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Many situations in daily life represent complex combinatorial optimisation prob-
lems. These include issues such as efficient fuel consumption, nurse scheduling, or
distribution of humanitarian aid. There are many algorithms that attempt to solve
these problems but the ability to understand their likely performance on a given
problem is still lacking.

Fitness landscape analysis identifies some of the reasons why metaheuristic al-
gorithms behave in a particular way. The Local Optima Network (LON) model,
proposed in 2008, encodes local optima connectivity in fitness landscapes. In this
approach, nodes are local optima and edges encode transitions between these op-
tima. A LON provides a static image of the dynamics of algorithm-problem inter-
play. Analysing these structures provides insights into the reactions between opti-
misation problems and metaheuristic search algorithms.

This thesis proposes that analysis of the local optima space of combinatorial fit-
ness landscapes encoded using a LON provides important information concerning
potential search algorithm performance. It considers the question as to whether or
not features of LONs can contribute to explaining or predicting the outcome of try-
ing to optimise an associated combinatorial problem. Topological landscape fea-
tures of LONs are proposed, analysed and compared. Benchmark and novel prob-
lem instances are studied; both types of problem are sampled and in some cases
exhaustively-enumerated such that LONs can be extracted for analysis. Investiga-
tions into the nature and biases of LON construction algorithms are conducted and
compared.

Contributions include aligning fractal geometry to the study of LONs; propos-
als for novel ways to compute fractal dimension from these structures; comparing
the power of different LON construction algorithms for explaining algorithm per-
formances; and analysing the interplay between algorithmic operations and infeasi-
ble regions in the local optima space using LONs as a tool. Throughout the thesis,
large scale structural patterns in fitness landscapes are shown to be strongly linked
with metaheuristic algorithm performance. This includes arrangements of local op-
tima funnel structures; spatial and geometric complexity in the LON (measured by
their fractal dimensionality) and fitness levels in the space of local optima. These
features are demonstrated to have explanatory or predictive ability with respect to
algorithm performance for the underlying combinatorial problems. The results pre-
sented here indicate that large topological patterns in fitness landscapes are impor-
tant during metaheuristic search algorithm design. In many cases they are incontro-
vertibly linked to the success of the algorithm. These results indicate that use of the
suggested fitness landscape measures would be highly beneficial when considering
the design of search algorithms for a given problem domain.
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Chapter 1

Introduction

1.1 Overview

Systems which can be formulated as optimisation problems are ubiquitous. Exam-
ples include the scheduling of nurses; routing of delivery vehicles; distribution of
humanitarian aid; identifying locations for food trucks which can reach as many
homeless people as possible. There are microcosmic cases too: personal time man-
agement, for example, or video game strategy. The necessity of understanding and
conducting optimisation mindfully is self-evident.

A prevalent method aimed at intelligent optimisation is fitness landscape analy-
sis [1]. Fitness landscapes model the interplay between optimisation problems and
search algorithms; topological features arise during the interactions and these can
explain or predict the performance of optimisation algorithms. Indeed, charting fit-
ness landscapes has unveiled intense relationships with algorithm performance in
the past [2, 3, 4, 5, 6, 7, 8, 9]. Such findings can serve as a springboard for better-
informed algorithm design, which can in turn produce improved optimisation [10].

Local Optima Networks (LONs) [11] are a fitness landscape paradigm which are
gaining traction in the research community [12, 13, 14, 15, 16]. LONs encode local
optima connectivity based on historical searches through the fitness landscape and
they provide a snapshot of algorithm dynamics at the local optima level.

LONs have been used with some success for understanding, explaining, or pre-
dicting search algorithm performance [17, 18, 19, 20]; still, the parallel between the
anatomy of the local optima layer in the landscape and algorithm performance re-
mains mostly veiled. There is a lack of certainty and insight concerning macroscopic
landscape phenomena which can be studied using LONs. This thesis pursues clarity
about some of them.

A related element missing from the literature concerns LON construction algo-
rithms; in fact, there are no dedicated works analysing them. Early LON construc-
tion algorithms exhaustively enumerated the fitness landscape [8, 11, 21, 22] and
built complete LONs. This was initially satisfactory for proof-of-concept scenarios
on small problems; that said, research is directed towards larger problems now. Con-
sequently, proficient sampling algorithms for approximate LONs are essential if the
explanatory and predictive potency of LONs is to be maximised. Some sampling
algorithms have been proposed which are augmented with domain-competitive op-
timisation algorithms [19, 23, 24, 25] but these have not been critically analysed or
compared yet. This thesis addresses that with the aim of enhancing reliability and
consistency in LON analysis and — by consequence — in algorithm prediction.

Specific contributions of this work include aligning fractal geometry to the study
of LONs; proposals for novel ways to compute fractal dimension from these struc-
tures; comparing the power of different LON construction algorithms for explaining
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algorithm performances; and analysing the interplay between algorithmic opera-
tions and infeasible regions in the local optima space using LONs as a tool. The
universal thread binding together these contributions is articulated in the hypothe-
sis below.

Hypothesis. Valuable information is encoded within Local Optima Networks about reac-
tions between metaheuristic algorithms and combinatorial optimisation problems; this can
be used for visualising, explaining, or predicting the proficiency of those algorithms.

The stipulated hypothesis will be evaluated in Section 9.2 at the conclusion of this
thesis. Associated research questions include:

1. Which new knowledge can be gained from applying fractal geometry to LONs?

2. How can we define fractal dimension for LONs?

3. Can we learn about the relationships between LON features and algorithm
performance by comparing LON construction methods?

4. How can LONs help better understand algorithm performance on highly-constrained
problems?

The rest of the document is structured in the following way: Chapter 2 describes
preliminaries which are necessary in understanding the literature review and subse-
quent contributions; Chapter 3 provides a location for the thesis contributions within
the wider field, with descriptions and critical analysis of related literature; contri-
butions are distributed into five subsequent Chapters, 4 - 8; these are followed by
Chapter 9, which concludes and directs future work.

1.2 Publications Produced

Publications produced during the course of this PhD are now mentioned. These
are in chronological order, starting with the oldest. For each, a statement about the
authorship of the work is given. In the interest of clarity, absolutely no writing by
other authors, and absolutely no experiments or results obtained by other authors
are included in this thesis.

The publications detailed in Sections 1.2.1 and 1.2.2 are not part of this thesis. In
the case of the former, this is because there was a collaborative aspect to the work;
for the publication in Section 1.2.2, the contribution was comparatively narrow and
does not align with the main story and logical sequence of work presented in this
thesis.

1.2.1 Comparing Communities of Optima with Funnels in Combinatorial
Fitness Landscapes (GECCO 2017; ECOM track) — S. L. Thomson, F.
Daolio, and G. Ochoa.

As stipulated, this paper is not included in the thesis (due to the collaborative na-
ture). In the publication, I contributed the research described in Sections 5.1 and 5.3
and am the author of approximately 70% of the writing in this paper — specifically,
all sections except for 4.2 and 5.2.
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1.2.2 The Effect of Landscape Funnels in QAPLIB Instances (GECCO 2017
Companion; Landscape-aware Heuristic Search Workshop) — S. L.
Thomson, G. Ochoa, F. Daolio, and N. Veerapen.

Although not included in the thesis, I note that all writing, experiments and results
were conducted by the author of this thesis, other than proof reads by others.

1.2.3 On the Fractal Nature of Local Optima Networks (EvoCOP 2018) —
S. L. Thomson, S. Verel, G. Ochoa, N. Veerapen, and P. McMenemy.

All writing, experiments and results were conducted by the author of this thesis,
other than proof reads by others. This paper forms the basis of Chapter 4, although
the statistical analysis methods are different for this thesis. The network data are
available at https://github.com/sarahlouisethomson/fractal-nature-local-optima-networks.

1.2.4 Multifractality and Dimensional Determinism in Local Optima Net-
works (GECCO 2018; ECOM track) — S. L. Thomson, S. Verel, G.
Ochoa, N. Veerapen, and D. Cairns.

All writing, experiments and results were conducted by the author of this thesis,
other than proof reads by others. Work from this publication is included in Chap-
ter 5. The network data are available at https://github.com/sarahlouisethomson/
multifractality-dimensional-determinism-lons.

1.2.5 Clarifying the Differences in Local Optima Network Sampling Al-
gorithms (EvoCOP 2019) — S. L. Thomson, G. Ochoa, and S. Verel.

All writing, experiments and results were conducted by the author of this thesis,
other than proof reads by others. A section of this work contributes to Chapter 7
alongside the related publication detailed in Section 1.2.7. The network data are
available at https://github.com/sarahlouisethomson/clarifying-differences-local-optima-
networks.

1.2.6 The Local Optima Level in Chemotherapy Schedule Optimisation
(EvoCOP 2020) — S. L. Thomson and G. Ochoa

All writing, experiments and results were conducted by the author of this thesis,
other than proof reads by others. The work is the foundation for Chapter 9. The net-
work data are available at https://github.com/sarahlouisethomson/chemotherapy-
optimisation-local-optima-networks.

1.2.7 Inferring Future Landscapes: Sampling the Local Optima Level (
Evolutionary Computation Journal 2020) — S. L. Thomson, G. Ochoa,
S. Verel, and N. Veerapen

All writing, experiments and results were conducted by the author of this thesis,
other than proof reads by others. The publication forms part of Chapter 7 alongside
the related publication described in Section 1.2.5. The network data are available
at https://github.com/sarahlouisethomson/inferring-future-landscapes-sampling-
local-optima-networks.

https://github.com/sarahlouisethomson/fractal-nature-local-optima-networks
https://github.com/sarahlouisethomson/multifractality-dimensional-determinism-lons
https://github.com/sarahlouisethomson/multifractality-dimensional-determinism-lons
https://github.com/sarahlouisethomson/clarifying-differences-local-optima-networks
https://github.com/sarahlouisethomson/clarifying-differences-local-optima-networks
https://github.com/sarahlouisethomson/chemotherapy-optimisation-local-optima-networks
https://github.com/sarahlouisethomson/chemotherapy-optimisation-local-optima-networks
https://github.com/sarahlouisethomson/inferring-future-landscapes-sampling-local-optima-networks
https://github.com/sarahlouisethomson/inferring-future-landscapes-sampling-local-optima-networks
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1.2.8 The Fractal Geometry of Fitness Landscapes at the Local Optima
Level (Natural Computing Journal 2020) — S. L. Thomson, G. Ochoa,
and S. Verel

The writing, experiments, and results of this paper were conducted by the author of
this thesis (other than proof reads by others). This work forms the basis for Chap-
ter 6. The network data are available at https://github.com/sarahlouisethomson/fractal-
geometry-fitness-landscapes. Fractal analysis algorithms for local optima networks
are provided at https://github.com/sarahlouisethomson/compute-fractal-dimension-
local-optima-networks.

https://github.com/sarahlouisethomson/fractal-geometry-fitness-landscapes
https://github.com/sarahlouisethomson/fractal-geometry-fitness-landscapes
https://github.com/sarahlouisethomson/compute-fractal-dimension-local-optima-networks
https://github.com/sarahlouisethomson/compute-fractal-dimension-local-optima-networks
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Chapter 2

Background & Preliminaries

In the incumbent Chapter, notions and axioms which are foundational to the con-
tributions in this work are introduced and described. These lay the groundwork
for clarity of understanding and self-containment later on. I begin by detailing the
meaning of combinatorial optimisation itself, along with problems which are used
in the contribution Chapters. Next, evolutionary computation and affiliated algo-
rithms are elucidated, followed by the definition of fitness landscapes. After that is
the Local Optima Network model, which is a fitness landscape analysis tool. Finally,
the notions of fractal geometry and fractal dimension are explained.

2.1 Combinatorial Optimisation

A combinatorial optimisation problem [26] concerns the pursuit of an optimal design
for an object when considering a finite number of possible designs. Each design —
or solution — has an associated quality, or fitness. Formally speaking, such a problem
has four components: [I, S, f , o] with I being an instance set; S the set of solutions
which are feasible; f the quality function (fitness function) to grade solutions; and
o is the objective, whether that is minimisation or maximisation. The solution rep-
resentation is the choice of how to encode a design for computational optimisation.
Typical representations include binary strings and permutations of integers.

In this thesis I exclusively study single-objective optimisation. This stipulates
that there is a single objective function involved — in contrast to multi-objective
optimisation, where there is more than one objective function [27].

2.2 Benchmark Problems

The following Section illustrates benchmark combinatorial optimisation problems
which later serve as test-beds for analysis in the contributions. I report the solution
representation, objective, fitness function, and how instances are encoded.

2.2.1 NK Landscapes

NK Landscapes [28] are a family of synthetic fitness functions. They give rise to fit-
ness landscapes which can be tuned from completely smooth to completely rugged.
There are two parameters: N and K. Solutions are binary-encoded and of length N.
Each bit has a numeric value assigned from a uniform distribution of floating-point
numbers which represents the contribution of the bit towards the overall solution fit-
ness. The parameter K dictates the extent of epistasis, i.e. how many other bit values
are considered when calculating the fitness contribution of a given bit. The overall
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fitness f of a given solution s is the average of the fitness contributions of the N bits:

f (s) =
i

∑ f (si) (2.1)

where si is the bit at position i and f (si) is its individual fitness contribution. When
calculating this, the values of K other bits are also considered:

f (si) = f (si, si
1, ..., si

k) (2.2)

NK Landscapes are often used as a test-bed for new fitness landscape techniques (see
for example [4, 11, 29, 30]) because ruggedness can be introduced in a controlled way
using the parameter K.

2.2.2 Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) [31] is often used in fitness landscape
analysis [5, 30, 32, 33, 34]. A QAP instance is specified with a distance matrix and
a flow matrix. An entry in the distance matrix, Dij is the distance between two
locations i and j. In the flow matrix this is the flow between two items: Fij. Solutions
are encoded as a permutation of length N, and are the allocation of N items to N
locations. Fitness of a solution is the product of distances and flows between the
locations and items according to the permutation and the objective is minimisation.
The fitness function f for a solution s is then f (s) = ∑N

i=1 ∑N
j=1 DijFij , ∀s ∈ SP, where

SP is the solution space. Occurrences of the QAP can largely be placed into one of
four categories or instance classes: uniform random distances and flows; random
flows on grids; real-world problems; and random "real-world like" problems. Each
of these is now introduced.

Uniform random distances and flows

This class of QAP is known to be challenging for metaheuristic algorithms. The
entries for both the distance and flow matrices are taken at random from a Gaussian
distribution. The naming convention is tainna, where nn is the problem dimension.

Random flows on grids

For these problems, the locations are each situated in one square on an m*n grid,
which is rectangular. The flow matrix entries are generated randomly.

Real-world problems

These problems arise from practical applications. Examples include stenographer
typing patterns; the planning of a hospital layout; and the testing of sequential cir-
cuits.

Random "real-world like" problems

Instances from this class resemble real-world manifestations of the QAP because the
distance matrix reflects locations which are not uniformly distributed on the plane,
but rather occur in clusters. The naming convention is tainnb, where nn is the prob-
lem dimension.
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2.3 Evolutionary Computation & Metaheuristics

An approach to generating solutions to combinatorial optimisation problems is with
metaheuristics and evolutionary computation. A metaheuristic is a blueprint for an
algorithm which iterates through solutions, changing them and making decisions
about how to move to the next solution. Metaheuristics typically combine a localised
improvement process (exploitation or intensification) with a more exploratory one
(exploration or diversification) [35]. The specific mechanisms and parameter choices
are made by the algorithm designer for the problem at hand, but the algorithm con-
forms to the metaheuristic template. Evolutionary computation [36] concerns meta-
heuristics which borrow design principles from natural evolution, such as recombi-
nation and selection. Metaheuristics which are used in the contribution Chapters of
this thesis are now described according to the Handbook of Metaheuristics [35].

Iterated Local Search

An Iterated Local Search (ILS) is a single-point algorithm, meaning that a sole so-
lution is being improved throughout the process. ILS consists of hill-climbing (lo-
calised improvement) and perturbation, a strong exploratory change to the solution.
Hill-climbing consists of making small changes (mutations) to the solution and then
deciding whether to keep the newly-changed variant. This decision is governed by
a pivot rule which is typically either first-improvement or best-improvement. First
improvement dictates that as soon as a solution with superior fitness is found, that
replaces the current solution. Best improvement iterates through all one-mutation
neighbours of the incumbent solution and picks the one with the most desirable
fitness. With every ILS iteration (that is, a perturbation followed by hill-climbing)
a local optimum is reached. The algorithm must include an acceptance condition
concerning whether to allow this solution to become the new base for the search.
In many cases the acceptance rule is the deterministic acceptance of any improving
local optimum (with respect to the previous local optimum).

Tabu Search

Tabu Search (TS) marries hill-climbing (local improvement) with a mechanism for
escaping local optima: allowing deteriorating fitness moves with guidance from the
"tabu" tail. The tail consists of search mutations which are forbidden as choices for
the algorithm at that time (they are "tabu"). Tail elements are typically recently-
recorded mutations and are intended to prevent looping. The length of the tail is
decided by the algorithm designer.

Simulated Annealing

Simulated Annealing (SA) combines the exploitative nature of hill-climbing with an
exploratory solution acceptance schedule inspired by the method of cooling metals
in a controlled way to minimise imperfections. At the beginning of the simulated an-
nealing search, the probability that a deteriorating solution will be accepted is high.
That probability gradually decreases throughout the search process, ending with the
acceptance of mostly (or only) improving solutions; the motivation underlying this
is that the preliminary stages require exploration to assess where the promising re-
gions are, whereas during the latter stages the algorithm should be converging to a
good solution (i.e. exploiting known desirable genes or solution components).
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Genetic Algorithm

A Genetic Algorithm (GA) is a population-based metaheuristic and evolutionary al-
gorithm, where a set of individuals evolve with each iteration through a combination
of selection, recombination, and mutation. Individuals in the population is replaced
by newly-generated offspring. GAs do not have "acceptance conditions" as such, but
they can have mechanisms such as elitism, where the best individual(s) are forced to
remain in the population, and tournament selection — selection of parents based on
fitness ranking. The performance of the algorithm can be markedly altered through
design choices such as the size of the population, recombination and mutation rates,
type of recombination, method of tournament selection, and number of generations.

Memetic Algorithm

A Memetic Algorithm (MA) combines a local search or improvement with an ad-
ditional mechanism; for example, an evolutionary technique (such as a genetic al-
gorithm) with a local improvement procedure on some (or all) individuals in the
population of solutions.

2.4 Landscape Systems

Many complex systems which are studied in science fit naturally into the template
of a landscape. The elegantly-uncomplicated metaphor of the fitness landscape was
first considered in 1932 by geneticist Sewall Wright [37] for visualising evolutionary
trajectories taken by populations; evolutionary biologists have been using the term
since [38, 39, 40, 41]. Similarly, physicists observe energy landscapes, modelling phys-
ical configurations of a molecular structure and their associated energies — these
are the ‘heights’ in the landscape. The model can describe the observable states into
which proteins fold, but have broader applicability too [42, 43, 44, 45, 46].

How about combinatorial optimisation and evolutionary computation? The no-
tion of landscapes was brought to combinatorial optimisation in a seminal work
by Kauffman [28] which unified the landscape view with well-known optimisation
problems such as the Travelling Salesman Problem. In evolutionary computation
Weinberger [29] sought to transfigure the abstract landscape metaphor into an empir-
ical mathematical object. He viewed it as a graph: G = (V, E), where a vertex s ∈ S
is tagged with its real-valued fitness f (s) and an edge e ∈ E exists from s1 to s2 if s1
can be transformed into s2 through application of a search operation. The graphs do
not consider the probability of transformation, nor the case where an operation pro-
duces more than one configuration (an example would be a recombination operator
producing two offspring).

Computer scientist Terry Jones pursued a rigorous definition for fitness land-
scapes in the context of evolutionary algorithms [47]. He asserted that using ele-
mental distance functions in calculating a landscape (a random one-flip hypercube
in binary problems, for example) might not produce topological features which mir-
ror the features generated during optimisation with multi-operator algorithms. His
answer to this was captured in a new model: that the landscape is characterised by
a graph: G = (V, E) and a vertex v ∈ V is this time a multi-set of configurations.
Those are assigned a mapping, f (v), from configuration to fitness. An edge e ∈ E
is traced between multi-sets (v1, v2) if the probability of v1 transforming to v2 after
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using a search operation op is greater than zero, and e is labelled with that proba-
bility. This landscape paradigm is congruent with operations which produce more
than one solution because multi-sets form the vertices.

While admiring the flexibility of this approach, in this thesis I consider instead
the more widely-used assertion by Stadler [1] that a fitness landscape has three ele-
mental parts: [S,N , f ], where S is the set of all possible configurations;N : S−→2|S|

is the notion of adjacency between solutions; and f : S −→ R is the mapping from
solutions to their fitness.

2.5 Local Optima Networks: Background & Definitions

2.5.1 Complex Networks

A complex network [48] consists of a set of elements, which are called nodes, and
the connectivity between them, which are the edges. Networks can be directed —
which means that edges have an orientation and relate to a source and destination
node — and they can be weighted, which means that edges take on a weight typically
associated with strength or likelihood of connection.

The definition is sufficiently abstract and generic that systems from markedly
different fields can be captured with the model and analysis methods can be shared.
Well-known examples include neural networks in the brain; social networks on me-
dia sites; the internet; the spread of disease; routes taken by food delivery trucks;
and nurses visiting patients at home.

Metrics. There are a wealth of metrics which have been proposed for and com-
puted on complex networks. These can be useful in offering insight into network
behaviour and dynamics, or in the classification or categorisation of networks. A
comprehensive taxonomy is available [48] and this serves as the fundamental infor-
mation source for the following descriptions.

The most intuitive features include the number of nodes, the number of edges,
and the edge-to-node ratio. The number of nodes indicates the size of the network;
the number of edges, how densely connected it is; and the edge-to-node ratio, how
many connections nodes typically have.

There are a family of features which relate to the degree of nodes. This means
the number of connections that they have. In a directed network, the in-degree is the
number of edges which are directed towards the node. Out-degree is the outgoing
edges. Where the edges are weighted the weights can be considered, which pro-
duces a weighted in-degree and weighted out-degree. While degree features can give
information about individual nodes, often the mean is calculated across the whole
network. Other metrics include the assortativity, which is the extent to which nodes
which are similar are likely to be connected to each other; the clustering coefficient
(the likelihood that neighbours of a node are also connected to each other); the di-
ameter, i.e. the longest path between two nodes (the network width); and measures
concerning self-loops (where a node is connected to itself).

2.5.2 Local Optima Network Model

Local Optima Networks (LONs) [11] are a fitness landscape tool dedicated exclusively
to local optima and their connectivity patterns. In the model, we have a complex net-
work LON = {V, E} where V are the local optima. Local optima have surrounding
basins of attraction [49], which means that members of the basin will be transformed
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to the local optimum after local search. The E encode connectivity potential between
the V. LONs have gained research traction and attention and have been extracted
for NK Landscapes [11, 50, 51, 8]; Quadratic Assignment [52, 5, 53, 15]; Permutation
Flowshop Scheduling [54, 12]; Travelling Salesman [55, 19]; Number Partitioning
[56]; feature selection [14]; Genetic Improvement problems [57, 58]; computational
protein design [59]; in multi-objective optimisation including pmnk-landscapes [60,
61]; resource-constrained project scheduling [22]; in continuous optimisation [62, 63,
64]; for MAX-SAT [65]; for inventory routing [20]; and for parameter configurations
[66].

Initially, LON edges captured basin of attraction adjacency [11, 50, 52]: there
is an edge traced between the local optima for basins bi and bj if there is at least
one solution s1 in basin bi which is a single search operation apart from a solution
s2 in basin bj. Edge weights are basin transition probabilities; that is, the average
probability prb for s1 in bi to transform to s2 in bj:

prb(bi → bj) =
1
] bi

∑
s1∈bi

prb(s1 → bj) (2.3)

where ] bi is the size of basin bi. The edges in this design are called basin-
transition edges. The effect of pivot rule during the construction of basin-transition
LONs has been studied [67]: first-improvement for enumeration of basin-transition
edges results in densely connected LONs, although the probabilities encoded in the
LON are often diminutive. That means that those search trajectories are not proba-
ble. Using best-improvement produces sparse LONs containing shorter paths to the
global optimum. In the study, these had comparatively more heavily-weighted self-
loops, which means that search algorithms are more likely to become trapped within
the sphere of a local optimum. Extracting basin-transition edges is computationally
expensive and as I mentioned the process leads to dense, almost complete LONs
and these are challenging to study for any meaningful structure [67, 52]. This led to
the development of an alternative sort of edge: escape edges [4]. Escape edges are
calculated with respect to two parameters; the first is a distance function (a search
operation) defining connectivity between solutions, d, and D is the maximum appli-
cations of d separating two solutions which form a LON edge.

An escape edge e ∈ E is traced between LOi and LOj if there is a solution s
satisfying the conditions d(s, LOi) ≤ D and h(s) = LOj, where h(s) is the function
mapping s to a local optimum with best-improvement hill-climbing. The weight of
e is the number of solutions satisfying this condition, i.e. ]{s ∈ S | d(s, LOi) ≤ D
and h(s) = LOj}, taken as a proportion of reachable solutions at this distance i.e. the
probability of "escape".

2.6 Fractal Geometry & Fractal Dimension

The notion of a Fractal Dimension (FD) for patterns was conceived by Mandelbrot
[68] and is defined as a complexity index which captures how the detail in a pattern
changes with the resolution used to measure it. The fractal dimension can be com-
puted as the ratio between the natural logarithm of the extent of detail observed and
the natural logarithm of the scale used to measure it:

fractal dimension =
ln(detail)
ln(scale)

(2.4)



2.6. Fractal Geometry & Fractal Dimension 11

To appreciate fractal dimensions we can begin by contemplating the recognis-
able shapes associated with topological dimension and with classic geometry: a
one-dimensional line; a two-dimensional square; a three-dimensional cube.

These shapes are smooth and simple. In Figure 2.1 we can observe the scaling
complexity for a square. In Figure 2.1a the scale of measurement, m, is the length of
one side. This scale detects the whole square as a single unit of detail. Moving onto
Figure 2.1b we observe that when the resolution is twice as fine four smaller squares
are measured. These are four units of geometric "detail". Similarly, when m is one-
quarter of the length of a side of the square (scaling factor of four; see Figure 2.1c) this
results in the detection of sixteen squares (units of "detail"). In the case of all three
Figures the fractal dimension, which is obtained by inserting the numeric values
for scaling factor and units of detail into Equation 2.4, is two. When rearranged the
Equation stipulates that for a given scaling factor m the extent of detail observed will
be m2. For a square, the fractal dimension matches the topological dimension: this
is a smooth and straightforward shape from classic geometry. Different topological
and fractal dimensions for a pattern indicate the presence of fractal geometry.

m = 1

(A)

m = 1
2

(B)

m = 1
4

(C)

FIGURE 2.1: Units of detail detected under different scales of mea-
surement for a square; m is the measurement scale

In that case, the way detail scales with increased resolution cannot be captured
with topological dimension and the pattern is more spatially complex or less smooth.
An illustrative example can be seen in Figure 2.2 with the Sierpinski Triangle.

Figure 2.2a shows that when m=1 (the length of one side of the triangle) the com-
plete triangle is measured as the only unit of detail. If we increase the resolution
twofold as in Figure 2.2b three smaller copies of the large triangle are now detected.
Fractal dimension can be obtained by solving for the equation m fractal dimension =
detail (this is Equation 2.4 rearranged) and in this case the exponent is not an in-
teger. The equation becomes 2 fractal dimension = 3 which results in a fractal dimension
= ∼1.585.

Fractal dimension analysis can produce and characterise spatial and geometric
information about real-world complex systems. It has been used, for example, in en-
gineering for detecting cracks in plate structures [69]; in biology for characterising
the tortuosity of animal trails [70]; and also in medicine for characterising mammo-
graphic patterns [71] and detecting colon cancer [72]. A pattern which has fractal
dimension higher than its topological Euclidean dimension contains fractal geome-
try [73]. A multifractal system [74] requires more than one fractal dimension due to
spatial heterogeneity (together the dimensions form a multifractal spectrum), which
means that the scaling of the pattern detail follows different rules in different parts
of the pattern.
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m = 1

(A)

m = 1/2

(B)

FIGURE 2.2: Units of detail detected under different scales of mea-
surement for a Sierpinski triangle; m is the measurement scale. The
pattern has topological dimension two and fractal dimension ∼1.585

2.7 Statistics

I now detail some of the statistical metrics or methods which are used in the experi-
mentation conducted for this thesis.

2.7.1 Linear Regression

Linear regression is used to obtain information about the relationship between one
or more predictor variables and a dependent (response) variable [75]. Where there is
a single predictor, this is single linear regression; the use of more than one predictor
is multiple linear regression.

Linear regression requires the assumption that relationships are linear; this is
not always the case with LON features and algorithm performance [60]. Therefore,
although multiple linear regression is used in the thesis it is always used in conjunc-
tion with random forest regression, which models non-linearities well [76] and is
described in the next Section. A caveat of linear regression in the context of the the-
sis contributions is that LON features tend to be correlated with one another (multi-
ple collinearity), which complicates this type of regression. The analysis can still be
useful [17] — although the variation of coefficient estimates may be large [77].

2.7.2 Random Forest Regression

Random forest regression [76] is an ensemble method that computes the average
prediction from multiple individual decision trees, and incorporates both the ran-
dom sampling of observations and also the use of random sub-sets of predictors for
node splits in the trees.

This type of regression is robust to the effect of outliers and also to predictors
which have non-linear relationships [78]. I expect LON feature vectors to contain
outliers and non-linearity [17, 60]; therefore, I use random forest regression in this
thesis for building models for metaheuristic performance prediction and explana-
tion using LON features.

2.7.3 Correlation Coefficient

A correlation coefficient quantifies the extent to which there is an association be-
tween the values of two variables [79]. Pearson’s correlation coefficient is a com-
monly used method [80] which captures a linear relationship. Spearman’s rank coef-
ficient is another, and is based on the rank of observations. Some authors have found



2.7. Statistics 13

Pearson’s correlation coefficient does not perform well with highly non-normal dis-
tributions [81, 82]. De Winter et al. stipulate that Pearson correlation can be suscep-
tible to outliers, while Spearman is more reliable to this end [82]. I use Spearman
correlation instead of Pearson to show pairwise associations between variables in
this thesis. The reasons for this can be summarised:

1. Real-world distributions often contain noise [83];

2. The distributions for LON features are frequently non-normal — this can be
observed in plots within the contribution Chapters of this thesis — and Spear-
man correlation is non-parametric, meaning it does not make assumptions about
the distribution (such as the normality assumption).

2.7.4 R2, Marginal R2, & Conditional R2

The R2 is the proportion of variation in a response variable which is explainable
using predictors in a model [84] and for multiple regressors is computed as the cor-
relation coefficient between the response values and the predicted values, squared.
R2 is used as a summary statistic for models in the thesis contributions.

A mixed-effects model is one where random effects, which are derived from ob-
servations belonging to particular categories, are controlled for. The R2 in this case
is in the form of the Marginal R2, which is the amount of variation explained after
the random effects have been accounted for, and the Conditional R2 — the amount
explained if including the random effects. These metrics are involved in this thesis
as summary statistics when I use mixed-effects modelling.

2.7.5 P-value

A p-value [85] describes the probability of a relationship occurring by random chance
and not because of a genuine trend (i.e., the probability that the null hypothesis is
true). It follows that lower values are desirable and the generally-accepted maxi-
mum threshold for indication of statistical significance seems to be 0.05 [86]. Never-
theless, a p-value of less than 0.05 does not mean that the null hypothesis is definitely
false; as an example, p = 0.01 means that there is a 1% chance of getting the observed
value if it is indeed true (that is, there is no statistical significance). In this thesis,
p-values are computed with respect to the Spearman correlation between pairs of
variables and for predictor coefficient estimates in models.

2.7.6 MSE: Mean Squared Error & RMSE: Root Mean Square Error

The mean squared error (MSE) [87] is a quality metric for models and is calculated
as the mean difference, squared, between the predicted values and the true values.
Similarly, the root mean square error (RMSE) [88] is the square root of the MSE and
comes in the same units as the response variable. MSE and RMSE are used at appro-
priate points in the incumbent analysis as indicators of regression model quality.

2.7.7 Bootstrapping

Bootstrapping [89] is a technique used to estimate the true value for a statistic through
random sampling with replacement. Subsets of observations are taken from the sam-
ple and the value for the chosen statistic is computed for that subset. Bootstrapping
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is useful to infer properties about the population while employing only the informa-
tion present in the sample at hand; it is used to estimate linear and random forest
regression model statistics presented in this thesis.

2.8 Summary

The concepts which have elementary roles within contributions of this thesis are
now properly defined. In the next Chapter I review and critically analyse relevant
and related literature, with the aim of carefully contextualising the location and sig-
nificance of the work in the contribution Chapters that follow.
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Chapter 3

Literature Review

With fitness landscapes described and retaining the lucidity of the metaphor in our
minds, I will begin to document the topological features which have been studied
in computational landscapes. Section 3.1 describes a collection of prevalent features.
Section 3.2 is for Local Optima Networks (LONs) in particular, followed by Section 3.3
which concerns LON construction algorithms. Works relating to funnel-like organ-
isation of local optima, which is involved in the thesis contributions, follow in Sec-
tion 3.4. This begins with a history of the definition for funnel, followed by criti-
cal analysis of studies which employ the definition used in experimentation within
this thesis (Section 3.4.1). Similarly, literature on fractal geometry in the context of
fitness landscapes is described in Section 3.5 with directly-relevant works critically
analysed. The final Section concerns general landscape analyses for either explana-
tion or prediction of algorithm performance (Section 3.6), and then LON analysis
for those same purposes (Section 3.7). There is a conclusive passage (Section 3.9)
which clarifies the placing of the thesis in the relevant literature before moving to
the contribution Chapters.

3.1 History of Landscape Features

3.1.1 Ruggedness

The demarcation of landscapes [29] brought two associated spatial features which
are still used today: auto-correlation and correlation length. Auto-correlation captures,
for solution pairs, correlation between fitness and distance of the solutions. An ap-
proximation for the distribution is obtained through random walks on the land-
scape. In a correlated landscape, similar solutions (close together with respect to
the distance function) have similar fitness. Although auto-correlation is a scalar —
the mean correlation at a defined distance λ — the coefficient can be plotted against
increasing values for λ. The correlation length is the maximum value for λ where
there is fitness correlation for solutions separated by λ steps of the distance func-
tion. Autocorrelation and correlation length both require the assumption of statis-
tical isotropy, in that the statistics are independent of the starting point of the ran-
dom walks. The two metrics capture how rugged the landscape is at a low level. A
subsequent study [90] stipulated that a single value (such as auto-correlation or corre-
lation length) is insufficient in estimating ruggedness and proposed amplitude spectra
to this end, an approach which produces a whole spectrum of landscape informa-
tion. They found that amplitude spectra characterised ruggedness well and noted
that correlation length can also be computed from the spectra results. Amplitude
spectrum representation of landscapes has also been used to propose five associated
features [91]. A spatial-domain fitness landscape framework has been proposed for
characterising ruggedness too [92]. In the model, multi-dimensional configurations
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are mapped to integer values; those are displayed using a technique for visualising
3D terrain called Digital Elevation Modelling. The slope of the dimension-reduced
object can be used as a measure of ruggedness and the neutrality ratio to quantify
landscape neutrality.

A fresh perspective on ruggedness was proposed and instrumented [93] using an
information-theoretic lens to view fitness landscapes. Associated metrics are based
on the minimum amount of information needed to describe a random walk. Slopes
encountered during a walk are represented by a time-series of symbols. A symbol
represents a particular gradient. If fitness stays constant for every step of the walk, a
single symbol can encode the entire walk. A sequence of symbols can be studied for
the number of distinct symbols and how many switches in symbols were necessary.

Four ruggedness metrics were introduced which use the symbol sequence method,
all of which capture the amount of variance in the walks. The features are the infor-
mation content; partial information content; information stability; and density-basin infor-
mation. Information content is the number of distinct symbols needed to describe
the walk; partial information content is the number of adjacent symbol changes (as
a proportion of the walk length); information stability is the most dramatic gradi-
ent change on the walk; and density-basin information is the probability of adja-
cent symbols in the sequence being the same, and therefore captures the degree of
smoothness and neutrality. Landscape information was also considered in a sep-
arate study [94] which argued that fitness landscapes do not sufficiently capture
quantity and quality of information which can help steer optimisation. They pro-
posed information landscapes as an alternative paradigm to fitness landscapes. These
have three ingredients [S,N , t], with S the set of configurations, N the neighbour-
hood relation, and t is a function producing the probability that one configuration
is more favourable than another. The function used to calculate solution ranking in-
volves the probability of the solution being transformed to the global optimum with
a search operation. Information landscapes were used to predict the performance of
a genetic algorithm before actually running it in the study; however, they have not
gained traction in the research community.

3.1.2 Local Optima and Basins of Attraction

Basins of attraction are important structures found in fitness landscapes [95]. These
are sections of the solution set from which hill-climbing can result in transformation
to a particular local optimum [96] (local optima are also sometimes called attrac-
tors). Basins of attraction can be classified as strong or weak [97]. Strong basins
are unconditional: hill-climbing from a basin member will always terminate at the
local optimum regardless of the operator applied. Applying hill-climbing within a
weak basin, contrarily, may or may not result in convergence to the local optimum.
Whether the local optimum is reached depends on the algorithmic process and op-
erators.

Cataloguing local optima and their basins of attraction is a notoriously expen-
sive task [98]. One study managed to demonstrate that their method for local op-
tima estimation is computationally efficient [99]; they used random sampling and
steepest-ascent searches. An alternative was provided in a later study [100]: their
approach used confidence intervals, concerning the probability of all local optima
being found and also for estimating the number of local optima. Hernando et al.
[98] implemented two techniques for estimating the basin of attraction sizes. The
first technique samples solutions randomly and calculates how many are assigned
to a particular local optimum; the other samples solutions at a set distance from a
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particular local optimum to see how many of those are assigned to it. Along a sim-
ilar vein, an empirical comparison has been conducted between two local optima
estimation algorithms [101], with results suggesting that simple random sampling
is best where there is no prior information about the landscape. A metric called the
escape-rate measure was proposed [30] for gaining a snapshot of the basins of a fitness
landscape. The principle is straightforward: several attempts are made at escaping
the attraction towards a local optimum, thereby estimating the number and distri-
bution of local optima.

3.1.3 Neutrality

Neutrality is a property of landscape anatomy which is often encountered by heuris-
tic search algorithms. Two solutions are neutral if they have the same fitness eval-
uation. If they are adjacent then they are called neutral neighbours [102]. The neutral
degree is the proportion of directly adjacent neighbours of a solution with the same
fitness. Sampling the neutral degree of solutions can be a good indicator of the extent
of neutrality present. An easy way to do this is with neutral walks; the use of these
as a landscape analysis tool crystallised in [103]. Neutral walks allow exclusively
steps with no fitness gradient. The result of a neutral walk is a scalar: the length
of the entirely neutral path through the landscape. A neutral landscape must have a
significant proportion of neutrality between neighbouring configurations [103].

A plateau is a sequence of neutral neighbours; that is, a path of adjacent solutions
with the same fitness [102]. A plateau is also sometimes called a neutral network [104].
It has been noted that Local Optima Plateaus can occur [102], and that to escape a sub-
optimal plateau a neutral walk must be conducted in search of a portal solution,
whose neighbour has superior fitness (and thus is not a member of the plateau).

One study built neutral networks (plateaus) to tackle problems which give rise
to uninformative, highly uncorrelated fitness landscapes [105]. Another proposed a
collection of metrics calculated from neutral networks (plateaus) [106]. This set of
features taken together can reflect the overall neutral nature of the fitness landscape.
Among the features are the mean fitness improvement upon escape from a plateau,
the mean neutrality ratio, the non-improvable solutions ratio and the profitable and
unprofitable mutations ratio.

3.1.4 Evolvability

Evolvability is concerned with the capability of a population to evolve towards better
fitness. There are several methods proposed for quantifying this. The term search-
ability has also been used in evolutionary algorithm research to allow inclusion of
single-point based methods. An intuitive method for calculating evolvability has
been proposed [107]; it produces objects called fitness clouds. To build a fitness cloud,
a sample of solutions have the fitness of a one-mutant neighbour calculated. The fit-
ness gradients indicate the evolvability of the landscape under the chosen distance
operator. Fitness clouds themselves are plots of the pairwise fitness of the evolu-
tionary pairs (a pair being the original solution and the transformed solution). A
universal view of the landscape evolvability is obtained. Similarly, evolvability por-
traits [108] take a snapshot of landscape evolvability. Solutions are sampled and a
set of evolvability metrics are calculated. These include the probability of improving
mutation and the expected fitness of the mutated solution. The features are plotted
as a function of fitness; this is an evolvability portrait. Along the same vein, the neg-
ative slope coefficient has been proposed [109] as a refined fitness cloud method. The
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cloud is partitioned into fitness levels; from there, the slope between the centres of
adjacent levels is calculated. The negative slope coefficient is the sum of all negative
slopes and the amount of deleterious mutation is captured. Fitness-probability clouds
[110] have also been used for evolvability analysis. Fitness-probability clouds are
similar to fitness clouds; however, instead of fitness-fitness pairs, the plot comprises
fitness-probability pairs. The probability is the likelihood that a mutation will re-
sult in fitness benefit. A related metric is the accumulated escape probability, which is
derived from a fitness-probability cloud: the mean probability of beneficial muta-
tion. A value close to one implies a highly searchable landscape under the chosen
operator.

3.1.5 The Global Structure

Fitness Distance Analysis (FDA) [111] aims to detect the overarching shape in a fit-
ness landscape. During FDA random solutions are sampled and the distance to the
global optimum (or best known solution) is calculated alongside their fitness. The
Fitness Distance Correlation (FDC) is the correlation coefficient of these two vectors.
FDC has been used and cited extensively in investigating whether fitness landscapes
are globally convex (in the case of a minimisation problem) or globally concave (for
maximisation) [112, 113, 114, 115, 116, 117, 19, 59, 118]. A high FDC indicates an
organisation of solutions which has been termed the big valley [119], where the fit-
ness of a solution is correlated with its distance to the global optimum. The big
valley phenomenon has alternatively been called a bowl, a massif central (for maximi-
sation problems), or a funnel; the notion of funnel is properly elucidated in Section
3.4 shortly.

Although FDA has been consistently popular as a landscape analysis tool, it is
not without shortcomings. One study showed that a problem which is easy for GAs
had a low FDC; a low FDC is used to infer problem difficulty for a GA [120]. They
found instead that evolvability could predict GA performance, and notably that FDC
calculated using crossover as the distance function could, too.

Other pursuits into global landscape analysis have centred exclusively on lo-
cal optima and their connectivity. This paradigm abstracts away from elemental
distances and fitness gradients. Concentrating on this local optima level or space
with the aim of reducing unnecessary information has been implemented in a study
which extracted properties such as distribution of local optima, the FDC, and the
attractiveness of each local optimum [121].

A separate work, more theoretical in nature, formulated fitness landscapes as
multi-layered objects and level two was the local optima level [122]. The paper as-
serted that acknowledgement of the local optima level as a landscape in its own
right required a definition for neighbourhood or adjacency at that level.

3.2 Local Optima Networks

Having defined LONs already in Chapter 2, I now detail relevant and important
contributions which use the analysis.

Although several LON works have implemented escape edges for mutation op-
erations [4, 54, 19, 123], this is not always the arrangement. Efforts have also anal-
ysed evolutionary recombination edges for LONs [55, 23]. In one study, edges are
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defined according to partition crossover, a specialised operator from the Travel-
ling Salesman Problem literature [55]. Pairs of local optima are subject to parti-
tion crossover and any fitness-improved offspring they produce are retained. Lo-
cal search is applied to the offspring to ensure that they are local optima. An edge
is traced from both parents and is oriented towards the fitness-improved (and now
locally-optimal) offspring. A later work observed a LON setting where edges are
defined according to any of three operations: crossover, mutation, or perturbation
[23]. In that study, an edge is delineated between two local optima, LOi and LOj, if
LOi can be transformed to LOj using one of the three search operations followed by
k-opt local search.

Most contributions in the LON literature use benchmark combinatorial optimi-
sation domains (see for example [11, 52, 8, 19]). LON and landscape analysis in
this thesis is principally conducted on two of them: NK Landscapes and the QAP,
which have been detailed in Section 2.2. NK Landscapes were the original testbed
for LONs [11] and have been proficient for several proof-of-concepts, including the
effect of pivot rule on LONs already mentioned [67], LONs with neutrality [124], the
escape edge model [4], the first venture into using LONs for performance prediction
[17], as the chosen domain for a LON sampling construction algorithm [51] (there is
a segment concerning this type of algorithm later in Section 3.3), and for bi-layer
LONs [16]. NK Landscape LONs have been subject to centrality and cluster analysis
too [125, 8, 126]; the features were used with success to predict Iterated Local Search
algorithm performance on the landscapes (see Section 3.7 for further discussion).

LONs for the QAP were first modelled with basin-transition edges [52]. Some
metrics from the LONs, such as weighted degree, provided differentiation between
problem classes; this being said, it was asserted that the LONs were confusingly
dense, and no statistical link to metaheuristic performance was established.

Later, the LONs were subject to community detection [5] and this revealed more
differences between problem classes: LONs extracted from "clustered" instances
show modularity, while LONs for "uniform-random" instances had no such struc-
ture. A much larger set of QAP LONs were generated the following year [21].
The topological features were used to predict algorithm performance. That study
is highly relevant to the contributions presented later in this thesis, and is therefore
discussed further in a dedicated Section concerning LON performance prediction
(Section 3.7).

The QAP has also been a testing ground for LON construction algorithms [7, 24,
25]. These consider the escape edge LON model and define the edges according to
perturbation operations. The algorithms are described in detail next in Section 3.3.

3.3 LON Construction Algorithms

3.3.1 Exhaustive Enumeration

The initial LON construction algorithm fully enumerated the basins of attraction to
calculate basin-transition edges, and that schema has been used many times [11, 124,
52, 21, 8, 22]. The algorithm runs, from every possible solution, a best-improvement
local search to obtain the mapping to a local optimum. The local search operations
used are elemental; a single bit-flip for NK Landscapes, which are binary-encoded
[11] and a pairwise exchange in the permutation strings representing QAP or re-
source scheduling solutions [52, 22]. It follows that the constructed LON consists
of best-improvement local optima for nodes, and basin of attraction adjacency for
edges. Edges are weighted with probability of basin transition.
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As mentioned in Section 2.5, escape edges are an alternative edge model for LONs.
The study that designed them [4] also algorithmically extracted them starting with
best-improvement local search to find local optima. An escape edge e is delineated
when there is a solution s which is at a distance of maximum D applications of d
away from a local optimum LOi, and where s is within the basin of attraction of an-
other local optimum LOj. Although the proposal paper conducted full enumeration
for complete LONs [4], I note here that escape edges have a particular pertinence with
respect to sampling for approximate LONs: edge calculation can be augmented with
an existing optimisation algorithm as long as the algorithm contains local search.
The distance function d can be an arbitrary operator (or sequence of operators) and
when its application is followed by local search, the requirements for an escape edge
can be met: the solution s which resulted from maximum D applications of d to
the local optimum LOi is in the basin of attraction of local optimum LOj and will
transform to it following local search.

The suitability of escape edges for sampling, especially using existing domain-
appropriate algorithms, seems to have established their place as the more popular
of the two edge models [7, 19, 23, 123, 25, 24]. Escape edges have also been used in
exhaustive enumeration, however [56, 127, 14, 15].

Exhaustive enumeration of LONs in the beginning was essential to establish
them as a useful tool and for testing analysis techniques on the networks. Unfor-
tunately, due to computational expense, exhaustive enumeration limits analysis to
problems which are diminutive in size compared to most "real-life" situations. For
NK Landscapes, this is approximately N=18 (binary strings of length 18) and for
the QAP, N=11 (11 facilities assigned to 11 locations). To properly prepare LON
analysis for prospective "real-world" problems, it is critical we develop intelligent
construction algorithms for sampling.

3.3.2 Sampling

In pursuit of modelling large combinatorial fitness landscapes as LONs, sampling
algorithms which produce approximate LONs have been proposed [51, 7, 19, 24,
25, 127]. The first such algorithm was instrumented on NK Landscapes [51], where
a previous work provided the set of local optima for nodes in the LON. In the al-
gorithm, first-improvement local search begins from random solutions 10,000 times.
For each candidate solution during this process the basin of attraction membership is
ascertained. If the mapped local optimum is within the predefined local optima set,
empirical basin-transition probabilities are updated inside an adjacency matrix. In
this way, a LON is constructed which reflects the empirical dynamics of hill-climbing
with restarts.

A follow-up study introducing a sampling algorithm for QAP LON extraction
appeared the same year [7]. This method identifies the nodes (that is, the local op-
tima) by applying first-improvement hill-climbing to 2000n random starting solu-
tions (n being the problem size). The connectivity between the resultant local optima
is estimated by perturbing the local optima and then hill-climbing again for each of
them 20n2 times; if the obtained local optimum is also in the node set, an edge is
added to the LON. Edges are weighted with the probability of transformation, that
is, the frequency that source local optimum LOi was transformed to destination local
optimum LOj. This construction algorithm framework was also used for the Travel-
ling Salesman Problem later [13].

Another algorithm for the Travelling Salesman Problem augmented a search al-
gorithm with LON construction, such that they are concurrent [19]. A competitive
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ILS heuristic for the domain, Chained Lin-Kernighan (CLK) [128], is the base algo-
rithm. During optimisation, nodes and edges are registered as they are encountered
by CLK. This construction strategy has appeared in implementations for the QAP
[24] and MAX-SAT [65] as well; in each case LON building is augmented with an
ILS algorithm for the problem domain. ILS-based LON algorithm systems begin r
independent ILS runs from random solutions. Runs are terminated after t iterations
with no improvement. Local optima which are reached form the node set. Trajec-
tories between local optima using perturbation then local search form the edge set.
The nodes and edges from r runs are amalgamated to construct a single LON for
the problem instance. ILS is not the only heuristic this is possible with. In fact, a
LON algorithm which uses Generalized Partition Crossover (a highly effective recom-
bination operator) was proposed [23] for the Travelling Salesman Problem and then
used again for NK Landscapes [129].

A comparatively more divergent procedure is called Snowball Sampling (SS)
[25]. Instead of recording the movements of an optimisation algorithm, SS conducts
a random walk on the local optima space. Local optima are identified by a best-
improvement local search. From each local optimum on the walk a recursive local
optima neighbourhood exploration occurs, i.e. local optima neighbours of local op-
tima are identified. The probing is done with random mutation followed by local
search. A separate and distinct algorithm for approximating LONs [127] has been
applied to NK Landscapes. The approach reduces the amount of computation dur-
ing construction by retaining previous mappings from solutions to local optima in
memory. The resulting LONs are samples because local search does not run from
every possible configuration. Aside from this and the efficiency modification the
algorithm resembles a reduced version of the exhaustive algorithms seen in earlier
studies [11, 4]. The framework has also been used to compute feature selection prob-
lem LONs [14].

3.4 Funnels

Funnel-like organisation of local optima has been observed in the study and visu-
alisation of physical energy landscapes [130, 131]. Funnels have alternatively been
called super-basins [132] or barrier trees [133].

Organisation of local optima has also been considered for computational fitness
landscapes. One study theoretically mapped basins of attraction at different "levels"
[122]. The local optima of the local optima were called "local minima at level two",
and it was stipulated that a suitable neighbourhood structure must be defined for
each level within this multi-level fitness landscape paradigm. "Level two" in the
model resembles later and more explicit proposals for the characterisation of fun-
nels [134, 56] (see Section 3.4.1). A more empirical definition for fitness landscapes
[135] considers a funnel to be an overarching structure leading down to the global
optimum. In the paper, it is argued that funnels merit more consideration during
the design of optimisation algorithms. Physicists introduced and solidified the con-
cept of funnel the same year [131], in terms of local minima and saddle points in
energy landscapes. Studying the phenomenon of communities of local optima was
later proposed as a procedure for identifying local optima organisation [5]. A later
work suggested mapping funnels directly using communities [8], arguing that they
are equivalent.

A separate empirical study detected multiple funnels in high-quality landscape
regions of Travelling Salesman Problem instances [119]. The bottom of the funnels
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(termed funnel floors) are judged to be the final solutions obtained from runs of CLK.
From the funnel floors, neighbouring local optima are searched for. These comprise
the funnel that surrounds the funnel floor. This schema has also been used in a later
study on multiple funnels [136].

A further interpretation of funnel organisation [134] stipulates that a funnel is
‘the set of configurations that reach the global minimum by iterating exits from gra-
dient basins over the lowest gradient saddle.’ That paper asserts that funnel mem-
bers are local optima from which there is an ever-improving path directed towards
the global optimum. The authors also considered the funnel-partitioning of a land-
scape, thereby acknowledging the existence of sub-optimal funnels.

A novel set of features which can classify a landscape as either funnel or random
was proposed for real-valued optimisation problems [137]. The features are taken
from a 500n (where n is the problem dimension) function evaluation sample. The
feature analysis has the underlying assumption that funnel landscapes will contain
a multitude of paths directed towards the highest-quality local optima. The defi-
nition for funnel in the study does not seem to consider bi-funnel or multi-funnel
landscapes as being within the funnel landscape class.

3.4.1 Recent Advances

I will now directly contextualise the funnel feature analysis which is involved in
this thesis by addressing closely-related research papers. Coarse-Grained Barrier Trees
were proposed to represent fitness landscapes at the level of local optima clusters
[138]. The technique identifies barriers between clusters. The barrier tree is analo-
gous to funnel-like organisation, where local optima are connected within their own
funnel but have less or no reachability to other funnels. Indeed, a funnel was con-
sidered to be equivalent to a connected component of local optima in a related study
[19]. Funnels have been visualised and conceptualised in three dimensions to assess
how local optima fitness relates to their organisation in space [139]. Soon after that
paper, a more rigorous definition for funnels in combinatorial optimisation was pro-
posed [56]. Monotonic sequences of local optima are extracted from LONs. These are
paths of local optima with only fitness improving gradients (W.R.T the search oper-
ation used to define the edges in the LON) between them. The termination points of
monotonic sequences are sinks. These are also the nodes in a LON with no outgoing
and improving edges. Collections of sequences which terminate at the sinks are ex-
tracted using breadth-first search on the LON, beginning from the sink nodes. The
blueprint for calculating and defining a funnel has been used several times since its
proposal [140, 123, 24, 141, 14, 65] and I use this paradigm for the funnel analysis
conducted in this thesis.

A related study uses the monotonic sequencing model in order to crystallise
our understanding of funnels in the landscapes of Travelling Salesman Problem in-
stances — differentiating between attractors and funnel floors in doing so [142]. At-
tractors, it was stipulated, are the final solutions obtained from runs of a metaheuris-
tic, which were termed "funnel floors" in previous literature [119]. Recently, a study
identified sub-optimal funnels or clusters (they use the terms interchangeably) of lo-
cal optima near the global optimum in computational protein design [59]. Although
there was no formal definition for funnels or clusters provided, these were observed
through visual inspection of LONs and from statistical features of the networks. The
authors confirmed that search transitions between clusters were unlikely and, as
such, the existence of funnel structure was implicitly identified.
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A space in the literature exists concerning precisely how funnels are related to
metaheuristic algorithm performance. Some preliminary steps forward have been
made [123, 24, 14]. One paper found links between search difficulty and both the
number of funnels and the size of the optimal funnel using correlation analysis [123].
Interactions between variables were not considered. Similarly, another work argued
that there was a correlation between search and the attractiveness and also size of
the optimal funnel through visual inspection of distribution plots [24]. A paper the
same year noted that a problem instance whose landscape exhibited several sub-
optimal funnels also had a low metaheuristic success rate [141] but did not compute
statistics to this end. In this thesis, I use techniques which consider interactions be-
tween variables — and also non-linear relationships — to capture the contributions
of funnel features to the prediction and explanation of metaheuristic performance. I
argue that this approach is necessary for illuminating our understanding of the role
funnels play in fitness landscapes and optimisation.

3.5 Fractal Geometry in Landscapes

Recalling and retaining the preliminaries concerning fractal geometry from Chap-
ter 2, I note that the idea of fractal geometry in fitness landscapes of optimisation
systems dates back to 1991 [143] when simulated annealing was proposed for use
on fractal energy landscapes. Soon after, in evolutionary computation literature, a
relationship was drawn between the correlation length (see Section 3.1.1) of Travel-
ling Salesman Problem landscapes and metaheuristic algorithm success, although
this was done only in conjecture. The authors noted that the autocorrelation function
is related to fractal geometry, and also that Sorkin’s definition for ‘fractalness’ in
landscape systems [143] is related to fractal dimension.

A later study stipulated that there is fractal geometry in a fitness landscape topol-
ogy if the correlation length (see Section 3.1.1) is proportional to the landscape diam-
eter (i.e. the maximum distance between solutions) [144]. That study considered the
elemental neighbourhood function for the problem and therefore analysed its most
basic fitness landscape. As such, the deductions concerning structure were not de-
rived from a metaheuristic-induced fitness landscape. Mentions of fractals in fitness
landscape analysis literature were sparse for a time, although one study contained a
remark that considering fractal structure in landscape analysis and subsequent de-
sign of algorithms could be important [113]. The idea was not implemented as part
of their study. Several years later fractal analysis was included as part of a dynamic
fitness landscape study on the targeting of chaotic systems [145]. The fractal analy-
sis method was visual inspection of hierarchical zooms conducted on a 2D depiction
of the landscape, before calculating the ratio between detail and scale, i.e. fractal
dimension (refer to Section 2.6 for the full definition).

Fitness landscapes of a targeting problem have also been viewed with a fractal-
geometric lens [146]. The analysis considered how features of landscape ruggedness
(correlation length and information content, see Section 3.1.1) transform under different
scales of measurement. The results showed that the fitness landscapes involved were
indeed fractal and the landscape features were scale-invariant. The findings were not
linked to metaheuristic performance and were limited to a single problem domain.
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3.5.1 Fractal Geometry at the Local Optima Level

The fractal analysis contributions presented in this thesis are contextualised within
the literature in this Section. Works which are directly related to the contributions
are critically analysed.

A study on fitness landscapes of the graph bi-partitioning problem included frac-
tal analysis [121]. Notably, the focus was exclusively on the local optima level —
as is the case in this thesis. An investigation into the big valley structure of local
optima was presented. FDA of local optima sub-spaces was used in experiments
to show that the overall local optima level conforms to the same pattern as sub-
spaces of it (i.e. funnel-like organisation). The analysis carried the cardinal assump-
tion that local optima form a single big valley or funnel and tested only seventeen
problem instances. They considered the elemental hamming distance function for
defining space between solutions. Later on in this thesis, in the contributions Chap-
ters, an alternative paradigm for fractal analysis of the local optima level is intro-
duced, where the spatial layout is according to metaheuristic search paths. In the
previously-mentioned study [121] sub-sets of sampled local optima were tested for
funnel-like organisation (i.e. whether the central local optimum also had the best
fitness). Indeed, most of them did; this implied the existence of a higher-level global
funnel structure. Positive correlations were shown for fitness and distance within
local optima sub-sets although those only had an average correlation of around 0.56
compared to a global average FDC of 0.84. The authors do not address the correla-
tions being less pronounced in smaller sub-spaces of local optima. The discrepancy
between the correlation strengths raises the question of whether sub-sets of local op-
tima really mimic the universal spatial pattern. The pattern may not actually be a
single funnel replicating, and treating it as such might miss a multiple funnel pat-
tern. The study does identify clusters of local optima which are distant from the
global optimum and speculates on the existence of sub-optimal funnels, possibly
contradicting the assertion of fractal replication in the form of single funnel struc-
ture. The landscape analysis was not backed up with direct empirical comparison to
algorithm performance. Fractal dimension was not part of the fractal analysis. The
work in this thesis includes fractal analysis on the local optima level captured as a
complex network and is conducted on both single-funnel and multiple-funnel land-
scapes. The method of fractal analysis is new for the local optima level (box-counting
for a fractal dimension, i.e. index of spatial complexity) and local optima layout
reflects sequences of metaheuristic search operations rather than fitness landscapes
according to elemental distance functions. The relationship of fractal complexity of
the local optima level to algorithm performance is, in addition, directly and empiri-
cally established using predictive modelling.

Another paper which is essential for properly contextualising this thesis took the
position of viewing fitness landscapes with a hierarchical lens and separated them
into levels [122]. For each level there is a single local optimum at the bottom (as-
suming minimisation) and a level-specific distance function for defining solution
connectivity. All levels therefore exhibit the same topological structure, which im-
plies fractal geometry. In dividing the landscape this way the local optima level is
considered and referred to as level two by the author. He remarks that if there is more
than one local optimum on level two (in funnel terminology these are called funnel
floors or sinks, see Section 3.4) this will present problems for metaheuristic algorithm
performance, although this stipulation was based on speculation.

A few years later, artificial fractal landscapes were created [147] and it was demon-
strated that a locust swarm algorithm is proficient for optimisation on this type of
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landscape. The authors propose this algorithm where there are multiple funnels,
asserting its success as being related to the mechanisms not focussing solely on his-
torical fit solutions (convergent search behaviours). A limitation to this study is that
the generated landscapes are precisely self-similar (i.e. parts of the landscape exactly
resemble the whole), which is a situation unlikely to arise naturally in real-world
problems or even in other synthetic problems where the fractal geometry has not
been specifically enforced.

3.6 Landscape Geometry & Metaheuristic Performance

An essential component of the evidence provided in the contribution Chapters of
this thesis involves the relationships between fitness landscape features and algo-
rithm performance on the underlying combinatorial problem. In particular, exper-
iments contain regression models to help explain or predict metaheuristic perfor-
mance. The following Section describes works where fitness landscapes have been
used in this way. There are a great many papers fitting this description; as such, only
a representative sample is discussed.

Fitness landscape features which can explain GA performance were identified as
far back as 1992 [2]. Similarly, a study used two well-known search operators for
the Travelling Salesman Problem to build fitness landscapes and compared the FDC
for them [148]. The FDC helped to explain performance discrepancies which had
been observed using the two search operators for optimisation. FDA has also been
conducted on different classes of graph bi-partitioning problems [149]. The FDC
was found to be dependent on problem class, and the authors proposed memetic
algorithm variants for tackling each of those in a landscape-aware manner. TSP
landscapes have also been subject to adaptive walks [150] which provide fitness and
distance information for local optima. In that study, the big valley layout was subse-
quently observed and basins of attraction were found to be highly overlapping. The
findings lead the authors to suggest a particular search algorithm to exploit the ob-
served structure: a hybrid GA, which begins with best-improvement local search to
place itself in the big valley and then proceeds with crossover of local optima from
inside the big valley. Landscape geometry has also been deployed in performance
prediction for the algorithms on the QAP using autocorrelation and FDA [32]. The
authors do note, however, that FDA conducted on a completely uncorrelated land-
scape can lead to misleading results. A couple of years later, different landscape
features were chosen to analyse multi-objective QAP instances [151]: the entropy,
the diameter, and number of transformations from a starting solution to a local opti-
mum. They found that the correlation between fitnesses of local optima can be used
to suggest appropriate search strategies. Another means of landscape analysis was
proposed in 2004 [30] where a random walk begins from a local optimum and pro-
ceeds towards another local optimum. Metrics taken from this walk were shown to
explain the superior speed of crossover against mutation on the problems studied.

A more recent study examined the landscape geometry activated through the
use of two search operators and related it to the performance of algorithms which
use those operators [152]. They extracted the ‘step length’ (transformations from a
start solution to a local optimum) and the autocorrelation as features. Under one of
the two search operators the landscape had deeper valleys and indeed the results
showed that superior local optima were discovered using this operator.

A sequence of papers aim to explain and predict Particle Swarm Optimisation
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performance using fitness landscape features [6, 153, 154]. They did so with suc-
cess using features such as funnels, gradients between adjacent solutions, and neu-
trality metrics. Landscape analysis has been used to tune a search algorithm in a
study which predicted the optimal termination condition for Ant Colony Optimisa-
tion [155]. Landscape features served as predictors in regression models. Doing so
significantly helped computational costs used by the ACO to reach good solutions.
The features included speed of optimisation (fitness gradient from initial solution to
the best known solution) and the acceleration (how quickly fitness improves during
runs).

A contribution to multi-objective optimisation includes fitness landscape fea-
tures in correlation analysis and regression for explaining metaheuristic algorithm
proficiency [156]. Amongst the features are the connectivity of Pareto optimal solu-
tions and the autocorrelation (recall Section 3.1.1 for definition) of the hyper-volume.
In particular, autocorrelation of the solution hyper-volume and local hyper-volume
were found to rank amongst the highest effect-size predictors. An extended ver-
sion of that paper similarly used landscape features as part of a larger set [157] in a
correlation study and mixed-effects regression models for predicting algorithm per-
formance. They found and emphasised that ruggedness and multimodality appear
(from the analysis) to have an important effect on evolutionary multi-objective algo-
rithms. A recent contribution concurs [158], implementing random forest trees for
algorithm performance prediction, and additionally emphasises the salient need for
a vector of features for describing a landscape instead of one or two.

There is a sequence of works which concern the study of Exploratory Landscape
Analysis (ELA) on continuous functions [159, 160, 137, 161, 162]; while the earlier
works classified problem instances using observed features, later ones moved to
algorithm selection. Feature sets typically include both fitness landscape features
and those pertaining to the behaviour of the fitness function. ELA has been used
with success in predicting algorithmic proficiency [161, 162].

There are surveys in the field of algorithm selection and prediction [163, 161, 164].
Smith-Miles [163] details relevant works in machine learning, operational research,
and artificial intelligence; she stipulates that much of the fitness landscape research
from the metaheuristic community does not delineate relationships with algorithm
performance directly. Algorithm prediction methods are surveyed and proposed in
another work [164]. Using mostly random forest techniques they accurately predict
algorithm performances. The feature set consists mostly of features derived from
the problem specification and fitness function themselves (i.e. not fitness landscape
features), although one landscape measure — autocorrelation — is included. A re-
cent paper summarises the current state-of-the-art in algorithm selection techniques
[161] and stipulates that local optima work related to large features such as funnels
could be important in the future of the field.

3.7 LON Geometry & Metaheuristic Performance

Contributions outlined throughout Chapters 4-7 of this thesis use LON features to
explain or predict algorithm performance. Literature which is directly relevant to
that is critically discussed now to reveal the path leading to the contributions made
in this thesis.

A few years of purely-descriptive analysis of LONs [11, 52, 4] were succeeded
by studies linking LON features to algorithm proficiency on the problems to which
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the LONs were associated. The first study to use statistics to establish these rela-
tionships focused on small NK Landscape problems and computed features on the
fully-enumerated LONs [17]. These were contrasted with ILS performance on the
NK Landscapes. Using multiple linear regression they showed that four features
could build a strong model for predicting ILS runtime: path length to the global op-
timum, number of outgoing edges from nodes, weight uniformity of the outgoing
edges, and the nearest-neighbours degree correlation.

A study followed for the QAP, again fully enumerating the LONs and extract-
ing features to correlate with SA and GA performance on the QAP instances [21].
None of the considered features had a statistical correlation to GA performance, but
a couple (the number of local optima and the path length to the optimum) correlated
well to SA search difficulty. The variables were considered in a pairwise fashion and
univariate regression analysis was carried out; no combined regression model was
built. Multiple linear regression models have been built in a statistical study which
used features of LONs derived from Permutation Flowshop Scheduling problems
[54] for explanation of iterated local search runtime. Some moderately strong mod-
els were generated, with the average path length to the global optimum dominating
the contributions of predictors.

Then a sequence of studies proposed and analysed PageRank Centrality of the
global optimum in a LON as a valuable predictor to explain ILS performance [18,
165, 126]. PageRank Centrality [166] ranks the importance of a node in a network,
doing so by considering how well-connected the node is and also the quality of the
connected notes (in terms of their own PageRank value). Both basin-transition LON
edges and escape LON edges were included in the studies. Basin-transition LONs
were better-suited to predicting SA performance and escape edge LONs were bet-
ter for predicting ILS performance. Predictions were made using univariate linear
models and they found that the global optimum PageRank within a LON is a good
predictor of algorithm proficiency. There were limitations in these works though:
potentially confounding variables such as the landscape ruggedness were not con-
sidered; nor were variable interactions, and the problem sizes were small.

Correlation analysis has revealed an association between communities in LONs
and metaheuristic performance for NK Landscapes [8]. The number of LON com-
munities and also the size of the community containing the global optimum showed
correlations with ILS performance on the instances. This being said, the study did
not control for the fact that different settings of K (which is the extent of epistasis in
the problem) were used in the instance set. Larger K is known to induce higher
ruggedness and therefore reduced algorithm performance, but this was not con-
trolled for in the analysis. As a result, the apparent binding between LON communi-
ties and metaheuristic performance may not be as it appears. Instead, the instances
with low ILS performance might be difficult because of the higher K and therefore
landscape ruggedness, instead of LON community structure.

Using LONs, one study calculated funnels present within Number Partitioning
Problem fitness landscapes [56] and found that the amount of funnels as well as
the attracting strength of sub-optimal funnels were linked to the phase transition to
a ‘hard’ instance. Instances with many funnels were also those which were in the
‘hard’ problem category. This was deduced through correlation analysis between
funnels and instance hardness.

Another contribution extracted the LONs of Permutation Flowshop Scheduling
problems [12]. Features were tested for correlation with ILS performance on the
underlying combinatorial problem; of particular note in the results were the size of
the optimal funnel and the PageRank of the global optimum.
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Recently, various perturbation strengths were used to morph funnel structures
in landscapes of Travelling Salesman Problem instances [167]. Funnel features of the
LON such as the number of funnels and the size of the optimal funnel) had stronger
correlations to metaheuristic performance than the number of local optima.

As discussed in this Section, the bulk of LON prediction or explanation works
use exclusively correlation analysis (for example [21, 8, 12, 167]) to do so which
carries the inherent risk of disregarding other confounding variables and perhaps
interacting effects. Multiple linear models have been built (see for example [17, 54])
to address this although the authors included a disclaimer that they suspected linear
regression may not properly capture non-linearities in the variables. A recent paper
used random forest regression in multi-objective optimisation with the non-linearity
of LON features in mind [60] and showed the contribution of features such as the
degree of connectedness towards explaining metaheuristic performance variation.

3.8 Genetic Algorithm Theory

Although they are not direct predecessors to the work in this thesis, there are some
wider concepts in the field of genetic algorithms which are related to the study of
fitness landscapes and therefore merit mentioning in brief. These include the prox-
imate optimality principle, which holds that "good solutions possess some similar
structure" [168]. There is also the separation of difficult fitness functions into either
"wide-gap" or "long-path" problems [169] - in "wide-gap" problems, algorithms can
stall at a particular fitness level because ascending through levels is not trivial, while
on "long-path" problems, algorithms traverse a lengthy route to obtain the global op-
timum. The "no free lunch" theorem stipulates that there is no algorithm which is
best for all problems [170]. Also related is the notion of deceptive problems for evo-
lutionary algorithms — these "deceive" searches towards locally optimal points but
not towards the global optimum as intended [171].

3.9 Conclusions & Literature Gaps

The present Chapter has positioned contributions of this thesis within the relevant
literature, and I stipulate that the issues and open questions being addressed are as
follows.

3.9.1 Fractal Analysis on the Local Optima Level

Literature considering fitness landscapes using a fractal lens is scattered, which we
saw in Section 2.6. LONs have not been subject to fractal analysis yet. The Local
Optima Level (LOL) has been analysed with the comparison of FDC for sub-spaces
of local optima to estimate fractal geometry (Section 3.5.1). In that analysis, how-
ever, there were indications that the fractal geometry was not particularly apparent;
in addition, distance calculations were made on the elementary fitness landscape. In
Chapters 4, 5, and 6 distance between solutions is considered with respect to meta-
heuristic search paths and fractal dimension is used to capture the extent of fractal
complexity in a fine-grained manner.

The standard algorithm for fractal analysis of a complex network is box-counting
but this method is agnostic of the semantics of the network, such as the fitness infor-
mation encoded in a LON. This thought precedes motivation to find new ways for
calculating dimension on LONs while respecting the semantics of the network. In
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Chapters 4, 5, and 6 LONs are studied for their fractal complexity and new ways to
define their fractal dimension are presented. LON fractal dimension metrics are used
in regression models to explain and predict metaheuristic algorithm performance on
the underlying problems.

3.9.2 LON Construction Algorithms

For LON analysis to be applied to real problems of large size and complexity, the de-
velopment of intelligent LON construction algorithms for sampling the landscape
is essential. As was evident during Section 3.3 the majority of LON papers fully
enumerate the fitness landscape to construct the LONs. This limits the analysis to
small problems; further, the applicability of associated analysis and observations to
larger problems is not obvious. A direction for future LON research, therefore, is
comparing and testing LON construction algorithms for large combinatorial prob-
lems. A few LON construction algorithms for sampling have been proposed (recall
Section 3.3) although these have not tested sufficiently or compared. The nature of
their sampling biases is not immediately apparent. Chapters 7 provides contribu-
tions which help to illuminate the mechanisms and effectiveness of the construction
algorithms.

3.9.3 LON Features & Metaheuristic Algorithm Performance

Most studies connecting LON features with algorithm performance do so using cor-
relations only, which can miss other confounding variables and interactions. Pre-
dictive models using LON features have been presented previously and these were
acknowledged in Section 3.7; however, the matter of finding a sufficient set of fea-
tures to use as predictors remains, as well as the most appropriate model set-up to
use. Authors have acknowledged there is a need for modelling the complex non-
linearities of LON features. This has been done in multi-objective optimisation (al-
though not single-objective optimisation) with some success [60]; nevertheless, fur-
ther studies with other experimental settings, search operations, and feature sets
would fortify and extend those findings.

Contribution Chapters 4, 6, and 7 in this thesis include linear and random forest
regression. These consider a variety of different predictor collections. Particularly
effective sets of features for use in such models are proposed in Chapter 7 and new
discoveries emerge concerning modelling LON-based algorithm performance pre-
dictions with random forest trees.

3.9.4 LONs of a Constrained Healthcare Problem

Although certain benchmark instances which have been subject to previous LON
analysis are derived from real-world problems, the LON literature for distinctly ‘hu-
man’ problems is lacking. The large majority of studies have involved benchmark
domains instead of specific real-world problems. These works were certainly needed
to provide initial statistical results for LONs: large quantities of problem instances
are required to show their use, and benchmark domains facilitate that. In pursuit
of returning from the abstract, scenarios which are close to humanity should also
be considered. To this end, Chapter 8 extracts and studies LONs for a chemother-
apy schedule optimisation problem. This is a highly-constrained problem, which
presents a new consideration for LON analysis: infeasible regions in the fitness land-
scape.
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Chapter 4

Exploring the Fractal Nature of
Local Optima Networks

As discussed in Chapter 3, there is little literature concerning fractal geometry in
landscapes. This is important because the emergent structure of the landscape can
limit or stall attempts at optimisation by search algorithms. This Chapter presents
a preliminary and exploratory study of fractal analysis on local optima networks.
Empirical experiments reveal relationships between LON fractal dimensions and
metaheuristic algorithm performance on the underlying associated problem.

4.1 Abstract

Recent literature has applied fractal analysis to complex networks. According to the
definitions specified in Chapter 2, a pattern is said to be fractal if a part of it resem-
bles the whole and the fractal dimension is a spatial complexity index which captures
how the detail in a pattern changes with the scale of measure. A high fractal dimen-
sion is associated with spatial convolution. In the upcoming experiments I study the
fractal nature of Local Optima Networks (LONs) for a benchmark combinatorial op-
timisation problem (NK Landscapes). This Chapter contributes results which draw
correlations between fractal characteristics of LONs and performance on the under-
lying combinatorial problem pertaining to three prominent metaheuristics: Iterated
Local Search, Simulated Annealing, and Tabu Search.

4.2 Introduction

Weinberger and Stadler [144] noticed that certain fitness landscapes contain frac-
tal geometry. By increasing the landscape diameter, they asserted that landscape
ruggedness scales in a way which indicates a multilevel self-similar structure, i.e. a
fractal. They conducted random walks at the solution level for their analysis. Con-
sidering the solution level as the elemental or underlying layer of the fitness land-
scape we can also then consider fractal complexity at higher levels of abstraction,
such as the local optima level.

A Local Optima Network (LON) [11] models the local optima level of a fitness
landscape. A network is formed which encodes search path connectivity between
local optima. An edge traced between two nodes means that the destination local
optimum can be reached from the source local optimum by carrying out a chosen
search operation (or sequence of operations). This definition for adjacency repre-
sents the neighbourhood function at the local optima level.
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Fractal analysis of a LON should produce information about the spatial layout
and complexity of metaheuristic search trajectories. Of particular interest is the Frac-
tal Dimension (FD) [172], a complexity index which can assign a non-integer dimen-
sion to a pattern. The index is a ratio between the amount of detail observed and
the scale of measurement used. Figure 4.1 provides examples: both patterns have
a topological dimension of two, and both have a fractal dimension somewhere be-
tween one and two, yet they have markedly different complexities. It can be seen
that Figure 4.1b displays a significantly more detailed pattern composition and I re-
mark that it fills more of the two-dimensional space it is embedded within. The
pattern in Figure 4.1a leaves a lot of empty space because the pattern is not "space-
filling" in nature. It therefore has a low fractal dimension. Another perspective is to
consider how they compare to a one-dimensional straight line. The pattern in Fig-
ure 4.1a has a fractal dimension which is just above one, at 1.1292; indeed, we can see
that the shape is effectively a line with a small amount of extra ruggedness or detail.
Figure 4.1b, contrarily, has a fractal dimension just under two (1.7712). This pattern
appears to have complicated shapes cut out of it and it fills much of the space with
its convolution and detail.

(A) Gosper Island: FD 1.1292 (B) Hexaflake: FD 1.7712

FIGURE 4.1: Two patterns with the same topological dimension but
different fractal dimensions

The advent of complex networks as a stand-alone field has brought a wealth of
innovation, including algorithms for calculating the fractal dimension of a complex
network. One of these is called a box counting algorithm [173] and the aim of the
process is to describe a network using as few "boxes" as possible, with each "box"
containing nodes which are within m network edges of each other. The parameter m
corresponds to the length of measure used in the equation to obtain fractal dimen-
sion and the extent of detail in the pattern is taken as the number of "boxes" required
to cover the whole network when using the measuring scale m.

Because "box counting" is agnostic of the semantics of the network which is sup-
plied, it can be used to calculate the fractal dimension of a local optima network.
However, in a LON, distance between nodes is not the only encoded information.
Node fitness, as well as edge distance, is of great significance in a LON. Accordingly,
a modification of the "box counting" algorithm would be desirable. I implement this
as a constraint for the "boxing" of nodes: the fitness distance between two nodes
should not be more than a specified threshold ε. In this way, only nodes which sat-
isfy both distance and fitness "similarity" criteria can be "boxed". This will, in turn,
affect the eventual computed fractal dimension for the network.



4.3. Background 33

This Chapter is a proof-of-concept concerning the use of fractal analysis on the
local optima level in a fitness landscape. I compute the fractal dimension and asso-
ciated metrics for the LONs of an NK Landscape instance set. The obtained results
suggest a parallel between the fractal geometry in the LONs and metaheuristic algo-
rithm performance on the associated NK Landscapes.

4.3 Background

4.3.1 Fractal Dimension

The experiments in this Chapter aims to delineate a relationship between fractal
detail in LONs and metaheuristic performance on the underlying problem instances.
As stipulated in Section 2.6, fractal dimension is a spatial complexity index capturing
the ratio between detail observed in a pattern and the scale of measurement [172].
To compute the fractal dimension we have the equation

scale fractal dimension = detail (4.1)

which can be rearranged to obtain the ratio between detail in the pattern and scale
of measurement used, i.e. the fractal dimension

fractal dimension =
ln(detail)
ln(scale)

(4.2)

4.3.2 Fractal Complexity in Fitness Landscapes

I mentioned previously that Weinberger and Stadler [144] discovered fractal geom-
etry within certain fitness landscapes. They used the well-known autocorrelation
metric [29] in their fractal analysis and investigated the way it scaled alongside in-
creasing landscape diameter. Several years later Locatelli formulated a fitness land-
scape paradigm [122] concerning multiple layers of abstraction. They termed this
the "multi-level" structure of optimisation problems and noted that it could be ex-
ploited. Viewing landscapes in this way puts them under a fractal lens. Zelinka
et al. demonstrated the potential of using fractal analysis for learning more about
the nature of fitness landscapes [174], focusing on low-dimensional and continuous
spaces. Fractal patterns within LONs, however, have not previously been investi-
gated. A consideration for pursuit of this path is how precisely to define the fractal
dimension: a complex network such as a LON is quite different to topologically two-
dimensional images which are frequently used in fractal analysis. Methods have
been proposed for calculating fractal dimension in the specific case of a network. In
this Chapter a "box-counting" algorithm is used and extended to cater for the specific
semantics of a LON.

4.3.3 Fractal Complexity in Complex Networks

In this Chapter I use a box counting algorithm [173] to compute and define the frac-
tal dimension. This "boxes" together nodes which are within m network edges of
each other, aiming to describe the network using as few "boxes" as possible. The
parameter m is the scale of measurement used and is therefore involved in the calcu-
lation to obtain fractal dimension alongside the number of "boxes" required to cover
the network, which is the amount of detail observed.
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In the specific case of a LON, edge distance need not be the sole consideration
when "boxing" together nodes as merged units of detail. Crucial information about
landscape structure is encoded in the network as local optima fitnesses. "Box count-
ing" while blind to this would ignore fitness differences and may "box" together two
nodes which are connected in the LON but are not sufficiently "similar" to be con-
sidered as a merged unit of detail. I therefore propose an extension to the algorithm,
in that nodes should be "boxed" together if they satisfy both a distance and a fit-
ness condition. More specifically, two nodes LOi and LOj can be "boxed" together
if they are separated by less than m edges and if their absolute fitness difference
| f (LOi)− f (LOj)|< ε, where ε is the maximum allowed fitness distance and f (LOi)
is the fitness of local optimum LOi. Intuitively, the effect of ε should be that it re-
duces the amount of boxing (because the criteria are stricter) and therefore raise the
fractal dimension which is calculated. Stricter (lower) values of ε only allow boxing
of nodes which are similar in fitness, and would presumably result in high dimen-
sions. The impact of the parameter m will be investigated later.

Pseudocode for box counting a LON is shown in Algorithm 1. The notation
MASS(n) represents the quantity of nodes which can be "boxed" using the vertex (lo-
cal optimum) n as a reference point; DISTANCE(LOi, LOj) calculates the distance in
number of LON edges between nodes LOi and LOj; and DIFFERENCE( f (LOi), f (LOj))
produces the absolute fitness difference between LOi and LOj.

In stage one of the procedure, "centre" nodes are initially identified as those
which are the best connected in the network; see lines 7-8. Nodes which are at a
distance of no more than m edges and whose fitness difference with respect to the
centre node is less than ε are then marked as "covered" and are added to the "box"
associated with the centre, as is seen at the if statement execution block beginning
at line 12. Notice from the termination condition for this stage at line 14 that the
process continues until all nodes are either "covered" (i.e. belong to a "box") or they
are centre nodes. That means wherever a node cannot be "boxed" with any of the
centres, it becomes a centre itself and may be the solitary member of a "box" at this
stage. In stage two observe at lines 18-21 that for all nodes the central distances are
calculated; this is — for each node — the closest distance to a centre. Following that,
at lines 25-26, the identity of each non-centre node is switched to that of a neighbour
which is closer to a centre node. The original node is removed.

When the algorithm completes the fractal dimension is taken as the ratio be-
tween detail and the scale of measurement i.e. the number of "boxes" required and
the distance threshold m, respectively. The number of boxes needed is taken as pro-
portion of the network: bp. I insert bp and m as numerator and denominator into
Equation 4.2 to compute fractal dimension for the LON.

4.4 Experimental Setting

4.4.1 Test Problem

I use a benchmark combinatorial optimisation problem in this Chapter: NK Land-
scapes [175]. The instances are from previous literature [11] and are deliberately
small in size, such that a full enumeration of the local optima is possible. This is
particularly necessary due to the introductory and exploratory nature of this study
into fractal analysis of LONs. Here I use N = 18 and K ∈ [2, 4, 6, 8] with 30 instances
for each K, giving a total of 120. The values for K are selected so that the emergent
landscapes are not excessively rugged and therefore too unstructured for analysis (a
higher K produces a more rugged topology).
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Algorithm 1 LON Fractal Analysis
Input: LON, ε, m
Output: number of boxes required

1: Initialisation:
2: centre.nodes← ∅, noncentre.nodes← all.nodes
3: covered.nodes← ∅, uncovered.nodes← all.nodes
4: Stage one:
5: repeat
6: for n in noncentre.nodes do
7: MASS(n)← COUNT(n′ ∈ uncovered.nodes where DISTANCE(n, n′) < m and
DIFFERENCE( f (n), f (n′)) < ε)

8: next.centre← n where MASS(n) == MAXIMUM(MASS(n ∈ noncentre.nodes))
9: for n in uncovered.nodes do

10: distance.to.centre← DISTANCE(next.centre, n)
11: e = DIFFERENCE( f (next.centre), f (n))
12: if distance.to.centre < m and e < ε then:
13: uncovered.nodes← uncovered.nodes− n
14: until ∀n ∈ all.nodes : n ∈ covered.nodes or n ∈ centre.nodes
15: Stage two:
16: for n in all.nodes do
17: for c in centre.nodes do
18: pairwise.distance← DISTANCE(n, c), e← DIFFERENCE( f (n), f (c)))
19: if pairwise.distance < lowest and pairwise.distance < m and e < ε then:
20: closest.centre← c
21: lowest← pairwise.distance
22: closest.centres[n]← lowest
23: uncovered.nodes← uncovered.nodes according to closest.centres (ascending)
24: for n in noncentre.nodes do
25: n′ ← neighbour of n with lower value in closest.centres
26: idn ← idn′

27: remove n from noncentre.nodes

4.4.2 Metaheuristic Algorithms

Examining a possible relationship between fractal dimension in a LON and search
difficulty on the underlying problem is essential in this study. I deploy trajectory-
based metaheuristic algorithms on the NK instances to obtain difficulty information;
these are Iterated Local Search (ILS), Simulated Annealing (SA), and Tabu Search
(TS). For the local search in the three algorithms, a single bit-flip is the search op-
eration. The local search is best-improvement for ILS and TS; for SA, this is first-
improvement. The ILS has a perturbation operator of two bit-flips. The SA considers
a standard exponential cooling scheme; parameters are those suggested in a previ-
ous study [176] where they were tuned based on preliminary runs observation. The
start and end temperatures are 1.4 and 0.0, respectively; α is set at 0.8; and the max-
imum iterations at the same temperature are 262. The length of the tail in the tabu
search is set at N, i.e. 18, which is the length of the solutions. All three algorithms
were implemented using Paradiseo [177], which is an open-source package in C++,
and they were executed 1000 times on each NK instance.
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4.4.3 Fractal Analysis

To calculate fractal dimension for the LONs I employ Algorithm 1, a box counting al-
gorithm from the literature [173] which I specialised for the semantics of a LON. An
implementation for generic "box counting" of a complex network in C was obtained
from the original work in Song et al. [173] and then extended.

As stipulated in Section 4.3.3 two important parameters affect the computed frac-
tal dimension for a LON. The parameter m, used in the original algorithm, specifies
maximum edge distance between "boxed" nodes. This is initially set at two and is
increased in step sizes of one if nodes remain uncovered during stage two of the al-
gorithm; this design choice is made by the authors of the original box counting pro-
cedure [173]. There is also the maximum fitness difference between "boxed" nodes, ε.
The value for ε should be suitable for all LONs regardless of the fitness value range.
I therefore standardise the fitness values, which are provided as part of the LONs
used and are computed over the whole solution space (exhaustive enumeration), as
f̂ ′ = f ′−E( f ′)

sd( f ′) , where E( f ′) is the expected fitness value and sd( f ′) is the standard de-
viation. In this way the mean becomes zero while the standard deviation is one. For
the experimentation I use values for ε which are in the range [0.0, 1.0] in step sizes of
0.05. I selected this range for its breadth, in order to account for the unknown nature
of using fitness distances in LONs for computing fractal dimension.

4.4.4 Features

Metaheuristic performance metrics. Metaheuristic performance can be measured
in a number of ways. I aim to concisely capture speed and effectiveness of the al-
gorithms described in Section 4.4.2 on the NK problems under consideration. To
this end I divide the number of runs which successfully reach the global optimum
after 26214 fitness function evaluations (this is 10% of the search space) by the total
number of runs (1000 in this study). In subsequent text I refer to this performance
metric as algorithm.s, which is the success rate where algorithm is the associated
metaheuristic. To measure speed of convergence I consider the number of evalu-
ations used in the duration of any runs which obtained the optimal fitness within
26214 fitness function evaluations — this performance metric is hereafter referred to
as algorithm.t.

Fractal dimension features. Although ε in the range [0.0, 1.0] in step sizes of 0.05
is involved, for the purposes of relating fractal dimensions to performance I focus
on four representative fractal dimension features: ε ∈ [0.25, 0.50, 0.75, 1.00], with
respect to standardised fitness ranges. A lower value for ε infers stricter conditions
during box counting: remember that, to consider nodes as a single unit of detail,
they must satisfy DISTANCE(LOi, LOj) < m and | f (LOi)− f (LOj)|< ε. If ε is nearer
to 1.0 then the constraint for boxing nodes is more lenient and a lower number of
boxes will be required to cover the network. That will affect the computed fractal
dimension because the number of "boxes" serve as the extent of detail measured in
the pattern (see Equation 4.2).

Other landscape features. I additionally include two fitness landscape features
which do not relate to the fractal dimension of LONs in the analysis. These are the
number of local optima and the number of funnels, that is, basins of attraction at the
level of local optima [56]. Both of these features have been linked to metaheuristic
performance in previous literature [21, 167].
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4.4.5 Regression Model Setup

I build algorithm performance models using LON features for predictors and the
performance of metaheuristic algorithms as the response variables. The aim is the
elucidation of how LON features can contribute to explaining or predicting algo-
rithm proficiency, paying particular attention to the fractal nature of the LON. In
pursuit of that I conduct linear and random forest regressions. I use bootstrapping
(random repeated sub-sampling cross-validation) to estimate the sampling distribu-
tion for model statistics. The models are bootstrapped for 100 iterations. Pattengale
et al. found that between 100 - 500 bootstrapping replicates provide the necessary
information [178]; I use 100 for computational efficiency, after noticing that separate
bootstrapping runs produce similar estimates and that increased iterations have a
diminutive effect on the calculated estimates. A training-test split of 80 - 20 is ap-
plied. The random forest regression uses 500 trees. Predictors are standardised (due
to different value ranges) as follows: ˆpre = (pre−E(pre))

sd(pre) , with pre being the predictor
in question and where E(pre) is the expected predictor value and sd(pre) is the stan-
dard deviation. The model statistics I focus on are R2, which captures the amount
of variation in the response variable which can be explained using the predictor set,
and mean squared error, which expresses the mean squared difference between the
model-estimated values and the actual values.

4.5 Results

I compute the fractal dimension of the LONs, which themselves were extracted from
120 NK Landscapes. This is done using the modified "box counting" algorithm out-
lined in Section 4.4.3 and represented in Algorithm 1. For each LON, 20 fractal di-
mensions are extracted — differentiated by the setting of ε.

The three optimisation algorithms described in Section 4.4.2 are executed on each
NK Landscape. With the fractal complexity information and the performance data
I can proceed to examine potential relationships between them. The essential aim
of experiments in this Chapter is to ascertain whether search performance on the
underlying optimisation problems can be explained using fractal complexity in the
LONs.

4.5.1 Fractal Complexity and Epistasis

To start with I investigate the distribution of fractal dimensions. The problem in-
stances can be split by their epistasis value, K. Figure 4.2 shows the distributions for
instances from each of the four K settings.

We can see from the Figure that the fractal dimensions increase with the epistatic
parameter K, which is known to increase ruggedness and randomness in NK Land-
scapes. Consider, for example, the interquartile range of category K2 against that
of category K4. Fractal dimension increasing with ruggedness suggests that more
ordered and predictable landscapes contain local optima connectivity which is of
lower fractal dimension (i.e. lower spatial complexity).

The interquartile range for the K2 LONs spans ∼1.008 to ∼1.379. The median K2
LON fractal dimension is 1.260, meaning that these are patterns which fill space in a
way that is different to one-dimensional or two-dimensional patterns. The fractal di-
mension is just above one, implying a structure which fills space somewhat similarly
to a line except with some added detail or convolution. In our context the patterns
under study represent search connectivity between local optima. A median fractal
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FIGURE 4.2: Distributions for fractal dimension (ε = 1.0) of the local
optima networks, grouped by epistasis level; the LONs associated
with 30 instances from each group are considered for K ∈ [2, 4, 6, 8],

all with N = 18

dimension of 1.260 indicates that the K2 LONs contain somewhat linear sequences of
local optima with some deviation or "spokes" branching away from the main path.

The K4 LONs generally have a higher fractal dimension, with the interquartile
range spanning ∼1.363 to ∼1.878. This fact asserts that the LON structural de-
tail fills space in a manner somewhere between the space-filling behaviour of one-
dimensional and two-dimensional objects. The dimensions are closer to two than
the K2 counterparts; the median is 1.623. The pattern in Figure 4.3 has fractal dimen-
sion∼1.585. The topology of a LON with this dimension is unlikely to be equivalent
to this pattern; however, the scaling of spatial complexity is comparable between
the two. A fractal dimension of around 1.585 stipulates that using a scale of mea-
surement equating to one-fourth of the size of the pattern (i.e. a scaling factor of
four: m=4) produces nine units of detail. Indeed, in Figure 4.3 using a length scale
one-quarter of a side of the triangle measures nine smaller triangles. Inserting the
values into Equation 4.2 and solving 4 fractal dimension = 9 does not result in an integer
exponent but instead fractal dimension=∼1.585.

m = 1

FIGURE 4.3: Sierpinski triangle; a pattern with fractal dimension
∼1.585

Let us consider again Figure 4.2 and concentrate on the K6 values. The interquar-
tile range comprises ∼1.779 to ∼2.126 with a median value of ∼1.893. That postu-
lates the situation where local optima connectivity patterns resemble either a highly
spatially-convoluted pathway (for values such as 1.779) or a few interconnected
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pathways with quite a simple layout (for values such as 2.126).
Notice that the increase in dimension is stark between the K6 and K8 groups.

While the majority of fractal dimensions in the lower-epistasis LONs (K2 and K4)
were between one and two, these highly rugged NK Landscapes appear to give rise
to LONs with fractal dimension mostly between three and four. This situation is
difficult to visualise or conceptualise.

4.5.2 Fractal Complexity and Metaheuristic Performance

I now investigate the parallel between fractal complexity in LONs and metaheuristic
performance on the associated NK problems.

Correlation Analysis

An intuitive foundation for contrasting features with metaheuristic performance is
correlation analysis. I compute the Spearman correlation coefficient and the corre-
sponding p-value — these were detailed in Section 2.7 — for pairwise combinations
of the observed fractal dimension features and the performance measures. Figure 4.4
shows the correlation matrix for a set of features of the 120 considered problems and
LONs. I show the correlation coefficient between variables (upper triangle of plot);
density plots (middle diagonal); and scatter-plots (lower triangle). In the case of the
density and scatter-plots, difference in colour indicates value for K as outlined in the
caption. The size of the text is proportional to the strength of the absolute value of
the correlation. An indication of p-value level is given by the asterisk, as described
in the caption. All measures of metaheuristic performance are included in the vari-
able set. As asserted in Section 4.4.4 there are two metrics each for ILS, SA and TS,
giving six performance variables. Information about each variable is given in the
abbreviated name: for example, ILS.s is the success rate of ILS, while ILS.t is the
speed. The other variables included are fitness landscape features. The principal fo-
cus lies in those concerning fractal complexity in the LONs. In the Figure, the fractal
dimensions involved are defined with ε set at 0.25, 0.50, 0.75, and 1.00. In addition
to correlations between fractal dimensions and performance metrics, I additionally
show correlations for other fitness landscape features: the number of local optima
(labelled as optima in the Figure) and the number of landscape funnels (funnels).

Surveying the correlation matrix, the effect of the parameter ε – the maximum
fitness difference allowable for boxing nodes together — on the resultant FD can be
seen when comparing the correlations between FD.25, FD.100 and the six perfor-
mance metrics. The general trend (although ILS.t is an exception) is that the correla-
tions are slightly stronger in the case of FD.25; with variables SA.s and TS.s the FD.25
dimensions also have a lower p-value level than the FD.100 dimensions. All four FD
metrics display at least four correlations with the six considered performance met-
rics which have associated ∗p < 0.05 or lower. These provide pieces of evidence that
the correlations are statistically valid: such p-values indicate that the probability of
the set of observations arising by chance (i.e. if there is no relationship between the
variables) is less than 5%, which is the generally-accepted threshold for significance
[179]. Looking at the algorithm speed rows (ILS.t, SA.t and TS.t), we can see that the
LON fractal dimensions show a positive correlation. The correlations are weak in
the case of ILS.s; moderate in the case of TS.t; and strong for SA.t. All have ∗p < 0.05
or lower. For SA and TS, there are weak positive correlations between their success
and fractal dimension metrics — although these are noticeably weaker than with
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respect to runtime. In the case of TS, all four fractal dimension features have corre-
lations with success with ∗p < 0.05; for SA, only the dimensions associated with the
strictest ε (FD.25) have this level of p-value.
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FIGURE 4.4: Correlation matrix for performance metrics and land-
scape features (see facet titles). Lower triangle: pairwise scatter plots.
Diagonal: density plots. Upper triangle: pairwise Spearman’s rank
correlation, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Colour represents

instances split into different levels of epistasis (K ∈ [2, 4, 6, 8] )

Regression Models

In this Section I complement the correlation analysis with multiple linear regression
models which include LON fractal dimensions as predictors and metaheuristic per-
formance metrics as response variables. The predictors used are introduced in Table
4.1; Tables 4.1 and 4.2 summarise six models each: two types of regression × three
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metaheuristics. Provided are the R2 and mean squared error (recall Section 2.7) value
for the model.

TABLE 4.1: Predictor variables used in the regression models

feature description

optima number of local optima
funnels Number of funnels
fractal dimension1 FD with fitness difference threshold ε set at 0.25
fractal dimension2 FD with fitness difference threshold ε set at 0.50
fractal dimension3 FD with fitness difference threshold ε set at 0.75
fractal dimension4 FD with fitness difference threshold ε set at 1.00

TABLE 4.2: Summary statistics estimated with bootstrapping for ex-
plaining the hit-rate performance of ILS, SA, and TS. Predictors in-
clude deterministic fractal dimension LON statistics, as well as other

landscape features

type of regression response variable R2 mean squared error

linear ILS.s 0.377 0.066
random forest ILS.s 0.654 0.035
linear SA.s 0.712 0.035
random forest SA.s 0.805 0.021
linear TS.s 0.724 0.025
random forest TS.s 0.823 0.016

In Table 4.2, notice that the random forest models are associated with a higher
R2 and lower MSE than their linear equivalents. This implies they are higher quality
models and that the features can explain more of the variance under the random
forest setting.

The random forest models with SA.s and TS.s are a particularly good fit, with ap-
proximately 80% and 82% of variance in the dependent variables explained. Linear
regression does not capture the relationships well where ILS.s is the response — this
set-up yields the weakest R2 value at 0.377. This is additionally associated with the
highest MSE, indicating a comparatively low model quality.

Table 4.3 summarises regression models in the same format as Table 4.2. In these,
metaheuristic speed of convergence serves as the dependent variable instead of suc-
cess rate.

An immediately apparent observation about the model statistics in this Table is
that every R2 value is high — over 86% in all cases — indicating that a large propor-
tion of the variance in the response variables is explainable using the input features.
This is encouraging with respect to the utility of using LON fractal dimension fea-
tures in models to explain and predict metaheuristic performance on the underlying
problem. The values are higher than those associated with the algorithm.s variables
in Table 4.2, which implies that this set of features is more proficient in explanation of
variation in speed of convergence of the metaheuristics, when compared to success
rates.

In terms of the MSE values, the lowest is associated with the random forest model
with TS.t as the dependent variable; the highest is attached to the linear model which
uses SA.t as the response. The two TS.t models have the lowest MSE estimates out
of the three algorithms. This perhaps hints that the set of features is slightly more
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TABLE 4.3: Summary statistics estimated with bootstrapping for
explaining the runtime performance of ILS, SA, and TS. The re-
sponse variables are log-transformed for ease of interpretability for
the MSE values. Predictors include deterministic fractal dimension

LON statistics, as well as other landscape features

type of regression response variable R2 mean squared error

linear ILS.t 0.861 0.109
random forest ILS.t 0.878 0.071
linear SA.t 0.870 0.223
random forest SA.t 0.983 0.015
linear TS.t 0.903 0.043
random forest TS.t 0.962 0.012

consistent in explaining runtime variance for the TS than ILS and SA under these
experimental conditions.

TABLE 4.4: Variable importance rankings, bootstrapped, for each of
the six random forest models. Columns are labelled with the model

response variable

feature ILS.s SA.s TS.s ILS.t SA.t TS.t

fractal dimension1 4 3 2 2 2 2
fractal dimension2 2 6 4 5 3 3
fractal dimension3 3 5 5 3 4 4
fractal dimension4 5 4 6 6 5 5
optima 6 2 1 1 1 1
funnels 1 1 3 4 6 6

Table 4.4 indicates the variable importance rankings for the considered random
forest regression models. To compute the importance of a variable, the reduction in
decision tree node impurities when splitting on the variable is noted and these are
averaged over all 500 trees used in the regression. Node impurities are measured
with the residual sum of squares. In the Table, each column represents a model, and
is labelled with the response variable.

Surveying the Table, notice that funnels usually ranks first where success rate is
concerned; its key role as a predictor of hit-rate is evident. The number of local
optima ranks highest for TS.s and for all three runtime response variables (ILS.t,
SA.t, and TS.t). Fractal dimension features rank higher than the number of local
optima for ILS.s, and rank higher than the number of funnels for TS.s, ILS.t, SA.t, and
TS.t; especially important is fractal dimension1, which is the most strict ε setting. For
SA.t and TS.t, as ε is increased, the importance of the computed fractal dimensions
decreases.

Fractal dimension4 never places higher than fourth and is usually last or second-
last. This is the fractal dimension which is produced using the ordinary box counting
from the literature (that is, the variant which does not involve fitness distances). In
contract, fractal dimension1, which has the most strict fitness threshold setting, places
second on four occasions.
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4.6 Discussion

4.6.1 Fractal Complexity in Local Optima Networks

In Section 4.5.1 we saw that the instances under study lend to LONs with varying
fractal dimension. Recall Section 2.6 for how to interpret fractal dimensions. The
LONs which were extracted from instances with the lowest level of epistasis (and
therefore landscape ruggedness) exhibited a fractal dimension interquartile range of
∼1.008 to ∼1.379, meaning that most of the LONs fill space in a manner in-between
the behaviour of one-dimensional and two-dimensional shapes. A fractal dimen-
sion just above one implies a linear structure with some additional detail or con-
volution, in that the scaling of detail in the pattern is not equivalent to that of a
one-dimensional line. My interpretation of this for LONs is that they (that is, the lo-
cal optima) comprise a somewhat linear sequence or main pathway of local optima
with a small amount of deviation or detail aside from the main path.

LONs derived from K ∈ [4, 6] instances generally had higher fractal dimension.
Some of the fractal dimensions indicated that the LONs are spatially complex, for
example where FD = 1.89. I argue that a value such as this stipulates a LON com-
posed of winding and convoluted sequences with many complicated spokes leading
off the main path. Other local optima networks had a calculated fractal dimension
lying just above two; this infers a low-complexity pattern of geometry. In the context
of LONs, I stipulate that this means a low number of paths of local optima with an
insignificant amount of non-regular detail.

LONs extracted from the most rugged NK instances (K = 8) cannot be properly
conceptualised in terms of their fractal dimension because the majority of them had
FD ≥ 3. Most were just above three, indicating the detail within the LONs scales in
a form comparable to that of a three-dimensional object. It is possible that the three
dimensions represent connecting or intersecting paths of local optima.

4.7 Conclusions and Future Work

In this Chapter, an empirical and introductory study on fractal analysis of local op-
tima networks — and how the fractal complexity relates to metaheuristic search —
has been conducted. A benchmark combinatorial problem, NK Landscapes, was
used as a case study. Various ruggedness levels were considered in the instance set.

Linear and random forest regression analysis revealed that combining fractal di-
mension features with the number of local optima and the number of funnels to serve
as predictors results in extremely strong models — in particular for the explanation
of metaheuristic runtime, although also when random forest is used in conjunction
with SA or TS success rate as the dependent variable. In the case of the success rate
models, random forest produced stronger and higher-quality models than linear re-
gression and I hypothesise that this is due to attendant non-linear relationships.

Variable importance rankings for the random forest regression showed that, in
many cases, fractal dimension features rank higher than the number of funnels —
communicating the fact that they contributed more information than lower-ranked
variables. This was especially true when fractal dimensions were computed in a
manner specific to LONs, that is, with the involvement of fitness distances in the cal-
culations. The most strict fitness threshold produces LON fractal dimensions which
ranked as second most-important predictor in four out of six model setups. Fractal
dimensions which were obtained through ordinary complex network box counting
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ranked lower — never higher than fourth place out of six predictors. This discrep-
ancy between the two shows that the proposed approach of considering fitness has
value. The number of funnels present in the LON was salient as a predictor of suc-
cess rates; the number of local optima was more important for algorithm runtimes.

While the focus was on small problems here there is no reason that fractal analy-
sis could not be deployed on sampled LONs. With this new insight into the "middle"
layer in the fitness landscape (i.e. the space of local optima) I can proceed further
down this avenue of possibility. The traditional (agnostic of the semantics of the
network) fractal analysis captures a unique element of a LON; a phenomenon which
is linked to slower speed but raised effectiveness in search algorithms, and which I
argue merits further investigation. Furthermore, the addition of the fitness element
for "box counting" to cater for the special case of a LON gives valuable insight into
the importance of local optima connectivity and their fitness distribution.

4.8 Summary

This Chapter provided a first fractal analysis of LONs, but questions remain. One
consideration is how to intelligently calculate and define fractal dimension for a
LON. The analysis so far used a generic "box counting" from complex network liter-
ature as well as proposing a LON-specific extension which includes fitness distance
into the "boxing" calculations. There is no reason to assume, however, that LONs
are "mono-fractal" systems, as they have been assumed to be in this Chapter. Some
complex networks have presented as "multi-fractal" systems [180] and multi-fractal
analysis is necessary to investigate this. In addition, LON edge weights encode cru-
cial search dynamic information. They capture probability of connectivity between
local optima and as such can reveal heavily-traversed paths and lightly-traversed
paths through the landscape. Edge weights could be considered when during cal-
culation of fractal dimension for a LON. The upcoming Chapter pursues this and
applies multi-fractal analysis to LON systems as well. Additionally, the upcoming
analysis considers sampled LONs together with exhaustively-enumerated ones.
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Chapter 5

Multifractality and Probability in
Local Optima Networks

The previous Chapter detailed a preliminary study on fractal analysis for local op-
tima networks. What follows now is an investigation concentrating on how to define
fractal dimension for these structures.

5.1 Abstract

This instalment of work views fitness landscapes through a fractal geometry lens
by calculating the fractal dimensions of LONs. The fractal dimension is a spatial
complexity index which can assign a non-integer dimension to an object; I propose a
fine-grained approach to obtaining the FD of LONs using metaheuristic path proba-
bility information which is encoded in LON edge weights.

For complex systems such as LONs, the fractal dimension may be different be-
tween sub-systems and multifractal analysis is needed. In this Chapter multifractal
calculations are applied to LONs for the first time and a comparison with monofrac-
tal dimensions is conducted. I focus on the QAP, bringing fractal analysis to sampled
LONs of moderate size. Fully enumerated LONs of smaller size are additionally in-
cluded. The results show that local optima spaces can be multifractal and that valu-
able information regarding probabilistic spatial complexity is encoded in the edge
weights of local optima networks. Pairwise relationships are delineated between
these phenomena and the performance of competitive metaheuristic algorithms on
the associated QAP instances.

5.2 Introduction

Interest is growing in the fractal complexity of networks; indeed, some networks
have recently been shown to be fractal [181, 182] which means that similar patterns
replicate at different scales within the object. The fractal dimension can assign a non-
integer dimension to a pattern as an index of spatial complexity. It captures the
space-filling nature of the pattern and is the ratio between the extent of detail and
the scale of measurement.

Figure 5.1 shows two patterns with different fractal dimensions. While Fig-
ure 5.1a has dimension 1.465, for Figure 5.1b this is 1.785. We can see the latter is
convoluted and complex. The former is more straightforward in the manner that it
fills space. If these two structures were abstracted representations of fitness land-
scapes then Figure 5.1b would intuitively provide more complications during meta-
heuristic search.
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(A) Fractal dimension = 1.465 (B) Fractal dimension = 1.785

FIGURE 5.1: Patterns with fractal dimension between one and two

Assigning a single fractal dimension may not be appropriate for a complex sys-
tem. Doing so has the underlying assumption that the fractal geometry is approx-
imately uniform (isotropic). Isotropy cannot always be assumed, as is stipulated in
some literature which proposes multifractal analysis for complex networks [182, 180].
Multifractal analysis produces a whole spectrum of fractal dimensions for a single
object. Benoit Mandelbrot, the pioneer of fractal geometry, himself argued that a
continuous spectrum of dimensions is necessary to properly capture the complicated
dynamics of a real-world system [183].

The contributions of this Chapter can be summarised as follows:

1. A first application of fractal analysis to sampled LONs

2. New methodology for probabilistic fractal dimensions when studying LONs

3. First multifractal analysis of LONs

4. A comparison of monofractal, multifractal, and probabilistic fractal dimension
characterisation for LONs

5. Exploration of the relationship between fractal dimensions and the perfor-
mance of competitive metaheuristics known in the QAP domain

5.3 Methodology

5.3.1 Box Counting

Many patterns found in nature exhibit a fractal complexity which can be charac-
terised with fractal dimension [183]. As I described in Chapter 4 a proposal for
computing fractal dimension for networks is "box counting" [181]. To recap; the al-
gorithm "boxes" together nodes which can be considered as a single unit of detail.
They are merged if they are separated by less than m network edges. The parameter
m is the scale of measurement and this is used in the fractal dimension calculation.
The extent of detail observed is simply the number of "boxes" necessary to fully
cover the network using the scale m. Box counting is agnostic of the semantics of
the network and does not take into account node attributes. In the previous Chap-
ter, however, I specialised box counting for local optima networks such that fitness
difference is considered alongside edge distance: two nodes can be boxed together if
the distance between them in the LON DISTANCE(LOi, LOj) < m and their absolute
fitness difference | f (LOi)− f (LOj)|< ε. I extend this approach for the fractal analysis
algorithms used in this Chapter.
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5.3.2 The Multifractal Spectrum

Real-world systems often do not exhibit the spatial homogeneity that traditional
monofractal analysis assumes is present [184]. In this case, the extent of fractal ge-
ometry cannot be characterised by a single fractal dimension metric, and instead re-
quires a spectrum of numbers. Indeed, pioneering authors in the fractal community
have stated that the multifractal approach is necessary for many real-world patterns
[183, 185]. In the past few years, studies have surfaced where the concept of mul-
tifractality has been considered for complex networks [182, 180, 186]. Some of the
networks which the authors analysed required a full multifractal dimension spec-
trum to properly characterise the spatial complexity properties.

An approach to calculating a set of generalised fractal dimensions for a complex
network is called the Sandbox Algorithm [184] which is related to the "box counting"
process which I extended in Chapter 4 and recapped in Section 5.3.1 just above.

I implement the algorithm from the literature [184] and then modify the process
to allow for the special case of a local optima network: because LONs are a compres-
sion of the fitness landscape, node fitness is taken into account (as was the case in
Chapter 4). Pseudocode for the sandbox algorithm, which I have refashioned for the
local optima network case, is provided in Algorithm 2. The DISTANCE(c, v) function
produces the edge distance in the LON between nodes c and v; the DIFFERENCE( f (c), f (v))
function returns the fitness difference between local optima c and v.

Algorithm 2 LON Multifractal Analysis
Input: LON, q.values, radius.values, f itness.thresholds, number.centres
Output: mean sandbox size

1: Initialisation:
2: centre.nodes← ∅, noncentre.nodes← all.nodes
3: mean.sandbox.sizes← ∅
4: for q in q.values do
5: for rd in radius.values do
6: for ε in f itness.thresholds do
7: centre.nodes← RANDOM.SELECTION(all.nodes, number.centres)
8: sandbox.sizes← ∅
9: for c in centre.nodes do

10: number.boxed← 0
11: for v in all.nodes do
12: d← DISTANCE(c, v)
13: j← DIFFERENCE( f (c), f (v))
14: if ( d == 1 ) OR ( d == rd - 1 and j < ε ) then:
15: number.boxed← number.boxed + 1
16: sandbox.sizes← sandbox.sizes ∪ {[number.boxed]}
17: bs← MEAN(sandbox.sizes)
18: mean.sandbox.sizes[q][rd][ε]← bs

The process begins at line 7 with number.centres nodes being randomly selected
as sandbox centres. These are allocated a radius, rd. In the algorithm from the lit-
erature, nodes which are less than rd edges from a centre are counted as inside its
sandbox. I change the conditions of inclusion, to account for the semantics of the
local optima network. For each sandbox centre, nodes which are a single edge away
are always added to the box: this is to allow a certain level of guaranteed boxing
movement, irrespective of fitness differences between the local optima. In addition,
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nodes which are at a distance of rd− 1 from the centre, and whose fitness difference
with the centre is less than ε are added to the sandbox. This is a stricter design than
the literature sandbox procedure, and I argue that implementing it emphasises the
inherent dimension: less nodes are boxed — but those that are, are genuinely "simi-
lar" in either location or fitness. Additionally, this process exploits and respects the
information which is encoded in a LON. The decision mechanism for boxing the
nodes is seen at lines 12-15 of the Algorithm.

The average sandbox size, bs, for number.centres central nodes is calculated (see
lines 17-18). The value for bs is later used in the equation to obtain a fractal dimen-
sion. The whole algorithmic process is repeated for various values of ε (the fitness
difference maximum; line 6), r (the sandbox radius; line 5), and also q, which is from
an arbitrary set of numbers: q ∈ [q.values], at line 4. The parameter q is also used
in the computation of fractal dimension — there is a dimension value for each q, rd,
ε combination — and in this way facilitates the production of a spectrum of dimen-
sions. Both q and rd are part of the algorithm from the literature [184]; ε is a novel
addition. The output from an algorithm iteration is involved alongside q to generate
a fractal dimension:

fractal dimension =
ln(detailq−1)

(q− 1) ∗ ln(scale)
(5.1)

where detail is the mean sandbox size using radius rd: bs (as a proportion of the
total network size) and scale is the radius rd as a proportion of the network diameter.

Upon completion of the sandbox algorithm, the product will be a multifractal
spectrum of dimensions, each of them calculated according to Equation 5.1.

5.3.3 Probability-based Fractal Dimension

In the preceding Chapter, fractal dimensions were calculated on LONs derived from
a set of NK Landscape problems. The box counting algorithm which was used con-
sidered edge distance between nodes as the scaling factor for computing fractal di-
mension. A consideration when using this methodology is that when the network
diameter is small, the units of detail observed may be of low resolution; for exam-
ple, if most nodes are within one or two edges of each other. In pursuit of a higher-
resolution view on the scaling behaviour in LONs I propose to use the metaheuristic
transition probabilities which are encoded as edge weights as a replacement for edge
distance. These are the total number of times the transition is followed as a propor-
tion of the number of times the local optimum at hand is visited. Edge weights in
LONs essentially inscribe the probability that a particular search transition between
two local optima will be traversed. I propose to modify the ordinary box counting
algorithm [181] (within which nodes are boxed if they are separated by less than
m network edges) to consider this information alongside fitness details in the fol-
lowing way: two nodes can be boxed together if it is deemed likely that the local
optima they represent will be connected with search. There must be a single edge
between them which has a certain minimum weight. To normalise an edge weight,
W, in the LON I simply subtract it from one i.e. the standardised weight W′ is de-
fined as 1 - W which is the opposite probability. Mathematically, nodes LOi and LOj
can be "boxed" as a single unit if W′(ELOi ,LOj ) < β, where ELOi ,LOj is the edge be-
tween LOi and LOj in the LON. In addition, their fitness values must be sufficiently
similar. Pseudocode for this box counting policy is provided in Algorithm 3. The
function PROBABILITY(n, n′) returns the standardised weight of the edge (that is,
the opposite probability) between local optima n and n′; DIFFERENCE( f (n), f (n′))
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produces the fitness difference between the two. Contrary to the design in Chapter
4, I compute the fitness differences in this Algorithm as the logarithmic return of the
two fitnesses — this statistical tool was outlined in Section 2.7.

Algorithm 3 Probability-based LON Fractal Analysis
Input: LON, ε, β
Output: number of boxes required

1: Initialisation:
2: centre.nodes← ∅, noncentre.nodes← all.nodes
3: covered.nodes← ∅, uncovered.nodes← all.nodes
4: Stage one:
5: repeat
6: for n in noncentre.nodes do
7: MASS(n)← COUNT(n′ ∈ uncovered.nodes where PROBABILITY(n, n′) < β

and DIFFERENCE( f (n), f (n′)) < ε)
8: next.centre← n where MASS(n) == MAXIMUM(MASS(n ∈ noncentre.nodes))
9: for n in uncovered.nodes do

10: probability.to.centre← PROBABILITY(next.centre, n)
11: e = DIFFERENCE( f (next.centre), f (n))
12: if probability.to.centre < β and e < ε then:
13: uncovered.nodes← uncovered.nodes− n
14: until ∀n ∈ all.nodes : n ∈ covered.nodes or n ∈ centre.nodes
15: Stage two:
16: for n in uncovered.nodes do
17: n′ ← neighbour of n: PROBABILITY(n, n′) < β and DIFFERENCE( f (n), f (n′))

and n′ ∈ covered.nodes
18: idn ← idn′

19: remove n from uncovered.nodes

Much of the procedure in Algorithm 3 matches the one detailed in Section 4.3.3
previously. The computation of MASS for a node n, however, here involves identify-
ing nodes which are connected to n with an edge of standardised weight < β and
with a fitness distance to n which is no greater than ε — notice this at line 7. Instead
of central distances being calculated in Stage 2, uncovered nodes are dealt with as
follows: if they have a direct neighbour (where the probability between the two is
less than β and their fitness difference is less than ε) which has been boxed already,
then the node is given the same box membership as that neighbour. This is at lines
15-19. I iterate the Algorithm for a range of β values. At the end of each iteration, the
output can be used to compute a fractal dimension for the LON. As with ordinary
box counting, the proportional number of boxes required to cover the network — nb
— serves as the amount of detail in the equation which produces fractal dimension
(Equation 4.2). The nature of the value which serves as the scale of measurement
is different, however: the selected value for β (the maximum opposite probability or
standardised weight of an edge) fulfils this role:

fractal dimension =
ln(nb)
ln(β)

(5.2)

By implementing this box counting variant, I argue that fractal dimensions can
be calculated in such a way that the stochastic origins of the information in a LON
is respected. In subsequent text, I refer to fractal dimensions obtained using this
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method as probabilistic fractal dimensions.

5.4 Experimental Setup

5.4.1 Benchmark Problem

I focus on a benchmark combinatorial domain here: the Quadratic Assignment Prob-
lem (QAP). A thorough elucidation of the QAP can be found in Chapter 2. The
experiments in this Chapter include benchmark and synthetic instances. Some are
from the well-studied QAP Library (QAPLIB) [187]. One of the contributions of
this Chapter is the fractal analysis of sampled local optima networks. The previous
Chapter exclusively considered fully enumerated LONs which is only plausible with
diminutive problem sizes. The instances from the QAPLIB used in the present study
are larger (between 12 and 28 locations, detailed in Table 5.1). For these a full enu-
meration is not feasible. I use samples of the LONs instead, provided by authors of
previous literature [7]. To obtain the local optima, the following is executed 2000 ×
N times: during the sampling they begin from random solutions and conduct local
search using best-improvement single pairwise exchange; they then attempt to im-
prove the obtained local optimum with best-improvement local search considering
either one or two pairwise exchanges.

Then for defining the edges they repeat these steps 20N2 times: for each local op-
timum obtained in the previous procedure, they perturb the solution using a random
kick move of three swaps then perform local search again. If the obtained local opti-
mum is also a member of the pre-defined set of optima, the edge weight (adjacency)
between the two is incremented. After all runs the edge weight is this count divided
by 20N2. While the sampling introduces an inevitable bias, the bias is towards the
landscape regions which are likely to be encountered by search algorithms.

In addition to the QAPLIB problems I use "structured" instances produced using
a generator [188]. The generator produces flow entries that are non-uniform random
values. Clusters of points are placed in compact circular areas on the plane; they
themselves are enclosed in a large circle. These instances have been called "real-like"
because they simulate the structure found in practical manifestations of the QAP.

The synthetic problem instances are fully enumerated, and as such are constrained
to a small size of 11. I use 30 local optima networks of this type as made available by
the authors of a previous work [5]. To obtain the local optima, the authors conducted
best-improvement pairwise exchange local search. Two nodes are joined by an edge
if the destination node can connect from the source through two pairwise exchanges
(this is the perturbation operator) followed by single-exchange local search.

TABLE 5.1: QAPLIB instances used; numerical elements indicate
problem size

class instance class instance names

chr real-world 12 {a-c}, 15 {a-c}, 18 {a-b}, 20 {a-c}, 22 {a-b}
nug random grid 12, 14, 15, 16 {a-b}, 17, 18, 20, 21, 22, 25, 27, 28

5.4.2 Local Optima Fitness Difference

As mentioned, I use logarithmic returns [189] to standardise local optima fitness
values in preparation for calculations used in the fractal analysis algorithms. This is
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to allow the threshold ε to be independent of any particular fitness distribution. The
logarithmic return is computed as follows:

fitness di f ference = ln( f (LOj)/ f (LOi))

The resultant value can be directly compared with ε, which is set at 0.5 or 1.0 for
the incumbent experimentation.

5.4.3 Algorithms

The essence of the experiments can be split largely in two: those relating to probabilis-
tic fractal dimension and those concerning multifractal dimension spectra. For both
associated algorithms I use as a foundation a box counting algorithm — which is
written in C — from the literature [181], augmenting and extending it. I additionally
include an untouched version of the algorithm in the results for comparison.

Probabilistic Fractal Dimension Analysis. A separate variant of the box counting
algorithm is implemented to calculate probabilistic fractal dimensions, as described
in Section 5.3.3. Deciding a suitable value for β is important. Here I use a set of
values for this parameter: β in the range [0.90, 0.96] in step sizes of 0.02. A lower
value for β is a stricter probability condition. I use this range based on observations
from preliminary runs — in particular, the distribution of edge weights present in
the networks.

Multifractal Dimension Analysis. Using box counting as a foundation I imple-
ment the sandbox algorithm for multifractal analysis [184] in C and extend it for a
LON. The process is outlined in Algorithm 2 and described in Section 5.3.2. The val-
ues for q are those suggested in the literature (although the choice can be arbitrary):
-10 to +10 in increments of 1.00; the number of sandbox centres at each iteration is
10 (because of relatively small network sizes); the set of values for rd ranges from
two, to the diameter of the network. The fitness distance threshold ε, operating on
normalised fitness values, is simply 0.5 (strict) or 1.00 (lenient).

Metaheuristics. The features extracted from the local optima space should be cou-
pled with metaheuristic algorithm performance to produce a practical and useful
conclusion. Accordingly, I collect algorithm performance information for the un-
derlying instances, selecting two competitive algorithms for the QAP to this end:
Robust Tabu Search (ROTS) [190] and Stutzle’s improved Iterated Local Search (ILS)
[191]. ROTS is a competitive heuristic for the QAP and includes a best-improvement
pairwise exchange local search with a variable-length tabu list tail. For each item-
location combination, the most recent point in the search when the item was as-
signed to the location is retained. A potential move is deemed to be "tabu" (not al-
lowed) if both items involved have been assigned to the prospective locations within
the last tabuc cycles. The value for tabuc is changed randomly, but is always from the
range [0.9n, 1.1n]. For the ILS algorithm, I use the first-improvement version with a
pairwise exchange as the local search and with 3n/4 exchanges for the perturbation
operator, accepting only improving local optima.
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5.4.4 Features

Metaheuristic performance metrics. To quantify performance of the metaheuris-
tics I use two metrics. The first is the number of iterations to reach the global opti-
mum when the run was successful, which I refer to as algorithm.t in subsequent text.
The termination condition for these runs is, for ILS, either the global optimum being
found or alternatively based on iterations without improvement, iwi — this is the
termination condition the author uses in the original implementation — and is iwi =
10 000 in the experiments here. For ROTS, the termination condition in the author’s
implementation is when the global optimum is found or alternatively based on the
passage of iterations, ip; I set this at ip = 10 000. The second performance metric
captures the fitness after 200 (ILS) or 2000 (ROTS) iterations, as a proportion of the
optimum fitness (algorithm.p for short); the discrepancy in allowed iterations is was
designed due to observed performance difference between the two algorithms in
the chosen configurations. The algorithms are deployed 1000 times on each problem
instance and the metrics are averaged over these.

Fractal dimension features. I use the fractal dimension output of LON-specialised
fractal analysis (involving fitness distances) as a feature named det1; the equivalent
output from generic box counting on a LON is referred to with the shorthand det2.
From multifractal dimension spectra, I extract values from arbitrary points on the
spectrum and use labels for them in the format mfx, where x is a numeric value.
In the case of probabilistic fractal dimensions — these are either identified with the
configuration for β with which their production is associated, or alternatively with
probabilisticx, with x being a number. Whenever a numerical label like this is used,
the mapping to the actual semantics is specified clearly in the text.

Other landscape features. I additionally include — as a non-fractal landscape fea-
ture — the number of local optima in the statistical analysis.

5.5 Results

I calculate the fractal dimensions and associated metrics on a set of LONs extracted
from QAP instances. For each problem I direct monofractal dimension analysis, mul-
tifractal analysis, and probabilistic fractal dimension analysis. Dimensions from the
three are compared with one another to ascertain which are appropriate for LONs. I
show the connection between fractal dimensions and search difficulty on the under-
lying problems.

5.5.1 Cardinality of Fractal Dimension

Figure 5.2 shows some of the fractal dimension distributions computed from the
LONs. Figure 5.2a represents the "real-like" instances and 5.2b and 5.2c are the nug
(random grid) and chr (real-world) instances from QAPLIB, respectively. Each box
represents the spread of dimensions produced using a particular fractal analysis al-
gorithm variant. The upper two boxes illustrate dimensions which were computed
using the ordinary box counting algorithm (which generates a single monofractal di-
mension) while the lower three are multifractal dimensions for the same LONs, taken
from different arbitrary points in the full multifractal spectrum. These are annotated
with mf1, mf2 and mf3.
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(A) random "real-like" (B) random grid

(C) real-world

FIGURE 5.2: Monofractal dimension ranges for LONs; det1 is the
fractal dimension where fitness distances have been involved in the
boxing procedure, while det2 reflects the dimensions arising using
generic box counting. Multifractal dimension distributions (taken
from three arbitrary points on the full spectrum) for LONs form the

three lower boxes: mf1, mf2 and mf3

Surveying Figure 5.2a we notice that the ranges of the multifractal dimensions
(mf1, mf2, and mf3) diverge from the monofractal dimensions (det1 and det2). Gen-
erally the multifractal dimensions are smaller. In addition, the three dimension sets
extracted from a multifractal spectrum are markedly different to each other. This
implies a lack of homogeneity or isotropy with respect to spatial complexity in the
LONs, indicating the presence of multifractal geometry. A similar phenomenon is
attendant in Figure 5.2b, which depicts features of LONs for grid-like problems, al-
though here the dimensions are higher.

The real-world benchmark QAP problems display quite different results: observ-
ing Figure 5.2c, we can discern that the multifractal dimensions (boxes mf1 - mf3) are
more aligned with the monofractal dimensions in the upper two bars (det1 and det2)
than they were in the other two Figures. The lower three boxes also show agreement
amongst themselves; this means that taking dimensions as excerpts from different
points on the multifractal spectrum resulted in almost the same dimension. Such a
similarity infers that these are monofractal LONs.
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5.5.2 Probabilities in Dimension Calculation

This Section juxtaposes ordinary fractal dimensions against the probabilistic fractal
dimensions I have proposed. Figures 5.3a and 5.3b show the individual distribu-
tions. Figure 5.3a reflects the "real-like" instances; Figure 5.3b is for the QAPLIB
instances. Similarly to Figures 5.2a-5.2c, the upper two bars are the values obtained
using the established box counting algorithm for complex networks. The lower three
consider probabilistic fractal analysis instead and are labelled with the parameter
setting used for β (which is the maximum opposite probability i.e. minimum proba-
bility that two local optima will be connected during search). Outliers are shown as
red squares.

(A) "real-like" (synthetic) (B) benchmark

FIGURE 5.3: Fractal dimensions obtained using standard box count-
ing (upper two boxes): det1 is the dimension when fitness distance
is considered in the calculations while det2 values are derived using
generic box counting for networks. Quantile ranges of the probabilis-
tic fractal dimensions are also shown (the lower three bars: 0.90, 0.93,
and 0.96). These are dimensions calculated with β set at 0.90, 0.93 and

0.96, respectively

Figures 5.3a and 5.3b indicate that a routine fractal analysis on a LON might
overlook important information relating to probability which has been encoded in the
network edge weights. Notice that the probabilistic dimensions are usually much
higher than the standard dimensions, especially where the benchmark instances are
concerned (see Figure 5.3b). That hints at a more complex space-filling behaviour in
the network structure than the standard fractal dimensions allude to (observe boxes
det1-2 for comparison). Notice also that dimensions are lower with respect to the
stricter box counting constraint of β = 0.90 than for the more lenient β = 0.93. I
stipulate that this is attributable to pairs of nodes rarely satisfying the criteria and
therefore a lack of boxing. A lack of boxing leads to a lower fractal dimension be-
cause the number of boxes is the number of units of detail; the units of detail are
computed as a ratio of scale or resolution in order to produce the fractal dimension.

5.5.3 Correlation Analysis

This Section appraises correlations between LON fractal dimension and metaheuris-
tic search algorithm performance. Figure 5.4 conveys correlations related to multi-
fractal dimension while Figure 5.5 establishes correlations concerning the probabilis-
tic fractal dimension. In the upper triangle of the panel pairwise Spearman correla-
tion coefficients are shown. The correlation over the full LON set is shown in black
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text, with a split into class of instance marked by use of colour. Red is the LONs de-
rived from QAPLIB (benchmark) instances while green are the "real-like" synthetic
ones. Density plots populate the middle diagonal row with scatterplots forming the
lower triangles.

From left to right by column, Figure 5.4 includes as features two dimensions
taken from different locations on the multifractal spectrum (mf1 and mf4); ILS per-
formance, denoted as ILS.t (i.e. iterations to the global optimum) and ILS.p (per-
centage above the optimum fitness); ROTS performance (ROTS.t and ROTS.p); the
number of local optima (optima), and monofractal dimensions (det1, calculated using
fitness distance during box counting, and det2, which are dimensions produced us-
ing standard box counting). Figure 5.5 records the same variables with the exception
of fractal dimension type. Instead of multifractal dimensions the matrix considers
probabilistic dimensions with different values for β: probabilistic1, (0.90) probabilistic2
(0.93) and probabilistic3 (0.96).

Let us review the correlation matrices in turn. In Figure 5.4 a multifractal dimen-
sion feature, mf1, has positive correlations of moderate strength with three out of
four algorithm performance metrics. Each of these have associated p-value 6 0.01,
i.e., the probability that these correlations occurred due to chance is less than 1%.
The associations can be seen by following along the row labelled mf1 and checking
the intersections with the relevant columns. Notice also that mf1 has stronger cor-
relations with the four performance metrics than mono-fractal dimension features
det1 and det2 do. The positive associations between multifractal dimension and al-
gorithm performance suggests that this spatial complexity metric is correlated with
increased iterations to reach the global optimum and with a larger gap between the
obtained fitness and the optimal fitness.

What we notice, however, is that the relationship with algorithm performance is
much weaker with respect to the mf4 variable, which is a dimension excerpt from
the same multifractal spectrum as the mf1 feature. This has two implications: a sin-
gle fractal dimension is insufficient to characterise the dynamics written in a local
optima network (if it was, mf1 and mf4 would exhibit similar correlation behaviour),
and not all fractal characteristics in the local optima space are consequential. Re-
viewing the correlation between the two multifractal dimension features, mf1 and
mf4, in Figure 5.4 I remark that while they are correlated (and with p-value pointing
towards statistical significance) there is a prominent distinction between the bench-
mark instances and the synthetic "real-like" instances. Notice this by contrasting
the correlation in red text (benchmark instances) with those in green (synthetic in-
stances). The strong correlation of dimensions associated with benchmark problems
hints that these LONs are monofractal, i.e. a more uniform spatial complexity. The
dimensions of the generated instances, however, have far weaker correlation. That
communicates discrepancies in dimension depending on location in the LON and
infers multifractal geometry. This could mean that we must refine the methods for
generating instances, such that they better reflect the nature of real-world instances.

Although relatively subtle, observe that det1 — which is fractal dimension com-
puted according to fitness similarity — is more highly correlated to the performance
metrics than the det2, which is computed using ordinary box counting.

Redirecting our scrutiny to Figure 5.5, observe that correlations between frac-
tal geometry and algorithm performance are more pronounced for the probabilistic
fractal dimensions than with those generated with ordinary box counting. Distin-
guish this by checking the intersection of probabilistic1, for example, against ILS.t
and ROTS.t, and then comparing with the comparable intersections of the standard
box counting dimension rows (det1 and det2).
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FIGURE 5.4: Correlation matrices for algorithm performance and
landscape features, including LON multifractal dimensions (see facet
titles). Lower triangle: pairwise scatter plots. Diagonal: density plots.
Upper triangle: pairwise Spearman’s rank correlation, ∗∗∗p < 0.001,

∗∗p < 0.01, ∗p < 0.05

The probabilistic dimensions exhibit moderate-to-strong correlations with the
runtime of metaheuristics with p < 0.001 in all cases, suggesting that intricate paths
or patterns of local optima — in particular, when those are probable or heavily-
traversed search directions — have an correlation with slower performance from
metaheuristics. This is more evident for the benchmark instances shown in red than
the "real-like" ones in green. There is a patent mismatch between standard fractal di-
mensions and probabilistic fractal dimensions: these have only a weak-to-moderate
correlation. The density plot for det1 and probabilistic2 dimensions, as an additional
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FIGURE 5.5: Correlation matrices for metaheuristic performance and
landscape features, including LON probabilistic fractal dimensions
(see facet titles). Lower triangle: pairwise scatter plots. Diagonal:
density plots. Upper triangle: pairwise Spearman’s rank correlation,

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

example, show unalike distributions. It follows that the two methods provide sepa-
rate information about fractal topography at the local optima level.

5.6 Conclusion

In this Chapter I brought multifractal analysis to LONs and considered their prob-
ability information to help define fractal dimension. I included sampled LONs for
the first time (extracted from benchmark QAPLIB problems) alongside some fully
enumerated LONs for smaller problems. Two new approaches for fractal analysis
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of LONs were proposed: a fine-grained approach for calculating the probabilistic
fractal dimension of a LON, and multifractal analysis. Pairwise relationships were
delineated between the fractal dimensions and the performance of two competitive
metaheuristic algorithms for the QAP (ILS and ROTS) with correlation analysis. The
probabilistic fractal dimensions and some of the dimensions taken from the multi-
fractal spectrum are correlated to slower runtimes. We saw that the the real-world
QAPLIB LONs studied appeared to be monofractal (i.e. able to be characterised with
a single fractal dimension), but that "real-like" LONs and grid-based QAPLIB LONs
exhibited multifractality. It seems that for some LONs a single fractal dimension
is not sufficient to capture the anisotropic spatial complexity encoded in them. In-
stead a spectrum of dimensions, as I have calculated here, gives more information.
Finally, I have shown that probabilistic dimensions are more evidently correlated
with search than those derived from standard box counting and may therefore pro-
vide a more accurate picture of the complexity in local optima connectivity patterns
when taking into account search path probabilities. Further analysis is needed; this
is conducted in the next Chapter.

5.7 Summary

Chapters 4 and 5 have indicated relationships between fractal complexity features of
LONs and metaheuristic algorithm performance. The problems in Chapter 4 were
small in size and were completely enumerated for their local optima. While this was
necessary as a proof-of-concept, this size of problem is not realistic. In the present
Chapter, larger problem sizes were considered. These were from QAPLIB, and were
up to size N = 28. This being said, only 25 QAPLIB instances were used, and they
were from two of the many classes of problem in QAPLIB. The upcoming Chap-
ter retains the fractal lens on the local optima level and increases the considered
QAPLIB instance set from 25 to 85 and the maximum problem size from 28 to 50.
In addition, multifractal and probability-based dimensions are used in regression
models for performance prediction.
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Chapter 6

Fractal Geometry at the Local
Optima Level

Chapters 4 and 5 established a foundation for fractal analysis of local optima net-
works. The present Chapter further develops this branch of knowledge. A larger
dataset is included; a recently-proposed LON construction algorithm is used to gen-
erate LONs; and enhanced statistical techniques are deployed to ascertain the bind
between LON fractal complexity and metaheuristic algorithm performance.

6.1 Introduction

The first study to conduct fractal analysis on fitness landscapes [144] stipulates that
for certain problems, landscape ruggedness scales at different levels of abstraction
and that this indicates fractal structure. Subsequent studies have reported similar
findings [122, 146, 174] and some have emphasised the potential lying dormant in
the largely untapped field of fractal analysis for landscapes.

A Local Optima Network (LON) [11] models local optima and their connectivity
in a fitness landscape. The nodes of a LON are local optima and the edges are meta-
heuristic search paths between two local optima under a chosen search operation.
As seen in Chapter 3, there is a significant body of evidence suggesting that features
of LONs can correlate to, explain, or predict, metaheuristic algorithm performance
on the underlying combinatorial problem [4, 5, 8, 52, 56, 142].

Little is known about the fractal complexity in LONs and how their fractal nature
relates to metaheuristic algorithm performance. Chapters 4 and 5 indicate that the
fractal dimension is involved in such a relationship. Nevertheless, Chapter 4 considers
only small problem instances (size N = 18 for a binary-encoded problem, NK Land-
scapes). Chapter 5 centred on the QAP and considers some benchmark instances
from QAPLIB [187] up to N = 28, although only two of the library’s several instance
classes for this problem size range are included. As a consequence, the fractal anal-
ysis is conducted on only 25 QAPLIB instances.

I intend to illuminate understanding of the relationships between fractal geome-
try in LONs and metaheuristic algorithm performance. The QAP serves as a testbed
for the analysis in this Chapter and I use QAPLIB problems, increasing the number
of instances considered threefold when compared to Chapter 5, and raising the max-
imum problem size from 28 to 50. A recent and refined LON construction algorithm
[24] is used to intelligently build LONs for the QAPLIB instances. Features of the
LONs, including fractal dimension features, are computed and the parallel between
them and performance is investigated using visual tools, correlation analysis, and
linear and random forest regression models.

The contributions of this Chapter can be summarised as follows:



60 Chapter 6. Fractal Geometry at the Local Optima Level

1. A bring new insight into how multifractal geometry at the local optima level
can help explain and predict algorithm performance;

2. A significant expansion of the dataset used for fractal analysis in LONs (using
more than three times the previous number of QAPLIB instances and raising
N 6 28 to N 6 50, as well as deploying a recent refined and tested sampling
algorithm for constructing the LONs);

3. Enhanced statistical techniques for properly validating the use of LON frac-
tal analysis for algorithm explanation and prediction (random forest to model
non-linearities; bootstrapping to estimate the sampling distribution of model
statistics; using intelligible predictors such as the extent of multifractality and
the median fractal dimension).

The structure for the Chapter is this: Section 6.2 contains the necessary back-
ground information to render this Chapter self-contained; Section 6.3 details aspects
of the methodology used; Section 6.5 specifies the experimental setup, with Sec-
tion 6.6 presenting the results; finally, Section 6.7 finishes with conclusions and di-
rections for future work.

6.2 Preliminaries

Fractal complexity in local optima networks has been calculated in Chapters 4 and 5
using box counting methods. The box counting algorithm was altered in Chapter 4
to specialise for LONs. For two nodes to be "boxed" as a single "unit" of detail, they
must either be a single edge apart or they are within m edges of each other, and they
also must have a fitness distance less than a set threshold ε.

Chapter 5 proposed additional mechanisms for computing and therefore defin-
ing the fractal dimension of a LON. A box counting variant which was introduced
there utilised LON edge weights during the process. In a LON, edge weights rep-
resent the probability that a search path between the connected local optima will
be followed. The box counting variant used the probabilities as the scaling factor,
in that the criteria for "boxing" is that two nodes have a single edge between them
which is weighted with a probability greater than a defined threshold. I refer to
values obtained using this method as probabilistic fractal dimensions.

In real-world complex systems a single fractal dimension metric can sometimes
be insufficient to capture its complexity [192]. Monofractal analysis, such as the
box counting described earlier, is based on the assumption that fractal complexity is
roughly uniform in the pattern. Some networks have been found to be multifractal
[180, 182]. A multifractal algorithm has been used on LONs in Chapter 5 and I
deploy this for the experiments involved in this Chapter. The process produces a
spectrum of fractal dimensions for a single pattern (which is a LON in this case).
Details and pseudo-code for the algorithm are provided later on in Sections 6.4 and
6.5.3.

6.3 Methodology

6.3.1 The Quadratic Assignment Problem

The analysis is conducted on the much-studied QAP [31] which is often used in
fitness landscape analysis [5, 30, 32, 33, 34] and has been explained in detail in Sec-
tion 2.2.
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6.3.2 LON Construction: ILS Sampling

LON sampling algorithms are generally augmented on top of an existing optimisa-
tion algorithm (see, for example, [19, 24, 34]). I align with this trend here, opting for
a recently-introduced construction algorithm which joins an ILS with LON logging
for the QAP [24]. This ILS Sampling is executed r times from independent random
starting solutions. In the ILS process, the local search is a pairwise exchange of items
on the permutation solution, with the perturbation being k pairwise exchanges. Each
local optimum encountered during search is stored in the set of nodes alongside its
fitness. If two local optima LOi and LOj are connected by an ILS iteration (i.e., local
search followed by k perturbations) during the search an edge eLOi ,LOj is stored in
the set of LON edges. The nodes and edges logged during r runs of the algorithm
are aggregated to form a single local optima network for the problem instance. The
construction algorithm differs from that in Chapter 5 because it is based on traces of
full ILS runs instead of separate stages to detect nodes and edges, i.e. 2000× N local
searches to identify local optima and then 20N2 perturbation and local search cycles
from each node to find connectivity between them. All parameters for the algorithm
are stated later on in Section 6.5.2.

6.4 Multifractal Analysis

6.4.1 Deterministic Approach

The process for calculating multifractal dimension spectra is different to ordinary box
counting as it assigns a whole spectrum of fractal dimensions to a single pattern. In
Chapter 5, I specialised a multifractal analysis procedure (originally from [184]) to
align with LON semantics. This bespoke variant is the foundational algorithm in
use during the incumbent fractal analysis experiments. The template matches the
previous pseudocode and description of Algorithm 2 and Section 5.3.2, although the
parameter choices are different here. These are provided later on. The procedure
produces multifractal dimension spectra for LONs.

6.4.2 Probabilistic Approach

Separately, I implement a modified version of the afore-described algorithm where
the metaheuristic transition probabilities recorded in LON edge weights are involved
— similar to the related approach in Chapter 5, except this is the multifractal case
and some adjustments are required to account for the specific network set. With this
design, for a node n to be a member of the sandbox with centre c there must be one of
two situations: either there is a single edge between n and c (of any probability; this
is to guarantee boxing momentum), or there is an edge between a direct neighbour
of n and c which is weighted with a probability greater than a specified threshold
β. I planned this element with the thought that nodes which are in close proxim-
ity to a probable path towards the central node should be included in the sandbox.
I removed the fitness distance constraint in this configuration because retaining it
resulted in minimal box counting movement due to the distributions of fitness dis-
tances and probabilities intrinsic to the LONs under study. Additionally I replace
the set of values for "sandbox" radii — which are in use for experiments relating to
the other algorithm, detailed just previously in Section 6.4.1 — with a single value:
rd = 2, which stipulates that only nodes with a single edge separating them can be
included in the same sandbox. I argue that larger values for rd do not easily suit the
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probability-based paradigm for these particular LONs; when more than one edge
is separating nodes, complications arise about how to consider the set of probabili-
ties lying on the path between them — indeed, I noticed that paths which consist of
multiple steps often contain only one high probability weight.

The rest of the algorithm matches the deterministic approach (Section 6.4.1) and
a spectrum of fractal dimensions is produced. To differentiate the results in the fol-
lowing Sections I refer to fractal dimensions obtained by the probability-centred
process as probabilistic fractal dimensions, although it should be noticed that they
are computed differently to the probabilistic dimensions in Chapter 5. The other
fractal analysis algorithm used in the experiments does not include the probability
constraint but instead includes "sandbox" radius variation as well as fitness distance
constraints and produces values which I refer to as deterministic fractal dimensions.
The parameters for both algorithms described are stated in Section 6.5.3.

6.5 Experimental Setup

6.5.1 Instances Used

All instances used are from the benchmark library for QAP, QAPLIB [187]. I cap
the maximum problem size at 50. Additionally I remove the "esc" instances from the
group — I observed that LONs computed from these typically only have one distinct
fitness and LON edges are therefore towards a solution of equal fitness, i.e. they
form a plateau. After accounting for plateaus by compressing together connected
nodes of the same fitness, there are no edges left, i.e., all edges are within the plateaus
and have been removed. The absence of ‘true’ edges would render fractal analysis
(which is based on spatial complexity and connectivity between nodes) redundant.
The resultant set consists of 85 problems, with sizes ranging from 12 to 50; these are
specified in Table 6.1. In all cases the global optimum is known.

Recall from Section 2.2.2 that the nature of QAP instances can be characterised
as belonging to one of four classes [191]: uniform random distances and flows; ran-
dom flows based on grids; real-world; and random "real-world like", which are not
real-world but mimic distance and flow patterns seen in real-world presentations of
QAP. Table 6.1 shows the QAPLIB instances used in the experiments and presents
them in these four categories. Numbers which form part of the instance names in-
dicate the problem size, i.e., the number of locations and flows, and also the length
of a permutation solution. The letters in the instance names are shorthand for the
instance author’s surname, and provide an indication of sub-category into a type of
instance specified by that particular author.

6.5.2 LON Construction

For each QAP instance, I construct a local optima network. As stipulated in Sec-
tion 6.3.2, this is done using an ILS algorithm which is augmented with a catalogu-
ing capacity for building a LON. This amalgamates the unique nodes and edges from
200 ILS runs into a single network. Each run terminates after 10,000 iterations with-
out an improvement. The remaining ILS parameters and setup are detailed shortly
in Section 6.5.4.
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TABLE 6.1: QAPLIB instances used in the experiments

class instance names

uniform random tai { 12a, 15a, 17a, 20a, 25a, 30a, 35a, 40a, 50a } |
rou { 12, 15, 20 }

random grid had { 12, 14, 16, 18, 20 } |
nug { 12, 14, 16 {a-b}, 17, 18, 20, 21, 22, 24, 25, 27, 28, 30 } |
scr { 12, 15, 20 } | sko { 42, 49 } |
tho { 30, 40 } | wil { 50 }

real-world bur26 {a-h} | chr { 12 {a-c}, 15 {a-c}, 18 {a-b}, 20 {a-c}, 22 {a-b},
25a } | { els19 } | kra { 30 {a-b}, 32 } | lipa { 20 {a-b},
30 {a-b}, 40 {a-b}, 50 {a-b} } | ste36 {a-c}

real-world like tai { 12b, 15b, 20b, 25b, 30b, 35b, 40b, 50b }

6.5.3 Fractal Analysis

In contrast to traditional monofractal analysis, to generate multifractal dimensions for
the LONs a range of arbitrary real-valued numbers is needed. In the deterministic
fractal analysis, I set these as 60 values: q in the range [3.00, 8.90] in step sizes of 0.1.
The number of "sandbox" centres at each iteration is set at 50 — which I selected due
to the moderate size of the networks and to reduce computational cost — and the
choice of these centres is randomised. As mentioned, the deterministic multifractal
algorithm considers fitness distance in order to specialise to LONs. As was the case
in Chapter 5, the comparison between fitness values is handled using logarithmic
returns [189]:

fitness di f ference = ln( f (LOi)/ f (LOj))

I then compare the fitness difference value with a set threshold ε. A range of
ten values is used for that algorithm: ε ∈ {0.01, 0.19} in step sizes of 0.02. These
values were chosen considering the observed distribution for fitness differences in
the LONs. Another essential algorithmic element is the size (i.e., the radius) of the
sandboxes. For these I use values rd in the range [2, diameter− 1] (where diameter is
the LON diameter).

For the probabilistic multifractal algorithm design the fitness constraint is not
used and a single value for rd is considered: rd = 2. There are again 60 values for q
for this setup: q in the range [3.00, 8.90] in step sizes of 0.1. The number of sandbox
centres is 50. The probability threshold parameter β must also be chosen. Recall
that in essence β controls the minimum edge weight between two nodes to render
them eligible for consideration as a single "unit" of detail. In Chapter 5 β was the
maximum opposite probability, but the LON weights in the present dataset are of a
different nature to the ones used in that Chapter — they do not capture an explicit
probability (as was the case in the previous LONs) and are in the form of raw hit
counts for the search transitions. In light of this, I do not standardise them and
instead tried out values for β as the minimum edge weight. In preliminary runs I
noticed that if β was set as larger than the minimum weight which is present within
the weights distribution (which is often one, i.e., the transition occurred once during
runs) then little or no "boxing" occurred. For this reason β is set as the minimum
weight present in the distribution; that is, any edge weight which is above the lowest
weight is accepted.
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An important note. I note here that 32 out of the 85 LONs had only a single edge
weight present throughout the network, which means that the LON construction
algorithm traversed each edge only once. This renders them ineligible for proba-
bilistic fractal analysis under the specified conditions. Consequently, results which
pertain to probabilistic dimensions consider the 53 eligible LONs and their features,
while those pertaining to deterministic fractal dimensions cover the complete set of
85 LONs.

6.5.4 Metaheuristic Performance

To obtain algorithm performance information with which to compare the LON fea-
tures I use two metaheuristic search algorithms for the QAP. Stützle introduced
ILS variants for state-of-the-art performance on the QAP [191]. I use this ILS con-
figured as follows: first-improvement pairwise exchanges for local search; 3n

4 ex-
changes for perturbation, accepting only improving local optima; and terminating
when the global optimum is found or after 100 iterations. Taillard’s Robust Tabu
Search (ROTS) [190] is also a competitive heuristic for the QAP. This includes a best-
improvement pairwise exchange local search with a variable-length tabu list tail. For
each item-location combination, the most recent point in the search when the item
was assigned to the location is retained. A potential move is deemed to be "tabu"
(not allowed) if both items involved have been assigned to the prospective locations
within the last tabuc cycles. The value for tabuc is changed randomly, but is always
from the range [0.9n, 1.1n]. A run terminates if the global optimum is found or after
100 iterations. I run the ILS and the ROTS in these configurations on each QAPLIB
instance 100 times from different starting solutions. As a measure for their perfor-
mance, I define the performance gap performance(algorithm) as follows:

performance(algorithm) =
Oalgorithm

Ooptimal
(6.1)

where Oalgorithm is the objective value obtained by the metaheuristic algorithm
after 100 iterations and Ooptimal is the objective value of the global optimum. In
this way, within the minimisation context of the QAP, a solved run will produce
performance = 1.00: the metaheuristic has produced an objective value which matches
the optimal. Lower-quality objective values are larger in the minimisation setting; it
follows that higher per f ormance values indicate poorer quality algorithmic output
in terms of objective value. In the results that follow, p(ILS) is the mean performance
over 100 runs for iterated local search and p(ROTS) is the equivalent for robust tabu
search.

6.5.5 LON Features

Features are extracted from the local optima networks. Deterministic fractal dimen-
sion sets are calculated for each of the 85 LONs considered. In those sets there are
60 ∗ (diameter − 2) ∗ 10 dimensions, where 60 is the number of (arbitrary) q values,
diameter is the LON diameter (which differs between LONs), and 10 is the number
of values for fitness distance threshold ε. As we recall from Section 6.5.3, 53 of the
85 LONs are eligible for probabilistic fractal analysis. Those 53 have sets of proba-
bilistic fractal dimensions calculated in addition to the deterministic ones. In each
set there are 60 dimensions (one for each value of q), which is less than there are
for deterministic multifractal analysis; this is because the probabilistic variant does not
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consider parameter ranges for "sandbox" radius and does not include fitness dis-
tance constraints. The statistics I draw from the fractal complexity data are:

1. median fractal dimension;

2. minimum fractal dimension;

3. range of fractal dimensions (calculated as the difference between the largest
and smallest values);

4. number of unique fractal dimensions.

The last two capture the extent of multifractality present. Also considered in
the experiments are other LON features which are not related to fractal dimension
values:

1. number of local optima;

2. mean fitness of sampled local optima in the LON;

3. fitness range;

4. fitness of sinks ("sinks" are nodes which have no out-going edges, i.e. the algo-
rithm used to construct the LON became trapped there);

5. extent of meta-neutrality, which is neutrality at the local optima level, computed

as meta-neutrality = number unique fitnesses
number local optima ;

6. mean out-degree.

6.5.6 Regression Model Setup

I build algorithm performance models using LON features for predictors and the
performance of competitive metaheuristic algorithms as the response variables. The
aim is the elucidation of how LON features can contribute to explaining or pre-
dicting algorithm proficiency, paying particular attention to the fractal nature of the
LON. In pursuit of that I conduct linear and random forest regressions. The number
of observations I have is relatively small — 85 for the deterministic dimensions and
53 for probabilistic — so I use bootstrapping (random repeated sub-sampling cross-
validation) to estimate the sampling distribution for model statistics. The models
are bootstrapped for 100 iterations. Pattengale et al. found that between 100 - 500
bootstrapping replicates provide the necessary information [178]; I use 100 for com-
putational efficiency, after noticing that separate bootstrapping runs produce similar
estimates and that increased iterations have a diminutive effect on the calculated es-
timates. A training-test split of 80 - 20 is applied. The random forest regression uses
500 trees. All predictors are normalised (due to different value ranges) as follows:

ˆpre = (pre−E(pre))
sd(pre) , with pre being the predictor in question and where E(pre) is the

expected predictor value and sd(pre) is the standard deviation. The model statistics
I focus on are R2, which captures the amount of variation in the response variable
which can be explained using the predictor set, and mean squared error, which ex-
presses the mean squared difference between the model-estimated values and the
actual values.

The non-fractal LON predictors used in the models are the mean fitness; fitness
range; fitness of sinks; extent of meta-neutrality; out-degree; and the number of
global optima. For the deterministic fractal dimensions, I include the minimum frac-
tal dimension and median. In the probabilistic case, these two are replaced with the
fractal dimension range and number of unique dimensions.



66 Chapter 6. Fractal Geometry at the Local Optima Level

6.6 Results

6.6.1 Distribution Analysis
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FIGURE 6.1: The distribution of median fractal dimension (over the
full set of dimensions produced for the LON). Each box displays val-
ues for LONs extracted from one of four QAPLIB instance classes, as
indicated along the x-axis. The mean performance of iterated local
search, p(ILS), on the QAP instance class for the LONs is also pro-

vided

In Figures 6.1 and 6.2, box-plots convey information about the fractal dimensions
calculated on the local optima networks. Each box contains values for LONs asso-
ciated with a particular QAPLIB instance class — those are indicated on the x-axis
labels. Only a sub-set of the instance classes which are involved in the central ex-
perimentation of this Chapter are considered in these plots. I chose these groups
because displaying their distributions alongside each other illustrates evident visual
differences between these particular classes. Also provided in the Figures as accom-
panying text for each box is the performance of iterated local search on the QAP
instances associated with those LONs; this is the performance metric p(ILS).

In Figures 6.1a and 6.1b the distributions concern the median LON fractal dimen-
sion which is associated with using the deterministic and probabilistic methodolo-
gies, respectively.

In the case of the deterministic fractal analysis, this is the median value com-
puted over all of the dimensions produced under these conditions; each dimension
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FIGURE 6.2: The distribution of the range (that is, maximum value
- minimum value) fractal dimension (over the full set of dimensions
produced for the LON). Each box displays values for LONs extracted
from one of four QAPLIB instance classes, as indicated along the x-
axis. The mean performance of iterated local search, p(ILS), on the

QAP instance class for the LONs is also provided

is the output resulting from using a different combination of the fractal analysis pa-
rameters q, r and ε. The probabilistic median is computed from the spectrum of
dimensions associated with the range of values for q.

In both Figure 6.1a and Figure 6.1b, the "lip" class of LONs seem to have the
highest values and the "had" group have the lowest. On both plots, the highest
value belongs to the "lip" category and the lowest to "had". Notice that in 6.1b the
"lip" and the "nug" instances — whose LONs generally have the highest fractal di-
mensions — also have higher values of p(ILS). As stipulated in Section 6.5.4, values
like these reflect that metaheuristic performance was of lower quality. With deter-
ministic analysis, the "lip" group have the largest variation, while the "had" LONs
have among the smallest; with probabilistic dimensions (Figure 6.1b), "had" have the
largest and "lip" the smallest. Deterministic fractal dimensions appear to be higher
than probabilistic fractal dimensions.

Consider now the range of fractal dimensions in the deterministic and probabilis-
tic spectra calculated for the LONs, which are given in Figures 6.2a and 6.2b.

The range of fractal dimensions for a LON is a way to quantify the extent of mul-
tifractality present and is calculated as maximum value - minimum value with respect
to the complete set of fractal dimensions produced using either the deterministic or
probabilistic paradigm. Also provided is the average ILS performance, p(ILS), for
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the QAP instances included in the classes.
Looking at the two plots and noting the different scales used for them, it seems

clear that the probabilistic dimension calculation process lends to more compact
ranges. This is intuitive: the conditions are stricter for measuring "boxes" during
the dimension calculation process. Let us consider in both plots the levels of the
black lines (which indicate the distribution median). The "had" group has the lowest
in 6.2a and the "lip" group has the highest. That hints that the degree of multifrac-
tality in the "lip" group is the most pronounced among the four, and it is the least
pronounced in the "had" group. The previous plots told us that "lip" LONs had the
highest dimensions, and "had" showed the lowest. It follows that the degree of de-
terministic multifractality might be associated with lower fractal dimensions. For
6.2b though, "had" LONs have the highest ranges of dimension and "lip" have the
lowest — the opposite trend to the deterministic dimensions. With respect to algo-
rithm performance, we can see that the "lip" LONs, associated to problems with the
lowest metaheuristic performance (p(ILS)), appear to have a higher extent of deter-
ministic multifractality and a lower extent of probabilistic multifractality. In Figure
6.2b, the two problem groups with the best ILS performance have the widest ranges
of values for dimension (i.e. amount of multifractality) of the four categories.

6.6.2 Visualisation

Visual analysis of LONs provides valuable insight into algorithm performance and
problem structure, and can augment more empirical or statistical findings [139]. I
begin with visualisation before moving onto correlation analysis (Section 6.6.3) and
machine learning models (Section 6.6.4) thereafter.

Figure 6.3 shows two partial LONs, each for a different QAPLIB instance. These
are laid out according to a force-directed graph layout algorithm in R’s iGraph pack-
age. Only the fittest 10% of local optima are plotted for visual clarity. Global optima
are red squares and all other nodes are grey circles. The node sizes are proportional
to the incoming strength to that node, which is the weighted incoming degree.

These two LONs were selected from the "had" and "lip" instance classes because
the former have lower fractal dimensions than the latter. These two instances chosen
have the same problem size, N = 20, and similar numbers of local optima.

In accordance with the higher fractal dimensions, the algorithm performance is
lower on the "lip" group of problems. Using as a performance measure p(ROTS), ro-
bust tabu search averaged 1.096 on the "lip" instances. For the "had" group this was
1.011. Our task in this Section of the results is to seek explanation in the networks
concerning the algorithm performance differences while also paying particular at-
tention to how their fractal nature relates to what is visually seen in the structure.

The median fractal dimension for the LON associated with the "had20" instance,
shown in Figure 6.3a, is 2.975; for the "lipa20b" LON, it is 4.015. The range of fractal
dimensions for "had20" is around 63, and is around 49 for "lipa20b". An evident
difference in the two Figures is the number and connectivity of global optima —
Figure 6.3a shows that the "had20" LON has many, and they appear to be densely
connected to other nodes. Contrarily, the "lipa20b" LON in Figure 6.3b has a single
global optimum, which seems to be more sparsely connected within its network.
Also noteworthy is the relative sizes of the non-optimal (grey) nodes. In Figure 6.3a
there are many large nodes which are sub-optimal and they have access to the global
optima. Figure 6.3b is not the same; in fact, many of the nodes which are one step
from the global optimum are very small indeed. That tells us that these nodes have
small incoming degree which might hinder ascension through fitness levels during
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(A) Partial LON of "had20" QAPLIB instance which has median fractal dimension 2.975 and
associated performance(ROTS) = 1.011

(B) Partial LON of "lipa20b" QAPLIB instance which has median fractal dimension 4.015 and
associated performance(ROTS) = 1.154

FIGURE 6.3: Partial local optima networks for two QAPLIB instances;
only local optima which are in the fittest 10% are shown. Global op-
tima are square and red; all others are grey circles. The size of the
nodes captures the incoming "strength" to the node in the LON, i.e.

the weighted in-degree
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optimisation. These grey nodes are also not well-connected to each other. The
opposite is true for the other network. In the "had20" LON (Figure 6.3a), connectiv-
ity is so dense in the promising local optima region that visually tracking paths is
impossible.

Let us now view Figures 6.3a and 6.3b using an algorithm performance explana-
tion lens. Of course, the number of global optima matters and so does the accessi-
bility of them. The "lipa20b" global optimum has many incoming edges but most of
these are sourced from nodes which have low incoming degree themselves. It fol-
lows that the global optimum is less accessible. The "had20" LON, which is highly
populated with edges in this promising landscape region, is probably easily solv-
able in part because when an algorithm reaches one of the large grey nodes (this
should be probable because they have high incoming degree) there is an abundance
of paths to a global optimum. The same trends are present when comparing the two
networks in Figures 6.4a and 6.4b.

These are the partial LONs of the "had18" and "nug16b" QAPLIB instances. Fig-
ure 6.4a shows "had18", which has a lower median fractal dimension (3.175) and
better tabu search performance on the underlying problem (1.011) when compared
with "nug16b" shown in Figure 6.4b, which has a median fractal dimension of 4.090
and tabu search performance of 1.055. Surveying the two figures, we can again visu-
ally account for the discrepancy in fractal dimension and algorithm performance by
looking at the spatial complexity. Although the LON of "nug16b" has more global
optima (in red), edges appear less uniformly distributed in their vicinity when com-
pared to the LON of "had18".

In addition we notice that some nodes which are one step from a global optimum
in Figure 6.4b are small in size. This tells us that they have low incoming degree
and that the probability of search paths reaching them is small. As a consequence
potential routes towards the global optima may be missed by algorithms.
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(A) Partial LON of "had18" QAPLIB instance which has median fractal dimension 3.175 and
associated performance(ROTS) = 1.011

(B) Partial LON of "nug16b" QAPLIB instance which has median fractal dimension 4.090 and
associated performance(ROTS) = 1.055

FIGURE 6.4: Partial local optima networks for two QAPLIB instances;
only local optima which are within the fittest 15% are shown. Global
optima are square and red; all others are grey circles. The size of the
nodes captures the incoming "strength" to the node in the LON, i.e.

the weighted in-degree
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6.6.3 Correlation Analysis

Figures 6.5 and 6.6 show pairwise Spearman correlations between variables. In Fig-
ure 6.5, the statistics reflect deterministic dimensions; in Figure 6.6, the associated
dimensions are probabilistic. Included are the metaheuristic performance measures
alongside fractal dimension (FD) features of the LONs. For the deterministic fractal
dimensions, these are the minimum FD (FD_min), median FD (FD_med), a dimen-
sion from an arbitrary point on the spectrum with rd=3 and ε=0.05 (FD_r3e05), and
another with rd=3 and ε=0.09 (FD_r3e09). In the case of the probabilistic dimen-
sions, the features are the minimum FD (FD_min), range of FD (FD_rng), number
of unique dimensions (FD_uni) and a single dimension from the spectrum (FD_1).
Different features are considered for the type of dimension (deterministic or prob-
abilistic) because they seem to have different relationships to search; for example,
the median probabilistic FD does not have a significant (p < 0.05) correlation to ILS
and tabu. I therefore shortlist differing FD features depending on FD type. Fitness
landscape features which are computed from the LON but are not related to frac-
tal complexity are additionally included. These are the mean outgoing edges from
nodes (outdegree), the mean fitness of local optima in the LON, which is labelled
as fitness, and the number of local optima (optima).
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FIGURE 6.5: Spearman correlations between pairs of variables, in-
cluding algorithm performance measures, deterministic fractal di-
mension metrics for the LONs (those that include FD), and other fit-

ness landscape features

In particular I am interested in the correlation between fractal features of the
LON and algorithm performance variation on the associated combinatorial prob-
lem. Looking first at the intersections between the ILS row and the fractal fea-
ture columns in Figure 6.5, this reveals moderate positive correlations with all four
(FD_min, FD_med, FD_r3e05 and FD_r3e09) and all have p < 0.001. The strongest
of these is the median fractal dimension. Checking the ILS column now, notice
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ness landscape features

that these are stronger than the ILS correlation with the mean local optima fitness
(fitness) and the number of local optima (optima). There is a moderate negative
correlation in the case of the LON outdegree. Next, onto the tabu feature shown
in Figure 6.5. There are weak positive correlations with each of the fractal dimension
variables here. Although they are weak, in all except one the p-value indicates sig-
nificance. The p-value is lowest, and the correlation highest, for FD_med, the median
fractal dimension.

Next we will consider the correlation plot which includes probabilistic fractal di-
mension variables in Figure 6.6. Examining the ILS and tabu rows, observe that
the most noteworthy fractal features here appear to be FD_rng and FD_uni — both
of which relate to the extent of multifractality present. For these, there are negative
correlations with the algorithm performance variables. These are stronger for ILS
than for tabu, and with the former the p-values are less than 0.001. There is also
a weak positive correlation with p < 0.05 between the minimum probabilistic di-
mension and ILS performance. Excerpting a single dimension from the spectrum
does not appear to draw a relationship to the algorithm performances — notice that
while FD_1 is weakly positively correlated to ILS and tabu, there is no indication
of statistical significance present. The correlations between local optima fitness and
number of local optima with ILS and tabu are less than some fractal dimension
features (in particular FD_rng and FD_uni).
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6.6.4 Algorithm Performance Regression Models

Deterministic Fractal Dimensions.

Table 6.2 contains regression model statistics whose values are estimated over 100
random repeated sub-sampling (bootstrapping) iterations. Each row represents a
particular model set-up. The response variable is shown in the second column. The
R2 and mean squared error (MSE; recall Section 2.7) are given.

TABLE 6.2: Summary statistics estimated with bootstrapping for ex-
plaining the performance of ILS and ROTS. Predictors include deter-
ministic fractal dimension LON statistics, as well as other landscape

features such as fitness distribution measures

type of regression response variable R2 mean squared error

linear p(ILS) 0.197 0.002
linear p(ROTS) 0.194 0.038

random forest p(ILS) 0.524 0.002
random forest p(ROTS) 0.641 0.005

TABLE 6.3: Variable importance rankings for the random forest mod-
els which include deterministic multifractal dimensions in the predic-

tor set. Columns are labelled with the model response variable

feature p(ILS) p(ROTS)

fractal dimension minimum 6 8
fractal dimension median 1 4
fitness of sinks 3 2
fitness range 8 5
mean fitness 2 3
number of global optima 4 7
out-degree 5 6
extent of meta-neutrality 7 1

We can see from the R2 values that random forest regression produces a stronger
model fit. This is likely because random forest trees are adept at considering non-
linearities between variables. The amount of variation in the iterated local search
and tabu search performance which can be explained using the predictors is higher
in the random forest models. The mean squared error is very low in the case of
the random forest regression which is explaining p(ILS), indicating a better fit. The
strongest model in terms of R2 is using random forest regression with p(ROTS) as
the response, with approximately 64% of variance being explained using the land-
scape features. Less variance in p(ILS) response, around 52%, is explained using the
same type of regression. This model setup does, however, have a lower error rate
than the associated p(ROTS) model.

Now let us look at the random forest predictor importance rankings, which are
provided in Table 6.3. This is the most common ordering observed over 100 boot-
strapping iterations. For explaining p(ILS), the median fractal dimension is most im-
portant. Minimum fractal dimension ranks moderately well, placing sixth out of eight
features. The fitness range and extent of meta-neutrality are the least important factors.
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Extent of meta-neutrality is the most important feature for explaining p(ROTS) vari-
ance. Metrics relating to the fitness levels in the local optima sample, such as fitness
of sinks, mean fitness, and meta-neutrality, dominate the importance rankings for this
model setup. The fractal dimension median contributes moderately, ranking fourth
out of eight. Miminum fractal dimension is the least important factor.

Probabilistic Fractal Dimensions.

Table 6.4 presents model statistics where the predictor set includes probabilistic frac-
tal dimension features instead of the deterministic ones seen in Table 6.2. This is
followed by the associated random forest predictor rankings in Table 6.5.

TABLE 6.4: Summary statistics estimated with bootstrapping for ex-
plaining the performance of ILS and ROTS. Predictors include proba-
bilistic fractal dimension statistics, as well as other landscape features

such as fitness distribution measures

type of regression response variable R2 mean squared error

linear p(ILS) 0.263 0.001
linear p(ROTS) 0.304 0.022

random forest p(ILS) 0.315 0.000
random forest p(ROTS) 0.557 0.040

TABLE 6.5: Variable importance rankings for the random forest mod-
els which include probabilistic multifractal dimensions in the predic-

tor set. Columns are labelled with the model response variable

feature p(ILS) p(ROTS)

fractal dimension range 5 7
unique fractal dimensions 2 8
fitness of sinks 6 1
fitness range 7 4
mean fitness 4 2
number of global optima 1 5
out-degree 8 6
extent of meta-neutrality 3 3

The random forest p(ILS) model setup expains approximately 31% of variance.
It should be reiterated at this point that the data-set is composed of fewer observa-
tions here than in the previous models (Tables 6.2 and 6.3). There are 53 observations
here, compared with a previous 85. This might impact the formulation of a well-
fitting model. Nonetheless both setups with p(ILS) as the response variable have
markedly lower mean squared errors than their ROTS counterparts. This is also true
in Table 6.2. Back in Table 6.4, the p(ROTS) models have higher mean squared er-
rors but the random forest model is definitely the strongest with respect to search
algorithm explanation, with around 56% being accounted for by the predictors. Al-
though a smaller portion of variance is explained in the p(ILS) models, the low mean
squared errors are encouraging in accuracy terms.

In the predictor rankings, seen in Table 6.5, observe that fractal dimension range
comes contributes moderately in in the ILS model and second-last in the ROTS
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one. The unique fractal dimensions feature is second most important feature in the
ILS setup, but ranks last in the ROTS model. The strongest predictors for p(ROTS)
appear to be relating to the local optima level fitness distribution. Outdegree is of low
importance in both models.

6.7 Conclusion

I conducted multifractal analysis on LONs associated with instances belonging to a
benchmark combinatorial optimisation problem library: QAPLIB. The QAPLIB in-
stance set was more than three times the size of the set used in Chapter 5 and raised
the considered problem sizes from N 6 28 to N 6 50. A recent and refined LON con-
struction algorithm [24] was used to build the LONs. Relationships between frac-
tal dimension features of LONs and algorithm performance by iterated local search
(ILS) were established using correlation analysis, visual analysis tools, and linear
and random forest regression with bootstrapping. The results showed that the ex-
tent of multifractality and the high-ness of values in the dimension spectrum can
contribute towards partially predicting or explaining ILS and ROTS algorithm per-
formance. Certain features of the fractal dimension distribution for the LONs also
displayed individual pairwise correlations to ILS and ROTS algorithm performance,
although this was more pronounced for ILS. While the considered fractal dimen-
sion features in LONs contributed as predictors in models, sampled fitness levels in
the LON were usually more important for ROTS prediction and explanation. The
present Chapter could serve as a foundation for further work within this research
avenue which remains untapped. In particular, I would like to expand the maxi-
mum size of the problems studied, as well as venturing to other domains and to
constrained problems. Finally, I conclude with a remark concerning my interest in
studying the relationship between perturbation strength used to generate the LONs,
and the calculated fractal dimensions of that LON.

6.8 Summary

So far, the Chapters in this thesis have extracted features from LONs to gain insight
into algorithm-problem dynamics and reactions. In the case of problems non-trivial
in size, this necessitates sampling of the LON, which carries attendant sampling bias.
The importance of sampling mindfully can hardly be overstated: features extracted
from misleading LONs could also be misleading and lead to erroneous deductions.
Chapter 7, which follows from here, makes inroads into a better understanding of
sampling-based LON construction algorithms.
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Chapter 7

Inferring Future Landscapes:
Sampling the Local Optima Level

In the contributions thus far I have used LON features to generate insight about
algorithm-problem dynamics. For sampled (approximate) LONs this kind of analysis
has a foundational assumption: that the sample is accurate. As LON analysis moves
closer to real-world applications, it is essential to understand the LON construction
algorithms, which dictate the information extracted from LONs, themselves. The
upcoming Chapter advances towards this goal. Included is a comparison of fully-
enumerated LONs with their sampled counterparts; an "equivalent computation"
appraisal of LON construction algorithms; and regression models which combine
the most impactful features of ILS Sampling LONs with those of Snowball Sampling
LONs together for algorithm performance prediction.

7.1 Abstract

Connection patterns found in LONs can help to explain metaheuristic performance
during optimisation. LON research has predominantly considered complete enu-
meration of a fitness landscape, thereby restricting analysis to problems which are
diminutive in size compared to real-life situations. LON sampling algorithms are
therefore important. In this Chapter I study LON construction algorithms with a
focus on the QAP. Initially, a descriptive analysis of the networks themselves is
executed. After that, using machine learning, I use LON features to predict algo-
rithm performance for competitive metaheuristics used in the QAP domain. The re-
sults show that by using random forest regression, construction algorithms produce
LONs with features which can explain the majority of variance in performance on
the problem instances. I find that sampled LONs have a more pronounced affiliation
with metaheuristic proficiency than fully-enumerated LONs do. The importance
of fitness levels or layers present in sampled LONs is crystallised here; this is rele-
vant and related to fitness-based genetic algorithm runtime analysis [193]. Features
taken from LONs built using different construction mechanisms are combined to-
gether in predictive models for the first time, with promising results for this "super-
sampling" approach: the model is able to explain the vast majority of variation in
tabu search performance. Arguments are made for the use-case of both construction
algorithms and for combining the exploitative process of Snowball Sampling with
the exploratory optimisation of the ILS Sampling.
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7.2 Introduction

LONs are a fitness landscape model specifically designed to understand or predict
reactions between configuration spaces and metaheuristic search algorithms. Recall
from the perusal of Chapter 3 that studying LON objects has brought colour and
clarity to our understanding of how optimisation problems and search algorithms
interact [5, 19, 165, 12].

Principally, studies have enumerated the fitness landscape to build a compre-
hensive LON [11, 194, 5, 4, 8, 23, 25]. Their focus is on smaller problems and in
that approach every candidate solution is mapped to a local optimum within its
basin of attraction. This baseline and these proof-of-concepts were necessary to es-
tablish LONs as a prosperous tool. LONs have attracted more widespread attention
recently [195, 13, 126, 127, 196, 59, 22], and will likely be applied to increasing num-
bers of real-world and much larger problems in the future. In anticipation of these
requirements, refined LON sampling methods are needed.

Literature concerning LON construction by sampling is in its embryonic stages,
however. A few LON construction algorithms have been proposed recently, but
have not been extensively tested; I recap here the ones which were initially imple-
mented for the Quadratic Assignment Problem, although I additionally note that the
templates underlying the algorithms could easily serve as the basis for construction
algorithms for an arbitrary combinatorial optimisation problem.

Two-phase Sampling. In 2014 a construction algorithm for LONs was introduced
[7]. The procedure has separate phases for recording nodes and edges. Initially, local
optima are found by hill-climbing from 2000× n starting solutions and these form
the node set. Thereafter, those local optima are individually subject to perturbation
and then hill-climbing. If the obtained local optimum is also in the node set, an edge
is added (or if it exists already, the edge weight is incremented). Two-phase LON
Sampling is not used in the present study because it is less recent than the other
sampling algorithms and has not been utilised in follow-up studies.

Iterated Local Search Sampling. ILS Sampling [24] is augmented with a compet-
itive ILS algorithm for the QAP [191] and comprises the high-level trajectory of
multiple ILS runs, each being an adaptive walk on the local optima space. Local
optima and transitions between them are recorded. The same framework for Trav-
elling Salesman Problem LONs has been used with some success [195]; this is also
instrumented on top of a competitive ILS heuristic for the domain — Chained Lin-
Kernighan [197].

Snowball Sampling. With Snowball Sampling [25], a random walk takes place
on the local optima level. From each node in the walk, a recursive branching or
snowballing expands the node by sampling its local optima neighbours. The local
optima are found using perturbation followed by hill-climbing, as in ILS Sampling.
All local optima are saved as nodes for the LON and bonds (transitions) between
neighbouring local optima are recorded as edges.

This Chapter has a heavy focus on the relevance of sampled LONs to empirical
search difficulty and quantifies this relationship with performance prediction using
LON features as predictors. The results and experiments of this study come in five
parts. First is a descriptive and exploratory comparison concerning the nature of
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the networks produced by the two construction algorithms. The subsequent results
focus on predictive modelling using features of the LONs: the comparison of sam-
pled LONs with their fully-enumerated equivalents; budgeted LON construction;
un-budgeted LON construction with a variety of sampling parameter inputs; and
finally the most impactful features of LONs built by ILS Sampling and by Snowball
Sampling are combined together into regression models.

The contributions are as follows:

1. A first descriptive and statistical comparison of LONs produced by different
construction algorithms;

2. The novel comparison of sampled and fully-enumerated LONs in terms of
their predictive potency is given;

3. For the first time LON construction algorithms are given an equal computa-
tional budget and the effect is studied;

4. I additionally propose to combine specific features from LONs which are built
using separate procedures together in performance prediction regression mod-
els.

7.3 Definitions

7.3.1 Funnels

Some of the LON features which are employed in the experimentation of this Chap-
ter relate to the notion of funnels. Recall from Section 3.4 that funnels are documented
fitness landscape features in combinatorial optimisation [119, 56] but originate in the
study of physical energy landscapes [130]. The precise definition in evolutionary
computation is an area of active research but a series of papers [56, 195, 167] con-
sider them to be a basin of attraction at the local optima level. In Figure 7.1, notice
the presence of multiple small basins; overall though, these conform to two much
larger basins. The large basins are funnels, and they contain many local optima or-
ganised in a fitness hierarchy. In this minimisation example, there exists a shallower
sub-optimal funnel (on the left) and a deeper, optimal funnel (on the right). For the
purposes of this thesis I consider the associated definition that a funnel is the collec-
tion of monotonically-improving paths through local optima which terminate at a
single local optimum. To find the paths, sink nodes are identified within a LON —
these are simply the nodes with no outgoing and improving edges (i.e. edges where
the destination node has superior fitness to the source). From those, a breadth-first
search is conducted on the LON, exposing the set of paths which terminate at that
particular sink. These paths together — a path includes both the nodes and the edges
— comprise the funnel which surrounds the sink.

7.4 Methodology

The test instances are QAPs. The solution representation, fitness function, instance
format, and objective are detailed in Section 2.2. In the experiments that follow I fo-
cus mostly on the much-studied QAPLIB, which boasts a diverse selection of prob-
lems — both synthetic and real-world.
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FIGURE 7.1: Abstract depiction of a hypothetical layout for local op-
tima — a sub-optimal funnel on the left and the primary (optimal)

funnel on the right for an imagined minimisation problem

7.4.1 Instances for Exploratory Comparison

The initial prong of experimentation is an exploratory and descriptive comparison
of the networks produced by different LON construction algorithms. For this en-
deavour, reported in results Section 7.6.1, I include 30 moderately-sized instances
from various problem classes. This is chosen with the thought that the range for
descriptive statistics should not be overly large. The problem dimensions N are be-
tween 25 and 50, meaning 25 - 50 items to be assigned to 25 - 50 locations. Recall
from Section 2.2.2 that there are four problem categories for QAP; the instances are
now delineated into their associated instance class in Table 7.1.

TABLE 7.1: QAPLIB instances used in Section 7.6.1

class instance names

uniform random tai { 25a, 30a, 35a, 40a }
random grid nug { 25, 27, 28, 30 } | sko42 | tho { 30, 40 } | wil50
real-world bur26 {a-b} | chr25a | esc32e | kra { 30 {a-b}, 32 }

lipa { 30 {a-b}, 40 {a-b} } | ste36 {a-c}
real-world like tai { 25b, 30b, 35b, 40b }

7.4.2 Instances for Regression

For the regression experiments — presented shortly in Sections 7.6.2 - 7.6.5 — I in-
clude as many benchmark instances as possible to facilitate proper statistical analysis
and evidence-building about predictions. QAPLIB contains 128 instances where the
global optimum solutions are provided. I use 124 of these 128 for regression, omit-
ting the largest three due to computational cost (tho150, tai150b, and tai256c), and
also esc16f because all flow entries are zero in the instance specification. The resul-
tant set contains problems of size N 6 128. A set of sixty additional instances (N =
11) which are not from QAPLIB also play a part in the experiments. Their size en-
ables a complete enumeration of the fitness landscapes and LONs, which is required
to facilitate comparison between sampled LONs and their exhaustively-enumerated
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counterparts. As there is a low number of instances which are small enough for this
in the benchmark QAPLIB, the separate non-benchmark set is necessary for statisti-
cal analysis to take place.

7.4.3 LON Construction Algorithms

This Section describes, in turn, each LON construction algorithm which is involved
in the experiments and findings of this study.

Exhaustive Enumeration

The method for exhaustively enumerating a local optima network was introduced
alongside the model itself [11] and then adapted for the QAP [5]. A history of
LON construction algorithms, including those which conduct exhaustive enumer-
ation, can be found in Section 3.3. Nevertheless, I will concisely refresh the essen-
tials here to render this Chapter self-contained. LONs are enumerated using a best-
improvement local search which considers the elementary operation for QAP — a
pairwise exchange of items in the permutation solution. The local optimum LOi for
each solution is found this way and local optima are added as nodes in the network.
The escape edges are defined according to the distance function d and a maximum
number of applications of d which separate the two local optima; D > 0. An edge
eLOi ,LOj is traced between LOi and LOj if a solution s exists such that d(s, LOi) ≤ D
and h(s) = LOj, where h(s) is the hill-climbing function which maps solution s to
a local optimum. The weight of this edge is WLOi ,LOj = |{s ∈ S : d(s, LOi) ≤
D and h(s) = LOj}|. This weight can be normalised by the number of solutions,
|{s ∈ S : d(s, LOi) ≤ D}|, within reach at distance D. In the present study, I set
D = 2.

Pseudocode for the best-improvement algorithm is shown in Algorithm 4. The
mechanism begins from every possible solution, as is seen at line 2. After that, a can-
didate replacement solution solution′ is set as whichever neighbour of solution (that
is, a member of its neighbourhoodN (solution)) has the best fitness in the neighbour-
hood; notice this at line 4.

Algorithm 4 Best-improvement
Input: initial solution
Output: a local optimum

1: procedure HILL.CLIMBING
2: solution← random initial solution
3: while solution 6= local optimum do
4: set solution′ ∈ N (solution), such that f (solution′) = miny∈N (solution) f (y)
5: if f (solution′) < f (solution) then
6: solution← solution′

If solution′ has superior fitness to solution, then solution′ replaces the current
working solution — observe this at lines 5-6. This procedure of replacing the work-
ing solution with its highest-fitness neighbour continues until the working solution,
solution, is a local optimum.
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Snowball Sampling

Snowball sampling is a strategy originating from social science where each survey
respondent asks a few of their friends to also complete the survey [198]. The resul-
tant social network of respondents is analogous to a rolling snowball which grows
progressively larger as it advances through time and space.

Snowball Sampling was introduced for LON construction recently [25]. In this
context of fitness landscape exploration, the operation is essentially a branching ran-
dom walk on the space of local optima. The LON construction algorithm is config-
urable with the parameters l (which is the length of random walk), de (depth of
snowballing) and se (the number of sampled edges).

Pseudocode is available in Algorithm 5. To construct a LON sample, the algo-
rithm begins from a random solution and hill-climbs to a local optimum; observe
lines 2-3. The local optimum is assigned as the first in a random walk through the
local optima space and is also added as a LON node (see line 4). From this local
optimum — which is at timestep t = 0 in the walk — and also for each successor on
the random walk, the snowball procedure expands the node by exploring for neigh-
bouring local optima. The expansion process is captured in the SNOWBALL function;
a local optimum neighbour is identified at line 4 of that procedure. Local optima
are reached by carrying out perturbation followed by hill-climbing. This is best-
improvement and uses a random pairwise swap of items as the search operation
and the perturbation operator is four swaps. Local optima are added as LON nodes.
As transitions between pairs of local optima are traversed, directed edges are added
to the LON accordingly (note line 10 of the SNOWBALL procedure). Notice also at line
11 that expansion of nodes is recursive, that is, after the neighbours "once removed"
are identified, their own neighbours are found — and so on. The depth of sampling
de controls the depth of this recursive process.

After the expansion and back at the original node the random walk continues: a
neighbour is chosen as the next member of the walk. Line 8 in the first procedure
corresponds to this algorithmic element. That neighbour is added as a LON node
and is then subject to the same neighbourhood expansion as before: see line 7. The
whole process continues until the primary walk is of length l and all l nodes have
been expanded to depth de.

ILS Sampling

Iterated Local Search Sampling (ILS Sampling) [24] is an augmented metaheuristic
[191]. The system was used to extract LONs and was concisely described in Chapter
6 and in Section 6.3.2. In the incumbent analysis, however, the particular mecha-
nisms of the algorithm are more salient; because of this, I will deconstruct ILS Sam-
pling with attention to detail in this Section.

Pseudocode is shown in Algorithm 6. A LON is constructed according to the
paths which the ILS algorithm traverses through the fitness landscape. A run begins
from a random starting solution — see line 4 — which is subject to hill-climbing
and transforms to a local optimum before being added as a LON node. The hill-
climbing in this particular implementation is a first-improvement local search with
the pairwise exchange neighbourhood. This operator swaps two positions in the
permutation solution. The local optimum at this stage in the Algorithm is then per-
turbed with strength k — the perturbation operator exchanges k randomly chosen
items — and then hill-climbing is applied (notice lines 9-10). The resultant local opti-
mum is recorded as a node; observe line 11. If there has been a fitness improvement
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Algorithm 5 LON Snowball Sampling
Input: depth of snowballing de, number sampled edges se, length of walk l
Output: a LON sample

1: procedure SAMPLING(search space S, fitness function f , depth of snowball ex-
pansion de, number sampled edges se, length of random walk l):

2: Choose initial random solution solution ∈ S
3: local.optimum← HILL.CLIMBING(solution)
4: nodes← {local.optimum}
5: edges← ∅
6: for t← 0, . . . l − 1 do
7: SNOWBALL(de, se, local.optimumt)
8: local.optimumt+1 ← WALK(local.optimumt)

1: procedure SNOWBALL(d, m, local.optimum)
2: if de > 0 then:
3: for j← 1, . . . se do
4: neighbouring.local.optimum← HILL.CLIMBING(PERTURB(local.optimum))
5: nodes← nodes ∪ {neighbouring.local.optimum}
6: if (local.optimum, neighbouring.local.optimum) ∈ edges then:
7: edge.weight← edge.weight + 1
8: else
9: edge.weight← 1

10: edges← edges∪{[local.optimum, neighbouring.local.optimum, edge.weight]}
11: SNOWBALL(de− 1, se, neighbouring.local.optimum)

1: procedure WALK(local.optimumt)
2: neighbour.set ← {local.optimum : (local.optimumt, local.optimum) ∈ edges ∧

local.optimum 6∈ {local.optimum0, . . . , local.optimumt}}
3: if neighbour.set 6= ∅ then:
4: Select randomly local.optimumt+1 ∈ neighbour.set
5: else
6: local.optimumt+1 ← HILL.CLIMBING(local.optimum)
7: nodes← nodes ∪ {local.optimumt+1}
8:
9: return local.optimumt+1

from carrying out the local optimum transition then an edge is added to the LON,
which happens at line 18 of the Algorithm (if the edge exists already, the weight is
incremented).

Each run of r total runs terminates either when the global optimum is found, or
after t iterations without improvement.

7.4.4 Visualisation

Figure 7.2 compares LONs which were constructed using ILS Sampling and Snow-
ball Sampling, respectively. Both are extracted from the QAPLIB instance wil50. The
Figure serves as an abstract precursor to a more formal comparative analysis later
on; nonetheless, it captures a remarkable amount of information. The sample in Fig-
ure 7.2a is extracted using ILS Sampling, while Snowball Sampling is used to build
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Algorithm 6 QAP ILS Sampling
Input: perturbation strength k, stopping condition t, number of runs r
Output: a LON sample

1: procedure SAMPLING(search space S, fitness function f , perturbation strength k,
stopping condition t, number of runs r):

2: runs← 0, nodes← ∅, edges← ∅
3: repeat
4: Choose initial random solution solution ∈ S
5: local.optimum← HILL.CLIMBING(solution)
6: nodes← {[local.optimum]}
7: iterations← 0
8: repeat
9: current.solution← PERTURB(previous.local.optimum, k)

10: new.local.optimum← HILL.CLIMBING(current.solution)
11: nodes← nodes ∪ {new.local.optimum}
12: if f (new.local.optimum) 6 f (previous.local.optimum) then:
13: previous.local.optimum← new.local.optimum
14: if (previous.local.optimum, new.local.optimum) ∈ edges then
15: edge.weight← edge.weight + 1
16: else
17: edge.weight← 1
18: edges← edges∪{[previous.local.optimum, new.local.optimum, edge.weight]}
19: iterations← iterations + 1
20: until iterations ≥ t
21: return previous.local.optimum
22: until runs == r

the LON seen in Figure 7.2b.
In red is the global optimum (or the global optima), while all other nodes are

grey in colour. Both samples have been capped by fitness: only the most fit 5% (in
the case of Figure 7.2a) or 0.05% (Figure 7.2b) are plotted. The threshold is lower for
the LON in Figure 7.2b because the sample is orders of magnitude larger and there
are edges crowding and obscuring the network.

Comparing the two plots, there are striking differences. Taking them in turn
notice that this elite-fitness subset of the LON which ILS Sampling produces (Fig-
ure 7.2a) is extremely sparse, and indeed the two global optima are isolated nodes.
This could indicate a low probability for search hitting one of these apparently in-
accessible nodes; alternatively, it could be that the global optima are in fact well
connected but only to inferior fitness levels in the local optima space.

Surveying the LON in Figure 7.2b, built by Snowball Sampling, it is apparent
that this is a markedly more dense network. There are significantly more nodes and
edges. Recalling that this is only the 0.05% most fitness-elite local optima (which
were sampled), the implication is that this sampling method reveals a rich view
of the neighbourhood surrounding the global optimum (at the local optima level),
and may be more suited to characterising highly-promising regions in the fitness
landscape. A global optimum can be seen, albeit partially obscured, in the bottom-
right of Figure 7.2b.
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(A) ILS Sampling LON; the fittest 5% of local op-
tima are shown. Mean fitness 48858.3.

(B) Snowball Sampling LON; the fittest 0.5% of lo-
cal optima are shown. Mean fitness 54038.8.

FIGURE 7.2: LONs extracted for the wil50 instance from QAPLIB;
Figures show LONs obtained by two different construction methods.
The global optimum (or optima) in the samples is shown in red. Note
that in Figure 7.2b the red node is partially obscured, but is visible in

the bottom-right segment

7.4.5 LON Features

LON features are used for analysis of the networks themselves and they also serve
as predictors in regression models for algorithm performance explanation. Features
taken from ILS Sampling LONs are:

1. the number of nodes sampled: number optima;

2. edges sampled: edges;

3. mean sampled fitness: mean fitness;

4. number of outgoing edges from nodes: out-degree;

5. diameter of the LON, which is the longest path between nodes: diameter.

I additionally include funnel features. In particular:

1. the number of sink nodes (i.e., nodes with no outgoing improving edges in the
LON: sinks;

2. number of compressed local optima (after connected nodes of the same fitness
have been merged during funnel pre-processing: compressed local optima;

3. incoming edge weight to sub-optimal sinks in the LON: sub-optimal sink strength;

4. the proportion of LON edges pointing at a global optimum sink: incoming
global);

5. mean sink fitness: sink fitness.
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Some of the features mentioned so far may not be well-suited in roles as pre-
dictors in performance models in the case where the LONs have been produced by
Snowball Sampling. Funnel features calculated on them may not possess predictive
proficiency because during the LON construction process search paths are restricted
and prescribed by the nature of the sampling. In fact, the sampling induces a con-
sistent and extremely large number of apparent "funnels" (at least according to the
definition and calculation method for funnels in Section 7.3.1). The short branch-
ing paths also result in a LON containing numerous nodes with no outgoing edges,
which — when honouring my definition — are identified as sinks or funnel floors.
Similarly, standard features of the samples such as cardinality of nodes, edges, and
out-degrees are redundant as predictors in this type of LON — they are artefacts of
the sampling parameters: length of the random walk, number of edges, and depth
of snowball expansion. For Snowball Sampling LONs I extract predictors based on
the attributes encoded in the nodes and edges: the fitness distribution and the edge
weight distribution. These are more appropriate to what the Snowball sample has
to offer. Included is:

1. the mean weight of self-loops (weight loops);

2. mean weight disparity of outgoing edges (weight disparity);

3. fitness-fitness correlation between neighbours (fitness correlation).

Statistics collected during snowballing are included too, namely:

1. mean length of hill-climb to local optimum (mean HC length);

2. maximum length of hill-climb to local optimum (maximum HC length);

3. maximum number of paths to local optimum (maximum HC paths).

7.4.6 Features Applied

The features used in each experiment are now listed.

– Section 7.6.1 [Both LON types] : compressed local optima, diameter, edges,
local optima, mean fitness, out-degree, sink fitness, sinks, sub-optimal sink
strength

– Section 7.6.2 [Enumerated LONs] : edges, fitness correlation, incoming global,
local optima, mean fitness, outdegree, weight disparity, weight loops

– Section 7.6.2 [ILS LONs] : edges, incoming global, local optima, mean fitness,
outdegree, sink fitness

– Section 7.6.2 [Snowball LONs] : fitness correlation, maximum HC length, max-
imum HC paths, mean fitness, mean HC length, weight disparity, weight loops

– Section 7.6.3 [ILS LONs]: edges, incoming global, mean fitness, number op-
tima, outdegree, sink fitness

– Section 7.6.3 [Snowball LONs] : fitness correlation, mean fitness, maximum
HC length, maximum HC paths, mean HC length, weight disparity, weight
loops

– Section 7.6.4 [ILS LONs] : diameter, edges, incoming global, local optima,
mean fitness, outdegree, sink fitness

– Section 7.6.4 [Snowball LONs] : fitness correlation, maximum HC length, max-
imum HC paths, mean fitness, mean HC length, weight disparity, weight loops
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– Section 7.6.5 [ILS LONs] : edges, local optima, mean fitness, sink fitness

– Section 7.6.5 [Snowball LONs] : fitness correlation, maximum HC length, max-
imum HC paths, mean fitness, mean HC length

Figure 7.3 shows three LONs; all are derived from a single QAP instance of size
eleven, but are constructed using different algorithms. We can see that, visually,
LON construction algorithms capture disparate phenomena in the fitness landscape.
At a high level the ILS Sampling LON seems to be sparser in terms of nodes, edges,
and edge density. In fact, the exhaustive enumeration LON has 53 nodes, 1134 edges;
the ILS Sampling LON has 36 nodes, 122 edges; and Snowball Sampling generates a
LON with 43 nodes, and 272 edges.

(A) Exhaustive Enumeration (B) ILS Sampling (C) Snowball Sampling

FIGURE 7.3: LONs extracted from a QAP instance with problem di-
mension of eleven. The three are produced using different construc-
tion algorithms, as indicated in the sub-captions. Node size is pro-
portional to fitness (larger is fitter). The global optimum is shown in

red with all other nodes in grey

7.5 Experimental Setup

In this Section I supply the setup for the experiments. This includes the LON con-
struction algorithms, the predictive models, and the QAP metaheuristic algorithms
used.

7.5.1 ILS Sampling

Seven parameter configurations are supplied to the ILS Sampling algorithm while
it constructs LONs for the 124 considered QAPLIB instances. Parameter choices are
amongst those provided and suggested by the author of the underlying ILS which
forms part of the sampling algorithm [191], and are in the format [k, pivot rule]. They
are: [ n

16 , f irst]; [ n
16 , best]; [ n

8 , f irst]; [ n
8 , best]; [ n

4 , f irst]; [ n
2 , f irst]; and [ 3n

4 , f irst]. For
all, 200 runs are started from a random solution; each terminates when there has not
been an improvement in 1000 iterations. Seven sampling configurations per problem
generates 868 ILS Sampling LONs in total for the studied QAPLIB instances. In
addition, I construct ILS Sampling LONs for the 60 synthetic QAP instances and also
for the fixed computational budget QAPLIB LONs using the configuration [ n

2 , f irst].
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That choice is attributable to the fact that the setting lends to LONs of a manageable
size. In the regression analysis where ILS Sampling LON features are involved, the
predictors — whose shorthand names have been stipulated in Section 7.4.5 — are:

1. number optima;

2. edges;

3. mean fitness;

4. out-degree;

5. incoming global;

6. sink fitness;

7. diameter.

7.5.2 Snowball Sampling

Parameter configurations for Snowball Sampling are in the format [l, se, de] and are
as follows: [100, 20, 2]; [100, 30, 2]; [100, 50, 2]; [100, 60, 2]; [200, 30, 2]; [400, 30, 2]; and
[400, 50, 2]. The choices are based on those suggested by the algorithm’s author [25].
Akin to ILS Sampling, there are 868 LONs (i.e. seven parameter sets× 124 instances)
for QAPLIB produced by this algorithm. Snowball Sampling LONs for the 60 syn-
thetic QAP instances and for the fixed computational budget QAPLIB LONs are
constructed using [100, 60, 2], which facilitates the production of reasonably small
LONs. In the regression analysis where Snowball Sampling LON features are in-
volved, the predictors — whose shorthand names have been stipulated in Section
7.4.5 — are:

1. mean fitness;

2. fitness correlation;

3. weight loops;

4. weight disparity;

5. mean HC length;

6. maximum HC length;

7. maximum HC paths.

7.5.3 Regression Model Setup

Model Setting I. I use linear and random forest regression for algorithm perfor-
mance prediction in Sections 7.6.3-7.6.5 of the incumbent experimentation. Linear
regression models describe the linear effect of predictors on the response variable;
random forest is known for capturing non-linear interactions between variables.
For each, random repeated sub-sampling cross-validation (also known as bootstrap-
ping) is conducted for 100 iterations, each time shuffling the observations randomly.
As asserted in Chapter 6, Pattengale et al. found that between 100 - 500 bootstrap-
ping replicates provide the necessary information [178]; I use 100 for computational
efficiency, after noticing that separate bootstrapping runs produce similar estimates
and that increased iterations have a diminutive effect on the calculated estimates. An
80 - 20 training-test split is applied. The predictors pre are normalised and the stan-
dard deviation is reduced to one using the formula ˆpre = (pre−E(pre))

sd(pre) , where E(pre) is
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the expected value of pre. For the majority of models reported the R2 is provided as
a summary statistic. This quantifies the amount of variance in the response variable
explainable using the set of predictors. Also in use is the mean-squared error (MSE),
a notion of how accurate predictions from the model are. For the random forest
regressions, 500 trees are used and predictor importance rankings are elucidated.

Model Setting II. A separate element of the experimentation concerns the compar-
ison between sampled LONs and their fully-enumerated counterparts. This creates
a different environment for modelling. Due to the fact that it must be possible to ex-
haustively enumerate the fitness landscape, the instances are bounded at size eleven.
There are 60 observations (that is, feature vectors for 60 LONs) arising from instances
belonging to two synthetic QAP classes: random "real-like" and uniform-random. In
the modelling, possible effects attributable to the difference between problem classes
should be adjusted for, in particular because of the limited number of observations.
These so-called "random effects" can be controlled for in a hierarchical linear mixed
model, also known as a mixed-effects model. This is only used for the experiments
detailed in results Section 7.6.2. To formalise the hierarchical modelling approach,
let us take yik to be a metaheuristic performance observed on instance i from class cl
(cl is random "real-like" or uniform-random). The linear model is then:

yicl = δ0 +
f

∑
j=1

tδjxjicl + αcl + ζicl , ζicl ∼ N (0, σ2)

where xjicl is the value of predictor j (for example the number of local optima or
number of funnels) of instance i from class cl, δj is its corresponding fixed effect on
the response, αcl are the random effects conditional on problem class cl (which repre-
sent random deviations from the common intercept δ0), and finally ζicl are the model
residuals. The summary statistics used for these regression models are conditional
R2, the marginal R2, and the Root Mean Square Error (RMSE) as a proportion of the
response variable’s range. Conditional R2 is the variation explained by the complete
model. Marginal R2 is the ratio of variation that is explained by exclusively the fixed
effects [199] (negating or controlling for the random effects attributable to instance
class). The fixed effects are LON features. RMSE captures the standard deviation
of the model predictions (also known as residuals) and is therefore useful for esti-
mating the variability of predictions (recall Section 2.7). RMSE is in the same unit
range as the response variable. For ease of interpretation, in the results that follow
RMSE is taken as a proportion of the total range for the response variable (that is,
metaheuristic algorithm performance).

7.5.4 Metaheuristic Performance

Two competitive algorithms for the QAP are used to generate empirical difficulty
information for the instances: Improved Iterated Local Search (ILS) [191] and Ro-
bust Tabu Search (ROTS) [190]. This ILS implementation comes with a wealth of
potential parameter configurations. The choices for this study are first improvement
hill-climbing in combination with a perturbation strength of 3n

4 pairwise exchanges
of items — a strength which is known to be well-performing [191] and is chosen in
pursuit of achieving a sufficiently different incumbent solution when compared to
the previous local optimum. The ROTS process and setup has been previously de-
tailed in Section 6.5.4. Each of the metaheuristics executes 100 times on every QAP
instance and after 1000 iterations the obtained fitness is taken as a proportion of the
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optimal fitness. I use this proportion to quantify how challenging the instance is and
this serves as a response variable in most of the upcoming models; it is referred to
with algorithm.p, where algorithm is the metaheuristic name. This metric is not suit-
able for the size eleven instances, though; they are straightforward to solve, mean-
ing the obtained fitness is almost always the optimal fitness. For those instances and
associated results, I instead consider the number of iterations to reach the global op-
timum as the algorithm response variable and use the notation algorithm.t for that.

7.6 Results

7.6.1 Network Comparison

This Section investigates the similarity between LONs extracted by ILS Sampling
and Snowball Sampling construction algorithms. Table 7.2 provides pairwise Spear-
man correlations calculated between ILS Sampling LON features and Snowball Sam-
pling LON features. An indication of the p-value is given and is described in the cap-
tion. Network and funnel features are included as variables. These were introduced
in Section 7.4.5.

TABLE 7.2: Spearman correlations between ILS Sampling LON fea-
tures and Snowball Sampling LON features; ∗∗∗p < 0.001, ∗∗p < 0.01,

∗p < 0.05

variable correlation

local optima 0.239∗

edges 0.149
mean fitness 0.990∗∗∗

diameter −0.212∗

out-degree 0.441∗∗∗

sinks 0.112
compressed local optima 0.249∗

sub-optimal sink strength 0.274∗∗

sink fitness 0.990∗∗∗

Most of the features have a fairly weak correlation, although consistently with
an associated p < 0.05. This provides evidence against the null hypothesis which
stipulates that features from the two samples are completely unrelated. The correla-
tion for the out-degree of the samples is moderate, and has an encouragingly small
p < 0.001. The two strongest associations concern the mean fitness in the samples
and the mean fitness of the sink nodes (sinkfitness) respectively. These features show
a great deal of agreement and therefore have very strong correlations with p values
pointing towards statistical significance.

Table 7.3 appraises the extent to which LONs built by the two construction al-
gorithms are tunable. This is done by looking at the ranges of values for important
features of the obtained LONs; the entries in the Table are the minimum value of a
feature, represented as a proportion of the maximum value.

Looking first at the ILS Sampling column, we can see that the values are very
close to zero. This asserts that the smallest values are completely dwarfed in com-
parison to the largest. It follows that this construction algorithm is unpredictable
with respect to direction in the fitness landscape and also in the emergent structure
of the LON it builds. This fact renders the algorithm productive in the sense that
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TABLE 7.3: The range of LON features, represented as the minimum
value proportional to the maximum value

predictor ILS Sampling Snowball Sampling

local optima 0.0003 0.2499
edges 0.0003 0.2499
out-degree 0.0508 0.9999
sinks 0.0003 0.2499

there is no prescriptiveness or artificial direction choices. Note from the Table, for
example, that there is a wide range of out-degree values; this hints at the algorithm
identifying "hub-and-spoke" network architecture where it is present. Nonetheless,
the variability of the construction algorithm could potentially lead to unreliable or
tangential samples.

In contrast to these observations, the column showing the range information for
Snowball Sampling LONs reveals much larger values (between 0.29 and 0.99, i.e.
the range is small), which indicates that this algorithm produces a somewhat pre-
dictable and therefore tunable number of nodes and edges. The range for the out-
degree is extremely narrow, a situation which arises from the nature of the algorithm
mechanisms. This phenomenon may cause the omission of important connectivity
between local optima in the LON and indeed "hubs" may never actually be reached
and therefore included in the sample. "Hub" nodes are critical in a network topology
because much of the flow through the network — in our case, metaheuristic paths
in the landscape — routes towards them or from them.

7.6.2 Approximating the LON

Table 7.4 reports summary statistics for regression models associated with features
of LONs which are constructed by means of exhaustive enumeration, ILS Sampling,
and Snowball Sampling. The experimental environment for these models is detailed
in Model Setting II, found in Section 7.5.3. In the R2 columns of Table 7.4, notice
that the models are somewhat weak (in terms of variance in algorithm performance
being accounted for) after controlling for the random effects of the instance class
differences. This is clear when comparing the smaller marginal R2 values with the
conditional R2 ones.

TABLE 7.4: Mixed-effects model summary statistics where the feature
vectors concern QAP instances of size eleven; marginal (fixed effects)
R2 is shown, alongside conditional (fixed and random effects) R2 and

Root Mean Squared Error (RMSE)

construction method response variable marginal R2 conditional R2 RMSE

exhaustive enumeration ILS.t 0.159 0.832 0.21
ILS Sampling ILS.t 0.406 0.406 0.20
Snowball Sampling ILS.t 0.370 0.374 0.20
exhaustive enumeration ROTS.t 0.148 0.719 0.18
ILS Sampling ROTS.t 0.220 0.816 0.20
Snowball Sampling ROTS.t 0.147 0.745 0.23

The quantity of algorithm performance which is explainable using the predictors
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is likely low partially because of the limited number of observations, and smaller-
still number which belong to a particular instance class (there are 30 each for random
"real-like" and uniform-random problems). Notwithstanding the model weakness,
observations can still be made from a relative standpoint concerning the LON con-
struction methods which produced the predictors. In terms of marginal R2 the two
strongest model settings are the prediction of ILS.t response with ILS Sampling and
Snowball Sampling LONs. This means that sampled LONs explain more variation
than their fully-enumerated counterparts with respect to the ILS response variable.
Preliminary intuition might dictate that the fully-enumerated LON would provide
superior or more comprehensive information about the problem. Even so, ILS Sam-
pling and Snowball Sampling include search operator combinations which are also
used in practice in QAP optimisation. In contrast, the exhaustive enumeration con-
struction algorithm simply hill-climbs from every possible solution to assign a local
optimum. LON Edges are calculated mathematically as neighbourhood adjacencies,
typically with respect to the most elemental operation; in addition, all possible con-
nections are traced, no matter how improbable they may be. This paradigm may not
mirror actual stochastic algorithm-problem interactions and therefore the emergent
LONs might not match empirical algorithm performance. The result is interesting
given that most LON literature concerns fully-enumerated LONs (see for example,
[11, 5, 8]). Observe in the Table the strange fact that the marginal R2 and conditional
R2 are equal in the case of ILS Sampling. This means that ILS Sampling LON fea-
tures displayed no patterns which are attributable to the random effects caused by
differing QAP instance classes.

7.6.3 Budgeted LON Construction

In this Section, LONs are produced using a computational budget which is intended
to be closer to equivalent (than the algorithms would otherwise be). The setup for
the regression used in these experiments is outlined in Model Setting I of Section
7.5.3. During the execution runs, construction algorithms are allowed 50,000 fit-
ness function evaluations before the production process is brought to a close and the
LON is finished. Under this experimental environment, I aim to investigate which
construction algorithm generates LONs containing more predictive potency under
these restricted computational conditions. Table 7.5 presents information about and
summary statistics for models which involve features of LONs constructed using
the algorithmic budget; this includes indication of construction algorithm, regres-
sion type (either linear or random forest), response variable (ILS.p or ROTS.p), the
R2, and the mean squared error (MSE).

Fix your attention on the rows with ILS.p as the response variable entry in Ta-
ble 7.5. Notice that the MSE levels are comparable between LON construction algo-
rithms; however, the R2 values are higher with respect to ILS Sampling over Snow-
ball Sampling (for both regression types). Nevertheless, I note that Snowball Sam-
pling is superior to its competitor with respect to ROTS.p as the response variable
for both regression types. The R2 values are higher and the error rates are smaller
in the Snowball Sampling models when compared to the equivalent ILS Sampling
settings. In fact, using Snowball Sampling LON features as predictors for ROTS.p
response with random forest regression creates the strongest model shown — this
setting facilitates the explanation of around 52% of variance in the algorithm perfor-
mance. The divergent nature of this model within the group is conspicuous when
considering that, typically, the R2 values are smaller for random forest regression
over linear, and indeed this model is the only exception.
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Tables 7.6 and 7.7 record random forest predictor rankings for regression models
which incorporate features from ILS Sampling LONs and Snowball Sampling LONs
respectively.

Progress your attention through Table 7.6 initially. The highest-ranking predictor
for ILS.p is a feature relating to funnels — the proportional incoming edge strength
to global optimum sinks, i.e. funnel floors. This is followed by the out-degree. Low-
ranking predictors include the mean fitness and fitness of sinks. In the ROTS.p col-
umn the opposite phenomenon can be seen: fitness-focussed features rank highly
while connectivity-focussed ones rank lower.

Now onto Table 7.7. The predictors are different here, as specified in Section-
7.4.5. The maximum length of hill-climbs ranks highest for prediction of perfor-
mance for both metaheuristic algorithms, and the mean fitness is also cardinal as a
predictor in each. Overall, there is a clear dissimilarity between the orderings of the
two columns; it follows that the influence of particular features on algorithm pre-
diction is highly algorithm-dependent. Nonetheless, there are direct observations to
be made. ILS Sampling LON fitness distributions are important for ROTS.p predic-
tion. The maximum length of hill-climbs during the Snowball Sampling procedure
matters for the performance of both metaheuristics.

7.6.4 Unbudgeted LON Construction

The set of 1,736 LON samplings (two construction algorithms × seven parameter
settings × 124 instances) is involved in this Section. Each of these are the product of
a process which runs according to the supplied sampling parameter settings; they
are therefore not limited by the computational budget implemented earlier in Sec-
tion 7.6.3. An example number of fitness evaluations taken by Snowball Sampling
without a specified budget is 5,412,066; for ILS Sampling an example expenditure is
1,314,464 fitness evaluations. The setup for the regression used in these experiments
is outlined in Model Setting I of Section 7.5.3. Table 7.8 shows algorithmic perfor-
mance prediction model statistics where features of these LONs serve as predictors.
The R2 and MSE are presented.

With respect to linear regression for ILS.p response, the results show that nei-
ther construction algorithm produces features which can build a suitable model,
as demonstrated by their low R2 values. However, the equivalent random forest
models are more robust, with 64.5% (ILS Sampling) and 80% (Snowball Sampling)

TABLE 7.5: Linear and random forest regression model summary
statistics; predictors consist of LON features which are produced
within a fixed algorithmic budget alongside some features of the pro-
cedure trajectory itself (in the case of Snowball Sampling); R2 and

mean-squared error are given

construction algorithm regression type response variable R2 MSE

ILS Sampling linear ILS.p 0.471 0.002
Snowball Sampling linear ILS.p 0.303 0.002
ILS Sampling linear ROTS.p 0.336 0.132
Snowball Sampling linear ROTS.p 0.418 0.024
ILS Sampling random forest ILS.p 0.245 0.002
Snowball Sampling random forest ILS.p 0.230 0.002
ILS Sampling random forest ROTS.p 0.154 0.144
Snowball Sampling random forest ROTS.p 0.521 0.013
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TABLE 7.6: Variable importance rankings for the random forest mod-
els; predictors are features from ILS Sampling LONs built using a
fixed algorithmic budget. Columns are labelled with the model re-

sponse variable. Fitness features in italics

feature p(ILS) p(ROTS)

mean fitness 4 1
sink fitness 6 2
number optima 3 4
incoming global 1 6
out-degree 2 5
edges 5 3

TABLE 7.7: Variable importance rankings for the random forest mod-
els; predictors are features from Snowball Sampling LONs built using
a fixed algorithmic budget. Columns are labelled with the model re-

sponse variable. Fitness features in italics

feature p(ILS) p(ROTS)

mean fitness 3 2
fitness correlation 5 4
weight loops 6 6
weight disparity 2 5
maximum HC length 1 1
maximum HC paths 4 7
mean HC length 7 3

TABLE 7.8: Linear and random forest regression model summary
statistics; predictors are produced with no-budget ILS Sampling and

Snowball Sampling; R2 and MSE are given

construction algorithm regression type response variable R2 MSE

ILS Sampling linear ILS.p 0.043 0.002
Snowball Sampling linear ILS.p 0.057 0.003
ILS Sampling linear ROTS.p 0.180 0.081
Snowball Sampling linear ROTS.p 0.252 0.029
ILS Sampling random forest ILS.p 0.645 0.000
Snowball Sampling random forest ILS.p 0.804 0.000
ILS Sampling random forest ROTS.p 0.925 0.008
Snowball Sampling random forest ROTS.p 0.922 0.003

of variance explained with diminutive associated MSE values. This could reflect
the capacity of regression trees to capture non-linearity and complex interactions
between predictors. The same trend is seen with respect to ROTS.p response in Ta-
ble 7.8 — linear models are weak, with small R2 and comparatively larger MSE.
The random forest results are strong, with over 90% of variance explained by fea-
tures of LONs produced by both LON construction algorithms. Snowball Sampling
is slightly more proficient than ILS Sampling at generating LONs for ILS.p predic-
tion; for ROTS.p, the two are roughly indistinguishable for predictive power — ILS
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Sampling has slightly higher R2 but also higher MSE.
Tables 7.9 and 7.10 record predictor rankings for random forest regressions. The

models contain features of LONs which are built without an algorithmic budget
and also some features of the procedure trajectory itself (in the case of Snowball
Sampling). They cover ILS Sampling and Snowball Sampling respectively.

TABLE 7.9: Variable importance rankings for the random forest mod-
els; predictors are features from ILS Sampling LONs built without a
fixed algorithmic budget. Columns are labelled with the model re-

sponse variable. Fitness features in italics

feature p(ILS) p(ROTS)

mean fitness 1 1
sink fitness 2 2
number optima 3 5
incoming global 4 7
out-degree 7 6
edges 5 3
diameter 6 4

TABLE 7.10: Variable importance rankings for the random forest
models; predictors are features from Snowball Sampling LONs built
without a fixed algorithmic budget. Columns are labelled with the

model response variable. Fitness features in italics

feature p(ILS) p(ROTS)

mean fitness 1 1
fitness correlation 3 2
weight loops 7 7
weight disparity 5 4
maximum HC length 6 5
maximum HC paths 2 3
mean HC length 4 6

Immediately apparent is the importance of the sampled local optima level fit-
ness distribution. In fact, notice across the two Tables that mean fitness is the top
predictor for all four model settings. Sink fitness is the second highest-ranking pre-
dictor for both models which consider ILS Sampling features, emphasising the role
of sampled fitness levels in prediction. Out-degree is insignificant within the Ta-
ble 7.9 rankings, placing lowest and second-lowest.

Focus your attention on Table 7.10 in particular now. Fitness correlation ap-
pears to be salient, in conjunction with mean fitness and maximum number of hill-
climbing paths. Ranking lowest is weight of self-loops, which pertains to unsuccess-
ful escape attempts from local optima. The pattern of fitness features being among
the most crucial is unusual: the bulk of LON literature focuses heavily on edge con-
nectivity and density in the network (see for example [8, 176, 167]) rather than the
local optima level fitness distribution which has been sampled.
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7.6.5 Predictive Potency with "Super Sampling"

The construction algorithms under study produce LONs which can capture separate
fitness landscape information. Features which concern edge and node density, for
example, are redundant as predictors if they are extracted from Snowball Sampling
LONs — they are preordained by choice of the sampling algorithm parameters. I
stipulate that combining features from LONs which are built using independent con-
struction algorithms in regression may result in stronger models than using features
derived from a single construction algorithm. The three most important predictors
(according to Section 7.6.4) for each response variable (ILS.p and ROTS.p) and each
construction algorithm are united together into predictive models. Settings for the
regression used in these experiments are outlined in Model Setting I of Section 7.5.3.
Model summary statistics are presented in Table 7.11; variable importance rankings
are displayed in Table 7.12.

TABLE 7.11: Model summary statistics; predictors are from ILS Sam-
pling LONs and also Snowball Sampling; they are the most impor-
tant three features from LONs produced by each method (according
to random forest predictor rankings) with respect to the results in the

previous Section

regression type response variable R2 MSE

linear ILS.p 0.076 0.003
linear ROTS.p 0.254 0.026
random forest ILS.p 0.972 0.000
random forest ROTS.p 0.991 0.000

TABLE 7.12: Variable importance rankings for the random forest
models; variables are features of ILS Sampling and Snowball Sam-
pling (models contain a combination of both). Columns are labelled
with the model response variable. SS in parentheses beside a feature
means that it is calculated on Snowball Sampling LONs; ILS means it

is calculated from ILS Sampling LONs. Fitness features in italics

feature p(ILS) feature p(ROTS)

mean fitness (SS) 1 mean fitness (SS) 1
sink fitness (ILS) 2 sink fitness (ILS) 2
mean fitness (ILS) 3 mean fitness (ILS) 3
number optima (ILS) 4 edges (ILS) 6
maximum HC length (SS) 5 maximum HC paths (SS) 4
mean HC length (SS) 6 fitness correlation (SS) 5

Table 7.11 illuminates the notion that linear regression may not suit performance
prediction with LONs: the models have low associated R2 values. This is in contrast
to the equivalent random forest settings — these are markedly stronger than the
linear models. In fact, they account for approximately 97% (ILS.p) and 99% (ROTS.p)
of algorithm performance. The error rates in the MSE column are low relative to the
linear setups. The R2 values surpass those seen when using features associated with
the product of a single LON construction algorithm.

As in Section 7.6.4, the dominance of the fitness features is obvious in Table 7.12.
Both models share the same three fitness-focussed highest-ranked features: the mean
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fitness in Snowball Sampling LONs is first; in second place is sink fitness, which is
calculated on ILS Sampling LONs only; in third place is the ILS Sampling mean fit-
ness. As in Section 7.6.4, the role of LON connectivity — the number of edges here
— is comparatively weak.

7.7 Discussion

ILS Sampling LONs have not been validated against exhaustively-enumerated (com-
plete) LONs before. Complete LONs can be regarded as a "ground truth" for the
local optima level in a fitness landscape. They concern a foundational connectiv-
ity, with respect to basic best-improvement hill-climbing, between local optima in
terms of search operation. Section 7.6.2 showed us that for QAP instances of size
eleven, the two sampling construction algorithms generate LONs with more predic-
tive power than those built by exhaustive enumeration. This is important because
the vast majority of LON research (see for example [11, 5, 4, 8]) considers in their
analysis exhaustively-enumerated LONs, and indeed their features have been used
for algorithm performance prediction [17, 126, 200]. The results in this Chapter sug-
gest that sampling construction algorithms for LONs may better approximate or
infer prospective fitness landscapes when compared to the best-improvement local
search procedure employed by the exhaustive enumeration algorithm. Observe that
because sampling-based LON construction algorithms are either augmented with
existing metaheuristics or use similar procedures to them, the patterns of search op-
eration — and therefore reactions with the problem space — which are encoded in
the LON object align with those seen in empirical metaheuristic performance.

Although this is encouraging with respect to the utility of sampling algorithms,
caution must be exercised when extrapolating these results to larger problems. The
sampling algorithms I have studied are designed for large problems but the "ground
truth" comparison presented in Section 7.6.2 is limited to small problems because of
computational limits. In particular, I argue that Snowball Sampling may not be ap-
propriate for certain types of landscape analysis on large problems (although this is
based on deductive thought and not on experimentation): the algorithm traverses
short, restricted paths through local optima and is not based on the trajectory of a
stochastic metaheuristic process. Therefore, it is argued Snowball Sampling may
be highly dependent on the random starting solution — the rest of the sample is
based around that. In a large fitness landscape, the obtained sample may actually
be rather low-quality local optima, far from the promising regions near the global
optimum. A promising avenue which I leave for future work is investigation of the
relationship between LON sampling parameter choices and problem dimension for
both algorithms. In Section 7.6.3 we saw that supplying the LON construction algo-
rithms with a budget of 50 000 fitness function evaluations produces LONs whose
features can explain up to 52% of algorithm performance. Snowball Sampling gen-
erated LONs more closely related to Tabu Search performance then ILS Sampling;
ILS Sampling LONs were slightly more associated with Iterated Local Search as a
response variable.

LONs which were constructed without an algorithmic budget demonstrated con-
siderable predictive potency concerning the considered metaheuristics in Section 7.6.4.
Both ILS Sampling and Snowball Sampling seem to produce LONs that infer prospec-
tive fitness landscapes well, with a substantial amount of variance in their perfor-
mance being explainable using the LON features. Sections 7.6.4 and 7.6.5 presented
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the fact that random forest trees yield more promising regression results than a lin-
ear setting does for this type of predictive model. This provides evidence supporting
the use of random forest in future algorithm performance prediction models using
fitness landscape features. I stipulate that this should be done in pursuit of cap-
turing complex variable interactions. Another aspect of the results is the apparent
importance of fitness levels sampled by the LON construction algorithms, which we
noticed in Sections 7.6.4 and 7.6.5. Features concerning fitness distribution of the
samples were repeatedly among the top predictors for random forest models.

The strongest models which are reported in this Chapter combine together fea-
tures of LONs produced using both ILS Sampling and Snowball Sampling. These
were presented in Section 7.6.5, and the predictors accounted for the large majority
of algorithm performance when using random forest regression. It follows that in-
volving a LON "super sample" (that is, samples drawn by different procedures) in
regression is promising for algorithm explanation and prediction.

There are certainly limitations to the approach and indeed the results presented:
the results are valid, but currently hold only for the search operators chosen, the
configurations for the LON construction algorithms, choices of QAP metaheuristic
algorithms, specification of algorithm performance metric, neighbourhood function,
and the particular features extracted from the LONs. There is also the potential issue
of stochasticity in the sampling algorithms.

7.8 Conclusions

In this Chapter, LON construction algorithms have been scrutinised to gain infor-
mation about their ability to infer possible prospective fitness landscapes (i.e. land-
scapes which may arise with the use of metaheuristics on the instances). The two
most recent sampling algorithms from the literature are included, with the aim of
comparing them and investigating the quality of the resultant LON samples for pre-
dicting algorithm performance on the underlying problems. I additionally involve
an exhaustive enumeration approach for building LONs. All three construction pro-
cedures are applied to the Quadratic Assignment Problem here, but their algorithmic
templates could easily be applied to an arbitrary combinatorial problem. The QAP
instance set comprised both benchmark and generated problems for this Chapter.

I found that from the initial network comparison that the two construction meth-
ods exhibit some agreement in the LONs they build and that, therefore, they do not
generate completely unrelated samples. The algorithms are distinct from each other
in some foundational ways: Snowball Sampling is tunable and predictable, while
ILS Sampling varies widely but appears adept at identifying the true emergent struc-
ture of the LON in the fitness landscape. I then conducted a comparative appraisal
of the predictive power for the LON samples and the "ground truth" exhaustively-
enumerated counterpart. Then the sampling algorithms were provided a budget of
50 000 fitness evaluations to produce LONs. The relationship of the resultant LONs
to algorithm performance was ascertained. After that, the construction algorithms
were supplied with several sampling parameter configurations and were not lim-
ited by an algorithmic budget. QAPLIB instances with N ≤ 128 were each mapped
to fourteen LONs (two construction algorithms × seven parameter configurations)
and features of these were observations in performance prediction models. Finally,
the most important variables for each sampling algorithm were combined together
to form a "super sample" and then used as predictors in modelling.
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The results suggest that random forest trees better capture the non-linear rela-
tionships between variables in fitness landscapes. The apparent salient role of fitness
layers at the local optima level in explaining metaheuristic performance was evident
in the analysis. A lot of LON literature focuses on edge connectivity patterns and
not the fitness distribution amongst local optima; I present evidence that this may
be misguided. An interesting result was that exhaustively-enumerated LONs have
less predictive potency than their sampled counterparts. One may initially imagine
that a more accurate prediction could be obtained from more extensive fitness land-
scape information (i.e. exhaustive enumeration). This is not the case here. The result
suggests "quality over quantity". I conclude this study with a note that much work
remains to be done in this field. In particular, I acknowledge that the results are of
course dependent on the algorithm configurations, neighbourhood function choice,
choices for search algorithms, choice of problem domain, and so on. The pursuit of
different choices is left for future work.

7.9 Summary

The present Chapter aimed to understand LON construction algorithms more in-
telligibly. The prospect of analysing future real-world problems is among the mo-
tivations for doing so. In the next piece of work, I move towards modelling non-
benchmark problems with LONs, using a highly-constrained problem from health-
care. Although there are certain abstractions in the formulation which deviate from
real life, departing from well-known benchmark optimisation problems is necessary
for the evolution of LON analysis.
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Chapter 8

The Local Optima Level in
Chemotherapy Schedule
Optimisation

Chapter 7 conducted an appraisal of LON construction processes with the aim that
they can be better understood and refined when applied to unknown problems in
the future. The present Chapter takes a step in the direction of modelling the re-
actions between non-benchmark combinatorial problems and metaheuristic search
algorithms using LON construction.

8.1 Abstract

In this Chapter a multi-drug Chemotherapy Schedule Optimisation Problem (CSOP)
is subject to LON design. CSOPs have not previously been a testbed for fitness land-
scape analysis. I fill this gap; LONs are constructed and studied for meaningful
structure. The CSOP formulation brings a topic from healthcare to LON analysis,
and presents novel challenges and questions for the model because there are infea-
sible regions in the fitness landscape and an unknown global optimum. Two LON
construction algorithms are proposed for sampling CSOP fitness landscapes: ILS
Sampling and Memetic Sampling. The results provide new insight into LONs which
are associated with highly-constrained problems, and into the proficiency of search
operators on the CSOP. ILS and Memetic Search, which form the foundations for the
LON construction procedures, are found to markedly out-perform a GA from the
literature.

8.2 Introduction

Analysis of LONs provides insight into how optimisation problems and search al-
gorithms interact together. They capture global patterns at the local optima level
in landscapes and have mostly been extracted for benchmark combinatorial opti-
misation problems such as NK Landscapes [11, 50, 8], the QAP [5, 7, 25], and the
Travelling Salesman Problem [136, 23, 142].

Studies in non-benchmark problem domains have been sparse and have con-
sisted of computational protein modelling [59] and feature selection [14]. These were
steps towards bringing LON analysis to unmapped real-world problems. This type
of case study, demonstrating LON efficacy, is needed for convincing possible indus-
try collaborators. Large and highly-constrained problems should ideally be used in
case studies (by "large" I mean hundreds of dimensions), in pursuit of simulating
environments typical of real-world optimisation problems.
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Chemotherapy Schedule Optimisation Problem (CSOP) [201] instances have been
the subject of several research papers in evolutionary computation [202, 203, 204,
205, 206]. One instance was formulated to reflect real-life chemotherapy drug re-
sponse closely [202] and the tumour shrinkage model used in the fitness function has
been subject to extensive clinical testing [207]. The instance, alongside other CSOP
formulations, has not been subject to fitness landscape analysis (although some au-
thors have made passing remarks about CSOP landscapes [208, 209]).

I conduct a first fitness landscape analysis on CSOP, focussing on local optima
connectivity with the use of LONs. Two LON construction algorithms are proposed
— the first has ILS as its foundation; the second has Memetic Search (MS) as the
foundation. LONs are then produced and their attributes and fitness distributions
are compared. A study of the feasibility trajectories in the LONs is also presented.
Later on, algorithm performance results suggest that the search algorithms which
underlie the construction processes outperform a Genetic Algorithm (GA) from the
literature for the CSOP. In summary, this Chapter contributes to the literature in the
following ways:

1. A first fitness landscape analysis of CSOP, lending to new insights of the prob-
lem interacting with search operators;

2. The presence of infeasible solutions in the landscapes is new to LON research;

3. LON construction algorithms for the CSOP are proposed (which can also be
easily applied to an arbitrary binary-encoded problem);

4. Metaheuristic search algorithms are offered which outperform a GA from the
literature (ILS and MS; a separate MS has been used on a CSOP formulation
before but with a different fitness function, different constraints, and different
solution encoding [208]).

8.3 Background

I use a multi-drug CSOP which was initially formulated and described in 1998 [202]
and then further studied in later research [210, 203, 204, 205, 206]. As asserted in
the original paper, a multi-drug CSOP can have a binary representation where each
gene, i, is set iff a particular concentration of a particular drug (of number ndrugs)
is administered at a particular time interval (t, from within defined time intervals).
As suggested in the literature [210], I set the number of drugs ndrugs = 10 and the
number of time intervals for doses, tint, also at 10. There are four bits, so sixteen
allowed concentrations for each drug, conc = 4, giving each binary solution a length
of 400, i.e. ndrugs × tint × conc. The number of possible solutions, and the size of the
configuration space, is extremely large at 2400.

8.3.1 Fitness Function

I consider curative chemotherapy treatment here, meaning tumour eradication is the
aim. This is the primary (and only) objective. For this single-objective case, fitness
is calculated with respect to the chemotherapy schedule minimising tumour size (in
number of cells). This is done through maximising the combined effect of drugs in
the schedule against the tumour. In considering the tumour’s shrinkage response, a
mathematical function is needed. The most popular model in the literature is called
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the Gompertz Growth Model [207], which has a linear cell-loss effect and has been
validated by significant clinical experiments. The formula is given in Equation 8.1:

dN
dt

= N(t)

(
σ ln

(
θ

N(t)

)
−

d

∑
j=1

ef j

i=1

∑
n

Cij {H(t− ti)− H(t− ti+1)}
)

(8.1)

with the components are as follows: N(t) is the cancerous cell count at time inter-
val t; σ and θ are parameters pertaining to tumour growth; H(t) is the Heaviside step
function [211], which evaluates to zero when t ≤ 0 and one otherwise; ef j denotes
the efficacy of chemotherapy drugs; and Cij is the concentration levels of the drugs
administered.

The actual fitness function is quite complex, including penalties based on fea-
sibility distances, and I refer the interested reader to a comprehensive description
[202] (pp. 106 - 107). In essence, initial fitness is calculated with respect to the total
impact on the tumour for the treatment schedule. Individual impacts for each drug
are known. The objective is to maximise the combined impact of all the drugs in
the schedule (at the specified concentrations, and at the specified time-slots). The
maximisation of this will minimise the tumour.

Following the drug impact fitness calculation, the solution is checked for con-
straint violations and the fitness is penalised accordingly (see [202] for details). Any
violation will result in a fitness below zero. A feasible solution has fitness zero or
above. The constraints are as follows: the tumour is not allowed above a particu-
lar size; the maximum cumulative dose of drugs cannot exceed the specified limits
for each individual drug; and the limit on toxic chemotherapy side-effects cannot
be exceeded (for each time interval). In all cases the magnitude of the violation is
captured through proportional subtraction from the fitness sum.

Mathematically the fitness function is subject to these constraints:

• Maximum allowable cumulative Ccum dosage for each drug:

g1(c) =

{
Ccum j −

n

∑
i=1

Cij ≥ 0
... ∀ j ∈ 1, d

}
(8.2)

• Maximum allowable size of the tumour, i.e. number of cancerous cells, N:

g2(c) =
{

Nmax − N(ti) ≥ 0
... ∀ i ∈ 1, n

}
(8.3)

• A threshold for the known toxic side-effects of using multiple drugs in chemother-
apy treatment:

g3(c) =

{
Cs−ez −

d

∑
j=1

ηzjCij ≥ 0
... ∀i ∈ 1, n, ∀ z ∈ 1, m

}
(8.4)

In the constraint seen in Equation 8.4, the variable ηzj is the known possibility of
harming the zth organ (for example, the heart) through administering the jth drug.

8.3.2 Metaheuristic Search Algorithms

Evolutionary algorithms have been used with success for CSOPs; in particular, GAs
have dominated [202, 210, 212, 213], although other approaches have been utilised,
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such as Estimation of Distribution Algorithms [204, 206]; SA variants [214, 213];
Memetic Algorithms (MAs) [208]; and Evolutionary Strategies [213, 215]. A GA
from the literature [206] is used as the foundation for the Memetic Sampling LON
Construction algorithm proposed here (detailed later in Section 8.5) and is also used
later on in conducting optimisation on the problem to collect search difficulty infor-
mation.

8.4 Methodology

This section describes the LON construction algorithms proposed for studying CSOP
fitness landscapes. The aim is examining the topological features which form when
optimisation search operators are used on the CSOP configuration space.

8.5 LON Construction Algorithms

8.5.1 Iterated Local Search Sampling (ILS Sampling)

To align with existing LON construction algorithms for benchmark domains [19, 24,
25] I implement an algorithm using ILS as the vehicle. This metaheuristic combines
the intensification of local search with the exploratory nature of perturbation. ILS is
naturally suited to constructing LONs because each iteration identifies a transforma-
tion between local optima and this can be added as an edge to the LON. I refer to the
ILS-driven LON construction procedure as ILS Sampling. The general schema for
the algorithmic process used in this Chapter mirrors that seen in Algorithm 6, which
has already been comprehensively explained in Section 7.4.3. There are, however,
some minor adjustments to the design in this Chapter; the pseudocode is given in
Algorithm 7. Hill-climbing in this procedure is best-improvement and a solution is
deemed a local optimum after 100 iterations of that. This value was chosen after ob-
servation of initial runs in order to reduce runtimes. Perturbation is thirty bit-flips.

Within Algorithm 6 only improving local optima are accepted during the search
and the resultant LON edges represent the acceptance of an improving local opti-
mum (that is, an edge is constructed only when an improvement in fitness at the
local optima level is identified). In Algorithm 7, notice that improving or equal local
optima are always accepted, but deteriorating local optima are also accepted with
a 10% probability (this can be observed at the if statement execution block begin-
ning at line 16). The status of acceptance is captured with the accepted flag in the
Algorithm pseudocode. If the local optimum is accepted as the new working solu-
tion, then an edge is added to the LON — despite the reality that this is sometimes
directed towards lower-quality fitness. I designed the algorithm this way after ex-
perimenting with the local optima acceptance conditions during preliminary runs
and noticing that allowing some deteriorating moves aided in fitness advancement.
As with the previous algorithm, ILS runs terminate after t iterations and nodes and
edges from r runs are amalgamated together to form a single LON for the problem.
Parameters are stated shortly in Section 8.7.

8.5.2 Memetic Search Sampling (MS Sampling)

I propose and implement Memetic Search Sampling (MS Sampling) for the CSOP
here. Recall from Section 2.3 that the term Memetic means the combination of more
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Algorithm 7 CSOP ILS Sampling
Input: perturbation strength k, stopping condition t, number of runs r
Output: a LON sample

1: procedure SAMPLING(search space S, fitness function f , perturbation strength k,
stopping condition t, number of runs r):

2: runs← 0, nodes← ∅, edges← ∅
3: repeat
4: Choose initial random solution s ∈ S
5: local.optimum← HILL.CLIMBING(s)
6: iterations← 0
7: repeat
8: current.solution← PERTURB(previous.local.optimum, k)
9: new.local.optimum← HILL.CLIMBING(current.solution)

10: nodes← nodes ∪ {new.local.optimum}
11: accepted← 0
12: if f (new.local.optimum) 6 f (previous.local.optimum) then:
13: previous.local.optimum← new.local.optimum
14: accepted← 1
15: else
16: if random. f loat 6 0.1 then:
17: previous.local.optimum← new.local.optimum
18: accepted← 1
19: if accepted == 1 then:
20: if (previous.local.optimum, new.local.optimum) ∈ edges then:
21: edge.weight← edge.weight + 1
22: else
23: edge.weight← 1
24: edges← edges∪{[previous.local.optimum, new.local.optimum, edge.weight]}
25: iterations← iterations + 1
26: until iterations ≥ t
27: return previous.local.optimum
28: until runs == r

than one algorithmic strategy, and that a typical example is merging a GA (com-
posed of selection, recombination, and mutation) with local search. LONs have
been constructed with respect to memetic operations before, although in different
forms and contexts — in continuous optimisation, where a LON edge constitutes
a memetic differential evolution iteration [64]; for the Asymmetric Travelling Sales-
man Problem, with an edge representing the application of a domain-specific crossover
operation followed by k-opt local search [23]; and in genetic improvement of soft-
ware programs, where an edge denotes a uniform crossover followed by best-improvement
local search [141].



106 Chapter 8. The Local Optima Level in Chemotherapy Schedule Optimisation

Algorithm 8 MS Sampling
Input: percent fittest individuals p f , length evolution path lp
Output: a LON sample

1: procedure MS.SAMPLING(population size ps, generations g, percent fittest indi-
viduals pf , mutation probability mp, crossover probability cp, length evolution
path lp, search space S, fitness function f ):

2: nodes← ∅, edges← ∅
3: population← RANDOM.POPULATION(S, ps)
4: iterations← 0
5: repeat
6: population← GENETIC.ALGORITHM(population, ps, cp, mp)
7: fittest←SELECT.FITTEST(population, pf )
8: for solution ∈ fittest do
9: solution← HILL.CLIMBING(solution)

10: nodes← {[ f ittest]}
11: for parent1 ∈ fittest do
12: for parent2 ∈ fittest do
13: of f spring1, of f spring2 ← MEMETIC.EVOLUTION(parent1, parent2)
14: iterations← iterations + 1
15: until iterations ≥ g
16: for parent1 ∈ nodes do
17: for parent2 ∈ nodes do
18: steps← 0
19: repeat
20: of f spring1, of f spring2 ← MEMETIC.EVOLUTION(parent1, parent2)
21: parent1, parent2 ← of f spring1, of f spring2
22: steps← steps + 1
23: until steps ≥ lp

24: procedure GENETIC.ALGORITHM(population, ps, cp, mp):
25: repeat
26: parent1, parent2 ← SELECTION(population)
27: if cp then:
28: of f spring1, of f spring2 ← CROSSOVER(parent1, parent2)
29: if mp then:
30: of f spring1, of f spring2 ← MUTATION(of f spring1, of f spring2)
31: population[parent1]← of f spring1
32: population[parent2]← of f spring2
33: until iterations ≥ ps/2

34: procedure MEMETIC.EVOLUTION(parent1, parent2):
35: child1, child2 ← CROSSOVER(parent1, parent2)
36: if mp then:
37: of f spring1, of f spring2 ← MUTATION(of f spring1, of f spring2)
38: of f spring1, of f spring2 ← HILL.CLIMBING(of f spring1, of f spring2)
39: nodes← nodes ∪ {of f spring1, of f spring2}
40: candidate.edges ← {[parent1 → of f spring1], [parent1 → of f spring2], [parent2 →

of f spring1], [parent2 → of f spring2]}
41: weights← ∅
42: for each edge in candidate.edges:
43: weights[edge] ← 1 if edge /∈ edges else weights[edge] ← existing weight of

edge ∈ edges + 1
44: edges← edges ∪ {[candidate.edges, weights]}
45:
46: return of f spring1, of f spring2
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GAs have been successful in finding approximate solutions for CSOPs before
[205]; it follows that a GA is a reasonable foundation for a LON construction algo-
rithm. The procedure I enact originates from a generational GA used in previous
literature [203]. By definition LONs contain only local optima, but GAs do not guar-
antee local optima in the population; this necessitates the addition of local search to
the system, resulting in a Memetic Search (MS) or algorithm. The Memetic Search-
driven LON tracking process is hereafter referred to as Memetic Search Sampling
(MS Sampling for short). Pseudocode for MS Sampling is shown in Algorithm 8.

A random starting population is generated initially, at line 3. Then g genera-
tions of the genetic algorithm execute — observe line 6 where the call is made to the
GENETIC.ALGORITHM function.

Inside the GENETIC.ALGORITHM procedure, which originates from previous lit-
erature [203] , the following is repeated ps/2 times (ps is the population size): par-
ents are selected (line 26) and recombined before the resultant offspring are subject
to mutation. The offspring replace the parents inside the population (line 31). The
next element in the MS.SAMPLING procedure selects a percentage pf of the popula-
tion which are the fittest; focus on line 7 of the first function. Each of the fittest are
subject to hill-climbing at line 9, transforming them into local optima. Hill-climbing
in this case is best-improvement on a single bit-slip neighbourhood and a solution is
deemed locally optimal when it is the incumbent solution after 100 iterations of this.
The local optima are added to the LON at line 10. Pairs of them are subsequently
passed to the MEMETIC.EVOLUTION function as parent1 and parent2 (line 13). In-
side that, which begins at line 34, they are then deterministically recombined with
one another (line 35); resultant offspring are mutated according to the mutation rate
mp, before being subject to local search (line 38) and then added as LON nodes at
line 39. After that, the weights are calculated for the four directed edges which are
associated with the recombination of parent1 and parent2 which produces of fspring1
and of fspring2 — notice lines 42-43. Following this, the edges and their weights are
written into the LON at line 44.

After g generations, the LON nodes undergo another evolutionary process, back
at line 20. For each pairwise combination of nodes, the local optima are passed into
the MEMETIC.EVOLUTION procedure. Inside that, as before, they are recombined
and the offspring are subject to mutation and to local search. Those are added as
nodes and the transitions as edges. The offspring subsequently become the par-
ents for the next iteration of the same process; notice that the output of the call to
MEMETIC.EVOLUTION — of fspring1 and of fspring2 — are assigned as parent1 and
parent2 at line 21. This set of instructions repeats lp times; in this way, each pair
of original LON nodes (identified during the g generations of genetic and memetic
search) are the ancestors in an lp-generation evolutionary trajectory. This was a de-
liberate design choice: it guarantees the inclusion of sequences of evolution for local
optima inside the LON. I noticed that without this algorithmic element during con-
struction, the LON consists of many isolated pairs of nodes and proves difficult to
study for meaningful network structure.

8.6 Visualisations

Visual analysis of LONs can provide an abstracted view of the local optima space
in a fitness landscape, which is a high-dimensional complex system. Sometimes,
patterns observable in high-level visual analysis help to explain metaheuristic algo-
rithm performance on the associated combinatorial problem.
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ILS Sampling and MS Sampling produce networks with thousands of nodes. To
facilitate meaningful visualisation, pruned sub-networks are constructed. The "elite"
nodes which are present in the LONs are chosen for this. For the ILS Sampling LON
these are local optima in the top 2% of the sample. The MS Sampling LON has more
nodes; as such, only the top 0.05% are visualised. It follows that examination of these
particular landscape sections may lift the veil on the emergent architecture present
among high-quality local optima in the CSOP.

Figure 8.1 shows plots for the ILS Sampling LON and MS Sampling LON, respec-
tively. Edges encode sequences of search operations. In the case of ILS Sampling the
sequence comprises perturbation−→ local search; for MS Sampling, this is recombi-
nation −→ probabilistic random mutation −→ local search. Nodes with the highest
fitness in the sample are coloured red; all other local optima are grey.

FIGURE 8.1: LONs extracted from a CSOP instance. In the higher
plot the fittest 2% of local optima in the ILS Sampling network are
shown, while the top 0.05% of the MS Sampling network are plotted
in the lower image. Nodes with the highest fitness in the sample are
coloured red, while all other local optima are grey. For the ILS Sam-
pling LON the highest fitness is 1.707677. For the MS Sampling LON,

it is 1.707826
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Examining the Figure, note that ILS Sampling generates the sparser network.
There are neat sequences of local optima and nodes typically have one incoming
edge and one outgoing edge. Sequences are separate, in that they do not have
bridges connecting them. The highest-fitness node, which is coloured red, is lo-
cated within such a sequence. Visual appraisal of this structure within the object as
a whole implies that the node would only be reached if the ILS arrived by coinci-
dence at that particular sequence of local optima. The MS Sampling LON is denser
and instead of linear sequences, clusters of nodes are seen. Some clusters are con-
nected to other clusters and some are isolated. There are many distinct solutions
which have the highest fitness in the sample and these are found in different groups.
The presence of clusters instead of linear sequences hints that at lower fitness lev-
els (which are not plotted because of the fitness threshold) the clusters are larger.
This, along with the fact that there are multiple top-fitness nodes spread across the
network, presumably provides more opportunity for connection to a node with the
highest fitness than we saw for ILS Sampling.

8.7 Experimental Setup

8.7.1 Assumed Optimal Fitness

The global optimum is not known for the problem under study. In previous LON
research there has always been a known optimum fitness. To simulate this for the
CSOP at hand, I conduct several runs of the GA, MS, and ILS metaheuristics and
consider the highest obtained fitness across all runs to be the pseudo-optimal fitness.
This value is 1.71.

8.7.2 ILS Sampling

As stipulated in Section 8.5, ILS Sampling is an ILS framework. As such, local search
handles intensification and the perturbation mechanism contributes diversification.
The initial intention was to mirror parameter choices in previous LON construction
works (such as [24]) but those choices were for much smaller search space sizes and
the computation was therefore more feasible for their circumstance. The sampling
parameters in the present study, as well as the ILS design, are chosen through ob-
servation of preliminary tests, with the aim that the emergent LON be generated
within a reasonable timeframe; that it contains sufficient node and edge density to
facilitate proper study of the network; and that it comprises high-quality solutions
(the fitness of solutions are checked against the pseudo-optimal fitness described in
the previous Section).

Local search in the system uses a single bit-flip operator and best-improvement
as the pivot rule. A solution is deemed a local optimum after 100 iterations of that.
Perturbation is thirty bit-flips and improving local optima are always accepted. De-
teriorating local optima are accepted 10% of the time and individual runs terminate
after 1000 iterations. Thirty independent ILS runs are conducted, with each accepted
local optimum added as a LON node and each transformation between two local op-
tima added as a LON edge. The parameters are shown in Table 8.1.

As well as ILS Sampling, whose purpose is the construction of LONs, I extract
the ILS foundation from the algorithm to use as a metaheuristic for collecting search
information about the problem. The algorithmic setting remains the same except the
best-improvement pivot rule changes to the best of 100; this is in pursuit of efficiency,
because I execute the metaheuristic 100 times on the instance.



110 Chapter 8. The Local Optima Level in Chemotherapy Schedule Optimisation

TABLE 8.1: ILS Sampling design and sampling parameter settings

parameter value

local search iterations 100
termination iterations, t 1000
pivot rule best-improvement
neighbourhood 1 bit-flip
perturbation strength, k 30 bit-flips
number of runs, r 30

8.7.3 MS Sampling

MS Sampling is instrumented on top of a GA for the domain ([202]). A previous
study using statistical inference found that only two GA parameters are significant
with respect to this CSOP instance when solutions are binary-encoded: crossover
probability cp and mutation probability mp [210]. Inside the MS Sampling designed
in this Chapter, those parameters are the ones recommended in their paper (cp =
0.614, mp = 0.198); the others are from a related study [203] (which used integer en-
coding for the problem), in the absence of reported values in the binary-encoded
study: a random starting population of 76 individuals, all binary strings with n =
400, is created. Elitism is implemented for the fittest two individuals; the selection
method is linear roulette-wheel (parents are selected with probability proportion-
ate to their fitness ranking); selection pressure is seven; and there are six points of
crossover, with the crossover type being uniform.

Similarly to the design process for ILS Sampling, the construction-related param-
eters for MS Sampling — as well as those relating to the memetic operations which I
added to the GA procedure detailed above — are decided based on initial runs with
the aim that the emergent LON be extracted in a reasonable timeframe and that it
contains sufficient node and edge density for network analysis.

I augment the GA with local search, rendering it memetic. The local search is
best-improvement on a single bit-slip neighbourhood and a solution is deemed lo-
cally optimal when it is the incumbent solution after 100 iterations of this. Local
search is applied to the fittest 10% of individuals at each generation. Those indi-
viduals are added as LON nodes, recombined, and the trajectories from parent to
offspring are recorded as LON edges. After 100 generations, pairwise combinations
of LON nodes are recursively recombined 10 times: offspring from the first recom-
bination are subject to local search and then become the parents for the next. Nodes
and edges are added to the LON during this process.

As was the case with the ILS Sampling framework, I also extract the baseline
MS for use in the analysis as a metaheuristic instead of a construction algorithm.
The design is altered to facilitate quicker searches: the percentage of individuals
subject to local search at each generation becomes 5%, not 10; the best-improvement
local search becomes first-improvement; and the local search operator is ten bit-flips
instead of one. All parameter settings for the GA component remain the same. One
hundred generations are allowed.

8.8 Results

8.8.1 MS Samping LON

The network produced by MS Sampling for this study has 124 497 nodes and 1 264 500
edges, which is an edge-to-node ratio of 10:1. The average fitness is 0.909 698; recall
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that the pseudo-optimal fitness is 1.71 in our maximisation environment — it follows
that the normalised gap between the two is 0.468. The maximum fitness present in
the LON is 1.707 826, which is within 0.001% of the pseudo-optimal fitness. There
are 217 separate solutions with this fitness. The lowest objective value in the sample
is approximately−107 (remember that a value below zero renders a solution infeasi-
ble). The vast majority of local optima included in the sample are feasible solutions.

Because LON edges are directed, we can notice the fitness gradient for them.
Around 14.5% of edges are between nodes of equivalent fitness; 43.6% are improv-
ing; and 41.8% are deteriorating. The assortativity coefficient of a network is the
Pearson’s correlation for the degrees of connected nodes. For the MS Sampling LON
the mean is 0.794 687, implying that it is probable for a node to connect to nodes
which have similar degree. The median degree for a node in the LON is 10; the
mean is 20.31; the 0.75 quantile is 16; and the maximum is very large at 179 154.
Most nodes have relatively low degree (≤ 16) and only 0.1% of nodes have degree≥
241. The presence of a single node with excessively high degree — 179 154 — hints
at the presence of a "hub-and-spoke" network architecture.

8.8.2 ILS Sampling LON

There are 11 393 nodes and 209 489 edges in the ILS sampling LON, for an edge-to-
node ratio of approximately 20:1. The average sampled fitness is 0.638 913 — there is
a normalised gap of around 0.63 between that and the pseudo-optimal fitness. This
is noticeably lower quality than the average fitness in the MS Sampling LON. The
maximum fitness in this sample is 1.707 677, which is lower than the maximum in
the MS Sampling LON but is still within 0.002% of the pseudo-optimal value. The
minimum is approximately −62, which is roughly twice as fit as the lowest in the
MS Sampling. This makes sense given the unguided nature of selection inside the
MS algorithm when compared to the guided trajectory of the ILS process.

In the LON, around 64% of edges are deteriorating (that is, they orient towards
a worse fitness); 26% are improving; and around 9% direct towards equal fitness.
These proportions hint at the scarcity of improving moves on the local optima level
which are available using these search operations. Recall that the equivalent MS
Sampling proportions were 43.6% improving and 41.8% deteriorating. A judicious
conclusion might be that the recombination −→ local search sequence of the MS
Sampling algorithm has more evolvability potential on the local optima level than
does the perturbation −→ local search sequence of the ILS Sampling algorithm.

The assortativity coefficient is 0.996 704, which stipulates that nodes are highly
likely to be connected to nodes which have the same degree as them. This is ev-
idence against the presence of a "hub-and-spoke" network structure in this LON
because that phenomenon is defined by heterogeneous degree distribution. The me-
dian degree in the LON is 34; the mean is close by at around 37; the 0.75 quantile is
52; and the maximum degree is 526. Only 0.01% of nodes have degree ≥ 128. The
range of values in the degree distribution is much less extreme than was present in
the MS Sampling LON.

8.8.3 Solution Feasibility in LONs

The existence of infeasible solutions in CSOP fitness landscapes brings new possi-
bilities for the features calculated from LONs. One consideration is whether all of
the sampled local optima are feasible. In fact, some are not, although the majority
are: 93.6% of nodes have fitness above zero in the MS Sampling product, and this is



112 Chapter 8. The Local Optima Level in Chemotherapy Schedule Optimisation

86.2% in the ILS Sampling LON. This implies that the former more heavily exploits
feasible regions at the level of local optima. Another detail that can be studied for
the LONs is the notion of feasibility gradient. This is the direction of fitness feasibility
that the LON edges encode. For example, an edge could be oriented from an infeasi-
ble local optimum towards a feasible local optimum, which is a desirable situation.
The distribution of feasibility gradients in the LON therefore captures the ability of
the construction algorithm to "escape" infeasible regions.

Table 8.2 provides, for the ILS Sampling network, the feasibility gradients as
proportions. View these with the consideration that the algorithm used to construct
the edges always accepts improving local optima, but also accepts deteriorating local
optima 10% of the time.

TABLE 8.2: Proportions of ILS Sampling LON edges in terms of fea-
sibility gradient

orientation proportion

infeasible −→ feasible ≈77%
infeasible −→ infeasible ≈14%
feasible −→ feasible ≈5%
feasible −→ infeasible ≈4%

TABLE 8.3: Proportions of MS Sampling LON edges in terms of fea-
sibility gradient

parameter proportion

infeasible −→ feasible ≈7.7%
infeasible −→ infeasible ≈4.1%
feasible −→ feasible ≈84.8%
feasible −→ infeasible ≈3.4%

Encouragingly, the large majority (77%) of edges orient from infeasible to feasible
local optima. That implies the operator sequence often succeeds in traversing portals
out of infeasible regions. Transformations from feasible −→ feasible are far fewer at
approximately 5% of total edges. This perhaps implies that the operator sequence is
not proficient at exploiting within the feasible regions in the search space.

Table 8.3 shows the feasibility gradient percentages seen in the MS Sampling
LON. Here a vast majority (84.8%) of the orientations are feasible −→ feasible. This
hints that the operator sequence is competent at intensification within promising ar-
eas in the local optima layer of the fitness landscape. The percentage of directions
from infeasible −→ feasible is small, which could also be important — maybe the
algorithm struggles to escape infeasible areas. It could be, however, that this small
percentage is attributable to the fact that the number of infeasible nodes in the net-
work is low. A surprisingly low percentage of edges (3.4%) lead from feasible −→
infeasible solutions. This is interesting, because there is no acceptance condition
for nodes during the construction. It seems that recombining already-fit solutions
before refining the offspring with local search results in fit solutions.

8.8.4 Metaheuristic Performance Comparison

As stipulated in Section 8.7 I use the ILS and MS which form the foundation for
the construction algorithms as metaheuristics, alongside the GA from the literature
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[210], to conduct optimisation and compare algorithm performance. The configu-
rations have been stated previously. Tables 8.4 and 8.5 summarise distributions for
the fitnesses obtained by the metaheuristics over 100 runs. Table 8.4 displays results
obtained without a specified computational budget; Table 8.5 shows results from the
versions which are budgeted 50 000 fitness evaluations. Each row contains informa-
tion about an algorithm variant. Indications of the variant are found in the algorithm
and seeded columns. The seed is not chosen due to good fitness (in fact, the fitness is
infeasible and heavily-penalised) but rather to provide some consistency of location
between algorithms. In the case of GA and MS this is a single individual in the initial
populations; for the ILS, it serves as the starting solution. As asserted in Section 8.7.1
I assume the pseudo-optimal fitness value of 1.71 for the purposes of this study.

TABLE 8.4: Distribution of fitnesses obtained by metaheuristics over
100 runs on the CSOP; in the case of the EAs, the best fitness in the
population is used as the end fitness; no specific computational bud-
get is ordained for these runs. Large numbers have been rounded to

the nearest integer, for visual clarity

algorithm seeded 0.00 quantile (minimum) 0.25 quantile 0.5 quantile (median) mean 0.75 quantile 1.00 (maximum)

ILS no −25.43 −7.39 −2.09 −4.49 −0.48 1.66
GA no −71 556 −97.64 −32.15 −3739 −11.67 0.40
MS no 1.46 1.70 1.71 1.70 1.71 1.71
ILS yes −62.54 −6.61 −1.87 −4.86 −0.31 1.67
GA yes −137 601 −212.50 −32.79 −4084 −7.55 −0.19
MS yes 1.45 1.70 1.71 1.68 1.71 1.71

TABLE 8.5: Distribution of fitnesses obtained by metaheuristics over
100 runs on the CSOP; in the case of the EAs, the best fitness in
the population is used as the end fitness; a computational budget of
50 000 fitness function evaluations is ordained for these runs. Large
numbers have been rounded to the nearest integer, for visual clarity

algorithm seeded 0.00 quantile (minimum) 0.25 quantile 0.5 quantile (median) mean 0.75 quantile 1.00 (maximum)

ILS no −55.89 −10.22 −4.26 −7.38 −0.64 1.66
GA no −235 584 −2538 −75.86 −12 476 −32.63 −4.07
MS no 1.15 1.46 1.66 1.59 1.68 1.70
ILS yes −46.84 −6.25 −1.96 −4.18 0.15 1.44
GA yes −271 039 −4572 −63.20 −10 765 −27.74 1.19
MS yes 1.31 1.45 1.67 1.60 1.68 1.70

Observe that across both budgeted and unbudgeted runs, and also seeded and
non-seeded runs, the GA is definitely the least capable of the three in identifying
high-quality (or even feasible) solutions. This can be seen by, for example, compar-
ing the median of the GA rows with the median of the MS or ILS rows in either of
the two Tables. Sometimes the difference in fitness is several orders of magnitude,
and this is especially apparent in the minimum columns.

The MS performs by far the best of the three algorithms. In all cases (budgeted
and unbudgeted, seeded and non-seeded), 100% of the runs conclude with at least
one feasible solution present in the population. That is shown in the third and sixth
rows of both Tables. The best ILS runs of the 100 (i.e. the values in the maximum
rows) end with a desirable fitness although the majority of runs produce a solution
with infeasible fitness. It is of note, however, that the distributions comprise fitness
values which are "almost" feasible in many cases. I argue that the success (or lack
thereof) of ILS on this CSOP — as is the case in many optimisation domains — de-
pends on the starting location of the search. The "almost" feasible fitness values, I
stipulate, are the dead-end termination points for sub-optimal funnels of local op-
tima. The consistency of the ILS lies somewhere between the performances of the
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GA and the MS: although often the end fitness is infeasible, the range of values in
the distributions is tight compared to the GA and usually spans roughly −10 to
+1.66. The solution output of an ILS run could be provided as a seed to another
highly-exploitative algorithm (such as MS) to complete the optimisation.

The vast range of fitness values obtained by the GA suggests a lack of reliability.
Sometimes a feasible solution may be found (a previous paper found that it was
approximately 5% of runs after 100 generations [203]) but other times a population
filled with infeasible individuals may be produced. Contrarily, the MS appears to be
rather uniformly consistent: all of the total 400 runs conclude with a feasible fitness,
and this is additionally always ≥ 1.15. The success of the MS tells us that using
the sequence of recombination, random mutation, and guided local search together
aligns well with this configuration space in directing the search towards promising
feasible regions.

8.9 Conclusions

In this Chapter I have modelled a non-benchmark and highly-constrained prob-
lem from healthcare with LONs — a Chemotherapy Schedule Optimisation Prob-
lem. CSOPs have not been subject to fitness landscape analysis previously. The
study brought the added complications of infeasible regions in the fitness land-
scapes, which is a novel consideration for LON analysis. Two algorithms were of-
fered for the purpose of constructing LONs for CSOP: ILS Sampling and MS Sam-
pling.

Analysis of the LON properties provided ideas for why MS is a superior search
algorithm to ILS on this CSOP. The MS-constructed LON contained several global
optima, while the ILS-constructed LON contained one, which appeared to be poorly
connected to the rest of the network. This difference could help explain why MS
reached higher fitnesses with more consistency than ILS.

Examination of the feasibility gradients within the LONs revealed that an ILS
framework, for this CSOP and within the confines of the specified experimental en-
vironment, may be better at identifying portals out of infeasible regions but may
lack in exploitation ability at the feasible local optima level. MS Sampling appears
proficient in exploitation within feasible areas but did not carry out many "escapes"
from infeasible areas. These findings provide preliminary insight into how the CSOP
under study interacts with sequences of search operators. I showed that the MS and
ILS which formed the base of the construction algorithms outperform a GA from the
literature on this problem instance, even when mandating an equivalent fitness func-
tion budget across algorithms. This is particularly apparent in the case of the MS.
In light of that result I stipulate that, on this particular CSOP, the selection process
of the GA does not have sufficient exploitative potency (perhaps due to the small
population size) but that this can be introduced by adding local search. Importantly,
the best results are obtained when using the recombination and random mutation
of the GA together with a guided local search in a memetic framework. It follows
that — at least under this experimental setting — the former brings innovation and
diversification, while the latter ensures intensification and facilitates propagation of
high-quality genes.

I conclude this Chapter by stipulating that the results within it should be viewed
as an observational study only: a single instance of CSOP was investigated. It fol-
lows that additional or alternative instances, different parameter configurations, or
different features of the LONs may result in separate findings. Nevertheless, this
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work serves as an initial foundation for this kind of analysis on CSOPs and on con-
strained problems, and I leave the inclusion of additional instances, algorithms, and
parameter choices for future work.
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Chapter 9

Discussion

9.1 Contributions

In this section, the particular contributions of the thesis are discussed and their con-
text with regard to current research is considered.

9.1.1 Fractal Analysis of Local Optima Networks

In Chapter 4, fractal geometry, a new perspective on the study of local optima net-
works was introduced. Previous literature concerning fractal analysis in fitness land-
scapes has focussed mostly on the solution level [29, 145] instead of the local optima
level, which was the subject of attention throughout this thesis. One paper did con-
centrate on local optima in particular [121] although they did not consider fractal
dimensions but instead conducted fitness-distance analysis and used elemental op-
erators to define distance between solutions — factors which distinguish their con-
tributions from those presented in this thesis.

Chapter 4 proposed a method for calculating fractal dimension which is spe-
cific to the semantics of a LON. Novel insight into the information encoded within
LONs was gained from the fractal analysis. In particular, it was found in regression
analysis that fractal dimension features combined with the number of local optima
and the number of funnels as predictors produce extremely strong models for meta-
heuristic performance explanation and prediction. In many cases, fractal dimension
predictors ranked higher in variable importance rankings than the number of fun-
nels did. Fractal dimension which was computed with the LON-specific algorithm
design were generally more effective as predictors than those produced using ordi-
nary box counting for complex networks. The number of funnels usually ranked
as the most important variable for explaining algorithm hit-rate. Although funnels
were not the focal point of the study, this is interesting because funnels are basins of
attraction at the local optima level and are — in this respect — a fractal pattern or
structure in the landscape.

9.1.2 Approaches to Computing Fractal Dimension

In Chapter 5, a new approach for calculating fractal dimension for LONs: multifrac-
tal analysis was proposed and implemented. In addition, probabilistic fractal analysis
was presented. This used the metaheuristic transition probabilities encoded in the
network edge weights for dimension calculation. The analysis involved sampled
LONs as well as exhaustively enumerated ones. While the preceding work in Chap-
ter 4 was the first fractal analysis on LONs, Chapter 5 contributed the inclusion of
sampled LONs alongside the novel procedures for computing dimension.
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Other complex networks have previously been identified as multifractal systems
[180, 186, 182] and Chapter 5 confirmed that LONs associated with certain instance
classes of QAP are. Pairwise correlations were revealed between the dimensions
and metaheuristic algorithm performance. Probabilistic fractal dimensions, which
consider the likelihood of connection between local optima, were correlated with
slower runtimes. These new dimensions were more strongly correlated to search
than dimensions calculated using the previously-proposed mechanisms of the pre-
vious Chapter.

9.1.3 Predictive Potency of Fractal Dimensions

The experiments in Chapter 6 concluded the sequence of fractal analysis work with
a detailed investigation into the predictive capabilities of LON fractal dimensions.
This endeavour involved a significant expansion of the number of included instances
as well as the inclusion of larger problem sizes. The originality of the work and its
contributions lies in this expansion, as well as enhanced statistical techniques for the
predictive modelling and the use of more intuitive fractal dimension features.

It was shown that the extent of multifractality in the system, as well as the size of
fractal dimensions could contribute as predictors in models with the performance of
iterated local search or tabu search as the response variable. Features based on the
local optima level fitness distribution were dominant in the variable importances for
the models which concerned ROTS as response variable.

9.1.4 Construction Algorithm Appraisal

The majority of works concerning local optima networks conduct exhaustive enu-
meration of them, which bounds the analysis to problems diminutive in size [11,
4, 21, 8]. More recently, sampling algorithms have been proposed for constructing
LONs for larger problem sizes [19, 24, 34]; however, little is known about them and
about the quality of the sample they produce.

The primary contribution in Chapter 7 is the comparison and analysis of LON
construction algorithms; this involved not only a descriptive appraisal but also a
contest for the relative predictive power of LONs produced by the algorithms. It
was found that Snowball Sampling was tuneable and predictable; ILS Sampling
produced highly-variable LONs and seemed to capture potential metaheuristic flow
more accurately.

The modelling in Chapter 7 demonstrated that Snowball Sampling and ILS Sam-
pling each infer metaheuristic performance very well (at least for this dataset and
under these experimental conditions).

A salient endeavour presented in this chapter involved the comparison of sam-
pled LONs against their exhaustively-enumerated counterparts. This has not been
analysed before, although a previous paper contrasted the attributes of sampled net-
works against complete ones [25]. We established from this competition that sam-
pled LONs are superior to exhaustively-enumerated ones in this respect.

In addition, the construction algorithms were supplied a fixed budget of 50 000
fitness function evaluations in pursuit of a comparison which is closer to being equi-
table. While sampling parameters have been varied before [25] the algorithms have
not been subject to a budget which is agnostic of the particular construction process
in prior literature. Under the budget, Snowball Sampling LONs were more pro-
ficient at explaining tabu search performance variance, while ILS Sampling LONs
were better-suited to iterated local search as a response variable. Another venture
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from the Chapter concerned combining together features of LONs produced using
different construction algorithms into predictive regressions for the first time which
resulted in highly-promising models.

Two overarching trends which became evident from the analysis in Chapter
7 were that — firstly — random forest regression appears to better capture non-
linearities in LON performance prediction data and, secondly, that features relating
to the fitness distribution in LON samples play an important role in metaheuristic
performance explanation and prediction.

9.1.5 LONs for a Constrained Problem

In Chapter 8 we modelled a problem from healthcare with LONs. Most LON works
have used benchmark combinatorial problems, such as NK Landscapes [11], Quadratic
Assignment [5], and the Travelling Salesman Problem [19]. This Chapter pursued
the consideration of non-benchmark, constrained, and more specialised problems.
A particular originality arose from this: the study of a fitness landscape with infea-
sible regions using LON analysis (see Chapter 3 for a review of LON literature to
date).

In Chapter 8 the interactions between a Chemotherapy Schedule Optimisation
Problem (CSOP) and metaheuristic search operations were considered by construct-
ing LONs with an iterated local search-driven algorithm and a memetic search-
driven algorithm. Through appraisal of the LON products, it was found that iterated
local search — for this particular instance and under the chosen experimental envi-
ronment — is competent at exiting infeasible regions in fitness landscapes associated
with this problem; memetic search is, contrarily, proficient at exploiting feasible re-
gions more comprehensively. Memetic search produced the highest-quality solu-
tions on a consistent basis and it is therefore stipulated that the CSOP responds best
to the combination of crossover with random mutation and local search. Iterated lo-
cal search rarely reached the highest known fitness, although the obtained solution
quality was often close. Both algorithms performed better than a Genetic Algorithm
from the literature on the CSOP under study.

9.2 Evaluation of Hypothesis

Hypothesis. Valuable information is encoded within Local Optima Networks about reac-
tions between metaheuristic algorithms and combinatorial optimisation problems; this can
be used for visualising, explaining, or predicting the proficiency of those algorithms.

Throughout this thesis, Local Optima Network features are used to gain insight
about optimisation, and have fulfilled prominent roles in explaining or predicting
metaheuristic algorithm performance. Multiple linear regression models, mixed-
effects models, random forest regression, correlation analysis, and visual analysis are
among the instruments which facilitate these results. The universal thread binding
together each contribution is that the LON features which have been considered are
associated with metaheuristic performance.

Findings are presented across a range of problem dimensions (from the N = 11
QAP instances of Chapter 3 to N = 128 in Chapter 7, and additionally across both
benchmark (Chapters 4, 5, 6, and 7) and non-benchmark instances (Chapters 5
and 8). As well as belonging to separate problems domains, a wealth of different
instance classes are involved.
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In light of the broad application of the analysis, the collection of statistical tools,
the variety of different LON features included, and the overarching trend that LON
features can capture potent predictive information about metaheuristic search, it is
proposed that the contributions of this thesis have provided a significant body of
evidence to support the stipulated hypothesis.

9.3 Future Work

9.3.1 Adaptive Optimisation

The most intuitive and important future work lies in the use of LON analysis during
optimisation. That is, it should be considered for the implementation of online local
optima network estimation, to facilitate adaptive choices of operators or parame-
ters. Some ground work has been established with this thesis; the knowledge that
LON features are linked to metaheuristic algorithm proficiency when the relation-
ship is examined "post-mortem" emphasises the potential in analysing them during
the optimisation process.

The reason that the proposed future work is important is that, at the moment,
construction of a LON is computationally-expensive and the offline analysis of the
object can be time-consuming. Although it is argued that this approach was produc-
tive for the purpose of the thesis contributions — it allowed thorough and careful
study of the objects — with any fitness landscape analysis, the benefit of using it in-
stead of going straight to optimisation with a metaheuristic should be evident. This
is particularly true for non-benchmark problems where fitness function evaluations
may be slow and real-world partners may be under time constraints.

Integrating the LON method as a decision mechanism into a metaheuristic al-
gorithm could generate an attractive tool for industry partners and should be less
computationally-expensive overall if done mindfully. The procedure should con-
sider only a "rolling" partial local optima network, or possibly retain summary statis-
tics of the historical local optima connectivity within memory. Such features could
be used on-the-fly to adaptively design the algorithm in light of the perceived local
optima topology present within the particular instance at hand.

9.3.2 Cost of Construction

As has been mentioned, an evident disadvantage to local optima network analysis is
the computational cost. While it is argued that the insights gained from such analy-
sis have thus far outweighed the price, the future appeal and usage of LONs would
benefit greatly from a thorough appraisal of their efficiency and budget. Chapter
7 carried out comparisons of LON construction algorithms. Although progress was
made, a priority in the future should be reducing the computational cost of construc-
tion while still producing a representative LON sample.

Deciding upon a suitable sampling effort will probably not be a trivial task. In the
most optimistic scenario for rendering generic sampling algorithms but also adapted
to the specific problem, the amount of computation might be tuned according to the
problem dimension. The reality of this endeavour will be highly nuanced, in that
the amount of computation required may well be domain-specific, if not instance-
specific (as is arguably the case, in essence, for algorithm selection [164]) and that
problem dimension may be too simplistic to use alone as an indicator for appropriate
sampling effort.
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9.3.3 Gradients for Fractal Analysis

The analysis in Chapters 4, 5 and 6 examined the local optima level for any emer-
gent fractal geometry and complexity. A promising direction in the future would be
using this work as the foundation for comparing the observed geometry of this level
against that of the baseline solution layer in the landscape. The two can be viewed
as different levels of resolution for patterns in the fitness landscape; using fractal
analysis terminology, different scaling factors or lengths of measurement. It follows
that examining the geometries for similarity could provide evidence for or against
patterns occurring at different scales.

In principle, the solution level could be analysed for the number and steepness
of gradient changes using the information-theoretic metrics [93] mentioned in Sec-
tion 3.1.1. The same technique could then be used on a random (or even adaptive)
walk on the local optima level. Features of the walks could be contrasted and inves-
tigated for the presence of similar spatial patterns.

9.3.4 Multifractal LON System Tracking

In Chapter 5 the results showed that LONs of some combinatorial optimisation prob-
lems are multi-fractal systems. This means that the scaling or geometric complexity
is significantly different in parts. An interesting advancement in light of this result
would be identifying the sub-systems in the LON and meticulously tracking live
metaheuristic searches as they move through those same areas. The tracking would
facilitate comparison of how searches progress through the different areas; it may be
that where one region is particularly spatially complex (that is, that area of the lo-
cal optima level has high fractal dimension relative to other LON sections) a different
search operator would be better suited. In this way, involving the multifractality of
a LON in the pursuit of understanding metaheuristic performance and in selecting
operators could be productive.

9.3.5 Expansion of CSOP LON Analysis

I mentioned at the conclusion of Chapter 8 that the results within that Chapter
should be viewed as observational at this point and cannot be extrapolated to other
instances. Future work to this end would involve the inclusion of additional CSOP
instances (possibly the original CSOP instance with edited instance parameters); sta-
tistical analysis between features of the LONs and metaheuristic performance on the
instances; and alternative designs for the LON construction algorithms and features
extracted. In this way, the preliminary foundation which has been established in
Chapter 8 could be properly validated and fortified, and further insight into the in-
terplay between CSOPs and metaheuristic algorithms could be gained.

9.4 Concluding Remarks

This thesis has examined local optima networks in pursuit of knowledge about re-
actions between combinatorial optimisation problems and metaheuristic search al-
gorithms. Features were proposed, computed, compared, and visualised. Predictive
models were built with the features and used to explain or predict search algorithm
proficiency across multiple domains, problem sizes, and instance classes. It is hoped
that the insight born from the experiments and contributions can inspire further
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innovation and understanding of how to conduct more mindful optimisation with
awareness of fitness landscape topology.
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