properties, and for relevant statistical tests and applications, respectively (see
also the references therein). Its relationship to weak convergence is illustrated just above
Propositions 3 and 7. Also, note in passing that in the context of a family of positive r.v.’s,
stochastic monotonicity is equivalent to monotonicity of the corresponding family of the
survival functions at each value of the argument.

Theorem 1 The family {Xρ , ρ > 1/2} of the generalized Feller–Spitzer distributions of
the first type is stochastically decreasing in the sense that for an arbitrary fixed real y > 0,
the function ρ → P{Xρ > y} is decreasing on (1/2,∞).
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Proof of Theorem 1. In view of the above comment, it suffices to prove monotonicity
of the family of the values of the survival functions for each value of argument y ∈ R1+.
A subsequent combination of formula (15) with Kummer’s transformation (see (Olver et
al. (2010), formula (13.2.39)) yields that for arbitrary fixed ρ > 1/2 and y ∈[ 0,+∞), the
survival function Fρ(y) of the r.v. Xρ admits the following representation:

Fρ(y) := P{Xρ > y} = 1F1
(

ρ − 1
2
; 2ρ;−2y

)

= e−2y
1F1

(
ρ + 1

2
; 2ρ; 2y

)
= e−2y

∞∑
n=0

tn(ρ)
(2y)n

n!
,

(16)

where tn(ρ) := (ρ + 1/2)n/(2ρ)n > 0. Then we have

log tn(ρ) =
n−1∑
k=0

log
(

ρ + k + 1/2
2ρ + k

)
,

so that

d
dρ

log tn(ρ) = t′n(ρ)

tn(ρ)
=

n−1∑
k=0

2ρ + k
ρ + k + 1/2

· d
dρ

(
ρ + k + 1/2

2ρ + k

)
< 0

since

d
dρ

(
ρ + k + 1

2
2ρ + k

)
= − k + 1

(2ρ + k)2
< 0.

Finally, as the sum in Fρ(y) consists of positive terms, and the coefficients tn(ρ) are pos-
itive decreasing functions of ρ, it follows that the survival function Fρ(y) must decrease
with increasing ρ. �

Proposition 1 For each ρ > 1/2, the Laplace transform of r.v. Xρ is such that for λ ∈
[ 0,+∞),

LXρ (λ) := E exp{−λ · Xρ} = 2ρ − 1
2ρ

· 1
λ + 1

· 2F1
(1
2
, 1; ρ + 1;

1
(λ + 1)2

)
. (17)

Proof of Proposition 1. First, the following integral representation for the function 2F1
can be derived with some effort from (Watson (1952), Section 13.2, p. 385, formula (2))
by implementing the change of variables b → ib in this formula and using the fact that
the Bessel function of the first kind Jr(ibt) = eπri/2Ir(bt):

2F1
(
1
2
k,

1
2
k + 1

2
; c; x

)
= ak(b/2)1−c�(c)

�(k)
·
∫ ∞

0
e−atIc−1(bt) · tk−cdt. (18)

Here, a > b > 0, c = 0,−1,−2, . . ., integer k ≥ 1, and x = b2/a2 ∈ (0, 1).
A subsequent combination of (18) with the values of a = 1, b = 1/(λ + 1), c = ρ + 1,

k = 1 and (1)–(2) implies the validity of (17). Compare to the derivation of (Paris and
Vinogradov (2020a), formula (5.13)) where the case of c = 2 was considered. �
Evidently, the closed-form expression which emerges in (17) generalizes formula (8)

which pertains to the case where ρ = 1.

Example 1 For ρ = 1, formula (1) turns into (6). Hence, the distributions of r.v. X1 and
the canonical Feller–Spitzer r.v. U1 coincide, i.e.,

X1
d= U1. (19)
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It is clear that in the case where ρ = 2, the p.d.f. of the r.v. X2 is such that for x ∈ R1+,

f2(x) = 6e−xI2(x)/x2 → 3/4 as x ↓ 0. (20)

Also, a combination of (17) with (Paris and Vinogradov (2020a), formula (4.1)) yields that
for a fixed λ ∈[ 0,+∞),

LX2(λ) = 3(λ + 1) − 2(λ + 1)3 + 2(λ2 + 2λ)3/2. (21)

It is relevant that by analogy with (21), it is possible to derive the closed-form repre-
sentations for LXρ (λ) for numerous other values of ρ > 1/2 some of which follow from
(Paris and Vinogradov (2020a), formula (4.1)).

Theorem 2 Fix an arbitrary real ρ > 1/2. Then (i) The r.v. Xρ is infinitely divisible.
(ii) For x ∈ R1+, one ascertains that the p.d.f. fρ(·) ∈ C∞(R1+) such that

f ′
ρ(x) = (2ρ − 1)�(ρ)2ρ−1 · e−x · Iρ+1(x) − Iρ(x)

xρ
< 0, (22)

and

f ′′
ρ (x) = (2ρ − 1)�(ρ)2ρ e−x

xρ

{
Iρ(x) −

(
1 + 2ρ + 1

2x

)
Iρ+1(x)

}
> 0. (23)

(iii) The p.d.f. fρ(x) decreases from (2ρ − 1)/(2ρ) to 0 on [ 0,+∞).
(iv) The values of the p.d.f. fρ(x) and its first derivative at the origin are only different by
the sign such that

f ′
ρ(0+) = −fρ(0) = (1 − 2ρ)/(2ρ). (24)

(v) The following recursive formula holds for x ∈ R1+:

fρ+1(x) = 2ρ · (2ρ + 1)
2ρ − 1

· f ′
ρ(x) + fρ(x)

x
. (25)

Proof of Theorem 2. (i) It follows from the fact that for ρ > 1/2, the distribution of
the r.v. Xρ satisfies the log-convexity property, which easily follows from inequality (108)
of Theorem 8.i (see Corollary 1 of “Appendix” section for more detail).
It remains to apply (Steutel and van Harn (2004), pp. 117-118, Th. III.10.2) which

stipulates that log-convexity is sufficient for a distribution on R1+ to be infinitely divisible.
(ii) The validity of (22) easily follows from a combination of (110) and (112).
Also, note that it immediately follows from formula (109) (with ν replaced by ρ) that

f ′′
ρ (x) > 0 for x > 0 and ρ > 1/2 thus establishing (23).
(iii) The proof of (24) follows from a combination of (2) and (22).
(iv) Let us replace ρ by ρ + 1 in (1) and combine the corresponding representation for

fρ+1(x) with (Paris and Vinogradov (2020b), formula (4.4) and the unnumbered formula
just below (4.6)). We obtain that

fρ+1(x) = (2ρ + 1) · �(1 + ρ) · 2ρ · e
−x

x
· Iρ+1(x)

xρ

= (2ρ + 1) · �(1 + ρ) · 2ρ · (e−x/x) · (Iρ(x)/xρ)′.

In view of (Paris and Vinogradov (2020b), formula (4.5)), the expression which emerges
on the right-hand side of the above equation equals

(2ρ + 1) · �(1 + ρ) · 2ρ · x−1 · {(e−xIρ(x)/xρ)′ + e−xIρ(x)/xρ}.
The result then follows upon insertion of the definition (1) of fρ(x). �
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Proposition 2 (i) The canonical Feller–Spitzer r.v. U1
d= X1 can be decomposed into the

sum of two independent non-negative infinitely divisible r.v.’s one of which is the generalized
2-order Feller–Spitzer r.v. of the first type X2, and the other r.v. V which is characterized by
its Laplace transform

LV(λ) := E exp{−λ · V} = LX1(λ)/LX2(λ)

= λ + 1 − √
λ2 + 2λ

3(λ + 1) − 2(λ + 1)3 + 2(λ2 + 2λ)3/2

(26)

with λ ∈[ 0,+∞), such that

U1
d= X1

d= X2 + V . (27)

(ii) The r.v. V admits the following compound geometric representation:

V d= W1 + ... + WGeom(2/3), (28)

where {W�, � ≥ 1} are positive i.i.d.r.v.’s having common Laplace transform

LW�
(λ) = LU1(λ)2 = (λ + 1 −

√
λ2 + 2λ)2 for λ ≥ 0 (29)

and the p.d.f.

fW�
(u) ≡ f ∗2

1 (u) = 2
u

· e−u · I2(u) (with u ∈ R1+) (30)

independent of a geometric counting r.v. Geom(2/3) (that takes values in the set of all non-
negative integers), which is characterized by its Laplace transform

LGeom(2/3)(λ) := E exp{−λ · Geom(2/3)}
= 2/3

1 − 1/(3eλ)
, where λ > − log 3.

(31)

Hereinafter, the p.d.f. f ∗2
1 (u) which emerges in the middle of formula (30) denotes the

two-fold convolution of the p.d.f. f1(u) of the r.v. U1 (compare to (11)).
Proof of Proposition 2. First, one should verify the following identity:

LV (λ) ≡ LGeom(2/3)(LW(λ)) ≡ 2
3 − (λ + 1 − √

λ2 + 2λ)2
, (32)

where the Laplace transforms which emerge in identity (32) are given by formulas (26),
(31) and (29). This verification is straightforward and hence left to the reader. In turn,
(32) implies the validity of representation (28). The rest follows from a rather obvious folk
theorem that a compound geometric sum of i.i.d.r.v.’s is infinitely divisible (compare to
(Kyprianou (2010), claim above formula (8)). �
Although Xρ is infinitely divisible ∀ρ > 1/2, it is quite challenging to find its Lévy

representation for ρ = 1. Recall that for ρ = 1, it is given by (8).
Theorem 2.i stipulates that for a fixed real ρ > 1/2, there exists the Lévy measure

ν
(1)
ρ ({·}) on R1+ of positive infinitely divisible r.v. Xρ such that for real λ ≥ 0,

logLXρ (λ) = −
∫ ∞

0
(1 − e−λx) · ν(1)

ρ (dx).
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Next, a combination of formula (15) with (Embrechts et al. (1979), Theorem 1) and
(Abramowitz and Stegun (1965), formula (13.5.1)) implies that as y → +∞,

ν(1)
ρ ({(y,∞)}) ∼ P{Xρ > y}

= 1F1(ρ − 1/2; 2ρ;−2y) ∼ 2ρ−1/2
√

π
�(ρ)y−(ρ−1/2),

(33)

where the rightmost asymptotics in (33) is consistent with (14).
In addition, for real y > 0 the Lévy measure ν

(1)
1 ({(y,∞)}) of the open ray (y,∞)

of the canonical Feller–Spitzer r.v. U1 (
d= X1) can be derived from (7) with the use of

Mathematica. Specifically,

ν
(1)
1 ({(y,∞)}) :=

∫ ∞

y
x−1e−xI0(x)dx = log (y/2) − γ

+ y · 3F3(1, 1, 3/2; 2, 2, 2;−2y) ∼ √
2/π · y−1/2 as y → +∞.

(34)

Hereinafter, γ denotes the Euler–Mascheroni constant (see (106)).
Note in passing that in view of (34) and as y → +∞,

ν
(1)
1 ({(y,∞)}) ∼ √

2/π · y−1/2 ∼ P{U1 > y) =
∫ ∞

y
f1(x)dx, (35)

which is consistent with (33) and (Embrechts et al. (1979), Theorem 1).
We believe that representation (34) for the Lévy measure ν

(1)
1 ({(y,∞)}) in terms of the

function 3F3 was previously unknown. See also Proposition 6, which extends formulas
(34)–(35) for all the ρ-order Feller–Spitzer r.v.’s of the second type introduced in Defini-
tion 2. Also, both a closed-form representation for the cumulative distribution function
of r.v. U1 in terms of the confluent hypergeometric function 1F1 and the asymptotics of its
upper tail can be derived by setting ρ = 1 in formulas (15) and (33), respectively.
Next, Theorem 1 implies with some effort existence of the weak limit for the stochas-

tically decreasing family Xρ as ρ → +∞, which should be a continuous distribution on
R1+. In turn, part (i) of the following assertion identifies this limit as the mean 1 expo-
nential r.v., which is hereinafter denoted by E , whereas part (ii) can be regarded as a local
limit theorem on the exponential convergence.

Proposition 3 Suppose that ρ → +∞. Then
(i)

Xρ
d→ E . (36)

(ii) For a fixed z ∈[ 0,+∞),

fρ(z) → e−z. (37)

Proof of Proposition 3. (i) It follows from (17) that for an arbitrary fixed λ ∈[ 0,+∞)

and as ρ → +∞,

LXρ (λ) → 1/(λ + 1). (38)

The result follows, since the limit 1/(λ + 1) which emerges on the right-hand side of (38)
coincides with the Laplace transform of E .
(ii) It is easily derived by combining (1)–(2) with (Olver et al. (2010), formula (10.19.1))

and Stirling’s formula for the gamma function.�
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Next, it easily follows from a combination of (6) with formula (107) of Lemma 3 that
given real s ∈ (−1, ρ − 1/2), the sth raw moment of the r.v. Xρ is as follows:

E(X s
ρ) :=

∫ ∞

0
xs · fρ(x)dx = 2ρ − 1

2
· �(s + 1)�(ρ)�(ρ − s − 1/2)
�(ρ − s/2)�(ρ − s/2 + 1/2)

. (39)

Subsequently, we employ the above formula (39) to provide the closed-form representa-
tions for the mean, variance, skewness and excess kurtosis for those members of the class
{Xρ , ρ > 1/2} for which the corresponding numerical characteristic(s) are finite.

Proposition 4 (i) Given ρ > 3/2, the mean

μ(1)
ρ := EXρ = 2ρ − 1

2ρ − 3
(40)

decreases from +∞ to 1 as ρ increases from 3/2 to +∞.
(ii) The second, third and fourth central moments of r.v. Xρ admit the following closed-

form representations.
For ρ > 5/2, the variance

(σ (1)
ρ )2 := VarXρ = (2ρ − 1)(4ρ2 − 8ρ + 7)

(2ρ − 3)2(2ρ − 5)
(41)

decreases from +∞ to 1 as ρ increases from 5/2 to +∞.
Given ρ > 7/2,

μ3(Xρ) := E((Xρ − μ(1)
ρ )3)

= 2(2ρ − 1)(16ρ4 − 64ρ3 + 144ρ2 − 152ρ + 71)
(2ρ − 3)3(2ρ − 5)(2ρ − 7)

.
(42)

Given ρ > 9/2,

μ4(Xρ) := E
((

Xρ − μ(1)
ρ

)4)

= 3(2ρ − 1)(192ρ6 − 1408ρ5 + 5104ρ4 − 10368ρ3 + 12548ρ2 − 8456ρ + 2493)
(2ρ − 3)4(2ρ − 5)(2ρ − 7)(2ρ − 9)

.

(43)

Proof of Proposition 4. It follows with sufficient effort from (39) with the help of
Mathematica. �
An application of the representations of Proposition 4.ii with the help of Mathematica

stipulates that the skewness �
(1)
1 (ρ) and the excess kurtosis �

(1)
2 (ρ) of the r.v. Xρ are as

follows. For ρ > 7/2, the skewness

�
(1)
1 (ρ) := μ3(Xρ)/

(
σ (1)

ρ

)3

= 2(2ρ − 5)1/2(16ρ4 − 64ρ3 + 144ρ2 − 152ρ + 71)
(2ρ − 1)1/2(2ρ − 7)(4ρ2 − 8ρ + 7)3/2

(44)

decreases from +∞ to 2 as ρ increases from 7/2 to +∞.
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Also, for ρ > 9/2, the excess kurtosis

�
(1)
2 (ρ) := μ4(Xρ)/(σ (1)

ρ )4 − 3

= 3
{ (2ρ − 5)(192ρ6 − 1408ρ5 + 5104ρ4 − 10368ρ3 + 12548ρ2 − 8456ρ + 2493)

(2ρ − 1)(2ρ − 7)(2ρ − 9)(4ρ2 − 8ρ + 7)2

− 1
}

(45)

decreases from +∞ to 6 as ρ increases from 9/2 to +∞.

Remark 2 (i) The representations (40), (41), (44) and (45) stipulate that as ρ → +∞, the
mean, variance, skewness and excess kurtosis of the respective members of the class {Xρ}
converge to 1, 1, 2 and 6, respectively, which are the values of the corresponding numerical
characteristics of the mean 1 exponential r.v. E . This observation on the moment conver-
gence is consistent with the integral and local theorems on the exponential convergence
presented in Proposition 3 above.
(ii) In view of (44), the subclass {Xρ , ρ > 7/2} is comprised of the right skewed dis-

tributions. In turn, (45) stipulates that each member of the subclass {Xρ , ρ > 9/2} is
leptokurtic.

Properties of the classYρ

First, recall that this class was introduced in Definition 2 of “Introduction” section.
This second extension of the canonical Feller–Spitzer distribution U1 (introduced in
Definition 3) concerns its Lévy density τ1(x) given by (7), which is in contrast to the first
extension {fρ(x), ρ > 1/2} which pertains to the p.d.f. f1(x) per se.
Next, a combination of (3) with (Olver et al. (2010), formula (10.30.4))) implies that

the Lévy density τρ(x) (which is introduced by formula (3)) exhibits the following power
decay as x → +∞:

τρ(x) ∼ 2ρ−3/2
√

π
· �(ρ)

xρ+1/2 (46)

(compare to (14) and (71)). On the other hand, it follows with some effort from a com-
bination of (3) with (Olver et al. (2010), formulas (10.25.2) and (10.30.1))) that this
function diverges at the origin exhibiting the following asymptotic behavior at the right
neighborhood of zero:

τρ(x) = 1
x

− 1 + 1 + 2ρ
4ρ

· x − 3 + 2ρ
12ρ

· x2 + O(x3) as x ↓ 0. (47)

The following result is similar in spirit to Theorem 1 of “Properties of the class Xρ”
section.

Theorem 3 The family {Yρ , ρ > 1/2} of the generalized Feller–Spitzer distributions
of the second type is stochastically decreasing in the sense that for an arbitrary fixed real
y > 0, the function ρ → P{Yρ > y} is decreasing on (1/2,∞).

In order to prove Theorem 3, we first present the following general and straightforward
but rather technical assertion which might already be known.
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Lemma 2 Suppose that for i = 1, 2 there exist two positive functions τ (i)(·) on R1+ such
that the following integrals are well-defined and finite:∫ ∞

0
min(1, x) · τ (i)(x) · dx < ∞. (48)

Let τ (1)(x) > τ (2)(x) on R1+. Assume that for i = 1, 2 there exist two non-negative infinitely
divisible r.v.’s Yi with zero drifts and diffusion components which possess the Lévy densities
on R1+ given by functions τ (i)(·), respectively, such that for real λ ≥ 0,

LYi(λ) := Ee−λ·Yi = exp
{
−

∫ ∞

0
(1 − e−λx) · τ (i)(x) · dx

}
. (49)

Then
(i) There exists a non-negative infinitely divisible r.v. K independent of Y2 such that

Y1
d= Y2 + K. (50)

(ii) For an arbitrary fixed y ∈ R1+,

P{Y1 ≤ y} ≤ P{Y2 ≤ y}. (51)

Proof of Lemma 2.
(i) It follows from the assumptions of the lemma and (49) that for real λ ≥ 0,

−(log LY1(λ) − log LY2(λ)) =
∫ ∞

0
(1 − e−λx) · (τ (1)(x) − τ (2)(x))dx > 0. (52)

In view of (48)–(49), the expression which emerges on the left-hand side of (52) con-
stitutes the negative of the log-Laplace transform of a certain non-negative infinitely
divisible r.v. denoted by K whose density of Lévy measure equals τ (1)(x) − τ (2)(x), which
implies (50).
(ii) The validity of (51) easily follows from (50). �
Proof of Theorem 3. First, let us prove that for a fixed x ∈ R1+, the Lévy density τρ(x)

defined by (3) is a decreasing function of the parameter ρ on (1/2,+∞). To this end, we
rewrite this function as follows:

τρ(x) = 2ρ−1�(ρ)
e−xIρ−1(x)

xρ

= 2ρ−1�(ρ)
e−x

xρ

(
1
2
x
)ρ−1 ∑

k≥0

( 12x)
2k

k!�(k + ρ)
= e−x

x
∑
k≥0

( 12x)
2k

k! (ρ)k

= e−x

x

{
1 + ( 12x)

2

1! ρ
+ ( 12x)

4

2! ρ(ρ + 1)
+ ( 12x)

6

3! ρ(ρ + 1)(ρ + 2)
+ · · ·

}
.

Hence, the above expression is obviously monotonically decreasing in ρ for a fixed real
x > 0 as each term after the first is a decreasing function of ρ.
The rest easily follows Lemma 2.ii. �

Remark 3 Fix the values of 1/2 < ρ1 < ρ2 < +∞. Then a combination of formulas
(46)–(47) yields that∫ ∞

0
(τρ1(x) − τρ2(x))dx < ∞.

Hence, in the case where the r.v. Yi which emerges in Lemma 2 coincides with the gener-
alized ρ-order Feller–Spitzer r.v. of the second type Yρi (for i = 1, 2), the non-negative
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infinitely divisible r.v.K (= Kρ1,ρ2)which is present on the right-hand side of representation
(50) is in fact compound Poisson.
For a representative special case for which ρ1 = 1 and ρ2 = 2, the corresponding com-

pound Poisson r.v. K (= K1,2) is identified in Remark 5 of “A case study: properties of the
r.v. Y2” section.

Proposition 5 For an arbitrary fixed ρ > 1/2, the following Poincaré expansion holds
as y → +∞ for the integral

∫ ∞

y
e−x Iρ−1(x)

xρ
dx ∼ y−(ρ−1/2)

√
2π

∞∑
k=0

(−1)k�(ρ + k − 1
2 )

(ρ + k − 1
2 )�(ρ − k − 1

2 )k!
(2y)−k . (53)

Proof of Proposition 5 is given in (Paris and Vinogradov (2020b), Lemma 2). �
The following assertion generalizes formulas (34)–(35).

Proposition 6 (i) The Lévy measure ν
(2)
ρ ({·}) on R1+ of positive infinitely divisible r.v. Yρ

is such that for y ∈ R1+,

ν(2)
ρ ({(y,+∞)}) =

∫ ∞

y
τρ(x)dx = 2ρ−1 · �(ρ) ·

∫ ∞

y

e−xIρ−1(x)
xρ

dx

= −γ + y · 3F3
(
1, 1, ρ + 1

2
2, 2, 2ρ

;−2y
)

− log(2y) + ψ(2ρ − 1) − ψ

(
ρ − 1

2

)
.

(54)

(ii) For an arbitrary fixed ρ > 1/2 and as y → +∞,

P{Yρ > y} ∼ ν(2)
ρ ({(y,+∞)}) ∼ �(ρ) · 2ρ−1

√
2π(ρ − 1/2)

· y−(ρ−1/2). (55)

Proof of Proposition 6. (i) The validity of (54) can be established by the use of
Mathematica. The analytic proof is given in (Paris and Vinogradov (2020b), Lemma 1).
(ii) Observe that the leading term of the asymptotic series which emerges on the right-

hand side of (53) is as follows:
∫ ∞

y
e−x Iρ−1(x)

xρ
dx ∼ y−ρ+1/2

√
2π(ρ − 1/2)

as y → +∞. (56)

Next, combine formulas (3), (46), (56), the leftmost equation in (54), and the well-known
fact that the power asymptotics of the function τρ(x) at positive infinity implies the corre-
sponding power asymptotics of its integrated tail. This yields the validity of the rightmost
asymptotics in expression (55). The rest follows from an application of (Embrechts et al.
(1979), Theorem 1).�
The following assertion is of particular value.

Theorem 4 For each ρ > 1/2 and real λ ≥ 0, the negative �ρ(λ) of the log-Laplace
transform of r.v. Yρ

�ρ(λ) = 2ρ−1 · �(ρ) ·
∫ ∞

0
(1 − e−λx) · e

−xIρ−1(x)
xρ

· dx (57)

admits the following representation in terms of the digamma function ψ and the gen-
eralized hypergeometric function 3F2, which are defined by formulas (105) and (103),
respectively:



Vinogradov and Paris Journal of Statistical Distributions and Applications             (2021) 8:3 Page 14 of 25

�ρ(λ) =
∫ 1

1/(1+λ)
2F1

(
1
2
, 1; ρ; x2

)
· dx
x

= log(1 + λ)

+ 1
2

{
ψ(ρ) − ψ

(
ρ − 1

2

)}
− 1

4ρ(1 + λ)2
· 3F2

(
1, 1, 32
2, 1 + ρ

;
1

(1 + λ)2

)
.

(58)

Proof of Theorem 4. First, fix ρ > 3/2. For λ ∈ R1+, we follow an argument similar to
that used in (Feller (1966a), Section XIII.7) differentiating the integral which emerges on
the right-hand side of (57) with respect to λ. This produces the following identity:

d
dλ

∫ ∞

0
(1 − e−λx) · e

−xIρ−1(x)
xρ

· dx ≡
∫ ∞

0
e−λx · e

−xIρ−1(x)
xρ−1 · dx. (59)

(For now, the case of ρ ∈ (1/2, 3/2] has to be excluded, since for such values of ρ the
integral which emerges on the right-hand side of (59) diverges).
A subsequent combination of (59) with (1), (17) and (4) stipulates that for each real

ρ > 3/2 and λ ≥ 0,

�ρ(λ) = 2(ρ − 1)
2ρ − 3

·
∫ λ

0
LXρ−1(u)du

=
∫ λ

0

1
u + 1

· 2F1
(
1
2
, 1; ρ;

1
(u + 1)2

)
du := I .

(60)

Next, for a given ρ > 3/2 we will evaluate I by making the change of variables x =
1/(u + 1) to conclude that

I = log(1 + λ) + 1
4ρ

∑
k≥0

( 3
2
)
k (1)k

(1 + ρ)k(2)k

(
1 − 1

(1 + λ)2k+2

)
= log(1 + λ)

+ 1
4ρ 3F2

(
1, 1, 3/2
2, 1 + ρ

; 1
)

− (1 + λ)−2

4ρ 3F2

(
1, 1, 3/2
2, 1 + ρ

;
1

(1 + λ)2

)
.

(61)

In addition, it is obtained by the use ofMathematica that for ρ > 1/2,

3F2

(
1, 1, 3/2
2, 1 + ρ

; 1
)

= 2ρ ·
{
ψ(ρ) − ψ

(
ρ − 1

2

)}
. (62)

In order to establish the validity of (58) for ρ > 3/2, it remains to combine (60)–(62).
Now, although representation (58) has been established for ρ > 3/2 only, the integral

(57), which defines the function �ρ(λ), converges for ρ > 1/2, and the expression which
emerges on the right-hand side of (58) is analytic for ρ > 1/2 when λ ≥ 0. Hence, by
analytic continuation, the result (58) holds for all ρ > 1/2. �
The following example is in a similar spirit to that of Example 1.

Example 2 For ρ = 1, a comparison of formula (3) of Definition 2 with representations
(6)–(8) of Definition 3 stipulates that in this case,

�1(λ) ≡ − logLY1(λ) = log(λ + 1 +
√

λ2 + 2λ) (63)

Hence, the distributions of r.v.’s Y1 and the canonical Feller–Spitzer r.v. U1 coincide, i.e.,

Y1
d= U1

(
d= X1

)
(64)

(compare to formula (19)).
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Next, note that the digamma functionψ is defined by formula (105). It is well known that
ψ(1) = −γ and ψ(1/2) = −γ −2 · log 2. A combination of these two representations with
(63) and (Prudnikov et al. (1990), Section 7.4.2, entry 365) to evaluate the 3F2 function

3F2

(
1, 1, 3/2
2, 2

; x
)

= − 4
x

· log
(
1 + √

1 − x
2

)
(65)

stipulates that

�1(λ) ≡ log(1 + λ) + 1
2

· (ψ(1) − ψ(1/2))

− 1
4(1 + λ)2

· 3F2
(
1, 1, 32
2, 2

;
1

(1 + λ)2

)
.

(66)

Evidently, (66) coincides with (58) in the case where ρ = 1.
It is interesting that although the middle expression which emerges in formula (60) is

not defined for ρ ∈ (1/2, 3/2], but in the case where ρ = 1 the equality of the left- and
right–hand sides on that formula can be derived analytically. In this case,

I =
∫ 1

1/(1+λ)

(1 − x2)−1/2 dx
x

= log(λ + 1 +
√

λ2 + 2λ)

(compare to the right-hand side of (63)).

A detailed consideration of the case where ρ = 2 is presented separately in “A case
study: properties of the r.v.Y2” section. In particular, see Theorem 7 and Remark 6 therein
which demonstrate how complex the p.d.f.’s of the r.v.’s Yρ can be for ρ = 1.
The following result is of a particular value providing an illustration of the usefulness

of numerous relatively recent advances in the theory of infinitely divisible distributions,
most of which were summarized in (Steutel and van Harn (2004), Chapter V). To some
extent, it can be regarded as a counterpart of Theorem 2 of “Properties of the class Xρ”
section.

Theorem 5 Fix an arbitrary ρ > 1/2. Then
(i) The non-negative r.v. Yρ is self-decomposable and absolutely continuous on R1+.
(ii) The limit from the right at the origin for the p.d.f. pρ(x) of the r.v. Yρ is as follows:

pρ(0+) = lim
x↓0 pρ(x) = exp

{
− 1

2
· (ψ(ρ) − ψ(ρ − 1/2))

}
< +∞. (67)

(iii) The p.d.f. pρ(x) decreases monotonically on (0,+∞) from pρ(0+) to 0 and satisfies
the following integral equation for x ∈ R1+:

x · pρ(x) = 2ρ−1 · �(ρ) ·
∫ x

0
pρ(x − u) · e−u · Iρ−1(u)

uρ−1 · du. (68)

(iv) The p.d.f. pρ(x) has a continuous derivative p′
ρ(x) on R1+ for which the following

functional equation holds:

x · p′
ρ(x) = 2ρ−1 · �(ρ) ·

∫ x

0
pρ(x − u) · e−u · Iρ(u) − Iρ−1(u)

uρ−1 · du. (69)

(v) The limits from the right of the p.d.f. pρ(x) and its first derivative at the origin are only
different by the sign such that

p′
ρ(0+) = −pρ(0+) = − exp

{
− 1

2
· (ψ(ρ) − ψ(ρ − 1/2))

}
. (70)
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(vi) The p.d.f. pρ(x) exhibits the following power decay as x → +∞:

pρ(x) ∼ 2ρ−3/2
√

π
· �(ρ)

xρ+1/2 . (71)

Proof of Theorem 5.
(i) First, by analogy to (Steutel and van Harn (2004), Section V.2), we introduce the

canonical density

kρ(x) := x · τρ(x), where x ∈ R1+. (72)

Note in passing that in the case where ρ > 3/2,

kρ(x) ≡ 2(ρ − 1)
2ρ − 3

· fρ−1(x), (73)

where x ∈ R1+, and the p.d.f. fρ−1(x) can be easily obtained from (1).
The self-decomposability of the r.v.Yρ then follows by combining the inequality (110) of

“Appendix” section which yields that ∀ρ > 1/2, the canonical density kρ(x) is a decreas-
ing function in R1+, with (Steutel and van Harn (2004), Theorem V.2.11). Also, compare
(73) with Theorem 2.iii.
Subsequently, a combination of the just established self-decomposability of the class

Yρ , property (47), and (Steutel and van Harn (2004), Theorem V.2.16 and formula (2.28))
implies that ∀ρ > 1/2, the r.v. Yρ is absolutely continuous whose p.d.f., which is denoted
by pρ(x), is continuous on R1+.
(ii) For each ρ > 1/2 and x ∈ R1+, the p.d.f. pρ(x) is continuous at x and can be evaluated

as follows:

pρ(x) = 1
2π

·
∫ ∞

−∞
e−ixt · exp{−�ρ(−it)}dt

:= 1
2π

· lim
T→+∞

∫ T

−T
e−ixt · exp{−�ρ(−it)}dt.

(74)

Hereinafter, the factor exp{−�ρ(−it)} = E exp{itYρ} is ch.f. of the r.v. Yρ .
The validity of (74) can be derived with some effort from (Apostol (1957), pp. 498–

499, Theorem 15.34). Note that since the ch.f. exp{−�ρ(−it)} /∈ L1(R1), the standard
inversion formula of probability theory is not applicable to this class of the discontinuous
p.d.f.’s.
Specifically, pρ(·) is discontinuous at the origin ∀ρ > 1/2. On the other hand, the finite-

ness of pρ(x) at zero (as defined by (74)) easily follows from a combination of formula
(47) with (Steutel and van Harn (2004), formula (V.2.28)). In addition, a combination of
the discontinuous version of the inversion formula with the fact that pρ(0−) = 0 (since
for each real x < 0 the p.d.f. pρ(x) ≡ 0) stipulates that

pρ(0+) = 2 · pρ(0+) + pρ(0−)

2
= 2 · 1

2π
·
∫ ∞

−∞
exp{−�ρ(−it)}dt (75)

(compare to (Apostol (1957), p. 499, formulas (79)–(80)) or (Olver et al. (2010), formula
(1.14.3))). At the same time, (Steutel and van Harn (2004), Proposition A.3.4) implies that

pρ(0+) := lim
λ→+∞(λ · exp{−�ρ(λ)}). (76)

The assertion of part (ii) now follows, since in view of (62), the limit that emerges in
(76) is finite coinciding with the one that appears in (67).
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(iii) In view of (Steutel and van Harn (2004), Theorem V.2.17), the monotonic decay of
pρ(x) follows from that of the canonical density kρ(x) combined with the fact that formula
(47) yields that for ρ > 1/2,

kρ(0+) = 1. (77)

The validity of the integral Eq. (68) is then obtained by combining representations (3)
and (72) with (Steutel and van Harn (2004), Theorem V.2.16).
(iv) The existence and continuity of p′

ρ(x) follows from (Steutel and van Harn (2004), p.
237, proof of Theorem V.2.17). Next, observe that for ρ > 1/2, a combination of formula
(112) with (Paris and Vinogradov (2020b), the unnumbered formula just below (4.6)) with
ν = ρ − 1 > −1/2 yields that

d
du

kρ(u) = 2ρ−1�(ρ) · d
du

e−u · Iρ−1(u)

uρ−1

= 2ρ−1�(ρ) · e−u · Iρ(u) − Iρ−1(u)

uρ−1 , where u ∈ R1+.
(78)

The validity of (69) is then obtained by combining formulas (77)–(78) with (Steutel and
van Harn (2004), formula (V.2.24)).
(v) It suffices to combine (68)–(69) with (Olver et al. (2010), formula (10.30.1)) and (67)

to conclude that for x ∈ R1+,

pρ(x) + p′
ρ(x) = 2ρ−1 · �(ρ)

x
·
∫ x

0
pρ(x − u) · e−u · Iρ(u)

uρ−1 · du

∼ pρ(0+)

4ρ
· x → 0 as x ↓ 0.

(vi) The monotonic decay of the p.d.f. pρ(x) combined with the power asymptotics of the
upper tail P{Yρ > y} of the c.d.f. of the r.v. Yρ given by (55) implies the correspond-
ing power decay of the p.d.f. per se, as follows from a version of the monotone density
theorem presented in (Mikosch (1999), p. 10, Theorem 1.2.9). �
Recall that Theorem 1 implies existence of the weak limit for the stochastically decreas-

ing familyXρ , which was identified in Proposition 3. Similar, the above Theorem 3 implies
with some effort existence of the weak limit for the stochastically decreasing family Yρ as
ρ → +∞, which should be a continuous distribution on R1+. In addition, the following
assertion, which is a counterpart of Proposition 3, stipulates that for large values of ρ, the
r.v. Yρ can be approximated by the mean 1 exponential r.v. E .

Proposition 7 Suppose that ρ → +∞. Then

Yρ
d→ E . (79)

Proof of Proposition 7. We fix λ ∈[ 0,+∞) and combine representations (58)–(60)
with (Olver et al. (2010), formula (15.12.2)) to ascertain that as ρ → +∞,

�ρ(λ) =
∫ 1

1/(1+λ)
2F1(

1
2
, 1; ρ; x2)

dx
x

=
∫ 1

1/(1+λ)

(
1 + x2

2ρ
+ O(1/ρ2)

)
dx
x

= log(1 + λ) + O(1/ρ).

The rest coincides with the end of the proof of Proposition 3.i. �
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Let us introduce the following quantities:

Dj := (−1)j−1 dj

dλj
�ρ(λ)|λ=0+, where 1 ≤ j ≤ 4. (80)

The following assertion provides the counterparts of the closed-form representations
(40)–(43) (which pertain to the numerical characteristics of r.v. Xρ).

Proposition 8 (i) Given ρ > 3/2,

μ(2)
ρ := EYρ = 2(ρ − 1)/(2ρ − 3) (81)

decreases from +∞ to 1 as ρ increases from 3/2 to +∞.
(ii) The second, third and fourth central moments of r.v. Yρ admit the following closed-form
representations.
For ρ > 5/2, the variance

(σ (2)
ρ )2 := VarYρ = 2(ρ − 1)/(2ρ − 5) (82)

decreases from +∞ to 1 as ρ increases from 5/2 to +∞.

Given ρ > 7/2,

μ3(Yρ) := E((Yρ − μ(2)
ρ )3) = 8(ρ − 1)(ρ − 2)

(2ρ − 5)(2ρ − 7)
.

Given ρ > 9/2,

μ4(Yρ) := E((Yρ − μ(2)
ρ )4) = 24(ρ − 1)(ρ − 2)

(2ρ − 7)(2ρ − 9)
.

Proof of Proposition 8.
(i) With �ρ(λ) satisfying the integral representation given in (58) and for λ ∈ R1+, we

have
d
dλ

�ρ(λ) = d
dλ

∫ 1

1/(1+λ)
2F1

(
1
2
, 1; ρ; 1/x2

)
dx
x

= 1
1 + λ

2F1
(
1
2
, 1; ρ; 1/(1 + λ)2

)
.

(83)

Taking the limit of (83) as λ ↓ 0 and combining it with theGauss summation theorem (see,
for example, (Abramowitz and Stegun (1965), formula (15.1.20)) yields that for ρ > 3/2,
the first derivative �′

ρ(0+) = 2(ρ − 1)/(2ρ − 3).
(ii) Repeated differentiation of (83) using (Abramowitz and Stegun (1965), formula

(15.2.1)) produces the three results stated. �
An application of the representations of Proposition 8 with the help of Mathematica

ascertains that the skewness �
(2)
1 (ρ) and the excess kurtosis �

(2)
2 (ρ) of the r.v. Yρ are as

follows. For ρ > 7/2, the skewness

�
(2)
1 (ρ) = D3

D3/2
2

= 4(ρ − 2)
2ρ − 7

(
2ρ − 5
2(ρ − 1)

)1/2
(84)

decreases from +∞ to 2 as ρ increases from 7/2 to +∞.
In addition, for ρ > 9/2, the excess kurtosis

�
(2)
2 (ρ) = D4

D2
2

= 6(ρ − 2)
ρ − 1

(2ρ − 5)2

(2ρ − 7)(2ρ − 9)
(85)

decreases from +∞ to 6 as ρ increases from 9/2 to +∞.
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Remark 4 (i) Similar to the large-ρ behavior of the numerical characteristics of the class
{Xρ} pointed out in Remark 2 of “Properties of the class Xρ” section, representations (81),
(82), (84) and (85) stipulate that as ρ → +∞, the mean, variance, skewness and excess
kurtosis of the respective members of the class {Yρ} converge to 1, 1, 2 and 6, respectively,
which are the values of the corresponding numerical characteristics of the mean 1 expo-
nential r.v. E . Evidently, this observation is consistent with the weak convergence result of
Proposition 7.
(ii) In view of (84), the subclass {Yρ , ρ > 7/2} is comprised of the right-skewed dis-

tributions. In turn, (85) stipulates that each member of the subclass {Yρ , ρ > 9/2} is
leptokurtic.

A case study: properties of the r.v.Y2

First, Definition 2 yields that the positive infinitely divisible r.v. Y2 is characterized by the
following density of its Lévy measure:

τ2(x) := 2 · e
−xI1(x)
x2

, where x > 0. (86)

For ρ = 2, the negative of the log-Laplace transform �2(λ) of the r.v. Y2 is simplified as
follows (with w := 1 + λ):

�2(λ) = log w + 1
2

· (ψ(2) − ψ(3/2)) − 1
8w2

× 3F2

(
1, 1, 3/2
2, 3

;
1
w2

)
= log (2w) − 1

2
− 1

8w2 · 3F2
(
1, 1, 3/2
2, 3

;
1
w2

)
.

(87)

It turns out that in the case where ρ = 2, a simple representation for the generalized
hypergeometric function 3F2 which emerges in (58) holds. Specifically,

3F2

(
1, 1, 3/2
2, 3

; x
)

= −8
x

(
1 − √

1 − x
x

− 1
2

+ log
(
1 + √

1 − x
2

))
. (88)

The validity of (88) easily follows from (Prudnikov et al. (1990), Section 7.4.2, entry 367)
or can be derived by usingMathematica.
The following assertion provides a closed-form expression for the Lévy representa-

tion of the r.v. Y2 in terms of elementary functions and connects its p.d.f. p2(x) with the
members of the class (11).

Proposition 9 Given λ ∈[ 0,∞), the negative of the log-Laplace transform

�2(λ) =
∫ ∞

0
(1 − e−λx)τ2(x)dx = �1(λ) + 1

2
· (e−2�1(λ) − 1)

= log(λ + 1 +
√

λ2 + 2λ) + λ2 + 2λ − (λ + 1) ·
√

λ2 + 2λ.
(89)

Proof of Proposition 9. Combine (4), (58) and (88). �
In turn, the above representation for �2(λ) has a probabilistic interpretation (90) which

specifies decomposition (50) in the case where Yi
d= Yi (for i = 1, 2) and is described in

the following remark, which can be viewed as a counterpart to Proposition 2.

Remark 5 The expression 1
2 · (e−2�1(λ) − 1) which emerges in (89) is recognized as

the log-Laplace transform of a particular non-negative compound Poisson r.v. By analogy
to representation (50), it is hereinafter denoted by K. Specifically, the r.v. K admits the
following (compound Poisson) representation:
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K d= W1 + ... + WPoiss(1/2),

where positive i.i.d.r.v.’s {W�, � ≥ 1} (which are characterized by formulas (29)–(30) of
Proposition 2) are independent of a Poisson counting r.v.Poiss(1/2) with mean 1/2. Hence,
the canonical Feller-Spitzer r.v. U1 can be decomposed into the following sum of two non-
negative independent r.v.’s:

U1
d= Y1

d= Y2 + K. (90)

It is relatively easy to find the Lévy representation for the r.v. K. Thus, it follows from a
combination of formulas (8), (57) and (89) that for λ ∈[ 0,∞),

(λ + 1) ·
√

λ2 + 2λ − (λ2 + 2λ) = �1(λ) − �2(λ) =
∫ ∞

0
(1 − e−λx)

× (τ1(x) − τ2(x))dx =
∫ ∞

0
(1 − e−λx)

2e−x

x2
(x
2

· I0(x) − I1(x)
)
dx

(91)

(compare to (52)). Similar to the proof of Theorem 3, we ascertain that ∀x ∈ R1+,
x
2

· I0(x) − I1(x) > 0, (92)

and that∫ ∞

0
(τ1(x) − τ2(x)) · dx =

∫ ∞

0

2e−x

x2
·
(x
2

· I0(x) − I1(x)
)

· dx < ∞ (93)

(compare to Remark 3). A subsequent combination of (91)–(93) yields that for λ ∈[ 0,∞),
the expression which emerges on the left-hand side of (91) constitutes the negative of the
log-Laplace transform of a compound Poisson r.v. with positive summands (i.e., K) whose
Lévy density equals τ1(x) − τ2(x).
Finally, the distribution of the r.v. K is mixed being comprised of the point mass 1/

√
e at

the origin and the following density component on R1+:

e−(u+1/2)

u
·

∞∑
k=1

I2k(u)

2k−1 · (k − 1)!
,

which integrates to 1 − 1/
√
e over R1+.

Theorem6 The r.v.Y2 generates the NEF with the domain� = (−∞, 0] of the canonical
parameter θ , which is characterized by the following variance function:

V2(μ) = 4μ2/
(
4 − μ2) for μ ∈ (0, 2] (94)

in the sense that for μ = 2, V2(2) = +∞.

Proof of Theorem 6. It follows from (60) that for λ ≥ 0,

�2(λ) = 2
∫ λ

0
LX1(u)du. (95)

Since for θ ≤ 0, the mean-value mapping equals d
dθ

(−�2(−θ)), a combination of (95)
with (8) stipulates that it acquires the following form:

2/(1 − θ +
√

θ2 − 2θ). (96)

Next, one should use some calculus to establish that the closed-form expression for the
inverse of themean-value mapping (96) is as follows:

1 − μ/4 − 1/μ, where μ ∈ (0, 2] . (97)
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It remains to combine (97) with (Jørgensen (1997), formula (2.18)). (Compare to the
derivation of formulas (9)–(10) which pertain to the case of ρ = 1.) �

Theorem 7 The following representation for the p.d.f. {p2(t), t ∈ R1+} of the r.v. Y2 in
terms of the difference of two convergent series holds:

p2(t) = 2te−t
√

π

⎛
⎝∑

n≥0

(−2)n

(2n)!
∑
r≥0

br(n)

(
1
t

· d
dt

)n
[ t−r−2I2n+r+1(t)]

−
∑
n≥0

(−2)n

(2n + 1)!
∑
r≥0

br(n)

(
1
t

· d
dt

)n+1
[ t−r−1I2n+r+2(t)]

⎞
⎠ ,

(98)

where br(n) := 2r · �(n + r + 3
2 )/r! for integer r ≥ 0.

Proof of Theorem 7 is easily obtained by combining Proposition 10 below with (74),
(89), and the following representation for the p.d.f. p2(t) as the corresponding inverse
Laplace transform:

p2(t) = 1
2π

·
∫ ∞

−∞
e−itv · exp{−�2(−iv)}dv

= e−t

2π i

∫ c+∞i

c−∞i

ewtew
√
w2−1−w2+1

w + √
w2 − 1

· dw.
(99)

Here, real t > 0 and c > 1 are fixed. �

Proposition 10 For arbitrary fixed real t > 0 and c > 1, the expression which emerges
on the right-hand side of (99) does not depend on a particular value of c > 1 and admits
the series representation given on the right-hand side of (98).

Proof of Proposition 10 is given in (Paris and Vinogradov (2020b), Theorem 1).�
Next, define

φ(x) := x ·
√
1 − x2 with |x| ≤ 1. (100)

Observe that the trigonometric transformations of the function φ(x) defined by (100)
admit the following representations in terms of Taylor series which are convergent for
|x| ≤ 1:

cosφ(x) =
∑
n≥0

(−1)n

(2n)!
x2n(1 − x2)n,

and

sinφ(x) =
∑
n≥0

(−1)n

(2n + 1)!
x2n+1(1 − x2)n+1/2.

Remark 6 (i) The closed-form representation (98) for the p.d.f. p2(t) of the r.v. Y2 is quite
complicated.
(ii) We were able to verify, both analytically and numerically, that p2(t) does possess the

following three properties it has to satisfy:
(ii1) The function p2(t) ≥ 0 on R1+, since

√
1 − x2 cosφ − x sinφ ≥ 0 on x ∈[−1, 1].
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(ii2) The representation for p2(t) which emerges on the right-hand side of formula (98)
integrates to 1 over R1+, since∫ ∞

0
p2(t) · dt = e

π

∫ ∞

0

∫ 1

−1
e−(1−x)t e−x2{

√
1 − x2 cosφ − x sinφ} dx dt

= e
π

∫ 1

−1

e−x2

1 − x
{
√
1 − x2 cosφ − x sinφ} dx = 1.

(ii3) We ascertain the following representation for p2(t):

p2(t) = e
π

∫ 1

−1
e−(1−x)t e−x2{

√
1 − x2 cosφ − x sinφ} dx

= e
π

·
∫ 2

0
e−utG(u)du with G(u) = 4

√
2

3e
· u3/2 + O(u5/2)

(101)

as u ↓ 0. In turn, a combination of (101) with some algebra implies that

p2(t) ∼ 4
√
2

3π
·
∫ ∞

0
e−utu3/2du = 4

√
2

3π
· �(

5
2
)t−5/2 =

√
2
π
t−5/2 as t → ∞,

which is consistent with representation (71) in the case where ρ = 2.

Appendix
In this section, we introduce some relevant special functions as well as review some
known and present new results on these functions.

Definition 4 (Gauss hypergeometric function, see, for example, (Olver et al. (2010), for-
mula (15.2.1))). Given arbitrary complex a and b, c = 0,−1,−2, . . ., and argument z ∈ C

with |z| < 1, the convergent series which emerges on the right-hand side of (102)

2F1(a, b; c; z) :=
∞∑

�=0

(a)� · (b)�
(c)�

· z
�

�!
(102)

generates the so-called Gauss hypergeometric function. Hereinafter, (a)k = �(a+ k)/�(a)
is the Pochhammer symbol.

Definition 5 (Generalized hypergeometric function 3F2, see (Olver et al. (2010), form.
(16.2.1) and case 16.2(iii))). Given arbitrary complex a, b, c, d = 0,−1,−2, . . ., e =
0,−1,−2, . . ., and argument z ∈ C with |z| < 1, the function

3F2

(
a, b, c
d, e

; z
)
:=

∞∑
�=0

(a)� · (b)� · (c)�
(d)� · (e)�

· z
�

�!
(103)

is called the generalized hypergeometric function 3F2.

The infinite series which is present on the right-hand side of (102) can often be
simplified. For instance, see (Paris and Vinogradov (2020a), formula (4.1)), and also for-
mulas (65) and (88) for a few relevant special cases of functions 2F1(1/2, 1; c; z) and

3F2

(
a, b, c
d, e

; z
)
, respectively. In addition, we refer to (Olver et al. (2010), formula (16.2.1))

and Slater (1960), respectively, for a more general form pFq of a generic member of the
class of generalized hypergeometric functions, and for the definition and properties of the
confluent hypergeometric function 1F1, which are also used in this paper. In particular,
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see formula (34) which involves 3F3, and also formulas (15) and (33) where the function
1F1 emerges.
The modified Bessel function of the first kind of order ν is defined by

Iν(t) :=
∞∑
k=0

(t/2)2k+ν

k! ·�(k + 1 + ν)
. (104)

In this paper, we also use the digamma function which is denoted by

ψ(z) := �′(z)/�(z) where �(z) > 0 (105)

with the Euler–Mascheroni constant

γ := −ψ(1) = −�′(1). (106)

Lemma 3 Given real s ∈ (−1, ρ − 1/2),∫ ∞

0
xs−ρ · e−x · Iρ(x)dx = 1

2ρ
· �(s + 1)�(ρ − s − 1/2)
�(ρ − s/2)�(ρ − s/2 + 1/2)

. (107)

Proof of Lemma 3. It easily follows from (Abramowitz and Stegun (1965), formula
(11.4.13)).�
Next, we present the following two previously unknown inequalities involving the mod-

ified Bessel function Iν(x), which seem to be important for the theory of special functions
in their own right (see formulas (108)–(109) below). In this paper, they are needed for the
derivation of related properties of specific p.d.f.’s.

Theorem 8 Fix an arbitrary real ν > −1/2 and assume that the argument x ∈ R1+.
Then the following two inequalities hold:
(i)

1
x
Iν(x)Iν+1(x) > Iν+1(x)2 − Iν(x)Iν+2(x); (108)

(ii)

Iν(x) >

(
1 + 2ν + 1

2x

)
Iν+1(x). (109)

Note that the first inequality (108) stipulates the log-convexity property established
in Corollary 1 below, which is needed for the proof of Theorem 2.i. In turn, (109) is
employed in the proof of inequality (23) of Theorem 2.ii.
In addition, the second inequality (109) implies that for x > 0 and ν > −1/2,

Iν(x) > Iν+1(x), (110)

which was established by Jones (1968). In turn, (110) yields the fulfillment of the rep-
resentation (22) for f ′

ρ(x), and that all the members of the second class pρ(x) are
self-decomposable.
Proof of Theorem 8.
(i) From (Olver et al. (2010), formula (10.32.15)), we have the integral representation

Iμ(x)Iν(x) = 2
π

∫ π/2

0
Iμ+ν(w) cos(μ − ν)θ dθ

for μ + ν > −1, where w := 2x cos θ . This enables us to express the products of Bessel
functions in inequality (108) in terms of a single Bessel function. Then (108) becomes
J > 0, where
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J := 2
π

∫ π/2

0
{I2ν+1(w) cos θ − xI2ν+2(w)(1 − cos 2θ)} dθ

= 2
π

∫ π/2

0
{I2ν+1(w) cos θ − 2xI2ν+2(w) sin2 θ}dθ .

An integration by parts applied to the first integral then yields

J = 2
π
I2ν+1(0) + 4x

π

∫ π/2

0
{I ′2ν+1(w) − I2ν+2(w)} sin2 θ dθ .

But

I ′2ν+1(w) = I2ν+2(w) + 2ν + 1
w

I2ν+1(w)

and so

J = 2
π
I2ν+1(0) + 2(2ν + 1)

π

∫ π/2

0
I2ν+1(w)

sin2 θ

cos θ
dθ .

The integral behaves near θ = π/2 like cos2ν+1 θ/ cos θ and so converges provided ν >

−1/2 and in this case I2ν+1(0) = 0. Since the integrand is non-negative in θ ∈[ 0,π/2] it
follows that J > 0, which concludes the proof of the validity of inequality (108).
(ii) The proof is given in (Paris and Vinogradov (2020b), proof of inequality (4.2) of

Theorem 2). �

Corollary 1 For an arbitrary fixed real ρ > 1/2, the function fρ(x) defined by (1) is
log-convex on R1+.

Proof of Corollary 1. Denote f (x) := e−xg(x), where

g(x) := x−νIν(x). (111)

Then

f ′(x) = e−x(g′(x) − g(x)) = e−xx−ν(Iν+1(x) − Iν(x)) < 0 (112)

by virtue of (110). Also,

f ′′(x) = e−x(g(x) − 2g′(x) + g′′(x)),

and so the log-convexity condition f ′′(x)f (x) > (f ′(x))2 becomes

e−2xg(x)(g(x) − 2g′(x) + g′′(x)) > e−2x(g′(x) − g(x))2

= e−2x(g(x)2 + g′(x)2 − 2g(x)g′(x)),

to yield

g(x) · g′′(x) > g′(x)2. (113)

Now

g′(x) = x−νIν+1(x), and g′′(x) = x−ν−1Iν+1(x) + x−νIν+2(x),

so that the log-convexity condition (113) reduces to the inequality (108).�
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