
Research Article

The noise handling properties of the
Talbot algorithm for numerically
inverting the Laplace transform

Colin L Defreitas and Steve J Kane

Abstract

This paper examines the noise handling properties of three of the most widely used algorithms for numerically inverting

the Laplace transform. After examining the genesis of the algorithms, their error handling properties are evaluated through

a series of standard test functions in which noise is added to the inverse transform. Comparisons are then made with the

exact data. Our main finding is that the for “noisy data”, the Talbot inversion algorithm performs with greater accuracy

when compared to the Fourier series and Stehfest numerical inversion schemes as they are outlined in this paper.
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The Laplace transform

The Laplace transform is an integral transform defined
as follows.

Let f(t) be defined for t � 0, then the Laplace trans-
form of f(t) is given by

L f tð Þ� � ¼
Z 1

0

f tð Þe�stdt (1)

Thus, L f tð Þ� �
is a function of s denoted as F(s).

The Laplace transform can be shown to exist for any
function, which can be integrated over any finite inter-
val 0 < t < l for l> 0, and for which f(t) is of expo-
nential order, i.e.

jf tð Þj < Meat (2)

as t ! 1, where M and a are small real posi-
tive numbers.

Analytically, the inverse Laplace transform is usual-
ly obtained using the techniques of complex contour
integration with the resulting set of standard trans-
forms presented in tables.1

However, using the Laplace transform to obtain sol-
utions of differential equations can lead to solutions in

the Laplace domain, which are not easily invertible to
the real domain by analytical means. Thus, numerical
inversion techniques are used to convert the solution
from the Laplace to the real domain.

The inverse Laplace transform
and precision

The recovery of the function f(t) is via the inverse
Laplace transform, which is most commonly defined
by the Bromwich integral formula

L�1 F sð Þ� � ¼ f tð Þ ¼ 1

2pi

Z uþi1

u�i1
F sð Þ est ds (3)

for some u 2 R.1
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The choice of s in equation (1) and so in equation (3)

is not an arbitrary one. If we choose s such that it lies

on the positive real axis, we are treating the solution of

equation (3) as a positive real integral equation. The

problem here is that the inverse problem is known to be

ill-posed meaning that small changes in the values of F

(s) can lead to large errors in the values for f(t).2

Hence, when Laplace transform methods are used in

finding numerical solutions to partial differential equa-

tions, the corresponding inversion methods can be

highly sensitive to the inevitable noisy data that arises

in their computation via truncation and round off

error, a process that is exacerbated in nonlinear

schemes. Abate and Valko3 have shown that to some

extent these errors can be curtailed by working in a

multi-precision environment, however, as we show in

the “Tests” section later, a small amount of noise in the

data can significantly perturb the solution. When this is

the case, it becomes difficult for unlimited precision to

aid in the convergence of the algorithm to the cor-

rect solution.

The algorithms

There are over 100 algorithms available for inverting

the Laplace transform with numerous comparative

studies. Examples include Duffy,2 Narayanan and

Beskos,4 Cohen5 and, perhaps, the most comprehensive

by Davies and Martin.6 However, for the purposes of

this investigation we apply our tests using “Those algo-

rithms that have passed the test of time”,3 this is

because these algorithms are reported to give the

most accurate results on the widest variety of func-

tions.2,6 These fall into four groups:

1. Fourier series expansion.
2. Combination of Gaver functionals.
3. Laguerre function expansion.
4. Deformation of the Bromwich contour.

Derivations of particular versions of these algo-

rithms are given in the sections which follow. In the

upcoming sections, we examine the Stehfest algorithm,

which is a widely used version of the Gaver functionals

and the Talbot algorithm that uses a particular defor-

mation of the Bromwich contour.
However, for now we do not run our tests using the

Laguerre function expansion. While we do intend to

investigate this method later on in our work, our

choices in this work have been made based on the

ease of implementation of the inversion method—an

issue connected to parameter choice and control. The

Laguerre method requires more than two parameters

to effectively compute the desired transform, while the

other three methods can perform reasonably well when

defined using just the one parameter.

The Fourier series method

In their survey of algorithms for inverting the Laplace
transform, Davies and Martin6 note that the Fourier

series method without accelerated convergence gives

good accuracy on a wide variety of functions. Since

the Laplace transform is closely related to the Fourier

transform, it is not surprising that inversion methods
based on a Fourier series expansion would yield accu-

rate results. In fact, the two-sided Laplace transform

can be derived from the Fourier transform in the fol-

lowing way. We can define the Fourier transform as

F f tð Þ� � ¼
Z 1

�1
f tð Þe�2pi�tdt (4)

Then letting v ¼ 2p� we have

F f tð Þ� � ¼
Z 1

�1
f tð Þ e�ivt dt (5)

This Fourier transform exists provided f(t) is an

absolutely integrable function, i.e.

Z 1

�1
jf tð Þj dt < 1 (6)

As many functions do not satisfy condition (6), f(t)

is multiplied by the exponential dampening factor

e�ut thus

F f tð Þe�ut
� � ¼

Z 1

�1
f tð Þ e�ivte�ut dt (7)

and letting s ¼ uþ iv we obtain the two-sided Laplace

Transform of f(t) as

F f tð Þe�ut
� � ¼ L f tð Þ� � ¼

Z 1

�1
e�stf tð Þdt (8)

LePage7 noted that the integral given by equation

(8) can be written in two parts as follows

Z 1

�1
e�stf tð Þdt ¼

Z 0

�1
e�stf tð Þ dtþ

Z 1

0

e�stf tð Þdt (9)

The second term in the above expression is referred

to as the one-sided Laplace transform or simply the

Laplace transform. Thus, s is defined as a complex var-

iable in the definition of the Laplace transform.
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As before the inverse Laplace transform is given as

f tð Þ ¼ 1

2pi

Z uþi1

u�i1
estF sð Þds (10)

With s ¼ uþ iv in equation (10) this leads to
the result

f tð Þ ¼ 2eut

p

Z 1

0

Re F uþ ivð Þ� �
cos vtð Þ�

� Im Fðuþ ivÞ� �
sin vtð Þ� dv (11)

Equations (1) and (11) can be replaced by the cosine
transform pair

Re F uþ ivð Þ� � ¼
Z 1

0

e�ut f tð Þcos vtð Þ dt (12)

f tð Þ ¼ 2eut

p

Z 1

0

Re F uþ ivð Þ� �
cos vtð Þdv (13)

or by the sine transform pair

Re F uþ ivð Þ� � ¼ �
Z 1

0

e�ut f tð Þsin vtð Þdt (14)

f tð Þ ¼ � 2eut

p

Z 1

0

Im F uþ ivð Þ� �
sin vtð Þdv (15)

Dunbar and Abate8 applied a trapezoid rule to
equation (13) resulting in the Fourier series
approximation

f tð Þ� 2eut

T

1

2
F uð Þ þ

X1
k¼1

Re F uþ kpi
T

� �� 	
cos

kpt
T

� �" #

(16)

where f(t) is expanded in the interval 0 � t < T. For
faster computation, Simon and Stroot9 proposed the
following version of equation (16)

f tð Þ�eut

t

1

2
F uð Þþ

X1
k¼1

Re F uþkpi
t

� �� 	
�1ð Þk

" #
(17)

This series can be summed much faster than equa-
tion (16) as there are no cosines to compute.10 This
algorithm is relatively easy to implement with u being
the only real varying parameter.

However, as pointed out by Crump11 for the expres-
sion in equation (17), the transform F(s) must now be

computed for a different set of s-values for each dis-
tinct t. Since this type of application occurs often in
practice in which the numerical computation of F(s) is
itself quite time consuming, this may not be an eco-
nomical inversion algorithm to use. These drawbacks
to some extent can be overcome by using the fast
Fourier transform techniques.10,12

Crump11 also extends this method to one of faster
convergence by making use of the already computed
imaginary parts. There are several other acceleration
schemes for example, those outlined by Cohen;5 how-
ever, these acceleration methods in general require the
introduction of new parameters, which for the purpose
of this investigation we wish to avoid.

The Stehfest algorithm

Davies and Martin13 cite the Stehfest14 algorithm as
providing accurate results on a wide variety of test func-
tions. Since that time, this algorithm has become widely
used for inverting the Laplace transform, being favored
due its reported accuracy and ease of implementation.

Here, we give a brief overview of the evolution of
the algorithm from a probability distribution function
to the Gaver functional whose asymptotic expansion
leads to an acceleration scheme which yields the algo-
rithm in its most widely used form.

Gaver15 investigated a method for obtaining numer-
ical information on the time dependent behavior of
stochastic processes, which often arise in queuing
theory. The investigation involved examining the prop-
erties of the three parameter class of density func-
tions namely

pn;m a; tð Þ ¼ nþmð Þ!
n! m� 1ð Þ! 1� e�atð Þnae�mat (18)

with n;m 2 N: After the binomial expansion of the
term 1� e�atð Þn, Gaver went on to find the expectancy
E f Tn;mð Þ� �

, where Tn;m is the random variable with den-
sity (18). From this, Gaver was able to express the
inverse Laplace transform in terms of the functional

fn;m tð Þ ¼ ln2

t

nþmð Þ!
n! m� 1ð Þ!

Xn
j¼0

n
k

� �
�1ð ÞkF kþmð Þ ln2

t

� �

(19)

with certain conditions on n and m, Gaver makes n¼m
and expresses equation (19) as

fn tð Þ ¼ ln2

t

2nð Þ!
n! n� 1ð Þ!

Xn
k¼0

n
k

� �
�1ð ÞkF kþ nð Þ ln2

t

� �

(20)
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While the expression in equation (20) can be used to

successfully invert the Laplace transform for a large

class of functions, its rate of convergence is slow.2,13

However, Gaver15 has shown that equation (20), with

a ¼ ln2
t has the asymptotic expansion

fn tð Þ�f
ln2

a

� �
þ a1

n
þ a2
n2

þ a3
n3

þ � � � ; (21)

where the aj’s are constant coefficients in the asymptot-

ic series. Hence, equation (21) converges to the limit

fn tð Þ
n!1

¼ f
ln2

a

� �

For the conditions on m and n and justification for

the substitution for a referred to the above, see

Gaver.15 This asymptotic expansion provides scope

for applying various acceleration techniques enabling

a more viable application of the basic algorithm.

Stehfest’s acceleration scheme. For the purposes of the

following Stehfest’s derivation it will be convenient to

rewrite equation (20) as

fn tð Þ ¼ Fn ¼ 2nð Þ!a
n! n� 1ð Þ!

Xn
k¼0

n
k

� �
�1ð ÞkF kþ nð Það Þ

(22)

Stehfest1 begins by supposing we have N values for

F½ðkþ nÞa� with F(a), F(2a), F(3a), . . . .F(Na) for N

even. Using equation (22), we can then determine N
2

values F1;F2; . . .;FN=2. Now each of these N=2 values

satisfy the asymptotic series in equation (21) with the

same coefficients.
As pointed out by Stehfest,1 the aj’s are the same for

each of the above expansions and by using a suitable

linear combination, the first (N2 � 1) error terms in

equation (21) can be eliminated. That is

f
ln2

a

� �
¼

XN
2

n¼1

anFðn2þi�1Þ þO
1

N
N
2

� �
(23)

which may be achieved by selecting the coefficients

to satisfy

XN
2

n¼1

an
1

N
2
þ 1� n


 �k ¼ dk;0 k ¼ 1; . . .;N=2� 1 (24)

an ¼ �1ð Þn�1

N
2


 �
!

N
2

n

� �
n

N

2
þ 1� n

� �N
2�1

( )
(25)

Finally, Stehfest14 substituted these results into

equation (23) and obtained the inversion formula

f tð Þ� ln2

t

XN
j¼1

AjF
jln2

t

� �
(26)

for N even.

Aj ¼ �1ð ÞN2þj

¼
Xmin j;N2ð Þ

k¼bjþ1
2 c

k
N
2 2kð Þ!

N
2 � k


 �
!k! k� 1ð Þ! j� kð Þ! 2k� jð Þ!

(27)

The Talbot algorithm

Equations (4) to (8) showed that the Laplace

transform can be seen as a Fourier transform of

the function

e�utf tð Þ; t > 0 (28)

i.e.

F e�utf tð Þ� � ¼ L f tð Þ� � ¼ F sð Þ (29)

Hence, the Fourier transform inversion formula can

be applied to recover the function, thus

F�1 F sð Þ� � ¼ e�utf tð Þ ¼ 1

2p

Z 1

�1
F sð Þ eivt dv (30)

as s ¼ uþ iv we have that ds ¼ idv and so

f tð Þ ¼ 1

2pi

Z uþi1

u�i1
F sð Þ est ds (31)

This result provides a direct means of obtaining

the inverse Laplace transform. In practice, the

integral in equation (31) is evaluated using contour

integration

1

2pi

Z
B

est F sð Þds (32)

with B denoting the Bromwich contour.1 The contour

is chosen so that it encloses all the possible singularities
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of F(s). The idea of the contour is introduced so that

the residue theorem can be used to evaluate the inte-

gral. However, when f(t) is to be calculated using

numerical quadrature it may be more appropriate to

devise a new contour. To ensure the convergence of

equation (32), we may wish to control the growth of

the magnitude of the integrand est by moving the con-

tour to the left so giving the real part of s a large neg-

ative component.3,16However, the deformed contour

must not be allowed to pass through any singularities

of F(s). This is to ensure that the transform is analytic

in the region to the right of B.

Derivation of the fixed Talbot contour. In the derivation that

follows Abate and Valko3 and Murli and Rizzardi16

are used as the primary basis for extending the expla-

nation of the derivation of the Talbot algorithm for

inverting the Laplace transform.
Abate and Valko3 begin with the Bromwich inver-

sion integral along the Bromwich contour B with the

substitution

F sð Þ ¼ 1

sa
; a > 0 (33)

So f(t) can be expressed as

f tð Þ ¼ 1

2pi

Z
B

et s�aln sð Þð Þ ds (34)

with a ¼ a
t in equations (33) and (34). As pointed out

by Abate and Valko,3 numerically evaluating the inte-

gral in equation (34) is difficult due to the oscillatory

nature of the integrand.
However, this evaluation can be achieved by

deforming the contour B into a path of constant

phase, thus eliminating the oscillations in the imaginary

component. These paths of constant phase are also

paths of steepest decent for the real part of the

integrand.3,16,17

There are, in general, a number of contours for

which the imaginary component remains constant

and so we choose one on which the real part attains

a maximum on the interior (a saddle point) and this

occurs at g0ðsÞ ¼ 0 at some point on the contour. At

these saddle points, the Im g sð Þ� � ¼ 0.16 Here

g sð Þ ¼ s� alns (35)

in equation (34). Thus we have

g0 sð Þ ¼ 1� a

s
(36)

so the stationary point occurs when s¼ a.
With s ¼ uþ iv we have

Im uþ iv� aln uþ ivð Þ� � ¼ 0 (37)

Expressing uþ iv as Reih we have

Imf u� aln Rð Þð Þ þ i v� ahð Þg ¼ 0 (38)

then

v ¼ ah (39)

and as

tan hð Þ ¼ v

u
(40)

Then3,18

u ¼ a hcot hð Þ (41)

With v ¼ ah, then s can be parametrized to

Talbots contour

s hð Þ ¼ ah cot hð Þ þ ið Þ; � p < h < þp (42)

Conformal mapping of the Talbot contour. While the above

parametrization can be used as a basis for inverting the

Laplace transform, we proceed with the algorithm’s

development via a convenient conformal mapping as

follows. Expressing cotðhÞ as

coth ¼ i eih þ e�ihð Þ
eih � e�ihð Þ (43)

Then

hcothþ ih (44)

is

2ih
1� e�2ih

(45)

with z ¼ 2ih then (45) becomes

z

1� e�z
(46)

The function

S zð Þ ¼ z

1� e�z
(47)

Defreitas and Kane 5



maps the closed interval M ¼ �2pi; 2pi½ � on the imag-

inary z-plane onto the curve L in the s plane giving

the integral

f tð Þ ¼ 1

2pi

Z
L
F sð Þ est ds (48)

For details of this transformation, one can refer to

the study of Logan.19

Next we follow the procedure as adopted by

Logan19 for numerically integrating equation (48).

With s ¼ S zð Þ equation (48) becomes

f tð Þ ¼ 1

2pi

Z
M

F S zð Þð Þ eSðzÞt S0 zð Þdz (49)

where

S0 zð Þ ¼ 1� 1þ zð Þe�z

1� e�zð Þ2 (50)

For convenience we write

f tð Þ ¼ 1

2pi

Z
M

I z; tð Þdz (51)

where

I z; tð Þ ¼ F S zð Þð ÞeSðzÞtS0 zð Þ (52)

The integral in equation (51) is then rotated by p
2
and

so the interval of integration is now real and becomes

½�2p; 2p�. Then, we use the trapezoid rule with n odd

and w ¼ �iz to obtain

f tð Þ ffi 1

n
ðI 2pið Þ þ T �2pið Þ þ 2

Xn�1

j¼1

I iwjð Þ
8<
:

9=
; (53)

where

wj ¼ 2p
2j

n
� 1

� �
(54)

and we note that I 2pið Þ ¼ I �2pið Þ ¼ 0.19

The regularization properties of the Talbot algorithm. Despite

the intricacies of deriving the Talbot algorithm we have

found it to be a relatively easy algorithm to implement.

Also, the tests we have carried out so far show that the

algorithm performs to a high degree of accuracy.

Moreover, the algorithm converges much faster than

the Fourier series method without requiring the use
of any acceleration schemes. Additionally, in the
form in which we have used it, there is only one param-
eter to control. But perhaps its greatest strength is the
fact that we have found that it is able to handle noisy
data (of magnitude outlined below) with little growth in
the corresponding error. As shown by us, this is not the
case for either the Fourier series or the Stehfest inver-
sion algorithms presented above. Moreover, this
“regularization property” does not exist for many of
the numerical inversion schemes as indicated by
Egonmwan.20 For most algorithms, this is generally
overcome by constructing some regularization
scheme, which then needs to be attached on to the
inversion algorithm(s) of choice. This, of course,
increases the complexity of the inversion process
involving new parameters thus requiring even greater
knowledge of the desired solution. This is even more so
if the scheme also involves some additional accelerated
convergence process.

As pointed out earlier, the perturbation in the
numerical schemes is a consequence of the inversion
being carried out on the real axis in the complex
plane. The inclusion of complex arithmetic in the
Talbot scheme enormously diminishes this perturba-
tion. Of great importance here too is that the
“regularization properties” of the Talbot algorithm
means that very good performance can be obtained on
many of the test functions without the necessity for
multi-precision.

Egonmwan20 examined regularized and collocation
methods for the numerical inversion of the Laplace
transform, which involve Tikhonov18 based methods.
This is then applied to the Stehfest14 and Piessens21

methods on various standard test functions for both
exact F(s) and noisy (FðsÞ þ �) data, where â denotes
the magnitude of noise added.

For the Stehfest,14 Piessens,4 and the regularized
method, Egonwan20 added noise of a magnitude
10�3 	Uð1; 0Þ where U(1, 0) is a random number
between 1 and 0 to the Laplace transform values.
Commenting on his results, Egonwan notes “the
Gaver Stehfest method gave very nice approximate sol-
utions for a wide range of functions. However, it
completely failed in the presence of noisy data. In the
case of exact data, the method produced better numer-
ical approximations when compared to the Piessins and
the regularized collocation methods. However, the
Piessins method gave better results than the regularized
collocation method in the case of exact data”.

In other words, methods that performed well for
exact data did not do well for noisy data and the reg-
ularized collocation method failed for exact data. Thus,
to use such regularized methods requires some a priori
knowledge of the magnitude of the noise involved and
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Table 1. Test functions.

No. F(s) f(t) Function type

1 s

s2þ1ð Þ2 0:5tsinðtÞ Oscillating increasing

2 1

sþ1ð Þ2 te�t Exponentially decreasing

3 1
s5

1
24
t4 Increasing

4 1ffiffi
s

p 1
pt With singularities

5 erf 2ffiffi
s

p
n o

1
pt sin 4

ffiffi
t

p
 �
Oscillating with singularities

6 1
s2�0:52

sinh 0:5tð Þ Hyperbolic

7 s3

s4þ4ð0:5Þ4 cos 0:5tð Þcosh 0:5tð Þ Combination of oscillating and hyperbolic

lns
s

� lntþ cð Þ Natural log

Table 2. f ðtÞ ¼ 0:5tsinðtÞ ¼ L�1f s

ðs2þ1Þ2g.
No noise Noise

Method M L2 L1 %error L2 L1 %error

Stehfest 30 9.4(�4) 5.0(�4) 3.8(�2) 4.6(16) 3.6(16) 1.2(18)

Talbot 55 2.0(�6) 5.4(�7) 2.3(�4) 6.2(�4) 2.7(�4) 3.7(�2)

Fourier 55 4.2(�2) 1.8(�3) 3.1(�1) 8.9(1) 2.9(0) 1.1(3)

Table 3. f ðtÞ ¼ te�t ¼ L�1f 1

ðsþ1Þ2g.
No noise Noise

Method M L2 L1 %error L2 L1 %error

Stehfest 16 1.1(�4) 4.0(�5) 5.4(�1) 3.0(7) 2.4(7) 2.6(10)

Talbot 55 7.3(�6) 6.4(�6) 2.1(�3) 7.8(�4) 2.3(�4) 3.1(�1)

Fourier 55 3.6(�3) 1.0(�2) 4.9(�0) 1.1(0) 9.0(�1) 9.7(2)

Table 4. f tð Þ ¼ 1
24
t4 ¼ L�1 1

sð Þ5
n o

.

No noise Noise

Method M L2 L1 %error L2 L1 %error

Stehfest 16 6.7(�6) 3.0(�54) 2.8(�3) 3.8(3) 2.4(3) 1.1(12)

Talbot 55 3.8(�10) 3.4(�10) 5.1(�4) 2.3(�3) 8.8(�4) 1.5(�1)

Fourier 55 6.2(�1) 2.9(�1) 2.7(0) 7.6(0) 16.3(1) 2.5(3)

Table 5. f tð Þ ¼ 1ffiffiffi
pt

p ¼ L�1 1ffiffi
s

pð Þ
n o

.

No noise Noise

Method M L2 L1 %error L2 L1 %error

Stehfest 16 2.7(�8) 1.3(�8) 7.2(�7) 1.5(7) 1.2(7) 6.5(8)

Talbot 55 9.2(�2) 9.2(�3) 5.2(�2) 9.2(�2) 9.2(�3) 5.2(�2)

Fourier 55 6.2(�1) 2.9(�1) 2.7(0) 1.4(1) 6.3(0) 7.1(6)

Defreitas and Kane 7



by implication a better estimation of the solution than

might be otherwise possible.

Tests

Table 1 lists the functions together with a variety of

properties for the purpose of testing the noise

handling capability of the three inversion algo-

rithms employed.
These functions are the same used by Egonmwan.20

This sample of test functions has a variety of proper-

ties, which we think forms a basis for testing

the robustness of the noise handling properties of the
inversion schemes. We use three error measures, the L2

norm defined as

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX40
i¼1

jfnumerical tið Þ � fexact tið Þj2
vuut ; i ¼ 1::40 (55)

the L1 norm as

L1 ¼ maxjfnumericalðtiÞ � fexact tið Þj; i ¼ 1::40 (56)

Table 6. f tð Þ ¼ 1
pt sin 4

ffiffi
t

p
 �
¼ L�1 erf 2ffiffi

s
p


 �n o
.

No noise Noise

Method M L2 L1 %error L2 L1 %error

Stehfest 16 2.6(�4) 1.6(�4) 6.6(�1) 1.2(7) 9.6(6) 7.2(9)

Talbot 55 2.2(�2) 2.2(�2) 7.1(�1) 2.2(�1) 2.2(�2) 7.1(�1)

Fourier 55 1.8(1) 1.1(1) 4.3(3) 3.9(3) 2.2(3) 4.1(6)

Table 7. f tð Þ ¼ sinh 0:5tð Þ
0:5 ¼ L�1 1

s2�0:52

n o
.

No noise Noise

Method M L2 L1 %error L2 L1 %error

Stehfest 36 9.8(�3) 9.2(�3) 2.1(�5) 2.6(7) 2.0(7) 7.0(6)

Talbot 55 7.2(�6) 7.2(�6) 4.6(�6) 4.5(�4) 3.1(�4) 7.6(�3)

Fourier 55 1.4(�1) 1.4(�1) 1.9(0) 1.7(1) 5.8(0) 3.4(2)

Table 8. f tð Þ ¼ cosh 0:5tð Þcos 0:5tð Þ ¼ L�1 s3

s4þ0:52

n o
.

No noise Noise

Method M L2 L1 %error L2 L1 %error

Stehfest 36/16 3.7(�4) 3.0(�4) 3.0(�4) 3.1(6) 2.4(6) 1.0(8)

Talbot 55 5.8(�4) 5.8(�4) 5.8(�1) 7.0(�4) 6.0(�4) 6.0(�2)

Fourier 55 9.4(�2) 6.0(�2) 3.5(�1) 9.0(1) 2.8(1) 5.2(4)

Table 9. f tð Þ ¼ � ln tð Þ þ cð Þ ¼ L�1 lns
s

n o
.

No noise Noise

Method M L2 L1 %error L2 L1 %error

Stehfest 16 1.9(�8) 1.2(�7) 2.8(�5) 1.4(7) 1.8(7) 2.4(9)

Talbot 55 6.9(�3) 6.9(�3) 4.0(�1) 7.1(�3) 7.1(�3) 4.1(�1)

Fourier 55 8.6(�1) 8.3(�2) 4.0(3) 1.2(2) 3.8(2) 6.3(3)
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and the percentage error as

maxj fnumerical tið Þ � fexact tið Þ
fexact tið Þ 	 100j; i ¼ 1; ::40: (57)

To give a good estimation of the errors involved we
have sampled t over 40 points for t¼ 0.1 to 4. The L2

norm is chosen as a measure, which averages out the

error over the sample points while the L1 norm and

the % error as defined above chooses the maximum

error obtained for these measures. In all cases, the

magnitude of noise added is 10�3 	Uð1; 0Þ. The preci-
sion used for implementing the three algorithms is

1:8M where M is the number of weights for the

Stehfest algorithm and 2M where M is the number of

terms in the summation for the Talbot and the Fourier

Figure 1. Numerical reconstruction of f tð Þ ¼ 0:5t:sin tð Þ ¼ L�1 s

s2þ1ð Þ2
n o

.
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methods. The choice of these levels of precision is based
on trial and error.

They are perhaps larger than they need to be but as
our interest in this investigation is not on their efficien-
cy but on their ability to handle noisy data we wanted
to ensure that the precision played as little part as pos-
sible in assessing their performance. Thus, in cases
where the extended precision decreases the accuracy
of the noisy data we used the usual double precision
for these inversions.

For functions which have sine, cosine, and hyper-
bolic properties we increased the weights for the
Stehfest. This is because these functions require more
weights and a corresponding increase in precision for
the Stehfest method to produce accurate results. For
the Fourier series method, we choose the parameter
value of a¼ 4, with u¼ at in equation (17). Once
again this choice is based on trial and error. We have
found that this choice for a gives the best results for
inverting the widest class of functions.

Figure 2. Numerical reconstruction of f tð Þ ¼ te�t ¼ L�1 1

sþ1ð Þ2
n o

.
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Results

Tables 2 to 9 and Figures 1 to 4 show very good per-
formance of the Talbot algorithm in handling noisy
data. (For brevity, we have included only four graphical
results for the eight functions using different weights as
the performance of these functions with a higher
number of weights are well illustrated in the tables.)

With the exception of the function fðtÞ ¼ 1ffiffiffi
pt

p in
Table 5 (for which the L2 norm and L1 norm maintain

their very small size), the error for the Talbot inversion
diminishes considerably as a function of M. However,
for both the Fourier series and the Stehfest inversion
methods both measures of error increase as
M increases.

In Table 6, we also observe that the recovery of the
function erf 2ffiffi

s
p


 �
performs badly for the Fourier series

method in both the noisy and noise free environment.
Table 8 includes two sets of weights for the Stehfest

inversion algorithm. For the accurate inversion of

Figure 3. Numerical reconstruction of f tð Þ ¼ 1
24
t4 ¼ L�1 1

s5

n o
.
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sinusoidal functions, this algorithm requires more
weights for increasing values of t, here for example
we use 36 weights. However, when noise is added the
accuracy decreases with the number of weight used,
thus in this case for better performance we have used
16 weights.

Table 9 again shows the minimal error involved for
the Talbot inversion when noise is added.

Figures 5 and 6 demonstrate that the Stehfest
algorithm handles noisy data more accurately by
decreasing the number of weights used. This is
because the error generated in reconstructing the
function from noisy data increases as the number
of weights used rises. However, the accuracy
achieved by decreasing the number of weights is
not sufficient to justify such an approach for

Figure 4. Numerical reconstruction of f tð Þ ¼ 1
pt ¼ L�1 1ffiffi

s
p

n o
.
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handling noisy data. Moreover, as we have stated a

larger number of weights and the corresponding

increase in precision is necessary for handling trigo-

nometric and hyperbolic functions. We again note

that no such considerations are necessary when

employing the Talbot algorithm.

Conclusions

The results show that the Talbot algorithm handles the

noisy data extremely well having very little impact on

the final outcome. Both the Stehfest and the Fourier

series methods fail to handle the noise. This is due to

the fact that a significant part of the perturbation in

these numerical schemes is a consequence of the inver-

sion being carried out on the real axis in the complex

plane. The inclusion of complex arithmetic in the

Talbot scheme via the steepest decent path and the

resulting elimination of the oscillations in the imagi-

nary component enormously diminishes this perturba-

tion. This has implications for implementing the LTFD

method when solving nonlinear diffusion or time

dependent parabolic partial differential equations,

which can generate noisy data through a combination

of measurement, truncation, and round-off error.

Using the Talbot algorithm in these circumstances

avoids additional complications such as having to

devise regularized collocation methods to attain accu-

rate solutions to these problems.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of

this article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

ORCID iD

Colin L Defreitas http://orcid.org/0000-0002-5215-7670

References

1. Spiegel M. Laplace transforms, Schaum’s outline series.

New York: McGraw-Hill, 1965.
2. Duffy D. On the numerical inversion of Laplace trans-

forms: Comparison of three new methods on character-

istic problems from applications. ACM Trans Math

Softw 1993; 19: 333–359.
3. Abate J and Valko P. Multi-precision Laplace Transform

inversion. Int J Numer Methods Eng 2004; 60: 979–993.
4. Narayanan G and Beskos D. Numerical operational

methods for time-dependent linear problems. Int J

Numer Methods Eng 1982; 18: 1829–1854.
5. Cohen A. Numerical methods for Laplace transform inver-

sion. New York: Springer, 2007.
6. Davies B and Martin B. Numerical inversion of the

Laplace transform: A survey and comparison of meth-

ods. J Comput Phys 1979; 33: 1–32.
7. LePage W. Complex variable and the Laplace transform

for engineers. Mineola, NY: Dover Publications, 1961.
8. Dunbar H and Abate J. Numerical inversion of Laplace

transforms by relating them to the finite Fourier cosine

transform. J Assoc Comput Mach 1968; 15: 115–123.
9. Simon R, Stroot M and Weiss G. Numerical inversion of

Laplace transforms with application to percentage

Figure 5. Numerical reconstruction
of f tð Þ ¼ 0:5t:sin tð Þ ¼ L�1 s

s2þ1ð Þ2
n o

.

Figure 6. Numerical reconstruction
of f tð Þ ¼ 0:5t:sin tð Þ ¼ L�1 s

s2þ1ð Þ2
n o

.

Defreitas and Kane 13

http://orcid.org/0000-0002-5215-7670


labeled experiments. J Comput Biomed Res 1972;
5: 596–607.

10. Cooley J and Tukey J. An algorithm for the machine
calculation of complex Fourier series. Math Comput

1965; 19: 297–301.
11. Crump K. Numerical inversion of the Laplace transform

using Fourier series approximation. J Assoc Comput

Mach 1976; 23: 89–96.
12. Cooley J, Lewis P and Welch P. The fast Fourier trans-

form algorithm. J Sound Vib 1970; 12: 315–317.
13. Davies B. Integral transforms and their applications. New

York: Springer, 2001.
14. Stehfest H. Algorithm 368: Numerical inversion of

Laplace transforms. Commun ACM CACM Homepage

Arch 1970; 13: 47–49.
15. Gaver D. Observing stochastic processes and approxi-

mate transform inversion. J Oper Res 1966; 14: 444–459.

16. Murli A and Rizzardi M. Algorithm 682: Talbot’s
method for the Laplace inversion problem. ACM Trans

Math Softw 1990; 16: 158–168.
17. Bender C and Orszag S. Advanced mathematical methods

for scientists and engineers. New York: McGraw-
Hill, 1978.

18. Talbot A. The accurate numerical inversion of Laplace
transforms. J Inst Math Appl 1979; 23: 97–120.

19. Logan J. Transport modeling in hydrogeochemical sys-

tems. New York: Springer Publications, 2000.
20. Egonmwan A. The numerical inversion of the Laplace

transform. Lambert Academic Publishing, 2012.
21. Piessens R. A new numerical method for the inversion of

the Laplace transform. J Inst Math Appl 1972;
23: 185–192.

14 Journal of Algorithms & Computational Technology


