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Abstract
A local optima network (LON) encodes local optima connectivity in the fitness landscape of a combinatorial optimisation

problem. Recently, LONs have been studied for their fractal dimension. Fractal dimension is a complexity index where a

non-integer dimension can be assigned to a pattern. This paper investigates the fractal nature of LONs and how that nature

relates to metaheuristic performance on the underlying problem. We use visual analysis, correlation analysis, and machine

learning techniques to demonstrate that relationships exist and that fractal features of LONs can contribute to explaining

and predicting algorithm performance. The results show that the extent of multifractality and high fractal dimensions in the

LON can contribute in this way when placed in regression models with other predictors. Features are also individually

correlated with search performance, and visual analysis of LONs shows insight into this relationship.

Keywords Fitness landscapes � Fractal analysis � Local optima networks

1 Introduction

Fractals are patterns which contain parts resembling the

whole (Mandelbrot 1972). Under this definition fractals are

ubiquitous in the complex simplicity of nature, from

microscopic blood vessel networks to the macroscopic

pattern of the rings of Saturn. Nature and evolution seem to

favour fractal design: using a pattern repeatedly allows

replicability with very few instructions. The fractal

dimension (Mandelbrot 1975) is a complexity index cap-

turing how the detail in a pattern changes when one views

it using a different resolution or scale. Fractal dimension

analysis has been used in diagnostic imaging (detecting

colon cancer (Esgiar et al. 2002); characterising images in

mammography (Caldwell et al. 1990); characterising

leukaemia cells (Mashiah et al. 2008), search and rescue

[analysing the layout of victim location after building

collapses (Saeedi and Sorensen, 2009)], and in engineering

for the design of antenna (Werner and Ganguly 2003),

among innumerable others. Fractal geometry can also

facilitate vast amounts of information being embedded in a

comparatively small space. Indeed, branching structures

inside human lungs fill space in a fractal way; because of

this, the equivalent surface area of a tennis court is com-

pacted within the volume of the lungs. The fractal

dimension of human lungs has been measured at approxi-

mately 2.88 (Uahabi and Atounti 2017), which indicates

high spatial complexity and convolution.

Fitness landscapes of some combinatorial optimisation

problems have been viewed under a fractal lens (Wein-

berger and Stadler 1993). Fitness landscapes are both a

lucid metaphor and a mathematical object; they contain the

set of solutions to an optimisation problem, the fitnesses of

those solutions (these can be visualised as the heights), and

a function for measuring adjacency between solutions. The

study of fitness landscape architecture provides insight

about reactions between metaheuristic algorithms and

problems. This can serve as a springboard for more

informed algorithm design or selection.

The first study to conduct fractal analysis on fitness

landscapes (Weinberger and Stadler 1993) stipulated that

for certain problems, landscape ruggedness scales at
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different levels of abstraction and that this indicated fractal

structure. Subsequent studies have reported similar findings

(Zelinka et al. 2014; Locatelli 2005; Richter 2018) and

some have emphasised the potential lying dormant in the

largely untapped field of fractal analysis for landscapes.

A local optima network (LON) (Ochoa et al. 2008)

models local optima and their connectivity in a fitness

landscape. That is, the nodes are local optima and the edges

are metaheuristic search transitions between two local

optima under a chosen search operation. There is a sig-

nificant body of evidence suggesting that features of LONs

can correlate to, explain, or predict metaheuristic algorithm

performance on the underlying combinatorial problem

(Daolio et al. 2010; Daolio et al. 2011; Verel et al. 2011;

Herrmann et al. 2016; Ochoa and Veerapen 2018; Ochoa

et al. 2017).

Little is known about the fractal complexity in LONs

and how their fractal nature relates to metaheuristic algo-

rithm performance. Preliminary work has indicated that the

fractal dimension might have a connection to search

(Thomson et al. 2018a; Thomson et al. 2018). That being

said, the latter study considers only small problem instan-

ces (size N = 18 for a binary-encoded problem, NK

Landscapes). The first study mentioned is on the quadratic

assignment problem (QAP) and they consider some

benchmark instances from QAPLIB (Burkard et al. 1997)

up to N = 28 (Thomson et al. 2018a), although only two of

the library’s several instance classes for this problem size

range are included; consequently, the fractal analysis is

conducted on only 25 QAPLIB instances.

We intend to illuminate understanding of the relation-

ships between fractal geometry in LONs and metaheuristic

algorithm performance. The QAP serves as a testbed for

the analysis and we use QAPLIB instances, increasing the

number of instances considered threefold when compared

to previous work (Thomson et al. 2018a) and raising the

maximum problem size from 28 to 50. A recent and refined

LON construction algorithm (Ochoa and Herrmann 2018)

is used to intelligently build LONs for the QAPLIB

instances. Features of the LONs, including fractal dimen-

sion features, are computed and the parallel between them

and performance is investigated using visual tools, corre-

lation analysis, and linear and random forest regression

models.

The contributions of this article can summarised as

follows:

1. We bring new insight into how multifractal geometry

at the local optima level can help explain and predict

algorithm performance

2. A significant expansion of the data-set used for fractal

analysis in LONs (using more than 3x the previous

number of QAPLIB instances and raising N � 28 to N

� 50, as well as deploying a recent refined and tested

sampling algorithm for constructing the LONs)

3. Enhanced statistical techniques for properly validat-

ing the use of LON fractal analysis for algorithm

explanation and prediction (random forest to model

non-linearities; random repeated subsampling cross-

validation; using intelligible predictors such as the

extent of multifractality and the median fractal

dimension).

The article is structured as follows: Sect. 2 contains the

necessary background information to render this article

self-contained; Sect. 3 details aspects of the methodology

used; Sect. 4 gives the experimental setup, with Sect. 5

presenting the results; finally, Sect. 6 finishes the article

with conclusions and directions for future work.

2 Preliminaries

2.1 Fitness landscapes

A fitness landscape (Stadler 2002) is composed of three

parts, ðS;N; f Þ : S is the full solution set; N : S �! 2S is

known as the neighbourhood function and assigns a set of

adjacent solutions NðsÞ to every s 2 S; and f is a fitness

function f : S �! R that provides a mapping from solution

to associated fitness. That fitness can be conceptualised as

the solution height within the landscape metaphor.

The analysis of fitness landscape objects can provide an

intense understanding of optimisation problems and their

reactions with metaheuristic algorithms (Pitzer and

Affenzeller 2012). Indeed, landscapes have been used to

facilitate algorithm selection (Hoos et al. 2004), operator

selection (Merz and Freisleben 2000), and parameter tun-

ing (Hutter et al. 2007).

2.2 Local optima networks

The local optima network (LON) model (Ochoa et al.

2008) was introduced as a tool for studying the connec-

tivity of local optima in a fitness landscape, and has sub-

sequently shown proficiency in helping with explaining

metaheuristic search dynamics (Chicano et al. 2012; Her-

rmann et al. 2016; McMenemy et al. 2018). We define the

components of a LON before describing the model as a

whole.

Nodes. The set of nodes LO are the local optima,

meaning that a node loi has superior fitness with respect to

the entire neighbourhood. Formally: 8n 2 NðloiÞ :
f ðloiÞ� f ðnÞ (assuming minimisation) where NðloiÞ is the

neighbourhood and n is a neighbour.
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Edges. An edge is delineated between two nodes if the

probability of ’’escape’’ from the source local optimum to

the destination is greater than zero. The ’’escape’’ is

defined with respect to a chosen search operation (or

sequence of operations). The edge is weighted with the

probability as wij. Formally local optima loi and loj com-

prise the source and destination of an edge respectively iff

wij [ 0. In this work, sampling is used; as a result, nodes

are not necessarily associated with their complete set of

potential edges.

Local optima network (LON). A local optima network,

LON = (LO, E), consists of nodes loi 2 LO which are the

local optima, and edges eij 2 E between pairs of nodes loi
and loj with weight wij iff wij [ 0. We remark here that wij

may be different than wji; it follows that two weights are

needed and that a LON is an oriented and weighted graph.

2.3 Fractal dimension

The notion of a fractal dimension for patterns was con-

ceived by Mandelbrot (1975) and is defined as a com-

plexity index which captures how the detail in the pattern

changes with resolution used to measure it. The fractal

dimension can be computed as the ratio between the log-

arithm of the detail and the logarithm of the scale used:

fractal dimension ¼ log ðdetailÞ
log ðscaleÞ ð1Þ

To understand what the fractal dimension of a shape means

we can begin by revisiting the familiar shapes associated

with the topological dimension: a one-dimensional line; a

two-dimensional square; a three-dimensional cube.

We can observe the relationship between scale and

detail for a square in Fig. 1. Looking first at Fig. 1a where

the length scale m used to measure is one (the length of one

side of the square) the detail measured is precisely one

square. Moving onto Fig. 1b we observe that a length scale

of m = 1
2
is used here (this is a scaling factor of two because

the resolution is twice as fine). That results in the

measurement of four smaller copies of the larger square.

The scale is two and the detail is four. Similarly, when m is

one-quarter of the length of a side of the square (scaling

factor of four; see Fig. 1c) this results in sixteen copies of

the larger square being measured, giving a scale of four and

detail of sixteen. The relationship 4x ¼ 16 where x is

dimension can be transformed into
logð16Þ
logð4Þ , i.e. the ratio

between detail and scale which is two in this case. The

square is two-dimensional because for any scale the detail

observed will be scale2.

For some patterns the exponent x is not an integer but

rather somewhere else on the real number line. In this case,

the way detail changes with resolution cannot be captured

with topological dimension. An illustrative example of this

can be seen in Fig. 2 with the Sierpinski Triangle.

Figure 2a shows that when a scaling factor m of one is

used we accordingly measure the complete pattern. If we

increase the resolution twofold as in Fig. 2b three smaller

copies of the large triangle are now measured. Recalling

that fractal dimension can be obtained by solving for x the

equation scalex ¼ detail we observe that x is not an integer

here. The equation is 2x ¼ 3 which results in a fractal

dimension of x = � 1.585.

Fractal dimensions can have efficacy in obtaining spatial

and geometric information about real-world systems. They

have been used, for example, in engineering for detecting

cracks in plate structures (Hadjileontiadis and Douka

2007); in biology for characterising the tortuosity of animal

trails (Dicke and Burrough 1988); and also in medicine for

characterising mammographic patterns (Caldwell et al.

1990) and detecting colon cancer (Esgiar et al. 2002).

In our study we are computing fractal dimensions on

LONs to obtain spatial complexity information about fit-

ness landscapes. A widely-used method to estimate fractal

dimension for a complex network is the ’’box counting’’

algorithm (Song et al. 2005). This ’’boxes’’ together nodes

which are within m network edges of each other, aiming to

describe the network using as few ’’boxes’’ as possible. The

parameter m is the scale of measurement used and serves as

(a) (b) (c)

Fig. 1 The relationship between

detail and scale for a square;

m is the length of scale used for

measurement
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the denominator in Eq. 1 to obtain fractal dimension

alongside the number of ’’boxes’’ required to cover the

network, which is the amount of detail observed. In stage

one of the procedure, ’’centre’’ nodes are initially identified

as those which are the best connected in the network.

Nodes which are at a distance of no more than m edges to

the centre node are then marked as ’’covered’’ and are

added to the ’’box’’ associated with the centre. The process

continues until all nodes are either ’’covered’’ or they are

centre nodes. That means wherever a node cannot be

’’covered’’ with respect to any of the centres, it becomes a

centre itself. In stage two the central distances for all nodes

are calculated; this is—for each node—the closest distance

to a centre. Following that, the ’’box’’ membership identity

of each non-centre node is switched to that of a neighbour

which is closer to a centre node. The original node is

removed.

At the end of the process the number of ’’boxes’’ needed

to cover the network completely, which we refer to as mb,

is the number of detail units observed when using the

resolution scale m. We can obtain the fractal dimension for

the network by inserting mb and m into Eq. 1:

fractal dimension ¼ log ðmbÞ
log ðmÞ ð2Þ

Fractal complexity in local optima networks has been

calculated previously using box counting (Thomson et al.

2018a; Thomson et al. 2018). The box counting algorithm

was altered in Thomson et al. (2018) to specialise to LONs.

For two nodes to be ’’boxed’’ as a single ’’unit’’ of detail

they must either be a single edge apart or they are within m

edges of each other and they also have a fitness distance

less than a set threshold �.

A subsequent study proposed additional mechanisms for

computing and therefore defining the fractal dimension of a

LON (Thomson et al. 2018a). A box counting variant

which was introduced which used LON edge weights

during the process. In a LON edge weights represent the

probability that a search path between the local optima will

be followed. The box counting variant used as the criteria

for ’’boxing’’ that two nodes have a single edge between

them which is weighted with a probability greater than b.
The authors referred to values obtained using this method

as probabilistic fractal dimensions.

In real-world complex systems a single fractal dimen-

sion can sometimes be insufficient to capture the com-

plexity (Mandelbrot et al. 1997). Monofractal analysis such

as the box counting described earlier is based on the

assumption that fractal complexity is roughly uniform in

the pattern. Some networks have been found to be multi-

fractal (Song et al. 2015; Furuya and Yakubo 2011). A

multifractal algorithm has been used on LONs in a prior

study (Thomson et al. 2018a) and we deploy this in our

experiments. The process produces a spectrum of fractal

dimensions for a single pattern (LON in our case). Details

and pseudo-code for the algorithm are provided later on in

Sects. 3.3 and 4.3.

3 Methodology

3.1 The quadratic assignment problem

Our analysis is conducted on the much-studied quadratic

assignment problem (QAP) (Lawler 1963) which is often

used in fitness landscape analysis (Merz and Freisleben

2000; Merz 2004; Daolio et al. 2011; Pitzer and Affen-

zeller 2012; Verel et al. 2018). A QAP instance is specified

with a distance matrix and a flow matrix. An entry in the

distance matrix, Dl1;l2 is the distance between two loca-

tions: dðl1; l2Þ. In the flow matrix this is the flow between

two items: f ði1; i2Þ. Solutions are encoded as a permutation

of length N, and are the allocation of N items to N loca-

tions. Fitness of a solution is the product of distances and

flows between the locations and items according to the

permutation and the aim is minimisation. The fitness

function, g, for a solution x is then

(a) (b)

Fig. 2 The relationship between

detail and scale for a fractal

with topological dimension two

and fractal dimension of

� 1.585
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gðxÞ ¼
PN

i¼1

PN
j¼1 DijFij ; 8x 2 S.

3.2 Constructing sampled LONs

LON sampling algorithms are generally augmented on top

of an existing optimisation algorithm. We align with this

trend here, opting for a recently-introduced construction

algorithm which joins an ILS with LON logging for QAP

(Ochoa and Herrmann 2018).

The ILS algorithm is run r times from independent

random starting solutions. In the ILS process, the local

optimisation is a pairwise exchange of items, with the

perturbation being k pairwise exchanges. Whenever the

ILS Sampling detects no improving moves from the current

solution, the solution is added as a local optimum node—

this is an approximation of the true structure, because the

algorithm does not consider the existence of saddle points.

Only improving or equal fitness local optima are accepted.

It follows that local optima plateaus might be explored,

although not exhaustively, during sampling. When there is

a local optima plateau, this is not collapsed by default;

plateaus are sometimes collapsed to facilitate the extraction

of certain LON features and to assess the neutrality present.

LON plateaus are collapsed in preparation for multifractal

analysis in this work, and also to facilitate computation of

the funnel features and the number of compressed local

optima feature described in Sect. 4.5. Each local optimum

encountered during search is stored in the set of nodes LO

alongside its fitness, and if two optima l1 and l2 are con-

nected by an ILS cycle (local search followed by k per-

turbations) during the search, an edge el1;l2 is stored in the

LON edge-set, E. The nodes are edges logged during the

r runs are joined to form a single local optima network for

the problem instance. All parameters for the algorithm are

stated later on in Sect.*4.2.

3.3 Fractal analysis algorithms

As stipulated in Sect. 2.3 the standard approach for cal-

culating and defining fractal dimension of a complex net-

work is with a box counting algorithm (Song et al.

2005, 2006). This process iteratively ’’boxes’’ together

nodes iff the distance dðn1; n2Þ\m, i.e. the nodes are \
m edges apart. The parameter m provides the scaling factor

which is used to compute the fractal dimension of the

network alongside the associated detail observed when

using that scaling factor. Empirically the detail is defined

as the number of ’’boxes’’ needed to completely cover the

network, taken as a proportion of the network size.

We mentioned that the box counting algorithm has been

specialised for the specific case of a local optima network

previously (Thomson et al. 2018). In that they allowed

nodes to be ’’boxed’’ if either the distance dðn1; n2Þ = 1 or

dðn1; n2Þ\m and also jf ðn1Þ � f ðn2Þj\� where f ðnxÞ is the
fitness of node x and � is the maximum fitness difference

between nodes n1 and n2.

3.3.1 Multifractal dimension analysis

The process for calculating multifractal dimensions is dif-

ferent to standard box counting and it produces a spectrum

of fractal dimensions for a single pattern. One approach is

called the sandbox algorithm (Liu et al. 2015) where sev-

eral nodes are randomly selected to be sandbox ’’centres’’.

Members of the sandboxes are computed as nodes are r

edges apart from the centre c. After that the average

sandbox size is calculated. The procedure is replicated for

different values of r which is the sandbox radius. To

facilitate the production of a dimension spectrum the whole

process is repeated for several arbitrary real-valued num-

bers which supply a parameter we call q. The sandbox

algorithm was specialised and modified to suit LONs in a

prior study (Thomson et al. 2018a) and this is the process

we use for our fractal analysis experiments. In our version

of the algorithm a node n can be included in the ’’sandbox’’

of a central node c if either the distance dðn; cÞ = 1 or

dðn; cÞ ¼ r � 1 and jðf ðnÞ � f ðcÞÞj\�. Pseudocode is

given in Algorithm 1.

At the end of each ’’sandboxing’’ iteration conducted

with particular values for the parameters q, r and �, the

associated fractal dimension is calculated:

fractal dimension ¼ logðdetailq�1Þ
ðq� 1Þ � logðscaleÞ

ð3Þ

where detail is the average ’’sandbox’’ size (as a proportion

of the network size), q is an arbitrary real-valued value, and

Fractal geometry in LONs
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scale is r
dm, with r being the radius of the boxes and dm the

diameter of the network. We use this process as the foun-

dation for obtaining multifractal dimensions for LONs in

this work. In addition we separately implement a modified

version of it where the metaheuristic path probabilities

encoded in LON edge weights are used in the calculations.

Specifically, for a node n to be a member of the sandbox

with centre c there must be one of two situations: either

there is a single edge between n and c (of any probability;

this is to guarantee boxing momentum), or there is an edge

between a direct neighbour of n and c which is weighted

with a probability greater than a specified threshold b. This
element was implemented with the motivation that nodes

which are in close proximity to a probable path towards the

central node should be included in the sandbox. We

remove the fitness distance check for this algorithm variant

and instead of a set of values for ’’sandbox’’ radii the

sandboxes are of a fixed width, r = 2. The rest of the

algorithm remains the same and a spectrum of fractal

dimensions is produced. To differentiate the results pro-

duced by this particular algorithm variant in the following

Sections we refer to the fractal dimensions obtained by this

method as probabilistic fractal dimensions. The algorithm

which does not include the probability constraint but

instead includes ’’sandbox’’ radius variation as well as

fitness distance constraints produces values which we refer

to as deterministic fractal dimensions. The parameters for

both algorithms described are stated in Sect. 4.3.

4 Experimental setup

4.1 Instances used

All instances used are from the QAPLIB benchmark library

for QAP, the quadratic assignment problem library

(QAPLIB) (Burkard et al. 1997). We cap the maximum

problem size at 50 due to the computational expense (Liu

et al. 2015) associated with multifractal analysis of large

networks. It follows that further study is needed in order to

confirm any findings on larger problem instances. We

additionally remove the ’’esc’’ instances from the group

because their LONs have very few distinct fitnesses due to

large amounts of neutrality present. The resultant set con-

sists of 85 problems, with the problem sizes ranging from

12 to 50. In all cases the global optimum is known.

The nature of QAP instances can commonly be char-

acterised into one of four classes (Stützle 2006): uniform

random distances and flows; random flows based on grids;

real-world; and random ’’real-world like’’, which are not

real-world but mimic distance and flow patterns seen in

real-world presentations of QAP. Table 1 shows the

QAPLIB instances used in the experiments and present

them in these four categories. Numbers which form part of

the instance names indicate the problem size, i.e. number

of locations and flows and the length of a permutation

solution.

4.2 Construction of local optima networks

For each QAP instance we construct a local optima net-

work. As stipulated in Sect. 3.2, this is done by using an

ILS algorithm which has been augmented with LON log-

ging mechanisms. The LON logging amalgamates the

unique nodes and edges from 200 ILS runs into a single

network. Each run terminates after 10,000 iterations with-

out an improvement. This is a deliberately lenient condi-

tion which was chosen with the motivation that ILS runs

should converge to a natural stalling point. The parameter

setting, however, means that some LONs (those associated

with the larger problems in the instance set) are built over a

number of hours; this computational cost is a limitation to

our approach. We argue, however, that the benefit of the

insight gained through our method outweighs the cost. The

remaining ILS parameters and setup are detailed shortly in

Sect. 4.4.

4.3 Fractal analysis

In contrast to traditional monofractal analysis, to generate

multifractal dimensions for the LONs a range of arbitrary

real-valued numbers is needed. We set these as q in the

range ½3:00; 8:90� in step sizes of 0.1. The number of

’’sandbox’’ centres in each iteration is set at 50 and the

choice of these centres is randomised. As mentioned, in our

deterministic multifractal algorithm variant fitness distance

is considered in order to specialise to local optima

Table 1 The QAPLIB instances used in the experiments

Class Instance names

Uniform random tai{12a, 15a, 17a, 20a, 25a, 30a, 35a, 40a, 50a} |

rou{12, 15, 20}

Random grids had{12, 14, 16, 18, 20} |

nug{12, 14, 16a-b, 17, 18, 20, 21, 22, 24, 25,

27, 30} | scr{12, 15, 20} | sko{42, 49} |

tho{30,40} | wil{50}

Real-world bur{a-h} | chr{12a-c, 15a-c, 18a-b, 20a-c, 22a-b,

25a} | {els19} | kra{30a-b, 32} | lipa{20a-b,

30a-b, 40a-b, 50a-b} | ste36{a-c}

Real-world like tai{12b, 15b, 20b, 25b, 30b, 35b, 40b, 50b}
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networks. The comparison between two fitness values is

conducted through logarithmic returns:

fitnessdifference ¼ logðf1=f2Þ ð4Þ

where f1 and f2 are the fitnesses of two local optima at the

start and end of a LON edge. We take the absolute value of

the computed fitness difference because if f1 6 f2, the result

of Eq. 4 is negative. This value can then be compared with

a set threshold, �. A range of ten values is used for that

algorithm: � 2 f0:01; 0:19g in step sizes of 0.02. Another

essential element of deterministic multifractal analysis is

the sizes (radii) for the sandboxes. For these we use values

in the range r 2 f2; diameter � 1g where diameter is the

LON diameter.

For the probabilistic multifractal algorithm variant the

fitness constraint is not used and the sandboxes are of a

fixed width, r = 2. The probability threshold parameter b
must be chosen. Recall that b sets the minimum edge

weight between two nodes. After preliminary runs it was

noted that if b was set as greater than the minimum weight

in the weights distribution then little-to-no ’’boxing’’

occurred. For this reason b is set as the minimum weight

present in the distribution.

An important note. We note here that 32 out of the 85

LONs had only a single edge weight present throughout the

network. Recall that the probability-based boxing process

outlined in Sect. 3.3.1 stipulates that nodes can be boxed

together when either there is a single edge between n and c

(of any probability; this is to guarantee boxing momen-

tum), or there is an edge between a direct neighbour of n

and c which is weighted with a probability greater than a

specified threshold b, which is set as the lowest weight in

the network. As a consequence, when all weights are

equivalent, then no boxing based on probability will occur

at all—no pairs of nodes will pass the acceptance condition

that their connecting edge has a weight greater than the

minimum weight seen in the LON. This renders these

particular networks ineligible for probabilistic fractal

analysis under these conditions. Consequently, results

which pertain to probabilistic dimensions consider the 53

eligible LONs and their features, while those pertaining to

deterministic fractal dimensions consider all 85 LONs.

4.4 Metaheuristic performance

To obtain algorithm performance information with which

to compare the LON features we use two search algorithms

for the QAP. Stützle introduced iterated local search (ILS)

variants for state-of-the-art performance on the QAP

(Stützle 2006). We use his ILS configured as follows: first-

improvement pairwise exchanges for local search; 3n
4

exchanges for perturbation; accepting only improving local

optima; and terminating when the global optimum is found

or after 100 iterations. Taillard’s Robust Taboo Search

(ROTS) (Taillard 1991) is also a competitive heuristic for

the QAP. This a best-improvement pairwise exchange local

search with a variable-length tabu list tail. For each facil-

ity-location combination, the most recent point in the

search when the facility was assigned to the location is

retained. A potential move is deemed to be ’’tabu’’ (not

allowed) if both facilities involved have been assigned to

the prospective locations within the last s cycles. The value

for s is changed randomly, but is always from the range

½0:9n; 1:1n�. A run terminates when the global optimum is

found, or after 100 iterations.

We run the ILS and the ROTS in these configurations on

each QAPLIB instance 100 times from different starting

solutions. As a measure for their performance we define the

performance gap p as follows:

p ¼ f ðalgÞ
f ðoptÞ ð5Þ

where f ðalgÞ is the fitness obtained by the algorithm and

f ðoptÞ is the fitness of the global optimum. In this way, a

’’solved’’ run will output ’’1’’ and lower values are closer to

the optimal fitness. For each QAP instance we report the

mean p over 100 runs. In the results that follow, pðILSÞ is
this value for iterated local search and pðROTSÞ is for

robust tabu search.

4.5 LON features

Features are extracted from the local optima networks.

Deterministic fractal dimension sets are calculated for each

of the 85 LONs considered. In those sets there are 60 �
ðdiameter � 2Þ � 10 dimensions, where 60 is the number of

(arbitrary) q values, diameter is the LON diameter (which

differs between LONs), and 10 is the number of values for

fitness distance threshold �. As we recall from Sect. 4.3 53

of the 85 LONs are eligible for probabilistic fractal anal-

ysis. Those 53 have sets of probabilistic fractal dimensions

calculated in addition to the deterministic ones. In each set

there are 60 dimensions (one for each value of q). This is

less than there was when using the deterministic multi-

fractal algorithm and this is because the probabilistic

variant does not consider parameter ranges for ’’sandbox’’

radius and does not include fitness distance calculations.

The statistics we draw from the fractal complexity data are:

the minimum fractal dimension, the median fractal

dimension, the maximum fractal dimension, the range of

fractal dimensions (calculated as the difference between

the largest and smallest values), and the number of distinct

fractal dimensions. The latter two capture the degree of

multifractality present.
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Also considered in the experiments are other LON fea-

tures which are not related to fractal dimension values:

1. number of local optima;

2. mean fitness of sampled local optima in the LON;

3. fitness range;

4. fitness of sinks [’’sinks’’ are nodes which have no

out-going edges, i.e. the algorithm used to construct

the LON became trapped there. Sinks are the bottom

of funnels, which themselves are basins of attraction

at the level of local optima (Ochoa et al. (2017))];

5. extent of meta-neutrality, which is neutrality at the

local optima level, computed as meta-neutrality =

number unique fitnesses
number local optima

;

6. mean out-degree;

7. the LON diameter;

8. the number of compressed local optima (after

connected LON nodes of the same fitness are

compressed together—labelled as comp.opt in the

Figures);

9. the correlation between the fitnesses of neighbours in

the LON (fit.fit.corr);

10. the number of sink nodes present (sinks);

11. and the sub-optimal sink strength (that is, the total

incoming edge weight to any sub-optimal sink

nodes—so.strength).

4.6 Regression model setup

We build algorithm performance models using LON fea-

tures for predictors and the performance of competitive

metaheuristic algorithms as the response variables. The aim

is clarifying how LON features can contribute to explain-

ing or predicting algorithm proficiency, paying particular

attention to the fractal nature of the LON. In pursuit of that

we conduct linear and random forest regressions. The

number of observations we have is relatively small—85 for

the deterministic dimensions and 53 for probabilistic—so

we use random repeated subsampling cross-validation for

obtaining model statistics. This is conducted for 10,000

iterations with a training-test split of 80-20. The random

forest regression uses 500 trees. Predictors are standardised

(due to different value ranges) as follows: p ¼ ðp�EðpÞÞ
sdðpÞ , with

p being the predictor in question. The model statistics we

focus on are R2, which captures the amount of variance in

the response variable which can be explained using the

predictor set, and mean squared error, which expresses the

mean squared difference between the model-estimated

values and the actual values.

For the random forest models, variable importance

rankings and values are reported. The values are calculated

as the reduction in decision tree node impurities when

splitting on the variable and are averaged over all 500 trees

used in the regression. Node impurities are measured with

the residual sum of squares.

The non-fractal LON predictors used in the models are

the mean fitness; fitness range; fitness of sinks; extent of

meta-neutrality; out-degree; and the number of global

optima. For the deterministic fractal dimensions, we

include the minimum fractal dimension and median. In the

probabilistic case, these two are replaced with the fractal

dimension range and number of unique dimensions.

5 Results

5.1 Distribution analysis

In Figs. 3 and 4, box-plots convey information about the

fractal dimensions calculated on the local optima networks.

Each box contains values for LONs associated with a

particular QAPLIB instance class—those are indicated on

the x-axis labels. Only a sub-set of the instance classes

which are involved in the central experimentation are

considered in these plots. We chose these groups because

displaying their distributions alongside each other illus-

trates evident visual differences between these particular

classes. Also provided in the Figures as accompanying text

for each box is the performance of iterated local search on

the QAP instances associated with those LONs; this is the

performance metric p(ILS).

In Fig. 3a, b the distributions concern the median LON

fractal dimension which is associated with using the

deterministic and probabilistic methodologies, respec-

tively. In the case of the deterministic fractal analysis, this

is the median value computed over all of the dimensions

produced under these conditions; each dimension is the

output resulting from using a different combination of the

fractal analysis parameters q, r and �. The probabilistic

median is computed from the spectrum of dimensions

associated with the range of values for q.

In both Fig 3a, b, the ’’lip’’ class of LONs seem to have

the highest values and the ’’had’’ group have the lowest. On

both plots, the highest value belongs to the ’’lip’’ category

and the lowest to ’’had’’. Notice that in 3b the ’’lip’’ and the

’’nug’’ instances—whose LONs generally have the highest

fractal dimensions in this plot—also have higher values of

pðILSÞ. As stipulated in Sect. 4.4, values like these reflect

that metaheuristic performance was of lower quality. With

deterministic analysis, the ’’lip’’ group have the largest

variation, while the ’’had’’ LONs have among the smallest;

with probabilistic dimensions (Fig. 3b), ’’had’’ have the
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largest and ’’lip’’ the smallest. Deterministic fractal

dimensions appear to be higher than probabilistic fractal

dimensions.

Consider now the range of fractal dimensions in the

deterministic and probabilistic spectra calculated for the

LONs, which are given in Fig. 4a, b.

The range of fractal dimensions for a LON is a way to

quantify the extent of multifractality present and is calcu-

lated as maximumvalue - minimumvalue with respect to the

complete set of fractal dimensions produced using either

the deterministic or probabilistic paradigm. Also provided

is the average ILS performance, pðILSÞ, for the QAP

instances included in the classes.

Looking at the two plots and noting the different scales

used for them, it seems clear that the probabilistic dimen-

sion calculation process lends to more compact ranges.

This is intuitive: the conditions are stricter for measuring

’’boxes’’ during the dimension calculation process. Let us

consider in both plots the levels of the black lines (which

indicate the distribution median). The ’’had’’ group has the

lowest in 4a and the ’’lip’’ group has the highest. That hints

that the degree of multifractality in the ’’lip’’ group is the

most pronounced among the four, and it is the least pro-

nounced in the ’’had’’ group. The previous plots told us that

’’lip’’ LONs had the highest dimensions, and ’’had’’

showed the lowest. It follows that the degree of deter-

ministic multifractality might be associated with lower

fractal dimensions. For 4b though, ’’had’’ LONs have the

highest ranges of dimension and ’’lip’’ have the lowest—

the opposite trend to the deterministic dimensions. With

respect to algorithm performance, we can that the ’’lip’’

LONs, associated to problems with the lowest meta-

heuristic performance (pðILSÞ), appear to have a higher

extent of deterministic multifractality and a lower extent of

(a) (b)

Fig. 3 Boxplots for the distributions of median fractal dimension. Each box displays values for LONs extracted from one of four QAPLIB

instance classes, as indicated in the legend. The black line within the boxes is the median value

(a) (b)

Fig. 4 Boxplots for the distributions of the range of fractal

dimension. Here the range is the smallest dimension for that LON

subtracted from the largest. Each box displays values for LONs

extracted from one of four QAPLIB instance classes, as indicated in

the legend. The black line within the boxes is the median value
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probabilistic multifractality. In Fig. 4b, the two problem

groups with the best ILS performance have the widest

ranges of values for dimension (i.e. amount of multifrac-

tality) of the four categories.

5.2 Visualisation

Visual analysis of LONs provides valuable insight into

algorithm performance and problem structure, and can

augment more empirical or statistical findings (Ochoa and

Veerapen 2016). We begin with visualisation before

moving onto correlation analysis (Sect. 5.3) and machine

learning models (Sect. 5.4) thereafter.

Figure 5 shows two partial LONs, each for a different

QAPLIB instance. Only the fittest 10% of local optima are

plotted for visual clarity. Global optima are red squares and

all other nodes are grey circles. The node sizes are pro-

portional to the incoming strength to that node, which is the

weighted incoming degree. These two LONs were selected

from the ’’had’’ and ’’lip’’ instance classes because the

former have lower fractal dimensions and also a lower

degree of deterministic multifractality than the latter. These

two instances chosen have the same problem size, N = 20,

and similar numbers of local optima.

In accordance with the higher fractal dimensions, the

algorithm performance is lower on the ’’lip’’ group of

problems. Using as a performance measure the obtained

fitness (as a proportion of the global fitness), robust tabu

search averaged 1.096 on the ’’lip’’ instances. For the

’’had’’ group this was 1.011. Our task in this Section of the

results is to seek explanation in the networks concerning

the algorithm performance differences while also paying

particular attention to how their fractal nature relates to

what is visually seen in the structure.

The median fractal dimension for ’’had20’’, plotted in

Fig. 5a, is 2.975; for ’’lipa20b’’ it is 4.015. The range of

fractal dimensions for ’’had20’’ is around 63, and is around

49 for ’’lipa20b’’. An evident difference in the two Fig-

ures is the number and connectivity of global optima—

Fig. 5a shows that the ’’had20’’ LON has many, and they

appear to be densely connected to other nodes. Contrarily,

the ’’lipa20b’’ LON in Fig. 5b has a single global optimum,

which seems to be more sparsely connected within its

network. Also noteworthy is the relative sizes of the non-

optimal (grey) nodes. In Fig. 5a there are many large nodes

which are sub-optimal and they have access to the global

optima. Figure 5b is not the same; in fact, many of the

nodes which are one step from the global optimum are very

small indeed. That tells us that these nodes have small

incoming degree which might hinder ascension through

fitness levels during optimisation. These grey nodes are

also not well-connected to each other. The opposite is true

for the other network. In the ’’had20’’ LON (Fig. 5a),

connectivity is so dense in the promising local optima

region that visually tracking paths is impossible.

Let us now view the Figures using an algorithm per-

formance explanation lens. Of course, the number of global

optima matters and so does the accessibility of them. The

’’lipa20b’’ global optimum has many incoming edges but

most of these are sourced from nodes which have low

incoming degree themselves. It follows that the global

optimum is less accessible. The ’’had20’’ LON, which is

highly populated with edges in this promising landscape

region, is probably easily solvable in part because when an

algorithm reaches one of the large grey nodes (this should

be likely because they have high incoming degree) there is

an abundance of paths to a global optimum. The same

trends are present when comparing the two networks in

Figs. 6a, b.

These are the partial LONs of the ’’had18’’ and

’’nug16b’’ QAPLIB instances. Figure 6a shows ’’had18’’,

which has a lower median fractal dimension (3.175) and

(a) (b)

Fig. 5 Partial local optima networks for two QAPLIB instances; only

local optima which are in the fittest 10% are shown. Global optima

are square and red; all others are grey circles. The size of the nodes

captures the incoming ’’strength’’ to the node in the LON, i.e. the

weighted in-degree. (Color figure online)
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better tabu search performance on the underlying problem

(1.011) when compared with ’’nug16b’’ shown in Fig. 6b,

which has a median fractal dimension of 4.090 and tabu

search performance of 1.055. Surveying the two figures, we

can again visually account for the discrepancy in fractal

dimension and algorithm performance by looking at the

spatial complexity. Although the LON of ’’nug16b’’ has

more global optima (in red), edges appear less uniformly

distributed in their vicinity when compared to the LON of

’’had18’’. In addition we notice that some nodes which are

one step from a global optimum in Fig. 6b are small in size.

This tells us that they have low incoming degree and that

the probability of search paths reaching them is small. As a

consequence potential routes towards the global optima

may be missed by algorithms.

5.3 Correlation analysis

Figures 7 and 8 show pairwise correlations between vari-

ables. These are Spearman rank coefficients, which are

more appropriate to use where variables are not linearly

related. Included are pðILSÞ and pðROTSÞ on the QAP

instances, alongside the proposed fractal dimension fea-

tures (unique FDs, range FD, median FD, max FD and min

FD)—in Fig. 7, these concern deterministic dimensions; in

Fig. 8, they are probabilistic. Also shown are LON features

which are not associated with fractal complexity—these

were introduced in Sect. 4.5. In addition, fractal dimen-

sions excerpted from arbitrary points on the multifractal

spectra are considered as features—these are arb.dfd1 and

arb.dfd2 in Figure 7 and arb.pfd1 and arb.pfd2 in Fig. 8.

The approach of taking an arbitrary excerpt from the

spectrum and using it as a feature was taken in the previous

work on multifractality in LONs—its inclusion here facil-

itates a comparison between previous features and the

proposed ones.

In particular we are interested in the correlation between

fractal features of the LON and algorithm performance

variance on the associated combinatorial problem. The

intersections between the pðILSÞ column and the fractal

feature rows in Fig. 7 reveal moderate positive correlations

between them in the case of the fractal dimension range,

median, maximum, and minimum—as well as the two

dimension excerpts, arb.dfd1 and arb.dfd2. For all of these

the associated p-value is less than 0.001. We notice that the

correlations are stronger than the pðILSÞ correlations with
other LON features such as mean.fitness, fitness.sinks,

LO.neutrality, edges, diameter, comp.opt, optima, fit.fit.-

corr, and assortativity. They are also slightly stronger than

the correlations between p(ILS) and sinks and so.strength.

The correlations with dimensional summary statistics such

as med FD appear slightly larger than arb.dfd1 and

arb.dfd2, which are the fractal dimension features calcu-

lated using the approach of previous work on multifrac-

tality in LONs (Thomson et al. 2018a), although the

difference is not pronounced. In the pðROTSÞ column, there

are only weak positive correlations with the fractal

dimension variables, and indeed there are no strong cor-

relations with any of the fitness landscape variables

included.

Next we will consider the correlation plot which

includes probabilistic fractal dimension variables in Fig. 8.

Only two of the proposed fractal features show a moderate

negative relationship with pðILSÞ—these are those related

to the extent of multifractality, i.e., unique FDs and range

FD. Those correlations have associated p-value of less than

(a) (b)

Fig. 6 partial local optima networks for two QAPLIB instances; only

local optima which are in the fittest 15% are shown. Global optima

are square and red; all others are grey circles. The size of the nodes

captures the incoming ’’strength’’ to the node in the LON, i.e. the

weighted in-degree. (Color figure online)
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0.001. These two also have a weak negative correlation

with pðROTSÞ—for unique FDs, the p-value is 0.0118; for

range FD, it is 0.0776. Again, the correlations between the

other LON features and pðILSÞ and pðROTSÞ are diminu-

tive, with the exception of out-degree and clusteringcoef.

Observe that the fractal dimensions which were arbitrarily

excerpted from the multifractal spectra, arb.pfd1 and

arb.pfd2, are far less correlated to p(ILS) than two of the

fractal features proposed in this work (that is, unique FDs

and range FD).

5.4 Algorithm performance regression models

5.4.1 Deterministic fractal dimension features

Table 2 contains regression model statistics whose values

are estimated over 10,000 random repeated subsampling

iterations. Each row represents a particular model setup.

The response variable is shown in the second column. The

R2 and mean squared error are given.

We can see from the R2 values that random forest

regression produces a stronger model fit. This is likely

because random forest trees are adept at considering non-

linearities between variables. The amount of variance in

the iterated local search and tabu search performance

which can be explained using the predictors is higher in the

random forest models. The mean squared error is very low

in the case of the random forest regression which is

explaining pðILSÞ. The strongest model in terms of R2 is

using random forest regression with pðROTSÞ as the

response, with around 61% of variance being explained

using the landscape features. Less variance in pðILSÞ
response, around 48%, is explained using the same type of

regression. This model setup does, however, have a much

lower error rate than the associated pðROTSÞ model.

Now let us look at the random forest predictor impor-

tance rankings, which are provided in Fig. 9. The values

are averaged over 10,000 iterations of random repeated

subsampling cross-validation. For explaining pðILSÞ, the
fitness of sinks is most important. The median fractal

dimension is second most important. These two predictors

have importance values noticeably higher than the rest,

although even the lowest predictors, LO neutrality and

minimum fractal dimension, still have importance values

around 0.009, which is around half the value of the highest.

Fitness of sinks is again the most important factor in Fig-

ure 9b, which is the tabu search response model setup. This

is followed by other fitness-based features in second, third,

Fig. 7 Spearman correlations

between pairs of variables

including pðILSÞ and pðROTSÞ,
fractal dimension metrics for the

LONs, and other landscape

features
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and fourth place—LO neutrality, mean fitness, and fitness

range. The median fractal dimension contributes moder-

ately well, ranking fourth out of eight features. The posi-

tion of minimum fractal dimension is last, but even so, it

does contribute to the model.

5.4.2 Probabilistic fractal dimension features

In Table 3 is model statistics where the predictor set

includes probabilistic fractal dimension features instead of

the deterministic ones seen in Table 2. This is followed by

the associated random forest predictor rankings in Fig. 10.

The random forest pðILSÞ model setup is rather weak

with respect to the R2 estimate. Indeed, in this measure it is

weaker than the equivalent model which used deterministic

dimensions. It should be reiterated at this point that the

data-set is composed of fewer observations here than in the

previous models (Tables 2, 9). There are 53 observations

here, compared with a previous 85. This might impact the

formulation of a well-fitting model. Nonetheless both set-

ups with pðILSÞ as the response variable have markedly

lower mean squared errors than their ROTS counterparts.

This is also true in Table 2. Back in Table 3, the pðROTSÞ

Fig. 8 Spearman correlations

between pairs of variables

including pðILSÞ and pðROTSÞ,
fractal dimension metrics for the

LONs, and other landscape

features

Table 2 Summary statistics averaged with 10,000 iterations of

random repeated subsampling cross-validation for explaining pðILSÞ
and pðROTSÞ. Predictors include deterministic fractal dimension LON

statistics, as well as other landscape features such as number of local

optima and fitness distribution measures

Type of regression Response variable R2 Mean squared error

Linear Iiterated local search performance 0.160 0.001

Linear Robust tabu search performance 0.161 0.027

Random forest Iterated local search performance 0.482 0.000

Random forest Robust tabu search performance 0.611 0.011
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models have higher mean squared errors but the random

forest model is definitely the strongest with respect to

search algorithm explanation, with around 58% being

accounted for by the predictors. Although a smaller portion

of variance is explained in the pðILSÞ models, the low

mean squared errors are encouraging in accuracy terms.

In the predictor rankings, seen in Fig. 10, we draw your

attention to the two fractal dimension metrics in the iter-

ated local search plot (Fig. 10a): they are among the most

important predictors, ranking third and fourth. Their values

are between 0.005 and 0.006; for comparison, the impor-

tance value of the most dominant predictor, the number of

global optima, is just above 0.007. The fractal dimension

predictors are among the least important in the tabu model

setup seen in Fig. 10b. Instead, the strongest predictors for

pðROTSÞ appear to be relating to the local optima level

fitness distribution: mean fitness, LO neutrality, fitness of

sinks, and fitness range. In fact, these four form a distinct

group on the plot, far higher in importance than the

remaining four (which include the fractal dimension fea-

tures). Nevertheless, the lower group are not useless: their

values are approximately in the range 0.04–0.07; the more

important features have values between around 0.155 and

0.171.

6 Conclusion

We conducted multifractal analysis on the local optima

networks (LONs) associated with a benchmark combina-

torial optimisation problem library, QAPLIB. The QAPLIB

instance set was more than three times the size of the set

used in a prior study (Thomson et al. 2018a) and raised the

considered problem sizes from N � 28 to N � 50. A

recent and refined LON construction algorithm (Ochoa and

Herrmann 2018) was used to build the LONs.

(a) (b)

Fig. 9 Variable importance values for random forest models; the models include deterministic fractal dimension features as part of the predictor

set

Table 3 Summary statistics estimated with 10,000 iterations of

random repeated subsampling cross-validation for explaining pðILSÞ
and pðROTSÞ. Predictors include probabilistic fractal dimension

statistics, as well as other landscape features such as number of local

optima and fitness distribution measures

Type of regression Response variable R2 Mean squared error

Linear Iterated local search performance 0.293 0.002

Linear Robust tabu search performance 0.332 0.017

Random forest Iterated local search performance 0.304 0.000

Random forest Robust tabu search performance 0.578 0.033
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Relationships between fractal dimension features of LONs

and algorithm performance by iterated local search (ILS)

were established using correlation analysis, visual analysis

tools, and linear and random forest regression with random

repeated subsampling cross-validation. The results showed

that the extent of multifractality and the highness of values

in the dimension spectrum can contribute towards partially

predicting or explaining ILS algorithm performance. Fea-

tures of the fractal dimension distribution for the LONs

also displayed individual pairwise correlations to ILS

algorithm performance. Fractal dimension features in

LONs were less important for predicting tabu search but

could still contribute some information. Sampled fitness

levels in the LON were more important in these models.

A limitation to our approach is that the features are

computed from sampled LONs, whose characteristics can

alter markedly with a different sampling effort (Bo _zejko
et al. 2018). Nevertheless, the LON features can contribute

towards explaining algorithm performance within regres-

sion models—it follows that they are useful, even if the

sample illustrates a certain version of the fitness landscape.

In addition, there is no alternative to sampling when ana-

lysing QAP LONs of moderate size (greater than N ¼ 11

according to Daolio et al. (2011)). Another consideration is

the random selection of box centres in the sandbox algo-

rithm for multifractal analysis. We argue that the number

of algorithm iterations—each of which contains a random

selection of centres and produces its own fractal dimen-

sion—should mitigate the variation induced by random

selection. In addition, the resulting fractal dimension fea-

tures help to explain metaheuristic performance in statis-

tical analysis over 85 observations. This implies that the

randomness inherent to the approach does not affect the

empirical usefulness of the computed fractal dimensions.

The present study could serve as a foundation for further

work within this research avenue which remains untapped.

In particular, we would like to expand the maximum size of

the problems studied, as well as venturing to other domains

and to constrained problems. Finally, we conclude with a

remark concerning our interest in studying the relationship

between perturbation strength used to generate the LONs,

and the calculated fractal dimensions of that LON.
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(a) (b)

Fig. 10 Variable importance values for random forest models; the models include probabilistic fractal dimension features as part of the predictor

set
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