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Abstract 

An 8 weeks feeding trial was conducted to evaluate the effects of dietary n-3 LC-PUFA levels on 

growth performance, tissue fatty acid profiles and relative expression of genes involved in lipid 

metabolism of mud crab (Scylla paramamosain). Ten isonitrogenous diets were formulated to contain 

five n-3 LC-PUFA levels at 7 % and 12 % dietary lipid levels. Highest weight gain and specific growth 

rate were observed in crabs fed the diets with 19.8 and 13.2 mg g
-1

 n-3 LC-PUFA at 7 % and 12 % 

lipid, respectively. Moisture and lipid contents in hepatopancreas and muscle were significantly 

influenced by dietary n-3 LC-PUFA at the two lipid levels. The DHA, EPA, n-3 LC-PUFA contents 

and n-3/n-6 PUFA ratio in hepatopancreas and muscle significantly increased as dietary n-3 LC-PUFA 

levels increased at both lipid
 
levels. The expression levels of Δ6 FAD and ACO in hepatopancreas 

increased significantly, and expression levels of FAS, CPTⅠ and HSL were down-regulated, with 

increased dietary n-3 LC-PUFA regardless of lipid level. Based on weight gain, the n-3 LC-PUFA 

requirements of S. paramamosain were estimated to be 20.1 mg g
-1

 and 12.7 mg g
-1 

of diet at 7 % and 

12 % dietary lipid, respectively. Over all, dietary lipid level influenced lipid metabolism, and purified, 

high-lipid diets rich in palmitic acid reduced the n-3 LC-PUFA requirement of juvenile mud crab. 

 

Keywords: n-3 LC-PUFA; Growth; LC-PUFA biosynthesis; Lipid metabolism; Scylla paramamosain 
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Introduction 

It is accepted that marine fish and crustacean are generally unable to synthesize n-3 and n-6 long-chain 

polyunsaturated fatty acids (LC-PUFA) from their respective precursors, linolenic acid (LNA, 18:3n-3) 

and linoleic acid (LA, 18:2n-6)(1). Therefore, LC-PUFA such as eicosapentaenoic acid (EPA, 20:5n-3), 

docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are considered as essential 

fatty acids (EFA) for marine fish and crustacean. Numerous studies have demonstrated that DHA, EPA 

and ARA play important roles in survival and growth of marine fish and crustacean larvae(2), and 

dietary deficiencies result in reduced survival, poor growth and prolonged inter-molt periods of 

crustaceans(3). However, it was also reported that excessive dietary LC-PUFA levels could result in 

growth depression(4). The EFA must be included in the diet at adequate levels to fulfill requirements for 

growth, survival and development(5). Moreover, fish oil remains the main but limited source of EFA, 

especially n-3 LC-PUFA, in aquafeeds(6). Hence, it is important to determine the optimal dietary n‐3 

LC-PUFA requirements of marine fish and crustaceans.  

The n‐3 LC-PUFA requirements have been studied for several crustacean species. In swimming 

crab (Portunus trituberculatus) (initial weight 200 - 300 g) at the stage of ovarian development, optimal 

dietary n-3 LC-PUFA level was 6.0 - 8.0 mg g
-1 

of dry diet
 
with a DHA/EPA ratio of 2.0(7-8), and a 

suitable supplement of ARA was 0.6 - 2.4 mg g
-1 

of diet(9). Other studies showed that the optimum 

dietary n-3 LC-PUFA requirements for P. trituberculatus (initial weight 2.17 g and 24.00 g) were 23.5 

mg g
-1

 and 23.3 mg g
-1

 of diet when DHA/EPA ratios were 0.9 and 1.1, respectively(10-11). The optimal 

n‐3 LC-PUFA requirement was 5.0 mg g
-1

 and 8.9 mg g
-1

 of diet for juvenile Pacific white shrimp 

(Litopenaeus vannamei) (initial weight 1.43 g and 0.50 g)(4, 12), respectively. It was also demonstrated 

that the optimum n‐3 LC-PUFA requirements were higher in subadult than adult L. vannamei(13). 

Therefore, previous studies have revealed that quantitative EFA requirements may vary with culture 

species, stage of development, dietary ingredients, and with dietary LC-PUFA (DHA/EPA ratio)(5). 

Many investigations of n-3 LC-PUFA requirements for marine fish or crustacean used diets based on 

fishmeal and/or fish oil where the natural occurrence of n-3 LC-PUFA in these marine ingredients 

strongly influences the proportions of dietary fatty acids. Thus, purified or semi-purified artificial diets 

are required to properly evaluate n-3 LC-PUFA requirements. Previous studies also demonstrated that 

n-3 LC-PUFA requirements may also be affected by dietary lipid level(14). For example, n-3 LC-PUFA 

requirement increased from 12.0 - 22.0 mg g
-1

 to 27.0 - 32.0 mg g
-1

 of dry weight when dietary lipid 

level increased from 10 % to 15 % in red sea bream (Pagrosomus major)(15). The n-3 LC-PUFA 
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requirement of red drum (Sciaenops ocellatus) did not exceed 3.8 mg g
-1

 of diet when dietary lipid 

levels was 7.4 %, while the optimal n-3 LC-PUFA level ranged from 28.7 mg g
-1

 to 51.2 mg g
-1

 of diet 

when dietary lipid level was 18.3 %(16-17). Hence, in order to determine the n-3 LC-PUFA requirement 

of marine crustaceans, purified diets must be used, and dietary lipid level and the ratio of dietary 

LC-PUFA must also be considered. However, studies on the relationship between these factors and 

dietary LC-PUFA requirement are few. Whether there was a relationship in crustaceans between dietary 

lipid level and n-3 LC-PUFA requirement existed was unknown, and how dietary lipid level affects n-3 

LC-PUFA requirement of crustaceans was not clear.  

The mud crab is distributed widely throughout the Indian ocean and Indo-Pacific regions, and is a 

commercially important marine crab species due to its short growth cycle, high adaptability and 

nutritional value(18). In China, S. paramamosain has become major marine aquaculture crustaceans in 

recent years, and the culture technology and techniques have constantly improved(18). In 2018, the yield 

of farmed mud crabs (mainly S. paramamosain) reached 157,712 tons(19). However, the development 

of commercial feed for S. paramamosain has lagged in the crab farming industry and there are few 

reports on the nutritional requirements of mud crab(20-23) although dietary lipid levels of 8.52 % - 11.63 % 

(optimum 9.50 %) could maintain growth performance(20). The requirement for dietary LC-PUFA in 

swimming crab was supposed to range from 6.0 - 23.6 mg g
-1

 of diets(7-8, 10-11), and the optimum dietary 

DHA/EPA ratio for juvenile crab was about 1.0. However, no information was available concerning n-3 

LC-PUFA requirements of S. paramamosain. Hence, the objective of the present study was to 

determine the optimal n-3 LC-PUFA requirement at two dietary lipid levels, and to evaluate n-3 

LC-PUFA supplementation on growth performance, tissue fatty acid profiles and expression levels of 

genes related to fatty acid biosynthesis and lipid metabolism in S. paramamosain. 

 

Methods 

Ethics statement 

The present study was performed in strict accordance with the Standard Operation Procedures of the 

Guide for Use of Experimental Animals of Ningbo University. The experimental protocol and 

procedures were approved by the Institutional Animal Care and Use Committee of Ningbo University. 
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Diet preparation 

Ten isonitrogenous purified diets (~45 % crude protein) were formulated with 0 (control), 0.75 %, 

1.50 %, 2.25 % and 3.00 % n-3 LC-PUFA (DHA: EPA ratio ~1:1) at two dietary lipid levels of 7 % 

and 12 %. The analyzed n-3 LC-PUFA values were 0.15, 7.4, 14.8, 19.8 and 24.9 mg g
-1

 at 7 % lipid, 

and 0.10, 6.8, 13.2, 19.0 and 25.6 mg g
-1

 at 12 % lipid, respectively. Casein and soy protein concentrate 

were used as protein sources, and semi-pure DHA, EPA, ARA, palmitic acid and soy lecithin were 

used as lipid sources (Table 1), with palmitic acid used to alter and balance dietary 7 % and 12 % lipid 

levels without impacting LC-PUFA levels or metabolism. ARA and cholesterol were supplemented to 

maintain normal growth and molting according to data from P. trituberculatus and Scylla serrata(9, 24). 

The fatty acid profiles of the experimental diets were presented as mg g
-1

 in Table 2. All the 

ingredients were purchased from Ningbo Tech-Bank Feed Co. Ltd. and ground into fine powder with 

particle size less than 177 μm. The micro-components, such as vitamin and mineral premixes, were 

then mixed using the progressive enlargement method. EPA, DHA, palmitic acid, soybean lecithin and 

distilled water (400 g kg
-1

) were then added to the premixed dry ingredients and mixed until 

homogenous in a Hobart-type mixer. Cold-extruded pellets were produced (F-26, machine factory of 

South China University of Technology, Guangzhou, China), and the pellet strands cut into uniform 

pellet sizes (two pellet sizes: 2.0 mm diameter, 4.0 mm length; 4 mm diameter, 6.0 mm length) using a 

granulating machine (G-250, machine factory of South China University of Technology, Guangzhou, 

China), steamed for 30 min at 90 °C, and then air-dried to approximately 10 % moisture. The dried 

diets were sealed in vacuum-packed bags and stored at -20 °C until used. 

 

Experimental crabs and feeding trial 

Juvenile mud crabs were obtained from Jia-Shun Aquatic Cooperatives (Taizhou, China). Before the 

experiment, the crabs were acclimated in a cement pool and fed a commercial feed (45 % crude protein, 

8 % crude lipid; Ningbo Tech-Bank Corp., Ningbo, China) for 2 weeks. There were three replicates (15 

crabs per replicate) for each diet treatment. At the beginning of feeding trial, a total of 450 juvenile 

crabs (30.55 ± 0.75 g crab
-1

) were then randomly allocated to individual cellular systems (each cell, 

0.33 m × 0.23 m × 0.15 m, length × width × height; Supplementary Figure 1)
(18, 20). Each cell was half 

filled with a continuous flow of seawater (300 mL min
-1

) and crabs were fed once daily at 18:00 to 

apparent satiation with 6 % - 8 % of wet body weight during the feeding duration
(26). Faeces and 
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uneaten feed from each cell were removed daily. Any dead crabs were taken out and weighed as soon 

as being observed, and the number of molts were calculated and recorded daily.  

During the experimental period, the temperature of flowing water in the crab cells was 26 - 32 °C, 

salinity was approximately 26 - 28 g L
-1

, pH was 7.7 - 8.0, the ammonia nitrogen was lower than 0.05 

mg L
-1

, and dissolved oxygen was 6.5 - 7.0 mg L
-1

. Salinity, pH, ammonia nitrogen and dissolved 

oxygen in the cellular systems were measured by the YSI Pro plus (YSI, Yellow Springs, Ohio, USA). 

The feeding trial lasted for 8 weeks. 

Sample collection 

At the beginning of the feeding trial, 10 juvenile mud crabs were randomly culled and stored at -20 °C 

as the initial samples. At the end of trial, crabs were starved for 24 h, and then counted and weighed to 

determine weight gain (WG), specific growth rate (SGR) and molting frequency (MF), which were 

calculated per replicate. In each replicate, hemolymph samples from three to five crabs were taken 

from the pericardial cavity using a 2 mL syringe, placed in 1.5 mL microfuge tubes and centrifuged at 

956 g for 10 min at 4 °C (Eppendorf centrifuge 5810R, Germany). The supernatant was collected and 

stored at -80 °C until further analysis. Hepatopancreas and muscle samples were dissected from the 

same crabs that had blood drawn. The hepatopancreas samples were divided into two portions, one was 

stored at -20 °C for proximate composition and fatty acid profile analysis (three crabs per replicate), 

and the other was frozen immediately in liquid nitrogen and stored at -80 °C for gene expression 

analysis (three crabs per replicate). Muscle samples were stored at -20 °C for analyzing proximate 

composition and fatty acid profile (three crabs per replicate). Samples collected from the same replicate 

were pooled prior to analysis. 

Biochemical analysis  

Proximate composition and fatty acids 

The crude protein, crude lipid, moisture and ash content of diets, muscle and hepatopancreas of the 

crabs were determined according to the method of the Association of Official Analytical Chemists
(27). 

The moisture content was determined by drying the samples to a constant weight at 105 °C. The crude 

protein contents (N×6.25) were assayed by the Dumas combustion method with a protein analyzer 

(FP-528, LECO, USA). Crude lipid was measured via the petroleum ether extraction method using a 

Soxtec System HT (SX360, OPSIS, Sweden), and the ash content was determined after incineration in 

a muffle furnace at 550 °C for 8 h.  
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Fatty acid compositions of diets, hepatopancreas and muscle were analyzed as described in detail 

previously
(28). In brief, total lipid was extracted with chloroform/methanol (2:1 by vol.) and fatty acid 

methyl esters (FAME) were then produced from total lipid by methanolic sulfuric acid with butylated 

hydroxytoluene (BHT) as antioxidant. Methyl tricosanoate (23:0; Sigma Aldridge Trading Co., Ltd., 

Shanghai, China) was used as internal standard at 1.0 mg mL
-1

 hexane. Gas chromatography (Agilent 

Technologies GC-MS 7890B-5977A, USA) was used to analysis FAME with fatty acids identified by 

reference to known standards and presented as percentages of area. 

Real-time quantitative PCR (RT-qPCR) analysis of fatty acid biosynthesis and lipid 

metabolism genes in hepatopancreas 

Total RNA was extracted from hepatopancreas samples using Trizol reagent (Invitrogen, USA), the 

quantity and quality of total RNA assessed using a Nano DropND-1000 spectrophotometer (NanoDrop 

Technologies, USA) and 1.2% denaturing agarose gel electrophoresis. The 260/280 nm absorbance 

ratios of all samples ranged from 1.86 to 2.00, indicating a satisfactory purity of the RNA samples. The 

RNA was dissolved in 30 μL Recombinant DNase I (RNase-free) (Takara, Japan) and stored at -80 °C 

until use. The cDNA was synthesized for quantitative reverse-transcriptase polymerase chain reaction 

(qPCR) using the PrimeScript™ RT Reagent Kit (Takara, Japan) according to the manufacturer's 

instructions. 

Elongation factor-1α (EF-1α) was used as a house-keeping gene after the stability of EF-1α 

expression was confirmed. Specific primers for elongase of very long-chain fatty acids 4 (ELOVL4), 

delta-6 fatty acyl desaturase (Δ6 FAD), sterol regulatory element binding protein-1 (SREBP-1), fatty 

acid synthase (FAS), glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase 

(6PGD), hormone-sensitive triglyceride lipase (HSL), acyl-CoA oxidase (ACO), carnitine 

palmitoyltransferase Ⅰ and Ⅱ (CPTⅠ and CPTⅡ) used for RT-qPCR were designed using Primer Premier 

5.0 software (Supplementary Table 1). The expression of mRNA was determined by RT-qPCR (Light 

Cycler 96; Roche, Switzerland). The RT-qPCR was performed in a 20 μL reaction volume containing 

10 μL of SYBR Green premix, 0.8 μL of cDNA template, 0.4 μL of each primer (10 μM) and 8.4 μL of 

diethyl pyrocarbonate-treated water. The RT-qPCR conditions were as follows: 95 °C for 10 min; 45 

cycles of 95 °C for 15 s, 58 °C for 15 s and 72 °C for 20 s. The data were optimized using the 

comparative Ct (2
-ΔΔCt

) value method as described by Livak and Schmittgen
(29) and then subjected to 

statistical analysis. 
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Calculations and statistical analysis 

The parameters were calculated as follows: 

Weight gain (WG, %) = 100 × (Wt − Wi) / Wi, 

Specific growth rate (SGR, % d
-1

) = 100 × (lnWt – lnWi) / t, 

Molting frequency (MF) = 2 × Nm / (initial number of crabs + final number of crabs) 

Where Wt is the final body weight (g), Wi is the initial body weight (g), t is the experimental duration 

in days, Nm is the molting times. 

Data were first analyzed using one-way analysis of variance ANOVA to detect differences among 

all treatments. A two-way ANOVA was used to test the effects of lipid and n-3 LC-PUFA levels on 

growth performance, tissue compositions and fatty acid profiles, and expression of genes related to 

fatty acid synthesis and lipid metabolism. Data were transformed before analysis as necessary. When 

there were significant differences (P < 0.05), the group means were further compared using Tukey’s 

multiple range tests. All the results are presented as means ± SEM (n = 3). The two-slope broken-line 

regression analysis was conducted to analyze WG in response to dietary n-3 LC-PUFA level (Figure 

1). All statistical analyses were performed using SPSS 23.0 (SPSS, IBM, USA). 

 

Results 

Growth performance 

The growth performance of crabs fed the experimental diets is shown in Table 3. MF was not affected 

by dietary n-3 LC-PUFA at either lipid level but WG and SGR were significantly influenced by dietary 

n-3 LC-PUFA at both lipid levels. Crabs fed the diet containing 19.8 mg g
-1

 n-3 LC-PUFA had higher 

WG and SGR than those fed the control (0.15 mg g
-1

) and 24.9 mg g
-1

 n-3 LC-PUFA diets at 7 % 

dietary lipid level. Furthermore, crabs fed the diet containing 13.2 mg g
-1

 n-3 LC-PUFA at 12 % lipid 

had the highest WG and SGR among all treatments. Two-slope broken-line regression analysis showed 

that the optimal n-3 LC-PUFA levels were estimated to be 20.1 mg g
-1

 and 12.7 mg g
-1 

at 7 % and 12 % 

dietary lipid level, respectively (Figure. 1). 
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Proximate composition in hepatopancreas and muscle 

As shown in Table 4, moisture and lipid contents in muscle were significantly influenced by dietary 

n-3 LC-PUFA at both lipid levels, with lipid content in muscle significantly decreased with increased 

dietary n-3 LC-PUFA, although protein content in muscle was not affected by dietary n-3 LC-PUFA at 

either lipid level. Moisture, lipid and protein contents in hepatopancreas were significantly influenced 

by dietary n-3 LC-PUFA at both lipid levels, with crabs fed the control diet having the lowest lipid 

content in hepatopancreas among all treatments. However, protein content in hepatopancreas 

significantly decreased with increased dietary n-3 LC-PUFA at both lipid levels, with the highest 

protein content in hepatopancreas found in crabs fed the control diet. 

 

Fatty acids profile of muscle and hepatopancreas 

Principal component analysis (PCA) was used to evaluate the overall effects of dietary n-3 LC-PUFA 

at two dietary lipid levels on fatty acid compositions of muscle and hepatopancreas (Figure. 2). Fatty 

acid compositions of crabs fed the control diet were significantly separated from those fed the n-3 

LC-PUFA supplemented diets. Full fatty acid compositions of muscle and hepatopancreas are provided 

in Supplementary Tables 2 and 3.  

The fatty acid profiles of muscle fed the experimental diets are presented in Table 5. 

Monounsaturated fatty acid (MUFA) and n-6 PUFA contents significantly decreased with increased 

dietary n-3 LC-PUFA at two lipid levels. However, EPA, DHA, n-3 PUFA contents and DHA/EPA 

ratio significantly increased with increasing dietary n-3 LC-PUFA at both lipid levels. The EPA, DHA 

and n-3 PUFA contents and DHA/EPA ratio in muscle of initial crabs were higher than those fed the 

control diet, but lower than those fed the n-3 LC-PUFA-supplemented diets. Muscle of crabs fed all 

experimental diets had higher total fatty acid (TFA) contents than that of initial crabs. The SFA content 

in muscle decreased at 7 % dietary lipid but increased at 12 % dietary lipid with dietary n-3 LC-PUFA 

levels increasing. The n-3/n-6 ratio in muscle increased with increased dietary n-3 LC-PUFA levels.  

The fatty acid profiles in hepatopancreas fed the experimental diets are shown in Table 6. Crabs 

fed the diets supplemented with n-3 LC-PUFA had significantly higher contents of TFA, MUFA, n-3 

PUFA, DHA, EPA and DHA/EPA ratio in hepatopancreas than those fed the control diet at both lipid 

levels, and no significant differences were observed in DHA/EPA ratio of crabs fed the n-3 LC-PUFA 

supplemented diets. Crabs fed the control diets at both lipid levels had lower EPA, DHA and n-3 
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PUFA contents in hepatopancreas than those of initial crab. The EPA, DHA and n-3 PUFA contents 

were higher than initial crab when crabs fed diets with higher than 7.4 mg g
-1 

and 13.2 mg g
-1 

dietary 

n-3 LC-PUFA at 7 % and 12 % lipid levels, respectively. The DHA/EPA ratio of crabs fed diets 

supplemented with n-3 LC-PUFA were similar as initial crab and higher than those fed the control diets. 

The SFA content decreased at 7 % but increased at 12 % dietary lipid with increased n-3 LC-PUFA 

level. The n-3/n-6 PUFA ratio in hepatopancreas increased with increased dietary n-3 LC-PUFA level, 

but was lower than that in initial crabs. Crabs fed diets containing 12 % lipid had lower n-6 PUFA, n-3 

PUFA, EPA and DHA contents in hepatopancreas than those fed the 7 % lipid diets. 

 

Expression of LC-PUFA biosynthesis in hepatopancreas 

The expression of genes related to LC-PUFA biosynthesis in hepatopancreas are shown in Figure 3. 

The expression levels of Δ6 FAD in hepatopancreas were up-regulated with increased dietary n-3 

LC-PUFA at both lipid levels, with lowest expression level of Δ6 FAD in hepatopancreas observed in 

crabs fed the control diets. However, expression levels of ELOVL4 tended to decrease with increasing 

dietary n-3 LC-PUFA at both lipid levels. The expression levels of ELOVL4 decreased sharply when 

dietary n-3 LC-PUFA level was higher than 14.8 mg g
-1

 at 7 % lipid level, and decreased with 

increasing dietary n-3 LC-PUFA levels at 12 % lipid.  

 

Expression of lipid metabolism in hepatopancreas 

Figure 4 shows the expression levels of genes involved in lipogenesis in hepatopancreas. The 

expression levels of SREBP-1 in hepatopancreas significantly increased as dietary n-3 LC-PUFA 

increased from 0.15 mg g
-1 

to 14.8 mg g
-1

 and then decreased with further increased dietary n-3 

LC-PUFA at 7 % lipid level,
 
and the highest expression level of SREBP-1 was found in crabs fed diets 

containing 14.8 mg g
-1 

n-3 LC-PUFA. The expression levels of G6PD showed similar trends at 7 % 

and 12 % lipid level. Crabs fed diets containing 6.8 mg g
-1 

n-3 LC-PUFA showed the highest 

expression levels of 6PGD, and expression levels decreased with increased dietary n-3 LC-PUFA at 

12 % lipid. The expression levels of FAS significantly decreased with increased dietary n-3 LC-PUFA 

at both 7 % and 12 % lipid levels. 

The relative expression levels of genes involved in lipolysis and β-oxidation are presented in 

Figure 5. The expression levels of CPTⅠ, CPTⅡ and HSL were down-regulated with increased dietary 
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n-3 LC-PUFA at both dietary lipid levels. However, expression levels of ACO were significantly 

up-regulated with increased dietary n-3 LC-PUFA.  

 

Discussion 

In the present study, WG and SGR showed at first an increase and then a decreasing trend with 

increased dietary n‐3 LC-PUFA level regardless of dietary lipid, and the best growth performance was 

observed in crabs fed diets containing 19.8 mg g
-1 

and 13.2 mg g
-1

 dietary n‐3 LC-PUFA at 7 % and 12 % 

lipid, respectively. The results indicated that excessive dietary n‐3 LC-PUFA levels led to detrimental 

effects on growth performance of S. paramamosain, which was in agreement with previous studies in L. 

vannamei
(4)

 and Penaeus monodon
(30)

. A hypothesis put forward to explain this negative effect was the 

possibility that excessive levels of dietary LC-PUFA, which have higher susceptibility to peroxidation, 

would result in oxidative stress
(31)

. The highest WG value was 81.24 % in the study, which was lower 

than 300 % in S. paramamosain
 (20)

 (initial weight 11.53 g) and 200 % in Eriocheir sinensis
(32)

 (initial 

weight 0.6 g). It was well known that the growth of crustaceans, due to an increase in weight gain at 

molt, is correlated with the molting frequency
(33)

. However, the intermolt would become longer as the 

individual grows larger. This may be due to different culture species, bigger initial weight and the 

purified diets, which were used to reduce the effects of natural LC-PUFA in fishmeal and/or fish oil. 

Usually, purified diets reduce the palatability of feeds for mud crab. The farming of mud crab depends 

mainly on conventional simple or compound feeds including trash fish, molluscan meat, and animal 

viscera
(20)

. 

Based on two-slope broken-line regression analysis of WG against dietary n-3 LC-PUFA level, 

the optimal dietary n-3 LC-PUFA levels (DHA/EPA = 1.1) were 20.1 mg g
-1

 and 12.7 mg g
-1

 at 7 % 

and 12 % dietary lipid, respectively. The result observed in the present study was different to those 

obtained in P. trituberculatus (initial weight 2.17 g and 24.00 g, respectively)
(10-11)

 where the optimum 

n-3 LC-PUFA requirement was 23.5 mg g
-1

 and 23.3 mg g
-1

 of diet when the dietary lipid was 

sufficient and DHA/EPA ratios were 0.9 and 1.1, respectively. Different results were also observed in 

other crustaceans, including Chinese mitten crab (E. sinensis), tiger shrimp (P. monodon), giant 

freshwater prawn (Macrobrachium rosenbergii) and L. vannamei
(4, 34-36)

, which suggested that the 

optimum n-3 LC-PUFA requirement varies with species, development stages, dietary lipid level, 

dietary DHA/EPA ratio and feed formulation. On the other hand, the optimal n-3 LC-PUFA level 

decreased from 20.1 mg g
-1

 to 12.7 mg g
-1

 as dietary lipid level increased from 7 % to 12 % in the 
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present study, which showed that n-3 LC-PUFA requirements of S. paramamosain could be affected 

by dietary lipid level, and decreased when crabs were fed higher dietary lipid. However, the 

requirement of red sea bream (P. major) for dietary n-3 LC-PUFA increased from 1.2 - 2.2 mg g
-1

 to 

2.7 - 3.2 mg g
-1

 of dry weight when dietary lipid level increased from 10 % to 15 %
(15)

. This difference 

may be due to different culture species and/or feed formulations. In the present study, 7 % dietary lipid 

was lower than the optimum lipid level (9.50 %) for S. paramamosain
(20)

. A previous study 

demonstrated that L. vannamei could utilize both SFA and PUFA for energy metabolism
(13)

 and, thus, 

the higher n-3 LC-PUFA requirement at lower dietary lipid in S. paramamosain may be due in part to 

dietary n-3 LC-PUFA (e.g. EPA) being utilized to supply energy. However, information regarding the 

relationship between n-3 LC-PUFA requirement and dietary lipid level in crustaceans is limited and 

still needs to be confirmed and further studied. Additionally, WG and SGR increased significantly with 

increased dietary lipid level in the present study, which agreed with a previous study on mud crab 

investigating optimum dietary protein and lipid levels (Cheng et al., unpublished data). These results 

also indicated that mud crab may have a relatively high lipid requirement and/or high tolerance to 

increased dietary lipid level. 

In the present study, crabs fed the n-3 LC-PUFA supplemented diets had significantly higher lipid 

contents in hepatopancreas than those fed the control diets, and no significant differences were 

observed in crabs fed the n-3 LC-PUFA supplemented diets, which was similar to studies in P. 

trituberculatus
(10)

 and Japanese flounders (Paralichthys olivaceus)
(37)

. The results indicated that the 

hepatopancreas was an important tissue for lipid deposition and energy storage in mud crab. Moreover, 

dietary n-3 LC-PUFA improved energy storage but prevented excess lipid deposition in hepatopancreas, 

which was supported by the data on TFA content and expression of genes related to lipid metabolism in 

the present study. The opposite trend was observed in muscle lipid content, suggesting a differential 

effect of dietary n-3 LC-PUFA on lipid distribution in different tissues. It was reported that dietary n-3 

LC-PUFA reduced muscle lipid content of black seabream (Acanthopagrus schlegelii)
(38)

. However, 

dietary DHA and EPA increased the lipid content in P. olivaceus
(37)

. Contradictory results about dietary 

LC-PUFA and lipid content were also observed in crustaceans
(10-11)

. Therefore, the relationship 

between tissue lipid content and dietary n-3 LC-PUFA levels requires further study in crustaceans. The 

hepatopancreas protein content decreased with increasing dietary n-3 LC-PUFA levels at each dietary 

lipid, which partly agreed with the whole-body protein content in P. trituberculatus
(11)

. It has been 

reported that SFA and MUFA are better than n‐3 LC-PUFA as substrates for energy production, and 

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core . IP address: 86.168.252.94 , on 17 Sep 2020 at 11:21:15 , subject to the Cam

bridge Core term
s of use, available at https://w

w
w

.cam
bridge.org/core/term

s . https://doi.org/10.1017/S0007114520003335

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0007114520003335


Accepted manuscript 

high dietary levels of n-3 LC-PUFA could lead to insufficient energy supply, and thus hepatopancreas 

protein was also used to supply energy. 

It was demonstrated in fish and crustaceans that the fatty acid compositions of 

liver/hepatopancreas and/or muscle reflected the fatty acid profile of diets
(6, 13, 26)

. In the present study, 

the fatty acid compositions in hepatopancreas and muscle showed similar results when presented as 

absolute quantitative terms. Briefly, the EPA, DHA and n-3 PUFA contents in hepatopancreas increased 

with increased dietary n-3 LC-PUFA levels. Crabs fed diets supplemented with n-3 LC-PUFA had 

similar DHA/EPA ratios in hepatopancreas as initial crab, and higher than those fed control diets. In 

muscle, the DHA/EPA ratio in crabs fed diets containing n-3 LC-PUFA was higher than that in initial 

crabs. On the one hand, these results indicated selective retention of DHA over EPA or other fatty acids 

in S. paramamosain for its greater biological value as EFA, which was reported in other species
(14)

. On 

the other hand, recent study indicated that L. vannamei had the potential ability to convert linolenic acid 

to EPA and DHA
(39)

. We speculated that S. paramamosain may be able to synthesize DHA from EPA 

or shorter chain PUFA, albeit the capacity may be low. Thus, when the content of DHA in 

hepatopancreas was insufficient, it was necessary to synthesize DHA from EPA to satisfy functional 

roles. The contents of TFA and n-3 PUFA in hepatopancreas increased with increasing dietary n-3 

LC-PUFA level, which was consistent with the lipid content data discussed above. However, the SFA 

content decreased at 7 % dietary lipid but increased at 12 % dietary lipid with increasing dietary n-3 

LC-PUFA levels in both hepatopancreas and muscle. This may reflect S. paramamosain utilising SFA 

for energy metabolism when dietary energy was low as reported in L. vannamei
(4, 13)

, with dietary n-3 

LC-PUFA suppressing the utilisation of SFA for energy at the higher dietary lipid level. In the present 

study, the absolute contents of MUFA and n-6 PUFA decreased in muscle but increased in 

hepatopancreas with increasing dietary n-3 LC-PUFA at both dietary lipid levels, which may indicate a 

difference in fatty acid deposition in different tissues
(4)

. The n‐3/n‐6 PUFA ratio is an important index 

for evaluating the nutritional value of food. The FAO/WHO recommended that the lowest n‐3/n‐6 

PUFA ratio in human food should be 0.1 - 0.2
(40)

, and values above that are more beneficial. In the 

present study, the ratios of n-3/n-6 PUFA in hepatopancreas and muscle were much higher than 0.2, 

other than in hepatopancreas of crabs fed control diets, which were 0.13 and 0.15 at 7 % and 12 % 

dietary lipid, respectively. The ratios of n-3/n-6 PUFA increased with increasing dietary n-3 LC-PUFA 

at both dietary lipid levels in both hepatopancreas and muscle, which indicated that dietary n‐3 

LC-PUFA supplementation in this experiment improved the nutritional value of mud crab. In 

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core . IP address: 86.168.252.94 , on 17 Sep 2020 at 11:21:15 , subject to the Cam

bridge Core term
s of use, available at https://w

w
w

.cam
bridge.org/core/term

s . https://doi.org/10.1017/S0007114520003335

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0007114520003335


Accepted manuscript 

hepatopancreas, the contents of n-6 PUFA, n-3 PUFA, EPA and DHA were lower in crabs fed the diets 

containing 12 % lipid than those fed 7 % lipid. This may be due to high dietary lipid improved by 

palmitic acid reduced the proportion of PUFAs in dietary lipid, which agreed with another study on 

mud crab investigating the relationship between dietary lipid and optimum DHA/EPA (unpublished 

data).  

FAS, G6PD, 6PGD and HSL are known as important proteins involved in the mechanisms of 

lipogenesis and lipolysis, the gene expression levels of which could be affected by dietary fatty acid 

profile
(41-42)

. The function of FAS is to catalyze de novo fatty acid synthesis
(43)

, and previous studies 

have shown that n-3 LC-PUFA downregulate the expression of genes involved in fatty acid synthesis, 

particularly FAS
 (42)

. 6GPD and G6PD are the key regulatory enzymes involved in NADPH production, 

essential for fatty acid biosynthesis
(43-44)

, while HSL is known to be involved in lipolysis
(45)

. 

Additionally, SREBP-1 is a transcription factor regulating fatty acid, lipid and cholesterol biosynthesis 

pathways
(44, 46)

, and a study in mouse indicated that LC-PUFA inhibit lipogenesis by downregulating 

the mRNA expression of SREBP-1
(47)

. There are few studies on SREBP-1 in crustaceans. SREBP-1 

cDNA from the hepatopancreas of mud crab has been cloned, and it was demonstrated that the 

quantitative expression of SREBP-1 was highly influenced by dietary fatty acids
(48)

. In the current 

study, the expression levels of FAS and HSL decreased with increasing dietary n-3 LC-PUFA level 

regardless of dietary lipid level, which agreed with results reported in black seabream
(42)

. Moreover, the 

SREBP-1, 6GPD and G6PD expression levels increased and then decreased when dietary n-3 

LC-PUFA level increased from 0.15 mg g
-1

 to 24.9 mg g
-1

 at 7 % dietary lipid, while the expression 

levels of SREBP-1 and G6PD were down-regulated by increased dietary n-3 LC-PUFA at 12 % dietary 

lipid. These results indicated that the hepatopancreas of mud crab may require a certain level of lipid to 

supply energy and maintain function, and dietary n-3 LC-PUFA promotes lipogenesis when lipid intake 

is insufficient, while it suppresses lipogenesis to prevent the damage caused by excess lipid deposition 

in hepatopancreas.  

The main pathway of fatty acid catabolism is β-oxidation in mitochondrial matrix and 

peroxisome
(49)

. Both CPT and ACO are key enzymes of fatty acid β-oxidation, CPTⅠ can participate in 

long chain fatty acid oxidation, catalysing the conversion of fatty acid-CoAs to fatty acid carnitines for 

entering the mitochondrial matrix, and the fatty acyl group is transferred back to CoA by a second 

enzyme, CPTII
 (50-51)

. ACO is the rate-limiting enzyme for fatty acid β-oxidation in peroxisomes
(49)

. In 

the present study, the expression levels of CPTⅠ and CPTII showed a decreasing trend with increased 
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dietary n-3 LC-PUFA level at both 7 % and 12 % lipid levels suggesting a reduction of transport of 

long-chain fatty acids into the mitochondrial matrix, which led to an inhibition of fatty acid β-oxidation 

in agreement with the hepatopancreas lipid content data. The ACO expression levels were up-regulated 

by increasing dietary n-3 LC-PUFA at both 7 % and 12% lipid levels indicating that fatty acid 

β-oxidation in peroxisomes was enhanced, opposite to that in mitochondria. The results highlighted the 

different roles of fatty acid β-oxidation in mitochondria and peroxisomes. One of steps in DHA 

biosynthesis through the “Sprecher pathway” is catalysed by ACO in peroxisomes
(52)

. The 

up-regulation of ACO expression by dietary n-3 LC-PUFA in the present study agrees with the DHA 

content in hepatopancreas, which may indicate that mud crab require a high level of DHA to maintain 

physiological function.  

Key enzymes involved in LC-PUFA biosynthesis in mud crab have been cloned, including Δ6 

FAD-like
(53) 

and ELOVL4-like
(54)

. It is well established that ELOVL4 effectively elongate C22 PUFA to 

C24 PUFA and have the potential to participate in the production of DHA in fish
(55-56)

. The Δ6 FAD is 

regarded as the rate-limiting enzyme in the LC-PUFA biosynthetic pathway in mammals because it is 

the first enzyme involved in the bioconversion of C18 PUFA towards longer and more unsaturated 

homologues, and is also involved in the synthesis of DHA from EPA
(52, 57)

. It is generally accepted that 

high levels of dietary LC-PUFA can suppress the expression of elongase and desaturase genes
(1)

, which 

may be the reason for decreased expression of ELOVL4 in the present study. A previous study in 

orange-spotted grouper (Epinephelus coioides) reported that ELOVL4 mRNA expression was 

down-regulated in response to high dietary LC-PUFA
(55)

. It was demonstrated that crabs fed soy oil 

diets had higher ELOVL4 and Δ6 FAD expression than those fed fish oil diets
(4, 53)

, which was 

opposite in L. vannamei
(58)

. In the current study, the expression of Δ6 FAD increased with increasing 

dietary n-3 LC-PUFA level at both dietary lipid levels, which was positively related to the expression of 

ACO. It was reported that both Δ6 FAD and ACO participate in DHA biosynthesis from EPA through 

the “Sprecher pathway”
(52)

. The up-regulation of Δ6 FAD and ACO expression may therefore also 

indicate that mud crab need high DHA to maintain basic functions and it is necessary to synthesize 

DHA from EPA. This is further evidence for the selective retention of DHA over EPA in mud crab as 

well as suggesting the capacity of synthesizing DHA from EPA in vivo. A study in juvenile golden 

pompano (Trachinotus ovatus) showed a similar result, with the expression of ELOVL4, ELOVL5 and 

Δ6 FAD in both liver and brain increasing with increasing dietary DHA/EPA ratios
(59)

. Additionally, 

the expression of Δ6 FAD in crabs fed 12 % dietary lipid was higher than those fed 7 % dietary lipid, 
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we speculated that higher dietary lipid contained lower proportion of n-3 LC-PUFA in the study, which 

may be in accordance with the result of DHA content in hepatopancreas. Additionally, the underlying 

regulation mechanism of ELOVL4 demonstrated that the transcription of ELOVL4 was positively 

mediated by LXRα directly or indirectly through the regulation of SREBP-1 transcription
(56)

, and 

expression of Δ6 FAD was also positively regulated by SREBP-1
(60-61)

, which was partly in agreement 

with the results in the present study. However, to the best of our knowledge, information on fatty acid 

and LC-PUFA biosynthesis in mud crab is lacking, and studies on the above enzymes have only been at 

the transcriptional level. The function of these enzymes and the underlying mechanisms by which the 

expression of these genes is regulated requires to be studied. 

 

Conclusion 

In summary, mud crabs have a high lipid requirement and relatively high tolerance to dietary lipid 

levels. Based on two-slope broken-line regression analysis, the optimal n-3 LC-PUFA requirements of 

mud crab weight gain were estimated to be 20.1 mg g
-1

 and 12.7 mg g
-1

 at 7 % and 12 % dietary lipid 

levels, respectively. Purified, high-lipid diets rich in palmitic acid reduced the n-3 LC-PUFA 

requirement of mud crab. Dietary n-3 LC-PUFA promoted energy storage but prevented excess lipid 

deposition in hepatopancreas. 
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Figure legends  

 

Figure. 1. The relationship between dietary n-3 LC-PUFA levels and weigh gain (WG) of juvenile mud crab fed 7 % 

(A) and 12 % (B) dietary lipid. The horizontal axis represents the measured dietary n-3 LC-PUFA level (dry matter; mg 

g
-1

). The Xpot represents the optimal dietary n-3 LC-PUFA level for maximum WG of mud crab. 
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Figure. 2. Principal component analysis (PCA) score plots based on fatty acid profiles of muscle (A) and 

hepatopancreas (B) of crabs fed different experimental diets. For example, L7-0.15: dietary lipid and n-3 LC-PUFA 

levels were 7 % and 0.15 mg g
-1

, respectively. 
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Figure. 3. Effects of different dietary lipid and n-3 LC-PUFA levels on relative mRNA expression levels of genes 

involved in LC-PUFA biosynthesis in hepatopancreas of S. Paramamosain. , 7 % lipid level; , 12 % lipid level. 

Values are means ± S.E.M. (n = 3), and bars bearing different letters are significantly different by Tukey's test (P < 

0.05). In order to include data from both dietary lipid levels, the designed n-3 LC-PUFA levels (%) were used in the 

X-axis. ELOVL, elongase of very long-chain fatty acids; FAD, fatty acyl desaturase.  
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Figure. 4. Effects of different dietary lipid and n-3 LC-PUFA levels on relative mRNA expression of genes involved in 

lipogenesis in the hepatopancreas of S. Paramamosain. , 7 % lipid level; , 12 % lipid level. Values are means ± 

S.E.M. (n = 3), and bars bearing different letters are significantly different by Tukey's test (P < 0.05). In order to 

include the data at both dietary lipid levels, the designed n-3 LC-PUFA levels (%) were used in the X-axis. SREBP-1: 

sterol regulator element-binding protein-1; FAS: fatty acid synthase; G6PD: glucose-6-phosphate dehydrogenase; 

6PGD: 
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Figure 5. Effects of different dietary lipid and n-3 LC-PUFA levels on relative mRNA expression of genes involved in 

lipolysis and β-oxidation in the hepatopancreas of S. Paramamosain. , 7 % lipid level; , 12 % lipid level. Values 

are means ± S.E.M. (n = 3), and bars bearing different letters are significantly different by Tukey's test (P < 0.05). In 

order to include the data at both dietary lipid levels, the designed n-3 LC-PUFA levels (%) were used in the X-axis. 

CPT: carnitine palmitoyltransferase; HSL: hormone-sensitive triglyceride lipase; ACO, acyl-CoA oxidase. 
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Table 1  

Formulation and proximate composition of the experimental diets (dry matter, %). 

Ingredients 

7 % lipid 12% lipid 

n-3 LC PUFA (mg g
-1

) 

0.15 7.4 14.8 19.8 24.9 0.10 6.8 13.2 19.0 25.6 

Casein
* 

27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 

Soy protein concentrate
†
 22.56 22.56 22.56 22.56 22.56 22.56 22.56 22.56 22.56 22.56 

Wheat flour 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 

DHA–enriched oil
‡
 0.00 0.43 0.85 1.28 1.71 0.00 0.43 0.85 1.28 1.71 

EPA–enriched oil
§
 0.00 0.74 1.48 2.22 2.96 0.00 0.74 1.48 2.22 2.96 

ARA–enriched oil
||
 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Palmitic acid
¶
 4.67 3.50 2.34 1.17 0.00 9.67 8.50 7.34 6.17 5.00 

Soybean lecithin 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Cholesterol 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Betaine (98%) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Vitamin premix
**

 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Mineral premix
**

 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

Ca(H2PO4)2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

Choline chloride 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

Cellulose 8.97 8.97 8.97 8.97 8.97 3.97 3.97 3.97 3.97 3.97 

Sodium alginate 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Proximate composition 

          Moisture 11.56 11.13 12.05 10.35 11.29 11.05 10.03 10.64 10.76 10.46 

Crude protein 45.57 45.49 44.82 45.21 44.38 44.77 45.61 45.89 45.35 45.06 

Crude lipid 6.51 6.52 6.89 6.52 6.48 11.93 11.73 11.85 11.69 11.90 

Ash 5.53 5.98 5.87 5.02 6.21 5.61 5.96 6.17 6.35 5.77 

* 
Casein, 89.55 % crude protein and 0.2 % crude lipid. 

† 
Soy protein concentrate, 69.88 % crude protein and 0.51 % crude lipid. 

‡ 
DHA-enriched oil, DHA content, 406.5 mg g

-1
 oil. 

§
 EPA-enriched oil, EPA content, 462.5 mg g

-1
 oil; DHA content, 235.6 mg g

-1
 oil. 

||
 ARA-enriched oil, ARA content, 468.0 mg g

-1
 oil. 

¶ 
Palmitic acid, Palmitic acid content, 97% of total fatty acids, in the form of methylester; Shanghai Yiji Chemical Co., 

Ltd., China. 

** 
Vitamin premix and Mineral premix were based on Jin et al. (2015)

(25)
.
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Table 2 

Fatty acid compositions of the experimental diets (mg g
-1
, dry matter). 

FA 

7 % lipid 12 % lipid 

n-3 LC PUFA (mg g
-1
) 

0.15 7.4 14.8 19.8 24.9 0.10 6.8 13.2 19.0 25.6 

14:0 0.37 0.32 0.28 0.21 0.22 0.62 0.54 0.58 0.50 0.45 

16:0 29.81 25.38 19.99 12.77 6.23 62.53 56.09 49.71 43.28 36.84 

18:0 1.78 1.89 2.23 2.19 2.24 1.79 1.36 2.20 2.29 2.32 

20:0 0.14 0.17 0.23 0.23 0.27 0.14 0.08 0.20 0.39 0.25 

∑SFA
*
 32.10 27.76 22.73 15.40 8.97 65.08 58.08 52.69 46.46 39.87 

16:1n-7 0.07 0.09 0.16 0.19 0.19 0.09 0.05 0.12 0.14 0.18 

18:1n-9 5.40 5.95 7.07 7.27 7.47 5.42 5.28 6.69 7.04 7.51 

20:1n-9 0.11 0.16 0.24 0.27 0.27 0.11 0.12 0.25 0.26 0.35 

22:1n-11 0.08 0.12 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 

∑MUFA
†
 5.58 6.20 7.46 7.74 7.93 7.62 7.45 8.06 7.45 8.04 

18:2n-6 10.47 10.95 13.24 12.72 11.15 11.76 11.50 12.43 12.22 12.17 

18:3n-6 0.25 0.29 0.34 0.37 0.34 0.29 0.04 0.30 0.00 0.39 

20:2n-6 0.06 0.07 0.11 0.11 0.09 0.05 0.35 0.11 0.10 0.11 

20:4n-6 2.08 2.13 2.93 2.81 2.60 2.33 2.78 2.09 2.73 2.87 

22:4n-6 0.05 0.04 0.05 0.08 0.08 0.04 0.11 0.00 0.00 0.05 

∑n-6 PUFA
‡
 14.98 15.60 19.60 18.89 16.87 16.79 17.56 18.01 17.77 18.47 

18:3n-3 0.95 1.04 1.32 1.29 1.20 1.05 1.11 1.23 1.12 1.29 

18:4n-3 0.01 0.13 0.35 0.45 0.52 0.00 0.15 0.30 0.98 0.56 

20:4n-3 0.00 0.08 0.25 0.32 0.36 0.00 0.08 0.19 0.28 0.34 

EPA
§
 0.15 3.53 6.62 8.93 11.55 0.00 3.08 6.08 8.52 11.56 

22:5n-3 0.00 0.12 0.30 0.32 0.45 0.00 0.31 0.29 0.33 0.35 

DHA
||
 0.00 3.64 7.64 10.25 12.59 0.10 3.37 6.63 9.86 13.33 

∑n-3 PUFA
¶
 1.10 8.54 16.47 21.57 26.65 1.15 8.09 14.71 21.10 27.43 

n-3/n-6 PUFA 0.07 0.55 0.84 1.14 1.58 0.07 0.46 0.82 1.19 1.49 

DHA/EPA 0.00 1.03 1.15 1.15 1.09 / 1.09 1.09 1.16 1.15 

∑n-3 LC-PUFA
**

 0.15 7.37 14.80 19.82 24.94 0.10 6.83 13.18 18.99 25.57 

*
 SFA, saturated fatty acids: 14:0, 16:0, 18:0, 20:0. 

†
 MUFA, monounsaturated fatty acids: 16:1n-7, 18:1n-9, C0:1n-9. 

‡
 

n-6 PUFA, n-6 polyunsaturated fatty acids: 18:2n-6, 18:3n-6, 20:2n-6, 20:4n-6, 22:4n-6. 
§ 

EPA, 20:5n-3. 
||
 DHA, 

22:6n-3. 
¶
 n-3 PUFA, n-3 polyunsaturated fatty acids: 18:3n-3, 18:4n-3, 20:4n-3, EPA, 22:5n-3, DHA. 

**
 n-3 

LC-PUFA, n-3 long chain polyunsaturated fatty acids: 20:4n-3, EPA, 22:5n-3, DHA.
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Table 3  

Growth performance and molting frequency of mud crab fed the experimental diets for 8 weeks. 

Lipid n-3 LC-PUFA (mg g
-1
) 

Initial weight (g) WG
*
 (%) SGR

†
 (% d

-1
) MF

‡
 

Mean SEM Mean SEM Mean SEM Mean SEM 

7% 

0.15 31.17 1.03 54.41
c
 0.79 0.68

c
 0.01 0.99 0.99 

7.4 29.61 0.23 56.14
bc

 0.62 0.70
bc

 0.01 0.87 0.87 

14.8 30.94 0.93 56.95
bc

 0.19 0.70
bc

 0.00 0.79 0.79 

19.8 29.28 0.54 64.27
b
 1.40 0.78

b
 0.01 0.92 0.92 

24.9 29.92 1.33 53.96
c
 1.81 0.67

c
 0.02 0.81 0.81 

12% 

0.1 30.81 0.29 61.03
bc

 0.74 0.75
bc

 0.01 0.83 0.83 

6.8 31.55 1.12 62.65
bc

 1.55 0.76
b
 0.02 0.81 0.81 

13.2 30.21 0.96 81.24
a
 5.49 0.93

a
 0.05 0.97 0.97 

19.0 32.04 0.62 55.67
bc

 1.27 0.69
bc

 0.01 0.87 0.87 

25.6 29.97 0.46 54.71
bc

 0.81 0.68
c
 0.01 0.88 0.88 

ANOVA (p-value) 
 

   Lipid 
 

0.000 0.000 0.827 

n-3 LC-PUFA 
 

0.000 0.000 0.944 

Interaction 
 

0.000 0.000 0.312 

Data were represented as means ± S.E.M. A two-way analysis of variance was performed to evaluate the 2×5 factorial 

design with three replicates of each treatment. Tukey’s multiple-range test was applied when significant differences (P 

< 0.05) were detected among dietary treatments. Values in the same column with different superscripts are significantly 

different (P < 0.05). The below is same.  

*
 WG: weight gain. 

†
 SGR: specific growth rate. 

‡
 MF: molting frequency.
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Table 4 

Proximate composition in muscle and hepatopancreas of mud crab fed the experimental diets (dry matter) for 8 weeks. 

Lipid n-3 LC-PUFA (mg g
-1
) 

Muscle Hepatopancreas 

Moisture (%) Lipid (%) Protein (%) Moisture (%) Lipid (%) Protein (%) 

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

7% 

0.15 80.57
bc

 0.17 7.98
ab

 0.36 83.69 0.22 73.08
ab

 0.50 25.88
c
 0.86 45.63

ab
 1.80 

7.4 80.27
c
 0.05 5.74

c
 0.63 81.44 0.92 72.00

b
 0.32 38.83

ab
 1.57 38.84

b
 0.26 

14.8 80.23
c
 0.24 5.31

c
 0.47 82.47 1.15 71.93

b
 1.09 39.92

a
 2.18 39.73

bc
 0.86 

19.8 80.16
c
 0.30 5.12

c
 0.19 83.70 0.62 70.62

b
 0.73 44.12

a
 1.97 37.41

b
 0.80 

24.9 81.48
ab

 0.35 5.74
c
 0.61 84.24 0.98 70.81

b
 0.83 41.40

a
 0.46 36.04

b
 0.98 

12% 

0.1 81.35
ab

 0.20 8.29
a
 0.11 85.08 0.04 78.73

a
 0.88 32.08

bc
 2.13 48.53

a
 0.77 

6.8 81.10
abc

 0.07 5.55
c
 0.45 82.38 2.14 77.87

a
 0.58 44.47

a
 1.49 48.21

a
 0.65 

13.2 80.60
bc

 0.10 5.78
c
 0.20 83.49 0.40 72.48

b
 1.36 43.05

a
 0.45 38.75

b
 1.75 

19.0 81.75
a
 0.10 5.28

c
 0.27 85.11 0.50 73.83

ab
 0.84 43.18

a
 1.41 38.39

b
 1.33 

25.6 81.32
ab

 0.01 6.03
bc

 0.36 83.46 0.90 72.55
ab

 2.12 42.87
a
 1.84 36.43

b
 1.91 

ANOVA (p-value) 
      

Lipid 0.000 0.410 0.209 0.000 0.005 0.004 

n-3 LC-PUFA 0.001 0.000 0.082 0.001 0.000 0.000 

Interaction 0.003 0.939 0.778 0.073 0.171 0.004 

 

  

https://doi.org/10.1017/S0007114520003335
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . IP address: 86.168.252.94 , on 17 Sep 2020 at 11:21:15 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s .

https://doi.org/10.1017/S0007114520003335
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Accepted manuscript 

Table 5 

Fatty acid profiles in muscle of mud crab fed the experimental diets (mg g
-1
, dry matter) for 8 weeks. 

Lipid n-3 LC-PUFA (mg g
-1
) 

∑SFA
*
 ∑MUFA

†
 ∑n-6 PUFA

‡
 ∑n-3 PUFA

§
 EPA

||
 DHA

¶
 DHA/EPA n-3/n-6 ∑TFA

**
 

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

Initial 4.94  3.41  2.65  7.23  4.20  2.67  0.64  2.74  18.27  

7% 

0.15 8.43
a
 0.21 4.61

a
 0.17 8.07

a
 0.12 6.52

e
 0.10 3.80

d
 0.05 2.21

e
 0.04 0.58

d
 0.00 0.81

g
 0.00 27.62 0.60 

7.4 8.27
a
 0.16 3.87

bc
 0.08 6.73

b
 0.20 8.64

d
 0.25 4.96

c
 0.15 3.28

d
 0.13 0.66

cd
 0.02 1.28

f
 0.00 27.52 0.69 

14.8 8.16
ab

 0.32 3.43
c
 0.02 5.85

c
 0.24 10.09

bc
 0.18 5.26

bc
 0.16 4.52

bc
 0.04 0.86

ab
 0.02 1.73

d
 0.04 27.53 0.73 

19.8 7.97
ab

 0.12 3.46
cd

 0.05 5.62
cd

 0.14 11.32
a
 0.19 5.77

ab
 0.09 5.20

a
 0.10 0.90

a
 0.01 2.02

bc
 0.02 28.37 0.49 

24.9 7.31
b
 0.14 3.40

c
 0.05 5.34

cd
 0.10 10.73

ab
 0.22 5.38

abc
 0.19 5.04

ab
 0.06 0.94

a
 0.03 2.01

bc
 0.02 26.78 0.46 

12% 

0.1 7.93
ab

 0.11 4.04
b
 0.05 7.24

ab
 0.29 6.33

e
 0.17 3.83

d
 0.04 2.07

e
 0.12 0.54

d
 0.03 0.88

g
 0.04 25.53 0.51 

6.8 8.16
ab

 0.02 4.08
b
 0.03 4.79

d
 0.02 9.59

cd
 0.08 5.25

bc
 0.05 3.92

c
 0.04 0.75

bc
 0.01 1.55

e
 0.02 26.62 0.08 

13.2 8.06
ab

 0.30 3.33
c
 0.12 5.16

cd
 0.19 10.13

bc
 0.28 5.32

bc
 0.05 4.49

bc
 0.23 0.84

ab
 0.04 1.97

c
 0.03 26.69 0.88 

19.0 8.26
a
 0.19 3.29

c
 0.06 5.08

cd
 0.14 10.81

ab
 0.25 5.54

ab
 0.13 4.95

ab
 0.20 0.89

a
 0.04 2.13

b
 0.01 27.45 0.63 

25.6 8.40
a
 0.10 3.46

cd
 0.07 4.89

d
 0.07 11.57

a
 0.07 5.90

a
 0.05 5.33

a
 0.02 0.90

a
 0.01 2.36

a
 0.03 28.33 0.27 

ANOVA (p-value) 
         

Lipid 0.269 0.041 0.000 0.061 0.000 0.200 0.823 0.000 0.095 

n-3 LC-PUFA 0.384 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.229 

Interaction 0.005 0.002 0.795 0.004 0.03 0.010 0.111 0.000 0.040 

*
 SFA, saturated fatty acids: 14:0, 16:0, 18:0, 20:0; 

†
 MUFA, monounsaturated fatty acids: 16:1n-7, 18:1n-9, 20:1n-9; 

‡
 n-6 PUFA, n-6 polyunsaturated fatty acids: 18:2n-6, 20:2n-6, 

20:4n-6, 22:4n-6; 
§ 
n-3 PUFA, n-3 polyunsaturated fatty acids: 18:3n-3, EPA, 22:5n-3, DHA; 

||
EPA, 20:5n-3, 

¶
 DHA, 22:6n-3; 

** 
TFA, total fatty acid. 
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Table 6 

Fatty acid profiles in hepatopancreas of mud crab fed the experimental diets (mg g
-1
, dry matter) for 8 weeks. 

Lipid 

n-3 

LC-PUFA 

(mg g
-1
) 

∑SFA
*
 ∑MUFA

†
 ∑n-6 PUFA

‡
 ∑n-3 PUFA

§
 EPA

||
 DHA

¶
 DHA/EPA n-3/n-6 ∑TFA

**
 

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

Initial 33.52  25.9  18.1  28.02  11.01  11.81  1.07  1.54  105.54  

7% 

0.15 73.64
a
 1.62 25.09

e
 1.63 40.17

d
 1.19 5.14

d
 0.10 1.93

d
 0.03 1.13

e
 0.07 0.59

c
 0.06 0.13

f
 0.01 144.04

d
 1.23 

7.4 71.50
ab

 0.31 37.43
ab

 0.31 57.42
a
 0.85 25.38

c
 0.58 10.28

c
 0.32 10.25

d
 0.19 1.00

a
 0.02 0.44

e
 0.01 191.74

ab
 1.34 

14.8 59.64
bc

 1.26 37.86
a
 0.52 54.32

ab
 1.65 40.30

b
 1.54 16.54

b
 1.26 18.76

bc
 0.25 1.15

a
 0.14 0.74

c
 0.01 192.12

ab
 4.43 

19.8 57.26
c
 3.69 35.40

abc
 0.22 53.27

ab
 2.15 56.10

a
 0.78 24.17

a
 0.35 25.46

a
 0.38 1.05

a
 0.00 1.06

b
 0.04 202.03

a
 5.87 

24.9 43.83
d
 4.21 29.02

de
 0.82 50.93

abc
 0.35 60.38

a
 0.13 26.44

a
 0.03 27.20

a
 0.06 1.03

a
 0.00 1.19

a
 0.01 184.16

abc
 4.97 

12% 

0.1 69.36
ab

 1.73 31.35
cd

 2.42 39.34
d
 1.04 5.82

d
 0.13 1.85

d
 0.03 1.43

e
 0.12 0.77

b
 0.09 0.15

f
 0.00 145.88

d
 4.72 

6.8 67.91
abc

 0.15 32.00
bcd

 0.31 44.57
cd

 1.45 22.97
c
 1.26 9.90

c
 0.57 10.42

d
 0.71 1.05

a
 0.02 0.52

de
 0.04 167.46

c
 1.04 

13.2 69.99
ab

 3.01 35.93
abc

 1.24 43.83
cd

 1.45 26.16
c
 0.34 11.27

c
 0.09 12.13

d
 0.43 1.08

a
 0.05 0.60

d
 0.01 175.91

bc
 2.36 

19.0 77.69
a
 0.47 36.26

abc
 1.35 49.15

bc
 2.02 37.67

b
 1.49 16.13

b
 0.75 17.25

c
 0.75 1.07

a
 0.04 0.77

c
 0.02 200.78

a
 5.12 

25.6 78.77
a
 3.22 37.63

ab
 0.23 44.12

cd
 2.43 41.98

b
 0.47 17.78

b
 0.00 19.85

b
 0.43 1.12

a
 0.04 0.96

b
 0.05 202.50

a
 5.27 

ANOVA (p-value) 
         

Lipid 0.000 0.032 0.000 0.000 0.000 0.000 0.025 0.000 0.109 

n-3 LC-PUFA 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Interaction 0.000 0.000 0.014 0.000 0.000 0.000 0.025 0.000 0.000 

*
 SFA, saturated fatty acids: 14:0, 16:0, 18:0, 20:0; 

†
 MUFA, monounsaturated fatty acids: 16:1n-7, 18:1n-9, 20:1n-9, 22:1n-11; 

‡
 n-6 PUFA, n-6 polyunsaturated fatty acids: 18:2n-6, 

18:3n-6, 20:2n-6, 20:4n-6, 22:4n-6; 
§ 
n-3 PUFA, n-3 polyunsaturated fatty acids: 18:3n-3, 18:4n-3, 20:4n-3,EPA, 22:5n-3, DHA; 

||
EPA, 22:5n-3, 

¶
 DHA, 22:6n-3; 

** 
TFA, total fatty 

acid. 
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