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ABSTRACT
Background. In the last two decades, research has focused on testing cheaper and
sustainable alternatives to fish oil (FO), such as vegetable oils (VO), in aquafeeds.
However, FO cannot be entirely replaced by VOs due to their lack of omega-3 (n-
3) long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic
(EPA; 20:5n-3) anddocosahexaenoic (DHA; 22:6n-3) acids. The oilseed plant,Camelina
sativa, may have a higher potential to replace FO since it can contains up to 40% of the
omega-3 precursors α-linolenic acid (ALA; 18:3n-3) and linoleic acid (LA; 18:2n-6).
Methods. A 90-day feeding trial was conducted with 600 gilthead sea bream (Sparus
aurata) of 32.92 ± 0.31 g mean initial weight fed three diets that replaced 20%, 40%
and 60% of FO with CO and a control diet of FO. Fish were distributed into triplicate
tanks per diet and with 50 fish each in a flow-through open marine system. Growth
performance and fatty acid profiles of the fillet were analysed. The Illumina MiSeq
platform for sequencing of 16S rRNA gene and Mothur pipeline were used to identify
bacteria in the faeces, gut mucosa and diets in addition to metagenomic analysis by
PICRUSt.
Results and Conclusions. The feed conversion rate and specific growth rate were not
affected by diet, although final weight was significantly lower for fish fed the 60% CO
diet. Reduced final weight was attributed to lower levels of EPA and DHA in the CO
ingredient. The lipid profile of fillets were similar between the dietary groups in regards
to total saturated, monounsaturated, PUFA (n-3 and n-6), and the ratio of n-3/n-6.
Levels of EPA and DHA in the fillet reflected the progressive replacement of FO by
CO in the diet and the EPA was significantly lower in fish fed the 60% CO diet, while
ALA was increased. Alpha and beta-diversities of gut bacteria in both the faeces and
mucosa were not affected by any dietary treatment, although a few indicator bacteria,
such as Corynebacterium and Rhodospirillales, were associated with the 60% CO diet.
However, lower abundance of lactic acid bacteria, specifically Lactobacillus, in the gut
of fish fed the 60% CO diet may indicate a potential negative effect on gut microbiota.
PICRUSt analysis revealed similar predictive functions of bacteria in the faeces and
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mucosa, although a higher abundance ofCorynebacterium in themucosa of fish fed 60%
CO diet increased the KEGG pathway of fatty acid synthesis andmay act to compensate
for the lack of fatty acids in the diet. In summary, this study demonstrated that up to
40% of FO can be replaced with CO without negative effects on growth performance,
fillet composition and gut microbiota of gilthead sea bream.

Subjects Aquaculture, Fisheries and Fish Science, Food Science and Technology, Microbiology,
Zoology
Keywords Aquaculture, Fish oil, Gut microbiota, Lipid, Metagenome, Next-generation sequenc-
ing, Omega-3, PICRUSt

INTRODUCTION
In the last two decades, research has focused on testing cheaper and sustainable alternatives
to fish oil (FO) in aquafeeds that do not compromise fish growth and the omega-3 content
in the fillet that benefits human health. Numerous vegetable oils (VOs) have been tested
and adopted to reduce FO inclusion in aquafeeds, which can maintain or even enhance
growth performance of farmed fish (Turchini, Trushenski & Glencross, 2019; Kwasek,
Thorne-Lyman & Phillips, 2020; Cottrell et al., 2020). Among these VOs, rapeseed, soybean,
palm and sunflower oils have been frequently used replace FO without negatively affecting
fish growth (Turchini, Torstensen & Ng, 2009; Hixson, Parrish & Anderson, 2014b).

However, only a small proportion of FO can be replaced by VOs due to their lack
in omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), particularly
eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids. On the
other hand, VOs are rich in omega-6 (n-6) and omega-9 (n-9) PUFA, mainly linoleic acid
(LA; 18:2n-6), and oleic acid (OA; 18:1n-9). Therefore, a consequence of high replacement
levels of FO with VOs would be a reduction of EPA and DHA levels in cultured fish tissues
that can eventually, compromise the animal’s health (Turchini, Torstensen & Ng, 2009) and
the nutritional value of fish as food (Karakatsouli, 2012). Omega-3 LC-PUFA typically enter
the human diet through the consumption of oily fish (Ruiz-Lopez et al., 2014b). Therefore,
the challenge for the aquaculture industry is not to simply replace FO with alternative lipid
sources, such as VOs, but to find sources with a the fatty acid profile that mimics that of
pelagic oceanic fish that is typically consumed by farmed fish.

The oilseed plant, Camelina sativa, is a member of the Cruciferae (Brassicaceae)
family and has potential to replace a higher proportion of FO in aquafeeds, which
gives it a competitive advantage over other commercial oilseed crops, e.g., rapeseed and
sunflower oils (Budin, Breene & Putnam, 1995). In particular, C. sativa seeds can produce
oil containing up to 40% of the omega-3 precursors α-linolenic acid (ALA; 18:3n-3) and LA
(Budin, Breene & Putnam, 1995; Eidhin, Burke & O’Beirne, 2003). The Camelina oil (CO)
also contains high levels of PUFA and MUFA (monounsaturated fatty acids) and high
amounts of antioxidants, e.g., γ-tocopherol. Lastly, CO represents a sustainable alternative
to FO in aquafeeds due to its low environmental footprint (Budin, Breene & Putnam, 1995).
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The use of CO from both wild type and transgenic C. sativa plants has been widely
investigated in the last decade in diets for different fish species and at different replacement
levels of FO (Hixson, Parrish & Anderson, 2013;Hixson, Parrish & Anderson, 2014a;Hixson,
Parrish & Anderson, 2014b; Hixson & Parrish, 2014; Haslam et al., 2015; Betancor et al.,
2015b; Betancor et al., 2015a; Betancor et al., 2016a; Betancor et al., 2016b; Betancor et al.,
2018; Toyes-Vargas et al., 2020). Genetically modified C. sativa is capable of producing
EPA or even both EPA and DHA in its seeds due to the insertion of five microalgal
genes codifying for fatty acyl desaturase and elongase that are involved in n-3 LC-PUFA
biosynthesis (Ruiz-Lopez et al., 2014a).

Given the scarce desaturation and elongation capacity of most marine fish species
to produce EPA and DHA starting from ALA, efforts have focused on enhancing the
composition of CO to include these important fatty acids. In comparison to marine fish
species, salmonids usually show greater endogenous capacity to synthesize EPA and DHA
from ALA (Hixson, Parrish & Anderson, 2014b). Historically, marine fish have inhabited
environments and consumed pelagic fish rich in n-3 LC-PUFA, therefore, they have had
no evolutionary pressure to retain the ability to endogenously produce EPA and DHA. In
contrast, phytoplankton in freshwater are characterized by having high levels of LA and
ALA, moderate levels of EPA and low levels of DHA, which has contributed to maintaining
high selective pressures on freshwater fish to produce DHA (Tocher, 2010). High levels of
n-3 LC-PUFA in CO are vital for effective replacement of FO in diets for marine species,
such as sea bream, that cannot endogenously produce DHA and EPA and rely on their
inclusion in the diet.

Alternative ingredients must also be tested for the modulation of fish intestinal
microbiota and ramifications on fish health. Gut microbiota plays an important role in
key functions in fish, including the supply of nutrients, intestinal integrity and interactions
with the immune system (Llewellyn et al., 2014; Ringøet al., 2016). As suggested by Castro
et al. (2019), the different fatty acid composition of VO, with respect to FO, could modify
the lipid composition, function and fluidity of intestinal cell membranes. Consequently,
this could affect bacteria adherence to enterocytes, alter metabolic processes and modify
the intestinal microbiota profile.

Due to advances from DNA sequencing technologies in the last two decades, researchers
can utilize next-generation sequencing (NGS) to investigate the microbes in and on the
outside of fish for both basic and applied applications. Recently, several studies focused
on gut microbiome have been conducted in a wide range of fish species (Rimoldi et al.,
2019; Rimoldi et al., 2020b; Terova et al., 2019; Legrand et al., 2020; Blaufuss et al., 2020;
Pérez-Pascual et al., 2020; Zhao et al., 2020; Panteli et al., 2020). However, despite the large
number of studies, the effects of replacement of FO with novel lipid sources on fish gut
microbiota structure have not been sufficiently examined (Piazzon et al., 2017; Torrecillas
et al., 2017; Castro et al., 2019; Magalhães et al., 2020). Furthermore, few studies have used
NGS to characterize the gut microbiota of gilthead sea bream (Sparus aurata) in response
to diet (Estruch et al., 2015; Parma et al., 2016; Parma et al., 2020; Piazzon et al., 2017;
Rimoldi et al., 2018; Rimoldi et al., 2020a; Piazzon et al., 2020), and even less have described
the functional profile of gut microbiome in this species (Piazzon et al., 2019; Piazzon et al.,
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2020). Indeed, dietary changes can affect the structure of fish intestine’s associatedmicrobial
community (what’s there?) but, to understand the intrinsic processes that lead to similar
functionality, it is necessary to search the connections between individual microbiota (what
are they doing?) and the corresponding metabolic phenotype.

The aim of the present study was to determine the effects of replacing FO with CO on
the growth performance, fillet fatty acid composition and gut microbiota of gilthead sea
bream.We used advanced nutritional techniques to characterize fatty acid profiles, the NGS
Illumina platform to characterize microbial populations in the gut and the meta-genomic
tool PICRUSt to determine the functional potential of the gut microbiome.

MATERIALS & METHODS
Ethics Statement
Animal handling during the feeding trial complied with the guidelines of the European
Union Council (86/609/EU) and Spanish legislation (RD 53/2013). Bioethical Committee
of the University of Las Palmas de Gran Canaria (OEBA-ULPGC 21/2018R1) approved
protocols used in the present trial.

Animals
A feeding trial was conducted using 600 gilthead sea bream (Sparus aurata) (32.92 ± 0.31
g mean initial weight; 12.15 ± 0.37 cm mean initial length), at the Parque Científico-
Tecnológico Marino (PCTM) of the University of Las Palmas de Gran Canaria (Telde,
Canary Island, Spain). Fish were purchased from a commercial fish hatchery (Spain).
Fish were acclimatized for 4 weeks to dissolved oxygen levels between 6.6–6.1 ppm and
water temperatures between 18.2–20.2 ◦C. Gilthead sea bream were randomly allocated to
twelve fiberglass, circular tanks of 250 L. Three tanks per diet were used with 50 fish each
in a marine flow-through system with natural photoperiod (12L/12D). Fish were fed to
apparent satiation 3 times per day, 6 days per week for 90 days.

Diets and feeding trial
Four isonitrogenous, isolipidic, and isocaloric diets were formulated: Diet 1, control
diet (100% FO); Diet 2 (20% CO, 80% FO); Diet 3 (40% CO, 60% FO); and Diet 4
(60% CO, 40% FO) (Table 1). The CO used in the trial was not derived from genetically
modified Camelina sativa since the use of transgenic plants in aquafeed is not allowed
in Italy. Naturalleva, VRM S.r.l (Cologna Veneta, Italy), manufactured the diets. Non-
defatted fishmeal was employed as the major protein source to ensure essential fatty acid
requirements of gilthead sea bream. The mash of each diet was extruded to a 3.0 mm pellet
using a single-screw extruder (X-165,Wenger USA) before vacuum coating (La Meccanica
vacuum coater, Italy). The vacuum coating process was divided into 4 phases: blend oil
addition, air removal (200 mbar), mixing, and slow back to atmospheric pressure (1 min
time).
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Table 1 Main ingredients and proximate composition of the experimental feeds.

Diets

Feed ingredients (%) 1 (ctrl) 2 3 4

Fish meal 19.4 19.4 19.4 19.4
Soybean meal 10.1 10.1 10.1 10.1
Guar germ meal 12.7 12.7 12.7 12.7
Wheat 14.5 14.5 14.5 14.5
Corn gluten 18.6 18.6 18.6 18.6
Soy protein concentrate 3.8 3.8 3.8 3.8
Fish oil 15.3 12.4 9.3 6.0
Camelina oil 0.0 2.9 6.0 9.3
Vitamins and mineralsa,b 5.6 5.6 5.6 5.6
Proximate composition (g/100 g dry matter)
Protein 43 43 43 43
Lipid 21 21 21 21
Ash 6.5 6.5 6.5 6.5
Fiber 1.4 1.4 1.4 1.4
NSP* 20.6 20.6 20.6 20.6
Moisture 7.5 7.5 7.5 7.5

Notes.
aVitamin premix (IU or mg/kg diet): DL-α tocopherol acetate 60 IU; sodium menadione bisulphate 5 mg; retinyl acetate 15,000
IU; DL-cholecalciferol 3000 IU; thiamine 15 mg; riboflavin 30 mg; pyridoxine 15 mg; vitamin B12 0.05 mg; nicotinic acid 175
mg; folic acid 500 mg; inositol 1,000 mg; biotin 2.5 mg; calcium pantothenate 50 mg.

bMineral premix (g or mg/kg of diet) bi-calcium phosphate 500 g, calcium carbonate 215 g, sodium salt 40 g, potassium chlo-
ride 90 g, magnesium chloride 124 g, magnesium carbonate 124 g, iron sulphate 20 g, zinc sulphate 4 g, copper sulphate 3 g,
potassium iodide 4 mg, cobalt sulphate 20 mg, manganese sulphate 3 g, sodium fluoride 1 g.
*NSP, Non Starch Polysaccharide

Lipid and fatty acid methyl esters (FAME) analysis of feeds and fish
fillets
Approximately 0.07–0.1 g of finely grinded feed and 0.2 g of fillet were weighted and
extracted to determine the total lipid content. All samples were analyzed in triplicate. A
mixture of chloroform/methanol (2:1 v/v) with 0.01% BHT (butylated hydroxytoluene)
was added to each sample, which was then homogenized using an Ultra-turrax (T25 Digital
Ultra-turrax, IKA R©, Germany). Lipid quantity was determined by a gravimetrical method
followed by filtration using anhydrous sodium sulphate and evaporation to dryness under
a nitrogen atmosphere (Folch, Lees & Sloane Stanley, 1957). The methylation of fatty acids
was carried out following Christie’s method (William & Xianlin). A methanol solution
containing 1% sulphuric acid was used followed by an incubation of the sample at 50 ◦C
for 16 h. Then, the methylated fatty acids were separated by gas chromatography (GC-14A;
Shimadzu) (Izquierdo et al., 1992) equipped with a Supelcowax 10 capillary GC column (30
m × 0.32 mm ID, 0.25 µm film thickness), quantified by flame ionizator detector (FID)
and identified by comparison to external standards (EPA 28, Nippai, Ltd. Tokyo, Japan).
Helium was used as a carrier gas and the injection volume was set at 1 µl. The following
thermal conditions were used to discriminate each fatty acid: an initial temperature of
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170 ◦C for 2 min and then increased to 220 ◦C at a rate of 2 ◦C min−1 for 15 min. The
temperature of the injector and the flame ionization detector was 250 ◦C.

Fish intestine and feed sampling for microbiota analyses
At the end of the feeding trial, nine fish per diet were euthanized with an overdose of clove
oil, dissected and intestinal content/faeces (36 samples) and mucosa (36 samples) were
collected in order to analyse the luminal and mucosa-associated microbiota, respectively,
as described by Terova et al. (2019) and Rimoldi et al. (2019). Both faeces and mucosa
samples were stored in Xpedition Lysis/Stabilization Solution (Zymo Research) at room
temperature up to 48 h until bacterial DNA extraction. Additionally, four aliquots of 200
mg from each extruded diets were collected and stored at 1 ◦C for the microbiota analysis.

Bacterial DNA extraction
Bacterial DNA extraction was carried out at the University of Insubria, Varese, Italy,
following the protocol described in details by Rimoldi et al. (2020b). Specifically, the
bacterial DNA was extracted from 4 samples of each feed, 9 samples of intestinal
content/feaces and 9 samples of intestinal mucosa per dietary group (88 samples in total)
using the DNeasy PowerSoil Kit (Qiagen, Italy) and homogenized using a TissueLyser II
(Qiagen, Italy) set at 25 Hz for 2 min. The extracted DNA was spectrophotometrically
quantified and stored at minus 20 ◦C until the molecular analysis were performed.

16S Illumina library construction and High-throughput sequencing
The metagenomics analysis was carried out at the University of Stirling. The v4 region of
the 16S rRNA was amplified by PCR. The reaction mix consisted of 2 µl template (5 ng of
DNA), 1.25 µl (10 µM) of each forward primer (515F; GTGYCAGCMGCCGCGGTAA)
and reverse primer (806R; GGACTACNVGGGTWTCTAAT) (Caporaso et al., 2011) with
Illumina adapter,12.5 µL of 2x NEBNext Ultra II Q5 Master Mix (New England Biolabs
Ltd., Hitchin, UK), and nuclease free water to final volume of 25 µl. The PCR conditions
were as follows: 98 ◦C for 60 s followed by 30 cycles of 98 ◦C for 10 s, 53 ◦C for 10 s and
65 ◦C for 45 s with a final step of 65 ◦C for 5 min. A 1% agarose gel alongside negative
controls (nuclease free water) confirmed the presence of each amplicon band. Axygen
AxyPrep Mag PCR clean up kit (Corning Inc., Corning, NY, USA) was used to purify
samples using magnetic beads (0.8:1 ratio) and two washes of 70% EtOH, according to
the manufacturer’s instructions. Tris 10 mM (Qiagen Ltd.) was used to elute the sample
and a second PCR was performed with the above conditions, except only for 10 cycles
and the primers were tagged with 8 bp unique indices from the Nextera XT DNA Library
Preparation kit (Illumina Inc., Cambridge, UK). Axygen magnetic beads (Corning Inc.)
and a Quibit 2.0 fluorimeter (Thermo Fisher Scientific) were used to purify and quantify
the samples, which were then diluted to 10 nM with Tris buffer and pooled at equimolar
concentrations. The amplicon library was sequenced on the Illumina MiSeq platform at
the University of Stirling (Stirling, UK) with a MiSeq Reagent kit v2 of 500 cycles (Illumina
Inc.).
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16S amplicon sequencing data analysis
Mothur version 1.42.3 (Schloss et al., 2009) was used to analyse the 16S rRNA sequences
according to the MiSeq SOP (https://www.mothur.org/wiki/MiSeq_SOP) (Kozich et al.,
2013). Filtered sequences were between 250–300 bp, <8 consecutive bp and were within the
v4 region. The SILVA reference database version 123 (Quast et al., 2013) and VSEARCH
(Rognes et al., 2016) were used to align the sequences and remove chimeras. The RDP
Bayesian Classifier trainset version 16.0 at a cut-off of 80% (Cole et al., 2014) was used and
taxon resembling chloroplasts, mitochondria, unknowns, archaea and eukaryotes were
removed. In addition, Undibacterium (genus level) was removed since it comprised 95% of
OTUs in the blank samples and it is a known laboratory contaminant (Salter et al., 2014).
Sequences were clustered to the genus level (0.03) and subsampled (normalised) to 10,171
sequences per samples. Seven mucosa samples were not included (two M0, three M20, one
M40 and one M60) since mitochondria were >50% of sequences, which meant there were
too few sequences per sample. The raw 16S rRNA sequence reads were deposited in the
Sequence Read Archive of NCBI and made publicly available under BioProject Accession
number PRJNA657669.

16S PICRUSt metagenome analysis
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt) was used to generate predictive pathways based on Greengenes classified OTU
table (version 13.8.99) (DeSantis et al., 2006) and Kyoto Encyclopaedia of Genes and
Genomes (KEGG) database (Kanehisa & Goto, 2000) according to the PICRUSt tutorial
(https://github.com/LangilleLab/microbiome_helper/wiki/PICRUSt-tutorial) (Langille et
al., 2013). The OTU copy number was normalised across samples and extended error plots
were made using Statistical Analysis of Taxonomic and Functional Profiles (STAMP) with
Welch’s two-sided T -test with 95% confidence intervals (Parks et al., 2014).

Statistics
Data were reported by means and standard deviation. The lipid profile was measured on a
sample size of nine fish per diet (n= 9). Percentage data were subjected to arcsin square root
transformation before statistical analysis. Data were tested for normality and homogeneity
of variances Shapiro–Wilk’s and Levene’s test, respectively. Differences between groups
were analysed by one-way ANOVA followed by a Tukey’s post hoc test. When the data
were not normally distributed, the Kruskal-Wallis’s test was performed followed by Dunn’s
post hoc test. All analyses were performed with Past3 software (Hammer et al., 2001).

With regard to microbiota analysis, normal distribution and homogeneity of each
dataset were determined using Shapiro–Wilk and Levene tests in Rstudio (RCT, 2019).
If needed, data were normalized by log, square-root or arcsine transformation. One-way
Analysis of Variance (ANOVA) was used to determine the effect of diet, sample type and
gut section on growth performance, fatty acid and alpha diversity of gut bacteria. P-values
between treatments were determined using Least Square Means (lsmeans) with Tukey
adjustment for multiple comparisons. Alpha diversity was based on Good’s coverage,
observed species, Shannon diversity (non-parametric) and Chao-1 richness indices.
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Beta-diversity was analysed using a Bray–Curtis distance matrix (sqrt-transformed) and
significance of treatments were determined using Analysis of Similarity (ANOSIM) with
the adonis function (vegan package) in R (Oksanen et al., 2014) and plotted using 2D
non-metric multidimensional scaling (NMDS). Linear discriminant analysis Effect Size
(LefSe) was used to identify OTUs that explain differences between treatments using
Kruskal-Wallis tests and a Linear Discriminant Analysis (LDA) threshold of 3.0 (Segata et
al., 2011). P-values below 0.05 were considered significant.

RESULTS
Fish growth performance
There were no significant differences in themean initial weights between the feeding groups
(Table 2). After 90 days of feeding, fish fed with diets 2 and 3 in which CO, replaced 20%
and 40% of FO, respectively, showed the same growth as the control fish fed with 100%
FO. The growth of fish fed with diet 4 in which CO replaced 60% of FO was similar to
fish fed diets 1 and 3, but significantly lower (p< 0.05) in comparison fish fed diet 2. No
significant differences between groups were detected for FCR (Feed Conversion Rate) and
SGR (Specific Growth Rate).

All the experimental feeds were well accepted (no palatability issues) by gilthead sea
bream that grew well, almost tripling their initial weight at the end of the feeding trial.
Moreover, no mortality was observed during the 90 days of experiment (final survival =
100% in all dietary treatments).

Lipid content and FAME profile of fillets
The lipid profile of gilthead sea bream fillets were similar between the four dietary groups
in regards to total saturated (SFA), monounsaturated (MUFA), PUFA (n-3 and n-6) and
the ratio of n−3/n−6 (Table 3). For a few individual fatty acids, levels differed between
the dietary groups, especially in fish fed diet 4 (60% CO). In particular, the highest level of
EPA (20:5n-3) was recorded in fish fed with 0% CO (diet 1), whereas fish fed with 60%
CO (diet 4) showed the lowest level (Table 3). The highest level of 18:3n-3 (α-linolenic
acid) was found in fish fed the 60% CO diet and corresponded to a high level in the
CO diet (Table 4). Moreover, the 60% CO-fed fish showed the highest level of linoleic
acid (18:2n-6) in contrast to the level detected in the 0% CO-fed fish (13.94 ± 1.27
vs 9.39 ± 1.19; p< 0.01). Similarly, the 40% CO-fed fish (diet 3) showed significantly
higher level of 18:2n-6 than the 0% CO-fed fish (11.40 ± 3.63 vs 9.39 ± 1.19; p< 0.05)
(Table 3).

The content of three MUFA, namely C14:1n-7; C18:1n-7; and C18:1n-9 were
significantly different between diet groups. The 20% CO-fed fish showed the highest
level of C14:1n-7 compared to 40% CO-fed fish (0.24± 0.18 vs 0.05± 0.08; p< 0.01), but
no differences were found in 0% and 60% CO-fed fish. With regard to C18:1n-7, fish fed
0% CO had higher content of this fatty acid in the fillet compared to 40 and 60% CO-fed
fish (3.19 ± 0.34 vs 2.46 ± 0.38 and 2.32 ± 0.19; p< 0.01), but similar levels compared to
20% CO-fed fish (3.19± 0.34 vs 2.81± 0.61). The 20% and 60%-fed fish had higher levels
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Table 2 Effect of Camelina oil on gilthead sea bream growth performance.Values are presented as
means (±std. dev). Superscript letters indicate statistical significance between dietary groups. The signifi-
cance was determined using a One-Way ANOVA and a Tukey Test with a p value< 0.05.

Diet Initial weight Final weight SGR (% · day−1) FCR

1 32.80± 1.97 87.88± 12.93ab 0.98± 0.07 1.25± 0.08
2 32.81± 2.01 89.27± 14.89a 1.00± 0.04 1.24± 0.08
3 33.02± 2.15 85.02± 11.94ab 0.95± 0.02 1.33± 0.06
4 33.19± 2.06 83.86± 11.65b 0.94± 0.03 1.36± 0.12

of C18:1n-9 compared to 20% CO-fed fish (22.89 ± 2.30 and 20.89± 2.40 vs 19.58± 6.72;
p< 0.01), but similar levels as 40% CO-fed fish.

Alpha-diversity of bacteria in the gut and diet
After filtering sequences, the Illumina MiSeq generated 2.7 million sequences for a library
of 82 samples (32,721 reads per sample) and was further subsampled to 10,171 sequences
per sample. Alpha-diversity of bacteria in the faeces (F0, F20, F40, F60) was not significantly
different between diets in terms of number of OTUs (p= 0.940), Shannon (p= 0.926) and
Chao1 (p= 0.780) indices (Figs. 1A–1C). For mucosa (M0, M20, M40, M60), there were
no differences between diets for the above indices (p= 0.535, 0.521 and 0.930) and the
same was found for diet (D0, D20, D40, D60) (p= 0.760, 0.234 and 0.791). Between each
sample type, there were significant differences in terms of number of OTUs (p= 0.030)
(Fig. 1A), Shannon (p= 0.003) (Fig. 1B) and Choa1 (p< 0.001) (Fig. 1C). All three types
of sample were different for number of OTUs, Shannon and Chao1 (p< 0.05), except
Shannon diversity was similar between mucosa and diet (p= 0.874).

Beta-diversity of bacteria in the gut and diet
ANOSIM analysis revealed that the composition of bacteria was significantly different
between sample types (faeces vs mucosa, p< 0.001), but it was not modulated by diet
neither in faeces nor in mucosa samples (p> 0.05). The non-metric multidimensional
scaling (NMDS) confirmed the statistical analysis as shown in Fig. 2. At the phyla level,
Firmicutes and Proteobacteria were themost dominantwith a relative abundance up to 94%
in faeces, 92% inmucosa and 95% indiet (Fig. 3). The ratio of Firmicutes:Proteobacteriawas
highest in the diets and lowest in the mucosa. Actinobacteria, Bacteroidetes, Spirochaetes
and other bacteria made up the small remainder. At the genus level, Lactobacillus was
the most dominant with up to 60% in faeces, 47% in mucosa and 77% in diets (Fig. 4).
Photobacterium, Vibrio, Enterovibrio, Corynebacterium, Brevinema and other bacteria made
up the remainder.
In regards to specific indicator OTUs, there were differences between dietary treatments

based on LEfSe analysis. In faeces, genera of Peptostreptococcus, Vagococcus and Massilia
increased in fish fed diets with 60% replacement with CO (Table 5). Lactobacillus was most
associated with the 0% CO diet. In mucosa, there were more OTUs associated with diet
type. Increased abundance of Corynebacterium, Rubrobacter, Ruegeria, Acetobacter and
Enhydrobacter was found in fish fed diets with 60% replacement with CO (Table 6). Several
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Table 3 Lipid content and fatty acid profile (percentage of total fatty acids) of fish fillets.

Fish dietary groups ANOVA
p-value

Kruskal–Wallis
p-value

1 (0%CO) 2 (20%CO) 3 (40%CO) 4 (60%CO)

Lipid content (% wet weight) 5.64± 1.74 5.70± 1.37 4.72± 1.80 4.18± 0.98 0.09
C14:0 2.65± 1.09 2.86± 1.52 1.81± 0.78 1.88± 0.43 0.12
C15:0 0.38± 0.26B 0.39± 0.14A 0.29± 0.09B 0.35± 0.19B <0.001
C16:0 14.66± 4.00 13.86± 6.43 11.86± 5.01 11.92± 2.84 0.65
C17:0 0.51± 0.13 0.60± 0.29 0.55± 0.31 0.41± 0.15 0.25
C18:0 4.31± 0.91 4.06± 1.12 3.42± 1.43 4.33± 0.47 0.63
C20:0 0.45± 0.18 0.86± 1.34 0.36± 0.26 0.78± 1.14 0.50
Total saturated 22.97± 5.54 22.63± 5.15 18.29± 4.48 19.67± 4.49 0.99
C14:1n−7 0.17± 0.14AB 0.24± 0.18A 0.05± 0.08B 0.14± 0.17AB 0.006
C14:1n−5 0.31± 0.18 0.44± 0.40 0.32± 0.33 0.29± 0.26 0.82
C15:1n−5 0.14± 0.14 0.43± 0.41 0.39± 0.53 0.18± 0.22 0.06
C16:1n−7 4.98± 1.47 4.84± 1.96 3.50± 1.35 3.30± 0.85 0.06
C18:1n−5 0.33± 0.24 0.41± 0.32 0.50± 0.52 0.32± 0.26 0.78
C18:1n−7 3.19± 0.34A 2.81± 0.61AC 2.46± 0.38BC 2.32± 0.19BC <0.001
C18:1n−9 22.89± 2.30Aab 19.58± 6.72aB 18.41± 5.81ABb 20.89± 2.40Aab <0.001
C20:1n−9 0.40± 0.17 0.33± 0.20 0.53± 0.54 0.37± 0.23 0.57
C20:1n−7 1.64± 0.38 1.31± 0.63 1.38± 0.34 1.55± 0.36 0.39
C22:1n−11 1.43± 0.67 1.54± 1.03 1.24± 0.80 0.97± 0.32 0.22
C22:1n−9 0.66± 0.31 0.62± 0.19 0.59± 0.42 0.67± 0.28 0.87
Total monoenes 36.14± 6.68 32.55± 5.69 29.37± 5.32 31.00± 6.08 0.97
C18:2n−6 9.39± 1.19Bb 9.21± 2.98Bab 11.40± 3.63ABa 13.94± 1.27Aab <0.001
C18:3n−6 0.00± 0.00Bab 0.00± 0.00Bab 0.29± 0.25ABb 0.70± 0.39Aa <0.001
C20:2n−6 0.44± 0.22 0.83± 1.07 0.43± 0.30 0.51± 0.20 0.38
C20:3n−6 0.50± 0.26 0.81± 1.23 0.38± 0.30 0.42± 0.30 0.53
C20:4n−6 0.95± 0.21 0.63± 0.31 0.78± 0.18 0.69± 0.14 0.05
C22:5n−6 0.73± 0.46 1.35± 1.66 0.39± 0.28 0.51± 0.47 0.13
Total n-6 PUFA 12.01± 3.63 12.83± 3.49 13.67± 4.47 16.77± 5.46 0.63
C16:3n−3 0.21± 0.17 0.41± 0.32 0.49± 0.54 0.26± 0.22 0.37
C16:4n−3 0.51± 0.12 0.60± 0.35 0.59± 0.47 0.50± 0.31 0.61
C18:3n−3 1.73± 0.25B 4.33± 1.14BC 8.57± 2.86AC 12.16± 1.79AC <0.001
C18:4n−3 1.04± 0.25 1.06± 0.39 1.06± 0.22 1.10± 0.29 0.99
C20:3n−3 0.25± 0.16b 0.39± 0.19ab 0.48± 0.17ab 0.60± 0.33a 0.01
C20:4n−3 1.01± 0.73 0.78± 0.20 0.73± 0.23 0.73± 0.21 0.55
C20:5n−3 6.86± 1.79a 5.57± 1.68a 5.34± 1.11ab 4.25± 0.97b 0.006
C22:5n−3 2.61± 1.06 2.99± 1.81 2.44± 0.72 1.92± 0.42 0.31
C22:6n−3 8.96± 3.62 7.09± 3.51 7.44± 1.46 6.40± 1.75 0.33

(continued on next page)
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Table 3 (continued)

Fish dietary groups ANOVA
p-value

Kruskal–Wallis
p-value

1 (0%CO) 2 (20%CO) 3 (40%CO) 4 (60%CO)

Total n-3 PUFA 23.18± 3.16 23.22± 2.54 27.14± 3.24 27.92± 3.92 0.98
Total PUFA 35.19± 3.24 36.05± 2.84 40.81± 3.64 44.69± 4.44 0.98
EPA + DHA 15.82± 5.27 12.66± 5.15 13.09± 2.01 10.91± 2.66 0.10
n−3/n−6 ratio 1.93± 0.48 1.81± 0.48 1.99± 0.55 1.66± 0.32 0.35

Notes.
Data expressed as means± SD (n= 9).
Different capital and small letters within row show significant differences among diets at p< 0.01 and p< 0.05, respectively.
Statistical differences were determined by one-way ANOVA with Tukey’s comparison test and by Kruskal–Wallis with Dunn’s test.

genera in the phylum of Proteobacteria, such as Psychrobacter, were associated with the
mucosa of fish fed the control diet (0% CO).

Metagenome predictive pathways of gut bacteria
No effect of replacing FO with 60% CO was found on the predictive pathways of
bacteria from the faeces or mucosa (Figs. 5A–5C and 6A–6C). Metabolism accounted
for 51% of the pathways, followed by genetic and environmental information processing.
Metabolism of amino acids and carbohydrates contributed the most to the predictive
pathways and to a lesser extent the metabolism of vitamins, energy and lipid. Within lipid
metabolism, lipid biosynthesis proteins accounted for 0.8% of total pathways followed by
fatty acid biosynthesis and metabolism of glycerophospholipid, fatty acids, glycerolipid
and unsaturated fatty acids (Figs. 5C and 6C). Although not significant, metabolism of
unsaturated fatty acids, arachidonic acid (20:4n-6) and alpha-linolenic acid (18:3n-3)
were higher in fish fed 60% CO in both faecal and mucosal bacterial metagenome.
Specifically, fish fed the 60%CO diet had an increased abundance of K11533 pathway (fatty
acid synthase) attributed to Corynebacterium in the gut mucosa (Fig. 7). No significant
differences were found in terms of metagenomic pathways between transient and resident
intestinal communities. Of note, PICRUSt software is optimized for mammalian samples,
consequently these results only reflect themetabolic potential of gutmicrobial communities
in gilthead sea bream.

DISCUSSION
Reduced final weight of gilthead sea bream fed 60% CO (Table 2) demonstrated that this
level of dietary inclusion is too high, although diets that replace 40% of FO with CO are
feasible without negative effects on growth. This result contradicts a previous study on
the same species where full replacement of FO by CO did not elicit differences in growth
(Betancor et al., 2016a). In this previous study, the experimental diets were rich in fishmeal
(FM; i.e., 49%), which may have compensated for the low levels of LC-PUFA in the diet.
On the contrary, full replacement of FO with CO did not negatively affect growth of
rainbow trout (Oncorhynchus mykiss) after 12-weeks (Hixson, Parrish & Anderson, 2014a).
However, in another study by the same authors (Hixson, Parrish & Anderson, 2014b), the
growth performance of Atlantic cod (family Gadidae), but not that of Atlantic salmon
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Table 4 Fatty acid compositions of the oils and experimental diets (% of total fatty acid detected).

Diets
Fatty acid FO CO 0%CO 20%CO 40%CO 60%CO

C14:0 6,82 0,04 6,20 5,28 4,00 2,84
C15:0 0,48 0,00 0,42 0,37 0,28 0,21
C16:0 16,55 5,94 19,40 18,00 15,40 12,90
C17:0 0,06 0,01 0,26 0,24 0,20 0,16
C18:0 3,47 2,69 3,60 3,95 4,07 4,21
C20:0 0,41 0,87 0,38 0,38 0,37 0,37
Total saturated 27,79 9,55 30,26 28,22 24,32 20,69
C14:1n−5 0,03 0,00 trace trace trace trace
C15:1n−5 0,00 0,00 0,03 0,00 0,01 0,02
C16:1n−5 1,11 0,13 7,70 6,70 5,12 3,60
C18:1n−9 15,36 16,46 19,00 16,80 17,30 18,40
C18:1n−7 0,92 0,20 2,62 2,54 2,52 2,02
C18:1n−5 ND ND 0,17 0,23 0,12 0,08
C20:1n−7 ND ND 1,97 0,91 1,72 1,47
C20:1n−5 ND ND 0,28 0,20 0,18 0,13
C20:1n−9 3,43 9,05 2,00 1,97 1,80 1,70
C22:1n−11 2,47 0,77 1,76 1,61 1,23 0,97
C22:1n−9 0,59 1,38 0,60 1,41 0,32 0,29
Total monoenes 23,91 27,99 36,13 32,37 30,32 28,68
C18:2n−6 3,78 21,32 7,90 9,70 12,90 16,00
C18:3n−6 0,26 0.02 0,52 0,45 0,34 0,27
C20:2n−6 0,36 1,45 0,35 0,25 0,19 0,15
C20:3n−6 0,16 0,63 0,10 0,09 0,07 trace
C20:4n−6 0,83 0,00 0,80 0,71 0,54 0,38
Total n-6 PUFA 23,21 6,24 9,67 11,20 14,04 16,80
C16:3n−3 ND ND 0,14 0,24 0,11 0,06
C16:4n−3 ND ND 0,54 1,28 0,67 0,74
C18:3n−3 1,68 37,01 1,99 8,90 17,20 24,20
C18:4n−3 2,22 0,01 2,17 1,87 1,43 0,98
C20:3n−3 0,03 0,03 0,12 0,13 0,13 0,13
C20:4n−3 0,52 0,00 0,53 0,51 0,30 0,30
C20:5n−3 12,92 0,00 13,00 11,40 8,60 5,80
C22:5n−3 1,65 0,00 1,34 1,24 0,93 0,64
C22:6n−3 9,16 0,00 6,70 5,90 4,50 3,12
Total n-3 PUFA 27,87 37,72 26,53 31,47 33,87 35,97
Total PUFA 51,08 43,96 36,20 42,67 47,91 52,77
EPA + DHA 22,08 0,00 19,70 17,30 13,10 8,92
n3/n6 ratio 5.53 1.70 2,74 2,81 2,41 2,14

Notes.
Diets: 0% CO, control diet based on fish oil and without camelina oil (CO); 20% CO, diet contained 20% of camelina oil; 40%
CO, diet contained 40% of camelina oil; 60% CO, diet contained 60% of camelina oil.
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Figure 1 Alpha-diversity of OTUs based on (A) No. of OTUs, (B) Shannon, and (C) Chao1 indices
from the faeces/digesta (F), mucosa (M) and diets (D) of gilthead sea breamwhere fish oil was replaced
with 0, 20, 40 and 60% camelina oil.

Full-size DOI: 10.7717/peerj.10430/fig-1
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Figure 2 Non-metric multidimensional scaling (NMDS) plot of OTUs (genus level) from the faeces/di-
gesta (F), mucosa (M) and diets (D) of gilthead sea breamwhere fish oil was replaced with 0, 20, 40 and
60% camelina oil.

Full-size DOI: 10.7717/peerj.10430/fig-2

Figure 3 Percentage of OTUs (phyla level) from the faeces/digesta (F), mucosa (M) and diets (D) of
gilthead sea breamwhere fish oil was replaced with 0, 20, 40 and 60% camelina oil.

Full-size DOI: 10.7717/peerj.10430/fig-3
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Figure 4 Percentage of OTUs (genus level) from the faeces/digesta (F), mucosa (M) and diets (D) of
gilthead sea breamwhere fish oil was replaced with 0, 20, 40 and 60% camelina oil.

Full-size DOI: 10.7717/peerj.10430/fig-4

Table 5 Indicator OTUs identified by LEfSe.OTUs found in the faeces of S. aurata (n= 9) fed diets that replaced FO with 0% CO (Ctrl) and 60%
CO.

Phyla Order OTU %CODiet LDA P-value

Firmicutes Bacillales Cerasibacillus 0 3.27 0.003
Clostridiales Peptostreptococcus 60 3.40 <0.001
Lactobacillales Lactobacillus 0 4.87 0.010

Pediococcus 0 3.78 0.007
Vagococcus 60 3.16 0.001

Proteobacteria Burkholderiales Massilia 60 3.43 <0.001

(Salmo salar) and rainbow trout (family Salmonidae), was negatively affected when fed
diets that replaced 100% of FO with CO. As attested by Turchini, Torstensen & Ng (2009),
a successful replacement of FO with terrestrial plant oil may be more readily achieved
for fatty fish, such as salmonids, that have a higher and larger variety of fatty acids in
their tissues than in lean fish, such as Atlantic cod (Gadus morhua), European sea bass
(Dicentrarchus labrax), and gilthead sea bream.

In regards to transgenic CO, a study by Betancor et al. (2015b) fed post-smolt Atlantic
salmon for 7-weeks with one of three experimental diets containing either FO, wild-type
CO or transgenic CO as sole lipid source and showed contrasting results compared to
our study. Atlantic salmon fed both wild and transgenic CO diets had similar final weight
compared to salmon fed the FO diet. In a lean species such as European sea bass, the use
of a high EPA+DHA genetically modified-Camelina sativa oil has instead been shown to
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Table 6 Indicator OTUs identified by LEfSe.OTUS found in the intestinal mucosa of gilthead sea bream (n = 9) fed diets that replaced fish oil
with camelina oil (CO).

Phyla Order OTU %CODiet LDA P-value

Actinobacteria Corynebacteriales Corynebacterium 60 3.82 <0.001
Rubrobacterales Rubrobacter 60 3.19 0.027

Firmicutes Bacillales Exiguobacterium 0 3.32 0.011
Proteobacteria Alteromonadales Idiomarina 0 3.84 0.001

Cellvibrionales Haliea 0 3.05 0.005
Oceanospirillales Halomonas 0 3.98 <0.001

Kangiella 0 3.04 0.021
Pseudomonadales Psychrobacter 0 4.26 <0.001
Rhodobacterales Loktanella 0 3.34 0.029

Ruegeria 60 3.52 0.008
Rhodospirillales Acetobacter 60 3.83 <0.001

Enhydrobacter 60 3.92 0.009
Salinisphaerales Salinisphaera 0 3.08 0.004

promote adequate growth even at moderate dietary inclusion of FM (i.e., 25%) (Betancor
et al., 2021). In the present study, FM was included at 19.4%, with no differences observed
in growth with a 40% substitution of FO by CO. Other studies in the same species, did
not find an effect on growth or feed utilization when FO was replaced up to 75% with
VO at FM levels between 15–20% (Sánchez-Moya et al., 2020). The poorest growth in fish
fed with 60% CO could be due to the presence of glucosinolates, which are responsible
for the bitter or sharp taste of many cruciferous vegetables (Clarke, 2010) and are known
to be prevalent in CO (Berhow et al., 2013). Indeed, poor palatability has been observed
when using 100% CO substitution in European sea bass during the first two months of the
experimental trial (Betancor et al., 2021).

We hypothesized that dietary CO alters the intestinal microbiota and its metabolic
pathways. The NGS of gut microbiota in gilthead sea bream has been performed previously
in a few studies and in general, the results agree with our findings. For instance, the
replacement of marine with vegetable ingredients, i.e., vegetal meal (VM) and/or VO, in
the gilthead sea bream diet did not influence the overall alpha-diversity of gut bacteria
in previous studies by Estruch et al. (2015), Parma et al. (2016) and Castro et al. (2019).
However, unlike our results, almost 2-fold higher alpha-diversity values (e.g., No. OTUs,
Shannon and Choa1) were found in the hindgut of gilthead sea bream in these previous
studies (Estruch et al., 2015; Parma et al., 2016). This could be explained by the different
age of fish used in the present study since there is evidence that alpha-diversity decreases
with age in fish (Llewellyn et al., 2016; Heys et al., 2020). Rimoldi et al. (2018) found no
differences in the alpha-diversity of gut bacteria in gilthead sea bream of similar size
compared to the current study. No significant differences in richness and diversity of gut
bacteria was found in the study of Piazzon et al. (2020) that fed a control or a plant-based
diet to three groups of genetically selected gilthead sea bream families. Equally, dietary
levels of FM, FO or their combination did not affect faeces and mucosa species richness or
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Figure 5 STAMP plots of predicted functional metagenomic pathways (PICRUSt) of OTUs in fae-
ces/digesta (F) of gilthead sea breamwhere fish oil was replaced with 0 and 60% camelina oil under
KEGG Levels 1 (A), 2 (B) and 3 (C).

Full-size DOI: 10.7717/peerj.10430/fig-5

Shannon-Weaver diversity index in European sea bass (Torrecillas et al., 2017). Conversely,
a recent analysis of gut microbial community in gilthead sea bream fed a diet with high VM
and VO level has highlighted a significant increase of microbiota biodiversity compared to
control fish fed a FM/FO based-diet (Parma et al., 2020). In the same fish species, Piazzon
and colleagues (2017) reported instead that 58% and 84% of substitution of dietary FO
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Figure 6 STAMP plots of predicted functional metagenomic pathways (PICRUSt) of OTUs in mucosa
(M) of gilthead sea breamwhere fish oil was replaced with 0 and 60% camelina oil under KEGG Levels 1
(A), 2 (B) and 3 (C).

Full-size DOI: 10.7717/peerj.10430/fig-6

by VO lowered autochthonous gut microbiota diversity leading to a dominance of the
Photobacterium genus.

It is interesting to note the lower alpha-diversity found in the mucosa in comparison to
the faeces samples. This agrees with previous studies in salmonid fish that have reported
a higher biodiversity and richness of bacterial species hosted by intestinal lumen in
comparison to the gut mucosa (Gajardo et al., 2016; Huyben et al., 2018; Rimoldi et al.,
2019; Terova et al., 2019). In European sea bass, autochthonous microbiota was instead
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Figure 7 Contribution of bacterial OTUs to the abundance of K11533 (fatty acid synthase) in the fae-
ces (F) andmucosa (M) of gilthead sea bream fed 0, 20, 40 and 60%CO.

Full-size DOI: 10.7717/peerj.10430/fig-7

characterized by higher species richness than allochthonous (transient)microbiota (Rimoldi
et al., 2020b).

Previous NGS studies on gilthead sea bream have found similar gut microbial profile
dominated by Firmicutes and to a lesser extent by Proteobacteria, Actinobacteria
and Bacteroidetes phyla, and by Lactobacillus, Photobacterium, Corynebacterium and
Propionibacterium genera (Estruch et al., 2015; Parma et al., 2016; Parma et al., 2020). In
the present study, Proteobacteria and Firmicutes were the dominant phyla in both, faeces
and mucosa samples regardless of the diet, as previously reported in gilthead sea bream
and other fish species (Estruch et al., 2015; Parma et al., 2016; Parma et al., 2020; Piazzon
et al., 2017; Rimoldi et al., 2018; Rimoldi et al., 2019; Rimoldi et al., 2020a; Rimoldi et al.,
2020b; Terova et al., 2019; Magalhães et al., 2020). Beta diversity analysis showed that
neither resident nor transient intestinal communities were affected by dietary treatment.
In contrast, a clear distinguished microbial profile was found in the faeces of gilthead sea
bream fed a diet with a total replacement of FO with VO (Castro et al., 2019).

At the genus/family taxa level, LEfSe analysis revealed that fish fed 60% CO diet showed
a higher abundance of Corynebacterium in the gut mucosa, indicating a possible association
of this taxon with the 60% CO diet. The same bacterial genus increased in gut mucosa
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of slow-growth gilthead sea bream fed with a plant-based diet (Piazzon et al., 2020). This
genus contributed to higher predictive pathways of fatty acid synthesis, since it, along
with other genera belonging to Actinobacteria and Firmicutes phyla (e.g., Lactobacillus),
is capable of producing short-chain fatty acids, such as acetate and butyrate, which act as
an energy source and stimulate enterocytes proliferation in fish (Kihara & Sakata, 1997;
Asaduzzaman et al., 2018). In European sea bass the genera Clostridium, Corynebacterium
and Staphylococcus were only identified in fish fed with low FM/FO levels (Torrecillas et
al., 2017). In the gut of Arctic charr, dietary marine-derived oil reduced viable counts of
Corynebacterium in comparison to fish fed soybean and linseed oils (Ringo et al., 2002). In
contrast, a study by Estruch et al. (2015) showed that Corynebacterium in the hindgut of
gilthead sea bream remained the same when FM was replaced with VM. Therefore, either
these results indicate that high inclusion of CO may change the mucosal environment
that benefits the colonisation of Corynebacterium, or fish may select Corynebacterium to
produce fatty acids to compensate for fish oil replacement in the diet. A study in Atlantic
salmon, showed that most bacteria in the gut are transient with no evidence of adaptation
to host environment (Heys et al., 2020), thus suggesting that Corynebacterium may have
been selected by the host based on the demand for fatty acids.

Reduced weight gain in fish fed the 60% CO diet may be associated with a reduced
abundance of Lactobacillus in the gut, which were instead enriched in fish fed control diet
0% CO. Lactobacillus is a lactic acid bacterium (LAB; Lactobacillales order) often used
as a probiotic in aquafeeds and therefore, considered favourable due to its properties to
stimulate and enhance gut development, digestive function, mucosal tolerance, immune
response and disease resistance in fish (Merrifield et al., 2010; Ringøet al., 2018). Indeed,
a higher Firmicutes:Proteobacteria ratio is generally regarded as beneficial because it is
positively correlated to the abundance of LAB. The high abundance of Firmicutes (32–68%)
found in the gut agrees with most of the previous studies on gilthead sea bream (Estruch
et al., 2015; Parma et al., 2016; Rimoldi et al., 2018). Only Piazzon et al. (2017) found a low
percentage of Firmicutes (1–28%) in the gut of gilthead sea bream and these authors
suggested Firmicutes may be more transient than the other phyla.

The predictive function of the gut microbiome of fish has only been investigated in a
small handful of studies (Lyons et al., 2017;Wei et al., 2018; Yang et al., 2019; Piazzon et al.,
2019; Qiao et al., 2020; Piazzon et al., 2020) and to our knowledge this is one of the first
investigations of gilthead sea bream. The absence of significant effects of diet or gut section
indicate that replacing FO with CO did not drastically alter the composition and function
of microbes in the gut. It also reveals that the function of allochthonous (transient) and
autochthonous (resident) bacteria are similar and analysing each gut section separately
may not be necessary.

In regards to metabolic pathways, the predictive functions of gut microbes in the present
studies agree with previous findings that they are mainly associated with the metabolism
of carbohydrates, amino acids, energy and to a lesser extent lipids (Liu et al., 2016; Dehler,
Secombes & Martin, 2017; Lyons et al., 2017; Wei et al., 2018; Yildirimer & Brown, 2018).
Actinobacteria, such as Corynebacterium and Gordonia (Fig. 7), dominated the pathway of
fatty acid synthase, which have low abundances in the gut but may be key contributors to
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lipid metabolism. In Arctic charr, feeding VOs increased viable counts of Corynebacterium
in comparison to fish fed marine-derived oils (Ringo et al., 2002). A similar result was
found in the present study especially with regard to the mucosa of fish fed with 60%
CO diet. High VO diets may increase the abundance of fatty acid producing bacteria
to compensate for the lack of fatty acids in the diet. Piazzon et al. (2020) found striking
changes in the metabolic capacity of intestinal bacteria of gilthead sea bream in response to
plant-based diets. In particular, 59, 84 and 15 pathways were found to be changed in fast
growth, intermediate growth, and slow growth sea bream families, respectively. Among
them, pathways related to infection, inflammation or immune activation, were the most
influenced by diet and genetic selection. However, it should be noted that these results are
only functional predictions and the deep shotgun sequencing of all bacterial genomes is
preferred (Langille et al., 2013). Indeed, recently Sun, Jones & Fodor (2020) reported that
the utility of PICRUSt is likely limited outside of human samples and that the development
of tools for gene prediction specific to different non-human samples is needed. However,
it is also true that the use of this meta-genomic tool represents the only available strategy
to determine metabolic capacities of non-human microbiomes. For this reason, we only
focused on the metabolic pathways instead of the disease related pathways. Functional
metagenomics data should be validated or complemented with empirical approaches, such
as sequencing the bacterial transcriptome, to give a more detailed description of metabolic
pathways that are actually active in the gut microbial community.

CONCLUSIONS
This study demonstrated that diets can replace up to 40% of fish oil with CO without
negative effects on growth performance, fillet fatty acid profile and gut microbiome of
gilthead sea bream. Final weight and fillet EPA were significantly reduced in fish fed the
60% CO diet. Alpha and beta-diversities of gut bacteria both in the faeces and mucosa
were not affected by any dietary treatment, although a few indicator bacteria, such as
Corynebacterium and Rhodospirillales, were associated with the 60% CO diet. This study
highlighted the difference in alpha-diversity between sample type, which was highest in
the feeds and lowest in the gut mucosa. Reduced growth of fish fed 60% CO diet may
be due to the lack of EPA and DHA in the CO and a reduction in lactic acid bacteria,
specifically Lactobacillus, in the feaces and gut mucosa. Feed conversion was not affected by
CO inclusion, thus reduced growth was not due to reduced digestibility but rather driven
by nutrient demand, e.g., n-3 PUFA. Metagenomic analysis revealed similar predictive
function of the gut microbes, although a higher abundance of Corynebacterium in the
mucosa of fish fed 60% CO diet increased the KEGG pathway of fatty acid synthesis and
may act to compensate for the lack of fatty acids in the diet. These results indicate that 40%
of FO can be replaced with CO in diets for gilthead sea bream and demonstrates that CO
can be an alternative oil ingredient in aquafeeds.
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