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Highlights 21 

- Non-ablated Penaeus vannamei females produce offspring that are more resilient to 22 

commonly encountered pathogens. 23 

- Postlarvae from non-ablated female have a significantly higher resistance to 24 

VpAHPND. 25 

-   Juveniles from non-ablated animals have better survival to WSD than their juvenile 26 

counterparts from ablated female. 27 

 28 

 29 

 30 
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 38 

 39 
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Abstract 40 

The maturation and reproduction of Pacific whiteleg shrimp, Penaeus vannamei, through the 41 

practice of unilateral eyestalk ablation though common is an animal welfare concern. This 42 

study assessed the resilience of offspring from non-ablated P. vannamei when challenged with 43 

an isolate of Vibrio parahaemolyticus (Vp) causing acute hepatopancreatic necrosis disease 44 

(VpAHPND), and with white spot syndrome virus (WSSV). VpAHPND and WSSV challenges 45 

were conducted using PL and juveniles under controlled conditions, with both trials using 46 

four groups (i.e. shrimp from either ablated or non-ablated females and then either challenged 47 

with the pathogen or not challenged). For the VpAHPND challenge, ten replicate 20 L tanks 48 

(five replicates for each population) each containing 100 PL 17 (average weight 14 mg) in 15 49 

ppt, 29.05 ± 0.13ºC water were challenged with 2 ml of 2.0 × 10
8
 CFU mL

-1
 culture of V. 50 

parahaemolyticus. A further ten replicate tanks (five per population) served as the 51 

corresponding non-challenged controls. The shrimp mortalities were assessed every 3 h over 52 

the following 96 h. For the WSSV challenge, individual 1.4 g (average weight) shrimp (50 53 

individuals per population) were housed in 1 L tanks and fed 0.1 g WSSV infected tissue (av. 54 

2.02 × 10
9
 WSSV). A further 50 shrimp per population served as non-challenged controls. 55 

The shrimp were maintained at 15 ppt, 26.3 ± 0.71ºC water and assessed every 3 h post-56 

infection over the subsequent 168 h and mortalities at each time point noted. Postlarvae from 57 

non-ablated females had significantly (p = 2.4E-23) better survival (70.4%) than those from 58 

ablated females (38.8%) at 96 h post-challenge with VpAHPND. Both challenged populations 59 

had significantly (p = <1.3E-36) lower survival than the control groups. The survival of the 60 

juveniles from non-ablated females (62%) at 168 h post-infection with WSSV was not 61 

significantly higher than that of the juveniles from ablated female (48%) although the 62 

difference was significantly different at 65 to 75 h. Both challenged populations also had 63 
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significantly (p = <1.0E-5) lower survival rates than the control groups. The study 64 

demonstrates that postlarvae and juveniles from non-ablated females are more resilient to 65 

typical pathogens (VpAHPND and WSSV) and may show higher survival rates during a disease 66 

outbreak. 67 

 68 

Key words: eyestalk ablation, acute hepatopancreatic necrosis disease, early mortality 69 

syndrome (EMS), welfare, white spot syndrome virus (WSSV) 70 

 71 

1. Introduction 72 

Recent global shrimp production statistics indicate that more than half of shrimp production 73 

(i.e. nearly 4.5 million tons) comes from aquaculture. The Pacific whiteleg shrimp, Penaeus 74 

vannamei, is currently the most cultured marine shrimp worldwide representing 78% of 75 

global shrimp aquaculture production in 2019 (Anderson et al., 2019). 76 

Maturation and reproduction of Pacific whiteleg shrimp, in most hatcheries 77 

worldwide, is induced through unilateral eyestalk ablation (Chamberlain and Lawrence, 78 

1981b; Zhang et al., 1997; Palacios et al., 1999a; FAO, 2003; Sainz-Hernández et al., 2008; 79 

Das et al., 2015). This technique leads to more frequent and predictable peaks of ovarian 80 

maturation and spawning. This facilitates the establishment of production schedules and 81 

increases egg production (Chamberlain and Lawrence, 1981b; Palacio et al., 1999a; Bae et al., 82 

2013).  83 

Given concerns regarding the practice of eyestalk ablation with respect to animal 84 

welfare (Taylor et al., 2004; Little et al., 2018), it has been suggested that similar productivity 85 

in broodstock can be realised without eyestalk ablation, through the application of husbandry 86 

interventions including pre-maturation conditioning, increased stocking density and altered 87 

sex ratios (Zacarias et al., 2019). Trials conducted using these practices have demonstrated 88 
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that rapid maturation and re-maturation of non-ablated P. vannamei females can be obtained 89 

while maintaining similar levels of eggs/nauplii productions as ablated females (Zacarias et 90 

al., 2019).    91 

Growth performance and final survival of offspring produced from non-ablated 92 

broodstock have been demonstrated to be similar to those from ablated broodstock in 93 

larviculture, nursery and grow-out (Zacarias et al., 2019). Salinity stress tests, however, 94 

suggest that non-ablated females can produce more resilient animals (Zacarias et al., 2019).  95 

The global shrimp farming industry has been affected by regular outbreaks of disease-96 

causing catastrophic crop failures with severe financial losses (Cock et al., 2009; Tran et al., 97 

2013; Shinn et al., 2018b). Acute hepatopancreatic necrosis disease (AHPND), or Early 98 

Mortality Syndrome (EMS) as it is more commonly known among farming communities, the 99 

microsporidian Enterocytozoon hepatopenaei (EHP) and white spot virus disease (WSD) are 100 

the top bacterial, parasitic and viral diseases impacting whiteleg shrimp production (Phuoc et 101 

al., 2009; Lightner et al., 2012; Sajali et al., 2019). AHPND is caused by pathogenic isolates 102 

of Vibrio parahaemolyticus (Vp), and a number of other Vibrio spp., that carry a plasmid 103 

encoding two Pir-like toxins which cause progressive degeneration of the shrimp 104 

hepatopancreas (Sajali et al., 2019). Infection often results in acute episodes of mortality in P. 105 

vannamei postlarvae (PL) within the first 20-35 days after stocking in nursery or grow-out 106 

ponds (Lightner and Redman, 2012; Tran et al., 2013; De Schryver et al., 2014), usually 107 

resulting in high rates or the complete loss of stock or the need to clear out the stock (De 108 

Schryver et al., 2014; Sajali et al., 2019). The collective losses attributed to AHPND alone 109 

throughout a number of Asian states (i.e. China, Malaysia, Thailand, and Vietnam) and in 110 

Mexico across the period of 2009 to 2016 were estimated by Shinn et al. (2018b) to be US$ 111 

23.58 bn.  112 
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The Whispovirus commonly referred to as white spot (syndrome) virus (WSSV) 113 

responsible for white spot disease (WSD) infects a broad range of crustaceans inhabiting all 114 

tropical aquatic environments with temperatures typically ranging from 18 to 30˚C (Lightner 115 

et al., 2012; Verma et al., 2017). Infection can similarly result in high rates of mortality which 116 

can reach 100% within 3-10 days of infection (Lin et al., 2011; Verma et al., 2017). Since the 117 

first report of WSSV infection in Taiwan and the People’s Republic of China in 1992 (Chou 118 

et al., 1995), the subsequent resultant losses were estimated by Lightner et al. (2012), up to 119 

the point of their report, to be in the order of US$ 8-15 bn. In the same year, Stentiford et al. 120 

(2012) estimated that WSD accounts for an annual loss of almost US$1 bn.  121 

The growth performance and final survival of the offspring of non-ablated shrimp is 122 

not different from those of ablated shrimp, but a previous study (Zacarias et al., 2019) 123 

suggests an improvement in their ability to cope with stress measured as survival after salinity 124 

stress testing. Salinity stress testing, a common method used by shrimp farmers to check post-125 

larvae quality when sourcing, however, mainly relates to the ability of the PL to withstand 126 

environmental stress and does not give any indication of the ability of the shrimp to withstand 127 

a disease challenge. The objective of this study was to assess the resilience of postlarvae and 128 

juvenile P. vannamei produced from ablated and non-ablated broodstock following a disease 129 

challenge and test the hypothesis that non-ablated female’s offspring show higher resistance 130 

to disease when challenged with VpAHPND and WSSV under controlled experimental 131 

conditions. Any difference in survival post-challenge would demonstrate if there is any added 132 

value for farmers when sourcing PLs from ablated or non-ablated females. 133 

 134 

 135 

 136 

 137 
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2. Materials and methods 138 

2.1.  Hatchery production of the two shrimp populations 139 

Two postlarvae populations were produced by Syaqua Siam Co. hatchery in Surat Thani 140 

Province, Thailand, one from ablated (AF) and the other from non-ablated (NAF) females 141 

belonging to the same breeding batch and family. The shrimp lines were from families 142 

selected using salinity tolerance as one of the selection criteria. SPF (specific pathogen free) 143 

Penaeus vannamei broodstock with average male and female weights of 38.0 ± 2.0 and 40.0 ± 144 

2.0 g respectively, were used for the production. The broodstock were all obtained from a 145 

population that was tank-reared in an SPF facility with routine health checks every 10 days 146 

and monthly PCR testing of the population to confirm their freedom of AHPND, CMNV, 147 

EHP, IHHNV, IMNV, LSNV, SHIV (DIV1), TSV, WSSV, YHV/GAV. Four maturation 148 

tanks (7×3.5×0.5 m; two tanks for males only and two tanks stocked only with females) were 149 

stocked with 50 shrimp per tank (2/m
2
). After one week of acclimatization, unilateral eyestalk 150 

ablation (ablation of one of the shrimp’s eyestalks) was performed on the females in one tank 151 

(Ablated – AF) by cauterization (cutting the eyestalk with hot scissors), while in the second 152 

tank, the females remained intact (non-ablated – NAF). Individual females for ablation were 153 

caught with a hand net, gently lifted from the net, held in one hand and an eyestalk cauterized. 154 

This procedure took less than 30 seconds per shrimp. The NAF were not specifically handled 155 

to balance the stress during the trial. Ablation stress is not simply restricted to the physical 156 

ablation but the whole process of capture, handling and ablation. If animals had been captured 157 

and handled but not ablated, this would not reflect the actual practice and experience of NAF. 158 

The rearing conditions and water quality assessments made on the broodstock tanks 159 

and their feeding regime is provided in the Supplementary information section S1. One week 160 

after ablation, mature females from each treatment were collected and placed in tanks 161 
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containing males (1 male tank for each treatment group). After 3-4 hours, the mated females 162 

were collected from the male tank and placed into separate spawning tanks. Females were 163 

removed from the spawning tanks after spawning and returned to their respective maturation 164 

tanks. The hatch success of the two groups of eggs were 73% for the AF and 65% for the 165 

NAF.  Nauplii were harvested after 36 h using a net (100-micron mesh), dipped in 50 ppm 166 

iodine for 60 seconds and then rinsed in running seawater for 5 minutes.  167 

Six plastic tanks (500L) with an initial 300L water volume were stocked with 45,000 168 

stage 5 nauplii at a density of 150 nauplii/L. Both treatments were set up in triplicate and 169 

randomly distributed within a greenhouse. The rearing conditions and water quality of the 170 

tanks used to rear the nauplii are provided in the Supplementary information section S2. The 171 

larval diets consisted of algae (Thalassiosira sp.), a microparticulate feed (HiPro® from 172 

SyAqua Sdn. Bhd.) and live Artemia. The type and amount of food was adjusted for each 173 

larval stage. At the end of the larviculture period, the final survival of the PLs were 58.8 ± 5.0 174 

% for the AF group and 58.8 ± 5.6 % for the NAF. 175 

When postlarvae were 15-days old (PL 15), they were shipped (i.e. flight and 176 

specialist couriers) to the research aquarium and challenge facilities of Benchmark R&D 177 

(Thailand) Ltd in Chonburi, Thailand. To avoid bias, a double-blind approach was used 178 

throughout the trial and subsequent analysis. The ablation status of the females producing 179 

each group of PL (AF or NAF) was not disclosed by SyAqua Siam until the completion of the 180 

challenge trials.   181 

Details relating to the mandatory health checks that were conducted on the receipt of the 182 

shrimp and on the maintenance of the two P. vannamei populations are provided in the 183 

Supplementary information sections S3 and S4, respectively. 184 

The trials conducted in this study used one batch of PL from AFs and another from NAF 185 

shrimp. The two groups were from the same commercial broodstock and genetic line. This 186 
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approach has been used in similar studies (Phuoc et al., 2009; Tran et al., 2013; He et al., 187 

2017; Noble et al., 2017) which used a single batch and genetic line to avoid confounding 188 

factors that could create noise in the results of the study. It is, however, important to highlight 189 

that the study outcomes may also be a result of the genetic makeup of the population under 190 

test.  191 

 192 

2.2.Survival to salinity stress test 193 

Two days after the receipt of the PL at BRDTL and one day before the start of the 194 

VpAHPND challenge, salinity stress tests were conducted on the two populations in 195 

quadruplicate (100 PL per replicate with 6.0 mg mean individual weight). Salinity testing is a 196 

routine practice within the shrimp industry to assess the robustness of each batch of PL. Each 197 

batch of PL was transferred from 15 ppt seawater into a 1 L beaker with dechlorinated tap 198 

water (0 ppt) for 30 mins and then transferred into another 1 L beaker with clear 15 ppt 199 

salinity water. After a further 30 mins, the survival (%) of the PL in each replicate was 200 

evaluated based on immobility/response after physical stimulation with a pipette. 201 

 202 

2.3.  Vibrio parahaemolyticus preparation 203 

AHPND results in acute mortalities in P. vannamei postlarvae within the first 20-35 204 

days after being stocked into grow-out ponds. This first disease challenge set out to explore 205 

the resilience of each population of PL17 to VpAHPND. 206 

The bacterial inoculum for the challenge was prepared by inoculating isolate 207 

FVG0001 (an isolate derived from a VpAHPND mortality event in P. vannamei cultured in 208 

Thailand and acquired through the Thai Department of Fisheries) into tryptone soya broth 209 

(TSB) supplemented with 2% NaCl and cultured for 12h at 28°C, shaking at 250 rpm. Pure 210 

cultures of the isolate were produced and additional cross checked for five viral pathogens 211 
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(IHHN, IMNV, TSV, WSSV and YHV) using OIE approved molecular methods. Thereafter, 212 

the bacterial cells were collected by centrifugation at 900×g for 10 mins at 10°C and the 213 

resultant bacterial pellet re-suspended in sterile seawater (15 ppt). The number of colony-214 

forming units (CFU mL
-1

) in the suspension was then determined by measuring the optical 215 

density at 600 nm (OD600), where for VpAHPND, an OD value of 1.0 corresponded to 216 

approximately 2.0 × 10
8
 CFU mL

-1
. The bacterial cell number was then adjusted and verified 217 

by viable plate counts following standard methods; cultures were pure, i.e. no contamination. 218 

The presence of the pVA plasmid and the binary Pir-like toxin pair ToxA and ToxB was 219 

confirmed using the AP4 nested PCR method of Dangtip et al. (2015) and a sub-sample of the 220 

culture additional confirmed free of five viral pathogens namely IHHNV, IMNV, TSV, YHV 221 

and WSSV using recognized methodologies (these are detailed in Supplementary information 222 

section S3). 223 

 224 

2.4. Survival of shrimp postlarvae challenged with VpAHPND 225 

The VpAHPND challenge tests followed the methods described in Shinn et al. (2018a) and Sajali 226 

et al. (2019). Pre-challenges were conducted to define a bacterial dose to use for the main 227 

challenge – details relating to these are provided in the Supplementary information section S5.   228 

 229 

From the pre-challenge trials, a challenge dose of 2.0 ml of a 2 × 10
8
 CFU mL

-1
 was selected.

 230 

This dose resulted in 64% and 33% mortality in populations from AF and NAF respectively at 231 

96 h post-infection. The main challenge was performed under the same conditions as the pre-232 

challenge. For the main challenge, the performance of each population and condition was 233 

tested by using five replicate, static, aerated, 20 L tanks, with a total of 100 × PL17 per tank. 234 

The groups were Population AF + VpAHPND; Population NAF + VpAHPND; Population AF – 235 

control with no VpAHPND added; Population NAF - control with no VpAHPND added. The PL17 236 
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from both populations had average individual weight of 14 mg at the time of the challenge. 237 

Water quality parameters within the challenge vessels are provided in the Supplementary 238 

information section S6. A semi-randomized block design was used to allocate the test tanks. 239 

The control tanks were isolated from the challenge tanks to prevent cross-contamination. 240 

Shrimp mortality was assessed every 3 h continuously, 24 h d
-1

, over the entire duration of the 241 

96 h post-challenge period. 242 

 243 

2.5.  Challenge trials using white spot syndrome virus  244 

Virus amplification: One week prior to starting the WSSV pre-challenge, 30 shrimp 245 

juveniles from population AF were placed in two tanks (10 L; 15 ppt) in a temperature-246 

controlled disease challenge room maintained at 26 ± 0.0 ºC.  Population AF was selected as 247 

it was the weaker performer from the VpAHPND tests to minimise animal use (3Rs). On the first 248 

day, the shrimp were fed to satiation with minced tissue from WSSV infected P. vannamei. 249 

The infected tissue was derived from frozen (-80˚C), WSSV infected tissue acquired from the 250 

Shrimp-Pathogen Interaction (SPI) Laboratory, National Center for Genetic Engineering and 251 

Biotechnology (BIOTEC), National Science and Technology Development Agency 252 

(NSTDA), Bangkok, Thailand, and confirmed free of six other shrimp diseases (AHPND, 253 

EHP, IHHNV, IMNV, TSV and YHV) by recognised methodologies (see Supplementary 254 

information S3). After exposure to WSSV infected tissue, the shrimp were fed a normal 255 

commercial feed thereafter. The tanks were checked every 3 h for 168 h and any dead or 256 

moribund shrimp removed. Moribund shrimp were immediately euthanised in iced water 257 

(<4˚C). Euthanised or dead shrimp were then stored at -80 ºC. After 7 days, all the resulting 258 

shrimp material was processed – the gills, muscle and pleopods were harvested, and 259 

thoroughly macerated to ensure complete mixing of the shrimp tissues. Three random 0.5 g 260 

samples were then taken and the titre of WSSV virus determined by qPCR. The macerated 261 
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tissue was stored in the -80˚C freezer, while the qPCR tests were being conducted and the 262 

WSSV pre-tests were set-up. 263 

 264 

Determination of the WSSV virial titres in the shrimp tissue for challenge 265 

Quantitative PCR (qPCR) was used to determine the viral titre of the shrimp tissues 266 

used for the main WSSV challenge. DNA from macerated P. vannamei gill, muscle and 267 

pleopod tissue was extracted using a Qiagen DNEasy Blood & Tissue Kit (Qiagen, Hilden, 268 

Germany). qPCR was performed using qPCR Green Master Mix LRox (biotechrabbit GmbH, 269 

Hennigsdorf, Germany) on a Roche Lightcycler® 96 (Roche Diagnostics GmbH, Mannheim, 270 

Germany). The protocol used follows that of Durand and Lightner (2002) approved by OIE 271 

(OIE, 2019) for the detection of WSSV using primers WSS1011F (5’-TGG-TCC-CGT-CCT-272 

CAT-CTC-AG-3’) and WSS1079R (5’-GCT-GCC-TTG-CCG-GAA-ATT-A-3’). The qPCR 273 

conditions used were: an initial denaturation step of 95°C for 3 min, followed by 40 cycles of 274 

95°C for 15 sec, 60°C for 30 sec, and then 72°C for 30 sec. A melting curve analysis was 275 

performed to estimate the specificity of the method and used to confirm that no secondary 276 

products were observed. A negative DNA template control was included in the qPCR assay 277 

alongside a serial diluted plasmid DNA standard (1 × 10 - 1 × 10
5
 µL

-1
; Centex Shrimp, 278 

Mahidol University, Thailand) to permit the determination of the WSSV copy number within 279 

each sample. From >30g minced tissue resulting from the WSSV amplification step, the 280 

WSSV titre was determined from triplicate samples to be 1.81 – 2.37× 10
9
 WSSV/0.1 gram 281 

(av. 2.02 × 10
9
 WSSV/0.1 gram). 282 

Pre-challenges were conducted to define a dose to use for the main WSSV challenge – details 283 

relating to these are provided in the Supplementary information section S7. 284 

 285 
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WSSV main challenge: From the pre-challenges, a dose of 0.1 g WSSV-infected tissue (av. 286 

2.02 × 10
9
 WSSV/0.1 gram) was selected as it resulted in 70% mortality of shrimp at 168 h 287 

post-infection.
 
The main challenge was performed under the same conditions as the pre-288 

challenge but using a total of 200, static, aerated, 1 L vessels, each stocked with a single 289 

juvenile (i.e. 50 replicates per treatment – 50 × Population AF + WSSV; 50 × Population 290 

NAF + WSSV; 50 × Population AF – control not exposed to WSSV; 50 × Population NAF - 291 

control not exposed to WSSV). All shrimp used for the experiment were pre-graded (1.3-1.5 g 292 

size range) and had an average individual weight of 1.42 ± 0.07 g. A larger sized shrimp, i.e. 293 

average weight of >1g was used rather than postlarvae so that the ingestion of the WSSV-294 

infected material presented to each shrimp could be confirmed. As shrimp cannibalise their 295 

dead counterparts, to ensure that each shrimp received the same dose of WSSV, it was 296 

necessary to house them in individual vessels. Water temperature, salinity, pH, alkalinity, 297 

unionized ammonia and nitrite were within the following ranges: 26.33 ± 0.73 ºC, 15.0  ppt, 298 

8.40 ± 0.14, 147.0 ± 5.2 mg/L CaCO
3
, 0.04 ± 0.01 mg/L and 0.1 ± <0.01 mg/L respectively. A 299 

semi-randomized block design was used to allocate the test tanks in the challenge room. As 300 

with the VpAHPND challenge, the control treatments were isolated to prevent cross-301 

contamination. The experimental vessels were inspected every 3 h continuously, 24 h d
-1

, over 302 

the entire duration of the 168 h post-challenge observation period and any dead or moribund 303 

shrimp removed. Moribund shrimp were euthanized in pre-iced water where necessary, and 304 

then all removed shrimp stored in a -80 ºC freezer. After 168 h post-infection, the gills, 305 

pleopods and muscle were harvested from a random sample of shrimp from each population 306 

of shrimp and then analysed by qPCR to confirm the presence of WSSV and to determine the 307 

titres of WSSV.   308 

 309 
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2.6.  Disposal of experimental materials 310 

On completion of each trial, all surviving shrimp were humanely euthanized in pre-iced water 311 

(<4˚C), and subsequently incinerated together with other remaining dead shrimp collected 312 

during the trials.  313 

2.7.  Ethics statement 314 

These trials were reviewed by and conducted under the approval of the University of Stirling 315 

Animal Welfare and Ethical Review Body (AWERB; ref. no. (18 19) 191) and BRDTL 316 

AWERB which included external independent assessors (ID. B-TH-NON-2020-106). All 317 

members of BRDTL directly involved in the study hold licences for the use of “Animals for 318 

Scientific Purposes” issued by the Institute for Animals for Scientific Purpose Development, 319 

National Research Council of Thailand. The BRDTL laboratories and challenge facilities are 320 

registered with the relevant Thai authorities and have been inspected as required under current 321 

Thai legislation.  322 

 323 

2.8.  Statistical analysis 324 

One-way ANOVA followed by a Tukey test (Zar, 2010) was used to compare survival to 325 

salinity stress test in significance level of 0.05. Normality and homogeneity were tested using 326 

Shapiro-Wilk and Levene tests, respectively. Percentage data were transformed to arcsine 327 

square-root prior to analysis. The data are presented as mean ± standard error. 328 

The survival of the experimental shrimp was assessed using a Mantel-Cox log rank test 329 

conducted in Excel Windows 365 to conduct pairwise comparisons of the survival 330 

distributions between each set of samples using shrimp mortality (or their removal from the 331 

challenge) as the time to event. The time stratified Cochran-Mantel-Haenszel test was used to 332 
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calculate the number of observed and expected events at each time point to derive summary 333 

survival probabilities across all time points where there was a response (i.e. a shrimp 334 

mortality). The approach follows that used in other similar VpAHPND challenge-based 335 

evaluations with P. vannamei (see Shinn et al., 2018a; Sajali et al., 2019a). All comparisons 336 

were conducted at a significance level of 0.05.  337 

 338 

3. Results  339 

3.1.  Salinity stress tests and the survival rate of the shrimp post-larvae  340 

No significant survival difference (p = 0.13) between the two populations was observed after 341 

the salinity stress tests. The PL from NAF and AF had 96.5 ± 1.84 and 99.75 ± 0.25 % 342 

survival, respectively. 343 

 344 

3.2.  VpAHPND challenge 345 

Drop counts confirmed that the growth equated to 2.35E+08 and 2.0E+08 CFU mL for the pre 346 

challenge and main challenge respectively. The PL originating from NAF had significantly (p 347 

< 0.05) better survival (70.4%) than PL from AF (38.8%) at 96 h post-challenge (Fig. 1; Table 348 

1). Over the challenge period, a significant difference between the two challenged groups was 349 

observed from 9 h post-challenge onwards (Table S1). The survival of the control (i.e. un-350 

challenged) shrimp from the NAF and AF 96 h post-challenge was not significantly different 351 

between the two populations (100 and 100% for NAF and AF, respectively) (p > 0.05) (Table 352 

1; Fig. 1). The VpAHPND challenged groups, however, had significantly (p < 0.05) lower 353 

survival than the control groups (Table 1; Fig. 1). Supplementary data with replicate tank 354 

mortality are shown in Table S2. Terminal disease testing using the AP4 nested PCR of a 355 
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random selection of moribund shrimp from each population confirmed that mortality was 356 

death due to VpAHPND . No samples, however, were evaluated by histopathology. 357 

 358 

3.3.  Survival of shrimp juveniles following WSSV challenge 359 

The survival of the shrimp from NAF (62%) at 168 h post-infection was higher than that of 360 

the shrimp from AF (48%) but the difference was not significantly different (Table 2). There 361 

were, however, significant differences between the two populations at 65 to 75 h post-362 

challenge (see Table S1; Fig. 2). No significant difference was observed in the survival of 363 

non-challenged animals from both groups 168 h post-challenge (98 and 98% for NAF and 364 

AF, respectively) (p > 0.05; see Table 2). The WSSV challenged groups, however, had 365 

significantly (p < 0.05) lower survival than the control groups (Table 2; Fig. 2). Terminal 366 

disease testing of a random selection of moribund and dead shrimp from each population 367 

confirmed death due to WSSV infection (AF (n = 3), av. 1.21 x 10
9
 copies (range 1.09-1.31 × 368 

10
9
) WSSV copies / 0.1 gram ; NAF (n = 3), av. 1.40 × 10

9
  (range 1.37 - 1.44 × 10

9
) WSSV 369 

copies / 0.1 gram). Terminal sampling of five shrimp from each of the two non-challenged 370 

control groups were tested by qPCR and were negative (i.e. below detectable limits). In 371 

addition, shrimp from the challenge groups surviving the challenge at 168 h post-challenge 372 

were sampled and archived at -80˚C, they were not however analysed as their survival does 373 

not necessarily mean that they were free of infection but rather that they survived the 374 

challenge doses they were exposed to.  375 

 376 

 377 

 378 
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4. Discussion 379 

Although unilateral eyestalk ablation facilitates the establishment of production schedules and 380 

increased nauplii production in commercial shrimp hatcheries, it is not a good welfare 381 

practice (Little et al., 2018). Furthermore, it has long been recognized that ablation can also 382 

cause physiological imbalance and compromise the immunological health of broodstock 383 

(Palacios et al., 1999ab; Sainz-Hernandez, et al., 2009; Bae et al., 2013; Treerattrakool et al., 384 

2014; Das et al., 2015). Ablation can also lower the nutritional reserves of the offspring 385 

(Wickins and Lee, 2002; Racotta et al., 2003) possibly decreasing their chance of survival 386 

during disease outbreaks. This study and previous study (Zacarias et al. 2019), confirms that 387 

ablation has an impact not only on the female broodstock, but that negative effects are carried 388 

on through to the offspring.  Eliminating ablation will require hatcheries to accept that this 389 

can be done without significant impact on their production and profitability and that there 390 

may be additional benefits in adopting a non-ablation approach. Zacarias et al. (2019) have 391 

demonstrated that it is possible to use NAF under commercial conditions and achieve similar 392 

productivity to AF and that the final survival and growth performance in larviculture, nursery 393 

and grow-out of their offspring is also similar to AF.   394 

In the study presented here, PLs from NAF and AF treatments displayed similar survival rates 395 

after salinity stress testing, indicating equivalent robustness of the employed experimental 396 

animals against this commercially used quality check method. Nonetheless, different survival 397 

rates between NAF and AF were observed following experimental challenges with two key 398 

shrimp pathogens. Under challenge with VpAHPND, the survival of the challenged PL from 399 

NAF was significantly higher than the PL from AF at 96 h post-challenge. The trial supports 400 

the hypothesis posed by Zacarias et al. (2019), that ablation can negatively affect offspring 401 

quality in terms of their physiological status. 402 



18 

 

When the same two populations of shrimp were challenged with WSSV, there was no 403 

statistical difference (p > 0.05) between the two challenged groups at the conclusion of the 404 

experiment (168 h post-challenge) although the level of significance was close (p = 0.09).  At 405 

intermediate times (54 h and 75 h post-challenge) the NAF population survival was 406 

significantly higher than that of the AF. The higher survival of juveniles from NAF, although 407 

not statistically significant, suggests that there may be some slight disadvantage of ablation on 408 

the offspring’s ability to withstand a WSSV challenge but that the current experimental 409 

design was inadequate to demonstrate this.  410 

Eyestalk ablation has been reported to compromise the immune system of broodstock shrimp 411 

(Sainz-Hernandez, et al., 2009; Bae et al., 2013 and Treerattrakool et al., 2014). It can, 412 

therefore, be hypothesized that the overall improvement of survival in offspring from non-413 

ablated P. vannamei broodstock to AHPND and WSSV observed in this study is evidence of 414 

enhanced “robustness” within the stock. The mechanisms that lead to this improvement could 415 

be multifarious and most likely linked to enhancement in the immune status of the offspring 416 

from non-ablated broodstock. However, as no measurements of immune response were 417 

conducted in this study the mode of action for enhanced robustness remains to be confirmed.  418 

The results presented here were obtained under laboratory-controlled conditions. If, however, 419 

the potential of NAF offspring to better survive a VpAHPND and WSSV outbreak was to be 420 

confirmed in commercial scale scenarios, the economic impact to farmers would certainly be 421 

significant. Indeed, if farmers were to stock their nursery tanks/ponds with PL from NAF, 422 

significant improvements in the survival of stock compared to PL from AF when shrimp are 423 

exposed to VpAHPND within the first days of stocking are likely. Similarly, a higher rate of 424 

survival of juveniles from NAF parents stocked in grow-out ponds may be observed in the 425 

first days of WSSV exposure. VpAHPND infections can result in the complete loss of stock (De 426 
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Schryver et al., 2014; Sajali et al., 2019), which has been estimated to have resulted in 427 

accumulated losses of ca. US$ 23.58 bn in 8 years (2009-2016) across Vietnam, Thailand, 428 

Malaysia, China and Mexico (Shinn et al., 2018b). Lightner et al. (2012) also reported losses 429 

of US$8 – $15 bn due to WSSV. The higher survival observed in PL and juveniles from NAF 430 

might, therefore, reduce the levels of loss and bring economics benefits to farmers and other 431 

actors in shrimp value chains.  432 

In conclusion, these results contribute to the current discussion around the opportunity and 433 

incentives to move beyond the use of eyestalk ablation as a management practice and towards 434 

adoption by the sector of higher welfare production standards. A further benefit of this, as 435 

these results show, is that there is compelling economic argument of the benefits of non-436 

ablation as results now confirm growth performance and survival under normal conditions are 437 

not compromised and in fact survival in response to typical pathogens (VpAHPND and WSSV) 438 

is likely to be higher in PLs and juveniles from non-ablated animals. Validation at the farm 439 

level of the current study’s findings alongside in-depth study of the mechanisms responsible 440 

for the results observed here is now needed. 441 
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Figures 550 

 551 

Figure 1: Survival of non-challenged and Vibrio parahaemolyticus-challenged Penaeus vannamei postlarvae 552 
(PL17) originating from non-ablated female (NAF) and ablated female (AF) broodstock.   553 

 554 

 555 

Figure 2: Survival of non-challenged and WSSV-challenged Penaeus vannamei juveniles originating from non-556 
ablated female (NAF) and ablated female (AF) broodstock.   557 

 558 

 559 

 560 

  561 
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Tables 562 

 563 

Table 1. Summary of the statistics following analysis of the mortalities by Mantel-Cox log rank tests at the end 564 
of the challenge (96 h post-challenge). 565 

  AF - Control NAF - Control AF - Challenge NAF - Challenge 

AF - Control   

   NAF - Control 0.08   

  AF - Challenge 6.32E-92 5.88E-95   

 NAF - Challenge 1.34E-36 6.47E-39 2.40E-23   
AF – Ablated female; NAF – Non-ablated female; E – Exponential 566 

 567 

Table 2: Summary of the statistics following analysis of the mortalities by Mantel-Cox log rank tests 168 hours 568 
post-challenge with WSSV at the end of challenge (168h post challenge). 569 

  AF - Control NAF - Control AF - Challenge NAF - Challenge 

AF - Control   

   NAF - Control 0.99   

  AF - Challenge 4E-08 1.85E-08   

 NAF - Challenge 1.05E-05 6.55E-06 0.09   
AF – Ablated female; NAF – Non-ablated female; E - Exponential 570 

  571 
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Supplementary data 572 

Table S1. P values observed at each time point when Penaeus vannamei from non-ablated (NAF) and ablated 573 

(AF) broodstock challenged with Vibrio parahaemolyticus or with WSSV were compared. 574 

 575 

AF – Ablated female; NAF – Non-ablated female; NS – Not significant; E - Exponential 576 

 577 

 578 
  579 

Time (h) Vp AHPND WSSV Time (h) Vp AHPND WSSV

0 NS NS 84 2.40E-23 0.06

3 NS NS 87 2.40E-23 0.06

6 0.16 NS 90 2.40E-23 0.09

9 6.15E-05 NS 93 2.40E-23 0.09

12 2.93E-08 NS 96 2.40E-23 0.09

15 1.86E-12 NS 99 0.09

18 3.07E-15 NS 102 0.09

21 7.44E-16 NS 105 0.09

24 5.22E-17 NS 108 0.09

27 3.09E-19 NS 111 0.09

30 7.03E-21 NS 114 0.09

33 2.45E-20 NS 117 0.09

36 2.28E-20 NS 120 0.09

39 2.20E-20 NS 123 0.09

42 8.59E-21 NS 126 0.09

45 8.59E-21 0.32 129 0.09

48 6.95E-23 0.099 132 0.09

51 2.40E-23 0.08 135 0.09

54 2.40E-23 0.04 138 0.09

57 2.40E-23 0.05 141 0.09

60 2.40E-23 0.01 144 0.09

63 2.40E-23 0.06 147 0.09

66 2.40E-23 0.04 150 0.09

69 2.40E-23 0.03 153 0.09

72 2.40E-23 0.02 156 0.09

75 2.40E-23 0.03 159 0.09

78 2.40E-23 0.06 162 0.09

81 2.40E-23 0.06 165 0.09

84 2.40E-23 0.06 168 0.09

Observed P values between 

NAF&AF for each challenge

Observed P values between 

NAF&AF for each challenge
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Table S2. AHPND mortality of Pacific white shrimp (Penaeus vannamei) postlarvae from non-ablated (NAF) 580 
and ablated (AF) broodstock per replicate tank (n= 5). 581 

  AF - Control NAF – Control AF - Challenge NAF - Challenge 

Hours 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

6 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

9 99 99 100 99 100 100 100 100 100 100 100 99 100 99 100 100 100 100 100 100 

12 99 99 100 99 100 100 100 100 100 100 100 99 91 99 95 100 100 100 100 100 

15 99 99 100 99 100 100 100 100 100 100 100 94 79 95 87 97 99 100 100 98 

18 99 99 100 99 100 100 100 100 100 100 97 82 70 89 69 94 97 99 99 90 

21 99 99 100 99 100 100 100 100 100 100 89 74 63 79 54 89 94 94 98 82 

24 99 99 100 99 100 100 100 100 100 100 77 60 49 66 42 76 89 87 93 65 

27 99 99 100 99 100 100 100 100 100 100 69 50 38 61 34 65 88 82 91 52 

30 99 99 100 99 100 100 100 100 100 100 66 44 35 55 27 60 88 80 90 47 

33 99 99 100 99 100 100 100 100 100 100 65 43 32 51 23 59 86 80 90 45 

36 99 99 100 99 100 100 100 100 100 100 65 43 31 50 23 58 84 80 90 43 

39 99 99 100 99 100 100 100 100 100 100 65 43 31 49 22 57 84 80 90 42 

42 99 99 100 99 100 100 100 100 100 100 65 43 30 49 22 57 84 80 90 41 

45 99 99 100 99 100 100 100 100 100 100 65 43 29 49 21 57 84 80 90 41 

48 99 99 100 99 100 100 100 100 100 100 65 43 29 49 21 57 84 80 90 41 

51 99 99 100 99 100 100 100 100 100 100 65 33 29 49 21 57 84 80 90 41 

54 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

57 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

60 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

63 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

66 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

69 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

72 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

75 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

78 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

81 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

84 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

87 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

90 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

93 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

96 99 99 100 99 100 100 100 100 100 100 65 32 27 49 21 56 84 80 90 41 

 582 

 583 

 584 

 585 



29 

 

Supplementary information 586 

S1. Water quality and maintenance of the broodstock 587 

The water temperature and salinity of the broodstock tanks were maintained at 28.0-30.0 ºC 588 

and 30.0 ± 1.0 ppt, respectively. A daily water exchange was applied (50-100%). Photoperiod 589 

followed a natural regime by exposure to ambient sunlight through translucent roof panels in 590 

the maturation room. The broodstock were fed five times a day with squid (2 feeds) and on 591 

polychaete worms (3 feeds) at between 2-5% body weight (adjusted based on actual 592 

composition). The polychaetes were obtained from a source that is SPF for all major shrimp 593 

pathogens of concern. All “fresh” feeds were kept frozen with samples tested by PCR for all 594 

major pathogens before being approved for use.      595 

 596 

S2. Water quality and maintenance of the nauplii 597 

Water temperature, dissolved oxygen, pH, ammonia, nitrite and alkalinity were 28.5 ± 0.7 ºC, 598 

5.4 ± 0.2 mg/L, 7.8 ± 0.1 mg/L, 0.1 ± 0.0 mg/L, <1 mg/L and 160.2 ± 39.5 mg/L CaCO
3
 599 

respectively. Salinity was gradually adjusted from 30.0 ppt to 15 ppt from postlarvae 5 at a 600 

rate of 1 ppt/day. Approximately 30% of the water volume was exchanged daily when the 601 

animals reached the postlarvae stage. 602 

 603 

S3. Mandatory health checks following the receipt of shrimp  604 

The disease challenge trials were conducted within the aquarium and disease challenge 605 

facilities of Benchmark R&D (Thailand) Ltd (BRDTL) in Chonburi, Thailand. A total of 606 

20,000 SPF P. vannamei postlarvae 15-day-old (PL15), half of which were derived from NAF 607 

and the other half from AF, were used for the disease challenge trials.  608 

Upon receipt at BRDTL, the PL were handled in accordance with local standard 609 

operating procedures for the receipt of new stock on site, i.e. the exterior of the transport bags 610 

were sprayed with 70% alcohol, then the PL were passed through a 100-micron mesh nylon 611 

bag and then surface-disinfected (15-20 sec dip) in a separate vessel containing 0.1 mg/L 612 

P.V.-DINE 125® (povidone iodine). The mesh bag and PL were then dipped for 15-20 secs in 613 

a second vessel containing pre-treated conditioned 15 ppt seawater to rinse the shrimp. The 614 

PL were subsequently assigned to three separate 200 L static aerated holding tanks, each 615 

stocked in 180 L of pre-treated, dechlorinated 15 ppt seawater; stock was held under 616 

quarantine conditions while mandatory disease testing was conducted. For testing, a pooled 617 

sample of 150 PL (taken randomly from the holding tanks) per population were screened for 618 
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seven key shrimp diseases, namely: VpAHPND by nested PCR; the fungal microsporidian 619 

Enterocytozoon hepatopenaei (EHP) and WSSV tested for by qPCR using OIE (2019) 620 

approved methodologies; for infectious hypodermal and haemotopoietic necrosis virus 621 

(IHHNV), infectious myonecrosis virus (IMNV), Taura syndrome virus (TSV), and, yellow 622 

head virus (YHV) by iiPCR test kits (GeneReach Biotechnology Corporation, Taichung, 623 

Taiwan). Following the confirmation of freedom from all seven diseases, the remaining 624 

shrimp were kept in aerated, static tanks (200L) until the first disease challenge. 625 

 626 

S4. Maintenance of the two populations of P. vannamei 627 

During the holding period, daily 20% water exchanges were performed using 15 ppt water 628 

(water pre-treated with 50 mg/L chlorine over a 24+ h period and the residual chlorine driven 629 

off by vigorous aeration). The absence of chlorine was confirmed using an orthotolidine-630 

based chlorine test kit (Monitor
®
; Pet Wonderland Group, Thailand). Water temperature, 631 

salinity, dissolved oxygen, pH, alkalinity, unionized ammonia and nitrite were within the 632 

following ranges: 27.5 ± 0.1 ºC, 15.0 ppt, 7.3 ± 0.1 mg/L, 8.40 ± 0.14 mg/L, 161.5 ± 4.9 mg/L 633 

CaCO
3
, 0.04 ± 0.1 mg/L and 0.1 ± <0.01 mg/L respectively. During the culture phase, the 634 

shrimp were fed three times daily (08:00 am; 12:00 pm midday and 16:00 pm) with two types 635 

of commercial shrimp feed: for the first 30 days, the animals were fed TNT 400-600 (Charoen 636 

Pokphand Co., Bangkok, Thailand) at a rate of 20 – 15% of total biomass; from day 30 637 

onwards, the shrimp were fed Starbird 5093 S shrimp feed (Charoen Pokphand Co., Bangkok, 638 

Thailand) at a rate of 10% body biomass per day. 639 

 640 

S5. VpAHPND pre-challenge tests 641 

 The volume of bacterial suspension required to be added to each vessel for the main 642 

challenge was determined by a pre-challenge to assess the pathogen virulence by shrimp 643 

mortality using seven concentrations (0.1, 0.45, 0.8, 1.15, 1.5, 1.85, and 2.2 ml of a 2.0 × 10
8
 644 

CFU mL
-1

, respectively) and selecting the bacterial concentration required to give ca. 60-70% 645 

mortality 96 h post-infection. One day before the pre-challenge, 42 replicate, static, aerated, 646 

20 L tanks, each containing 5 L of 15 ppt clear seawater were set up in a temperature-647 

controlled disease challenge room maintained at 29.05 ± 0.13ºC. A total of 100 PLs per tank 648 

were used, with three replicates per dose. The pre-challenge was done for both populations of 649 

PL; the average weight of the PL at this stage was 10 mg. The initial volume of water in each 650 

tank was 5 L then at 24 h and 48 h post-challenge, an additional 3 L and 2 L of water was 651 
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added respectively to a final volume of 10 L to maintain water quality. At 72 h post-challenge 652 

50% water was exchanged. Shrimp mortality was assessed every 3 h, continuously over the 653 

96 h post-challenge period. Shrimp were fed TNT 400-600 (Charoen Pokphand Co., 654 

Bangkok, Thailand) at 20% of the biomass following the same feeding regime as the PL held 655 

in the holding tanks.  656 

 657 

S6. Water quality in the VpAHPND challenge tanks  658 

Water temperature, salinity, pH, alkalinity, unionized ammonia and nitrite were within the 659 

following ranges: 29.05 ± 0.13 ºC, 15.0 ppt, 7.5 ± 0.0 mg/L, 155.0 ± 6.7 mg/L CaCO
3
, 0.03 ± 660 

0.01 mg/L and 0.1 ± <0.01 mg/L respectively. 661 

 662 

S7. WSSV pre-challenge tests 663 

The amount of WSSV infected tissue derived from the WSSV amplification for the main 664 

WSSV challenge was determined from a pre-challenge assessing the virulence and mortality 665 

of shrimp using three amounts (i.e. 0.1 g, 0.15 g or 0.2 g shrimp
-1

) of tissue (av. 2.02 × 10
9
 666 

WSSV/0.1 gram). The main aim was to determine the amount which resulted in 60-70% 667 

mortality 168 h post-infection. The pre-challenge was performed under the same conditions 668 

intended for the main challenge. One day before the pre-challenge 30 static, aerated, 1 L tanks 669 

each containing 0.4 L of 15 ppt clear seawater were set up in a temperature-controlled disease 670 

challenge room maintained at 26.3 ± 0.71ºC. Ten single juvenile shrimp (average weight 1.5 ± 671 

0.1 g) replicates were used per assessment dose of tissue. The pre-challenge was performed 672 

on shrimp taken from population AF as these had a significantly shown higher mortality in 673 

the VpAHPND challenge and were regarded at this stage as the “weaker” population. For the 674 

infection step, WSSV macerated tissue from the pre-amplification step held at -80˚C was 675 

prepared by adding 50 µL of red food grade dye to each 1 g of minced shrimp tissue for 10 676 

minutes before being weighed and allocated to the experimental tanks. The shrimp were not 677 

fed for 24 h prior to the start of the experiment. Shrimp were infected by weighing out the 678 

relevant amount of tissue and added to each vessel. For the infection step, the relevant amount 679 

of infected tissue was placed into the tank and the aeration to the tank switched off (pre-test 680 

dose range was 0.1-0.2 g WSSV infected tissue shrimp
-1

). Shrimp consumption of the entire 681 

ration was confirmed by the presence of the red tissue passing into the stomach and intestine 682 

of the shrimp and the absence of any remaining free tissue in the experimental tank. The 683 

aeration was then switched back on, typically within 15 min. The shrimp were then 684 
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maintained and monitored regularly. After 24 h, additional 0.4 L water was added to each 685 

experimental vessel. At 48, 72, 96, 120 and 144 h post-challenge, 50% of the water in each 686 

vessel was replenished. From day 2 of the challenge, the shrimp were maintained on the same 687 

feeding regime as the stock held in the main holding tanks. Shrimp mortality was assessed 688 

every 3 h continuously over the 168 h post-infection period. 689 

 690 

 691 

 692 

 693 

 694 


