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Protein structure, amino acid composition and
sequence determine proteome vulnerability to
oxidation-induced damage
Roger L Chang1,2,* , Julian A Stanley1, Matthew C Robinson1, Joel W Sher1, Zhanwen Li3,

Yujia A Chan1,2, Ashton R Omdahl1, Ruddy Wattiez4, Adam Godzik3 & Sabine Matallana-Surget5,**

Abstract

Oxidative stress alters cell viability, from microorganism irradiation
sensitivity to human aging and neurodegeneration. Deleterious
effects of protein carbonylation by reactive oxygen species (ROS)
make understanding molecular properties determining ROS suscep-
tibility essential. The radiation-resistant bacterium Deinococcus
radiodurans accumulates less carbonylation than sensitive organ-
isms, making it a key model for deciphering properties governing
oxidative stress resistance. We integrated shotgun redox proteo-
mics, structural systems biology, and machine learning to resolve
properties determining protein damage by c-irradiation in Escheri-
chia coli and D. radiodurans at multiple scales. Local accessibility,
charge, and lysine enrichment accurately predict ROS susceptibil-
ity. Lysine, methionine, and cysteine usage also contribute to ROS
resistance of the D. radiodurans proteome. Our model predicts
proteome maintenance machinery, and proteins protecting against
ROS are more resistant in D. radiodurans. Our findings substantiate
that protein-intrinsic protection impacts oxidative stress resis-
tance, identifying causal molecular properties.
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Introduction

Proteome oxidation caused by reactive oxygen species (ROS) is a

primary determinant of cellular sensitivity to desiccation and

irradiation (Daly et al, 2007; Krisko & Radman, 2010) and is

involved in the progression of age-related human diseases (Krisko &

Radman, 2019), including neurodegeneration and cancer (Hohn

et al, 2017). ROS toxicity is a common antibiotic mechanism

(Belenky et al, 2015) and presents challenges in biotechnology

including metabolic engineering (Ruenwai et al, 2011; Chin et al,

2017; Sun et al, 2018) and synthetic systems involving the high

expression of fluorescent proteins (Ganini et al, 2017).

Prior to the previous decade, the dogma surrounding biological

sensitivity to ionizing radiation focused primarily on DNA damage,

but this changed as key experiments substantiated the role of

protection from protein oxidation in the extreme radioresistance of

the bacterium Deinococcus radiodurans (Daly, 2006). Deinococcus is

a crucial model for investigating resistance to ROS because of its

notorious tolerance of extreme oxidative stress, even prolonged

cosmic doses of c-radiation (Yamagishi et al, 2018). This tolerance

stems from the evolution of D. radiodurans to tolerate desiccation,

which also induces oxidative stress (Slade & Radman, 2011). D.

radiodurans accumulates less protein oxidation than more sensitive

species such as Escherichia coli (Krisko & Radman, 2010). Resistance

in D. radiodurans is due partly to highly active ROS-detoxifying

systems providing protein-extrinsic protection against ROS (i.e.,

not a property of the oxidation targets themselves; Daly et al,

2004, 2007).

Foundational work hypothesized that differential rates of protein

oxidation and subsequent degradation also play a key role in stress

response phenotypes (Stadtman, 1986) and broadly established that

bacteria exhibit protein-specific patterns of susceptibility to oxida-

tion under oxidative conditions leading to cellular senescence

(Dukan & Nystrom, 1998). More recently, it was observed that

pathogenic bacteria, which have evolved mechanisms to combat

host immune responses that utilize ROS, are less sensitive to protein

oxidation than non-pathogenic species and that certain physico-

chemical properties broadly differentiate the proteomes of patho-

genic versus non-pathogenic bacteria, hypothesizing a causal link to
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susceptibility to protein oxidation (Vidovic et al, 2014). However,

the extent to which protein-intrinsic properties (i.e., specific to indi-

vidual protein species) contribute to ROS resistance and how such

properties are distributed across distinct protein species has not

been well-established. This comparative study of D. radiodurans

and E. coli proteomes reveals proteins with distinguished vulnerabil-

ity to ROS, thereby discovering mechanisms that contribute to the

survival of oxidative stress following irradiation.

Reactive oxygen species damage proteins by the oxidation of side

chains and backbones generally resulting in loss of function due to

misfolding, aggregation, and proteolysis. Several types of protein

oxidation can result upon reaction with ROS (Stadtman & Levine,

2003). In this study, we have focused exclusively on protein

carbonylation, which has also been the focus of most experimental

methods and foundational work on protein oxidation to date.

Protein carbonyl sites (CS) on arginine, lysine, proline, and thre-

onine (RKPT) sidechains (Appendix Fig S1) are seen as the most

severe oxidative damage due to their irreversibility and frequency of

occurrence. Furthermore, these carbonyls themselves are also

highly reactive leading subsequently to additional damaging down-

stream reactions, such as non-enzymatic backbone cleavage via the

proline oxidation pathway (Uchida et al, 1990; Cabiscol et al, 2000;

Nystrom, 2005). In this way, RKPT carbonylation can be thought of

as a committed step initiating a cascade of protein damage. Site-

specific susceptibility to carbonylation differs across amino acid

types and structural location, extending to the whole-molecule scale

to distinguish ROS vulnerability across protein species (Fig 1A).

However, specific molecular properties responsible for this vulnera-

bility remain poorly understood.

Previous work provided evidence that there is a difference in

carbonylation susceptibility between distinct protein species in

bacteria through observation of banding patterns on carbonyl assay

gels (Daly, 2009), but this work did not provide protein identifi-

cation, quantification, nor residue specificity of carbonylation

events. Identification of proteins prone to carbonylation and their

specific sites is vital to understanding the molecular manifestation

of deleterious oxidative stress phenotypes. This goal has motivated

the development of mass spectrometry for direct proteome-wide CS

identification and concomitant relative abundance changes, termed

shotgun redox proteomics (Matallana-Surget et al, 2013). However,

these experiments provide limited coverage of modified sites, a

common problem in proteomics of post-translational modifications.

Chemical derivatization during these experiments helps to stabilize

the inherently transient, highly reactive protein carbonyls to

promote their detection, but interference from derivatized adducts

with proteolytic sites can also limit CS sampling capabilities.

Computational methods for CS prediction are intended to learn

shared features across modified sites in redox proteomic datasets

and generalize to unknown sites on other proteins. Existing meth-

ods (Maisonneuve et al, 2009; Lv et al, 2014; Weng et al, 2017) are

not ideal because they rely on linear sequence motifs and local

homology; such a correlative basis for predicting structure–function

relationships can require a very large number of example sequences

before very strong predictors can be trained (Kamisetty et al, 2013),

which are not yet available in the context of redox proteomic data.

Furthermore, the exclusion of molecular structure features beyond

simple sequence motifs provides limited understanding of causal

mechanisms for protein carbonylation.

In response to the limitations of conventional techniques, the

field of structural systems biology offers approaches based on

protein 3D molecular properties to investigate multi-scale proteomic

questions, including mechanisms of physicochemical stress (Chang

et al, 2013a,b). These approaches are empowered by the expansion

of experimentally determined protein structures and advances in

protein fold prediction (Yang et al, 2015). Our robust experimental

design combined for the first time redox proteomics performed on

cells exposed to an acute dose of c-radiation with structural systems

biology and machine learning (Fig 1B), generating a predictive

model for protein carbonylation. This interdisciplinary workflow

enabled proteome-wide characterization of susceptibility to

carbonylation in E. coli and D. radiodurans, identifying phenotypi-

cally important protein targets, providing molecular explanations

for target susceptibility, and supporting the role of protein-intrinsic

properties in the survival of extreme oxidative stress.

Results

Gamma-irradiation causes more targeted protein damage in
D. radiodurans than E. coli

To investigate oxidative damage to bacterial proteins, cultures were

exposed to an acute dose of c-radiation (6.7 kGy) lethal to E. coli

but yielding 55–70% survival of D. radiodurans, and protein carbo-

nyls and relative abundance changes were measured by mass
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Figure 1. Study concept and workflow.

A Relationship between carbonylation site distribution, protein vulnerability
to reactive oxygen species, and stress phenotypes.

B Structural systems biology workflow for proteome-wide carbonyl site
prediction. Red circles = carbonyl sites (CS); black circles = non-oxidized
RKPT residues; gray protein regions = non-RKPT residues.
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spectrometry (Figs 1B, 2, and EV1). Based on previous work (Krisko

& Radman, 2010), a dosage of radiation lethal to E. coli is required

in order to observe any deleterious impact on D. radiodurans

survival. Furthermore, our selected dosage approximates the highest

reported dosage (7 kGy) used in bulk protein carbonylation

measurements from whole cell lysate and dialyzed samples from

both species (Krisko & Radman, 2010), providing a basis to model

the impact of extrinsic protection of proteins by small molecule

antioxidants. In order to limit de novo protein synthesis throughout

and following irradiation, bacterial cultures were maintained near

0°C using a custom rack design (Dataset EV1 and EV2). Impor-

tantly, this resulted in differential relative protein abundances due

specifically to oxidative damage (Materials and Methods), distin-

guishing our results from previous proteomic studies. Protein

concentrations upon extraction were similar regardless of irradia-

tion for each species (Appendix Table S1), and SDS–PAGE banding

patterns were also qualitatively similar across protein samples

extracted from the same species (Appendix Fig S2). Altogether,

these results suggest that cell membrane integrity was preserved

upon radiation.

As expected (Krisko & Radman, 2010), we observed carbonyla-

tion of more proteins in E. coli (~700 CS in 102 of 1,373 identified

proteins) than in D. radiodurans (~400 CS in 70 of 1,264 identi-

fied proteins) under either unirradiated or irradiated conditions
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Figure 2. Summary of shotgun redox proteomic data.

A Total carbonyl-bearing proteins detected by shotgun redox proteomic measurement in three biological replicates each of E. coli and D. radiodurans with and without
irradiation. The left axis is the number of sequence-unique proteins detected as carbonylated. The right axis is the number of sites in total detected as carbonylated
(red) or not oxidized (black) in peptides bearing at least one carbonyl. Stripes indicate carbonylated proteins and carbonylatable sites detected only in irradiated
samples. See also Appendix Fig S1.

B Volcano plots for relative protein abundance changes measured by mass spectrometry in E. coli (left) and D. radiodurans (right) after irradiation using the same
biological replicates as in Fig 2A. Black-circled points are those proteins with significant changes (paired, 2-sided t-test P-value < 0.05) of > 2-fold or < 0.5-fold. Red
points are proteins with at least one carbonylated peptide detected. Fold change and P-value cutoffs considered for significance are indicated by dashed lines. See
also Fig EV1.
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(Fig 2A and Table EV1). D. radiodurans showed similar detection

rates to that in Photobacterium angustum exposed to UVB (62

carbonylated proteins of 1,221 identified) using the same redox

proteomic technique (Matallana-Surget et al, 2013). The lesser

total protein carbonylation in D. radiodurans was likely due to its

effective ROS detoxification mechanisms (Slade & Radman, 2011).

CS saturation curves suggest the fewer detected carbonylation

events in D. radiodurans account for a greater percent coverage of

all in vivo events than is the case for E. coli (85 and 27%, respec-

tively; Fig EV1B), in agreement with the difference in oxidative

stress sensitivity between these species. Slightly more unique

proteins were detected as carbonylated in a radiation-dependent

manner in D. radiodurans (25) than in E. coli (20; Fig 2A). Based

on the much lower estimated coverage of all in vivo carbonylation

in E. coli, we suggest that extensive damage to the E. coli

proteome—leading to more degraded and aggregated proteins—

hindered identification of some carbonylated peptides by mass

spectrometry.

Relative protein quantification provided clear evidence of

contrasting differential protein damage distinguishing these organ-

isms (Fig 2B and Table EV2). Although in E. coli only six proteins

showed significant > 2-fold differential relative abundance (paired t-

test P-value < 0.05), 163 proteins overall showed > 2-fold changes

albeit with higher variability across replicates. In D. radiodurans, 81

proteins significantly changed in relative abundance by > 2-fold; the

magnitude of change was greater on average with lower variability

than in E. coli. Proteins for which we detected at least one CS

decreased in relative abundance more than other proteins in D.

radiodurans (unpaired t-test P-value = 0.031), illustrating the

expected relationship between carbonylation and degree of protein

degradation. However, this relationship was less prominent in our

E. coli data (unpaired t-test P-value = 0.104). Hence, although

E. coli accumulated more protein carbonyls overall, their distribu-

tion is broader across distinct protein species, providing evidence of

more protein-specific mechanisms for protection against ROS in D.

radiodurans that are absent in E. coli.

Analogous relative peptide quantification was also performed.

For D. radiodurans, 148 peptides representing 134 unique proteins

significantly increased in relative abundance (fold change > 2, satis-

fying Benjamini–Hochberg criteria with false discovery rate of 0.05)

after irradiation, and one peptide significantly decreased (fold

change < 0.5, satisfying Benjamini-Hochberg criteria). For E. coli,

26 peptides representing 25 unique proteins significantly decreased

in relative abundance after irradiation, and no peptides significantly

increased. No individual carbonylated peptides significantly

changed in relative abundance in either species. These observations

generally parallel the anticipated contrasting response upon irradia-

tion of these species. However, greater statistical power is achieved

when pooling peptides to evaluate abundance changes at the whole-

protein level. This is partly because stochastically missed tryptic

sites and post-translational modifications lead to imperfect peptide

identity when quantifying at the peptide level.

Broad functional characterization of proteins with substantial

relative abundance change (<0.5-fold or > 2-fold) was carried out

by Gene Ontology (GO) biological process term enrichment analysis

with protein abundance correction (Scholz et al, 2015). These

proteins in E. coli exhibited no significantly over- or underrepre-

sented GO annotations. In contrast, D. radiodurans proteins

with > 2-fold relative increase were overrepresented by proteins

involved in translation and broader protein metabolism (Table 1),

including many ribosomal subunits. Additionally, D. radiodurans

proteins with < 0.5-fold change underrepresented proteins involved

in nitrogen compound biosynthesis, indirectly implicating the

importance of amino acid and nucleotide synthesis. Therefore,

resistance to protein oxidation in D. radiodurans preferentially

protects the critical process of proteome regeneration under oxida-

tive stress.

Amino acid composition protects against oxidative damage

Although the relative frequency of carbonylated RKTP residues

generally confirmed previous studies (Rao & Moller, 2011; Matal-

lana-Surget et al, 2013), we found lysine to be as susceptible as

proline to carbonylation under c-irradiation (Fig 3A) in D. radiodu-

rans (ratio 1.77 versus 1.66) and to a lesser extent in E. coli (ratio

1.17 versus 1.43). Protein carbonylation by natively generated ROS

in eukaryotes (Rao & Moller, 2011) and UV irradiation in P. angus-

tum (Matallana-Surget et al, 2013) both indicated proline as the

most ROS susceptible of RKPT and lysine as not especially or least

susceptible, respectively. Proline carbonylation often leads to

polypeptide self-cleavage, which may explain the relatively low

proline content of bacterial ribosomal versus non-ribosomal

Table 1. Gene Ontology terms enriched among D. radiodurans proteins with high relative abundance change.

Retained
or lost GO ID

Over-/
underrepresented

%
foreground

%
background

Fold
enrichment

Foreground
count

Background
count

P-
value GO biological process

Retained >
2-fold

GO:0006412 O 16.67 7.58 2.20 22 10 0.037 Translation

GO:0006518 O 19.70 9.09 2.17 26 12 0.022 Peptide metabolic process

GO:0044267 O 21.97 11.36 1.93 29 15 0.031 Cellular protein metabolic
process

GO:0009059 O 24.24 12.88 1.88 32 17 0.026 Macromolecule
biosynthetic process

GO:0019538 O 28.03 15.91 1.76 37 21 0.025 Protein metabolic process

GO:0009987 O 73.49 61.36 1.20 97 81 0.049 Cellular process

Lost <
0.5-fold

GO:0044271 U 12.12 27.27 0.44 8 18 0.048 Cellular nitrogen
compound biosynthetic
process
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proteins (Lott et al, 2013), an evolutionary adaptation contributing

to protection of translation against oxidative stress. In contrast,

lysine, found incorporated into proteins much more frequently,

lacks a similar mechanism for self-cleavage upon carbonylation.

The more complex role of lysine in oxidative stress is discussed

below.

Selective amino acid composition is a major adaptation organ-

isms have evolved to thrive in diverse environmental niches (Brbic

et al, 2015). Comparing compositions between expressed proteomes

of E. coli and D. radiodurans under permissive conditions (Fig 3B)

revealed significant differences among oxidizable amino acids.

Lysine and arginine, both positively charged at physiological pH,

differ in ROS susceptibility and exhibited significant usage dif-

ferences. While highly susceptible lysine was found to be less

frequently used in D. radiodurans, less susceptible arginine was

overrepresented instead (0.71-fold and 1.57-fold, respectively).

Reversibly oxidizable sulfur-containing amino acids, cysteine and

methionine, were rare in both species, but significantly less preva-

lent in D. radiodurans under permissive conditions (0.53-fold and

0.17-fold, respectively). Surface methionines and cysteines help

protect proteins from oxidative damage in many organisms due to

their own reversible oxidation (Stadtman & Levine, 2003). However,

cysteine and methionine are metabolically expensive (i.e., stoichio-

metrically consume the most ATP) for bacterial synthesis (Kaleta

et al, 2013), and D. radiodurans is auxotrophic for methionine

(Zhou et al, 2017), which may explain their significantly lower

prevalence in slower-growing D. radiodurans despite expected bene-

fits for resistance. Tryptophan and tyrosine, two metabolically inex-

pensive amino acids that function as integrated antioxidants in

some proteins (Moosmann & Behl, 2000), were significantly more

abundant in D. radiodurans than in E. coli (both ~1.3-fold).

To evaluate the impact of oxidative stress on amino acid preva-

lence in identified proteins, we compared changes in amino acid

composition after c-irradiation of E. coli and D. radiodurans

(Fig EV2). While only seven amino acids significantly changed in

E. coli, 16 significantly changed in D. radiodurans and to a greater

magnitude. The greatest decrease among RKPT was lysine in both

species, further supporting that incorporated lysine is an important

mediator of protein oxidative damage under c-irradiation. Lysine

can sometimes be exchanged for histidine in proteins and still

preserve protein function as shown in synthetic mutational studies

(Yampolsky & Stoltzfus, 2005). Notably, relative histidine preva-

lence increased modestly (+2%) in E. coli and significantly (+11%)

in D. radiodurans after irradiation, suggesting that D. radiodurans

has evolved proteins that are more composed of non-carbonylatable

histidine rather than lysine as another protein-intrinsic protection

mechanism. Indeed, across sequences of functional orthologs and

isozymes in these species (Appendix Fig S3) we found 10% greater

histidine composition in D. radiodurans than in E. coli as a fraction

of total histidine and lysine (paired t-test P-value < 6 × 10�60).

Following irradiation, tyrosine prevalence significantly increased in

E. coli (+4%) and in D. radiodurans (+8%), and cysteine increased

significantly (+18%) only in D. radiodurans. The most significant

decrease in E. coli (�13%) and increase in D. radiodurans (+45%)

was for methionine. This contrast suggests a more efficient methion-

ine sulfoxide reductase system under oxidative stress in D. radiodu-

rans. All together, these results establish that protein-intrinsic

properties, even in primary structure, differ between E. coli and D.

radiodurans and affect which proteins withstand the onslaught of

ROS-induced oxidative damage.

Structure- and sequence-based model predict protein
vulnerability to carbonylation

Structure-based molecular feature engineering
The computational phase of this study (Fig 1B) involved proteome-

wide derivation of 3D structures to investigate molecular properties

contributing to ROS susceptibility (Fig 4A, Table EV3, and Materials

and Methods). Due to incomplete proteome coverage by crystal

structures (<3% for D. radiodurans proteins), computation of

molecular features required high-throughput modeling of single-

chain proteins, which we performed de novo for D. radiodurans and

used published models for E. coli (Xu & Zhang, 2013b; Yang et al,

2015). The challenge of deriving D. radiodurans proteins by avail-

able modeling strategies is summarized in Fig EV3A. The best repre-

sentative model from alternative methods (Appendix Table S2) for

each protein was selected using multiple structure quality metrics

(Appendix Table S3). Models generally evaluated comparably to

crystal structures for D. radiodurans proteins by these metrics
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Figure 3. Amino acid prevalence in proteomic data before and after
irradiation.

A Prevalence of individual RKPT residues and prevalence of carbonylated form
in experimentally measured peptides combining all three biological
replicates of both conditions for each organism. Ratios are given above
each pair of bars. All proportions are significantly different between each
RKPT and their respective carbonylation state by two-tailed z-test of two
proportions (P-values < 0.01; see Materials and Methods), and meaning
carbonylated proportions are not determined simply by relative prevalence
of RKPT. See also Appendix Fig S1.

B Prevalence of all canonical amino acids before irradiation of E. coli and D.
radiodurans, combining all three biological replicates for each condition.
Ratios are given above each pair of bars. All proportions are significantly
different between species by two-tailed z-test of two proportions (P-
values < 0.01). See also Figs EV1 and EV2.
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(Fig EV3B and Table EV4). Best representative models were obtained

for >95% of D. radiodurans proteins (Fig EV3C), most commonly

resulting from I-TASSER (Yang et al, 2015) or ProtMod (http://prot

mod.godziklab.org/protmod-cgi/protModHome.pl). Future replace-

ment with higher quality models or experimentally determined

structures could improve the performance of our algorithm.

We engineered for the first time molecular features at multiple

spatial scales using 3D structures (Fig 4A, Table EV3, Appendix Table S4,

and Materials and Methods) to predict carbonylation. Features were

computed with respect to all RKPT across D. radiodurans and E. coli

proteomes. These features quantitatively summarize the molecular

environment of carbonylatable sites. Statistical summaries of local

structural properties were computed as the sums and means of

canonical property values for neighboring residues within multiple

radii to account for a gradient of scales. This feature engineering

strategy enabled incorporation of more molecular properties and

with spatial dimensionality than possible using sequences alone to

represent proteins.

Combining structure- and sequence-based approaches for
machine learning
In addition to structure-derived features, we implemented simple

sequence alignment-based feature engineering to predict CS

(Fig 4B). We defined a local neighborhood centered on each RKPT

covered by carbonylated peptides in our proteomic data and

performed all-by-all pairwise sequence alignments of these regions,

using the alignment score matrix as potential predictive features.

This alignment-based approach is agnostic to specific sequence

motifs while still leveraging any useful local sequence homology

across CS.

All RKPT from carbonylated peptides were mapped to respec-

tive protein structure and sequence to assign carbonylated and

non-carbonylated residues. Unlike previous CS prediction efforts

(Maisonneuve et al, 2009; Lv et al, 2014; Weng et al, 2017), we

did not assume that any given RKPT is deterministically carbony-

lated or not. Protein carbonylation is an inherently stochastic

process. Therefore, we took a probabilistic approach and used all

of the carbonylated peptide data regardless of site redundancy or

occurrence as carbonylated in one peptide but non-carbonylated

in another. Previous approaches also often sampled unmodified

RKPT across all detected peptides, carbonylated or not, to define

negatives for training. Compared to non-carbonylated peptides,

unmodified RKPT on peptides bearing a carbonyl on another

residue better-represent negative data because it is certain that

those molecules were directly exposed to ROS yet did not react

with ROS.
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A Three-dimensional feature engineering from molecular properties. Initial properties that can be determined only with an atomic resolution structure, in the context of
an amino acid sequence, or that depend only on amino acid identity are denoted at left. This property list is a non-redundant abbreviated set of all properties
considered (see Appendix Table S4 and Materials and Methods for full detail). Columns of the feature matrix at right are alternating property sums and means at
spatial scales denoted below matrix. p = a molecular property; i = RKPT residue; k = neighbor residues of i; r = radius length. See also Fig EV3.

B Sequence homology-based features for machine learning were derived by performing sequence alignments of all RKPT sites (� 10 residues) anchored at the central
residue to compute alignment scores that were then reduced to a computationally manageable number of features by principal component analysis (PCA).
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Independent probability estimators for CS were trained by logis-

tic regression using structure-based features and sequence-based

features and then combined into a stacked model. Each independent

model and the stacked model were evaluated by leave-1-out valida-

tion and their performance quantified by receiver operating charac-

teristic (ROC) analysis (Fig 5A from data in Tables EV5 and EV6).

At the residue scale, our stacked model outperformed (AUCnorm =

0.73) each of its structure- and sequence-based components. Shuf-

fling each feature before training yielded random performance

(AUCnorm = 0.54), strongly supporting the predictive power of our

engineered features. We also evaluated performance of our model

for predicting protein-scale vulnerability to oxidation (Fig 5B) by

calculating a CS enrichment metric. Predicted carbonylation enrich-

ments for training set proteins strongly rank correlate with enrich-

ments derived from measured carbonylated peptides (Spearman

q = 0.82, permutation test P-value = 1.3 × 10�22 for E. coli and

Spearman q = 0.87, permutation test P-value = 7.2 × 10�21 for D.

radiodurans), signifying that our model can predict relative propen-

sity to carbonylation of different protein species. Due to prioritized

sensitivity, our model tends to predict higher enrichment values

than derived experimentally (1.9-fold on average for E. coli and 1.7-

fold for D. radiodurans), but these predicted enrichment values are

plausible given the fact that in vivo carbonylation events are under-

sampled experimentally (Fig EV1B).

Molecular properties explain vulnerability to carbonylation
Although we included ~400 structure-based features in the model-

ing, only seven of the logistic regression coefficients were non-

zero: relative reactivity with ROS (reactivity_res), codon diversity,

whether the RKPT site was a threonine residue, molecular

volume, local solvent accessible surface area, local positive

charge, and local lysine residues. Codon diversity (AAindCodon-

Div_res) itself is unlikely to be causal. Instead, this feature has

the same rank order as carbonylation prevalence in D. radiodu-

rans from our experiments (Fig 3A) and is therefore a fortuitous

proxy for c-specific reactivity. Threonine is by far the least

frequently carbonylated of RKPT in both species (Fig 3A), and

inclusion of this feature (Thr_res) in our model reflects this lower

propensity to reaction with ROS.

Aside from the reactivity features differentiating RKPT, all other

explanatory properties for ROS susceptibility derived from 3D struc-

tures (Fig 6). Accessibility to ROS promotes carbonylation (Fig 6A).

The lower the molecular volume of a residue (AAindMolVol_res),

the more likely it will react with ROS due to lower steric effects.

Similarly, lower local surface area (areaSAS_5A_sum) surrounding

a near-surface site indicates less likelihood of shielding by surround-

ing structure, such as the protrusion in Fig 6D. Local positive

charges (posCharge_8A_sum) promote carbonylation by attracting

negatively charged superoxide radicals (Fig 6B). Colocalization of

highly reactive sites may cause progressive protein misfolding,

exposing neighboring residues to ROS (Maisonneuve et al, 2009;

Fig 6C). In our model, neighboring lysine residues (Lys_8A_sum)

contribute to the probability of carbonylation, lysine being the most

prevalently carbonylated RKPT under c-irradiation in our data

(Fig 3A). Polarity leading to solubility of lysine-rich regions could

also contribute to this effect. Sites without neighboring lysines are

less likely to be carbonylated (Fig 6D).

Our algorithm also extends to prediction of
metal-catalyzed oxidation
We applied Carbonylated Site and Protein Detection (CSPD) devel-

oped by Maisonneuve et al (2009) to predict CS across our training

set (Fig 5A). CSPD performance on our data was essentially random

(AUCnorm = 0.53). It is important to note that CSPD was developed

using metal-catalyzed oxidation (MCO) data from a set of only 23
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Figure 5. Multi-scale validation of protein carbonylation predictor.

A Residue-scale validation: Receiver operating characteristic (ROC) curves for
CS predictors derived by leave-1-out validation. The dashed black line at
y=x corresponds to performance expected by chance. Top left = final
predictor trained by stacking structure- and sequence-based models. Top
middle = predictor trained only on structure-based features. Top right =
predictor trained only on sequence-based features. Bottom left =
theoretical maximum predictive power for a probability estimator
(AUC = 0.98). Bottom middle = same algorithm as used for final predictor
but with all features shuffled beforehand. Bottom right = CSPD model
developed using metal-catalyzed oxidation (MCO) site data from E. coli. See
also Figs EV3 and EV4.

B Protein-scale validation: Comparison between predicted CS enrichment
from leave-1-out validation to CS enrichment computed from all
carbonylated peptides measured for E. coli (left) and D. radiodurans (right).
Each point represents a different protein species. Predicted probability-
weighted CS enrichment = (sum of carbonylation probabilities across
training set sites)/(number of residues in corresponding peptides from
experiments). Experimentally measured probability-weighted CS
enrichment = (sum of empirical oxidation probabilities across training set
sites)/(number of residues in corresponding peptides from experiments).
The solid line is the fitted regression line, and dashed lines indicate the
boundaries of the 95% confidence interval.
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carbonylated E. coli proteins derived from samples prepared under

similar conditions to our negative controls. However, while we kept

our samples on ice after harvesting the exponential phase cells,

Maisonneuve et al did not report any similar temperature treatment

for their samples. In this way, the samples of Maisonneuve et al

being prepared at higher temperature allowed protein synthesis and

turnover that would have led to fewer detectable carbonylated

proteins than we measured. Furthermore, Maisonneuve et al

performed 2D SDS–PAGE and excised only visible spots labeled for

carbonylation, which could have further limited the number of

-
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-
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+

+

+
+

+
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K

K
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P P

T

A Vulnerable due to accessibility:
• Low molecular volume sidechain
• Low solvent accessible surface area within 5Å

D Robust due to electrostatics and accessibility:
• High solvent accessible surface area within 5Å
• Few positive charges within 8Å
• No lysines within 8Å
• Is a threonine residue

B Vulnerable due to electrostatics:
• High total positive charge within 8Å

+

C Vulnerable due to progressive misfolding:
• High number of lysines within 8Å

Figure 6. Molecular properties predicting protein vulnerability to carbonylation.

A–D Example sites prone to carbonylation. (A) DRA0302_P252, (B) DR0099_P51, and (C) b0911_K411; and example robust site (D) b3313_P69.

Data information: All atoms of central RKPT side chains are shown, with carbonylatable atomic site in red (predicted and measured carbonylated) or black (predicted and
measured not oxidized) and labeled with the 1-letter code of the containing amino acid. Positive (blue) and negative (pink) charges within 8 Å are labeled.
Carbonylatable lysine sites (purple) within 8 Å are labeled. Molecular surfaces within 5 Å of the central CS are dark gray. See also Fig EV3.
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distinct carbonylated proteins identified from their samples. In all,

we identified 82 carbonylated proteins in our E. coli-negative

controls, including 10 in common with the Maisonneuve et al data.

The inability of CSPD to generalize to carbonylation from c-irradia-
tion may be due in part to the experimental differences noted above

in addition to a difference in effects of each specific source of ROS.

Therefore, to more directly compare algorithmic performance we

also used our algorithm to train a model predicting MCO using the

same redox proteomic data used to develop CSPD (Fig EV4). CSPD

showed modest positive performance on this dataset (AUCnorm =

0.58), the discrepancy in previously reported performance owing to

our inclusion of all carbonylated peptides with carbonylated and

non-carbonylated residues defined as described above. We conclude

that CSPD was overfitted to the MCO data and depends on the

assumption of deterministic protein carbonylation and on less-strict

standards for defining non-carbonylated residues in proteomic data.

Furthermore, our stacked model for MCO prediction performed

better (AUCnorm = 0.75) than our c-induced oxidation model with

better synergy in stacking the structure- (AUCnorm = 0.72) and

sequence-based (AUCnorm = 0.67) models. This performance dif-

ference was likely due to the relatively less diverse products of MCO

than c-induced oxidation. ROS production in MCO is more localized

because it depends on the presence of Fe or Cu cations to drive the

Fenton reaction and therefore affects a smaller number of proteins

than c-induced oxidation. Indeed, data from c-irradiation experi-

ments include not only CS caused by ROS from water radiolysis but

also basal cellular oxidation due to native ROS sources, including

MCO and cellular respiration. Thus, oxidation from c-irradiation is

more diverse and complex than MCO products and more challeng-

ing for learning structure and sequence signatures.

Intra- and interspecies differences in protein vulnerability to
carbonylation

D. radiodurans proteome maintenance is protected from
carbonylation
Orthologs and isozymes mapped between E. coli and D. radiodurans

(Appendix Fig S3) were compared by their unweighted carbonyla-

tion enrichment (Fig 7 and Table EV7) as computed from proteome-

wide CS prediction in E. coli and D. radiodurans to reveal functional

classes and individual proteins differing in susceptibility between

and within these proteomes. Functional classes known to be

involved in resistance and recovery from oxidative stress include

the following: ribosomal, ribosomal assembly, translation, protein

chaperone, protease and peptidase, amino acid and peptide trans-

port, DNA repair, DNA damage response and regulation of repair,

native ROS production, ROS detoxification, ROS response, metal

transport, terpenoid synthesis, and polyamine accumulation.

Pairwise orthologs were compared based on protein-intrinsic and

extrinsic factors contributing to their propensity to carbonylation

(Fig 7). Perpendicular distance to the y = x diagonal represents the

relative degree to which one ortholog is intrinsically more or less

sensitive given the same ROS dosage on the basis of carbonylation

enrichment alone. Protein-extrinsic factors, such as the Mn-depen-

dent scavenging system in D. radiodurans (Daly, 2012) and the

antioxidant carotenoid deinoxanthin (Tian et al, 2009), also contri-

bute to interspecies differences in protein oxidation. Such protein-

extrinsic factors act broadly by reducing the effective cellular dosage

of ROS. An acute gamma dosage of 7 kGy, approximately the same

as in this study, yielded about 3.78-fold more protein carbonyls in

E. coli lysate than in D. radiodurans (Materials and Methods) due to

small molecules removable by dialysis (Krisko & Radman, 2010).

Assuming such factors act globally without favoring protection of

specific proteins, the degree to which these extrinsic factors differen-

tiate vulnerability to carbonylation between orthologs can be

modeled in combination with protein-intrinsic factors simply by

computing perpendicular distance to the y = x/3.78 diagonal

(Fig 7). By this model, especially susceptible proteins benefit more

from an effectively lower dosage of ROS in D. radiodurans.

Relative vulnerability to ROS differed between E. coli and D.

radiodurans within particular functional classes (Fig 7). We

predicted the intrinsic susceptibility of E. coli ribosomal proteins to

be more than 2.4-fold greater than across all-orthologs (unpaired

t-test P-value = 0.01). Accounting for extrinsic ROS protection

predicted ribosomal proteins to be the most favored functional class

in D. radiodurans over E. coli (1.5-fold, unpaired t-test

P-value = 1.2 × 10�26), in agreement with D. radiodurans ribosomal

proteins being enriched among those with relative abundance

increases after irradiation. Protein chaperones in E. coli were

predicted on average 1.13-fold more intrinsically vulnerable than in

D. radiodurans (unpaired t-test P-value = 0.02), a difference further

distinguished due to being more than 4.5-fold greater than the dif-

ference across all-orthologs (unpaired t-test P-value = 0.003) and

1.14-fold greater when accounting for extrinsic protection as well

(unpaired t-test P-value = 0.02). E. coli proteins involved in polya-

mine synthesis and uptake are predicted to be more than 3.7-fold

intrinsically vulnerable than across all-orthologs (unpaired t-test P-

value = 0.04). Revisiting the observation that methionine usage

featured prominently in D. radiodurans proteins retained after irra-

diation, we predicted that methionine sulfoxide reductases acting on

protein-incorporated methionine MsrB and MsrP are both 1.4-fold

more intrinsically sensitive to carbonylation in E. coli. MsrP was

also in the 94th percentile of proteins benefiting from extrinsic

protection in D. radiodurans.

Comparison of interspecies outliers reveals proteins involved in
oxidative stress resistance
Many proteins involved in coping with oxidative stress were signifi-

cant outliers in predicted intrinsic vulnerability to carbonylation

(Fig 7). There were 111 orthologous pairs greater than 3 standard

deviations of distance from the mean of the distribution or greater

than 3 standard deviations away from the mean perpendicular

distance from the y = x diagonal. We grouped these outliers accord-

ing to three properties: (i) intrinsic sensitivity or robustness

compared to the rest of the proteome, (ii) comparative intrinsic

vulnerability between D. radiodurans and E. coli, and (iii) relative

effect of ROS detoxification in D. radiodurans over E. coli (Fig EV5).

Proteins predicted as significantly more intrinsically or extrinsi-

cally protected from ROS in D. radiodurans relative to E. coli fall

into three groups based on the three properties described above.

Group 1 proteins were predicted highly carbonylation-prone but

more protected intrinsically and extrinsically in D. radiodurans than

in E. coli. On average, these 12 proteins were 1.4-fold more CS-

enriched in E. coli and above the 99th percentile of extrinsic protec-

tion in D. radiodurans. Of 10 proteins detected in both organisms by

proteomics, eight had more negative c-induced relative abundance
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changes in E. coli than D. radiodurans, with a median E. coli-to-D.

radiodurans ratio of 0.47. Ribosomal subunits comprised 11 of these

proteins, eight of which are essential in E. coli. E. coli knockouts of

rpmI (Nakayashiki & Mori, 2013) are hypersensitive to oxidative

stress. Overexpression of rpmG increases resistance to oxidative

stress from mitomycin C (Bolt et al, 2015), and GroS overexpression

decreases protein carbonyl accumulation (Fredriksson et al, 2005).

Seven of these proteins exhibit oxidative stress-induced expression

in D. radiodurans (Liu et al, 2003; Slade & Radman, 2011). Group 2

proteins were predicted as similarly intrinsically carbonylation-
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prone in both species but significantly extrinsically protected in D.

radiodurans. On average, these 22 proteins are above the 86th

percentile of extrinsic protection in D. radiodurans. Of 13 proteins

detected in both organisms by proteomics, 11 showed substantially

more positive c-induced relative abundance changes in D. radiodu-

rans. In this group, 13 proteins are ribosomal subunits. In E. coli,

pstS knockouts are hypersensitive to oxidative stress (Sargentini

et al, 2016), rpsL mutants have been shown to affect oxidative

stress tolerance (Ballesteros et al, 2001; Miskinyte & Gordo, 2013),

and 13 others are essential genes (Baba et al, 2006; Bubunenko

et al, 2007). In D. radiodurans, rpsS and hupA knockouts are hyper-

sensitive to oxidative stress (Dulermo et al, 2015), and overexpres-

sion of rpsS, rpsT, rplQ, rpsM, rpmB, rplK, rpsL, thpR, rpmE, nrdH,

rplR, rplV, and rpsR occurs during oxidative stress (Liu et al, 2003;

Slade & Radman, 2011). Group 3 proteins were predicted signifi-

cantly more susceptible to carbonylation in E. coli than in D. radio-

durans. On average, these 27 proteins were 1.9-fold more CS-

enriched in E. coli and above the 95th percentile of extrinsic protec-

tion in D. radiodurans. In E. coli, rpmF (Nakayashiki & Mori, 2013;

Sargentini et al, 2016) and icd (Krisko et al, 2014) knockouts are

hypersensitive to oxidative stress, and osmY (Basak & Jiang, 2012)

is also involved in oxidative stress resistance. In D. radiodurans,

xseB knockouts are hypersensitive to oxidative stress (Dulermo

et al, 2015), and adk, icd, malE, osmC, ppiA, rplB, rpmC, rpsC, and

yceI are highly expressed under oxidative stress (Liu et al, 2003;

Slade & Radman, 2011; Basu & Apte, 2012). Higher resistance to

carbonylation of proteins from these groups sets D. radiodurans

apart from E. coli and delineates transgenes that could serve to

increase stress tolerance in E. coli.

Interspecies outliers not predicted as significantly more protected

from ROS in D. radiodurans fall into two groups. Group 4 proteins

were predicted as highly intrinsically robust to carbonylation in both

species and therefore not to benefit substantially from extrinsic

protection in D. radiodurans. Of these five proteins, three were more

intrinsically vulnerable in E. coli, including secE, which is essential

in E. coli (Baba et al, 2006), and fdx, which is highly expressed

under oxidative stress in D. radiodurans (Liu et al, 2003). Group 5

proteins were predicted as significantly more intrinsically vulnerable

to carbonylation in D. radiodurans than in E. coli. These 14 func-

tionally diverse proteins include three known oxidative stress-hyper-

sensitive knockout mutants in D. radiodurans (Dulermo et al,

2015); however, all but 2 still lie above y = x/3.78 in Fig 7, suggest-

ing that extrinsic protection could still compensate for intrinsic

vulnerability differences between these species.

Discussion

In this study, we successfully developed a highly integrative systems

biology approach that predicts protein targets of oxidative stress and

offers mechanistic explanations for cellular phenotypes at multiple

biological scales spanning amino acid residues, protein molecules,

and protein functional classes. This constitutes a major advance-

ment in development of predictive techniques for protein oxidation,

a recognized need in the field (Krisko & Radman, 2019). We have

provided extensive evidence substantiating the theory that intrinsic

properties of proteins lead to differential rates of protein oxidation

(Stadtman, 1986) and affect vulnerability to oxidative stress through

function of key proteins involved in response phenotypes in bacte-

ria. Multiple lines of evidence support that the susceptibility of ribo-

somal proteins to ROS is strongly differentiated from the rest of the

proteome and plays a key role in the radioresistance—and by anal-

ogy also desiccation tolerance—of D. radiodurans. Furthermore, our

results not only identified oxidized proteins but also characterized

explanatory molecular properties of precise sites of carbonylation,

providing a much finer-resolution analysis of molecular properties

leading to differential protein oxidation than in previous studies

(Vidovic et al, 2014).

A recent study reported protein oxidative products upon ionizing

radiation of E. coli and D. radiodurans (Bruckbauer et al, 2020).

Bruckbauer et al performed quintuplicate experiments identifying

slightly more but similar numbers of peptides and proteins

compared to our reported results. Like ours, their result identified a

relatively small fraction of peptides bearing oxidative products and

mostly low magnitude changes in abundance in ~12% of peptides.

Although there were some similar findings, our study differs from

that of Bruckbauer et al in several important ways. In our irradia-

tion treatment, we dosed with nearly 7-fold greater radiation than

their 1 kGy by electron beam linear accelerator, presumably leading

to a higher ROS production through water radiolysis in the present

study. Importantly, Bruckbauer et al neither included carbonylation

of lysine, proline, or threonine residues in their search database nor

performed any stabilizing derivatization of these labile oxidative

products. As a result, it is highly likely that their data underrepre-

sent actual carbonylation events. Finally, Bruckbauer et al used

relative absolute mass (RAM) to broadly analyze the specificity of

proteins targeted by ROS and concluded that target theory does not

fully explain this specificity (i.e., proteins differ in ROS susceptibility

due to more than just their relative sizes and abundances). One of

the major goals of our study was to identify molecular properties

that determine the protein and site specificity of carbonylation by

ROS using our structure-informed machine learning model.

Our model suggests that a combination of protein-intrinsic prop-

erties and global ROS detoxification implicates vital proteins for

resisting oxidative stress in D. radiodurans and explains targeted

patterns in relative abundance changes following irradiation that are

not observable in E. coli. The evolution of desiccation tolerance in

an aerobe like D. radiodurans, by way of multiple mechanisms to

protect against ROS, sharply contrasts with a facultative anaerobe

like E. coli. The contrast is likely even more extreme in comparison

to anaerobic ancestral bacteria that evolved in oxygen-poor environ-

ments and therefore theoretically would not have faced selective

pressure from high ROS conditions to have evolved such mecha-

nisms of protection. Thus, we suspect that adaptations like intrinsic

protection of proteins against ROS are relatively rare and likely less

prevalent among anaerobes.

Those D. radiodurans proteins predicted to rely primarily on

intrinsic properties to avoid carbonylation are candidate transgenes

to confer resistance to more sensitive species. Amino acid usage dif-

ferentiating D. radiodurans from E. coli and molecular properties

predictive of protein carbonylation comprise a set of design princi-

ples that may be used to control ROS tolerance in synthetic protein

engineering efforts. The analytical strategy that we have established

could be applied not only to the study of oxidative stress in other

systems (e.g., human disease, aging, and manned space explo-

ration) but also to other forms of post-translational modification
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and more broadly to molecular properties of proteins, extending and

enriching proteomic analysis.

Materials and Methods

Redox proteomics

Additional details can be found in the Appendix Supplementary

Material and Methods for the redox proteomics experiment includ-

ing reagent preparation, bacterial culture, protein extraction and

derivatization, protein concentration (Appendix Table S1) measure-

ment, SDS–PAGE (Appendix Fig S2), trypsinization, and drying.

Gamma-irradiator culture tube rack

In order to irradiate bacterial cultures in the GC-220E 60Co c-irra-
diator, a custom culture tube rack was designed and fabricated by

3D printing. The design requirements for the rack were that it:

• Hold six 120-ml samples in leak-proof culture tubes, triplicates of

two conditions

• Be made of c-resistant but non-shielding materials

• Hold enough ice and provide insulation to keep samples near 0°C

for ≥ 2 h

• Fit inside the GC-220E sample chamber (I.D. = 15.2 cm × H =

20 cm)

• Provide for radially symmetric sample distribution for even dosing

Six 170-ml pyrex culture tubes (O.D. = 38 mm × L = 200 mm)

with screw caps (Corning� 9825-38) were shortened so that the

height of the loaded rack would remain below 20 cm. A diamond

cutter was used to shorten the pyrex tubes at the open end, and a

wet orbital sander was used to shorten the screw caps at the open

end and smooth the cut end of the pyrex tubes to fit the rack.

The pyrex and resin caps are resistant to repeated acute doses of

c-radiation (http://www.sterigenics.com/services/medical_sterilization/

contract_sterilization/material_consideration__irradiation_processing.

pdf), although the pyrex slightly discolors upon initial irradiation.

The rack was printed using a compound primarily composed of

acrylic and polyacrylate material (Stratasys� Objet RGD515). Acrylic

and polyacrylate exhibit high radiation stability, up to 100 kGy with

repeated exposures (http://www.nordion.com/wp-content/upload

s/2014/10/GT_Gamma_Compatible_Materials.pdf). The culture

tubes are held in place by hemispherical recesses in the base. The

rack has space to add ice through a capped opening at the top using

a funnel, sufficient to keep the samples near 0°C for up to 5 h at

room temperature and at least 2 h in the GC-220E with a dose rate

of 60 Gy/min. The top of the rack is removable for easy cleaning

and has a key slot for the alignment of holes in the lid with hemi-

spherical recesses in the base. STL files containing the design data

required for 3D printing are available in Dataset EV1 and EV2.

Gamma-irradiation experiment

Samples in the c-irradiator culture tube rack were placed in

the sample chamber of a GC-220E 60Co c-irradiator (dose

rate = 55.18 Gy/min) and irradiated for 2 h, receiving a total dose

of 6.7 kGy. After irradiation, the c-irradiator culture tube rack was

refilled with fresh ice and transported (30 min) before protein

extraction. Maintaining cultures near 0°C for 30 min before,

throughout 2-h irradiation, and 30 min after ensured that proteomic

changes were primarily due to oxidation-induced damage and not

regulation of de novo gene expression. This is because of the delete-

rious effects of irradiation and cold on transcription and translation

combined with the short timescale of our experiment.

Protein carbonylation leads to loss of protein function and lack

of detection by shotgun proteomics due to aggregation, self-clea-

vage, and proteolysis (Nystrom, 2005). Aggregation accounts for

~95% of carbonylated proteins in E. coli (Maisonneuve et al, 2008),

affecting solubility and detection by proteomics (Pallares & Ventura,

2016). Proline carbonylation can lead to non-enzymatic self-clea-

vage at the peptide backbone via the proline oxidation pathway

(Uchida et al, 1990). Low temperature slows all enzymatic activity,

but proteases targeting carbonylated proteins retain at least some

rate at low temperature, such as the E. coli Lon protease functioning

at 16°C (Sakr et al, 2010).

Regulation of transcription and translation in D. radiodurans in

response to irradiation does not substantially occur until return to

permissive growth conditions. Previous irradiation experiments

without low temperature show that radiation-responsive promoters

in D. radiodurans do not activate transcription until after irradiation

stops, and peak transcriptional rates occur 1–2 h into recovery in

fresh medium at optimal temperature (Anaganti et al, 2016); similar

trends hold transcriptome-wide (Liu et al, 2003). RNA samples

taken mid-irradiation, without post-irradiation recovery, result in

nearly 50% fewer reads originating from mRNA relative to pre-irra-

diation or during recovery, and nearly all individual transcripts

decrease (Luan et al, 2014). Similar to transcription, D. radiodurans

proteins expressed in response to irradiation without cold tempera-

ture reach their peak translation rate 0.5–1 h after transfer to fresh

media under optimal temperature (Basu & Apte, 2012).

Transcription and translation both substantially slow or halt

under cold temperatures in E. coli and D. radiodurans. D. radiodu-

rans and E. coli RNA polymerases slow 30-fold transitioning from

37°C to 0°C (Kulbachinskiy et al, 2004). E. coli translational elonga-

tion is slowed 3-fold transitioning from 37°C to 25°C (Zhu et al,

2016) and > 10-fold from 37°C to 10°C (Farewell & Neidhardt,

1998). E. coli protein synthesis slows to a halt after 30 min at 0°C

because translation cannot initiate (Broeze et al, 1978). In D. radio-

durans, cold shock without irradiation only influences ~5% of

expressed proteins after 3 h at 20°C (Airo et al, 2004), and transla-

tion occurs only very little at 0°C (Lipton et al, 2002). Taken

together, proteomic changes observed in our experiments must be

due to oxidation-induced damage leading to a combination of aggre-

gation and degradation as opposed to de novo protein synthesis.

Small volumes (110 ll) of each irradiated and unirradiated repli-

cate were reserved in 1.5-ml microfuge tubes and held on ice in

dark, while protein extraction was initiated (see below). Serial dilu-

tions of each irradiated and unirradiated replicate were made: undi-

luted, 1:1,000, and 1:10,000 dilutions in LB for E. coli; and

undiluted, 1:10,000, and 1:100,000 dilutions in TGY for D. radiodu-

rans. We chose different dilution factors for each species to facilitate

colony counting in anticipation of drastically different irradiation

survival rates. One hundred microlitre of each dilution was spread

on prewarmed solid LB medium or TGY medium plates for E. coli

and D. radiodurans, respectively. E. coli plates were grown
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overnight at 37°C in dark, and D. radiodurans plates were grown for

3 days at 30°C in dark. Colony-forming units (CFUs) were counted

at the end of each growth period for each plate, and the irradiation

survival rate (Fig EV1A) was computed for each replicate as the

ratio of CFUs on plates with irradiated samples to CFUs on plates

with unirradiated samples. Due to our irradiation treatment, no

E. coli colonies formed even from undiluted irradiated cultures, and

55–70% survival of CFUs was observed for D. radiodurans (Fig

EV1A).

Liquid chromatography–tandem mass spectrometry (LC-MS/MS)

Protein identification and quantification was performed essentially

as in (Matallana-Surget et al, 2013) using a label-free strategy on a

UHPLC-HRMS platform composed of an eksigent 2D liquid chro-

matograph and an AB SCIEX TripleTOFTM 5600. Peptides were sepa-

rated on a 25 cm C18 column (Acclaim pepmap100, 3 lm, Dionex)

by a linear acetonitrile (ACN) gradient (5–35% (v/v), in 15 or

120 min for short and long runs, respectively) in water containing

0.1% (v/v) formic acid at a flow rate of 300 nl/min. In order to

reach high retention stability, which is a requirement for label-free

quantification, the column was equilibrated with a 10× volume of

5% ACN before each injection. Eluant was sprayed using the Nanos-

pray Source into the TripleTOFTM 5600. Mass spectra (MS) were

acquired across 400–1,500 m/z in high resolution mode (resolu-

tion > 35,000) with 500 ms accumulation time. The instrument was

operated in DDA (data dependent acquisition) mode, and MS/MS

were acquired across 100–1,800 m/z. For short runs, precursor

selection parameters were as follows: intensity threshold 400 cps,

20 precursors maximum per cycle, 100 ms accumulation time, and

10 s exclusion after one spectrum. For long runs, precursor selection

parameters were as follows: intensity threshold 200 cps, 50 precur-

sors maximum per cycle, 50 ms accumulation time, and 30 s exclu-

sion after one spectrum. A long run procedure was used to acquire

quantitative data, and a duty cycle of 3 s per cycle was used to

ensure that high quality extracted ion chromatograms (XIC) could

be obtained.

Modified peptide identification

Protein searches for mass spectra obtained on the Triple-TOF 5600

LC-MS/MS were performed against a local copy of the D. radiodu-

rans R1 (UP000002524) and E. coli K-12 MG1655 (UP000000625)

database (retrieved from UniProt on June 26, 2017; 3085 and 4307

proteins, respectively) using ProteinPilotTM 5.0.1 Revision 4895

(ParagonTM Algorithm 5.0.1.0, 4874; Seymour & Hunter, 2017). One

missed internal tryptic cleavage site per peptide was accounted for

in the search parameters. Mass tolerance was set to 15 ppm in MS

and 0.05 Da in MS/MS. In addition to the standard biological modi-

fications set including a differential amino acid mass shift for

oxidized methionine (+15.99 Da), custom modifications accounting

for DNPH derivatization adducts (Appendix Fig S1), both with and

without a typical neutral loss (noNL), were added to the data

dictionary and parameter translation files. These custom modifi-

cations included:

• Arginine ? DNP-glutamic-5-semialdehyde (+136.97 Da)

• Lysine ? DNP-allysine (+179.00 Da)

• Proline ? DNP-glutamic-5-semialdehyde (DNP-Glu5A) (+196.02

Da)

• Proline ? DNP-pyroglutamic acid (DNP-PCA) (+194.01 Da)

• Threonine ? DNP-2-amino-3-oxobutanoic acid (DNP-AKB)

(+178.01 Da)

The ParagonTM Algorithm was run to identify peptides from each

replicate sample with the following parameter settings:

• Sample Type: Identification

• Cys Alkylation: Iodoacetamide

• Digestion: Trypsin

• Instrument: TripleTOF 5600

• Special Factors: Urea denaturation; DNPH derivatization; DNPH

derivatization noNL

• Species: Deinococcus radiodurans (OR Escherichia coli)

• ID Focus: Biological modifications

• Database: Deinococcus_radiodurans.fasta (OR Escherichia_coli.-

fasta)

• Search Effort: Thorough ID

• Detected Protein Threshold (Unused ProtScore (Conf)) > : 0.05

(10.0%)

• Run False Discovery Rate Analysis: (yes)

High-confidence peptides were selected using a 99% confidence

threshold for proteins identified by at least two peptides. After iden-

tifying peptides from all sample replicates, carbonyl modifications

were taken as those residues exhibiting one of the DNPH modifi-

cations described above or any of the following default modifi-

cations included in the data dictionary file that represent the direct

products of RKPT side chain carbonylation by ROS:

• Arginine ? Glutamic 5-semialdehyde (�43.05 Da)

• Lysine ? Allysine (�1.03 Da)

• Lysine ? 2-aminoadipic acid (double oxidation of lysine)

(+14.96 Da)

• Proline ? Glutamic 5-semialdehyde (+15.99 Da)

• Proline ? Pyroglutamic acid (+13.98 Da)

• Threonine ? 2-amino-3-oxobutanoic acid (�2.02 Da)

The false discovery rate (FDR) was calculated at the peptide level

for all experimental runs using ProteinPilot; this rate was estimated

to be lower than 1% for both D. radiodurans and E. coli.

Estimation of total CS in samples by saturation curve fitting

Saturation curve fitting was used to estimate the total number of CS

in shotgun redox proteomic samples, a technique that has been

demonstrated for phospho-proteomics when pooling data across

many studies (Vlastaridis et al, 2017). To this end, we identified the

number of redundant and non-redundant CS within each replicate

experiment for each organism and computed the cumulative totals

with the addition of each successive replicate (Fig EV1B). Exponen-

tial saturation functions were fit by minimization of the sum of

squared errors with experimentally determined data points. The fit

exponential functions asymptotically approach theoretical maxima,

which represent the estimated total CS in our samples. The esti-

mated percentage of sampling coverage is then taken as the ratio of

total measured non-redundant CS to total estimated non-redundant

CS for each species. Fit curves that remain very linear suggest very
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low sampling coverage, and curves that saturate suggest near-

complete sampling coverage of unique sites. The more replicate

experiments available, the higher the confidence in such estimates.

Protein quantification

Protein quantification was performed essentially as in Matallana-

Surget et al (2013). The quant application of PeakView was used to

calculate XIC for all peptides identified with a confidence > 0.99

using ProteinPilotTM (Seymour & Hunter, 2017). A retention time

window of 2 min and a mass tolerance of 0.015 m/z were used. The

area under the curve was exported in MarkerViewTM, in which they

were normalized based on the summed area of the entire run.

MarkerViewTM enabled an average intensity for irradiated and unir-

radiated conditions to be calculated, as well as the significance of

the difference between conditions based on a paired t-test. Quanti-

fied proteins were kept with a P-value < 0.1 and with at least one

peptide quantified with a P-value < 0.1. In order to be considered as

significantly changed in relative abundance, proteins had to meet

two criteria: (i) mean relative abundance fold change within a cutoff

of > 2-fold (for increased) or < 0.5-fold (for decreased) in the irradi-

ated samples relative to the controls, and (ii) the paired t-test P-

value had to be < 0.05.

Amino acid prevalence analysis

For RKPT carbonylation prevalence, only RKPT on peptides bearing

at ≥1 CS were included. For pre-irradiation prevalence and change

in prevalence after irradiation, all amino acid residues in peptides

identified as described above were included. Occurrence of each

amino acid was counted within the respective set of included

peptides, and relative proportion was computed as the percentage of

the total number of residues. Statistical significance of differences in

relative proportions was determined using a two-tailed z-test for

two independent proportions with the following equation:

Z ¼ p̂1 � p̂2ð Þ � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ 1

n1
þ 1

n2

� �r :

In this equation, Z is the z-score test statistic, p̂ is the overall

sample proportion, p̂1 is the proportion of sample 1, p̂2 is the

proportion of sample 2, n1 is the size of sample 1, and n2 is the size

of sample 2. P-values were estimated by z-score lookup table. The

significance threshold was taken as results with P-value < 0.01.

Functional classification analysis of proteomics data

The aGOtool web server (Scholz et al, 2015) was used to perform

Gene Ontology (GO; The Gene Ontology Consortium, 2017) biologi-

cal process term enrichment analysis among groups of proteins of

interest. These groups included proteins for which carbonyl sites

were identified or for which relative abundance changes after irradi-

ation were > 2-fold or < 0.5-fold in E. coli or D. radiodurans. To

correct for protein abundances, the background mean normalized

abundance pre-irradiation was used for all detected proteins. A P-

value cutoff of < 0.05 was used for reporting over- and underrepre-

sented GO terms.

Selection of positive and negative experimentally identified CS
for computational analysis

From all high-confidence modified peptide calls, taken as described

above, all residues bearing RKPT side chain carbonyls or derivatized

labels for carbonyls were assigned as positive CS. Unmodified RKPT

on this same set of peptides were counted as negative CS. All posi-

tive and negative CS and the peptide sequences with modifications

used to assign them are listed in Table EV3.

Protein structure derivation

Target proteins
The target proteins consisted of all genomically encoded D. radiodu-

rans R1 proteins. Amino acid sequences for target proteins (3184

proteins) were taken from the translated D. radiodurans R1 genome

(White et al, 1999) as annotated by the RAST server (Aziz et al,

2008) as of May 4, 2016, and reconciled against their respective

UniProt entries when available (The UniProt Consortium, 2018). An

index of all target proteins and statistics for their structures is listed

in Table EV4.

Curation of experimentally solved structures
Experimentally solved structures were curated from the PDB (Ber-

man et al, 2000), when available, for all D. radiodurans target

proteins. The best PDB structure from alternative available struc-

tures for each protein was chosen based on the best resolution struc-

ture with highest coverage of the full-length protein sequence. The

chosen structures were edited to remove all ligands and all but the

single best representative chain for each protein. This resulted in 71

D. radiodurans proteins covered by crystal structures.

Structure modeling
Structures were modeled for all D. radiodurans target proteins using

five methods, as permitted by the technical constraints of each

method. These methods included I-TASSER (Yang et al, 2015),

QUARK (Xu & Zhang, 2013b), modeler and scwrl algorithms as

implemented on the ProtMod server (http://protmod.godziklab.org/

protmod-cgi/protModHome.pl; Sali & Blundell, 1993; Canutescu

et al, 2003), and EVfold (Marks et al, 2012). Developer-recom-

mended protein length limits and high-quality homologous template

availability, as summarized in Appendix Table S2, determined

which methods could be applied for each target protein. For targets

modeled by I-TASSER, the LOMETS (Wu & Zhang, 2007) software

was used to determine the number of high-quality homologous

templates available and categorize each target as easy (>10

templates), medium (1–10 templates), or hard (0 templates) to

model. For targets modeled using the ProtMod server, the FFAS-3D

(Xu et al, 2014) software was used to select the single most appro-

priate homologous template. The top ranking of alternative models

from each method was selected for further analysis as determined

by scoring metrics particular to each method. Each method was run

using default parameters as noted in their respective publications or

as included as default settings for the web server implementations

of each method as available.

Other than for training set proteins, which were curated from the

PDB and modeled comprehensively as described above, E. coli

target protein structures were taken as modeled previously (Xu &
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Zhang, 2013a) using I-TASSER and QUARK across the whole

proteome. Given that either I-TASSER or QUARK was the top

performing modeling method for the majority of proteins in the D.

radiodurans proteome and given the high coverage of the E. coli

proteome by experimentally solved structures, comprehensive

modeling of E. coli proteins using modeler, scwrl, and EVfold was

seen as unlikely to yield higher quality structures for E. coli

proteins.

Quality evaluations and selection of best
representative structures
The best PDB structure and model from each method were all evalu-

ated for quality with respect to 8 metrics (Appendix Table S3): target

sequence coverage, computable surface using UCSF Chimera (Pet-

tersen et al, 2004), three separate energy scores (Jaroszewski et al,

1998; Yang & Zhou, 2008a,b), estimated TM-score (Yang et al,

2016), percentage of residues in favored positions with respect to a

Ramachandran plot (Laskowski et al, 1993), and an overall confor-

mation score (Laskowski et al, 1993). Two criteria were absolutely

required to be included in downstream analyses: >90% target

sequence coverage and computable surface. This is because high

structural coverage for each protein was seen as critical for compre-

hensive evaluation of possible CS and because several molecular

properties relied on protein surface computation. The criteria used

for favorable quality evaluation with respect to the other metrics

were derived from publications of respective methods as noted in

Appendix Table S3. The best representative for each protein was

chosen based on which structure satisfied not only the two abso-

lutely required criteria but also the highest total number of satisfied

criteria. Ties for total highest number of satisfied criteria were

broken by comparing the means of maximum-normalized metrics

for the tying structures. Only the best representative structure for

each protein was used in subsequent structural analysis and feature

computation for machine learning.

Feature engineering

Selection of molecular properties
The published literature on protein oxidation and modification was

reviewed in search of protein molecular properties previously

hypothesized or tested for contribution to susceptibility or robust-

ness to damage by ROS. Rate constants for reaction with hydroxyl

radical were included with respect to each type of amino acid (Bux-

ton et al, 1988). As a proxy for reaction rate constants with all ROS

that might lead to carbonyl formation on RKPT, the relative reactiv-

ity of each of these four amino acids was derived based on the rela-

tive proportion of experimentally measured CS distributed across

the four amino acids and relative proportion of non-oxidized occur-

rence distributed across the four amino acids, an approached

described previously (Rao & Moller, 2011).

The more exposed a residue is, the higher probability of

contact with any molecules in the solvent (Gao et al, 2013; Dou

et al, 2014; Jia et al, 2015). Therefore, solvent accessible surface

area and depth (i.e., minimum distance from the protein surface)

were computed using the surface computation and distance

measurement tools in UCSF Chimera (Pettersen et al, 2004). Simi-

larly, residues that form secondary structure often have less

exposed side chains; the UCSF Chimera implementation of the

DSSP algorithm (Kabsch & Sander, 1983) was used to assign

secondary structure. Molecular density can also be expected to

sterically interfere with small molecule interaction; circular vari-

ance (Laine & Carbone, 2015) was computed as a proxy for molec-

ular density. Number of contacts, another measure of density, was

computed based on interatomic distances using UCSF Chimera.

Protein–protein interactions can also be expected to interfere with

small molecule interaction, and DISOPRED (Ward et al, 2004) and

SPPIDER (Porollo & Meller, 2007) were used to assess residues

likely to take part in protein binding sites.

Correlation of dehydration tolerance with both disorder and

hydrophobicity has been demonstrated previously (Krisko et al,

2010); disorder was computed using DISOPRED (Ward et al, 2004)

and hydrophobicity using the Kyte-Doolittle scale (Kyte & Doolittle,

1982).

Electrostatic charge is expected to impact protein interaction with

charged molecules (Mahalingam et al, 2014), such as hydroxyl and

superoxide radicals; therefore, canonical formal charges for amino

acids were included.

Metal binding sites for Fe and Cu cations can cause residues

nearby to undergo metal-catalyzed oxidation (Stadtman & Levine,

2003), but metalloproteins coordinating Mn cations are involved in

sequestering ROS (Daly et al, 2010). Experimentally characterized

metal binding sites were curated from UniProt (The UniProt Consor-

tium, 2018) and mapped to protein structures included in this study,

and to expand the very sparse available experimental data, FIND-

SITE-metal (Brylinski & Skolnick, 2011) was used to predict metal

binding sites from structural homology with homologous templates

found using LOMETS (Wu & Zhang, 2007).

Surface methionines and cysteines can serve to protect other

nearby residues from oxidative damage through their own reversible

oxidation (Stadtman & Levine, 2003); these amino acids were

included as found on protein surfaces defined using UCSF Chimera.

To further broaden the search space of potentially useful molecu-

lar features, a database of hundreds of amino acid properties (Kawa-

shima et al, 2008), as summarized by five factors called AAMetrics

(Atchley et al, 2005), was included in this study. These factors can

be conceptually summarized as corresponding to electrostatic

charge, propensity to form secondary structure, molecular volume,

codon diversity, and polarity.

Features from parameterization of molecular properties
In the conversion of molecular properties to features, several param-

eters for computation were varied:

Scale: In addition to computing each molecular property with

respect to the atomic location of possible carbonyl formation on

each RKPT (i.e., residue scale), each property was also computed

with respect to all residues within a defined radius (5Å, 8Å, 10Å,

and 12Å) and with respect to the entire protein to account for the

global scale. The radii used for local-scale feature computation

were selected based on effective protein contact distances previ-

ously determined in published studies (Huang et al, 1995; Kim &

Kihara, 2014; Mahalingam et al, 2014; Laine & Carbone, 2015).

The residue scale is not applicable to surface cysteine and

methionines, contacts, RKPT contacts, or negative formal charge

because of the type of amino acids under consideration or due to

logical exclusions.
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Summary statistic: As a summary statistic of each molecular prop-

erty, the sum and mean of component values were computed. At

the residue scale, the sum and mean are equivalent because there is

only one component value. The mean summary statistic is not appli-

cable to metal binding site features, contacts, or circular variance.

Grouping: When applicable, molecular properties were converted to

features as a composite and as separate features. Applicable proper-

ties included surface cysteines and methionines, canonical charge,

RKPT contacts, secondary structure, and metal binding sites. For

example, separate features were computed with respect to binding

sites for each elemental type of metal cation, and also, features were

computed with respect to all metal cation binding sites irrespective

of elemental type.

Data type: Some molecular properties may be treated as either

continuous or binary variables; each option was used to yield sepa-

rate features with respect to such properties. Applicable properties

included protein disorder and protein binding sites as output by

DISOPRED, which outputs these properties both as a continuous

probability score for each residue and as a binary classification of

disordered or not.

Features from sequence alignment
In addition to structure-based features, local amino acid sequence

homology was used to generate features to represent positive and

negative CS. We defined a local neighborhood of 21 residues

centered on each RKPT covered by carbonyl-bearing peptides in our

proteomic data. All-by-all semi-global alignments of the non-redun-

dant subset of these sequences was performed, setting the central

RKPT of each 21-mer as anchor points to seed each alignment. The

resultant alignment score matrix had the same dimensionality as the

number of non-redundant RKPT sites in our CS-positive and -nega-

tive data (979); therefore, feature reduction was performed during

the machine learning phase (see below) by principal component

analysis (PCA).

Machine learning

Training data
The training set consisted of 397 molecular property-derived

features computed using best representative protein structures and

979 sequence alignment-derived features corresponding to experi-

mentally measured positive and negative CS from E. coli and D.

radiodurans proteomes. This dataset includes 869 non-unique posi-

tives and 2777 non-unique negative CS in 153 unique proteins. The

full training dataset is included in Table EV3. All features in the

training set were standardized by mean centering at 0 and scaling to

unit variance using the scikit-learn StandardScaler function. The

same scaling factors from the training data were used for standard-

izing the test data.

Logistic regression algorithm
We used 64-bit Python version 3.6.2 with Scikit-learn version 0.19.1

for all machine learning in this study. To model the probability of

RKPT carbonylation, we used a logistic regression estimator with

stochastic gradient descent training, a “log” loss function, and elas-

tic net regularization that linearly combines L1 and L2 penalties.

The elastic net mixing parameter for L1 and L2 penalties was set to

0.5 and the learning rate to 0.1 to balance utilization of informative

features with elimination of extraneous features. Fitting the logistic

regression model with these parameters will drop many coefficients

of uninformative features to zero. Balanced class weighting was

used to account for the class imbalance in training data such that

weights for each class i (positive or negative) are inversely

proportional to the class size n for data sample size N

(Weighti ¼ N=ð2� niÞ).
Logistic regression models were fit separately to structure-based

and sequence-based features. While the regularization strategy

described above was sufficient to reduce the number of features in

the structure-based model, the great number of sequence-based

features and their relatively low individual predictive power

required an additional feature reduction step. To this end, we

performed PCA on the sequence alignment score matrix, using just

the top principal components collectively accounting for 95% of

data variability as features for the sequence-based model.

We combined the sequence-based and structure-based logistic

regression models into a final stacked model. Input to the stacked

model consists of features with non-zero coefficients from the struc-

ture-based model and the PCA-derived features from the sequence-

based model along with two meta features representing the individ-

ual predicted probabilities from each model. The stacked model was

fitted with L2 regularization (but not L1) to attain a stable solution

that does not exclude any of the informative features from the initial

two models. The magnitude and sign of the fit model coefficients

quantify the relative contribution of each feature to overall probabil-

ity estimation. This implies that molecular properties underlying

contributing features are predictive of carbonylation probability but

does not necessarily imply that molecular properties represented by

features with zero coefficients cannot influence carbonylation by

ROS in vivo, simply that our data do not support the predictive

power of those features.

Leave-1-out validation strategy
To assess generalization of predictive performance of our predictive

framework, comprehensive leave-1-out cross-validation was

performed. Because the training data contain duplicate data points

due to coverage of particular RKPT by multiple measured peptides,

we implemented a variant of standard leave-1-out validation in

which all duplicates of a data point (positive or negative) are treated

as one data unit, i.e., validation is performed on them together in

one leave-1-out iteration. Also, because our full set of sequence-

based features contains information derived from local sequence

surrounding every RKPT in the training data, we excluded sequence

features corresponding to alignment scores against the held-out

data for each leave-1-out iteration before performing PCA as

described above.

Multi-scale model validation

Residue-scale validation
We used receiver operating characteristic (ROC) curve analysis to

validate the overall performance of our machine learning framework

for protein carbonylation site probability estimation. Area under the

ROC curve (AUC) is a common, robust performance metric for

machine learning predictors and is not affected by data imbalance,

which is especially important for predicting protein CS because

redox proteomic techniques yield a relatively much smaller number
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of positives than negatives in peptide calls. The calculation of the

area under the ROC curve was weighted by class sizes using the

same weighting factor described above.

Furthermore, because of the stochastic carbonylation of RKPT

observed in the training data (i.e., the same site can appear carbony-

lated on one peptide but not oxidized on another), an AUC of 1.0 (a

perfect predictor score) is not guaranteed to be achievable. There-

fore, we computed the theoretical maximum ROC curve and corre-

sponding AUC for our data (Fig 5A lower left) using empirically

derived carbonylation probabilities. All reported AUCs were normal-

ized to this theoretical maximum AUC.

We also performed a randomization test in which the initial

structure-based and sequence-based features were first shuffled

before running the entire predictive framework. This randomiza-

tion test gives us a sense of the non-random significance of

predictive features in our structure-based, sequence-based, and

stacked models. We also compared our model performance to

that of the Carbonylated Site and Protein Detection (CSPD) model

(Maisonneuve et al, 2009). To test CSPD performance on our

data, we used the CSPD web server and input all full-length

protein sequences from our experimental dataset. CSPD output is

a binary classification of carbonylation sites, rather than a proba-

bility estimator. ROC analysis was performed on these predictions

as well.

Protein-scale validation by carbonyl site enrichment correlation
To validate our protein carbonyl prediction framework at the

whole-protein scale, we computed a predicted enrichment score

for each protein as the sum of the predicted probabilities for sites

included in the carbonylated peptide data normalized by the length

of the protein regions covered by those peptides. Similarly, an

enrichment score was computed based solely on the carbonylation

state of RKPT residues in the experimentally measured carbony-

lated peptides. These scores appear in the x- and y-axes of Fig 5B.

Predicted carbonylation enrichment was validated against all 90

E. coli and 63 D. radiodurans proteins detected with at least one

CS by redox proteomics and coverage by our 3D protein struc-

tures. Spearman rank correlation between predicted and experi-

mental enrichment scores was computed for proteins from each

species, and 95% confidence intervals were determined for a fitted

linear regression (Fig 5B). P-values for rank correlation were

determined by permutation test as implemented in the corr

function in Matlab�.

Interspecies proteome-wide prediction

Datasets for prediction
After using our framework to train a model on the entire training

set, we applied our predictor prospectively to compare protein

carbonylation propensity across the full proteomes of E. coli (4,057

proteins) and D. radiodurans (3,031 proteins), containing 227,326

and 184,149 total RKPT, respectively. The full proteome datasets for

E. coli and D. radiodurans are included in Tables EV5 and EV6,

respectively.

Ortholog and isozyme mapping
In order to directly compare individual proteins between E. coli and

D. radiodurans, pairs of proteins were mapped by shared function

between these species. This was done in three steps. First, func-

tional annotation mapping between species was performed using

the RAST server (Overbeek et al, 2014) for annotation and the

ModelSEED server (Henry et al, 2010) for mapping. This approach

has the ability to map orthologs between species as well as non-

homologous isozymes that only share function. Second, likely

orthologous pairs were mapped between species by bi-directional

BLAST (Altschul et al, 1990) in which mutual top hits between

species are identified, and for cases where proteins do not have

mutual top hits by bi-directional BLAST, simply the top hit in the

other species is identified. Tying top hits with equal E-values and

alignment scores were retained at this step. Finally, manual curation

of the mapped interspecies pairs was performed, reconciling func-

tional annotation of E. coli proteins in EcoCyc (Keseler et al, 2017)

and D. radiodurans protein annotations in BioCyc (Caspi et al,

2016). During the curation process, proteins from one species

mapping to multiple proteins in the other species were reduced to

mapping to as few proteins from the other species as possible based

on a combination of functional annotation specificity and any fine

differences in sequence alignments. As a result, 1,170 D. radiodu-

rans proteins were mapped to 1,110 E. coli proteins for a total of

1,300 interspecies pairs that also have structural coverage in our

data (Appendix Fig S3).

Pairwise comparison of predicted vulnerability to oxidative
damage
To compare protein-scale predicted carbonylation susceptibility

between proteins from each species, we computed an enrichment

score for each protein equal to the number of RKPT with probability

>0.5 for carbonylation normalized by the protein length. These

scores appear in the x- and y-axes of Fig 7.

To quantify the relative protein-intrinsic vulnerability to

carbonylation between interspecies pairs, we take the perpendicu-

lar distance of the point representing the pair to the y = x diago-

nal reference line. Proteins less intrinsically vulnerable to

carbonylation in one organism lie a greater distance to one side

of y = x. To quantify the combined protein-intrinsic and extrinsic

differences between interspecies pairs, we take the perpendicular

distance of the point representing the pair to the y = x/3.78 refer-

ence line. The 3.78 factor represents the ratio of protein carbonyls

generated in vivo in E. coli compared to D. radiodurans after

exposure to 7 kGy c-radiation (ratio = 3.86), minus the contribu-

tion from protein-intrinsic factors alone. This latter contribution

from protein-intrinsic factors comes from the ratio of protein

carbonyls measured in E. coli lysate compared to D. radiodurans

lysate after dialysis to remove ions (ratio = 1.08). Proteins less

susceptible in D. radiodurans than in E. coli when accounting

for intrinsic and extrinsic factors lie a greater distance above

y=x/3.78.

Extreme outliers of the interspecies comparison are expected to

be involved in cellular resistance to oxidative stress, if indeed D.

radiodurans proteins have evolved intrinsic properties to protect

them from carbonylation. We define a boundary to highlight

extreme outliers of the all-pair distribution based on a minimum-

fitted ellipse that encompasses all points within 3 standard devia-

tions of the mean coordinates and within 3 standard deviation of

the mean distance from y = x. Outliers to this boundary account for

8% of all interspecies mapped protein pairs.
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Data availability

The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium (http://proteomecentral.proteomexc

hange.org) and PRIDE via the iProX partner repository (Ma et al,

2019) with the dataset identifier PXD020058 (http://www.ebi.ac.

uk/pride/archive/projects/PXD020058). Code for feature computa-

tion from structures is available in GitHub (https://github.com/julia

nstanley/ProteinFeatures.git). Best representative structures and

models for D. radiodurans proteins are available from the authors

upon request. All other data are available in the main text or the

supplementary materials.

Expanded View for this article is available online.
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