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Abstract

To strike the balance between carbon emissions reduction, economic growth and energy supply

security, non-conventional distributed energy resources such as solar photovoltaic are expected

to dominate electricity generation in the future envisaged “smart grid”. However, the spatio-

temporal variation of these smart grid technologies (SGTs) creates challenges for power system

operation as there is limited knowledge regarding their impact on network reliability. More-

over, given their dependence on ambient conditions, there is a substantial risk of increased

operational costs through the inefficient operation of backup conventional generation to main-

tain system reliability. This might defer the decarbonisation progress of several countries.

This thesis presents probabilistic time-sequential simulation techniques based on Monte Carlo

methods to comprehensively assess the impact of SGTs on the reliability of power supply

given the uncertainty of demand and the complexity of large networks. Accordingly, three ma-

jor innovations are proposed to address these critical challenges a) the stochastic behaviour of

SGTs is integrated into a reliability assessment methodology that is enhanced by the inclusion

of the time-series variation of demand, electricity generation from SGTs, and the failure of

network components; b) a rigorous characterisation of varying customer groups is developed

by presenting the reliability performance for different load sectors (rural, suburban and urban)

showing also the range of variability in terms of SGT influence; c) inspired by the model order

reduction and state pruning techniques in control engineering, a novel network aggregation

methodology is proposed to derive simplified grid representations that contain the most im-

portant system dynamics while minimising the error of the considered reliability metrics and

being significantly faster to simulate.

The findings demonstrate that the coordinated deployment of SGTs such as demand-side re-

sponse and energy storage will provide the most improvement to network reliability. The devel-

oped impact assessment methodology, which reduces network complexity through a reliability-

based aggregation, will ensure that the impacts of SGTs can be analysed significantly faster

while preserving accuracy. This will promote the practical use of reliability assessment for

network planning and maintenance procedures that will result not only in satisfactory levels

of supply continuity but also in the efficient operation of the power networks. Also, the resul-

tant minimum targets set by national regulators to protect customers from supply outages will

recognise varying customer groups and provide varying subsidies to promote uptake of rele-

vant SGTs for the benefit of especially the worst served customers who often prefer continuous

supply to the currently available outage compensation schemes.
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Chapter 1

Introduction

There is international interest in the development of electrical energy systems that deliver on

the ambition of climate neutrality. Given the high share of greenhouse emissions from the en-

ergy sector i.e. over 75% in the European Union (EU) [1], most countries have set out targets

to increase the share of renewable energy across different economic sectors. Accordingly, the

revised Renewable Energy Directive (2018) requires that at least 32% of the energy demands

within the EU are met by renewable energy sources (RES) by 2030 [2]. Similar targets were

set in the United Kingdom (UK) where the National Energy and Climate Plan (NECP) reported

that RES accounted for around 28% of UK’s electricity generation in 2017 with Scotland reg-

istering a remarkable 69% [3]. This is on the back of the UK’s legal commitment, through the

recently amended Climate Change Act 2008, to reduce greenhouse gas emissions to net-zero

by 2050 [4].

These ambitious targets contextualise why RES are continuously being utilised to meet en-

ergy demands through the adoption of more decentralised means of energy distribution using

the concept of distributed generation (DG). DG is defined as relatively small-scale generation

when compared to traditional centralised generation. It is installed in the distribution system at

low (11 kV) to medium (33 kV) voltage levels, through the connection at substations to distri-

bution feeders and at customer load level. In cases where this energy production is done on yet

even smaller scales (e.g. 415 V), with respect to DG, such as for residential dwellings, small

businesses, and communities, it is called microgeneration (MG). Although DG units typically

vary in fuel type, size, and efficiency, they are often categorised based on the type of energy

source used – conventional and nonconventional sources. Conventional-type DG includes fuel

cells, combustion and microturbines while the nonconventional-type DG is based on RES such

as wind, hydro, geothermal, photovoltaic (PV) and biomass [5]. To illustrate the scale of the
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nonconventional-type DG capacity, the electricity system operator in the UK, National Grid,

publishes regular reports on future energy scenarios for projected capacity. It is estimated that

to meet the 2050 net-zero emissions target, over 75% of the electricity generation will invari-

ably be from wind and solar, with the other RES accounting for another 16%. In particular,

PV capacity growth is illustrated in Figure 1.1 showing also the four future energy scenarios

i.e. consumer transformation, system transformation, leading the way and steady progression.

“Leading the way” is expected to have very high residential and commercial PV installations,

lead to the fastest credible decarbonisation and require the highest level of societal change [6].
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Figure 1.1: Projected PV capacity by future energy scenario in the UK [6].

Although RES present advantages such as reduced emissions, their uptake has invariably led

to changes in the fundamental planning and operation of power systems requiring a paradigm

shift to decentralised energy management. Firstly, this new paradigm is expected to result

in palpable environmental and economic benefits through providing not only residential low-

voltage (LV) customers but also commercial and industrial medium-voltage (MV) customers,

with the capability for reducing their overall electricity consumption and energy bills. In ad-

dition, customers in future distribution systems, using smart metres, enhanced storage devices,

and advanced communication infrastructure, are expected to exercise more active control of

their electricity usage patterns (dynamic adjustment) in response to the state of the network.

Therefore, they may participate in ancillary services markets through the provision of fre-

quency response and short-term operating reserves [7]. To ensure efficient system operation,

especially in deregulated power markets, this change in the traditional energy consumption pat-

terns requires effective control and coordination. This constitutes one of the key motivations

behind the “smart grid” concept.
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1.1 The Integration of Smart Grid Technologies into Distribution
Networks

The modernisation of electricity transmission and distribution systems into a “smart grid” is

geared towards maintaining a reliable and secure energy infrastructure capable of meeting fu-

ture demand growth. This smart grid is a flexible electricity network which provides different

enhanced system functionalities such as enhancement of control and communications between

network assets, balancing of power flows, enhanced fault protection, dynamic optimisation

of grid operations and resources, provision to customers of timely information and control

options, etc [8]. Among others, the smart grid considers the following technologies, DG,

demand-side response (DSR), energy storage (ES), collectively termed as distributed energy

resources (DERs) whose intelligent deployment constitutes their use as the so-called smart

grid technologies (SGTs)1. The correct management of SGTs is expected to improve the qual-

ity of electricity supply by ensuring maximum asset utilisation, higher energy efficiency, lower

energy bills, better environmental impact, and higher sustainability, among others. This also

has the added advantage of allowing for the deferment of investments for network area rein-

forcement [9].

While the benefits of SGTs are undoubtedly significant, their reliance on intermittent RES

means that there remains an overarching uncertainty regarding their stochastic behaviour. Many

of these technologies also have a low capacity value which is defined as a measure of a genera-

tor’s contribution in terms of electricity output to the system peak. This means that while they

may replace the energy generated by the conventional plant, they may do so in a disproportion-

ate way that requires retention of some conventional generation capacity to ensure that system

reliability is not compromised. Operating the conventional plant with lower load factors and at

reduced frequency can increase overall system costs [10]. Accordingly, the integration of SGTs

into distribution networks requires updates to available methods of assessment to accurately

quantify their various impacts on the operation of already existing systems. These include

the contribution to generation capacity margin, quality of supply (QoS) to end customers and

the resultant financial markets for example peer-to-peer energy trading and ancillary services

markets. QoS is a general term encompassing power quality, quality of technical services and

power system reliability. It is important to appreciate that reliability has become a comprehen-

sive approach for evaluating not only system planning but also operation studies. It refers to

the performance assessment of all or part of a system supplying electricity customers as it is

closely linked with continuity of supply (CoS).

1Due to the specific use of DERs in smart applications, this thesis uses the acronyms, SGT and DER, inter-
changeably.
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1.1.1 Changes to Traditional Reliability Analysis Methods

Traditional reliability analysis methods only require the fault and repair rates of network com-

ponents and the network loading level. However, the current proliferation of SGTs integrated at

the distribution network level requires the development of novel reliability assessment method-

ologies. These must account for the stochastic variation of SGTs while also providing accurate

modelling of their interaction with pre-existing systems. Moreover, they must be capable of

higher data input and computational capacity as the distribution networks increase both in size

(network components) and in system complexity. The effect of increasing system complex-

ity is of notable concern because SGTs introduce bidirectional power flow and uncontrolled

customer-defined power generation patterns through local MG. This changes the impact of

system operation on certain network components whose deterioration has previously been cor-

related with system loading. For example, in traditional power systems, transformer lifetimes

are usually shortened if they are frequently overloaded.

Additionally, SGTs may require changes in pre-existing protection schemes as this can have

significant effects in terms of the frequency of both momentary and sustained interruptions.

For instance, sustained interruptions may occur when circuit breakers lockout due to multiple

tripping caused by transient faults from faulty PV installations. Also, local DG installations

may contribute to reverse power flow and this must be adequately catered for by protection set-

tings. Accordingly, this research seeks to fill these research gaps by providing not only more

accurate models of relevant SGTs (PV, DSR and ES) but also quantifying their impacts on reli-

ability performance by developing and updating relevant reliability assessment methodologies.

This research substantially adds to the literature in terms of providing SGT models as well as

proven methods to include them in reliability analyses.

1.1.2 Regulator Requirements for Customer Supply Interruptions

The continued uptake of SGTs will invariably affect the level of supply continuity experienced

by consumers who usually desire high levels of reliability but at reasonable cost. Energy reg-

ulators in several countries are tasked to ensure that distribution network operators (DNOs)

make every effort to deliver energy to consumers as reliably and cost-effectively as possible.

The regulators acknowledge that whilst supply interruptions may be inevitable, their duration

and frequency can be limited, especially for consumer satisfaction. Traditionally, these reg-

ulators set targets for performance indicators for example, the Office of Gas and Electricity

Markets (OFGEM) in the UK sets targets based on customer minutes lost (CML) and customer

interruptions (CI) for which there are penalty/reward schemes [11, 12]. However, in the grow-

ing context of more bidirectional power flows due to the mass uptake of SGTs, these targets
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will no doubt require to recognise the current system conditions for which networks are already

accommodating large amounts of RES-generation [13].

Naturally, DNOs are eager to improve and maintain high network performance in the interest

of their financial and technical goals. DNOs typically ensure that these performance targets

are achieved by carrying out accelerated reactive maintenance (fixing faulty equipment by im-

proved crew reaction times) and less prevalently, preventive maintenance by performing regular

equipment inspection to replace those in poor condition. Also, using automation, the DNOs

can redirect supplies and reduce the duration of supply interruptions. This is often alongside

reinforcing their networks to enable them to cope with increasing and changing customer de-

mands and patterns for example due to the use of the previously introduced SGTs as well as

electric vehicles, heat pumps, etc. [14]. The proliferation of these SGTs also requires DNOs

to take on system operator functions for example using real-time data and active network man-

agement to make network interventions. This is referred to as the transition from DNO to

distribution system operator (DSO) [15]. Accordingly, this research investigates and quantifies

the risk of customer interruptions in distribution networks endowed with SGTs as well as as-

sessing the risk of failure to meet the regulator-imposed requirements for poor levels of CoS.

On top of the implications for the regulators and DNOs (future DSOs), these results also com-

municate important information for CoS performance that are pivotal to assessing customer

willingness-to-pay.

1.1.3 The role of Reliability Data as a Planning Tool

It is widely acknowledged that carrying out more planned hours of preventive maintenance

often leads to fewer hours of unplanned (reactive) maintenance. However, it is also true that

operational costs may be increased by carrying out too much preventive maintenance and in

some cases, even leading to unnecessary system outages. By developing maintenance proce-

dures based on predictive analysis through reliability studies, it is possible to determine the

right amount of maintenance required to achieve a set performance level. This has partly

been investigated in [16] which focuses on identifying critical network components for these

improved maintenance schemes and in [17] where maintenance alternatives for asset manage-

ment are compared. The reliability analyses presented in this thesis bolster those investigations

by providing both average values of system performance as well as the associated probability

distributions. Resultant indices communicate the level of system risk and the probability of

failure to meet certain targets given the varying load demand and the SGT integration at dif-

ferent network points. The reduction of the system risk then motivates the development of

predictive maintenance procedures informed by rigorous reliability analyses.



1.2. Research Objectives and Scope 6

Currently, most DNOs collect asset reliability data mainly for asset management (planned

maintenance) but do not use this data for reliability assessments [18]. This is primarily due to

the computational complexity of carrying out detailed reliability assessments which is further

increased by the addition of SGTs. DNOs also often cannot justify the cost associated with

carrying out predictive reliability studies and tend to use reliability statistics after a reporting

period rather than in the planning phase [19]. However, the DNOs have new motivations to look

further into the function of reliability as a planning tool. This is due to the recent developments

in computational capacity and the accelerated connection of RES to the grid (motivated by

operational costs, climate neutrality and regulatory frameworks). Therefore, this research seeks

to provide novel techniques for reliability assessment that allow for network reduction (to lower

system size and complexity) as this is paramount to use of reliability assessment techniques in

the industry. Also, by providing fast and accurate modelling of SGTs that accounts for their

stochastic behaviour, this research can make a unique case for application in an industry context

while also suggesting deployment techniques that maximise the associated benefits.

1.2 Research Objectives and Scope

The aim of this research is to assess the aggregated impact of SGTs namely PV, DSR and ES,

on the reliability of power supply and propose recommendations for their deployment as smart

interventions that maximise the benefits offered in electricity distribution networks.

This research addresses four main objectives:

• Development of accurate models describing the relevant SGTs namely PV, DSR and ES,

and capturing their temporal variations to enable the accurate quantification of their im-

pact on the reliability performance of electricity distribution networks at low and medium

voltage levels.

• Assessment of the impact of SGTs on network reliability performance to enable the

development of deployment measures that maximise their benefits to CoS which is mea-

sured using standard system and customer-oriented reliability indices, calculated through

probabilistic methods.

• Differentiation between load sectors (rural, suburban, urban) in reliability assessment

through the quantification of the frequency and duration of network faults, as well as

energy not supplied. This includes an accurate assessment of the range of effectiveness

of SGTs for varying customer groups.
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• Formulation of new and efficient methods for optimal aggregation of distribution net-

works to enable the advancement of simulation techniques such as Markov, Monte-Carlo

and risk modelling. Through the representation of detailed networks, these simplified

models will allow for more accurate quantification of the impacts of integrated SGTs

using relevant CoS metrics.

This research is driven by the outcomes of a research project “Integrated assessment of the

quality of supply in future electricity networks”, EP/G052530/1, funded by the Engineering

and Physical Sciences Research Council (EPSRC) in the UK [20]. The main outcomes of

this project included updated network component models, identification of configurations and

topologies of generic LV and MV networks, development of the relevant load models for differ-

ent types of demand profiles (e.g. rural, urban), the base methodology for the CoS performance

assessment, and some minimal analyses using SGTs. However, there was no provision of

comprehensive analyses covering the most relevant models and assessment methods involving

SGTs. For example, neither the temporal variation of PV nor the state-of-charge variation of

ES was explicitly modelled. Accordingly, through the first three objectives, this PhD research

aims at filling that research gap and extending the knowledge of SGT modelling in reliability

analyses in addition to updating the relevant network distribution models at both LV and MV to

capture the most commonly used configurations, protection devices and operational schemes.

The fourth research objective is interlinked with the first three as it requires improvement to

the existing techniques of network aggregation that will result in simplified models that can

suitably represent the complexity of distribution networks without a significant loss of inherent

variability/accuracy. For DNOs, this can have three major applications. Firstly, fast assessment

of the reliability-based contribution from SGTs serves as an input to planning decisions for net-

work operation especially considering DNO-led pilot schemes that promote the use of DERs

to determine their practical effectiveness. Secondly, reliability assessments can be performed

to predict future system performance and hence carry out reliability-based maintenance as op-

posed to the usually implemented reactive maintenance which is done because reliability is

computed at the end of a reporting period using statistical analyses. Lastly, quicker reliability

assessments allow for the evaluation of customer outage costs which are a function of out-

age time and associated agreements (contracts) with different customer groups. These outage

costs, which can be calculated from the energy not supplied, are a key motivator for targeting

investment costs in network areas with poor reliability.
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1.3 Research Contributions

The original contributions to knowledge and elements of novelty from this PhD research are

provided as follows and clustered according to the main research objectives.

Objective 1 Development of accurate SGT models:

• Development of accurate PV models for reliability assessment

Due to the variability of solar irradiation, the output of PV models is usually limited

to average values in reliability analyses. This lowers the complexity of analyses and

allows for good first-order approximations of PV impacts. However, it neglects the in-

herent stochastic variation of PV and may overestimate the CoS benefits. Therefore, this

work develops PV models that provide a more rigorous quantification of their benefits

by modelling the stochastic variation of PV as well as the associated energy loss during

power production due to unpredictable cloud movements. Furthermore, these PV mod-

els are integrated into a reliability assessment methodology that relies on probabilistic

modelling for the calculation of relative reliability indices which are useful for lower-

ing the uncertainty associated with utilised input data. This probabilistic methodology,

which is enhanced by including the time-variation of demand and network component

fault rates, ensures the accurate quantification of the reliability-based benefits offered by

PV deployed in realistic MV networks.

• Improved modelling of ES and DSR

Usually, the benefits offered by ES in terms of CoS improvement are obtained by consid-

ering ES devices with ideal outputs (no failure and constant state of charge). Although

such analyses quantify benefits that are indicative of improved system performance, they

may be improved by providing more accurate ES models. Accordingly, this research ex-

ecutes an innovative application of an intelligent energy management system (tested in

a smart grid laboratory) to control ES operation and model the realistic variation of ES

state of charge levels dependent on varying system conditions i.e. solar irradiation, load

demand, and electricity tariff during grid supply. Inclusion of this more sophisticated

ES model provides more confidence in the reliability results and substantially differenti-

ates it from available similar reliability analyses. Additionally, while most DSR models

are implemented for demand reduction during peak periods (peak shaving) or shifting

demand to lower-demand periods, this research utilises a theoretical interruption model

to propose the use of DSR during periods of highest fault probability. This novel ap-

plication of DSR provides the highest reliability benefits compared with comparable

techniques. Lastly, the results demonstrate that the combination of DSR and ES is the

most effective measure to improve CoS.
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Objective 2 Assessment of the impact of SGTs on reliability performance:

• Comprehensive quantification of the CoS performance improvements offered by SGTs

There remains an under-appreciation of the benefits offered by probabilistic approaches

in reliability assessments. Despite gaining more popularity in recent years, the dissemi-

nation of reliability statistics still takes the form of average values which may be obtained

using deterministic approaches. This research provides a comprehensive set of average

values and probability distributions of the system and customer-oriented reliability in-

dices that measure the frequency and duration of supply interruptions and the associated

energy not supplied to affected and non-affected consumers. Also, risk assessment in-

dices that consider the high impact low probability events are presented in some cases to

provide further analysis of the long tails of the probability distributions. The inclusion of

the SGTs (PV, DSR and ES) makes the results directly applicable/useful to the planning

and operation processes of DNOs. Moreover, probability distributions of the indices

communicate the probability with which targets, which are set by regulatory authorities,

may be exceeded thereby quantifying the associated financial risk.

Objective 3 Load sector classification in reliability assessment:

• Differentiation between load sectors in reliability assessment

Although it is widely acknowledged that the location of demand and its density affects

network reliability performance, the scale of distribution networks often requires cus-

tomer aggregation into large clusters to reduce the complexity of reliability analyses.

However, this research emphasises the capability of customer-oriented indices to pro-

vide more accurate SGT benefits, especially for worst served customers. Accordingly,

customer groups are disaggregated by modelling and assessing MV networks serving

different load sectors (rural, suburban, urban). This allows for an accurate demonstra-

tion of the range of variability and effectiveness of SGTs for different customer groups in

different networks. This information is invaluable to DNOs whose investment decisions

are invariably informed, in part, by reliability indicators. Not to mention, the results are

useful for quantifying the impact of undergrounding on reliability performance given the

different types of network components, topologies and spatial distributions of demand.

Objective 4 Optimal aggregation of distribution networks:

• A novel technique for network aggregation using model order reduction

Distribution network models are often aggregated to reduce the computational time re-

quired for reliability analyses. These aggregate models often represent entire LV net-

works as single components connected to lumped load and neglect the variability of

constituent network components as well as the spatial distribution of the demand served.
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Therefore, this research develops a novel approach to the aggregation of network models

for reliability assessment purposes using model order reduction (MOR). The proposed

MOR-for-reliability method is used to analytically derive simplified grid representations

that contain the most important system dynamics while simultaneously minimising the

error of the considered grid reliability metrics and being substantially faster to simulate.

• Accurate impact assessment of SGTs using reduced-order models

The addition of SGTs to distribution networks increases the complexity and size of net-

work models. Given the prevalent use of aggregation in reliability analyses, it is nec-

essary to accurately account for SGT impact in larger-scale reliability analyses. Ac-

cordingly, the proposed MOR-for-reliability technique is enhanced using state pruning

methods to improve the aggregation accuracy especially for LV networks which are nor-

mally operated radially. Moreover, time-varying demand profiles are included as well as

a more accurate representation of relevant SGTs to demonstrate the enhanced capability

of the proposed method in rigorously quantifying their impact on network reliability.
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1.5 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 presents the literature review related to the assessment of the continuity of electricity

supply in power networks. Initially, the context is established using relevant interruption data

from various European countries, highlighting also the different instruments used for regulation

of CoS levels. It also includes an overview of the most widely used system performance metrics

followed by an analysis of the impact of the considered SGTs (PV, DSR and ES) on network

functionality and reliability. Finally, the chapter discusses the need to aggregate networks

to provide more accurate SGT-impact assessments followed by the contributions of this PhD

research to the state of the art in reliability assessment methodologies, SGT modelling and

power network reduction methodologies.

Chapter 3 provides an integrated approach for assessing the impact of SGTs on the reliabil-

ity performance of typical MV distribution networks. Analyses include the spatio-temporal

variation of PV, the variability of the state of charge in coordinated ES, and the use of demand-

manageable loads. In addition to using both system and customer-oriented indices, reliability

assessment is presented for different load sectors (rural, suburban, urban) to demonstrate the

range of variability and effectiveness of SGTs for different customer groups. Moreover, this

chapter presents results using average values, probability distributions, and in some cases, anal-

ysis of the tail of these distributions to assess what impacts the proposed SGTs may have on

high impact low probability events. Lastly, the work analyses the impact of undergrounding on

reliability performance.

Given the complexity of modelling detailed networks, Chapter 4 introduces a novel use of

model order reduction techniques for the specific problem of network aggregation. The pro-

posed methodology is used to derive reliability models of electricity networks, which exhibit a

reduced number of equivalent components thereby simplifying the complexity for network re-

3The material presented varied significantly from Poster 1 due to the audience (researchers in risk analysis).
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liability analysis. Using several case studies, the proposed method is shown to allow for faster

reliability assessments while preserving high accuracy.

Chapter 5 explores how the accuracy of the proposed methodology in Chapter 4 may be in-

creased especially for radial networks despite current method limitations. This is achieved

using a novel application of state reduction or state pruning techniques, prior to performing

model order reduction, that substantially increases the reliability assessment accuracy. Lastly,

the capability of the developed procedure to include time-varying demand profiles as well as

accommodate the impact of SGTs in the simplified/reduced system models is demonstrated.

Finally, Chapter 6 reviews the main results of this research and presents the key limitations,

some of which form the basis of the future research directions that are also discussed.



Chapter 2

Continuity of Electricity Supply in
Modern Power Systems

This chapter examines the background, literature review, challenges and current solutions, re-

lated to the continuity of electricity supply in power networks, especially those endowed with

SGTs and their effect on network functionality and specifically reliability. Initially, the con-

text for the assessment of CoS (within the wider context of QoS) is presented using relevant

interruption data from various European countries, highlighting also the various security and

regulator-imposed requirements for supply restoration times. There is also a critical analy-

sis of the perceived level of CoS from the customer perspective in addition to presenting the

various customer compensation schemes already offered in different countries for unsatisfac-

tory CoS. This is followed by an overview the most widely used metrics and CoS assessment

methodologies. Then, an analysis of the SGTs integrated into power networks and used for this

research is presented together with a review of their impact on network functionality. Finally,

the chapter discusses the need to aggregate networks to provide more accurate SGT-impact as-

sessments followed by the contributions of this PhD research to the state of the art in reliability

assessment methodologies, SGT modelling and power network reduction methodologies.

2.1 Regulatory Framework for Continuity of Supply

Through periodic reports, the Council of European Energy Regulators (CEER) addresses 3

major aspects of the quality of electricity supply across its member countries in Europe [21].

These are continuity of supply (availability), voltage quality, and the commercial quality i.e.

the speed and accuracy of dealing with customer requests. This thesis is concerned primar-
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ily with the CoS which concerns supply interruptions and focuses on events during which the

voltage at the supply terminals of a network user drops to zero or nearly (practically) zero. In

deregulated markets especially, network users expect a high CoS at a competitive and afford-

able price. This includes even those networks with significant penetration of SGTs (which are

described in Section 2.3). In distribution networks particularly, the DNOs are therefore tasked

with the optimisation of the CoS performance of their networks. To ensure that this optimi-

sation is done in an economically efficient way, considering the customers’ expectations and

willingness to pay (WTP), most countries have national regulatory authorities (NRAs). CoS

may be described by various quality dimensions/indicators which are traditionally useful for

making decisions on the planning and management of power networks. The most common

ones are the number of interruptions per year, unavailability (interrupted minutes) and energy

not supplied per year [21, 22]. Accordingly, NRAs utilise regulatory instruments based on ac-

curate definition and assessment of these indicators to complement incentive regulation which

may take the form of price or revenue-cap mechanisms, penalty/reward schemes, etc. All these

aspects are discussed in this section mentioning also the new changes in system operation that

necessitate studies such as those presented in this PhD research.

2.1.1 Unplanned Interruptions

To classify CoS, most countries differentiate between planned and unplanned interruptions.

A planned interruption is defined as a prearranged interruption for which network users are

informed in advance (e.g. at least 48 hours in the UK [21]) due to the execution of sched-

uled works on the electricity network. An unplanned interruption is one where there is an

interruption of supply to customers for longer than 3 minutes4 where notification has not been

given to the customers during the prescribed notice period. It is important to note that there

are significant differences in CoS monitoring across European countries regarding the type of

interruptions monitored, the reported level of detail and even the interpretation of the different

indicators [21]. Performance comparisons between different countries and even DNOs within

the same country are important because they provide useful case studies that are needed for

CoS improvement while raising benchmark performance in different networks.

It is important to appreciate that the aforementioned CoS indicators may be calculated with

or without exceptional events. There is a general lack of harmonisation in what events may

be classified as ‘exceptional’ across different countries. For example, some countries take a

statistical approach while others base their definition on the causes of an event (e.g. natural

causes). Exceptional events are hard to predict, occur with relatively very low probability and

4The definition of unplanned interruptions varies for different countries e.g. it is 1 minute in the USA.
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usually lead to major system disruption depending on the severity and duration. These events

are the focal point of system resilience studies but hardly inform reliability studies (or targets)

because reliability is more concerned with the events that occur during normal operating con-

ditions and thus have relatively higher probability i.e. not statistical outliers. Accordingly, this

PhD research, which focuses mainly on reliability, considers unplanned system interruptions

excluding exceptional events. Figure 2.1(a) presents the minutes lost per year for unplanned

interruptions excluding exceptional events in various countries. The analysis focuses only on

those countries where the minutes lost never exceeded 200 and shows a continuously decreas-

ing trend in nearly all countries. Similarly, Figure 2.1(b) presents the interruptions per year

for countries not exceeding 3.5 interruptions. This also demonstrates either constant continuity

levels or a smooth general tendency for an increase in CoS for nearly all countries [23].

0

20

40

60

80

100

120

140

160

180

200

M
in

ut
es

 lo
st

 p
er

 y
ea

r

Year

Ireland

Hungary

Spain

Great Britain

France

Italy

Netherlands

(a) Minutes Lost per year (not exceeding 200 minutes)

0

0.5

1

1.5

2

2.5

3

3.5

In
te

rr
up

tio
ns

 p
er

 y
ea

r

Year

Spain

Italy

Hungary

Ireland

France

Great Britain

Netherlands

(b) Interruptions per year (not exceeding 3.5 interruptions)

Figure 2.1: Unplanned sustained interruptions excluding exceptional events [23].



2.1. Regulatory Framework for Continuity of Supply 17

On top of varying network operation ideologies, it is important to note that the differences

in performance across different countries are also heavily dependent on the technical charac-

teristics of the various networks. These are based on population density, network topology,

climate, and even policy. One key CoS performance differentiator is the proportion of cable

circuits used in each network. Table 2.1 presents the length of overhead lines (OHLs) and un-

derground cables (UCs) at both LV and MV levels in 2014. When compared to Figure 2.1, it is

evident that the countries with a higher percentage of UCs have lower values of the correspond-

ing interruption indicators. For example, UCs made up over 84% and 48% of the total length

of LV and MV circuits in Great Britain (GB), respectively, compared to only around 27% and

20% of the corresponding lengths in Hungary. Correspondingly, both the minutes lost and the

number of interruptions suffered in GB were substantially less than those recorded in Hungary

[21]. Additionally, the indicators in the Netherlands present the best CoS performance and this

might be related, at least in part, to having a 100% use of UCs in both LV and MV networks.

Table 2.1: Length of circuits in European countries in 2014 [21].

LV circuits (Length in km) MV circuits (Length in km)

Country OHLs UCs Total
Length

Percentage
of UCs OHLs UCs Total

Length
Percentage

of UCs
France 403550 302556 706106 42.85% 338628 288208 626836 45.98%

Great Britain 60813 328850 389663 84.39% 167951 158763 326714 48.59%
Hungary 64859 23841 88700 26.88% 53920 13480 67400 20.00%
Ireland 58098 12362 70460 17.54% 82800 9526 92326 10.32%

Italy 537399 320578 857977 37.36% 215102 173660 388762 44.67%
Netherlands 0 145712 145712 100.00% 0 105181 105181 100.00%

Spain 254491 189273 443764 42.65% 155901 92855 248756 37.33%

2.1.2 System-level Regulator Requirements for Quality of Supply

This section deals with existing quality regulation frameworks in a few European countries for

electricity distribution networks. NRAs develop frameworks to ensure that the QoS is either

maintained (if satisfactory5) or improved to socio-economically acceptable levels. Common

actions taken by NRAs to achieve such goals take the form of publishing continuity data and

implementing reward/penalty (financial incentive) schemes [21]. DNOs are henceforth tasked

to implement investment, management and operational decisions to ensure high QoS levels

based on regulator-set targets. Accordingly, measurement of CoS (a subset of QoS) is a pre-

requisite to set appropriate standards and penalty/reward regimes. Using robust and reliable

data, it is possible to ascertain the actual continuity levels against which to set relevant targets.

This subsection details the regulatory frameworks for CoS available in France, Germany and

5If the QoS level is already high, then a further improvement might be very costly for the customer.
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the UK to illustrate not only their shared goals of achieving high CoS levels but also the slightly

different approaches adopted to achieve these goals at the national level. The frameworks in

the UK are further utilised in Chapter 3 of this thesis to demonstrate the risk of customer inter-

ruption times when different SGTs are deployed thereby proving informative of the potential

benefits these technologies can have to CoS if deployed correctly.

2.1.2.1 Security of Supply Requirements in France

Like many countries, France uses a combination of rewards and penalties for CoS regulation in

both its transmission and distribution networks. For the distribution networks specifically, the

main indicator used is the system average duration of interruptions (SAIDI). The expected Cos

level is estimated in line with the investment program of the distribution companies and past

values of indicators considered in the incentive scheme. Even though no difference is made

between rural and urban areas, this scheme requires a minimum CoS improvement for all

distribution companies. For example, the expected CoS levels that corresponded to no penalty

and no reward were 68, 67, 66 and 65 minutes for 2014, 2015, 2016 and 2017 respectively.

The incentive rate for DNOs is given according to (2.1) where for example, the incentive of

e4.3M/min corresponds to a value of lost load of about e6/kWh.

INCN = −4.3× (SAIDIN_re f )× ln
(

SAIDIN−34
SAIDIN_re f −34

)
(2.1)

where INCN is the incentive of the year N (reward if positive; penalty if negative), SAIDIN is

the system average interruption duration index for the year N (including planned interruptions),

and SAIDIN_re f is the reference SAIDI for year N set at e.g. 65 minutes for 2017 [21].

2.1.2.2 Security of Supply Requirements in Germany

The quality regulation system in Germany aims to achieve a socio-economically acceptable

CoS level which is not necessarily set by the NRA. DNOs get rewards or penalties based

on overall CoS performance in comparison to the other DNOs. Overall performance is mea-

sured using SAIDI for LV and the average system duration of interruptions (ASIDI) for MV

networks6. Each DNO is benchmarked against an individual reference level (SAIDIi∗). This

reference value is load density-dependent (accounts for network structural differences) and is

obtained using regression analysis. Proportionately, the difference between the CoS reference

level and the DNO’s current SAIDI level (SAIDIi) is transformed into a monetary amount by

6Both SAIDI and ASIDI are explicitly defined in Section 2.2.2.
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multiplication with a price of quality per unit and the number of customers served by that DNO.

A fixed percentage of the allowed revenues is used to set the cap and floor for the rewards and

penalties which are calculated using:

Reward/Penalty = (SAIDIi∗−SAIDIi)×Customersi×Price o f Quality (2.2)

Both the DNO’s performance level and the CoS reference level are calculated as a mean of the

continuity indicators for the past 3 years. This is done to cater for the stochastic influences in

network reliability. The price of quality is based on the value of lost load and is estimated using

a macroeconomic approach where data is obtained from national accounting. Given that there

is no predetermined minimum improvement required, improving or worsening continuity is an

optimisation decision taken by the DNO [21].

2.1.2.3 Security of Supply Requirements in the UK

In the UK, OFGEM considers the nature, frequency (CI), duration (CML) and consequences

of supply outages to develop incentive scheme targets under the Guaranteed Standards (GS)

[11] for the restoration of the interrupted supply. These schemes are developed as part of

the Security and Quality of Supply (SQS) legislation for which OFGEM sets standards and

performance levels for rectification of network faults to limit their impact on end-users. The

incentives are intended to encourage DNOs to invest in operational tools and sometimes even

infrastructure e.g. to the last mile of power supply, to ensure lower frequency and duration of

supply interruptions. Conversely, the GS require DNOs to compensate end-users in all cases

when network reliability performance is lower than the level of service required, considering

also exceptional events e.g. severe weather conditions.

DNOs are rewarded/penalised according to the Interruption Incentive Scheme (IIS), based on

their performance against agreed target reliability levels. The relevant cost estimations are

conducted during the price control process and are valid for 8 years (the next price control will

start in April 2023 [24]). Also, there is a limit to the penalties and rewards which is set to

2.5% of the return on regulatory equity (RoRE) [21]. RoRE is used to monitor the financial

performance of DNOs under a given price control. Figure 2.2 shows DNO-group financial per-

formance against cost allowances for the first and second years of the RIIO-ED1 price control

period where a number of DNOs reached the cap on the rewards that can be earned under the

IIS [11] and only Western Power Distribution (WPD) overspent on its allowances. Moreover,

the supply to electricity customers must be restored within a specified period following an in-

terruption. SQS legislation defines relevant time limits as maximum durations to restore at least
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a minimum Group Demand (GD) of customers. Six classes of supply (A to F) are defined on

GD ranges as shown in Table 2.2. which presents the minimum demand to be restored within

a specified time [25].
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Table 2.2: UK security of supply requirements for interrupted customers [25].

Class of Supply Range of GD Minimum demand to be met after first circuit
outage

A GD ≤ 1 MW In repair time: GD

B 1 MW < GD ≤ 12 MW
(a) Within 3 h: GD - 1 MW
(b) In repair time: GD

C 12 MW < GD ≤ 60 MW
(a) Within 15 min: min GD - 12 MW; 2/3 GD
(b) Within 3 h: GD

D 60 MW < GD ≤ 300 MW
(a) Immediately: GD - up to 20 MW
(b) Within 3 h: GD

E 300 MW < GD ≤ 1500 MW Immediately: GD
F GD > 1500 MW According to transmission license security standard

2.1.3 Regulations and Compensation for Single Users

In general, measurements of CoS are performed at both the system level (the focus of the pre-

vious section) and user-specific/customer level [21]. Usually, system-level measurements are

done on an aggregate basis while user-level measurements are usually based on surveys asking

customers about their satisfaction, expectations, and WTP (for high quality or to accept low-

quality levels) [26, 27]. It is necessary to ascertain the CoS level as perceived by the network

users because residential households will often have different usage patterns than business or
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industrial consumers. This will result in diverging views about the CoS thereby requiring that

appropriate standards and incentives are set for varying measurement (system/customer) levels

as well as varying customer groups. Attention to this by DNOs results in increased profits

through both rewards (or avoiding penalties) and avoidance of lost revenue due to customer

interruptions.

Many countries specify minimum standards for QoS levels accompanied by associated pay-

ments to guarantee that single users are compensated for below-standard DNO performance.

Mostly, economic compensation involves the individual duration of long unplanned interrup-

tions. In these compensation schemes, the minimum duration of an interruption eligible for

compensation varies between 1 hour (in the Netherlands) and 24 hours (in Ireland). These

schemes are variant between countries for example, in Estonia and Romania, customers are

eligible for compensation even for planned interruptions if they exceed certain thresholds. In

Spain and Portugal, the compensation scheme considers the aggregated performance (total CI

or CML) for a year. Poland offers compensation for the total duration of interruptions while

in Italy, MV customers are compensated only in case of exceeding the maximum number of

short and long interruptions in a year [21]. In the UK, OFGEM specifies requirements for

the duration of customer interruptions to protect domestic and non-domestic customers from

excessive long interruptions. These protect customers that have no special agreements with

DNOs and are outlined in the Electricity Standard of Performance Regulations [28] which lists

the maximum admissible durations of interruptions and corresponding penalties, as presented

in Table 2.3.

Table 2.3: UK regulator-imposed requirements for supply restoration times [28].

No. of Interrupted
Customers

Maximum Duration
to Restore Supply

Penalty paid to each (£)
Domestic
Customer

Non-domestic
Customer

Less than 5,000 12 h 75 150
After each

succeeding 12h 35 35

5,000 or more 24 h 75 150
After each

succeeding 12h 35 35

The 12-hour standard applies under normal weather conditions. However, if the interruption is

caused by an exceptional event, then the customer is only eligible for compensation after being

without power for a minimum of 24 hours, or 48 hours for large events. These pay-outs are

capped to £700 per customer per year. Also, specific compensation schemes are available for
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the worst served customers (WSCs) in some countries e.g. the UK where funding is available7

(£1000 per customer per scheme) for DNOs who demonstrate QoS service improvements for

WSCs8 [21, 29].

Compensation is not received automatically in every country. Out of the 17 European countries

that compensate customers, only 11 offer automatic compensation: Estonia, Finland, France,

Greece, Hungary, Italy, Netherlands, Portugal, Spain, Sweden and the UK. Even in these coun-

tries, automatic compensation will be case-specific. For example, in the UK only customers

on the priority service register receive automatic compensation. In other countries, users are

required to ask for compensation. For example, in Norway DNOs are only required to annu-

ally inform their customers on how to request compensation, as well as to make a standard

request form available. Remarkably, customers in Slovenia are required to provide their own

interruption recorded data to the DNO when they make a compensation claim for the calendar

year [21].

2.1.4 Customer View of Network Reliability

In addition to the compensation schemes and regulatory frameworks introduced in the previous

section, this section considers the capacity of the DNO meet users’ expectations in ensuring

continuous supply to their premises. This valuation is vitally important in determining the

WTP for electricity and it establishes the market value and thus business case for the provision

of electricity. A higher WTP is often ensured by confidence in the CoS [11, 30] which is char-

acterised by the aforementioned quality dimensions. A key motivator for developing accurate

methods to assess these quality dimensions is the strong correlation between a high level of

CoS and the corresponding customer valuation of electricity as a commodity. Moreover, it is

reported that nearly 80% of customer outages are caused by failures in the distribution net-

work [31, 32]. Therefore, DNOs are keen on ensuring optimal network performance to result

in higher levels of customer satisfaction. Evidence of DNOs exceeding their performance tar-

gets for 2016-17 is presented in Figure 2.3 [11]. Whereas system-wide indices such as those

presented in earlier sections are typically used to assess network performance, there is a re-

quirement to complement these with customer-based indices. This results not only in more

accurate quantification of the risk of outages to affected customers but also in the accurate

identification of worst-served customers.

7This is not considered strictly a specific regulation or standard in the UK. DNOs have a use-it-or-lose-it
allowance to improve network reliability for qualifying customers with significantly poor service.

8A worst served customer is considered one who experiences a minimum of 12 unplanned higher voltage
interruptions over a three-year period, with at least 3 higher voltage interruptions each year.
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Figure 2.3: UK Customer interruptions and minutes lost 2016-17 [11].

Invariably, the reported CoS data depends on the population density, network topology and

characteristics, types of power components (PCs) and the voltage level. Although CEER has

continuously recommended that reporting of CoS indicators should be differentiated/disaggre-

gated accordingly, there is slow uptake of this notion by various nations. For example, only

5 European countries provided CoS data in [33] which was disaggregated to different popula-

tion densities i.e. urban, suburban, and rural areas. This is even though DNOs usually report

fault events in their systems by distinguishing them based on types of PCs, network types, load

sectors, voltage levels i.e. MV and LV etc.

In the UK, the current reliability-performance reporting structure only requires each DNO to

provide the average CI and CML for their serviced areas. However, since each of the 14 UK

DNOs delivers electricity to millions of customers spread across at least 10,000 km2 in varying

types of networks, i.e. rural areas to cities and towns, a single average value aggregating reli-

ability performance over this spatial extent is insufficient to adequately describe the variation

in network reliability performance [34]. While there might be some evidence to support the

view that cities have fewer CI and CML than rural areas, it is necessary to quantify not only

the extent of such variations but also identify the cases in which rural areas might have better

performance [35]. When all UK DNOs exceed the regulator-imposed performance targets e.g.
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in 2016-17 (Figure 2.3), there is a risk of under-evaluation of WTP, by especially the WSCs,

because of the ‘normalising’ effect due to the other highly reliable areas served.

The use of disaggregated data will make it easier to identify priorities for regulation and net-

work interventions [36]. This means that for example WPD, which overspent on its annual

allowances as shown in Figure 2.2, can substantially reduce its expenses with targeted in-

terventions in low-reliability areas as well as avoidance of mandatory payments to customers

where necessary due to a failure to meet the regulator-set guaranteed standards of performance.

Furthermore, through harmonisation of the definitions of the various QoS indicators as well as

the relevant data collection procedures in different European countries, it will be possible to

make performance comparisons that may result in drawing relevant lessons to improve the QoS

for different customer groups. This will be especially useful for networks dominated by inter-

mittent DERs such as PV. Chapter 3 of this thesis not only models these RES in typical MV

networks but also provides a comprehensive reliability performance adequately characterising

customers in different networks types (rural, suburban and urban). The results are bolstered by

quantification of the impacts of DERs in these different network types.

2.2 Continuity of Supply Assessment

Having introduced the wider context of CoS in the previous section, this section defines all the

relevant terms and metrics useful in a CoS assessment. SQS incorporates three main aspects

- reliability, power quality (PQ) and quality of technical services. First, security is concerned

with the system’s ability to respond to transient events without becoming unstable or resulting

in loss of load. PQ describes the changes in power (voltage, current or frequency) that interfere

with the normal operation of electrical equipment [37]. Reliability, which is the focus of this

thesis, is the continuity of power supply when expressed as the ability of the PCs to function

as intended [38].

2.2.1 Network Reliability

Reliability analysis invariably involves probability theory due to the probabilistic behaviour of

power systems. For example, random failures of system PCs are generally outside the control

of power system personnel, loads have inherent uncertainties and it is nearly impossible to

obtain an exact load forecast. Additionally, the integration of DERs and information-control

technologies into power systems greatly increases the uncertainty in system operation and plan-

ning, as well as the sources of system failure. The task of increasing system reliability requires

the identification of the necessary measures required to reduce system unreliability while pro-



2.2. Continuity of Supply Assessment 25

viding means to justify acceptable reliability levels. It is important to note that reliability

evaluation of power systems should recognise not only the likelihood of failure events but also

the severity of their consequences. Furthermore, the practical operation of power systems re-

quires an appreciation of the fact that zero-unreliability is impractical because random failure

events are uncontrollable. Therefore, an acceptable level of reliability must be justified both

financially and technically [39].

Reliability analysis is required in the deregulated era of the power industry because the level

of competition forces utilities to plan and operate systems closer to their limits. Accordingly,

continuously stressed operation conditions have led to a deterioration in system reliability to

the tune of various power outage events all over the world in the past few years. On top of the

subsequent economic loss, considerable outage lengths call into question the sufficiency of the

commonly used N-1 contingency criterion to provide a reasonable reliability level. However,

given that it is difficult to justify N-2 or N-3 principles, one of the alternatives to improve

system reliability is to include reliability evaluation into the power system design, planning,

operation, and maintenance. Alongside keeping system reliability within acceptable ranges, it

is also important to continuously inform customers about the inevitable level of unreliability

associated with the delivery of power in terms of outage frequency, duration and probability.

Also, by alerting them to the use of various resources, customers can improve the reliability of

their premises in response to market and environmental conditions [39].

Reliability may be defined as the ability of a system device to operate without interruptions for

the manufacturer-specified period (usually equipment lifetime) under normal operating condi-

tions. Reliability may be extended to the whole system, or parts of it, focusing on different

aspects e.g. PC reliability and customer/end user’s reliability. One of the integral parts of

reliability is adequacy which is defined as “the ability of the system to supply aggregate elec-

tric power and energy requirements of the consumers at all the times” [40] and refers to static

system conditions, e.g. for long-term planning and investment purposes. The literature also re-

veals that reliability is often mentioned in concert with the terms maintainability and availabil-

ity. Maintainability is the probability that a repairable PC or system can be repaired/restored to

operational effectiveness in a defined environment within a specified period and in accordance

with prescribed procedures. Correspondingly, increased maintainability implies shorter repair

times. Finally, availability is the probability that a repairable PC or system is operational/not

failed under defined environmental conditions [37, 41].
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PC Outage models

To adequately characterise system reliability, it is important to note firstly that PC outages are

the root cause of system failure. Therefore, it is useful to determine the relevant outage models

and subsequently calculate the relevant system states and their consequences, to result in the

accurate calculation of reliability indices. PC outages are usually classified into two: indepen-

dent and dependent. Independent outages are further classified into forced, semi-forced and

planned outages, or as full and partial failures according to failure states. Forced failures are

distinguished as repairable and non-repairable. Most failures in power systems are repairable

but nonrepairable failures also occur in real life. Dependent outages usually take the form of

cascade failures and common cause failures e.g. simultaneous failure of a double line circuit

due to lightning. Notably, dependent outages produce much more severe consequences than

independent ones i.e. major power outages and blackouts [39]. This thesis concerns itself

with only forced failures of repairable PCs as well as nonrepairable failures, which require the

inclusion of PC ageing (mandatory in reliability evaluation) models to provide more realistic

analyses of power system asset utilisation.

To model repairable forced failures when considering large generating units, it is usually nec-

essary to consider outage models with multiple derated or partial output states based on the

power output e.g. adjustable turbine blades in hydropower production. Models may also be

adjusted to include various failures such as partial and multiple failures, and even planned out-

ages. However, in distribution network analysis, the most used outage model for repairable

forced failures only has two states (operating and failed). This model is common due to its

simplicity and effectiveness in the description of PC failure. Accordingly, it is utilised in thesis

and illustrated using Figure 2.4(a) which shows an up-down-cycle process together with the

associated state space diagram given in Figure 2.4(b). The average unavailability (U) is given

by [39], [42]:

U =
λ

λ +µ
=

MT T R
MT T F +MT T R

(2.3)

where λ is the failure rate (failures/year), µ is the repair rate (repairs/year), MTTR is the mean

time to repair (hours), MTTF is the mean time to failure (hours), λ = 1
MT T F and µ = 1

MT T R

and the availability, Av = 1−U [41].

It is widely accepted that faults occur anywhere in a power system, and therefore that the

probability of failure of any system PC (following a relevant outage model) may be quantified

through the corresponding PC failure rate. In the event of a system or PC fault that leads

to the outage of some customers, reliability analysis must provide the (expected) number of
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Figure 2.4: Outage model for a repairable PC with 2 states [39].

disconnected customers, the (expected) duration of their outage and the (expected) amount of

energy which is not supplied, using relevant indices.

2.2.2 Reliability Indices

Given the diversity of the incidents/faults that lead to interruptions to the supply of customers,

types of interruptions must be classified. This is based mainly on the time period between the

loss of supply and when it is finally restored. Long interruptions (LIs) are defined as loss of

supply because of de-energisation in interconnecting system PCs. Short interruptions (SIs),

usually resultant from switching operations, are classified as such, as long as supply is restored

in less than 1 minute (in the USA) [43] or 3 minutes (in Europe) [21]. Some countries also

classify interruptions lasting less than 1 second as transient interruptions. Others (e.g. UK,

Norway, Sweden), however, classify these transients together with the short ones [21]. While

most reliability studies provide LI-indicators, it is important to acknowledge that there are

self-extinguishing faults (and other transient events) which are cleared by automatic reclos-

ing. While these are usually the subject of PQ-related studies, there is a need to integrate such

aspects into comprehensive reliability analyses [38] especially given the integration of SGTs

that add to the complexity of network protection. Accordingly, this thesis provides reliabil-

ity analyses that capture SI-events under normal operating conditions and even quantifies the

impact that SGTs may have on SI-indicators. These are relevant results on the back of recom-
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mendations from organisations such as CEER that continuously advocate for more widespread

reporting on transient interruption indicators [21].

Reliability indices are either absolute or relative measures of system reliability [19]. Absolute

indices are the values that a system is expected to exhibit based on past performance. These

are considerably hard to predict given the uncertainties associated with predicting system re-

quirements. This thesis uses relative reliability indices that are easier to interpret and assess

because system behaviour is evaluated before and after the consideration of a design or op-

erating change. This allows for the accurate quantification of SGT-impacts because there is

reasonable confidence in the relative differences in the indices since uncertainties in data and

system requirements are embedded in all network scenarios. Generally, there are several in-

dices but some of the most used may be subdivided into sustained interruption, momentary

and load-based indices [37]. The following system and customer-oriented indices are utilised

in this thesis due to their widespread use in both research and industry, as well as their capabil-

ity to adequately characterise different CoS levels as required by the goals set for this research.

The corresponding mathematical definitions are provided as follows [44]:

2.2.2.1 Sustained Interruption Indices

The system average interruption frequency index (SAIFI) is the average number of sustained

interruptions per customer recorded for a year. It is expressed in interruptions/customer/year.

SAIFI =
∑Customers Interruptions

∑Customers Served
(2.4)

The corresponding customer index to SAIFI is the customer average interruption frequency

index (CAIFI) which focuses only on the sustained interruptions for those customers experi-

encing interruptions whereby each customer is counted once. It is expressed in interruptions/af-

fected customer/year and is particularly useful in recognising chronological trends in system

reliability.

CAIFI =
∑Customers Interruptions

∑Distinct Customers Interrupted
(2.5)

The system average interruption duration index (SAIDI) denotes the average duration of sus-

tained interruptions in hours per customer for a year9. It is expressed in hours/customer/year.

SAIDI =
∑Duration o f Customer Interruptions

∑Customers Served
(2.6)

9The CI index (used in the UK) is equivalent to SAIFI but is calculated as the number of interruptions per 100
customers per year. Similarly, the CML index is equivalent to SAIDI.
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Similarly, the corresponding customer index is given by the customer average interruption

duration index (CAIDI) which deals with the average duration of interruptions per interrupted

customer per year. It is expressed in hours/affected customer/year.

CAIDI =
∑Duration o f Customer Interruptions

∑Customers Interrupted
=

SAIDI
SAIFI

(2.7)

The average energy not supplied (ENS) during sustained interruptions is expressed using MWh/-

customer/year. This is important for assessing the economic value of reliability, network plan-

ning decisions, and for future power networks, operational decisions.

ENS =
∑Energy not supplied

∑Customers Served
(2.8)

Correspondingly, the average customer curtailment index (ACCI) is the equivalent customer

index to ENS which only focuses on interrupted customers. It is useful for monitoring changes

in ENS between calendar years and is expressed in MWh/affected customer/year.

ACCI =
∑Energy not supplied

∑Customers Interrupted
(2.9)

2.2.2.2 Momentary Interruption Indices

SIs, voltage sags and swells can potentially damage sensitive equipment (e.g. power elec-

tronics). To evaluate system reliability, the momentary average interruption frequency index

(MAIFI) considers momentary (short – 1min/3min) interruptions. It is expressed in (short)

interruptions/customer/year. The time-aggregation rules are quite important when calculating

MAIFI because multiple interruptions during a 1 or 3-minute period, due to automatic reclos-

ing actions, may be counted as a singular event for MAIFI or as multiple events10. This will

invariably have substantial effects on the index calculation.

MAIFI =
∑Momentary Customers Interruptions

∑Customers Served
(2.10)

The corresponding customer index to MAIFI is, to the best of the author’s knowledge, not

provided for in reliability analysis literature. This is understandable given it is not a very

commonly used index, with about half of the countries monitored by CEER not distinguishing

between LIs and SIs. Accordingly, this research proposes a new index – customer average

10There also exists the Momentary Average Interruption Event Frequency Index (MAIFIE ) which indicates the
average frequency of SI events but excludes those immediately preceding a LI.
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momentary interruption frequency index (CAMIFI), described mathematically by (2.11), for

quantification of SIs to customers affected only.

CAMIFI =
∑Customer Momentary Interruptions

∑Distinct Customers A f f ected
(2.11)

2.2.2.3 Risk Assessment Indices

Although the main focus of reliability studies is on the high probability and low impact events

[45], there are instances where the results in this thesis allow for brief analyses of heavy-

tail distributions. The long tails of the resultant index probability density functions (PDFs)

represent high impact low probability (HILP) events. One widely used metric for quantifying

these worst cases is an α-percentile risk metric called the conditional value-at-risk (CVaR)

[46]. CVaR quantifies the expected value of risk in the region beyond the usual confidence

levels i.e. the value at risk (VaR) which is represented in the tail of the PDF curve for the

chosen reliability index (e.g. SAIDI, SAIFI, ENS). Therefore, it defines the value of an index

that is expected in the higher (1−α)% of the cases [47] and is described mathematically using

(2.12). More details on the application of this index for the reliability analyses in this thesis

are presented in Sections 3.4 and 3.5.

CVaRz
α =

∫ +∞

VaR
x f (x)dx (2.12)

where f (x) refers to the probability distribution function obtained from the annual reliability

index results considering a time window of z years [48, 49].

2.2.2.4 Load Based Indices

Albeit not utilised in this thesis, this category of indices is worthy of mention. Load based

indices focus on the amount of connected load (in kVA) rather than the number of customers

served. They are especially useful when measuring system performance of areas serving rel-

atively few customers that have relatively large concentrations of demand such as industrial/-

commercial customers. The most common ones are the average system interruption frequency

index (ASIFI) and the average system interruption duration index (ASIDI). As expected, in a

system with homogeneous load distribution, ASIFI and ASIDI should be the same as SAIFI

and SAIDI.

ASIFI =
∑Connected kVA o f Interrupted Load

∑Connected kVA Served
(2.13)
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ASIDI =
∑Connected kVA Duration o f Interrupted Load

∑Connected kVA Served
(2.14)

2.2.3 Reliability Assessment Methodologies

To assess reliability indices, there are essentially two main approaches: analytical or stochastic

simulation. Firstly, both approaches require the same system analysis methods and equations

i.e. for load flow calculations and determining the adequacy of system states [19, 39]. However,

analytical techniques represent the system using simplified mathematical models that require

mathematical solutions for the evaluation of indices. Conversely, simulation techniques esti-

mate the indices by simulating the “life” of the system and its stochastic behaviour in a chrono-

logical or non-chronological way. The differences between both techniques are summarised in

Table 2.4 [37].

Table 2.4: Differences between analytical and simulation methods.

Analytical Simulation
More effective for simple operating
conditions and systems

Preferable for complex operation conditions
and when high-impact events are significant

Usually an oversimplification of the system
and may become unrealistic

Can capture all system processes and
characteristics

Relatively short computational times Considerable computational times
Same result for the same system, model
and input data

Results depend on imposed precision and
randomness

Results are limited to average values
Results comprise average values and
probability distributions

Probabilistic simulation techniques are increasingly being preferred over analytical ones be-

cause of their capacity to provide more information about the randomness of network be-

haviour than point averages [37]. Together with the aforementioned requirements for more

accurate risk management due to both technical and economic considerations, it is important

now more than ever, to gain as much insight into network functionality with as much informa-

tion as possible to aid both planning and operational decisions. The most common probabilistic

simulation technique is the Monte Carlo Simulation (MCS) procedure for which there are two

variants – random (non-sequential) and sequential simulations. The random (NMCS) approach

simulates the basic intervals during system lifetime by choosing intervals randomly while the

sequential (SMCS) approach simulates them in chronological order [19, 39].

Notably, MCS is a fluctuation process therefore resultant indices should have a confidence

band. Although there is no guarantee that simulating more samples can result in less error, it is
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undisputed that the confidence band decreases as the number of simulated samples increases.

To that end, the coefficient of variation is a common convergence criterion often used to ensure

MCS accuracy (provide a confidence band). Alternatively, a maximum number of samples

may be stipulated as the stopping rule (both approaches are used in this thesis). Either NMCS

or SMCS is more suited to different analyses based on system effects and general objectives.

The key merits of SMCS are that there is an accurate evaluation of frequency and duration

indices, flexibility in modelling any state duration distribution, and the capacity to calculate

the statistical probability distribution of system indices – these are all reported weakness of

NMCS. On the other hand, SMCS requires significantly more computational time and stor-

age. On top of that, it requires all the parameters associated with component state duration

distributions (and all transition rates between all possible states). For multiple state component

representations (failure modes), all this input data might prove difficult to obtain [19, 39]. This

PhD research utilises both variants of SMCS - state duration sampling (SDS) and system state

transition sampling (STS) whereby any use of and reference to ‘SMCS’ methods is abbreviated

to ‘MCS’ methods.

Failure rates (λ ) and mean repair times (MTTR) are two basic inputs for both SDS and STS

MCS methods. These parameters are allocated to all system PCs and then used to assess the

whole or part of the system, individual bulk supply points (BSPs) or consumers. In SDS, the

up and down cycles of all PCs are simulated first, and a system state operating cycle is then

obtained by combining all the component cycles. The technique is widely used for distribution

network reliability despite drawbacks such as large memory storage and computational re-

quirements. In STS, a system state transition sequence is created and used to calculate indices

without requiring the sampling of component up and down cycles and storing chronological

information of the system state. However, it has a significant restriction that all state residence

times must follow an exponential distribution [50] - this is not a restriction in SDS.

2.2.3.1 State Duration Sampling

The first step in SDS is to specify the initial state of all PCs – usually assumed to be in the up

state. The next step is to generate uniformly distributed random variates11 and convert them

into system state durations i.e. time to fail (TTF) and time to repair (TTR). The conversion

is done according to the relevant probability distributions for failure and repair of PCs. This

is an advantage of SDS because operation and repair processes may assume varied probabil-

ity distributions for state duration [37]. For example, considering failure times to follow an

11A random variate is a random number sequence following a given distribution.
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exponential distribution, the cumulative distribution function (CDF), is given by:

F(t) = Ri = 1− e−λit (2.15)

where λi is the failure rate of the PCi (frequency/year) and Ri is a uniformly distributed random

number in the interval [0,1] for PCi. The sampling value for the state duration (TTF) will then

be obtained using the inverse transform method12 [37, 39, 42]:

T T Fi = F−1(Ri) =−
(

1
λi

)
ln(1−Ri) (2.16)

which is the equivalent to (2.17) because (1−Ri) is distributed uniformly in the same way as

Ri:

T T Fi =−
(

1
λi

)
ln(Ri) (2.17)

Similarly, TTR may be obtained if the PC repair is assumed to follow a Weibull distribution,

whose CDF is given by:

F(t) = Ri = 1− e
[
−( t

α )
β
]

(2.18)

where α and β are the scale and shape parameters of a Weibull distribution. Equivalently, the

state duration (TTR) will be given by:

T T Ri = F−1(Ri) = α [−ln (1−Ri)]
1/β (2.19)

Again, because (1−Ri) is distributed uniformly in the same way as Ri, then:

T T Ri = α [−ln (Ri)]
1/β (2.20)

With:

α =
MT T R

Γ

(
1+ 1

β

) (2.21)

where Γ(·) is the gamma function [37] and MTTR is equivalent to the repair rate (µi) of PCi.

Importantly, the special case of the Weibull distribution where β = 2, interpolates to a Rayleigh

distribution. The chronological sequence of operating-cycles can be deduced by sampling TTF,

then TTR, then TTF, and this creates the state transition process (artificial cycle of system

12Other methods such as the composition method and acceptance-rejection method may also be used.
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operations and failures) [39]. For each discrete system timestep or event, the system will have a

new topology depending on what equipment is faulty or operational. This new state is analysed

using power flow computation with the application of corrective actions where necessary such

that reliability indices may be obtained cumulatively for the simulation period. Simulations

(random number generation and subsequent system assessment) are repeated until the imposed

MCS stopping criterion [37].

2.2.3.2 State Transition Sampling

STS focuses on state transitions of the entire system rather than on PC states or PC state

durations. Consider a system containing m PCs and that the state duration of each PC follows

an exponential distribution. The system is in state Sk with the associated PC transition rates

given by λi where (i = 1, ...,m). It is important to note that in this STS context, depending

on the PC state in state Sk, λi may represent a failure rate or repair rate. It can be shown that

the system will transit to system state Sk+1 depending on the random state duration of the PC

which departs earliest from its present state in system state Sk i.e.:

T = mini(T i) (2.22)

where T is the duration of system state Sk and Ti is the state duration of the ith PC. Since Ti

of each PC follows an exponential distribution with λi, then T also follows an exponential

distribution with λ where λ = ∑
m
i=1 λi. Using conditional probability theory, it is possible to

determine if the transition from state Sk to Sk+1 is caused by the departure of PC j from its

present state in system state Sk. It can then be shown that the probability of PC j departing

from its present state at time t0 is given by [51]:

Pj =
λ j

∑
m
i=1 λi

(2.23)

where Pj is the probability of departure of the jth PC from its present state. Expression (2.23)

means that the state transition of any PC (according to Pj) leads to a possible state transition

and that for a system of m PCs, there can be m possible reached states. Using (2.23), the

probability of each of the m system PCs transiting from their present state can be calculated.

The probability of the m states that could possibly be reached can then be successively placed in

the interval [0,1] as shown in Figure 2.5 (because ∑
m
j Pj = 1). As done in SDS, the next step is

to generate a uniformly distributed random number Ri between 0 and 1. If Ri falls between the

segment corresponding to Pi, then the transition of the ith PC leads to the next system state.The
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consequences of each system state may then be analysed, and all relevant indices updated

before generating a new random number Ri. The simulation is repeated until the stopping

criterion is reached [50, 51]. The traditional STS MCS method is used in thesis Chapters 4

and 5 to calculate network reliability for different network scenarios. Given that these chapters

discuss system reduction to a variable number of system states, STS is necessary as SDS is

only applicable to systems with distinct PCs. A traditional STS MCS is adopted because

it adequately demonstrates the required accuracy capability of the reduction methodologies

proposed.

0 1P1 P2 Pj

Ri

Pm

Figure 2.5: Explanation of state transition sampling [50].

2.3 Smart Grid Technologies

This PhD research seeks to ascertain how PV, DSR and ES integrated into power networks will

influence the assessment of supply continuity (which is a constituent element of QoS). This

subsection provides the state of the art with regards to their impacts in terms of network oper-

ation and specifically, reliability. It is worth reiterating that the smart grid concept has various

components e.g. wide area measurement, condition monitoring, advanced asset management,

smart metering, increased penetration of DERs, etc. This research focuses specifically on the

integration of the above mentioned DERs into power systems using deployment techniques

that constitute their functionality as smart interventions (SGTs) for CoS improvement through

diversification of the energy portfolio and provision of backup supplies during system faults.

2.3.1 Impact on Network Operation

Most statistics show that failures in distribution systems account for an odd 80% of all inter-

ruptions that result in the unavailability of supply to loads [31]. Therefore, before looking at

the current research gaps in the impact assessment of the considered SGTs from a reliability

perspective, it is useful to review their impacts on network functionality/operation to provide

a further understanding of their contribution to the overall QoS (which includes CoS). This
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is beneficial as it identifies relevant phenomena in SGT operation that inform the deployment

techniques proposed in this thesis to improve the overall network reliability.

Collectively, SGTs provide increased fuel saving with cogeneration, reduced demand charges

for large customers, engineering cost savings from voltage and power factor correction, re-

duced risk of power outages, reduced carbon emissions, scalability, generation augmentation,

and renewability, among others [52]. Moreover, through techniques such as active network

management [53], it is possible to maximise the penetration of DG through coordinated volt-

age control using transformer on-load tap changers and voltage regulators, fault level studies,

feasibility studies for the addition of power electronics, and network reconfiguration. Prac-

tically, DNOs often employ network reconfiguration (NR) to ensure CoS through alternative

power supply routes and to improve reliability without additional cost [32], especially with the

presence of shunt capacitors (SCs) and reactors. NR is a process of altering the open/close

status of tie/sectionalising lines of distribution networks. Notably, SGT-integration increases

the efficiency of NR schemes through better loading patterns by reduction of the load burden

on centralised power supply utilities, improved voltage profiles and application of DG in the

restoration process during contingencies. This also has the effect of reducing the required fre-

quency of NR and thus extending PC lifetime. Moreover, research in [31] investigated the

impact of NR on network reliability performance by using a chemical reaction optimisation

algorithm which imitates molecular interactions to search for the optimal radial configuration.

In this case, the molecules represented the set of links/tie lines of the distribution network.

By using the IEEE 33 bus standard test network, the study found that NR is very effective in

reliability enhancement in the presence of DGs more than with SCs.

Nonetheless, there are significant uncertainties about SGT impact on network operation and

performance due to their temporal and spatial variability and the decentralised nature of their

operation and control. Accordingly, grid integration of SGTs requires the suitable manage-

ment of various balancing services markets such as frequency response, reserve services, and

reactive power services. There must also be revised unit commitment and economic dispatch,

improved DNO response to system outages [32] and adequate CoS impact assessments (the

focus of this thesis). The following subsections provide relevant operational concerns about

each of the considered SGTs focusing on their impact on network functionality while also dis-

cussing the current state of the art in terms of impact on network reliability. Later chapters

provide more specific information about their detailed design and application in this research.
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2.3.2 Photovoltaic Systems

The three most encountered configurations of PV systems are grid-connected systems, battery-

charging stand-alone systems and load-connected systems [54]. Grid-connected systems typ-

ically have roof-installed PV units that deliver dc power to a power conditioning unit (PCU)

which converts it to ac and supplies the building. The PCU ensures efficient PV operation in

accordance with the appropriate current and voltage (I-V) curves during changing weather con-

ditions. Also, the PCU allows for bidirectional power flow between the grid and the building

depending on the level of PV supply. Battery storage may be included depending on the energy

requirements. This PhD research mainly focuses on this PV configuration and its variants i.e.

no grid connection, less complicated PCU, etc. This is because it is relatively simple, can often

result in high reliability and may also have high PV-efficiency with the appropriate usage of a

maximum power point tracking unit. Integrated with advanced energy management systems

(EMSs), this configuration takes advantage of relatively low-cost power during periods (middle

of the day) where utilities have relatively high electricity rates.

On the other hand, off-grid standalone systems usually have battery storage and/or a backup

generator where an inverter converts battery dc voltage into ac for conventional electricity and

its charging function allows the generator to top up the batteries when solar is insufficient

[54]. The last category of PV systems is those where there is direct coupling with the load,

without any battery storage e.g. most water-pumping systems. Both categories of PV configu-

rations can be very cost-effective especially in remote areas where the only supply alternatives

may be noisy high maintenance generators or extending the existing grid to the site at a high

cost. However, they may suffer from inefficiencies without diversification of energy supply

especially due to the dependence of PV supply ambient conditions (solar intensity, spectral

variations in overcast conditions, temperature, and wind speed).

Grid-connected PV systems present several operational concerns such as voltage variations,

harmonic distortions, reactive power requirements, flicker, voltage unbalance, grounding, light-

ning protection and the optimisation of system controls. Also, large scale PV integration in-

creases the network short circuit capacity (fault current) and leads to voltage rise at the point

of common coupling (PCC) which requires changes to the associated protection coordina-

tion. Harmonics, inherent in ac power, are increased by the addition of PV inverters in grid-

connected systems. Due to the stochastic behaviour of PV, the times of the peak PV power

generation might not, and typically do not coincide with the peak demands (depending on the

category of end consumers) thereby resulting in a less than optimal utilisation of the generated

power [55]. Moreover, the rise in voltage flicker due to rapid variations in cloud movements

(clouding), has an effect of wearing out tap changers owing to the sensitivity to short-term

voltage fluctuations, and thus a reduction in transformer lifetimes. Accordingly, solutions have
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been suggested in the form of on load automatic tap changers and step voltage regulators at dis-

tribution level [56], ramp-rate control using ES [55, 57], use of inverters for power factor con-

trol by absorbing or injecting reactive power [58], overvoltage prevention at the PCC through

coordinated active power curtailment, and overvoltage protection schemes [59], among others.

Furthermore, the influence of PV on overall network performance for LV customers has also

been quantified in [60] using active and reactive power flows, system losses, voltage profiles,

and harmonic effects. The results provide a good basis upon which to consider MG using PV

for CoS improvement.

Focusing on CoS, research in [61] discussed quantification of the effects of PV on power sys-

tem reliability but mainly focused on finding the optimal placement of PV installations and

employed a relatively low-resolution time-step (1 day) for the presented probabilistic models.

Also, [62] focused on minimising lifetime, energy and load-loss costs. PVs were connected to

a 22 kV distribution system to investigate the effects of multi-distributed generators through

assessment of SAIFI, SAIDI and even the cost of outages [63]. The results focused on DG

capacity and location. Similarly, due to the spatial variability of RES, the Roy Billinton test

system was used a case study in [52] to quantify the possible level of reduction of distribution

losses and chance of interruptions if DGs were placed closer to the customers. As expected, the

DG was found to provide voltage support and relieve overloads in grid-connected operation.

This is bolstered by another study in [64] which also emphasised the importance of optimally

placing DG sources to obtain the largest potential benefits for grid reinforcement.

2.3.3 Demand-side Response

DSR constitutes various energy management programs designed to control energy consump-

tion on the customer’s side. By managing consumer demand during key periods, there is a

substantially better use of existing resources resulting in wide-ranging benefits such as de-

ferment of network investment costs. DSR may be categorised into the following programs:

energy conservation i.e. reducing demand for most hours of the day, load management i.e. re-

ducing peak demand (peak shaving) or shifting demand from peak to off-peak hours, and fuel

substitution i.e. influencing the customer’s choice between electric or natural gas services from

a utility. These DSR programs are usually delivered using one of several strategies – energy in-

formation programs, rebates on energy-efficient appliances, incentives to help DNOs to reduce

commercial and industrial demand, programs for remote control of customer appliances e.g.

water heaters and air conditioners, and tariffs designed to shift or reduce loads (time-of-use

rates, demand charges, real-time pricing) [54]. A common example of tariff programs is the

Economy 7 tariff in the UK where customers benefit from cheap off-peak electricity for up to

seven hours during the night depending on the electricity supplier. This encourages customers
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to use appliances e.g. washing machines, dishwashers, etc. at night to reduce their energy bills.

Figure 2.6 compares demand profile classes 1 and 2 which correspond to domestic users using

an unrestricted (ordinary) tariff and those on the economy 7 tariff, respectively. For each class,

the average half-hourly demand per customer for a winter weekday is presented [65].
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Figure 2.6: UK domestic profile classes 1 and 2 for a winter weekday [65].

The recent growth in RES provides for network flexibility by providing additional energy de-

mands. It has been estimated that as much as 5% of the total winter peak demand in the UK

may be deferrable through pertinent DSR strategies and incentives. On top of that, DSR can

alleviate network contingencies and manage constraints. This can extend the useful lifetime of

certain PCs and defer network investment costs [66]. Most DSR programs are implemented for

large industrial customers because the load size is sufficient to make a substantial contribution

to grid ancillary services. However, developments such as RES-integration, advances in digital

information and user load control, are encouraging DSR programs among also the residen-

tial and commercial customer groups. Although, this justifies the use of DSR for residential

dwellings, this thesis acknowledges that demand-side resources in residential and commer-

cial load sectors are highly distributed and deeply embedded in the LV and MV networks. This

makes it difficult to raise the necessary demand volumes required to participate in the balancing

market despite allowing for improvements in individual customer CoS through the reduction

in amounts of ENS. The current measure to solve this challenge is through the use of “aggrega-

tors” which may be defined as “demand service providers that combine multiple short-duration

customer loads for sale or auction in organised energy markets” [67]. Accordingly, there are

DSR programs that have been implemented with varying success e.g. by UK Power Networks

(UKPN), a DNO, which run tenders for flexible DSR services from aggregators to reduce or

shift peak demand in the winters of 2017/18 and 2018/19 [68].
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In recent literature, the influence of DSR on overall network performance for LV customers

has been investigated in [69] demonstrating the associated changes to aggregate load charac-

teristics and system performance (active and reactive power flows). Notably, a shifting demand

DSR program was used as opposed to the peak shaving strategy adopted in this thesis and in

[66] where optimal power flow (OPF) was used to maximise benefits from DSR. These benefits

were quantified using the ability of the modelled demand-responsive loads to relieve constraints

in the upstream network and provide ancillary services like operating reserve. Moreover, the

results highlighted the opportunity for DNOs to participate in DSR especially by implementa-

tion at optimum network locations. For the CoS specifically, [70] showed that flexible demand

could enhance system reliability through reductions to expected ENS and loss of load probabil-

ity (LOLP) by making the power demand responsive to nodal pricing and then communicating

price signals to customers as soon as they were cleared on the market. As expected, the study

found that the use of flexible demand can lead to a more efficient use of the network capacities

while lowering overall energy bills. Finally, [71] incorporated DSR into a distribution network

reliability assessment methodology considering the daily probability of LIs and SIs to provide

a more realistic assessment of DSR impact on QoS.

2.3.4 Energy Storage

AC power production requires the instantaneous consumption of generated electricity to ensure

system synchronism. However, the stochastic behaviour of both load demand patterns and

RES availability due to ambient conditions presents significant challenges to system operation.

Therefore, system operators procure ancillary services [7] to ensure SQS by balancing demand

and supply. ES may provide one or more these services such as enhanced frequency response,

reactive power services, etc. It is commonly used to level the load curve, develop islanded or

grid-connected microgrids by promoting a greater utilisation of RES and provide corrective

action (supply) during N-1 security operations. ES is also central to electricity arbitrage as

it allows for the shifting of consumption from high to low tariff periods which also leads to

energy savings and network congestion reduction. Not to mention, ES may also be used to

compensate PV fluctuations to achieve flat feeder voltage profiles and thus reduce the number

of voltage-regulation operations which leads to lower system operational costs [72]. Several

studies have been performed e.g. [73, 74], which assess the benefits from ES for peak shaving,

frequency regulation and operational optimisation.

Although ES is available at large and medium scales for connection to the transmission and dis-

tribution systems, respectively, this work models the use of small-scale ES that is connected to

single end-use customers in a similar configuration to the previously presented grid-connected

PV systems that can utilise batteries. Interestingly, [75] compares centralised configurations of
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ES (normally preferred by DNOs) to distributed ones. The results show that both configurations

mitigate network voltage and thermal issues. Furthermore, local ES installations are found to

be able to support voltage regulation and power loss reduction but with expectedly limited ef-

fects. That research further recommends that ES should charge automatically based on ambient

conditions for better overall performance. Accordingly, that recommendation forms one of the

novelties of the ES application in this thesis as an EMS is modelled to manage the charging and

discharging cycles of ES systems according to ambient conditions, electricity tariff during grid

supply and connected demand. Therefore, more accurate modelling of ES is achieved which

results in a more realistic evaluation of the proposed benefits to the improvement of CoS.

Additionally, the proposed model is an improvement to comparable studies where a fixed state

of charge is modelled for ES operation [76] or where the variation of charge is dependent

only on the local energy supply [77]. MCS was used in [76] to quantify impacts, using loss

of load expectation (LOLE), when varying ES capacities were integrated to power systems

utilising wind and/or solar energy. In [77], an optimal ES capacity and peak PV installation

are designed and their impact is demonstrated using reductions in LOLE alongside energy

cost savings. Lastly, research in [78] reviews the literature but focuses more on ES sizing,

economic operation and optimisation. Less emphasis is given to the assessment methodologies

that incorporate ES in order to quantify the impacts on CoS as well as the relevant modelling

of the ES state of charge.

It is also important to classify the available storage technologies which may be categorised by

type of technology: electrical (supercapacitors, superconducting magnetic energy storage), me-

chanical (flywheels, pumped storage, compressed air), electrochemical (batteries), and chemi-

cal (hydrogen) storage systems [79]. This thesis focuses only on battery systems that have the

capability to recharge and which present relatively simple models with high efficiency for each

cell. Furthermore, the research does not focus necessarily on the various existing types of bat-

teries used (e.g. lithium-ion, redox flow, zinc-oxide, lead-acid, etc.) but rather their application

as ES devices which can supply power during system interruptions to alleviate system faults

and hence improve CoS.

2.4 The Need for Reduced-order Models

The previous section details relevant works where the various impacts of SGTs have been quan-

tified. Nevertheless, due to system complexity and size, there remain significant challenges

concerning the correct assessment of these technologies in terms of reliability performance.

This section introduces the requirement to reduce the complexity of networks through aggre-

gation to allow for the accurate evaluation of reliability metrics without the burden of very
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detailed network models that require correspondingly large simulation times. This is espe-

cially important in the new paradigm of SGT-integration into power networks. SGTs increase

the complexity of the network by changing network characteristics e.g. the short circuit level,

reducing demand in unpredictable ways due to their inherent intermittence, and introducing

non-traditional power flows i.e. from customer-to-customer and/or customer-to-grid. This

added complexity requires the development of accurate aggregation techniques that account

for not only the temporal but also the spatial variability of RES-based SGTs in approximate

system reliability evaluation. The resultant simplified benchmark models can then be used to

determine efficient future investments for a flexible and secure power grid with appropriate

reliability standards.

2.4.1 Network Reduction in Reliability Analysis

Power systems are inherently complex and can often be accurately described only by using

models with several variables, depending on the intended application. Since complex models

are computationally expensive to simulate, it is common practice to use simplified represen-

tations of the power system for analysis and design purposes. Reduced models might also be

necessary due to other practical reasons, for example when only a limited number of mea-

surements are available for system monitoring, or in the case of interconnected power systems

whose single areas (owned by different utilities) are reluctant to share complete and detailed

system information [80]. Even with systematic problem decomposition, the pragmatic choice

is often to use reduced versions of the original network to run system simulations, where the

computational complexity depends at least polynomially on the size of the network [81].

It is common in network studies to simplify the utilised models to obtain a system description

with the best trade-off between accuracy and complexity. The size of the network models is

generally reduced by substituting sets of connected elements (buses, lines, transformers, etc.)

and transforming them into smaller and numerically equivalent systems [82]. Typical applica-

tions of this approach include symmetrical or asymmetrical short circuit calculations and load

flow calculations. In these cases, the performance of the reduced networks representations is

evaluated in terms of accuracy of the power flow results with respect to the (more complex)

initial model [83].

The typical approach for traditional network reduction (TNR) in a reliability context is to re-

duce the entire system to a single equivalent element by systematically combining appropriate

series and parallel branches of the reliability network [39]. For example, series branches in a

2-PC network may be substituted using (2.24) while parallel branches may be substituted using
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(2.25):

Use =U1 +U2− U1U2 (2.24a)

λse = λ1 +λ2 (2.24b)

Avse = Av1Av2 (2.24c)

where U denotes the unavailability and Av the availability. The subscripts 1,2 and se represent

PC 1,2 and the equivalent series network respectively. Similarly, the subscript pe represents

the equivalent parallel network.

Upe =U1U2 (2.25a)

µpe = µ1 +µ2 (2.25b)

Avpe = Av1 +Av2− Av1Av2 (2.25c)

The main drawbacks of TNR are a) its limited applicability, i.e. only to networks with relatively

simple topology [84]; b) it cannot be used to calculate customer-based reliability indices such

as CAIDI and CAIFI [44] because it does not allow for an accurate aggregation of demand

at different network nodes; c) the impact of critical or unreliable areas and components on

the system reliability metrics becomes increasingly harder to distinguish; d) it is difficult to

accommodate some relevant reliability features such as different modes of failure, maintenance

and weather effects. Despite those drawbacks, this method is useful in practice particularly

for simple analysis where analytical refinements are not desired [19]. Given these limitations,

alternative approaches have been developed, such as the decomposition method, which is based

on conditioning a complex system on the state of a key PC [84]. However, this method is not

suitable for large systems because, as the number of key PCs increase, the model quickly

becomes unmanageable. There also exist analysis algorithms based on testing minimal paths

(or using the minimal cut set approach) [84] but their main drawback is that, for large systems,

the increased number of paths and cut sets leads to a combinatorial explosion.

Another method for network reduction, termed alternative existing method (AEM) for this

thesis, calculates the equivalent PC failure rate (of the reduced system) as the sum of all PC

failure rates (2.26), while the equivalent PC repair rate is the reciprocal of the average of all

PC repair rates (2.27):

λeq =
N

∑
i=1

λi (2.26)
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deq =
1
N
.

N

∑
i=1

di (2.27)

where N is the number of PCs, λi and di are individual PC failure rates and repair times,

respectively, and λeq and deq, are the equivalent failure rates and repair times, respectively, for

the entire aggregated network. AEM was used in [85, 86] to develop reliability equivalents of

LV and MV networks to provide more realistic representations in reliability studies. However,

AEM suffers from 2 critical drawbacks – it neither accounts for varying network topologies

nor the spatial distribution of demand.

2.4.2 Model Order Reduction in Power Networks

This thesis explores a new approach to network reduction for reliability assessment purposes

based on a robust mathematical approach called MOR. The chosen method relies on singular

value decomposition (SVD) and balanced truncation (BT). Consider the following linear time-

invariant system with input u and output y:

ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),
(2.28)

The internal dynamics of the system are represented by the state vector x(t)∈Rn, whose evolu-

tion over time is determined by the system matrix A ∈ Rnxn and by the input matrix B ∈ Rnxm.

In the formulation for this thesis, there is no direct input/output relationship and the system

output y(t) corresponds to a linear combination of the state x(t), according to the output matrix

C ∈ Rqxn. Using BT, the dynamical system describing the reliability of the network is simpli-

fied by first calculating its Hankel singular values (HSVs) [87], which indicate the relevance

of each system state in terms of reliability, and then the dynamics which have a smaller impact

on the considered reliability indices are neglected. One of the key challenges in the application

of MOR is ensuring the accurate calculation of empirical (controllability and observability)

Gramians that are obtained by solving computationally expensive Lyapunov equations. These

Gramians (2.29) allow for the computation of HSVs that quantify the contribution of different

system modes to the considered dynamics thereby allowing for modal truncation. The con-

trollability Gramian P determines how much the inputs u affect each component in the state x

while the observability Gramian Q quantifies the impact of each state component in x on the

system outputs y [88].

P =
∫

∞

0
eAtBBteAT tdt, Q =

∫
∞

0
eAT tCTCeAtdt, (2.29)
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MOR aims at reducing the order n of the system while preserving the fundamental relation-

ships between its inputs and outputs. Therefore, the state vector x(t) is projected onto a low-

dimensional subspace, neglecting the less relevant system dynamics. The MOR is performed

to minimise, for any input u(·), the error between the output response of the reduced model

ŷ(·) and the one of the original model y(·) [89]. The reduced-order system is constructed as:

˙̂x(t) = Âx̂(t)+ B̂u(t),

ŷ(t) = Ĉx̂(t),
(2.30)

where Â ∈ Rrxr, B̂ ∈ Rrxm, Ĉ ∈ Rqxr, and r < n. Chapter 4 of this thesis provides the detailed

mathematical formulation developed to demonstrate how BT is used to reduce the order of

dynamical systems for reliability analyses.

2.4.2.1 Linear Systems

MOR has already been applied in various power system analyses: For linear systems, [90]

developed a linear reduction procedure based on truncated balanced realisation which was ef-

ficient in the computation of system frequency response as well as control design. Given the

aforementioned complexity of Gramian calculation, [90] introduced the use of modal infor-

mation to approximate these Gramians and the method demonstrated simplicity. Nonetheless,

it was limited to relatively small systems because not all modes are easily obtained in large

systems. Linear systems were also investigated in [91] with an emphasis on the use of prob-

abilistic laws to determine system parameters. Appropriately, a balanced form of a random

linear time-invariant system was produced within the probabilistic range of its uncertain pa-

rameters thus ensuring that only the weakly controllable and observable states were truncated.

However, application of this method to more complex systems was hindered by the computa-

tional cost which rises with the model dimension and the number of uncertain parameters. The

simplification of a controller for a linear system was proposed in [92]. The main goals were to

reduce the computational cost in the analysis of a large-scale dynamical plant by producing a

reduced plant model that guaranteed stability while also retaining the fundamental character-

istics of the original model. As expected, the compensator design of the reduced system was

comparatively easier while giving approximately the same time domain specification. How-

ever, the error bound was not provided a priori as balanced realisation based on Gramians was

not employed. This is one of the key benefits of balanced truncation which is accordingly used

in this thesis.
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2.4.2.2 Nonlinear Systems

For power system analysis and control, nonlinear models are often preferred because they

offer a better description of dynamic behaviour. However, this increases the computational

complexity and thus requires the development of reduced-order models especially given the

increasing scale and complexity of power systems which correspondingly increases the order

of the dynamic models and makes real-time analysis and control more difficult. Accordingly,

[93] proposed a nonlinear model reduction approach based on balancing empirical Gramians

with results showing that the order of the reduced model could be as low as 20% of a 15-

generator original model under the condition of maintaining the stability and the input-output

behaviour. A similar approach was utilised in [94] but focused on ensuring that the external

system was also modelled as a nonlinear system rather than being linearised as is often done

for simplicity. Therefore, the results demonstrated higher accuracy and calculation efficiency

compared with balanced truncation based on a linear model. Balanced empirical Gramians

were also studied in [95] to investigate how external excitations of a 4-generator nonlinear

power system affected the Gramian reduction. The study achieved a reduction in the system

order of one-third under stability constraints. Although previously mentioned studies were

based on purely nonlinear systems, [96] devised two reduction strategies for piece-wise linear

models based on output weighting. However, even though the reduced-order models obtained

were robust and guaranteed stability under certain system conditions, there were also cases

of instability. This made the process of finding an appropriate order (of the reduced model)

difficult. Also, [97] developed a new approach which was a compromise between nonlinear

model reduction for better accuracy and linear reduction for faster simulation. Based on the

variations of the system state, the method adaptively switched between linearly reduced models

(for small changes to the state) and nonlinearly reduced models (for fault periods).

2.4.2.3 Large Power Systems and Systems with SGTs

Given the requirement to reduce large power systems, [98] used a linear system reduction

method and the work was successful for small-signal stability. Since the method operated us-

ing sparse descriptor matrices, it was more amenable to dynamic models of large-scale power

systems. Moreover, one of the key computational requirements of MOR is computing and stor-

ing Gramians which was overcome by ensuring they were never explicitly formed or stored but

only used in the implicit calculation of reduced-order models. The results showed a fast com-

putation of reduced models while keeping the memory requirements relatively low. Similarly,

[99] developed a MOR procedure for large-scale power system models that preserved the ac-

cess to selected parameters just as achieved with the original model. These parameters were

related to decentralised power system devices such as stabilisers that are used for damping con-
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trol of electromechanical oscillations. The results were given for large practical power system

models used in small-signal stability.

MOR has also been used to obtain reduced models of some of the SGTs earlier introduced

in this chapter. Notably, [100] developed a procedure which allowed for the evaluation of

PV-connected power systems effectively and quickly. The proposed approach developed non-

aggregate Markov models of PV output that retained some time-sequential elements of the

PV output. This was followed by intelligent state-space reduction that effectively increased

the density of loss-of-load states and removed unnecessary samplings to optimise the adopted

pseudo-sequential MCS technique. Although the results show a reduction in computational

times, the use of a nonsequential MCS is usually accelerated as compared to SMCS which

is more accurate when historical events affect present system conditions. Furthermore, the

method has inconsistencies between the state pruning time and the simulation time. Likewise,

[101] developed a reduced model for accurately predicting the PV system energy output for

the specific use of reliability assessment. The main goal was to produce a reduced PV model

to be integrated into reliability assessment tools and effectively replace the more accurate but

complex PV models. The results concentrate more on accuracy and less so on the savings in

computational time.

Using the singular perturbation theory, reduced models of battery ES systems were developed

in [102] to address the problem of interfacing high-power electronics in large-scale system

simulations. The key achievements were establishing a complete electromagnetic transient

model and ensuring that the obtained reduced models were accurate for transient simulations

while being computationally efficient. The singular perturbation theory was also used in [103]

to develop a reduced-order small-signal model for a microgrid to cater for both islanded and

grid-tied conditions. In that case, the reduction was achieved by preserving the “slow” states

which dominate system dynamics while eliminating the so-called fast states which usually

originate from intentionally added inductance and capacitance, and parasitic elements inherent

to practical microgrids (with DER units). The reduced model successfully predicted the power

injection at different buses although it was not very accurate for overshoots and undershoots

due to the truncation of fast states.

2.4.2.4 Alternative MOR Methods

Albeit not explored in this research, another important class of MOR methods is based on

Krylov subspaces (moment matching). These are efficient in circuit simulations and simulation

of machine tools and may sometimes also involve the computation of Gramians [87] as is

common in the SVD-based MOR methods already introduced. For example, reduction of a
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large-scale multiport piezo energy harvester was achieved in [104] demonstrating a good match

for harmonic simulations. In addition to the energy harvester, the proposed algorithms could be

applied to other linear multi-physical devices and in the development of control circuits. The

basic Krylov subspace method was extended in [105] to reduce large scale power systems and

the key achievements included the development of efficient techniques for solving Lyapunov

equations and the extension of the MOR to unstable systems. Lastly, the extended Krylov

subspace method was also used to reduce interconnected systems in [106] focusing on low

computational complexity and the added capability of enforcing constraints on the reduced

model to ensure the preservation of slow and poorly damped system modes.

2.5 Contributions to the State of the Art

This section provides an overview of the contributions of this PhD research to the state of the

art. These contributions are presented according to the literature reviewed in this Chapter on

reliability assessment methodologies, the impact of SGTs on network reliability performance

and finally, the techniques for network reduction in reliability analysis.

2.5.1 Reliability Assessment Methodologies

Section 2.2.3 presents the commonly used probabilistic MCS techniques for reliability assess-

ment based on SDS and STS. Accordingly, Chapter 3 of this thesis utilises an enhanced SDS

MCS method for reliability analyses by modelling PC repair times using a Rayleigh probabil-

ity distribution because it more accurately captures the required input conditions as compared

to exponential distributions which are often used in comparable studies e.g. [52, 107, 108].

It is also important to add that the enhanced procedure includes the use of time-varying PC

failure rates considering the expected PC lifetime and even models the exact time of the day

at which PC faults occur so that the correlation with the associated energy unserved is more

accurate. Not to mention, the time-sequential analysis includes both the variation of demand

and that from RES e.g. PV. These are all important improvements to comparable analyses such

as [52, 63, 109] where these factors are not considered. Lastly, the method is also adapted to in-

clude the regulator-set requirements for CoS (Table 2.2) such that the resultant indices provide

accurate quantification of the risk of customer interruption times with meaningful implications

for stakeholders e.g. DNOs.
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2.5.2 Impact of SGTs on Reliability Performance

Section 2.3 provides details of the prevalent modelling of the SGTs considered for this research

i.e. PV, DSR and ES. To improve the modelling of PV, Chapter 3 designs a locally installed

grid-connected PV system operated without any EMS to improve CoS by providing energy

during periods of solar irradiation to alleviate the effects of grid faults. This is envisaged as

a future smart grid scenario where it is expected that many energy consumers will diversify

their energy portfolios with one or more DERs. Moreover, modelling PV units as local MG

reduces the impact of the grid on the PV operation i.e. distribution losses, network faults

such as accidents, etc. Not to mention, this work introduces a novel modelling of the stochastic

behaviour of PV into reliability analyses to quantify the possible overestimation of CoS benefits

if the effects of uncontrollable cloud movements are explicitly added. Lastly, this research uses

a high-resolution timestep (30 minutes) to provide more realistic results in CoS improvement

as compared to comparable studies in the literature previously provided (Section 2.3).

Focusing on DSR, this thesis investigates the use of load management DSR programs which

aim to lower ENS during supply interruptions. As opposed to many comparable analyses, this

research implements a novel application of DSR where demand is reduced during periods of

high fault probability as opposed to those of peak demand. This ensures that the focus is kept

on CoS improvement. Details on the application of DSR are provided in Chapter 3.

Finally, an EMS is modelled to manage the charging and discharging cycles of ES systems

according to ambient conditions, electricity tariff during grid supply and connected demand.

Therefore, more accurate modelling of ES is achieved which results in a more realistic eval-

uation of the proposed benefits to the improvement of CoS. Also, the proposed model is an

improvement to comparable studies where a fixed state of charge is modelled for ES operation

or where the variation of charge is dependent only on the local energy supply. This thesis builds

on work in [110] where the UK SQS requirements (introduced in Section 2.1.2) were incor-

porated into smart grid reliability analysis and CI and CML indices then used to illustrate the

risk of violating regulator requirements during power system operation. Accordingly, the de-

ployed ES can reduce the average frequency and duration of interruptions and increase network

reliability while providing suitable justification for investment using cost-benefit analyses.

2.5.3 Network Reduction Techniques in Reliability Analysis

Section 2.4 presents the commonly used methods for network reduction in reliability analysis

and also provides a detailed review of the literature regarding the use of MOR in power net-

works. This PhD research recognises that MOR has demonstrated wide applicability in sim-
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ulating large-scale mathematical models in the power engineering research domain for both

steady-state and transient analyses. However, the extensive literature survey provided reveals

that it has not been used for the specific problem of network aggregation for reliability studies.

Accordingly, Chapter 4 addresses this research gap by developing a MOR network reduction

procedure of SVD and BT that achieves fast computational times while preserving high in-

dex accuracy in reliability assessments. Additionally, Chapter 5 is used to demonstrate the

advanced capability of the proposed MOR methodology to easily accommodate the inclusion

of SGTs and accurately quantify their reliability impacts.

2.6 Chapter Summary

This chapter discusses the necessity to accurately quantify the impact that SGTs can have on

continuity of electricity supply when integrated into power distribution networks. The research

problem is first contextualised by defining relevant aspects concerning QoS (focusing on sup-

ply continuity) in power systems such as regulator requirements and customer compensation

for poor network performance. Then, all relevant metrics and reliability assessment methodolo-

gies are presented to adequately classify the bases upon which SGT impact may be measured.

Additionally, the chapter presents the most common SGTs alongside their various impacts on

network operation (which include adding to network complexity). The chapter also reviews

the most commonly used network aggregation methodologies which provide suitable means to

more accurately quantify the impact of SGTs within the context of the aforementioned increase

to network complexity. Finally, the chapter outlines how this PhD research contributes to the

reviewed literature. This includes the advancement of a reliability assessment methodology

based on MCS SDS, improved modelling of PV to capture the temporal variations, a novel

application of DSR during the periods of highest fault probability, the inclusion of ES state-

of-charge variation based on ambient conditions, electricity tariff and connected demand, and

lastly, the novel use of MOR for reliability assessment of power networks.



Chapter 3

Reliability Enhancement using Smart
Grid Technologies

This chapter presents an integrated approach for assessing the impact that different SGTs might

have on the reliability performance of power networks. Various distribution systems, based on

typical MV networks in the UK, are modelled. Moreover, analyses include the spatio-temporal

variation of local renewable generation, the variability of the state of charge in coordinated en-

ergy storage, and the use of demand-manageable loads. Reliability assessment is made using

both system and customer-oriented indices to provide a holistic representation of the poten-

tial benefits from SGTs, with special attention to frequency and duration of interruptions, and

the energy not supplied to customers. Focusing on the customer perspective is a necessary

attribute to reliability assessment which is often paid less attention since most regulatory op-

erational guidelines and incentives are based on system indices. This chapter presents results

using average values, probability distributions, and in some cases, analysis of the tail of these

distributions to assess what impacts the proposed SGTs may have on high impact low probabil-

ity events. Finally, this chapter introduces analyses concerning the need to disaggregate both

system and customer-oriented performance indices into contributions from different types of

modelled networks in the DNO serviced areas. These are practical considerations given that

DNOs report fault events in their systems by distinguishing them based on types of compo-

nents, network types, load sectors, voltage levels, etc. However, the same attention to classifi-

cation is not paid when reporting reliability metrics. The comprehensive reliability assessment

presented allows for a rigorous characterisation of the varying customer-groups.
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3.1 Distribution Network Design

The first major analysis in this PhD research is to improve already existing techniques of re-

liability analysis to demonstrate the impact of SGTs on reliability performance. To provide

a realistic analysis, this research utilises generic distribution networks which will invariably

be dominated by SGTs in the future. These networks often differ in terms of characteristics

and configuration based on geographical location and the load density served. They will of-

ten have varying network strengths, fault levels, transformer ratings, feeder types and lengths,

and source impedances. Furthermore, the diurnal fluctuations during different seasons of the

year (winter, autumn, spring, summer) influence the electrical characteristics of the network,

associated operating levels and settings of protection devices. In addition, each network model

should include an accurate identification of the associated load served through accurate load

models. For steady-state analyses, static load models are sufficient to represent the changes

in active and reactive power demands with respect to voltage and/or frequency. In reliability

studies, accounting for these different variables is necessary to ensure that the models used

can accurately emulate the network operating conditions and result in representative network

performance. The next subsections provide detailed explanations of the network models used

in this chapter.

3.1.1 Residential Load Modelling

Network load may generally be classified into different load sectors (residential, commercial

and industrial) according the typical structure and composition of the electrical devices, equip-

ment found in specific end-use applications where similar activities are performed, and patterns

of active and reactive power demands. For the analysis in this chapter, the load is modelled

to represent residential demand while later chapters will investigate the use of other load sec-

tors. It is possible to decompose the residential demand into different end-use load (appliance)

types based on energy consumption statistics [111]. For those loads that respond to changes in

the ambient conditions, through for example user response or internal thermostatic controls, it

is also possible to identify seasonal variation patterns. For example, lighting loading reduces

during the summer while water heating demand increases in the winter. Figure 3.1 presents

the electricity-use profiles from residential households, monitored over 12 months, for average

loading conditions. Furthermore, the time-varying load curve is decomposed into contributions

from different electrical appliances during different hours of the day.

The various electrical devices are divided into the following categories: Lighting, cold appli-

ances, washing (drying, dishwashing), showers, water heating, heating, cooking, ICT, Audio-

visual, and other appliances (e.g. doorbells, sewing machines, sunbeds, vacuum cleaners, paper
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Figure 3.1: Decomposition of the daily average electrical use for typical UK households [111].

shredders, dehumidifiers, fans, hair dryers, etc.). Using this component-based load model al-

lows for design flexibility because the contributions from different load types can be adjusted

to suit expected changes in future loading conditions. Not to mention, this allows for accurate

modelling of the proposed DSR techniques which are detailed later in this chapter. In addition

to the active demand presented in Figure 3.1, reactive power demand is designed using a fixed

power factor, typically varying around 0.95-0.98 [38].

As proposed in [112], the analysis in this chapter considers an average demand per customer

of 0.375 kW under minimum and 2.27 kW under maximum loading conditions. Also, each

customer distribution (11/0.4 kV) transformer is designed to consider the maximum number of

customers to be supplied (obtained from equal contributions of each customer, based on their

corresponding “after diversity demands”) to avoid overloading the transformer rated capacity.

This presents a ‘worst case’ scenario, enabling for a future upgrade of each network model,

including new connections of DG and new customers.

Despite every residential dwelling being used for the same general purposes, it is possible to

divide residential demand into three subsectors: urban (UR), suburban (SU) and rural (RU).

The thresholds used to define these subsectors vary according to the country. They are usually

made based on population or customers concentration e.g. Suburban (“Semi-urban”) in Italy

corresponds to “medium concentration” which is a territorial area of between 5,000 and 50,000

inhabitants while in Spain, it is between 2,000 and 20,000 customers. Similar distinctions

are made in Portugal, Lithuania and France (number of inhabitants) [113]. However, some
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countries such as Finland make subsector classifications based on the percentage of the network

which is underground cable i.e. urban networks are supplied mainly by underground cables.

Furthermore, in the case of Ireland, territories are split on an urban/rural divide only according

to the length of the overhead lines [35]. In other areas [38], an additional subsector (highly

urban) is also provided which is used to represent heavier loading conditions than in the urban

areas as well as higher customer densities. The next subsection details how these subsectors

are defined for this thesis.

3.1.2 LV Network Modelling

This research utilises developed generic network models (at LV and MV level) to represent the

actual distribution systems connecting the several network GSPs with their secondary substa-

tions. In terms of network planning, the primary distribution system (11 kV or 6.6 kV in the

UK) is typically a complex interconnected ring network containing many substations (indoor,

outdoor or pole mounted), while the secondary distribution system (0.4 kV) is generally a radial

network because of cost [114]. As discussed before, each network will have individual charac-

teristics depending on location. For example, the high load densities in cities result in enclosed

substations, shorter line lengths (typically less than 10 km), and thus underground cables (UCs)

which are usually used to improve reliability of supply and aesthetics. Conversely, rural areas

have their primary distribution by means of overhead lines (OHLs) while the substations are

generally of the outdoor type, either pole mounted or switchgear type [115].

LV networks typically operate at around 415 V after the primary distribution voltage is stepped

down by means of 11/0.4 kV distribution transformers. Generally, these networks are oper-

ated radially, with several LV feeders starting from the LV busbars of the infeeding substation.

These are the main trunk feeders that may supply one or more lateral spurs and service connec-

tions, three-phase (3-ph) or single-phase (1-ph), which finally supply the customer’s PCC and

general protection panels. Table 3.1 provides detailed information about typical parameters of

LV lines used for electricity distribution in the UK [38], [115]. Each LV line type is assigned

an ID to ease the modelling of distribution feeders in the used LV network models.

The LV secondary substation typically comprises a single transformer with a rating of a few

hundred kVA up to 1.5 MVA. Table 3.2 provides details of the 11/0.4 kV transformers operat-

ing in the UK, together with a direct correlation to the load subsector where each of them is

typically used. All transformers listed have a±5% tapping range and a basic load impulse level

of 75 kV. Moreover, the windings are configured according to the Dyn11 vector group whereby

the primary winding is connected in delta to isolate earth faults on the secondary side and to

ensure transformer stability, while the secondary winding is normally connected in star with an
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Table 3.1: Line parameters of LV networks in the UK [38, 115].

LV Line Type

Cross-
Sectional

Area
(CSA)

Positive seq.
Zph

Neutral
ZN

Zero-phase seq.
Z0

Max
Current

(Ω/km)

ID Configuration (mm2) Rph Xph RNeutral R0 X0 (Amps)
A Underground Line

(Cable)

EPR or XLPE
0.6/1 kV 4x(CSA)

Al / Cu (earth) CNE

300 0.100 0.073 0.168 0.593 0.042 465
B 185 0.164 0.074 0.168 0.656 0.050 355
C 120 0.253 0.071 0.253 1.012 0.046 280
D 95 0.320 0.075 0.320 1.280 0.051 245
E 70 0.443 0.076 0.443 1.772 0.052 205
F 35 0.870 0.085 0.870 3.481 0.058 156
G Overhead Line

Aerial Bundled
Conductor

XLPE 4x(CSA) Al

120 0.284 0.083 - 1.136 0.417 261
H 95 0.320 0.085 - - - 228
I 70 0.497 0.086 0.630 2.387 0.447 195
J 50 0.397 0.279 - - - 168
K 35 0.574 0.294 - - - 148

L
Service Connection

PVC or XLPE
0.6/1 kV 1x(CSA) Al

/ Cu (earth) CNE

35 0.851 0.041 0.900 3.404 0.030 120

M 25 1.191 0.043 1.260 4.766 0.030 100

earthed neutral to enable the supply of 1-ph loads operating at 230V [38, 115, 116]. Lastly, the

impedance values provided in p.u. are given for the secondary side of the transformer. Tables

3.1 and 3.2 are used to provide design criteria for the network diagrams presented in Figures

3.2-3.4.

Table 3.2: Parameters of the 11/0.4 kV secondary distribution transformers [38, 115, 116].

Load
Subsector Type Rating

(kVA)

Load
Losses at
75 ◦C (W)

No-Load
Losses

(W)
Z (%) Z (p.u.)

RLV XLV

Urban
Prefabricated

Substation

1500 15810 1400 5 0.01054 0.04888
1000 11000 1350 4.75 0.01100 0.04620
800 7410 1000 4.75 0.00926 0.04658

Urban &
Suburban

Ground / Pad
mounted

500 5100 680 4.75 0.01020 0.04640
315 3420 580 4.75 0.01085 0.04624
200 2900 540 4.75 0.01500 0.04500

Rural Pole mounted
100 1750 320 4.5 0.01750 0.04145
50 1100 190 4.5 0.02186 0.03930
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3.1.2.1 Urban Load Subsector

This subsector consists of house-type dwellings and low-rise buildings located in city urban

areas and is characterised by medium to high concentration of customers. The subsector can

also include flat-type dwellings, and multi-storey buildings depending on the level of develop-

ment. Figure 3.2 provides the generic LV model which presents an underground arrangement

operated radially. The 11/0.4 kV transformer used has a power rating of 500 kVA and sup-

plies a total of 19 load clusters (or 190 1-ph customers). The network has four three-phase

trunk feeders and is characterised by relatively short conductor lengths to ensure that the volt-

age regulation does not breach performance specifications, i.e. +10/-6%. During minimum

and maximum loading conditions, the total average load is measured at 71 kW and 431 kW,

respectively, with each load cluster having multiple customers [117].

500kVA
Transformer

11kV 0.4kV

ZT=2.04 + j9.28     
(p.u. on 100MVA)

190 customers
PMAX AV.= 2.27kW/customer Total Load MAX AV.= 431.3kW (at 1p.u.)
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* L type line length = 30m

Figure 3.2: Urban generic LV distribution network model.
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3.1.2.2 Suburban Load Subsector

This subsector represents individual house dwellings located in city suburban areas and towns

near big cities. It is characterised by medium power density and often, a radial OHL distri-

bution system is used because of the lower capital costs. The poles of these OHL distribution

feeders are usually separated by 30m. The service connection can then be either an OHL or

UC. Figure 3.3 provides the generic LV model where the 11/0.4 kV transformer has a 200 kVA

rating and supplies a total of 9 LPs (or 76 1-ph customers). During minimum and maximum

loading conditions, the total average load is measured at 29 kW and 173 kW, respectively [38].

200kVA
Transformer

pole-to-pole
distanceZT=7.5 + j22.5      

(p.u. on 100MVA)

30m

76 customers
PMAX AV.= 2.27kW/customer Total Load MAX AV.= 172.52kW (at 1p.u.)

Underground 
cable lateral 

feeders

11kV 0.4kV

30m 30m 30m 30m 30m 30m 30m

30m 30m 30m 30m 30m 30m

Overhead line 
main feeders

H H H H H H H H

H H H H H H

SU1

SU2

SU3

SU4

SU5

SU6

SU7

SU8

SU9

D 90m

D 60m

E 30m E 30m E 30m

E 30m

E 30m E 30m

E 30m

E
30m

E
30m

L

L

L

L

L

L

L

L

L
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(3 customers)

(8 customers)

(6 customers)

(11 customers)

(13 customers)

(4 customers)

* L type line length = 35m

Figure 3.3: Suburban generic LV distribution network model.

3.1.2.3 Rural Load Subsector

This subsector represents house-type dwellings located in more remote areas. It is charac-

terised by low power density and radial OHL distribution system configuration. The poles of

the OHL distribution feeders are usually separated by 35m whereby each pole is used to protect

(pole mounted fuses) and supply a single customer. Figure 3.4 provides the generic LV model
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where the 11/0.4 kV pole mounted transformer has a 50 kVA rating and supplies a total of 19

1-ph customers. During minimum and maximum loading conditions, the total average load is

measured at 7 kW and 43 kW, respectively [117].

50kVA
Transformer

Single 
Customers

pole-to-pole
distance

ZT=43.72 + j78.6  
(p.u. on 100MVA) 35m

Overhead lines

19 customers
PMAX AV.= 2.27kW/customer Total Load MAX AV.= 43.13kW (at 1p.u.)
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Figure 3.4: Rural generic LV distribution network model.

3.1.3 MV Network Modelling

This section presents generic MV distribution network models that have been developed with

key considerations including appropriate selection of conductor sizes, choice of switchgear,

fault ratings, transformer impedances and permissible voltage variations (according to SQS

regulations in UK). These models also account for varying load density based on the network

location (load subsector). The typical MV model includes a 33 kV 3-ph source (GSP) that is

connected to a 33/11 kV substation. Depending on the type of network, the substation usually

contains one or two transformers equipped with on load tap changing (OLTC) to control the

secondary voltage at the prescribed range of ±6% [118]. The substation supplies several 11

kV outgoing feeders and each feeder supplies several 11/0.4 kV distribution substations. The

network data used to build the MV generic models for each load subsector (UR, SU, RU)
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using PSS R©E are provided in Tables 3.3 and 3.4. Table 3.3 provides detailed information

about configurations and parameters of 11 kV distribution feeders typically used in the UK

while Table 3.4 provides details of the typical 33/11 kV transformers operating in the UK.

Impedance values are given as p.u. on 100 MVA in both tables. Additionally, the vector group

is Dyn11 for all listed transformers [38].

Table 3.3: Line parameters of MV networks in the UK [38, 116].

11 kV Line Type
Cross

Sectional
Area

Positive seq.
Zph (Ω/km)

Zero-phase seq.
Z0 (Ω/km)

Suscept.
B/km

Max.
current

ID Configuration (mm2) Rph Xph R0 X0 (Amps)

O
Underground Cable

- 3-core PICAS cable
(screened, stranded Al)

- 3-core XLPE stranded/
solid Al with 95mm2 or
70mm2 Cu wire screen

300 0.09917 0.06322 0.69422 0.22128 0.00027 525

P 185 0.12271 0.06575 0.85896 0.23011 0.00024 415

Q 95 0.1440 0.06662 1.00824 0.23318 0.00018 355

R
Overhead Line

- AAAC (75◦C) 150
or 100 mm2 Oak AL4

- ACSR 54/9 mm2 11 kV

150 0.11259 0.18363 0.39252 0.83701 0.00008 490

S 100 0.14658 0.26189 0.30166 1.31330 0.00001 395

T 50 0.21626 0.20694 0.74174 0.99861 0.00005 290

Table 3.4: Parameters of the 33/11 kV primary distribution transformers [38].

Load
Subsector

Rating
(MVA)

Resistance
R (Ω)

Reactance
X (Ω)

Zero Seq.
Reactance

X0 (Ω)

Tap range
(p.u.)

Tap
Step
(p.u.)

Method of
EarthingMin Max

UR
30 0.030 0.780 4.00 0.80 1.04

0.0143

Resistance
24 0.029 0.708 0.45 0.85 1.05
15 0.060 1.000 5.00 0.80 1.05

UR & SU 10 0.069 1.000 0.50 0.85 1.05

SU & RU
7.5 0.095 1.080 0.52 0.85 1.05

Solid/
Resistance

5 0.140 1.300 0.80 0.85 1.05
RU 2.5 0.361 2.800 1.77 0.81 1.04

3.1.3.1 Generic Urban MV Network

MV networks in urban areas are characterised by relatively short cable lengths to ensure op-

timal voltage regulation due to the higher load density and proximity to the MV primary sub-

station. Whereas underground MV networks usually present a meshed configuration, they are

normally operated radially with the support of either another MV primary substation or a "re-

flection centre" in case of failure. This guarantees the supply of all connected feeders, from

both ends of the network. In addition, the cable ‘0’ (feeder with no load in normal operation)



3.1. Distribution Network Design 60

connects both ends of the network and is used to enhance the system capability (capacity)

to remain secure in case of a credible contingency event (N-1 security). In practice, DNOs

plan these networks for a maximum of six 11 kV feeders from the 33/11 kV substation due

to voltage regulation and power capacity criteria. Additionally, a maximum of ten 11/0.4 kV

distribution transformers are supplied from each feeder with maximum supplied areas of 1200

Ha (low load density), 650 Ha (medium load density) and 480 Ha (high load density) [38].

Disconnection arrangements are present in MV networks to avoid supply interruption due to

planned maintenance operations or unavoidable fault events. Therefore, DNOs follow spe-

cific criteria for the location of tele-controlled circuit breakers (TCBs) in the 11 kV feeders

between both ends of the distribution network. Where the installed capacity is less than 3

MVA, there is no requirement to have any intermediate TCBs. However, for installed capacity

between 3 MVA and 10 MVA, and feeder lengths less than 10 km, at least one TCB is nec-

essary for the automated system protection. Furthermore, if the installed capacity is greater

than 10 MVA, in addition to feeder lengths greater than 10 km, then two TCBs are considered

optimal. Moreover, fault-detection mechanisms are usually installed between supply points or

reflection centres and TCBs. Figure 3.5 presents a generic MV network model for an urban

area, spanning a radius of approximately 3 km, considering all the described fundamentals of

MV underground network planning and design. Accordingly, a 33 kV source strength of 543

MVA is designed which supplies a total of 9120 customers using 48 bulk supply points (BSPs)

through two 15 MVA 33/11 kV transformers. The minimum and maximum loading conditions

are approximately 3.4 MW and 20.7 MW, respectively [38].

Figure 3.5 also shows that the urban MV network consists of LV distribution networks con-

nected to the 11/0.4 kV transformers. Due to the volume and complexity of MV networks, it

would not be practical to represent all connected LV networks in the representative amount of

detail, even for reliability studies. Therefore, the solution is to aggregate these downstream LV

networks using aggregation techniques described in [117, 119] where the equivalent failure rate

is the sum of all PC failure rates while the equivalent repair time is the mean of all PC repair

times in the LV network. Therefore, each load supply point in the MV network presented in

Figure 3.5 represents the aggregation of the urban generic LV network (Figure 3.2) – for which

the power flows, voltage magnitude and power angle, for the MV network, remain unchanged

from the detailed network models [120]. This aggregation is carried out for the SU and RU

networks presented in the next subsections.
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543MVA
Source
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cable loop 
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Supply
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Figure 3.5: Urban generic MV distribution network model.

3.1.3.2 Generic Suburban MV Network

As previously mentioned, suburban and indeed rural areas are characterised by medium to low

load density. Therefore, MV distribution systems are usually overhead (aerial) and radial as

opposed to the meshed underground system presented for the urban network. Lower housing

density and increased distance from the MV substation means that the feeder lengths are also

increased which influences the voltage regulation, resulting in a lower reliability performance.

These networks usually include automatic reclosing functionality in addition to the common

overcurrent protection (phase, neutral, homopolar). The main distribution trunk feeder goes

from the 33/11 kV substation to the boundary sectionaliser and presents a radial layout in nor-

mal operation. However, it is usually supported by another supply point (reflection centre), as

in the urban MV case but with some key differences. While in urban networks, the reflection

centre does not support any load in normal conditions, in aerial networks, it may supply some

load as long as it is capable of providing enough capacity margin to supply any other lines in

the event of a fault. Therefore, the reflection centre does not necessarily present a concentrated

arrangement and thus TCBs can be installed in different locations. Moreover, the 11 kV lat-

eral spur feeders (OHLs stemming off the trunk feeder), usually do not have any additional

backup supply and each spur feeder supplies several groups of 11/0.4 kV distribution trans-

formers, limited by voltage regulation and power capacity. DNOs typically group no more

than eight LV transformers together within a maximum radius of 4 km (i.e. from the trunk 11

kV feeder to the furthest LV transformer). The aerial MV network also presents a coordinated

protection arrangement enabled using TCBs, automatic sectionalisers, fixed disconnectors and

auto-reclosing fitting [38].
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Figure 3.6 presents a generic MV distribution network for a suburban area, spanning a 6 km

radius, with a total of 3344 customers supplied through 44 BSPs. The network is designed

with relevant network protection that is indicated in the model. Correspondingly, the 33 kV

source strength is 423 MVA while the 33/11 kV transformers are 5 MVA. The minimum and

maximum loading conditions are 1.3 MW and 7.6 MW, respectively [38].
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Figure 3.6: Suburban generic MV distribution network model.

3.1.3.3 Generic Rural MV Network

The generic MV network presented in Figure 3.7 for rural areas is also an aerial distribution

system characterised by long overhead feeder lengths and a relatively low network strength.

Accordingly, a 33 kV source strength of 136 MVA is designed in addition to only one 2.5

MVA 33/11 kV transformer that is used to supply the 646 customers through 34 BSPs, over a

radius of 9 km. Finally, the minimum and maximum loading conditions are 0.25 MW and 1.5

MW, respectively [38].

3.2 Reliability Assessment Methodology

This section presents the methodology used for reliability assessment for the analyses presented

in this chapter. As previously introduced, the major benefit obtained from using simulation-

based reliability assessment is establishment of accurate representations of the deficiencies
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Figure 3.7: Rural generic MV distribution network model.

suffered by the system under test. Sequential simulation approaches make the assessment

more realistic as historical events affect present conditions, especially considering the non-

uniform ageing of PCs [37]. Accordingly, a time-sequential MCS methodology based on SDS

is presented. This technique is enhanced from the traditional MCS by inclusion of time-varying

PC failure rates and mean repair times, accounting for the changes in PC failure rates based

on PC life time (40 years), inclusion of time-varying load profiles and a classification between

short and long interruptions (SIs and LIs, respectively). Not to mention, the methodology can

be adapted to include SQS regulations as explained in Section 2.1.2 by changing the mean

repair times of any PC whose failure affects large sums of GD which are security constrained.

The main input parameters used for MCS are the failure rates and mean repair times, based on

historical data. It is important to stress that the accuracy of the MCS method depends heavily

on the accuracy of the input data used. Despite a wide variability in reported values of these

input parameters, this thesis considers the database presented in Table 3.5 (extracted from [38])

which provides values used for different network components in this thesis.

These input parameters are allocated to each PC before system reliability is assessed. It has

been previously shown in [107], that these are not static average values but are time-varying

and are therefore more accurately represented using probability density functions (PDFs). Ac-

cordingly, the inverse (reverse) transform method described in Section 2.2.3 is used to generate
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Table 3.5: Failure rates and repair times for network PCs [38].

Power
Component Voltage (kV)

Failure rate (λ )
(failures/km/year) for feeders
(failures/year) for other PCs

MTTR (hours)

Overhead
Lines

0.4 0.168 5.7
11 0.091 9.5
33 0.034 20.5

Underground
cables

0.4 0.159 6.9
11 0.051 56.2
33 0.034 201.6

Transformers
0.4/11 0.002 75.0
11/33 0.010 205.5
33/132 0.0392 250.1

Buses
0.4 0.005 24.0
11 0.005 120.0
33 0.080 120.0

Circuit
Breakers

0.4 0.005 36.0
11 0.0033 120.9
33 0.0041 140.0

Fuses 0.4 0.0027 3.0
11 0.0004 35.3

system state durations for SDS. As previously discussed, different PDFs e.g. Weibull, Gamma,

Beta, etc. can be used to model the system states generated by PC failures and repair times i.e.

TTF and TTR. However, the PDFs used i.e. exponential and Rayleigh, are used due to their

suitability to the corresponding system state (TTF and TTR, respectively) as shown in [38].

Accordingly, (3.1) corresponds to (2.15) which is equivalent to (2.17) after inverse transforma-

tion while (3.2) corresponds to (2.18) which becomes (2.20).

T T FExponential = inv
{

1− e−λit
}

(3.1)

T T RRayleigh = inv
{

1− e
[
−( t

α )
β
]}

(3.2)

In addition, the time-varying PC failure rates are modelled based on a ‘bathtub’ distribution

curve. This is done to model the higher likelihood of failure when the PC has just been installed

and when it is near to the end of its service, within its expected lifetime [37]. Accordingly,

the time-varying failure rate, λ (t), is calculated using a time-varying scaling factor, αs f (t),

that follows a bathtub (Beta) distribution, and the constant failure rate (λc) given in statistics

[107, 121]:

λ (t) = αs f (t) ·λc (3.3)
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To derive the bathtub distribution, the fundamental parameters of the beta distribution are set

to α = β = 0.5.The scaling factor is then calculated according to [122]:

αs f (t) = f (t;α,β ) =
1

Π
√

t(1− t)
, f or t ∈ [0,1] (3.4)

where the scaling factor is restricted within the range [0,1] and thus it is extrapolated to the

realistic lifespan of every PC in the network. This lifespan is modelled is 40 years for this

analysis, but future work will provide more PC-specific lifespans to account for the differ-

ent ageing patterns of different PC types. For example, transformers may function for 50 years

where circuit breakers may only manage 30 years due to mechanical stresses caused by switch-

ing [107]. Figure 3.8 presents an example of a PC with a λc of 0.095 faults/year. Instead of

using the λc (red dashed line) as the basic MCS input for PC failure, different time-varying λ

values (black solid line) are utilised over the PC’s lifespan.
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Figure 3.8: Bathtub distribution for a PC’s time-varying failure rate over the expected lifetime.

It is important to note that αs f (t) can be modelled using different PDFs to match the different

stages of the bathtub curve such as the approaches used in [107] where the bathtub curve

periods were divided into break-in, useful life, and wear-out periods, with each region being

modelled with different distributions. Therefore, each simulation run is performed on a year-

by-year time basis in 40-year cycles. At each time-step (30 minutes), a power flow calculation

is run to evaluate the number of affected loads and the associated demand. Each simulation

also includes a check to ensure that the simulated system conditions do not lead to overload

of the transformers. Where operating limits are exceeded, the system protection devices are

activated to protect network assets. The MCS algorithm is implemented using a combination

of MATLAB code (presented in Appendix A) and PSS R©E software, automated using Python
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(presented in Appendix B). The main steps of the MCS approach used in this chapter are

encapsulated in Figure 3.9 and are summarised as follows;

• assign failure rates and repair times/SQS time limits/protection settings to all PCs within

the analysed system;

• establish probability distributions (e.g. exponential, Rayleigh) to model initial condi-

tions;

• generate artificial cycle of system operations and failures using TTF (3.1) and TTR (3.2);

• run power-flow algorithm for each simulation time-step;

• check for system violations;

• run power-flow algorithm again;

• establish the number of interrupted customers and the duration of each interruption;

• compute frequency and duration indices, and ENS (using the trapezoid method [123]).

3.2.1 Theoretical Interruption Model

The methodology also includes a differentiation of system interruptions into SIs and LIs to

recognise the different types of faults experienced. Accordingly, 54% of the faults are modelled

as SIs while the rest are LIs [71]. Moreover, there is also a more accurate correlation between

the moments when faults occur, and the actual load demand interrupted. This is achieved us-

ing the theoretical supply interruption model in Figure 3.10 [124] which is integrated into the

MCS procedure. This is implemented by incorporating probability profiles of both SIs and LIs,

giving “time of the day interruption probabilities” over the 24 hours of the day into the MCS

algorithm, as presented in Figure 3.9. The theoretical model is constructed from previously

recorded SIs and LIs statistics by two different European DNOs. These were particularly im-

portant for producing the empirical interruption probability models, which are applicable when

specific SIs/LIs statistics are unavailable. Together with a comprehensive database of PCs from

the UK DNOs, this model allows to reproduce more accurately the stochastic characteristics

of the network reliability performance and hence more accurately assess the reliability indices,

especially energy-related ones such as ENS [120].
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Figure 3.9: General algorithm for the MCS reliability assessment procedure [110].
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Figure 3.10: Daily probability of LIs and SIs and their approximation with a theoretical curve
[124].

3.2.2 MCS Convergence Criteria

Precision is generally used as a criterion to stop the process of stochastic convergence in the

MCS method. The coefficient of variation (CoV) of an estimator is a standardised measure of

relative dispersion defined by the ratio between the standard deviation and the mean [125].

CoV =

√
var(x)

x̄ ·
√

N
×100 (%) (3.5)

where var(x) is the variance, x̄ is the mean and N is the number of samples. For prescribed

accuracy, MCS steps must be repeated until the CoV of the selected reliability index becomes

lower than the level of tolerance imposed. For example, a typical tolerance level imposed is

7% for the interruption frequency i.e. SAIFI and MAIFI, and 12% for the unavailability i.e.

SAIDI, CAIDI and ENS [126]. It has been reported that the CoV of ENS has the lowest con-

vergence rate and should thus be used as the convergence criterion when analysing multiple

reliability indices [39]. Alternatively, a maximum number of samples N can be imposed as a

criterion for stopping the convergence process of MCS. According to (3.5), N is proportional

to the system variance, for a fixed CoV. Therefore, to accelerate MCS (i.e. by decreasing the

number of samples), while keeping the same precision, variance reduction solutions must be

investigated. These, albeit not investigated in this thesis, include common random numbers,

antithetic and control variates, importance and stratified sampling, and moment matching, etc

[125]. It is important to note that previous work in [38] validated that 1,000 years was a suffi-
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cient simulation time length to maintain the accuracy of the MCS tool employed for reliability

assessment. This was achieved by investigating different sets of simulations done using 1000

years as well as sets for significantly longer period i.e. 34000 years. Accordingly, all sim-

ulations in this chapter use the MCS stopping criterion of N = 1000 years with a simulation

resolution (timestep) of 30 minutes. In the later chapters of this thesis, the stopping criteria

used will differ based on the network characteristics and the type of analyses.

3.3 Modelling Network Scenarios Incorporating SGTs

The reliability assessment methodology described in Section 3.2 may be used with any test

system whereby the network is modelled, scripted and simulated for different network sce-

narios and functionalities. Table 3.6 specifies the network scenarios used to evaluate possible

improvement or deterioration of network reliability performance which is quantified through

the calculated reliability indices. Accordingly, these scenarios, which are detailed in the further

text, consider a number of functionalities and aspects of DERs relevant for reliability analysis.

Table 3.6: Summary of urban MV network scenarios.

ID Network Scenario Description

SC-1 Base case Inclusion of backup capability and SQS regulations
SC-2 DSR Demand-side response for reliability improvement
SC-3 PV Uncontrolled MG using the most probable PV power output
SC-4 PV+DSR Combination of PV and DSR
SC-5 ES EMS-Controlled MG supplying energy per customer per fault
SC-6 ES+DSR Application of ES after DSR

3.3.1 SC1: Base Case

The reliability performance of the urban MV network shown in Figure 3.5 is assessed to es-

tablish a base case that is used as a reference for assessing the benefits of other considered

scenarios. This base case network is modelled to include backup capability through normally

open switches at the end of each of 6 main trunk feeders. These are configured for reclosing

after a fault or discontinuity of supply as this is necessary especially in the urban load sec-

tor networks due to the volume and density of customers. In some cases, automatic reclosing

is the operational practice as it adequately clears self-extinguishing faults and other transient

events that do not result in LIs. Previous work in [127] illustrated that automatic reclosing

provides the most enhancement to reliability performance and is an expected feature of future

distribution networks. However, the analysis in this chapter considers backup switch reclosure
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according to the time limits presented in Table 2.2 for interruption of varying GD, as these are

practical operational guidelines for maintenance of CoS as stipulated by (UK) SQS regulation.

These regulations ensure that the maximum duration of interruptions is kept within certain

limits based on the GD and number of customers being served. For example, PCs contributing

to a loss of supply less than 1 MW are repaired within only 12 hours despite their MTTR.

Additionally, crew response times to faults affecting GD>1 MW are accelerated to ensure

regulator-set limits for the risk of customer outages are not exceeded. These are all standard

functionalities of MV distribution network operation [110]. It is important to note that the

merit of the proposed methodology is that the relative reliability indices are calculated and

compared with each other (and against the base case) to quantify the relative improvement.

This ensures that uncertainties in data and system requirements are embedded in all the indices.

It also ensures that reasonable confidence can be placed in the relative differences and potential

benefits of considered scenarios [19].

3.3.2 SC-2: Demand-Side Response

DSR schemes have already been compounded by national interest in countries such as the

UK where the transmission system operator, National Grid, is creating customer opportuni-

ties by encouraging DSR participation from aggregators, large industrial and commercial con-

sumers, and small to medium-size enterprises [7]. This DSR participation is expected to reduce

costs across the energy supply chain, improve CoS by enabling better use of alternative energy

sources and give customers more insight and control of their energy use. As the transition

is made from DNO to Distribution System Operator (DSO) [15], it will become increasingly

important that DSOs can adequately structure their balancing services markets to ensure a

profitable and energy efficient operation.

Using the theoretical interruption model presented in Figure 3.10, this chapter evaluates a novel

DSR scheme. During the period with a high fault probability of 9:00–17:00 hours, which is

before the evening ramp period, the “washing” loads (i.e. domestic washing machines, dish-

washers, etc.) are disconnected. This scenario represents application of ‘DSR for reliability

improvement’, as it should ensure an enhanced reliability performance, as opposed to the more

commonly applied DSR techniques, aimed at reducing the evening peak demand [71]. The

results from this scenario do not demonstrate a substantial reduction in the ENS since a rela-

tively small percentage (10%) of the residential load is disconnected for 8 hours. However, it

highlights the potential for reliability improvement and can support further assumptions that

more sophisticated DSR schemes can result in significant reliability-performance improve-
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ment, result in a better CoS, higher energy efficiency and commercial benefits especially for

participating customers [120, 128].

It is important to note that the execution of DSR in this chapter does not get into a very de-

tailed modelling. For example, the costs associated with shifting demand are not considered

(although they form part of the further work). Moreover, certain operational challenges such

as thermostatic load failure, customer reluctance, distribution network integrity, market uncer-

tainty and the rebound effect i.e. where demand increases after the activation of DSR [129], are

also not considered. The analysis in this thesis is limited to utilising changes to the temporal

variation of network demand (as a result of DSR) to demonstrate the potential effects in terms

of network reliability.

3.3.3 SC-3: Uncontrolled PV

For assessment of reliability benefits from connecting PV MG, the PV power output is mod-

elled considering same output for each residential dwelling. Given that future networks will

feature high levels of penetration of DERs [130, 131, 132], this scenario illustrates poten-

tial benefits of PV integration (with 50% penetration) and assesses the impact of the spatio-

temporal variation of PV systems. Notably, [133] presents a similar study using different PV

penetrations on each urban MV feeder (10-100%) to better illustrate the expectation that future

networks will have varying levels of spatially distributed PV penetrations. The PV penetration

is calculated as the ratio of the peak PV power to peak load apparent power. Furthermore, the

use of a realistic, rather than an ideal PV profile also avoids overestimation of the benefits by

accounting for the clouding effect [120], which is detailed in the next sub-subsection.

3.3.3.1 The Stochastic Behaviour of PV

Most DNOs are reluctant to depend on the PV generation for power delivery capacity because

it does not directly reduce the peak demand. However, it shortens the duration of the peak

load, which further benefits loading patterns of PCs [134]. It has also been reported that these

load reductions may extend PC lifetimes by reducing the failure rates when PV generation

helps to reduce the frequency at which PCs are operated closer to their limits/ratings [54].

However, unpredictable cloud movements affect the power fluctuations of PV installations and

cause voltage fluctuations that often require implementing network controls, or even changing

settings of associated protection systems [135, 136]. The ‘randomness’ of input solar irradiance

is modelled using the raw measured hourly data from field recordings on a 110-kilowatt peak

(kWp) rooftop PV system. Figure 3.11(a) shows the measured distribution of PV output power

values for each hour of a ‘typical’ summer day. As expected, the probability of low PV output
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values is high during morning and evening hours, e.g., 0.07 p.u. is the most probable PV power

output (0.36 probability) at 07:00 hours. The use of the most probable values enables modelling

of the hourly PV power output for a typical (realistic) day, which is used in this analysis.

This is more accurate than using statistical averages, as it accounts for realistic changes in the

solar irradiation patterns. The analysis is repeated for cloudless conditions (which are rarely

occurring for the whole day), herein termed ‘ideal’. Both power output profiles for the realistic

and ideal PV generation over a day are compared in Figure 3.11(b), illustrating not only the

associated energy loss, but also indicating possible variations in calculated reliability indicators

when either PV profile is used for the analysis.
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Figure 3.11: PV power output modelling.

For the analysed PV penetration level of 50%, modelled as a uniform distribution of equal-size

individual customer PV installations [132], the obtained results quantify the possible overesti-
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mation of reliability-based benefits when the ‘clouding’ effect in PV outputs is not accounted

for. Figure 3.11(b) also shows the average values for hourly PV output exemplifying the po-

tential underestimation of reliability indices if average values are used.

3.3.3.2 Impact of Clouding Effect on Reliability Performance

Through comparative analysis, the reliability benefits of PV integration are assessed using

both the realistic PV output profile and the ideal one (cloudless), to represent the full range of

variation. The results in Table 3.7 indicate that when a realistic PV profile is used, the reduction

in ENS from a base case (i.e., no PV integration) is 16.7%, while it is 38.9% when the ideal

PV output profile is used. This represents a possible overestimation of the benefits of PV

by 22.2%, when the variability of input solar irradiance and unpredictable cloud movements is

neglected. It means that the projected increase in reliability from the use of ideal PV generation

is more than double the expected increase from realistic PV generation. Similarly, there is an

overestimation of the benefits of PV, by at least 22%, for each of the following indices: SAIDI,

CAIDI and ACCI. Markedly, Table 3.7 does not present any indices measuring the frequency

of interruptions as they indicate no over-estimation (0%). This is because the major causes of

interruptions are system faults and PC failures, which do not affect the solar irradiance and

associated PV energy availability, and therefore do not affect interruption frequency indices.

PV alleviates the effects of LIs by providing energy thereby only lessening their duration, but

not frequency, as perceived by the customer [120].

Table 3.7: Impact of the clouding effect on reliability indices.

Index Base case PV * Ideal PV * Clouding
Effect

ENS (kWh/cust./y) 146.37 121.90 16.7% 89.42 38.9% 22.2%
ACCI (kWh/cust. int.) 1090.41 909.75 16.6% 664.17 39.1% 22.5%
SAIDI (hours/cust./y) 0.550 0.453 17.7% 0.332 39.6% 22.0%
CAIDI (hours/cust. int.) 3.678 3.043 17.3% 2.228 39.4% 22.2%

* Reduction from Base Case; cust. = customer; y = year; int. = interrupted.

Figure 3.12 illustrates the impact of clouding on ENS when PDFs are compared. It shows a

reduction in the long tail of the PDF when either the realistic or ideal PV is deployed. This

represents a reduction in the maximum value of the expected range of interruptions and is a

major benefit as the probabilities of lower ENS values increase. As expected, there exists a

clear overestimation, due to different PV operating conditions, as the maximum ENS values

range from 1700 to 2100 kWh/customer/year. Given that these results are reliant on mea-

sured data from PV installations to deduce the most probable PV generation profile, there is
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a strong correlation between the variation of realistic PV power output and its geographical

(or meteorological) location [137], as well as its accuracy and resolution. Higher incidence

of unpredictable cloud-movements would lower the overall energy availability, thereby lower-

ing the PV’s value in increasing reliability performance. Furthermore, the variability of wind

(both stand-alone and in hybrid PV-wind systems) would result in similarly skewed reliability

performance results, when the modelling accuracy is the same as in this analysis.
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Figure 3.12: Impact of PV integration on the ENS to customers.

3.3.3.3 SC-4: PV+DSR

This scenario models a coordinated application of PV (with most probable outputs) and the

DSR technique explained in SC-2. The additional effect of preventive DSR actions on top of

the variable PV generation is expected to reduce uncertainty resultant from unpredictable PV

power outputs and provide an improved level of supply continuity to customers by ensuring

that upstream faults do not interrupt as much load [120].

3.3.4 SC-5: Energy Storage

While many control techniques for ES focus on peak shaving applications and energy cost re-

duction [55, 138], this chapter utilises a specific smart application of ES, which is designed

to improve reliability performance by providing a backup capacity per customer, per fault,

with the intention of reducing the ENS and duration of sustained interruptions. The selected

backup capacity is 3.67 kWh, based on the energy networks association (ENA) G83 engineer-

ing recommendation in [139] for peak power that can be provided by a small-scale single-phase
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rooftop PV. Although the ES capacity is modelled based on the single-phase rooftop PV, the

ES device modelled can store energy from other forms of MG such as wind. ES operation is

controlled by an EMS to provide seamless power switching capabilities and continuous supply

to the end-customers. The energy is stored from PV MG operating in islanded mode and is

expected to result in a better reliability performance than the uncontrolled PV (SC-3). While

similar scenarios in previous work [71], [140] modelled ES systems with constant state of

charge (SOC) characteristics, this research uses a realistic SOC-level variation and thus pro-

vides more realistic results. The SOC is modelled based on solar irradiation, demand, and

electricity tariff during grid supply conditions [141]. Therefore, the EMS is modelled to cap-

ture more accurately the SOC and the available ES output power. The temporal variations of

these quantities then determine SOC variations. To prevent overheating and ensure long bat-

tery lifetime, SOC limits are set to 40% and 100% as previously utilised in [141, 142]. The ES

SOC capacity is modelled following equation (3.6) [143] which fully considers both charging

and discharging efficiencies of the ES system; the latter being higher, as detailed in [144, 145]:

SOC (t) = SOC (t−1)+ηch.(Pch(t)∆t)− Pdis(t)∆t
ηdis

(3.6)

where SOC(t) = SOC of the battery at time t (kWh), Pch and Pdis are electrical power input and

output at time t, while ηch and ηdis are charging and discharging efficiencies respectively.

3.3.4.1 ES System Configuration

The EMS configuration shown in Figure 3.13 is based on a real microgrid system tested in the

Smart Grid Laboratory at the University of Bath, UK. The designed 12-panel PV system has

rated peak power of 3.67 kW and voltage of 444 V [146]. A 4 kW DC/DC buck converter steps

down the voltage to a 24 V rated battery bank (made by series-parallel connection of four 12 V

batteries), which can supply maximum current of 200 A (corresponding to maximum power of

4.8 kW). The converter, battery bank and 10 kVA inverter are linked with a common coupling

24 V DC bus. The inverter is also connected to the DC bus and allows for a bi-directional

energy exchange (and energy trading) via one-phase of a three-phase mains supply [141]. The

EMS controls power output from PV either directly, or through the ES, since a grid-connected

mode is not designed for ES-charging in this analysis.

3.3.4.2 ES System Operation

Figure 3.14(a) presents the SOC for the ES system. For a typical day, system operation may

be described as follows: the initial SOC may be assumed 40% at 00:30 hours. It essentially
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Figure 3.13: Single-phase EMS configuration.

remains at this level until 05:00, when PV starts to generate and charge the ES by 07:00. Be-

tween 07:00 and 11:00, ES remains at approximately 100% SOC. It then discharges due to

increased demand (between 11:00–15:00) and charges up again during a relatively low tariff

period (15:00–18:30). Evening peak demand is met in part, by discharging the ES system up

to 22:00 where the EMS takes advantage of the low demand and low rate late-night tariffs

to charge the ES. Figure 3.14(b) shows the power output: positive values indicate discharg-

ing while negative values correspond to charging. System operation assumptions include: no

charge-discharge losses, no occurrence of unexpected failures (no failure rate), and the ES

apparatus is not damaged by large upstream network faults [133].
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Figure 3.14: Battery SOC and power output for a typical summer day.
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3.3.4.3 SC-6: ES+DSR

In this scenario, the EMS-controlled ES is deployed as a well-designed corrective action on top

of a preventive DSR application (SC-2). In case of an upstream fault (whose effect is reduced

due to DSR action), the EMS will provide additional power, available from either PV system,

or ES, or both, in order to supply all loads and thus significantly reduce the duration of supply

interruptions, or even completely prevent them. Therefore, this combination of several SGTs

for a localised and smart energy management (“smart interventions”) is expected to result in

the highest benefits for system and customer reliability performance [120].

3.4 System-Oriented Reliability Performance Assessment

The average values of system reliability indices are presented in this section. These include in-

dices that measure the frequency of SI (MAIFI) and LI (SAIFI), the duration of LI (SAIDI) and

energy not supplied (ENS). Additionally, PDFs and CDFs of these indices are also presented

to illustrate the stochastic variability as well as the potential benefits that are not immediately

obvious. Notably, the application of DSR on its own in SC-2 (Table 3.6) does not offer signif-

icant benefits, as only the washing loads are disconnected during a span of about 10 hours in

the day. This results in a 7.7% reduction of ENS from the base case but offers no significant

improvements in other reliability indices. This explains why SC-2 is not individually assessed

in the reliability performance analyses that follow. The major benefits from this scenario are

realised mainly through aggregation with other smart grid technologies, such as PV and ES,

which are related to scenarios SC-4 and SC-6, respectively [120].

3.4.1 Frequency of Interruptions

Table 3.8 presents the results for the network reliability performance with integration of the

considered smart interventions, where their benefits are quantified by the reductions of index

values relative to the base case. Focusing on the frequency of sustained interruptions, the results

from scenarios SC-5 and SC-6 show that the controllability of MG using ES is important for

reduction of SAIFI by 71.5% and 75%, respectively. On the other hand, Table 3.8 highlights

the advantages of PV - shown by no change in MAIFI, which is better than the 4.4% and

3.7% increases when ES scenarios are deployed. This can not only negatively affect the power

quality, but also require changes to the settings of the main substation protection schemes

[147]. This increase in MAIFI is due to the use of backup ES, which can alleviate faults in the

upstream network, either by total removal of the outage or by converting LIs into SIs. However,
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this is not an evident result from the PV scenarios (SC-3 and SC-4), as no intelligent control is

designed [120].

Table 3.8: Frequency of long and short interruptions.

ID Scenario SAIFI (Ints/c/y) * MAIFI (Ints/c/y) *

SC-1 Base case 0.157 _ 0.208 _
SC-3 PV 0.157 0% 0.208 0%
SC-4 PV+DSR 0.157 0% 0.208 0%
SC-5 ES 0.045 71.5% 0.218 -4.4%
SC-6 ES+DSR 0.039 75.0% 0.216 -3.7%

* Reduction from Base Case; ints = interruptions; c/y = customer/year.

Figure 3.15 provides important additional information to the average values presented in Table

3.8 by showing the PDFs of both SAIFI and MAIFI for scenarios SC-1, SC-4 and SC-6. Fig-

ure 3.15(a) illustrates that SC-6 (ES+DSR) significantly increases the probability of ‘zero’ LIs,

while SC-4 (PV+DSR) offers almost no improvement to the base case. This can be attributed

to the fact that in SC-6, the energy stored is utilised as a corrective action when network faults

occur, yet no control measures are implemented in SC-4. The PDFs for the frequency of SIs are

plotted in Figure 3.15(b), showing that the little to no degradation from the base case MAIFI.

As expected, both scenarios SC-4 and SC-6 do not significantly affect MAIFI values as dis-

cussed in Section 3.3.3. Furthermore, both graphs show a spiky increase in the probability

value at 1 interruption/customer/year, which is due to system faults affecting all supplied cus-

tomers, e.g., due to a fault at the primary substation (when both supplying 33/11 kV transform-

ers fail) with no alternative (backup) supply to customers [120]. Therefore, this methodology

is capable of accounting for both SIs and LIs; producing accurate results that correspond to the

estimated reliability performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Pr
ob

ab
ili

ty
 (P

D
F)

SAIFI (interruptions/customer/year)

SC-1 Base case (Avg 0.157)

SC-4 PV+DSR (Avg 0.157)

SC-6 ES+DSR (Avg 0.039)

(a) LIs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Pr
ob

ab
ili

ty
 (P

D
F)

MAIFI (interruptions/customer/year)

SC-1 Base case (Avg 0.208)
SC-4 PV+DSR (Avg 0.208)
SC-6 ES+DSR (Avg 0.216)

(b) SIs

Figure 3.15: Probability distribution of the frequency of interruptions.



3.4. System-Oriented Reliability Performance Assessment 79

When compared to SAIFI, the impact of the proposed SGTs on MAIFI is less substantial. How-

ever, the tail of the PDFs presented in Figure 3.15(a) can be further analysed using the CVaR

risk metric introduced in Section 2.2.2.3. This research calculates the CVaR at a confidence

level of 95% which is commonly used in the analysis of potential HILP events [46, 48]. The

CVaR obtained for the base case means that the average SAIFI in the worst 5% of the cases

would be 0.0028. As expected, the PV+DSR scenario does not reduce the CVaR due to the

lack of control measures as discussed in the previous paragraph. However, scenario SC-6 leads

to a 57% reduction in the CVaR of the SAIFI index which represents an important contribution

as it means that the deployment of this smart scenario can also limit the impact of HILP events.

The main reason for this is because the stored energy is used as a corrective action that reduces

the total number of customer interruptions thereby reducing both the expected or mean value

of SAIFI as well as the impact of the worst-case scenarios.

3.4.2 Duration of Interruptions

Deployment of PV+DSR in SC-4 results in a reduction of interruption duration times by 26%

(Table 3.9). Moreover, using an EMS-controlled ES combined with DSR (SC-6) results in

nearly a halving (48.7%) of the expected average interruption duration times. This is a sig-

nificant result for DNOs, as they can use this smart intervention as a planning tool to take

advantage of this improvement of reliability performance in both technical and commercial

terms i.e. in avoiding regulator-imposed penalties for non-satisfactory performance [120].

Table 3.9: Duration of sustained interruptions.

ID Scenario SAIDI
(hours/cust./y)

Reduction from
Base case

SC-1 Base case 0.550 _
SC-3 PV 0.453 17.7%
SC-4 PV+DSR 0.407 26.0%
SC-5 ES 0.310 43.7%
SC-6 ES+DSR 0.282 48.7%

The resulting PDFs for SAIDI index in Figure 3.16 reveal that scenarios SC-5 (ES) and SC-6

(ES+DSR) have reduced tails, which translates to lower probabilities of long-duration inter-

ruptions, as compared to the base case. Both ES scenarios also increase the probabilities of

the short-duration interruptions, increasing their probability from only 0.33 in the base case, to

0.54 and 0.56 in SC-5 and SC-6, respectively.

Similarly, PV scenarios (SC-3 and SC-4) reduce the duration of the longest interruptions, as

well as marginally increase the probability of short-duration interruptions. This result is be-
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Figure 3.16: Comparison of the PDFs for the SAIDI index.

cause ES being applied as a corrective action after the faults, while PV is applied as a preven-

tive measure. Therefore, ES does not offer as much reduction in the duration of the longest

interruptions as PV, whose deployment offers available energy to alleviate effects from up-

stream network faults, even without intelligent control from EMS. This might place the use of

standalone PV systems, without ES, as a more economical option. Moreover, the base case

CVaR for SAIDI (0.0084 hours/cust./y), at the 95% confidence level, is reduced by 23% when

PV+DSR is deployed as compared to only 12% by ES+DSR. However, when pros and cons

of either technology are weighed, the impact of ES is controllable and therefore far more pre-

dictable than the uncontrolled PV. The larger benefits from ES+DSR are exemplified by nearly

a halving of the maximum plausible duration of individual interruptions, which reduces from

over 300 hours in the base case, to only 156 hours in the SC-6 scenario [120]. Finally, Figure

3.17 shows the resulting CDFs for the duration of interruptions from scenarios SC-1, SC-4 and

SC-6. It illustrates that the probability of up to 1-hour supply interruptions increases from 54%

in the base case to 81% when SC-4 is deployed, and finally to 91% for SC-6.

Therefore, the results quantify the risk of paying compensation to customers experiencing in-

terruptions longer than the specified duration threshold (as in the UK SQS regulations given in

Section 2.1.2). This can be associated with the considered scenarios and smart grid functional-

ities, which then can be used to evaluate potential cost-benefit effects at both the planning and

operational stages. Furthermore, it can be analysed in terms of not only CoS improvements

to customers, i.e. through the reductions of average duration of long interruptions, but also in

terms of the higher probabilities of shorter-duration interruptions [120].
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3.4.3 Average Energy Not Supplied

Regarding the risk associated with the energy not supplied to customers, Table 3.10 presents

the results for the ENS index. As expected, SC-6 results in the most significant reduction to

ENS (41.8%), because ES is applied as a controlled reliability-corrective action, additionally

enhanced by a reliability-oriented DSR scheme. In addition, uncontrolled PV in combination

with DSR reduces the average ENS (by 24.4%).

Table 3.10: Assessment of the average energy not supplied.

ID Scenario ENS
(kWh/cust./y)

Reduction from
Base case

SC-1 Base case 146.37 -
SC-3 PV 121.90 16.7%
SC-4 PV+DSR 110.63 24.4%
SC-5 ES 93.03 36.4%
SC-6 ES+DSR 85.21 41.8%

Figure 3.18 further illustrates the improvement in average ENS values for different load supply

points in the urban MV network when SC-6 is implemented. The resulting average ENS values

exhibit a repetitive pattern from one MV feeder to the next (each with 8 load supply points)

due to the symmetry of the network design (Figure 3.5). Furthermore, the use of time-varying

failure rates and repair times for network PCs, incorporated in the PDFs used as inputs in

the MCS algorithm, ensure that the ‘randomness’ of network behaviour is more accurately
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modelled. For example, Figure 3.18 shows that ES has a higher impact on the ENS reduction at

some load supply points, e.g., 27 and 41 on feeders 3 and 6, respectively (over 80% reduction),

than it does at other load supply points, such as 37 and 38 on feeder 5 (approximately 20%

reduction). Overall, ES contributes much more to ENS reduction than DSR, as it represents a

post-fault corrective action, while DSR is deployed as a preventive measure to reduce the ENS

during the high fault probability periods [120].
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Figure 3.18: Average ENS for different load supply points.

3.5 Evaluation of Customer-Oriented Power Supply Risk

System-wide indices as calculated in the previous section, are periodically required from each

DNO to assess network performance against relevant performance targets. However, one of

their main drawbacks is that they include customers who enjoy uninterrupted power supply for

substantially long periods, thereby concealing some of the shortcomings of network perfor-

mance, especially to worst served customers. Moreover, it is financially important for DNOs

to have a deeper understanding of the value attached to their service by customers. This infor-

mation can help DNOs to develop targeted solutions to different customer groups and hence

raising their WTP [148]. Therefore, this section analyses specifically the customer-based in-

dices i.e. those measuring system reliability for only those customers who are affected by

interruptions. These indices accurately represent the customer-view of network performance

and are thus invariably useful in ascertaining their WTP [149]. For this customer-oriented anal-

ysis, only scenarios (SC-1, SC-4 and SC-6) will be analysed as the results for system indices

already reveal expected improvements from the addition of DSR to SC-3 and SC-5 resulting in

scenarios SC-4 and SC-6, respectively.
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3.5.1 Frequency of Sustained Interruptions

Table 3.11 illustrates results for the frequency of sustained interruptions given the considered

scenarios. For only those customers affected by interruptions, the average interruption fre-

quency (CAIFI) is unchanged from the base case scenario when PV+DSR is deployed since no

control technique is implemented; PV only provides additional energy during the occurrence

of faults. Conversely, CAIFI is reduced significantly, i.e. 22.6% from the base case, when

ES+DSR is deployed. The enhancement offered by ES is further highlighted when the num-

ber of customers affected is assessed before/after its application. The average number of LPs

affected by interruptions reduces from nearly 7 in the base case, to roughly 2 when either ES

scenario is deployed [120].

Table 3.11: Frequency of long interruptions to affected customers.

ID Scenario CAIFI
(Ints/aff. cust.) * LPs Affected

(avg) *

SC-1 Base case 0.720 _ 6.644 _
SC-4 PV+DSR 0.720 0% 6.644 0%
SC-6 ES+DSR 0.557 22.6% 1.643 75.3%

* Reduction from Base Case; ints = interruptions; cust. = customer; aff. = affected

The CAIFI PDFs presented in Figure 3.19 further confirm the benefits of the ES+DSR sce-

nario. Notably, both displayed scenarios do not have any values occurring within the range

0-1, because CAIFI is only calculated for customers affected by interruptions, implying that

the individual average CAIFI values can only be less than one if they are zero (when no LP is

affected by interruption). As expected, the implementation of ES+DSR increases the proba-

bility of having 0 interruptions per affected customer from the base case scenario. However, it

simultaneously increases the largest plausible number of interruptions that can be experienced

at a single LP: from 2.8 (base case) to 4. In addition, the base case CVaR for CAIFI (0.0028 in-

terruptions/affected customer), at the 95% confidence level, increases to 0.0078 when ES+DSR

is implemented. This means that in the worst 5% of cases, the average interruption frequency

to affected customers increases. However, this effect is best explained by the fact that the

EMS-controlled ES is deployed as a corrective action when faults occur. While in most cases it

can completely ensure supply continuity by alleviating the effects of upstream network faults,

in the cases where it only lowers the interruption duration, the overall effect is to have fewer

customers affected for the same number of interruptions, therefore resulting in a higher ratio

of interruptions per affected customer, i.e. higher CAIFI. This is further discussed in Sec-

tion 3.5.4, where results for the ACCI index are presented. In summary, ES+DSR reduces the

number of customers affected significantly more than it reduces the total number of customer

interruptions, thus resulting in a highly plausible CAIFI. Also, Figure 3.19 illustrates a ‘peak’



3.5. Evaluation of Customer-Oriented Power Supply Risk 84

around the value of CAIFI = 1 due to the coincidence of faults and number of affected cus-

tomers, especially when system faults affect large parts of the network and lead directly to

interruptions of loads [148], as highlighted in Figure 3.15.
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Figure 3.19: Comparison of PDFs for the CAIFI index.

CAIFI is particularly useful in recognising chronological trends in the reliability of a distri-

bution network, highlighting the years when not all supplied customers are affected by inter-

ruptions, and many experience supply continuity [19]. Table 3.12 further analyses this phe-

nomenon by focusing on the probability of supply interruptions to a particular number of LPs.

ES+DSR increases the probability of not having any LP affected by interruptions by almost

60%. Furthermore, using ES+DSR increases the probability of having only one LP affected by

55%. As a direct consequence of those increments, the probability of LIs affecting anywhere

between 2 and 47 LPs is nearly halved in this SC-6 scenario. Most importantly, the SC-6 smart

intervention lowers the probability of having all LPs (48) affected by interruptions by 95%.

Specifically, in 1000 years, all LPs are simultaneously affected by interruptions only 3 times

when ES+DSR is used, as compared to 62 times when no smart interventions are deployed

[120, 148].

Table 3.12: Probability of the number of LPs affected by supply interruptions.

Number of
LPs Affected

Probability Reduction
from SC-1SC-1: Base case SC-6: ES+DSR

0 0.320 0.508 -58.8%
1 0.147 0.228 -55.1%

2-47 0.471 0.261 44.6%
48 0.062 0.003 95.2%
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The results in Table 3.12 are further detailed in Figure 3.20. ES+DSR significantly increases

the probability of having a lower number of LPs affected by interruptions, while substantially

decreasing the probability of having a greater number of LPs affected. In some cases, the

reduction is so great that it completely negates number of interruptions experienced by that

number of LPs e.g. for LPs 17–24, 26, 30, 32 and 33 [148]. Moreover, the heavy tail dis-

tribution presented by Figure 3.20 can be further analysed by using a CVaR computation at

a 95% confidence level. While the base case CVaR for the number of LPs affected by inter-

ruptions is 2.976, this value becomes 0.144 when ES+DSR is implemented. This means that

this smart scenario can reduce the impact of HILP events by a 95% reduction in the average

number of LPs affected in the worst 5% cases. On top of providing a further explanation for

the unexpected increment in CVaR when analysing CAIFI, this result also promotes the use of

risk-averse modelling in network planning by adequately quantifying the risk of HILP events

[150]. Finally, the scatter plot in Figure 3.21 further demonstrates the capability of ES+DSR

to ‘confine’ the effect of supply interruptions to much fewer LPs than in the base case scenario

and also lower the total number of affected customers [148].
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3.5.2 Frequency of Momentary Interruptions

Short interruptions, voltage sags and swells can potentially damage sensitive equipment. To

evaluate system reliability, MAIFI considers momentary interruptions that may affect several

types of loads. Most studies assessing the frequency of SIs present average values of MAIFI

[151, 152], which is a system-wide index that considers all customers including even those not

subject to momentary loss of power supply. There is a reluctance to quantify the SI-frequency

to only the affected customers [21, 153]. Accordingly, this research proposes a new index –

customer average momentary interruption frequency index (CAMIFI), described mathemati-

cally by (2.11), for quantification of SIs to customers affected only [148]. Table 3.13 shows

no discernible improvement in CAMIFI after application of PV+DSR. ES+DSR also provides

only a 2.7% increase in average CAMIFI value from the base case. This is because, in the cur-

rent design, ES+DSR is unable to ensure complete backup capability during a sustained fault,

and only offers a high percentage alleviation of the upstream network fault i.e. it ‘converts’

some LIs to SIs thereby changing their classification. This insignificant impact on CAMIFI is

also due to ES+DSR systems being locally installed, and, given the varying distances between

LPs and fault locations, it is not feasible for different EMS systems to respond simultaneously

to SIs [148]. A more significant impact would be expected from larger-capacity ES given the

advanced technology and detection of momentary faults [153].

Table 3.13: Frequency of short interruptions to affected customers.

ID Scenario CAMIFI
(Ints/aff. cust)

Reduction from
Base case

SC-1 Base case 0.797 _
SC-4 PV+DSR 0.797 0%
SC-6 ES+DSR 0.819 -2.7%

3.5.3 Duration of Sustained Interruptions

The first thing to note about Table 3.14 is that the results suggest that coordinated operation

of ES increases (worsens) CAIDI as shown by the 69.7% increase in SC-6. Conversely, a

25.2% reduction in this outage time is reported when SC-4 is deployed. Accordingly, if e.g. a

customer experienced a 2-hour interruption previously, the outage duration would increase to

3.4 hours with the implementation of ES+DSR, yet it would decrease to 1.5 hours if PV+DSR

were deployed [148]. However, this ‘increase’ is because CAIDI is directly calculated from

the ratio of SAIDI to SAIFI, and thus it is dominated by the greater reduction of SAIFI i.e.

75% (Table 3.8) than the reduction of SAIDI i.e. 48.7% (Table 3.9).
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Table 3.14: Duration of sustained interruptions for affected customers.

ID Scenario CAIDI
(housr/cust. int)

Reduction from
Base case

SC-1 Base case 3.678 _
SC-4 PV+DSR 2.751 25.2%
SC-6 ES+DSR 6.243 -69.7%

Figure 3.22 presents the CAIDI PDF plots where ES+DSR increases the CAIDI average, the

duration of longest interruptions i.e. tails of the PDF, and the average CAIDI in the worst 5%

cases (CVaR) by 282%. Conversely, PV+DSR contributes to a reduction in the average value

of the CAIDI index with a corresponding reduction in the duration of the longest interruptions

[148] and a 22% reduction in the average CAIDI in the worst 5% cases. This is explained by

the fact that PV+DSR does not reduce SAIFI, yet it lowers SAIDI index by 26% in SC-4 (Table

3.9).
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Figure 3.22: Comparison of PDFs for CAIDI index.

3.5.4 Average Customer Curtailment

Through the quantification of the ACCI, it is possible to establish not only the necessity of

implementation of the proposed reliability improvement techniques but also the network in-

frastructure requiring most intervention. Regarding the risk associated with the energy not

supplied to customers, Table 3.15 presents the reliability assessment results for ENS to only

those customers affected by supply interruptions. Uncontrolled PV, in combination with DSR,

positively affects ACCI by a 24% reduction. Again, the results showing LPs affected in each

scenario are presented to further classify the reliability performance, especially for ENS. Ac-
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cordingly, PV does not effect the average number of LPs affected by interruptions, as it is

locally uncontrolled and therefore cannot prevent the occurrence of upstream network faults.

It can only reduce the average ENS per affected customer. It is important to note that the per-

centage increase of ACCI, of 64.2% in SC-6, should not be interpreted as a weakness of the

EMS-controlled ES technology. The reason for this ‘increase’ is that the overall effect of the

ES technology is to significantly reduce the number of interruptions – in most cases, ensuring

continuous supply. This means that the total number of affected customers reduces so greatly

that the denominator for the calculation of ACCI renders the resulting value higher than in the

base case. Implementation of ES is therefore effective in reducing the ACCI as it also lowers

the number of affected customers (by over 75%) [120, 148]. This can be proven if the product

of the ACCI and LPs affected is taken for all scenarios. This will reveal that affected customers

enjoy less ENS when ES+DSR is deployed. This result is of great importance to stakeholders

such as DNOs and especially customers who require highly reliable and continuous supply.

Table 3.15: Energy not supplied to affected customers.

ID Scenario ACCI
(kWh/aff. cust.) * LPs Affected (avg) *

SC-1 Base case 1090.41 - 6.644 -
SC-4 PV+DSR 828.99 24.0% 6.644 0%
SC-6 ES+DSR 1790.79 -64.2% 1.643 75.3%

* Reduction from Base Case; aff. = affected; cust. = customer.

Figure 3.23 illustrates the positive effects of ES+DSR by assessing the probability of differ-

ent amounts of energy not supplied per interrupted customer (ACCI). SC-6 greatly improves

the probability of having no energy curtailment to nearly 0.5, from 0.32 in the base case,

which is directly related to the enhancement of reliability performance and CoS. However,

an important feature in Figure 3.23 is the higher probability of larger values of ENS (>4000

kWh/customer interrupted) when ES+DSR is deployed, as compared to values from the un-

controlled PV case or the base case. Although it is seemingly a weakness, this is explained by

the fact that ES effectively prevents occurrence of system interruptions by providing a back-up

continuous microgrid-based supply to the customers. For the calculation of ACCI, this means

relatively short sustained interruptions will be “converted” to continuous supply, based on the

available SOC of the ES, rendering LPs with these DERs no longer affected by the upstream

faults. However, this is not the case for the relatively longer sustained interruptions, result-

ing in a lower number of affected customers, but relatively unchanged individual interruption

durations and energy unsupplied. This may be clarified by using an example from the pre-

sented results, where for one particular year (before any smart intervention-base case), there

were eight affected LPs, with one relatively long LI and seven relatively short LIs. After the
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application of ES, the seven relatively short LIs were converted to continuous supply, but the

one relatively long LI was largely the same, thereby reducing only the ENS for that period.

This results in a much higher ACCI for this particular year when ES is deployed, due to the

modified (i.e. reduced) number of customers affected, as compared to the base case. There-

fore, it is important to emphasise that ES is undoubtedly the most effective DER technology

for improving reliability performance, even though this may not be apparent and immediately

clear from the presented results for some indices [148].
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Figure 3.23: Comparison of PDFs for ACCI values for different scenarios.

3.5.5 Comparison with System-wide Reliability Evaluation

To demonstrate the variance between customer-oriented and system-wide reliability indices,

Table 3.16 presents each index grouped by different reliability parameters i.e. frequency and

duration of interruptions and ENS. Comparing each customer index with its system equivalent

reveals a disproportionate gap between these indices. This is because customer-oriented indices

consider only the customers affected by interruptions as compared to system-wide indices that

account for all customers served. For example, system ENS is at least 7 times smaller than

ENS to affected customers (ACCI) in SC-1 and SC-4, and over 21 times smaller in the case of

SC-6. Similar differences are demonstrated in the other index categories and this emphasises

the requirement to assess network reliability from the customer perspective in addition to the

more system-centric evaluations [148].

3.6 Disaggregation of Reported Reliability Performance Metrics

There exists an overarching requirement for DNOs to report a more detailed evaluation of

network performance due to the high variability in supplied networks. This is motivated by

the recent drive in various countries to report disaggregated indices according to network type
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Table 3.16: Customer-Based vs System-Wide Reliability Metrics.

Parameter Index SC-1
Base Case

SC-4
PV+DSR

SC-6
ES+DSR

Frequency of
LIs

CAIFI
(ints/aff. cust.) 0.720 0.720 0.557

SAIFI
(ints/cust./year) 0.157 0.157 0.039

Frequency of
SIs

CAMIFI
(ints/aff. cust.) 0.797 0.797 0.819

MAIFI
(ints/cust./year) 0.208 0.208 0.216

Duration of
LIs

CAIDI
(hours/aff. cust.) 3.678 2.751 6.243

SAIDI
(hours/cust./year) 0.550 0.407 0.282

Energy not
supplied

ACCI
(kWh/aff. cust.) 1090.41 828.99 1790.79

ENS
(kWh/cust./year) 146.37 110.63 85.21

aff. cust. = affected customer; int = interruption

(RU/SU/UR), as it provides essential information for decision-making on measures for CoS

improvements [33]. Accordingly, this section introduces the critical need to report reliability

performance metrics by distinguishing between different customer-groups, load demand and

network types, within very large service areas managed by DNOs. These are practical consid-

erations given that DNOs report fault events in their systems by distinguishing them based on

types of components, network types, and voltage levels. As stated in Section 3.1.1, based on

various factors, power distribution systems supplying residential demand may be categorised

into rural, suburban and urban networks. While the first sections in this chapter dealt with anal-

ysis on the urban network, it is expected that analysis of the rural and suburban networks will

result in different performance metrics because they represent the varying topographical lay-

outs, demand densities, and network parameters. Notably, LPs in each presented MV network

are 34, 44 and 48, while the total network components are 404, 520 and 592 for the RU, SU

and UR networks, respectively. Accordingly, the contribution of this section is to demonstrate

the range of reliability index variation, from both system and customer perspectives, in dif-

ferent networks. When added to the correspondingly different impacts of DERs, this analysis

provides a rigorous characterisation of varying customer-groups.
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3.6.1 Development of the Aggregate Network

Given that DNOs usually report aggregated values of the reliability indices describing the per-

formance of their networks, this research presents reliability indices for a network (termed

AGG) which is the equivalent of aggregating the 3 networks presented in this section (RU, SU

and UR). This network, therefore, has 13110 customers served by 126 main LPs. To calculate

what would be the equivalent reliability indices for this AGG network, a weighted mean of

each index is calculated using the 3 subnetworks. System and customer-oriented indices of the

AGG network are obtained from the 3 subnetworks using (3.7) and (3.8):

Index_SysAGG =
∑

N
i∈ΩL

LPiindexi

∑
N
i∈ΩL

LPi
(3.7)

Index_CusAGG =
∑

N
i∈ΩL

LPiindexi

∑
N
k∈ΩA

LPk
(3.8)

where Index_SysAGG and Index_CusAGG are the system and customer-oriented indices respec-

tively, index is the reliability index under consideration, i and k represent each subnetwork, LP

is the number of load points, set ΩL contains all subnetworks and set ΩA contains only the LPs

affected by either LIs or SIs depending on the index considered for each network. This pro-

vides a basis upon which to compare the performance of what would be an entire network area

served by a DNO, with the performance of its subnetworks that have varying characteristics,

network configuration and customers served [154].

3.6.2 Comprehensive Reliability Assessment

The previously described MCS procedure (Section 3.2) is utilised to carry out reliability as-

sessment for each subsector network, without integration of any smart interventions. MCS

results exemplify the variation arising from the fact that the different networks are made up of

a different mix of PCs, demand supplied, and network configuration. This variation is central

to the contribution of the section as it emphasises the requirement to disaggregate network re-

liability performance based on network type [154]. To complete the base case performance for

each subsector network, there is the inclusion of SQS regulations which stipulate maximum

durations of supply restoration based on supplied GD. Additionally, the integration of DERs

in each network is modelled considering SC-4 (PV+DSR) and SC-6 (ES+DSR) in Section 3.3.

This further illustrates the varying impacts of these technologies in different network types.
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3.6.2.1 Base Case Network Performance

Table 3.17 presents the reliability indices obtained for each network for the base case perfor-

mance (i.e. without DERs). The indices provided are all standard indices aside from CAMIFI,

which has been previously defined in Section 2.2.2 and represents a measure of the frequency

of SIs to only affected customers. Indices for the AGG network are also presented, which ef-

fectively represent a weighted mean of the indices from all 3 networks (as usually presented by

DNOs when reporting on their network reliability performance). Both system and customer-

oriented indices are presented highlighting again the significant disproportionate gap between

each index pair for the same parameter e.g. ACCI is at least 5 times greater than the cor-

responding ENS for all assessed networks. For especially WSCs, customer-oriented indices

are necessary to reveal network shortcomings often concealed by system indices. This results

in presenting a more accurate picture of the customer-view of network performance and in

some cases aiding DNOs to manage customer expectations and thus WTP. The information on

performance variability presented by these index sets is as valuable as that obtained from as-

sessing different network types and therefore merits their inclusion in DNO-reported network

performance.

Table 3.17: Base case performance for all load subsector networks.

Parameter Index Reliability Performance
RU SU UR AGG

Frequency of
LIs

CAIFI (ints/aff. cust.) 0.719 0.966 0.720 0.839
SAIFI (ints/cust./year) 0.139 0.296 0.157 0.201

Frequency of
SIs

CAMIFI (ints/aff. cust.) 0.804 1.023 0.797 0.906
MAIFI (ints/cust./year) 0.188 0.368 0.208 0.259

Duration of
LIs

CAIDI (hours/aff. cust.) 4.337 5.078 3.678 4.490
SAIDI (hours/cust./year) 0.629 1.351 0.550 0.851

Energy not
supplied

ACCI (kWh/aff. cust.) 135.38 653.95 1090.41 687.76
ENS (kWh/cust./year) 17.85 150.70 146.37 113.20

aff. cust. = affected customer; int = interruption

Given the lower number of customers served by the RU network (646) as well as the lower

number of PCs (404), it is generally expected that most of the RU system indices calculated

will be the lowest of the 3 networks in Table 3.17. Accordingly, the UR network outperforms

the RU network in indices such as SAIDI, CAIDI, and CAMIFI due to the evidence suggest-

ing that denser networks (having a higher ratio of customer/km) have fewer minutes lost per

customer per year than less dense networks [35]. There is also a strong correlation between

the number of supply interruptions and which type of network serves customers [35]. Not to

mention the commensurately higher number of backup supply alternatives. While it might be

expected that UR customers experience higher levels of CoS (low number of interruptions, and
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for short periods), the results reveal that this is not a straightforward case. This is because

of the varying number and type of PCs, stochastic nature of network behaviour, number of,

and spatial variability of customers served. It is also important to note that the AGG network

is heavily influenced by the SU network which generally exhibits the worst reliability perfor-

mance because of the high number of PCs (520), customers served (3344) and dominance of

overhead lines for power distribution, which are generally more likely to fail than underground

cables used in the UR network, for example [154].

3.6.2.2 Impact of ES+DSR on Frequency of Interruptions

While Table 3.17 presents only the base case results for each network performance, Figure

3.24 shows the corresponding impact from the designed ES+DSR smart intervention, in terms

of frequency of interruptions. By providing the percentage reductions of each index from its

value in the base case, it is possible to quantify the impact of these technologies on network

performance. As previously explained, the effect of PV+DSR is not considered as its amount

of penetration is not enough to influence the frequency of interruptions. The deployment of

PV+DSR, at a 50% PV penetration and 10% demand for DSR, essentially lowers the period

for which a customer experiences an interruption, thereby reducing only the ENS.

However, Figure 3.24 shows that the predominantly corrective application of ES+DSR reduces

SAIFI by 75% in the UR network and by over 35% in the RU one. The impact of ES+DSR

is less significant on CAIFI index, as previously explained (Table 3.11). For both indices

measuring frequency of LIs, the UR network benefits most from the application of ES+DSR.

Additionally, CAIFI shows a significantly higher reduction after the application of ES+DSR in

the UR network than in the others. Notably, both indices measuring frequency of SIs experi-

ence an increase from the base case when ES+DSR is deployed. This is mainly due to those

occasions when ES lowers the length of LIs to such an extent that they last for only short peri-

ods, i.e. long enough to be classified as SIs. Therefore, while ES+DSR does not directly affect

frequency of SIs, it does convert some LIs to SIs. Again, this increase in the frequency of SIs

indices should not be interpreted as a negative impact on the network transient behaviour but

rather as an improvement in network capability to alleviate faults [154].

The comparative analysis is extended by considering Figure 3.25 which presents the CDFs of

SAIFI for each network after ES+DSR deployment. As before, ES+DSR exhibits the highest

impact on the UR network followed by the RU and SU networks. Notably, each customer in

any of the 3 networks has a very high probability of experiencing no more than 1 LI per year.

Additionally, customers in the UR network are more likely to experience shorter interruptions

than customers in the RU and progressively, SU network [154]. Although it would be expected
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Figure 3.24: Impact of ES+DSR on the frequency of LI indices.

that customers in the SU network should experience better network reliability than those in

the RU network, the results demonstrate that this is not the case due to the significantly higher

number of PCs (more faults) and customers in the SU network.
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Figure 3.25: Impact of ES+DSR on SAIFI for all MV networks using PDFs.

3.6.2.3 Impact of DERs on Duration of Interruptions

Firstly, Figure 3.26 combines two reliability parameters i.e. energy not supplied and duration

of LIs because of their strong correlation. Secondly, Figure 3.26(a) shows that PV+DSR gener-

ally has a substantial effect on these two reliability parameters reducing each related index by

at least 23% from the base case value. On the other hand, ES+DSR (Figure 3.26(b)) presents a

slightly different effect on network reliability performance. As expected, the level of reduction

of both system-oriented indices (ENS and SAIDI) is much higher than that in the PV+DSR
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case, as the EMS-controlled ES technology makes a more intelligent use of energy resources.

Focusing on the load subsector, the impact of ES+DSR on the UR network is also communi-

cated by the fact that corresponding ENS and SAIDI percentage reductions from the base case

are marginally highest in this network than in the RU and SU networks.
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Figure 3.26: Impact of smart interventions on ENS and duration of LI indices.

Reporting disaggregated indices becomes especially important when customer-oriented indices

(ACCI and CAIDI) for these same reliability parameters are assessed. ES+DSR has the effect

of increasing (hence ‘worsening’) ACCI significantly for the UR network, less so for the SU

network, and offering a reduction in the RU network. Similarly, ES+DSR only increases the

value of CAIDI in the UR network. The performance of both indices in the UR network is

due to its symmetric nature which allows for more ‘balanced’ occurrence of faults that are

significantly alleviated by the action of ES+DSR, leading to not only continuous supply but

also a significant reduction in the number of LPs affected. This has the effect of increasing

these two customer-oriented indices and presenting the unexpected result of a worse reliability
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performance. However, the increase in these indices is a sign that ES+DSR is most effective in

the UR network, as explained in Section 3.5.4 (the product of ENS and LPs affected).

Also, the number of affected LPs is significantly reduced, thus presenting a higher ACCI or

duration of LIs for only the affected customers. Table 3.18 illustrates this property whereby the

percentage number of LPs affected by LIs reduces from 14% of the 48 LPs (6.64) in the base

case to only 3% when ES+DSR is applied, for the UR network. Conversely, the reductions to

the number of LPs affected by LIs are not as large when ES+DSR is deployed in the RU (12%

to 8%) and SU (23% to 11%) networks. Table 3.18 also confirms the minor changes in the

MAIFI and CAMIFI indices given the small changes to the number of LPs affected by SIs for

each network when DERs are deployed [154]. Finally, the PV+DSR scenario is not included

since it does not have a meaningful impact on the LPs affected by LIs or SIs for each network.

Table 3.18: Number of LPs affected by supply interruptions.

Network Scenario Base case ES+DSR
MV Network RU SU UR RU SU UR
Total Number of LPs 34 44 48 34 44 48

LIs Number of LPs Affected 4.22 10.26 6.64 2.56 4.81 1.64
Percentage of LPs affected 12% 23% 14% 8% 11% 3%

SIs Number of LPs Affected 5.58 12.63 8.39 5.76 12.82 8.60
Percentage of LPs affected 16% 29% 17% 17% 29% 18%

Figure 3.27 presents the CDF analysis of SAIDI when ES+DSR has been deployed. This graph

confirms that there is better reliability performance improvement in the UR network through

the effective use of ES+DSR. Moreover, there is a higher probability (0.833) of customers

experiencing an interruption of 0.2 hours or 12 minutes in the UR network, than the same

probability in the RU network (0.629) and the SU network (0.508). This result is significant

as it highlights key planning and operational decisions for the focus and deployment of such

technologies to these various types of distribution networks [154].

3.6.2.4 Impact of DERs on Average Energy Not Supplied

Despite currently not being widely reported by DNOs to regulators [11], the ENS index is

central to a very useful understanding of the capability of a network to minimise the impact

of supply interruptions to the customers served. By limiting ENS, it is possible to raise the

WTP of customers who are then more tolerant about the occurrence of supply interruptions

given their confidence in the ability to have alternative supply during these periods. In this

way, upstream faults that affect the CoS are more tolerable given that customers continue to

enjoy a high-quality continuous supply. However, even if DNOs reported this index, as they



3.6. Disaggregation of Reported Reliability Performance Metrics 97

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2 1.6 2 2.4 2.8

Pr
ob

ab
ili

ty
 (

CD
F)

SAIDI (hours/customer/year)

Rural (Avg 0.344)
Suburban (Avg 0.762)
Urban (Avg 0.282)

Figure 3.27: Impact of ES+DSR on SAIDI for all MV networks using PDFs.

currently do for SAIFI and SAIDI indices, they might do so by aggregating the total ENS

in their served area. A PDF of the resultant ENS index might look like the one present in

Figure 3.28, which shows the PDF for the AGG network earlier described. This once again

compels the necessity for disaggregation of this ENS index because the main effect of having

these networks aggregated is to significantly lower the collective probability of having no (or

0) ENS to the network. The network aggregation tends to ‘confine’ possible ENS values to the

average value given various contributions from the constituent networks i.e. RU, SU and UR.

This is also the case when DERs are applied to the so-called AGG network.
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Figure 3.28: ENS per scenario for the AGG network.

Furthermore, even in this case, ES+DSR has the most significant impact of increasing the prob-

ability of ENS values within the range 1-50 kWh per customer per year, given the combined

average reduction to the ENS offered by ES+DSR in all constituent networks [154]. Therefore,

as part of the recommendation from this research, Figure 3.29 illustrates how much information
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can be extracted from these networks if their reliability performance indices are disaggregated

and reported as such. As can be seen, the values of ENS around 1-50 kWh mainly occur in the

RU and SU networks i.e. have the highest probability of occurrence. Conversely, the UR net-

work depicts a situation where most ENS values are likely to be 0 (for all network scenarios) as

opposed to being in the region of 1-50 kWh/customer/year [154]. It is also evident that while

the RU network will have a very low likelihood of having any of its customers suffer more than

100 kWh of ENS per year, different customers in the SU network will invariably have a much

more variable spread of the possible ENS each year. In addition, as a direct comparison to the

SU network, the UR network benefits significantly from ES+DSR, which raises the probability

of 0 ENS from the base case. It is also notable that, despite the larger number of customers

in the UR network (9120) as compared to 3344 customers in the SU network, the probability

of ENS values higher than 200 kWh per customer per year are relatively similar regardless

of the DERs deployed. This means that the UR network has got a significantly better overall

performance than the SU network. It is thus clear that the possible amount of information lost

is significantly higher if ENS index is reported with Figure 3.28 as opposed to Figure 3.29.

3.6.3 Impact of Undergrounding on Network Reliability Performance

The results presented in Section 3.6.2 contain an extra layer of information which concerns the

impact of using underground cables in distribution networks in conjunction or in place of over-

head lines. Different studies [33] on this topic tend to have the expectation that underground

cables experience fewer incidents (i.e. less failure rates) but conversely longer interruption

times because they take longer to be repaired than overhead lines. This is mainly because

underground cables are protected from many common causes of failure e.g. storms, vehicu-

lar incidents, etc. although they may sometimes suffer damage by earthworks or specific rare

natural events e.g., floods and will generally be more difficult (take longer) to repair. There is

therefore a deduction that the positive effect of undergrounding (increasing the percentage of

underground lines in the network) on SAIFI should be higher than the benefits on SAIDI. How-

ever, often, no such trend is observed in real world datasets [33]. The modelling and simulation

results in this thesis may be used to reproduce and validate this unexpected observation.

Using Table 3.19 (obtained from Table 3.17), it is possible to quantify the positive effects

of ‘undergrounding’ on SAIFI and SAIDI by comparing the improvement in each indicator

between the RU (100% overhead lines) and UR MV networks (100% underground cables).

The SAIDI reported in the UR network (without any DERs) is 12.56% lower than that in

the RU network. Conversely, the SAIFI reported in the UR network is 12.95% higher than

in the RU network. This confirms an unexpected result as it would be expected that SAIDI

would be higher while SAIFI is lower in the UR network. However, due to the significantly
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higher number of customers and PCs in the UR network, there are more faults affecting more

customers and thus the higher SAIFI (0.157). Also, the SAIDI is lower (0.550) in the UR

network due to the symmetric nature of the network model used i.e. a repetitive pattern of

identical feeders with the same number of customers. Future work will provide a more robust

analysis by considering spatially disaggregated reliability data (failure rates and repair times)

for the different load sectors to ensure that differences in network topologies are modelled more

accurately. For example, usually crew response times in UR networks are higher than in RU

areas. Therefore, the MTTR of the PCs in UR networks is lower and this often results in lower

SAIDI. Moreover, the protection settings, and indeed the devices used, in RU and UR networks

are usually different. Therefore, these must also be considered before a totally data-accurate

modelling can be achieved.

Table 3.19: Impact of Undergrounding - Rural and Urban.

Index Rural
(OHL)

Urban
(UC)

Reduction
from RU

SAIDI
(hours/cust./year) 0.629 0.550 12.56%

SAIFI
(ints/cust./year) 0.139 0.157 -12.95%

In addition, Table 3.20 compares the SU network (both OHLs and UCs) to the UR network.

These networks are represented by 44 LPs and 48 LPs, respectively. Results demonstrate that

SAIDI improves (reduces) by 59.29% compared to a SAIFI reduction of only 46.96% as more

undergrounding is added into the network (UR). It would be expected that the reduction in

SAIFI would be greater than that in SAIDI because UCs generally have a lower number of

failures but take longer to repair than OHLs. However, the symmetrical nature of the UR

network results in a higher reduction in SAIDI than the reduction in SAIFI. For a fairer com-

parison, the future work will include the spatial disaggregation of failure rates and repair times

as stated in the previous paragraph.

Table 3.20: Impact of Undergrounding - Suburban and Urban.

Index Suburban
(OHL+UC)

Urban
(UC)

Reduction
from SU

SAIDI
(hours/cust./year) 1.351 0.550 59.29%

SAIFI
(ints/cust./year) 0.296 0.157 46.96%
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3.7 Conclusions

This chapter presents various analyses utilising an enhanced MCS methodology. Some of the

key methodology benefits include its wider applicability to varying system configurations and

load mixes, as well as its capability to demonstrate the relative reliability-performance benefits

of different SGTs. Accordingly, the chapter presents an investigation of the potential relia-

bility performance improvements from the implementation of three SGTs: PV, ES and DSR.

The technology potential is assessed by percentage improvements in the calculated standard

reliability indices over the base case (no SGTs). The analyses are illustrated for typical MV

distribution systems. Additionally, the impact of cloud movements and transients on the PV

power output is investigated alongside the associated energy loss and the effects of clouding

on system reliability performance. Results show the possible overestimation of PV benefits

if clouding effects are not accurately accounted for in PV models. ES presents the highest

capability to reduce the number of interrupted customers, and more importantly, the ENS.

Furthermore, the chapter is also concerned with emphasising the need for the commonly used

system-wide reliability indices to be complemented with customer-oriented indices to accu-

rately assess power supply risk, especially to worst served customers. It is found that the ben-

efits offered by DERs are even more pronounced when customer-oriented indices are utilised.

Savings realised in reductions to ENS (to affected customers) have comparative financial im-

plications and can form part of the justification for the installation of local ES systems, whose

deployment is often cautioned by the attached costs. Finally, the chapter emphasises the neces-

sity to distinguish between customer-groups in different types of distribution networks when

reporting the associated periodic reliability performance. This leads to a disaggregation of the

typically reported aggregate index values (which mask true location-specific system perfor-

mance) thereby allowing for suitable identification of opportunities for targeted performance-

enhancing solutions given the various strengths and weaknesses of the individual networks.



Chapter 4

Model Order Reduction for Reliability
Assessment of Flexible Power
Networks

Chapter Overview

When assessing the performance of large MV systems such as those presented in the Chapter

3, the core reliability assessment methodology used is limited in efficacy by the computational

time and burden required, as well as the accuracy of the utilised aggregation techniques used to

lower system complexity. For that purpose, specifically tailored aggregation techniques need

to be integrated to this methodology that adequately represent the varying network topologies

as well as the spatial distribution of the demand supply points. Model order reduction (MOR)

has demonstrated its robustness and wide applicability in simulating large-scale mathematical

models in the engineering research domain. Therefore, this chapter proposes a novel applica-

tion of MOR techniques of balanced truncation to quantify relevant reliability metrics of power

distribution systems. MOR is used to derive reliability models of electricity networks, which

exhibit a reduced number of equivalent components and thus simplify the complexity for net-

work analysis. The numerous case studies presented, based on both radial and meshed systems,

demonstrate that the proposed method allows for a faster reliability assessment through MCS

while preserving high accuracy. The proposed MOR-for-reliability methodology is compared

against other reduction techniques introduced in Chapter 2 such as TNR and AEM.

It is important to highlight that the MCS analyses in this chapter are also time-sequential.

However, while Chapter 3 used only SDS for MCS analyses, in this chapter, STS is utilised.
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This is because MOR is used to reduce the number of system states and therefore MCS must

be done while focusing on state transitions of the entire system rather than on PC states or PC

state durations. The standard methodology used for STS is as described in Chapter 2 and is

performed on both original and reduced order networks to provide a fair comparison.
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Abstract

Model order reduction (MOR) has demonstrated its robustness and wide applicability in sim-

ulating large-scale mathematical models in the engineering research domain. In this paper,

MOR techniques are applied to quantify relevant reliability metrics of power distribution sys-

tems and the impact associated with the integration of different smart grid technologies. To

the best of the authors’ knowledge, this is the first application of MOR techniques of balanced

truncation to derive reliability models of electricity networks, which exhibit a reduced number

of equivalent components and thus simplify the complexity for network analysis. The exten-

sive case studies presented, based on both radial and meshed systems, demonstrate that the

proposed technique allows for a faster reliability assessment through Monte Carlo simulation

while preserving high accuracy. The proposed methodology can also be applied to systems

endowed with photovoltaic and energy storage technologies, emphasising that this approach

represents a promising starting point for reliability analysis of more complex systems, which

are normally characterised by a large penetration of these distributed energy resources.

Keywords: balanced truncation, distributed energy resources, distribution networks, model

order reduction, Monte Carlo simulation, system reliability

Acronyms

AEM Alternative Existing Method

BT Balanced Truncation

CAIDI Customer Average Interruption Duration Index

CAIFI Customer Average Interruption Frequency Index

CoV Coefficient of Variation

CTMC Continuous Time Markov Chain

DNO Distribution Network Operator

ENS Energy Not Supplied

ES Energy Storage

HPC High Performance Computing

HSV Hankel Singular Value

LP Load Point

MCS Monte Carlo Simulation

MESS Matrix Equation Sparse Solver

MOR Model Order Reduction

OR Order Reduction

PC Power Component

PNS Power Not Supplied
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PSS R©E Power System Simulator for Engineering

PV Photovoltaic

RBTS Roy Billinton Test System

SAIDI System Average Interruption Duration Index

SAIFI System Average Interruption Frequency Index

TNR Traditional Network Reduction

Nomenclature

A system matrix or state transition matrix

B control/input matrix

C output matrix

H(s) transfer function of the original system

Ĥ(s) transfer function of the reduced system

n state space dimension of the original system

N number of samples

P controllability Gramian

Q observability Gramian

r state space dimension of the reduced system

T transformation matrix

u(·) input

U unavailability

x(t) state vector

y(·) output of the original system

ŷ(·) output of the reduced system

σ HSV of a system

λ component failure rate

µ component repair rate

‖·‖∞ H∞-norm of a rational transfer function
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4.1 Introduction

Power systems are inherently complex and can often be accurately described only by using

models with several variables, depending on the intended application. Since complex models

are computationally expensive to simulate, it is common practice to use simplified represen-

tations of the power system for analysis and design purposes. Reduced models might also be

necessary due to other practical reasons, for example when only a limited number of mea-

surements are available for system monitoring, or in the case of interconnected power systems

whose single areas (owned by different utilities) are reluctant to share complete and detailed

system information [1]. Even with systematic problem decomposition, the pragmatic choice

is often to use reduced versions of the original network to run system simulations, where the

computational complexity depends at least polynomially on the size of the network [2].

The employment of simplified network models has always been very common in reliability

analyses of distribution networks [3, 4] and it is becoming even more relevant as the level of

complexity in power systems rapidly increases [5], following the integration of photovoltaic

renewable generation (PV) and technologies such as energy storage (ES), electric vehicles and

demand response actuators. In a context of growing complexity, it will be necessary to use

simplified benchmark models to accurately assess network reliability and determine efficient

future investments for a flexible and secure power grid with appropriate reliability standards

[6].

This paper proposes the utilization of model order reduction (MOR) tools to develop accurate

reduced models of distribution networks for reliability purposes. A rigorous analytical method

is used to obtain simplified grid representations that minimise the estimation error of relevant

reliability indexes while ensuring significantly shorter computational times. Furthermore, the

proposed methodology can easily accommodate the inclusion of PV and ES technologies and

quantify their impact in terms of reliability. The rest of the paper is organised as follows: the

state of the art is reviewed in the next section, and the background theory of MOR is explored in

Section 4.3. Section 4.4 details the development of the methodology using MOR for reliability

assessment. Section 4.5 evaluates the performance of the proposed approach on different case

studies and conclusive remarks are presented in Section 4.6.

4.2 Network Reduction in Power System Analysis – Related Works

It is common in network studies to simplify the utilised models to obtain a system descrip-

tion with the best trade-off between accuracy and complexity. In these cases, the size of the

network models is generally reduced by substituting sets of connected elements (buses, lines,
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transformers, etc.) and transforming them into smaller and numerically equivalent systems [7].

Typical applications of this approach include symmetrical or asymmetrical short circuit calcu-

lations and load flow calculations. The performance of the reduced networks representations

is evaluated in terms of accuracy of the power flow results with respect to the (more complex)

initial model [8].

The typical approach for network reduction in a reliability context is to simplify the system

representation by systematically replacing certain connected elements of the chosen reliability

model (e.g., series and parallel configurations in reliability block diagrams) with fewer equiva-

lent components exhibiting the same reliability properties. The main drawbacks of this method

of network reduction are a) its limited applicability, i.e. only to networks with relatively simple

topology [9]; b) it cannot be used to calculate customer-based reliability indices such as cus-

tomer average interruption duration and frequency indices (CAIDI and CAIFI) [10] because it

does not allow for an accurate aggregation of demand at different network nodes; c) the im-

pact of critical or unreliable areas and components on the system reliability metrics becomes

increasingly harder to distinguish; d) it is difficult to accommodate some relevant reliability

features such as different modes of failure, maintenance and weather effects. Despite those

drawbacks, this method is useful in practice, particularly for simple analyses where analytical

refinements are not desired [4]. Given these limitations, alternative approaches have been de-

veloped, such as the decomposition method, which is based on conditioning a complex system

on the state of a key power component (PC) [9]. However, this method is not suitable for large

systems because, as the number of key PCs increase, the model quickly becomes unmanage-

able. There also exist analysis algorithms based on testing minimal paths (or using the minimal

cut set approach) [9] but their main drawback is that, for large systems, the increased number

of paths and cut sets leads to a combinatorial explosion.

This research explores a new approach to network reduction for reliability assessment purposes

based on MOR. The chosen method relies on singular value decomposition and balanced trun-

cation. The dynamical system describing the reliability of the network is simplified by first

calculating its Hankel singular values (HSVs) [11], which indicate the relevance of each sys-

tem state in terms of reliability, and then the dynamics which have a smaller impact on the

considered reliability indexes are neglected. Model Reduction has already been applied in var-

ious power system analyses: MOR using balanced empirical Gramians was investigated for

linear systems in [12-14] and nonlinear systems in [15-19]. Given the need to reduce large

power systems, [20] used a linear system reduction method and the work was successful for

small-signal stability while [21] performed a parametric MOR aimed at preserving parameters

related to decentralised power system devices such as stabilisers. Additionally, MOR has been

used to obtain reduced models of PV systems [22, 23], battery energy storage systems [24] and
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of microgrids [25], using the singular perturbation technique. Albeit not explored in this paper,

another important class of MOR methods is based on Krylov subspaces (moment matching).

It was used for reduction of a large-scale multiport piezo energy harvester in [26] while in [27]

and [28], this technique was extended to reduce large scale power systems and interconnected

systems, respectively.

4.2.1 Article Contributions

This work proposes a novel approach for the creation of simplified network models for reliabil-

ity assessment purposes. To the best of our knowledge, this is the first attempt to apply model

order reduction (MOR) in this context and analytically derive simplified grid representations

that contain the most important system dynamics and, at the same time, minimise the error

of the considered grid reliability metrics. Time-sequential Monte Carlo simulations (MCSs)

are carried out on systems of varying complexity to verify that the resulting reduced models

provide a reasonably accurate reliability assessment while being faster to simulate. It is also

shown that the proposed technique is able to effectively quantify the impact of PV and ES on

network reliability. The proposed methodology is presented in Figure 4.1.

Markov Chain Representation

Singular Value Decomposition

Model Truncation

• Large interconnected system
• Slow to simulate

• Small set of equivalent components
• Minimum approximation error
• Faster simulation time

Auxiliary

Offshore wind 
power station

1 kV

415 V

11 kV

33 kV

132 kV

400 kV 275 
kV

11 kV 15 kV
Coal-fired 
power station
23 kV

Oil-fired 
power station

Combined 
cycle gas 
power station

Nuclear 
power station

35 kV

Auxiliary

Offshore wind 
power station

1 kV

415 V

11 kV

33 kV

132 kV

400 kV 275 
kV

11 kV 15 kV
Coal-fired 
power station
23 kV

Oil-fired 
power station

Combined 
cycle gas 
power station

Nuclear 
power station

35 kV

Figure 4.1: Representation of the proposed methodology.

4.3 MOR Theory

This section details the general theoretical framework of MOR and balanced truncation (BT)

while the application of this technique to the specific problem of deriving simplified reliability

models for distribution networks is presented in Section 4.4.
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Let us consider the following linear time-invariant system with input u and output y:

ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),
(4.1)

The internal dynamics of the system are represented by the state vector x(t) ∈ Rn, whose

evolution over time is determined by the system matrix A ∈ Rnxn and by the input matrix

B∈Rnxm. In the present formulation, there is no direct input/output relationship and the system

output y(t) corresponds to a linear combination of the state x(t), according to the output matrix

C ∈ Rqxn.

Model order reduction (MOR) aims at reducing the order n of the system while preserving the

fundamental relationships between its inputs and outputs. To this end, the state vector x(t) is

projected onto a low-dimensional subspace, neglecting the less relevant system dynamics. The

MOR is performed to minimise, for any input u(·), the error between the output response of

the reduced model ŷ(·) and the one of the original model y(·) [29].

We restrict our attention to stable systems, i.e. system which has a matrix A with all its eigen-

values in the open left half of the complex plane C−. We are interested in constructing a

reduced-order system as in (4.2):

˙̂x(t) = Âx̂(t)+ B̂u(t),

ŷ(t) = Ĉx̂(t),
(4.2)

where Â ∈ Rrxr, B̂ ∈ Rrxm, Ĉ ∈ Rqxr, and r < n. In the present context of linear systems, BT

is one of the preferred methods for MOR since it preserves stability and provides a global

computable error bound between the transfer functions of the original and the reduced-order

system. This notion is expressed through the transfer functions H(s), Ĥ(s) ∈ Cqxm of the orig-

inal and reduced system, respectively, which denote the relationships between the input signal

and the resulting output response in the frequency domain. An expression for the error between

the original and the reduced system output, given by (4.3), is obtained by driving both systems

with the same input u(·):
‖y− ŷ‖2 ≤ ‖H− Ĥ‖∞‖u‖2 (4.3)

where ‖·‖2 is the Euclidean norm and ‖·‖∞ is the H∞-norm of a rational transfer function [29].
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4.3.1 Balanced Truncation

The fundamental principle of BT for MOR relies on the notions of controllability and observ-

ability matrices P and Q, as defined in (4.4) [30]:

P =
∫

∞

0
eAtBBteAT tdt, Q =

∫
∞

0
eAT tCTCeAtdt, (4.4)

In broad terms, the controllability Gramian P determines how much the inputs u affect each

component in the state x. Similarly, the observability Gramian Q quantifies the impact of each

state component in x on the system outputs y. The first step of the BT technique is a change of

coordinates in the original system (4.1), according to the transformation matrix T ∈ Rnxn:

˙̃x(t) = TAT−1x̃(t)+T Bu(t),

y(t) =CT−1x̃(t),
(4.5)

It is possible to demonstrate that the matrix T can always be chosen to obtain new Gramians P̃

and Q̃ which are equal and diagonal:

P̃ = T PT T = Q̃ = T−T QT−1 = ∑ = diag(σ1,σ2, ...,σn), (4.6)

In equation (4.6), the terms σ1, ...,σn denote (in non-increasing order) the Hankel Singular

Values (HSVs) of system (4.1), which broadly speaking provide a measure of energy for each

system state. The state vector x̃ in (4.5) can now be partitioned as x̃(t) =

[
x̃1(t)

x̃2(t)

]
, where

x̃1(t) ∈ Rr contains the r state components associated to the highest HSVs of the system and

indicates the dimension of the reduced system. The equations in (4.5) can be rewritten as:

x̃(t) =

[
Ã11 Ã12

Ã21 Ã22

][
x̃1(t)

x̃2(t)

]
+

[
B̃1

B̃2

]
u(t),

ỹ(t) =
[
C̃1 C̃2

][x̃1(t)

x̃2(t)

]
,

(4.7)

The reduced-order system (4.2) can then be obtained by simple truncation [29,31] from the

balanced realisation (4.7) in partitioned form, with:

Â = Ã11 ∈ Rrxr, B̂ = B̃1 ∈ Rrxm, Ĉ = C̃1 ∈ Rqxr, (4.8)
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A key fundamental result of BT is that the global error between H(·) and Ĥ(·), i.e. between

the transfer functions of the original and reduced system, fulfils the following condition:

‖H− Ĥ‖∞ ≤ 2(σr+1 +σr+2 + ...+σn) (4.9)

where σr+1, ...,σn are the neglected HSVs. This means that the dimension r of the reduced sys-

tem can be selected to achieve the desired trade-off between system size and model accuracy.

4.3.2 Model Order Reduction of Systems without Inputs

As shown later on, the dynamical system considered in this work for grid reliability assessment

does not have any input. This means that some minimal adjustments are required in the MOR

technique presented in the previous subsection. In particular, the controllability Gramian P

is not well defined and the matrix T for the change of coordinates in the original system is

calculated to only diagonalize the observability Gramian Q:

Q̃ = T−1QT = ∑ = diag(σ1,σ2, ...,σn), (4.10)

The reduced-order system is then determined according to (4.5)-(4.8). In this specific case, the

error bound of the model order reduction can be derived on the quadratic norm of the output.

Recalling that the natural response of a linear system with initial state x0 is equal to y =CeAtx0,

in the changed coordinates we have:∫
∞

0
‖ỹ(t)‖2

2dt =
∫

∞

0
x̃T

0 eÃT tC̃TC̃eÃt x̃0dt = x̃T
0 Q̃x̃0 = x̃T

0 ·diag(σ1,σ2, ...,σn) · x̃0. (4.11)

It follows that, if the reduced-order model is obtained according to the truncation presented in

(4.8), we have the following error bound on the outputs ỹ and ŷ of the original and reduced-

order system: ∫
∞

0
‖ỹ(t)‖2

2−‖ŷ(t)‖2
2dt ≤

n

∑
i=r+1

σi ∀x̃0 : ‖x̃0‖1 = 1. (4.12)

4.4 MOR for Reliability Assessment

The main aim of the proposed methodology is to develop a tool capable of creating simplified

grid models that preserve the key features of the original network and allow for accurate and

faster reliability analyses. This section presents the methodology for developing the system
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model, performing the model order reduction, and finally carrying out time-sequential MCS

analyses to quantify the reliability metrics of interest.

4.4.1 Modelling System Descriptor Matrices

This section describes how the MOR techniques discussed in Section 4.3 can be applied to the

specific case of reliability assessment of distribution networks. As a first step, the working state

of a generic grid is described as a continuous-time Markov chain (CTMC), under the common

assumption of Poisson distributions for the fail/repair times of the system PCs. Each discrete

state of the CTMC corresponds to a specific reliability state of the system components and

the transitions between these states are associated with the failure or the repairing of a certain

component. The discrete states and transitions of the CTMC, for the simple case of a system

with two repairable components [3,32], are shown in Figure 4.2. In this example, each PC has

two modes (UP/DOWN), and the failure and repair rates are denoted by λ and µ , respectively.

Since we are considering 2 components, the resulting Markov chain will have 22 discrete states.

The passage from state 1 (with both components UP) to state 2 (with component 1 DOWN and

component 2 UP) will occur with rate λ1, i.e. the failure rate of component 1. Conversely, the

passage from state 2 to 1 will occur with rate µ1, i.e. the repair rate of component 1.

1	Up
2	Up
(1)

1	Down
2	Up
(2)

1	Down
2	Down
(4)

1	Up
2	Down
(3)

λ1

λ2

λ1

λ2

μ1

μ2

μ1

μ2

Figure 4.2: Markov chain representing a system with two repairable components [3].

On this basis, the proposed modelling approach uses a probabilistic description to characterise

the state vector in the system (4.1): the dynamic state x(t) will represent the probability of a

specific reliability state of the system PCs (i.e. a specific discrete state of the CTMC) to occur

at time t. The evolution of x(t) follows the equations in (4.1) and the associated state matrix A
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is given by (4.13).

A =


−(λ1 +λ2) µ1 µ2 0

λ1 −(λ2 +µ1) 0 µ2

λ2 0 −(λ1 +µ2) µ1

0 λ2 λ1 −(µ1 +µ2)

 (4.13)

In the present case, the nondiagonal element ai j of A equals to the transition rate from state i

to j, whereas the diagonal elements aii are chosen to obtain zero-sum columns since the sums

of the rates of all transitions leaving and entering the reliability state must be 0:

aii =−∑
j 6=i

ai j (4.14)

Note that the state matrix A corresponds to the transpose of the stochastic transitional prob-

ability matrix in [3] and, given its specific properties (zero-sum columns and non-negative

off-diagonal elements), it is also a Metzler matrix [33].

We wish to emphasise that the proposed modelling approach can also accommodate common

mode failures of system components, considering transitions to reliability states that have more

than one additional component in DOWN mode. For example, in Figure 4.2, a common mode

failure of the two system components would be modelled by a transition from state (1) to

state (4), specifying its non-negative transition rate as the value of a41 in (4.13). Alternatively,

cascaded failures can be modelled as events where the failure of a certain component leads to

an increased failure rate of another component. For example, consider the possibility that a

failure of PC1 increases the failure rate of PC2. This would imply that the transition rate from

state (2) to state (4) in Figure 4.2 (i.e. the element a42 in (4.13)) would be higher than the

transition rate λ2 from state (1) to state (3), i.e. the element a31 in (4.13).

In the present case, we are not considering the terms Bu(t) in (4.1), since the chosen reliability

modelling approach does not entail any external input. As previously stated, the network reli-

ability performance is based on uncontrollable fault occurrences and corresponding repairs to

faulty PCs that allow for supply restoration and are performed with fixed rates.

The output y(t) of system (4.1) has dimension 1 and corresponds to the expected value of the

Power Not Supplied (PNS) at time t. This implies that each term c j in the matrix C corresponds

to the PNS associated to the kth reliability state of the system. For example, considering again

that x1 denotes the probability that all the system PCs are in the UP mode, we will have c1 = 0.
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With this approach, the Energy Not Supplied (ENS) in the system can be calculated by taking

the integral of y(t).

4.4.2 MOR Implementation

This subsection details the actual implementation of the proposed approach for network relia-

bility assessment. The analysis will consider the ENS index as the reliability metric of interest.

This is mostly used at transmission level and is usually less reported by distribution network

operators (DNOs) but it is gradually being considered by regulators for an optimal system per-

formance due to its value in the quantification of customer satisfaction. This can be seen in a

few European countries where ENS is currently assessed at distribution level such as Norway

and Romania [6]. ENS is also widely used in the literature for network reliability assessment

e.g. [22,32]. As the power grid becomes more complex, this index will have to inevitably be

considered as a benchmark for the performance assessment of DNOs.

Calculation of the Network Reliability Model

The first step in the implementation of the MOR procedure is the definition of x and y and the

calculation of the matrices A and C in the dynamical system (4.1) describing the reliability of

the network. From Section 4.4.1, x(t) denotes the probability of each possible combination of

reliability states of the system components at time t. The matrix A describes the evolution of x

over time and is obtained from (4.13), where λ and µ denote respectively the failure and repair

rates of the PCs and can be obtained from available published reliability data. The output y(t) is

assumed to be equal to the PNS of the system at time t, so that its integral over time returns the

chosen reliability index, ENS. Since a single output is considered, the matrix C has dimensions

1×n and its kth component corresponds to the power not supplied in the kth reliability state of

the system components considered in the state x. For example, k = 1 denotes the scenario with

all system components in the UP state and therefore the associated value c1 will be equal to 0.

Conversely, since k = n corresponds to the case with all components in the DOWN mode, the

associated value cn will be equal to the total power not supplied in this scenario. The calculation

of C in networks with complex topology requires the use of power simulation software PSS R©E

(automated using Python), as power flow assessments must be used to determine the amount of

power not supplied at each load point (LP), for each reliability state. Algorithm 1 summarises

the steps used to construct matrix C in all the analyses presented.
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Algorithm 1: Compute output matrix C
Input: Determine N power components of the test network
1: Assign 2 reliability states to each component – Up and Down
2: Create a list of all possible permutations of component states, indexed

by k = 1,2, . . . ,n where n = 2N

3: Initialise: k = 1
4: while k ≤ n
5: Run power flow algorithm for system state k
6: Determine the total power not supplied ck in system state k,
7: k = k+1
8: end while
9: Compute C

Output: Matrix C = {c1,c2, . . . ,cn}

Calculation of the Reduced-order Model

The MOR methodology is summarised as follows: develop a complete state-space represen-

tation (4.1) of a network reliability model; use system Gramians to determine which states

contain the most useful ‘information content’ with respect to the selected reliability index

(ENS); neglect the states with lower impact; finally, calculate a state-space representation of

the reduced-order model that can adequately approximate the original system. The first step to

perform the MOR on the original network model is to list the N repairable PCs that comprise

the network and calculate the resulting failure and repair rates (λ and µ , respectively) from

available reliability statistics. For simulation purposes, system (4.1) and all the associated sys-

tems are converted from continuous to discrete time, adequately rescaling the transition rates

λ and µ according to the chosen simulation time-step, for example, ∆t = 1 hour. Furthermore,

matrix C is obtained using Algorithm 1.

It is important to appreciate that A in (4.13) has a rank of n− 1, where n is the number of

system states [3]. This follows from the chosen probabilistic description of the system, as the

sum of probabilities for all the possible reliability states must always be equal to 1 i.e. the sum

of columns in matrix A (i.e. the derivative of the total probability) must be equal to zero. This

means that each column of A has zero sum (i.e. the sum over all the elements of each column

is zero) and therefore one row can be written as the total sum (with changed sign) of the others.

It follows that, a single state xn can be neglected in the analysis and simply calculated ex-post

as the sum of 1 minus the probability of the other states, modifying the A and C matrices

accordingly. For this study, the removed system state is the one representing the probability

of all PCs being in the UP state. The next step is to determine the transformation matrix T

using (4.10) and then truncating (4.7) according to (4.8). This allows for a model reduction

of the reduced form of the matrix A (which is full rank) from order n− 1 to r− 1. Finally,
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the initially removed state is added back to the reduced model exploiting the aforementioned

property of the sum of the derivatives ẋ(t) and obtaining the new linear system as represented

in (4.2). Notably, studies in [29] show that the calculation of the system observability Gramian

Q in (4.4) using the new full rank state matrix A ensures that system stability is preserved when

MOR is done using truncation.

4.4.3 Method Limitations

The proposed methodology represents a significant step towards a simplified and accurate anal-

ysis of complex networks. As demonstrated in the case studies of Section 4.5, the presented

MOR approach allows for a faster reliability assessment with a minimum impact on accuracy.

Nevertheless, the proposed approach still exhibits some limitations that will be tackled in fu-

ture work. In particular, with the current formulation, the number of PCs of the original system

that can be modelled is limited by hardware constraints. The two main computational-memory

bottlenecks arise from building the state transition matrix A (4.13) and obtaining the system

Gramians (4.4) by solving computationally expensive Lyapunov equations [29,31]. These is-

sues were tackled by developing ad-hoc programming solutions and adopting the matrix equa-

tion sparse solver (MESS) toolbox [34] for a more efficient resolution of high-order Lyapunov

equations. In future work, different techniques will be explored to obtain a faster computa-

tion of the relevant Gramian matrices, allowing for the simulation of larger systems. These

techniques will exploit the low-rank property for solutions of large-scale, sparse Lyapunov

equations [29] e.g. methods based on the Arnoldi process [35,36] and Krylov subspace meth-

ods [36,37]. A distributed system reduction will also be investigated, deriving the simplified

grid model as a collection of interconnected smaller systems, each obtained with the MOR

approach presented in this work.

Furthermore, peak demand profiles are utilised at network LPs in addition to the use of constant

PC failure and repair rates used to calculate matrix A in (4.13). However, further work will

integrate time-varying demand profiles as well as time-varying failure rates that account for

the PC’s lifecycle [38,39]. These model extensions will be implemented by utilising alternative

MOR techniques presented in the literature for time-varying dynamical systems, such as the

ones in [40,41]. These improvements will be accompanied by the incorporation of different

load sectors (residential, industrial and commercial) into the network models to allow for a

more accurate quantification of the impact of each system state based on the nature of the load

supplied and the time during which network interruptions (leading to ENS) occur.

Also, for MCS analyses, the current methodology only returns models of order r = 2. Higher

values of r result in system matrices A in (4.13) that are not in Metzler form. Therefore, the
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associated system lacks the Markov property and cannot be simulated with MCS methods.

Future research will test new methods for the approximation of Metzler matrices. Work in

[42,43] investigated this aspect but the proposed methods were not directly applicable to reli-

ability studies because they focused on the stability of the resultant Metzler matrix rather than

its Markovian properties.

Finally, the frequency and duration of interruptions are not explicitly included in the chosen

state-space representation (4.1) of the grid reliability. This means that reliability metrics -

SAIFI and SAIDI can be calculated ex-post with MCSs but cannot be used as relevant metrics

over which the approximation error of the proposed MOR procedure is minimized. However,

SAIFI and SAIDI represent two fundamental indices in the evaluation of network reliability and

therefore, in order to explicitly consider them in the MOR procedure, the current model will be

expanded in future works, for example including additional states in (4.13) that keep track of

the failure times of the different power components. Nonetheless, the analysis is still capable

of demonstrating the effectiveness of the proposed MOR methodology, as the key aspect of its

validation lies in comparing system outputs of the original vs. reduced-order system [29].

4.5 Results and Discussions

Relevant case studies are considered to evaluate the performance of the proposed MOR tech-

nique and its capability to generate accurate reduced models of system reliability. This work

assumes an ideal operation of conventional generators in its network reliability assessment and

focuses on the failure/repair behaviour of PCs at a transmission and distribution level. These

include underground cables, overhead lines, transformers, protection devices, capacitor banks

and busbars. Also, all analyses were carried out by using the high-performance computing

(HPC) facilities at the University of Bath, UK. The particular hardware used has the following

specifications: dual socket Intel Ivybridge nodes with E5-2650v2 processors, 2.6GHz with 8

cores, and 512GB of memory [44].

4.5.1 Illustration of MOR Functionality

An example of the proposed modelling approach and the associated MOR methodology is

presented for the simple network in Figure 4.3. This network model is converted to state-

space representation (4.1) by first defining the state vector x and output y. State x denotes the

probability of each possible combination of reliability states of the system PCs (i.e. buses and

lines) at time t. The associated state matrix A in (4.13) is calculated by using failure and repair

rates of all system PCs and has a dimension of n×n where n = 2|PCs| is the order of the system.
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The output y denotes the system output in terms of the total PNS to the two load points. It is a

linear combination of entries in matrix C that correspond to the PNS associated to each system

reliability state. For example, x1 denotes the probability that all PCs are in the UP state and

all the required power is being supplied, implying c1= 0. Conversely, since x2 represents the

probability that all PCs are in the UP state except bus B2, then the associated entry c2 in matrix

C will be equal to the power demand that is not being supplied in this case at bus B2, i.e.

c2 = 10.

7.5	MW 10	MW

L1

L2

B1 B2

G

Figure 4.3: Test system with 4 components (system order n = 24 = 16).

Having asserted the meaning of x(·) and y(·) in the context of network reliability, as well as

having calculated all system descriptor matrices, the system in Figure 4.3 is reduced using the

MOR procedure presented. Recalling that this system has no input, the transformation matrix

T for the change of coordinates in the original system is obtained using (4.10) instead of (4.6).

The reduced-order system (4.2) is then determined by truncating system (4.5) according to

(4.7)-(4.8). For a certain order r of the reduced model, the corresponding error bound on the

output (i.e. on the chosen reliability index) is given by (4.12). As expected, larger values of r

allow to include more information content and therefore achieve higher accuracy.

In Figure 4.4, we plot the output of the dynamical system, i.e. the power not supplied which,

integrated over time, will equal the system energy not supplied. We recall that this is expressed

as Cx(t) in (4.1), where the single component xi(t) of the vector x(t) indicates the probability

of being in state i at time t. Note that the initial conditions of the system, denoted by x(0) = x0,

do not affect the steady-state behaviour of the system but only determine the starting point

y(0) = Cx(0) of the output response. For example, if it is known with probability 1 that all

components are UP (working), then the initial PNS will be 0 MW and it will then increase to

a steady state value yss =Cxss over time. Zoomed-in values in Figure 4.4 show that the steady

state value obtained for PNS (yss) is non-zero because the network contains uncontrollable PC

failures that result in a small amount of unsupplied power in steady state conditions. Figure



4.5. Results and Discussions 119

4.4 also compares the output (i.e. the PNS index) of the original system with the output of a

selection of reduced-order models with r = 2 and 4. As expected, the evolution of the PNS of

the reduced-order models follows more closely the one of the original system when r is larger

and more states are kept in the model. Indeed, the system behaviour for the reduced-order

system with only 4 states (MOR-4 states) indicates no appreciable difference in the output of

the reduced-order models and that of the original system.
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Figure 4.4: Evolution over time of PNS for the original system and reduced models with r = 2
and 4.

The analysis on this simple example is extended further by considering each possible order r

for the MOR and quantifying the resulting reliability error as follows:

Errorr =
‖ŷr− y‖2

‖y‖2
×100 (4.15)

where r is the order of the reduced system and ŷr is the resulting output, ‖ · ‖2 is the L2 norm,

and the error value is in per cent. In this case, y and ŷr are vectors representing the outputs

of the original and reduced-order system, evaluated at discretised time instants. Figure 4.5

compares the accuracy of the reduced model (i.e. percentage error in the evolution of the

system’s PNS) in Figure 4.5(a) with the system HSVs σi in Figure 4.5(b). Recall that the

HSVs associated to the system states that are not included in the new reduced model quantify

the upper bound on the approximation error of the analysis, according to (4.12). Using Figure
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4.5(a) for comparison, there is a clear correlation between the system error attained with a

reduced system of a certain order r and the HSVs associated to the number of system states

considered in the reduced model.
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Figure 4.5: Comparison between the accuracy of the reduced model and the HSVs of the
original system.

4.5.2 MOR Reliability Performance Evaluation

To assess the performance of the proposed MOR technique, time-sequential MCSs are carried

out on the original and reduced models to compare the required simulation time and quantify

the accuracy of the reliability assessment. The MCS evaluates the annual ENS of the test

systems by using a time step of 1 hour [45]. Moreover, to obtain acceptable index accuracy

in all considered MCSs, and accurately compare the computational burden of both the original

and reduced models, the total simulation period (or number of MCS samples) is based on

achieving set thresholds for the coefficient of variation (CoV) [45,46]. The threshold value for

the CoV is set to 0.2%, which is well below the typical tolerance level for ENS as given for

example in [47] for different reliability indices.

Test System with 4 PCs

The test system in Figure 4.3 is composed of 4 PCs, each with only 2 possible reliability states

(UP/DOWN), and its dimension is equal to 24. Following from the discussion in Section 4.4.2,

this original system is reduced to 2 states using MOR and the ENS is evaluated in the two

cases. Results are presented in Table 4.1 where the performance evaluation of MOR is com-

pared with two other methods. As described in Section 4.2, using traditional network reduction

(TNR) techniques, the original system is simplified to a single equivalent element by system-

atically combining appropriate series and parallel branches of the reliability network. Then,
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the reliability of the remaining equivalent element equals the reliability of the original network

[3] and will exhibit the same unavailability U (i.e. probability of being in DOWN mode). The

relevant equations for reducing a network with 2 repairable PCs in series and parallel con-

figurations are presented in [3]. The other existing method termed AEM [48] calculates the

equivalent PC failure rate as the sum of all PC failure rates, while the equivalent PC repair rate

is the reciprocal of the average of all PC repair rates. It is important to note that in order to

fairly compare the performance of the proposed MOR technique with the two other techniques

(TNR and AEM), all 3 reduction methods are used to reduce the original system of 16 states to

2 states (or one equivalent component). The ENS is then calculated in each case to determine

the associated error. Moreover, given the fact that the original system is of a relatively small

size, computational time reduction results are not presented as the reduction to 2 states in all

cases does not offer any significant time saving from the original case. Instead, Table 4.1 fo-

cuses on the error obtained when assessing ENS for reduced order networks. Further analyses

presented in the next subsections demonstrate the computational time saving achieved using

the reduction methodology when applied to larger networks.

Table 4.1: Reliability performance for the 4PC test system.

Network System
States

Average ENS
(MWh/year)

ENS
Error (%)

Original 16 307.88 _
MOR 2 335.09 8.84 %
TNR 2 391.76 27.25%
AEM 2 504.32 63.81%

Table 4.1 illustrates the advantages of the MOR technique in terms of accuracy of network

reliability assessment. The ENS value of the reduced network calculated with the new pro-

posed approach exhibits the lowest error with respect to the original system (8.84%) when

compared to both TNR and AEM techniques. It is important to note that this demonstrates

the capability of the proposed MOR method in accounting for dispersed loads during network

reduction unlike the case in both TNR and AEM techniques. This results in higher accuracy

when using MOR for networks often characterised by highly dispersed loads as shown in the

next subsection.

Roy Billinton Test System

The MOR approach for reliability analysis is applied to a relevant test case - the Roy Billinton

Test System (RBTS) in Figure 4.6. This is a composite power system with 11 generator units,

2 generation buses, 4 load buses and 9 transmission lines. The transmission system voltage
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level is 230 kV and the bus voltage limits are 1.05 p.u. and 0.97 p.u. The total generation

capacity is 240 MW while the peak load is 185 MW. Bus 1 is assumed to be the slack bus

under normal circumstances and the power factor at each bus is unity. The basic bus and

transmission line reliability data i.e. failure rates and repair times are obtained from [49].

Based on the aforementioned assumptions, the original RBTS ‘offers’ a total of 15 PCs (6

buses + 9 lines) for this analysis each with only 2 possible reliability states, and its dimension

is equal to 215. This original system is reduced to 2 states using MOR and the ENS is evaluated

in the two cases. The complexity of this network configuration (meshed topology) means that

TNR cannot be used to effect model reduction. Therefore, MOR is only compared with the

AEM approach in the results presented in Table 4.2.
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Figure 4.6: Single line diagram of the original RBTS with 15PCs [49].

Table 4.2 results illustrate that the reduced-order model obtained with the proposed MOR

methodology estimates the ENS index of the RBTS with good accuracy while also provid-

ing a significant saving in the total computational time required to complete the reliability

assessment. This shows that by constructing a reduced reliability model that only retains the

most representative states with the highest ‘information content’, it is possible to trade much

faster resolution times with a minimum impact on the accuracy of the reliability analysis. Table

4.2 also proves that the performance improvement of the proposed MOR method with respect
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to the AEM approach is even more significant in meshed networks, which are often endowed

with redundant components to facilitate provision of backup supply in case a PC with a parallel

operation fails. In the AEM approach, these ‘additional’ PCs only serve to increase the total

number of failures and thus result in a 6082.15% error in ENS calculation compared to only

6.28% in the MOR case. However, it is evident in Table 4.2 that there exists a slightly better

time saving in computational time with AEM (96%) as compared to MOR (92.12%). This

is because the time required to perform the order reduction (OR) of the original system to 2

states using MOR is significantly higher than with the AEM approach. Additionally, Table 4.2

also reveals that the relatively low CoV threshold (0.2%) accounts for the relatively large times

required before MCS converges for each simulated network model.

Table 4.2: Reliability performance for the RBTS with 15PCs.

Network Average ENS
(MWh/year)

ENS
Error (%)

Computational Time (s) Total Time
Saving (%)OR MCS OR+MCS

Original 651.30 _ _ 137089.0 137089.0 _
MOR 692.20 6.28% 5359.6 5443.4 10803.0 92.12%
AEM 40264.56 6082.15% 0.0 5484.2 5484.2 96.00%

Furthermore, to demonstrate the varying accuracy of the proposed MOR technique when ap-

plied to similar models of different size, a sensitivity analysis is performed by varying the size

of the original system rather than the order of the reduced model. The original RBTS is simpli-

fied by applying standard techniques of reliability block diagrams [3]. This approach is used

to obtain three different representations of the RBTS with 15, 12 and 9 PCs, respectively. As

an example of the transformations that have been considered, lines 1 and 6 of the network,

which connect bus 1 to bus 3 in Figure 4.6, are replaced by a unique equivalent line, whose

fail/repair parameters have been obtained using the relevant equations in [3]. Each of the orig-

inal RBTS models is reduced to r = 2 states using the proposed MOR technique, followed by

time-sequential MCS analyses as described previously. The error in the estimation of the ENS

and the computational time saving in the three representations of the RBTS are reported in

Figure 4.7 as a function of the original system size. As expected, Figure 4.7(a) shows that a

higher accuracy is achieved when the starting original system is less complex and has a lower

number of PCs. Conversely, Figure 4.7(b) shows that there is a more consistent reduction of the

computational time of the MCS when the 15PCs network is reduced to 2 states, as compared

to an identical operation performed on the 9PC network.

Notably, the time saving (92.12%) achieved when the 15PCs network is reduced is only

marginally higher than the saving (88.11%) when the 12PCs network is reduced. This is be-

cause while the reduced order systems in both cases have similar times for MCS convergence,

the time required to perform MOR in the 15PC case is 5359.6s compared to only 35.8s in the
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Figure 4.7: Trends of MOR accuracy and MCS computational time with respect to network
size.

12PC case (and 0.5s in the 9PC case). Nonetheless, the use of the proposed MOR technique

results in a significant time saving in all cases and a validation of the expected trends for the

sensitivity analysis.

Generic Medium Voltage Substation

To further demonstrate the performance of the proposed MOR methodology, it is tested on a

generic medium voltage (MV) substation presented in Figure 4.8. With respect to the RBTS,

which is a meshed network, this network exhibits a radial configuration. Moreover, it only

has one aggregate load (and LP) as compared to 5 different LPs in the RBTS. This network,

adapted from work in [50,51], consists of two 15 MVA 33/11 kV transformers supplying a

mainly residential load of 9120 customers. The total average load is measured at 20.7 MW.

Downstream the main 11 kV bus, only one equivalent feeder is used to represent the rest of

the network, as well as the total aggregate load. The sensitivity analysis for this test case is

also performed using the aggregation methods summarised in [3], resulting in 4 ‘versions’ of

this network (10, 9, 7 and 4 PCs respectively). Table 4.3 shows the varying number of types of

components for each network. The reliability data used for these PCs are obtained from [51].

Figure 4.9 compares the results obtained when each of the networks (4PC-10PC) is reduced

to r = 2 states. As shown in Figure 4.9(a), the ENS error increases when larger networks (i.e.

more PCs) are considered. This represents an anticipated result since a reduction to only 2

states will be unable to capture the most relevant dynamics if the original system is too large

and complex. Conversely, Figure 4.9(b) proves that the saving in the total computational time
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Figure 4.8: Generic MV substation model – 10PCs.

Table 4.3: Generic MV substation configurations.

Type of
Component

Original Network No. of PCs

4 7 9 10

Buses 2 2 2 2
Transformers 2 2 2 2
Circuit breakers 0 3 5 5
Feeders 0 0 0 1

required for analyses is much larger when MOR is applied to a larger network (10PCs) as

compared to a smaller one (4PCs). Notably, in all cases the computational time is mostly taken

up by MCS, as the times required to perform MOR are only 0.05, 0.15, 0.39 and 1.44 seconds

for the 4, 7, 9 and 10 PC systems respectively. This results in a negligible impact of MOR-time

on the total computational time required to perform a reliability assessment for this network

configuration.

Medium Voltage Distribution Network

The substation model presented in Figure 4.8 is expanded into a small-scale distribution net-

work as shown in Figure 4.10 to further demonstrate the applicability of the proposed method.

This network is adapted from a typical underground MV network for urban areas as presented

in [51]. Accordingly, it presents a meshed configuration where normal network operation is

supported with another supply point e.g., another primary substation or a “reflection centre”.
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Figure 4.9: Trends of reliability accuracy and computational time of the MOR methodology
with respect to the original size, for the generic MV substation presented in Figure 4.8.

The reflection centre guarantees the supply of all feeders connected from both ends of the

network. It is important to note that Figure 4.10 is a scaled down version of the actual rep-

resentation of an urban MV network due to the aforementioned hardware constraints in the

implementation of MOR for large systems. The full network is typically designed for a maxi-

mum of six 11 kV feeders and ten 11/0.4 kV distribution transformers from each 11 kV feeder.

This is in addition to the use of necessary protection devices such as fuses and circuit breakers.

For this analysis, the distribution network in Figure 4.10 presents a total of 14 components

(2 buses, 6 transformers, 4 underground cables and 2 switches). Furthermore, the network is

modelled to have 4 LPs each supplying a total of 190 customers through a 500 kVA 11/0.4

kV distribution transformer. The basic reliability data used are obtained from [51]. For the

results presented in Table 4.4, the original distribution network with 214 states is reduced to 2

states using the proposed MOR approach. As seen with the RBTS network, it is not possible

to reduce this distribution network using the TNR approach because of the network topology.

Table 4.4: Reliability performance for the distribution network.

Network Average ENS
(kWh/year)

ENS
Error (%)

Computational Time (s) Total Time
Saving (%)OR MCS OR+MCS

Original 263.68 _ _ 76239.0 76239.0 _
MOR 274.62 4.15% 1611.6 4922.9 6534.5 91.43%

Table 4.4 demonstrates that the reduced order model obtained using the proposed MOR ap-

proach results in a good accuracy for the estimated ENS-index (4.15%) while providing a

significant saving in the required computational time.
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Figure 4.10: Small-scale distribution network model - 14PCs.

4.5.3 Integration of PV and Storage Technologies

The capability of the proposed MOR methodology to accommodate PV and ES in the simpli-

fied reliability models is now demonstrated. For this purpose, four distinct scenarios (presented

in Table 4.5) are considered for the RBTS 12PC network. The SC1 (base case) scenario consid-

ers no PV or ES, while SC2A and SC2B scenarios represent the addition of PV to the network

with different penetration levels. In this case, the PV generation is modelled as a constantly

available power source whose power output is equal to the average of a typical PV generation

profile. This is considered a good approximation of a realistic scenario if one assumes that the

faults of PCs are uniformly distributed over time. Further work will ensure that the intermittent

nature of the supply from PV, as well as the daily and seasonal cycles, can be added into the

analysis.

Finally, SC3 includes ES resources, which are assumed to be locally available only to LPs

D4 and D5 (combined 40 MW load). Given that these loads are the furthest from the main

supply, it is expected that the use of ES will greatly enhance not only the ENS of the customers

at LPs D4 and D5 but also the average system ENS. This ES configuration is designed to

supply energy in the event of a fault occurrence that causes outage to either D4 or D5, and

to completely alleviate the effect of faults at these loads. Based on previous work from the

authors, further analyses will integrate other parameters such as energy price signals, state of

battery charge, solar irradiance, or time-varying demand to the state and capacity of the ES

system [50].
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Table 4.5: Reliability performance with PV and ES.

ID Scenario Average ENS (MWh/year) ENS
ErrorOriginal system

(12PCs)
Reduced-order

system

SC1 Base case 651.87 681.33 4.52%
SC2A PV 25% 488.90 511.11 4.54%
SC2B PV 50% 325.93 340.74 4.54%
SC3 ES 319.85 335.43 4.87%

As expected, results in Table 4.5 show that as PV penetration increases, the ENS to customers

is progressively reduced. Furthermore, ES implementation almost halves the system ENS

with respect to the base case, where the LPs D4 and D5 present poor reliability. Overall,

the reduction of the system to 2 states in each scenario using MOR resulted in an error of only

about 4.5% (Table 4.5). This demonstrates the capability of the MOR methodology to reduce

the computational time of reliability analyses while accurately representing the impact of PV

and ES on network reliability.

4.6 Conclusions and Further Work

This paper presents a novel application of MOR techniques for reliability analysis of distribu-

tion networks. The proposed analytical methodology, based on balanced truncation, allows to

determine reduced network models with lower complexity and faster simulation times while

minimising the resulting error on reliability metrics. The practical implementation of the algo-

rithm has been described in detail and relevant case studies have been presented to demonstrate

the capability of the proposed approach to capture the most important reliability dynamics of

the original networks and provide simplified models that describe with good approximation

the reliability of the original system. As expected, these simplified models guarantee an ap-

preciable saving in the computational time required to perform reliability analyses. The case

studies also demonstrate the capability of the proposed approach to assess the impact of PV

and ES on the considered reliability metrics. The methodology developed in this paper is the

first step towards a utilisation of MOR techniques for reliability assessment of power networks.

The improvements suggested in the further work will allow for use of the proposed MOR tech-

nique in networks characterised by higher complexity and the substantial penetration of new

technologies e.g. demand response, storage, electric vehicles.

Further work will enhance the proposed methodology by including dynamic PC failure rates

and time-varying demand profiles. This will be in addition to the use of a minimum load
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curtailment model in the computation of the output matrix C to ensure that network control

actions for minimising the impact of outages to customers are included in the analysis. This

inclusion will also be useful to further demonstrate the capability of PV and storage technolo-

gies to relieve network constraints and provide ancillary services. Moreover, the effect of cloud

transients on PV generation and the evolution of the state of charge of the ES devices will be in-

corporated in future analyses for a more realistic modelling and analysis of the impact of these

technologies on the network reliability. The dependence on computational requirements will

also be addressed to enable the modelling of larger and more complex systems. This will in-

clude investigating new methods for the approximation of Metzler matrices that preserve their

Markovian properties to allow for larger orders (r) of the reduced system. An alternative will

also be to compare the proposed approach with other MOR approaches e.g. moment-matching.

Finally, the methodology will be expanded to accommodate more reliability indices, such as

those measuring frequency and duration of interruptions, as well as providing probability den-

sity functions to further describe the variation of these indices for given systems as these are

key advantages in using MCS analysis for reliability analysis that the reduced system should

be able to accurately illustrate. This will represent an important further step towards the appli-

cation of this methodology in a practical context.
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4.7 Chapter Summary

This chapter presents a novel application of MOR techniques, based on balanced truncation, for

reliability analysis of distribution networks. The practical implementation of the algorithm has

been described in detail and relevant case studies, based on both meshed and radial systems,

have been presented to demonstrate the capability of the proposed approach. Additionally,

Appendix C presents a detailed example of the main MATLAB code used for its execution. As

expected, the resultant simplified models adequately approximate the reliability of the original

system while guaranteeing an appreciable saving in the computational time required to perform

reliability analyses. Notwithstanding, the proposed method exhibits some limitations which are

addressed in the next chapter. These are the use of peak demand profiles, modelling of SGTs

and accuracy of the reduction procedure for radial systems with aggregate demand.



Chapter 5

Enhanced MOR with Time-varying
Load Profiles and SGTs

The methodology developed in Chapter 4 is used to obtain simplified grid representations that

minimise the estimation error of the ENS index while ensuring significantly shorter computa-

tional times. However, there are limitations to the applicability of the methodology as sum-

marised in Section 4.4.3. One of the key limitations is that for MCS analyses, the current

methodology only returns models of order r = 2. Higher values of r result in system matrices

A in (4.13) that are not in Metzler form. Therefore, the associated system lacks the Markov

property and cannot be simulated with MCS methods. The tentative approaches that are cur-

rently being envisaged to overcome this limitation are also presented. Nonetheless, the analysis

is still capable of demonstrating the effectiveness of the proposed MOR methodology, as the

key aspect of its validation lies in comparing system outputs of the original vs. reduced-order

system. Notably, results in Section 4.5 reveal that the proposed methodology tends to perform

better in networks presenting a meshed configuration as opposed to a radial one. This chap-

ter explores how the developed MOR methodology may be enhanced to provide even higher

accuracy despite the current limitations. This is achieved using a novel application of state

reduction or state pruning techniques, prior to performing MOR, that partially addresses the

computational-memory bottlenecks by reducing the initial system dimension before building

the state transition matrix A and solving the expensive Lyapunov equations to obtain the system

Gramians. Moreover, time-varying demand profiles are integrated into the methodology to en-

able more accurate analyses for ENS. Lastly, the capability of the developed MOR procedure

to accommodate the impact of SGTs in the simplified/reduced system models is demonstrated

better in this chapter with less simplifying assumptions for their modelling as were adapted in

Chapter 4.
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5.1 Introduction

One of the key drawbacks of current methods of reliability assessments of large (e.g. MV)

networks is that GSPs representing the connection to various LV networks are often lumped

together using simple load summation to reduce on computational times. These lumped LV

networks usually represent several highly dispersed (spatially distributed) loads and this type

of aggregation is inaccurate because it neglects the spatial variability of demand locations as

well as the various equipment types located in these smaller (e.g. LV) networks. Therefore, the

task of finding the single equivalent component which can adequately represent the LV network

connected at the GSP of a MV network, meets the current capability of the MOR method. This

means it is possible to investigate methods to ensure that the MOR-reduction results in more

accurate results even for radial networks. Therefore, the main aspect covered in this chapter

is developing state pruning (SP) techniques to reduce the size of the original system before

performing order reduction using the proposed MOR procedure. The main aim is to increase

the accuracy, reduce the computational burden, and hence extend the method applicability to

larger systems (with more PCs).

5.2 MOR Enhancement using State Pruning

In the usual implementation of the developed MOR procedure (hereafter termed U-MOR), all

possible system states of the original system are used to describe it in the state space repre-

sentation (4.1) as described by the state space diagram (SSD) given in Figure 4.2. That SSD

shows the discrete states and transitions of a CTMC for the simple case of a system with two

repairable PCs. However, not all possible system states are required to adequately describe the

original system. In practice, there will be a tolerance to the number of PCs that can be in the

failed state simultaneously. For example, for a system with 15PCs, it is hardly likely that 7

PCs may all be in the failed state at the same time before the system is completely taken out of

service. The result of which would mean that system transition rates to these low-probability

states would become zero. These are states where the system would have already been com-

pletely shut down before they could be realised or transitioned to.

One advantage of using SSDs is that they can be modified by further (practical) knowledge of

the systems they are meant to represent e.g. whether some states and transitions are inappro-

priate and even whether derated states are necessary [19, 42]. On top of that, various repair/fail

processes can be represented, including common mode failures as explained in Section 4.4.1.

Another quite useful result of this feature of SSDs is that certain state transitions may not be

physically possible and can thus be removed, and perhaps others could be added. For example,
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if we consider a 2PC-series system, it may be known that when one PC fails, the other PC is

no longer operating and its failure rate in these circumstances becomes zero. In this case, state

(4) (in Figure 4.2) does not exist, leaving only states 1-3 and the transition rates between these

3 states. This state removal or ‘pruning’ can then result in a simplified and reduced state space

diagram [42].

In addition, one of the bottlenecks with U-MOR is the limitation on memory due to the size of

the original system. This means that reducing the state space dimension using pruning tech-

niques can increase the applicability of the method to larger systems. Notably, this application

of state pruning is similar to techniques used in the state enumeration technique for power

system risk evaluation [39]. Reducing the dimension of the state space before U-MOR is also

beneficial in terms of lowering the computational burden of the procedure. This is because as

the test systems become larger, the burden of solving the system Gramians grows rapidly and

the complexity is usually O(n3) where n is the is the size of the original model [89].

It is important to point out that the term ‘state pruning’ has been used in reliability analyses in

the literature for different purposes than that used in this chapter. Highly reliable power system

networks hardly encounter many loss-of-load states. Therefore, when performing MCSs of

these networks, convergence will generally be prohibitively computationally expensive if all

system states are to be sampled. To make MCS converge faster, SP is implemented in studies

such as [155, 156] to ensure that there as many loss-of-load states as possible in the state space

without ‘diluting’ them with ‘continuous-supply’ states which are significantly more likely to

be encountered. In this way, this implementation of SP-for-MCS-convergence will increase the

probability of encountering loss-of-load states within that state space and lead to faster MCS

convergence. However, the use of SP in this chapter is to remove/prune states from the original

system which may be classified as ‘non-practical’ or ‘very-low-likelihood’ states. The theory

of U-MOR is based on minimisation of the error between original and reduced order models.

Accordingly, SP is applied to ensure that the original system model is described using only the

states that ‘offer’ useful information for order reduction (for reliability purposes).

5.2.1 Developed Method for SP – Simple Network Topologies

To demonstrate the application of the SP application to U-MOR, consider the simple 4PC series

network supplying a 10 MW load in Figure 5.1. Its configuration is such that there will be a

supply outage if any of the 4 components is in the DOWN state. In the implementation of

U-MOR, this network would have 24 (16) states where the only state of load supply would

be the one where all components are UP. This means that the calculation the impact matrix C
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using PNS would result in a C given by Table 5.1 for all different system states. Accordingly,

the system matrix would be A ∈ R16x16 while output matrix would be C ∈ R1x16.

11kV33kV

CB
TX

10MW

Figure 5.1: Series Network with 4 PCs.

Table 5.1: System states and corresponding impact in PNS.

System State 33 kV Bus Circuit breaker Transformer 11 kV Bus PNS (MW)
S1 1 1 1 1 0
S2 1 1 1 0 10
S3 1 1 0 1 10
S4 1 1 0 0 10
S5 1 0 1 1 10
S6 1 0 1 0 10
S7 1 0 0 1 10
S8 1 0 0 0 10
S9 0 1 1 1 10

S10 0 1 1 0 10
S11 0 1 0 1 10
S12 0 1 0 0 10
S13 0 0 1 1 10
S14 0 0 1 0 10
S15 0 0 0 1 10
S16 0 0 0 0 10

Based on Table 5.1, it is possible to remove/prune all states where more than one PC fails be-

cause any instance of failure requires the system to return to system state S1. Therefore, the

system states remaining are only S1, S2, S3, S5 and S9. Table 5.1 can then be transformed

into Table 5.2 where it is evident that the remaining states correspond to the number of system

states in the first enumeration depth of this system. The term enumeration depth is usually used

in state enumeration (SE) method of power system risk and reliability assessment [39]. In the

SE technique, it is required to enumerate (generate) all possible system states for the original

system. However, it would not be computationally feasible to perform this enumeration for

large systems since the number of system states increases exponentially with the number of

components. Therefore, it is common to enumerate the system states until a given enumeration

depth/failure level. The first failure level refers to the system states containing only one com-

ponent failure while the second failure level refers to those containing two component failures,

and so on. This approximation is acceptable with the SE method because the dominant (high
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probability) modes of the system are usually described by the first few failure levels. The ap-

proximation is also generally acceptable since the transitions between system failure states are

very rare whereas the transitions between normal and failure system states are dominant in real

life [39].

This application of SP is clearly dependent on system topology as well as the consideration of

the failure modes of the system. As previously explained, it is possible to model common mode

failures using the proposed U-MOR technique. Similarly, when implementing SP, it is possible

to include states that result from a common mode failure. Again, this design parameter is not

in the scope of the thesis and is thus not considered. Furthermore, it is statistically possible

for there to be a simultaneous occurrence of two independent failures. However, by using a

sufficiently small-time step in the reliability assessment, it is possible to ignore also these types

of failures because the failure of one component would have to precede another [42].

Table 5.2: Remaining system states after pruning and corresponding impact in PNS.

System State 33 kV Bus Circuit breaker Transformer 11 kV Bus PNS (MW)
S1 1 1 1 1 0
S2 1 1 1 0 10
S3 1 1 0 1 10
S5 1 0 1 1 10
S9 0 1 1 1 10

Based on those assumptions allowing for SP, the SSD of the series network in Figure 5.1 will

appear as illustrated in Figure 5.2. Accordingly, the system matrix would be A ∈ R5x5 while

output matrix would be C ∈ R1x5. Therefore, the original 4PC series network is effectively

reduced from 16 states to 5 states using SP.

5.2.1.1 Impact of SP on MOR

Without the proposition to use SP, the original 4PC (16 states) power network in Figure 5.1

would be directly reduced to 2 states using U-MOR. However, with the proposed application

of SP, the original system can be reduced to its first failure level (5 states) and then reduced

to 2 states using U-MOR. This order reduction procedure is hereafter termed SP1-U-MOR

because SP is performed to the first failure level before using U-MOR to reduce the system.

For this thesis, SP1-U-MOR is shortened to SP1-MOR. In this section, the impact of applying

SP, on the performance of U-MOR, is assessed using the evolution over time of the PNS of

each network. In addition, the singular values (SVs) in each case are compared.



5.2. MOR Enhancement using State Pruning 142

S2
1110

S9
0111

S5
1011

S3
1101

S1
1111

λ2

λ3

λ1

μ2

μ1

μ4 λ4

μ3

Figure 5.2: Markov chain representing the 4PC series system after SP.

5.2.1.2 Evolution of the System Output

Figure 5.3 presents the output of the dynamical system i.e. the PNS, of the simple 4PC system

where we compare the output of the original system of 16 states to the output of the SP1-

reduced system of only 5 states. As expected, the evolution of the PNS of the SP-reduced

model follows very closely the one of the original system of 16 states because the pruned

states have a very low probability of occurrence. This analysis is similar to that of Figure 4.4

which compared the evolution over time of PNS of the original and reduced order models.
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Figure 5.3: Evolution over time of PNS of the original and SP-reduced systems.

Recall that the initial conditions (x(0) = x0) do not affect the steady-state behaviour of the

system but only determine the starting point y(0) = Cx(0) of the output response (5 MW in
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Figure 5.3). Accordingly, if it was known with probability 1 that all components were UP

(working) at time t = 0, then the initial PNS would be 0 MW and would increase to a non-

zero steady state value yss = Cxss over time. Section 4.5.1 showed that we can reduce the

order of an original system to varying number of states and realise increasing accuracy as

more states are included in the reduced order model. This is because more system dynamics

are captured when more states are included. The SP1-reduced system can also be reduced

to varying number of states with the same outcome. This makes it possible to compare 2

scenarios. The first is when the original system of 16 states is reduced to 2 states using U-MOR

(as done in Section 4.5.1). In the second scenario, the SP1-reduced system of 5 states becomes

the ‘original’ network which is reduced to 2 states using U-MOR. Again, this may alternatively

be stated as: the original system of 16 states is reduced to 2 states using SP1-MOR. Figure 5.4

compares these two scenarios where the reduction to 2 states using SP1-MOR is more accurate

in approximating the original system than U-MOR. This is expected because only 2 states are

retained from a ‘smaller’ system when SP1-MOR is used as compared to the U-MOR case.
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Figure 5.4: Comparison between U-MOR and SP1-MOR using evolution over time of PNS.

5.2.1.3 System Singular Values

This comparison may be extended by comparing the SVD of both the original and SP-reduced

networks. As previously introduced, the non-increasing SVs [87, 89] indicate the relevance

(energy) of each system state in terms of reliability. Thus, the dynamics which have a smaller

impact on the considered reliability indices can be neglected. Using Tables 5.3 and 5.4, we

calculate the relative weight (RW) of each system state based on the system SVs. The impact

of only retaining 2 states in the reduced order model is emphasised by comparing the RW of
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2 states in the original system used for U-MOR (Table 5.3 13) with the RW of 2 states in the

‘original’ system used for SP1-MOR (Table 5.4). As expected, the 2 main states in the U-MOR

method have 98.52% RW compared with 98.91% RW in the SP1-MOR method. This means

there is more important ‘information content’ in the 2 states with SP1-MOR than in the 2 states

with U-MOR. Subsequently, SP1-MOR is expected to perform better than U-MOR when MCS

is done. The reliability performance results are shown in Section 5.3.

Table 5.3: SVs of the original system used for U-MOR.

System states 2 3 4 5 6

. . .

15 16
SVs 205681.35 2905.49 159.80 14.24 0.40 0.00 0.00

RW (%) 98.52% 1.39% 0.08% 0.01% 0.00% 0.00% 0.00%
Cumulative RW 0.985 0.999 1.000 1.000 1.000 1.000 1.000

ln SV 12.23 7.97 5.07 2.66 -0.92 -26.82 -28.64

Table 5.4: SVs of the original system used for SP1-MOR.

System states 2 3 4 5
SVs 29893.24 329.44 1.28 0.00

RW (%) 98.91% 1.09% 0.00% 0.00%
Cumulative RW 0.989 1.000 1.000 1.000

ln SV 10.31 5.80 0.25 -41.49

5.2.2 Developed Method for SP – Complex Network Topologies

In the current implementation of SP, only system states belonging to the first failure level are

retained in the state space representation (4.1). The approximation resultant from this applica-

tion of SP is therefore more accurate for systems with simple topologies, and with aggregated

loads. More practical (and complex) networks have spatially distributed loads resulting in sit-

uations where there would be partial power supply even in the event of failure of 1 or more

PCs i.e. tolerance to higher system failure levels. This tolerance is usually controlled by the

relevant DNO and will be affected by several factors for example: system topology/configu-

ration, operational limits’ violations, economic value of lost load, system security (e.g. N−1

contingency), SQS regulations, etc. Indeed, the system must often be returned to normal op-

eration quickly before further outages occur that might lead to system-wide outage. Also, the

PC repair rate is usually higher than the PC failure rate which allows for the general premise of

the SP application [19, 39, 42]. Therefore, for more complex systems, it is reasonable to im-

prove the level of approximation used in the SP-reduction by including more states or raising

the failure level used in the resultant SP-reduced model. This is especially necessary to retain

13For 2 or 3 significant decimal places, the values between system states 6 and 15 are indistinguishable.
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those states which allow for partial power supply, subject to a tolerance level for the number of

PCs that may be failed simultaneously (failure level/enumeration depth).

5.2.2.1 Method Adaptation for Complex Network Topologies

Let us consider the 14PC network diagram presented in Figure 5.5 which represents a modified

suburban LV network containing one 315 kVA 11/0.4 kV transformer supplying 34 residential

customers for a total load of 77.18 kW. For applicability to the developed MOR methodology,

the network is reduced to an equivalent representation of 14 PCs i.e. 6 buses, 4 overhead

lines, 2 circuit breakers, 1 fuse and 1 transformer. The line identifiers presented correspond

to ID parameters given for LV networks in Table 3.1. For this network, it is possible for there

to be partial power supply if only one PC goes DOWN. For example, if the bus supplying

LP3 fails, LP1 and LP2 will still receive power supply. This system state may be maintained

for a particular period depending on the requirements or tolerance of the system operator.

Furthermore, the system could transition from a state where only LP1 & LP2 are supplied,

to one where no LPs are supplied (a complete loss-of-load state). Therefore, the state space

model will now include all such categories of states.

315 kVA
Transformer

pole-to-pole
distanceZT=7.5 + j22.5      

(p.u. on 100MVA)

34 customers
PMAX AV.= 2.27kW/customer Total Load MAX AV.= 77.18 kW (at 1p.u.)

11kV 0.4kV

30m 30m 60m 60m
H H H H
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E 30m E 30m
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D,E = underground cable lateral feeders

LP = Load point
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3AR
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Figure 5.5: Modified suburban LV distribution network model – 14PCs.



5.2. MOR Enhancement using State Pruning 146

5.2.2.2 Tolerance to the Number of Simultaneous PC Failures

This section analyses how the allowed/designed system failure level affects the accuracy of

the SP-MOR process. To save time, only the analytical system unavailability [39] is used to

obtain the ENS, without performing MCS comparative analyses which will be used in Section

5.3 when more comprehensive reliability analyses are presented. Table 5.5 presents the ENS

obtained from the original network in Figure 5.5, compared with that of the different variants

of MOR methods previously introduced. Another key benefit of Table 5.5 is that it can be

adequately used to explain the key differences in the enhancements to MOR presented. The

first row of Table 5.5 presents the ENS of the original network of 14 PCs (214=16384 states).

Note that with the current formulation, the use of any MOR technique only results in a reduced

system with 2 states. This explains the number of states for all MOR-reduced systems. It is

also important to note that the ‘failure levels’ given in the table are not strictly based only on

the number of simultaneous PC failures but also include the associated loss-of-load states that

can be transitioned into. This approximation, based on limiting simultaneous PC failures is

important because for large systems, it would certainly be very difficult to track all the state

transitions using hand calculations.

The implementation of U-MOR is shown in the last row where the system failure level is 14 i.e.

all 14 PCs may be allowed to be DOWN simultaneously, and all 16384 states of the original

system are used to describe the original model (i.e. retained) before U-MOR is performed. The

second row of Table 5.5 presents SP1-MOR i.e. where only 1 PC can fail before total system

supply is restored. This results in only 15 states being used to describe the original system

before U-MOR is performed. Correspondingly, 16369 states are not considered or are pruned.

Table 5.5: SP-MOR failure level analysis for the modified suburban LV network.

Network States Failure
level

ENS
(kWh/year)

Abs
Error (%)

States retained
before U-MOR

Original 16384 14 143.75 _ _
SP1-MOR 2 1 133.61 7.10% 15
SP2-MOR 2 2 143.18 0.40% 148
SP3-MOR 2 3 166.26 15.70% 492
SP4-MOR 2 4 179.24 24.70% 1478
SP5-MOR 2 5 188.64 31.20% 3474
U-MOR 2 14 209.51 45.70% 16384

To improve the approximation of SP1-MOR, SP2-MOR is presented, and it includes all partial

or complete power supply states while also limiting the system failure level to only 2. This

results in having 148 states kept before performing MOR while 16236 states are pruned. This

implementation leads to a significantly low ENS approximation error of 0.4%. It is well known
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that networks are sometimes operated closer to their limits so it is not inconceivable that this

system may be operated for a higher failure level. To that end, SP-MOR is performed again but

this time, increasing the failure level to 3, 4 and 5 with corresponding reductions to the states

pruned. Finally, when failure level 14 is allowed for, then ‘SP14-MOR’ is equivalent to the

U-MOR method.

For this network, ‘SP2-MOR’ results in the most accurate ENS index approximation. Table

5.5 shows that when more ‘less-information’ states are retained to describe the original system;

the accuracy of the reduction procedure is lower. For this chapter, SP2-MOR will be used to

compare order reduction accuracy in different networks. This is also because higher failure

levels have already been reported to be rarely occurring and thus hardly having an impact on

reliability performance, as published in [38] which looked at the probability of double and

triple faults in normal network operation. To expound further on this, ‘SP14-MOR’ or the

U-MOR method includes, in the original state space representation, a state where all PCs fail

and of course, no power is supplied. Both theoretically and practically, such a state is hardly

likely and might only occur if a very catastrophic low-probability high-impact event such as

a massive lightning strike happens. Therefore, before doing MOR, we should already expect

and roughly estimate the impact of this state and its value in informing the MOR-process. It

is reasonable to assume that pruning such states before MOR is performed is only improving

accuracy by removing the ‘unnecessary information’ used to describe the original network

under test. In summary, the enhancement to the U-MOR procedure described in Chapter 4 is

based on the initial system state selection used in the state space representation (4.1) to describe

the original network. Use of SP-MOR introduces an approximation that provides a tolerance

to the number of PCs that can be in the failed state simultaneously while ensuring that more

partial load supply states are captured in the state space representation.

5.3 Test Cases and Results

This section presents all examined test cases. As in Chapter 4, for all analyses, the operation of

conventional generators is assumed to be ideal and therefore when quantifying system sizes in

terms of number of components, generators are not counted. To determine the performance of

the reduction techniques discussed, time-sequential MCSs based on STS are carried out on the

original and reduced models. Accordingly, the ENS approximation error and computational

time required for MCS analyses are compared. For a fair comparison of the MCS time taken,

the CoV threshold is set to 0.2% for all simulations. All analyses are designed to demonstrate

the varying effectiveness of different network reduction methods, as the key aspect of their

validation lies in comparing outputs of the original vs. reduced-order system in each case.
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5.3.1 Simple 4PC Series Network

Consider the 4PC series network presented in Figure 5.1. Given its topology, it is possible to

perform the following types of network reduction: TNR, U-MOR and SP1-MOR. It is unnec-

essary to use SP2-MOR and so on, as the topology and presence of only a single aggregated

load, does not require it. Table 5.6 presents the results from the MCS analysis in terms of aver-

age ENS. The computational time taken is not reported because the associated savings due to

order reduction are not significant given relatively small size of the original system. However,

it highlights how much better SP1-MOR performs with an ENS error of only 0.65% compared

to 36.57% using U-MOR. Moreover, SP1-MOR is significantly more comparable to TNR for

which an ENS error of 0.33% is obtained. This result is significant as it makes the imple-

mentation of SP1-MOR very competitive with an already established method i.e. TNR, which

provides sufficiently accurate reduced system models for this type of network configuration.

Additionally, the ENS obtained in the original and SP1-reduced systems is compared. The

0.05% error demonstrates that the use of SP results in a highly accurate approximation of the

original system and validates the use of the SP1-reduced system as the new ‘original’ system

which is subsequently reduced using U-MOR in the SP1-MOR method.

Table 5.6: ENS index accuracy for the 4PC series network.

Network States ENS (MWh/year) Absolute Error (%)

Original 16 144.13 _
U-MOR 2 196.84 36.57%

SP1-MOR 2 145.07 0.65%
TNR 2 143.66 0.33%

SP1-reduced 5 144.05 0.05%

5.3.2 Radial Network with Aggregate Load

The generic MV substation presented in Figure 4.8 presents a radial network configuration with

aggregate load. Hence, it is possible to compare the performance of the following reduction

methods – TNR, U-MOR, SP1-MOR and SP2-MOR. It would be possible to demonstrate

the use of SP3-MOR and so on as well but given results presented in Section 5.2.2, it is not

performed here. Table 5.7 presents the results from the MCS analysis and as envisaged, TNR

exhibits the best performance while SP2-MOR performs progressively better than SP1-MOR.

Noticeably, the error magnitude obtained using U-MOR is over 7 times larger than that by

SP1-MOR.
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Table 5.7: ENS index accuracy for the generic MV substation.

Network States ENS
(MWh/year)

Absolute
Error (%)

Total Time
Taken (s)

Time
Saving (%)

Original 1024 278.48 _ 9433.43 _
U-MOR 2 387.06 38.99% 5423.27 42.51%

SP1-MOR 2 263.43 5.40% 5510.64 41.58%
SP2-MOR 2 270.21 2.97% 5438.30 42.35%

TNR 2 278.38 0.04% 5795.88 38.56%

5.3.3 Radial Network with Spatially Distributed Loads

The modified suburban LV network presented in Figure 5.5 presents a radial configuration with

dispersed/non-aggregated loads. Given the topology, it is possible to compare the performance

of the following reduction methods – TNR, U-MOR, SP1-MOR, and SP2-MOR. Table 5.8

presents the associated results where the main result is the fact that clearly the existence of

spatially distributed loads makes TNR (13.41%) less effective than it was in the previous MV

substation test case (0.03%) which had one aggregated bulk load. Furthermore, SP2-MOR

performs much better than all other reduction techniques. It might therefore be argued that

SP2-MOR (and therefore the proposed MOR methodology) is a superior approach to TNR

when reducing networks with spatially distributed loads. As a matter of fact, this is one of

TNR’s most reported limitations [19, 157].

Table 5.8: ENS index accuracy for the suburban LV network.

Network States ENS
(kWh/year)

Absolute
Error (%)

Total Time
Taken (s)

Time
Saving (%)

Original 16384 143.75 _ 64530.78 _
MOR 2 212.94 48.13% 4968.66 92.30%

SP1-MOR 2 133.79 6.93% 5639.64 91.26%
SP2-MOR 2 144.18 0.30% 5603.10 91.32%

TNR 2 163.03 13.41% 5216.34 91.92%

5.3.4 Meshed Network with Spatially Distributed Loads

In this test case, TNR is not used for network reduction because of the meshed configuration

of the modified RBTS-12PC system (adapted from Figure 4.6). Therefore, it is possible to

compare the performance of 3 reduction methods i.e. U-MOR, SP1-MOR, and SP2-MOR.

Table 5.9 presents the relevant reliability assessment results. The key takeaway is that the per-

formance of U-MOR for this meshed network topology is significantly better than the perfor-

mance of U-MOR for the radial (parallel series) network topologies. Nonetheless, the results
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demonstrate that the application of MOR-SP for network reduction to assess ENS is still more

accurate than U-MOR.

Table 5.9: ENS index accuracy for the RBTS-12PC.

Network States ENS
(MWh/year)

Absolute
Error (%)

Total Time
Taken (s)

Time
Saving (%)

Original 4096 651.87 _ 39958.42 _
U-MOR 2 681.31 4.52% 4727.39 88.17%

SP1-MOR 2 646.93 0.76% 3825.35 90.43%
SP2-MOR 2 654.45 0.40% 5334.79 86.65%

5.3.5 Results Comparison and Discussion

Figure 5.6 presents all the error values obtained when approximating ENS using each discussed

method of network reduction for all the test cases presented. Firstly, Figure 5.6(a-c) show that

the U-MOR performs significantly worse for radial networks than for meshed networks (Figure

5.6(d)). As discussed, there is significant improvement in the accuracy of the U-MOR method

using SP enhancements while demonstrating that TNR is only a superior reduction approach

when test networks present relatively simple and radial configurations with aggregated loads.

5.4 Time-varying Load Profiles

This section discusses the inclusion of time-varying load profiles into the developed MOR pro-

cedure as an added enhancement. This inclusion is vital to the accurate assessment of ENS in

power networks and is a key feature of reliability analyses of real distribution systems as shown

in earlier chapters of this thesis. To achieve this, the state space description in (4.1) is modified

to include a time-varying output matrix C. This means that, for each system state, there is an

associated impact in terms of PNS that is dependent on the modelled load profile. Recall that,

the system output y(t) corresponds to a linear combination of the state x(t), according to the

output matrix C ∈ Rqxn where q represents the considered output i.e. PNS. The PNS can thus

be extended to become an array in each system state instead of a single output. This array in-

cludes varying load levels at different times of the day according to the designed time-varying

load profile. For example, for a 10PC system, using peak demand profiles, the output matrix

is C ∈ R1x1024. By including time-varying demand profiles, the matrix C is transformed to

C ∈ R24x1024 if a 1-hour time-step is used to represent the load profile.
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Figure 5.6: Comparing performance of different network reduction methods.

5.4.1 Generic MV Substation

To illustrate the use of MOR with time-varying load profiles, consider the MV substation pre-

sented in Figure 4.8. The aggregate load of 20.7 MW is considered to belong to a residential

demand sector [158] whose demand profile is similar to that presented in Figure 3.1. Table

5.10 shows that there is a reduction in the ENS of each network model when time-varying

load profiles are used. Importantly, the analysis shows the capability of the proposed reduction

methods to accurately capture the same reduction in ENS, as is possible with original networks

using conventional reliability assessment methods. Moreover, the fact that all the methods pro-

duce an ENS reduction of about 29.4% shows that the developed methods are consistent with

already established techniques.
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Table 5.10: Impact of time-varying load profiles in the MV substation reduced networks.

Network States ENS (MWh/year) ENS Reduction
Peak Load Time-varying Load

Original 1024 278.48 196.66 29.38%
U-MOR 2 387.06 273.19 29.42%

SP1-MOR 2 263.43 185.95 29.41%
SP2-MOR 2 270.21 190.72 29.42%

TNR 2 278.38 196.28 29.49%

5.4.2 Roy Billinton Test System

The analysis is extended to consider different types of load sectors as discussed in Section

3.1.1. The RBTS network presented in Figure 4.6 has 5 load buses each with a different type of

demand sector represented. This is summarised in Table 5.11 where the designation of the load

type (given in [159]) is translated into a demand sector type i.e. Residential (res), commercial

(com) and industrial (ind) and the demand share at each bus is given. The demand share at bus 3

is selected based on [158] and is only intended to demonstrate varying load profiles for varying

load subsectors for the purpose of this thesis. Figure 5.7 shows the different load profiles used

at each bus as a result of the reported demand shares.

Table 5.11: Varying load profiles for different types of loads (res, com and ind).

RBTS
Bus

Load
(MW) RBTS designation Sector Type Used Demand

Share (%)

2 20 Small users, Gov’t & institution Res & Ind 50-50
3 85 Large Users, Small users, Office Res, Com & Ind 45-31-24
4 40 Small Users Res 100
5 20 Gov’t & Institution, Office Com 100
6 20 Small Users, Farms Res & Com 50-50

Varying Impact of States

The introduction of different load subsectors increases the accuracy of the description of the

system state space as given by (4.1) because it assigns more accurately the correct impact of a

state based on the time at which an interruption occurs and the nature of the associated demand

sector. For example, consider 2 system states of the RBTS 15PC network – 8497 and 17314.

Using only peak demand to represent the load would result in the power supplied (PS) being

given by Table 5.12 where the total PNS would be 20 MW in each state.
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Figure 5.7: Load profiles at different demand buses in the RBTS.

Table 5.12: Varying impact of states in terms of PNS for different system states.

RBTS
Bus

Rated Load
(MW)

State 8497 State 17314
PS (MW) PNS (MW) PS (MW) PNS (MW)

B2 20 0 20 20 0
B3 85 85 0 85 0
B4 40 40 0 40 0
B5 20 20 0 20 0
B6 20 20 0 0 20

Totals (MW) 165 20 165 20

However, using time-varying demand, each state exhibits a different maximum value for PNS

while also following a different demand profile based on the nature of the demand served. This

is shown in Figure 5.8(a) and is a more accurate modelling of the true impact of system states

in terms of PNS. Analogously, 3 ‘similar-impact’ states can be analysed as shown by Figure

5.8(b). The following buses are failed/DOWN in each state: bus B5 and B6 in state 232, bus

B4 in state 2396, and bus B2 and B6 in state 8885. Using peak load, the total PNS in each state

would be 40 MW. However, Figure 5.8(b) shows that these 3 states have substantially varying

impact not only in terms of the maximum PNS but also the impact on the resultant ENS due to

the incidence of fault occurrences with the load sector and time-dependent demand. Overall,

this increases the accuracy of the minimisation error introduced by MOR when performing

system reduction and extends the applicability of this system reduction method to more practi-

cal/larger power networks. As shown in Section 5.4.1, Table 5.13 shows a consistent reduction

in the ENS when time-varying profiles are used as compared to peak demand profiles. The key,

again, is the consistency of all developed MOR methods in accounting for a time-varying load

profile by exhibiting reduced ENS.
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Figure 5.8: Time-varying impact for different system states.

5.5 Integration of SGTs

As thoroughly discussed in Chapter 3, one of the key features of future power networks is the

integration of SGTs and the associated network flexibility. These technologies significantly

increase network complexity and require that more accurate reliability assessments are made to

ascertain the benefits offered. Therefore, the capability of the proposed MOR methodology to

accommodate SGTs in the simplified reliability models is demonstrated in this section. Having

a reduced system that can demonstrate the effect of DERs is important to system planning

as the key benefit in the use of system reduction methods is to reduce the time necessary for

system studies and therefore the time taken to make decisions. This section considers the 3

main SGTs considered in this PhD research i.e. PV, DSR and ES. There is no combination of

technologies as was shown in Chapter 3 because the major outcome intended from this analysis
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Table 5.13: Impact of time-varying load profiles in RBTS reduced networks.

Network States ENS (MWh/year) ENS Reduction
Peak Load Time-varying Load

Original 32768 651.30 486.55 25.30%
U-MOR 2 692.20 524.11 24.28%

SP1-MOR 2 642.24 480.41 25.20%
SP2-MOR 2 664.73 502.60 24.39%

is to demonstrate the capability of the developed network reduction procedure in accurately

showing the reliability impact of SGTs.

5.5.1 Network Scenarios incorporating SGTs

Table 5.14 presents 5 scenarios designed for the RBTS-15PC network. The SC1 (base case)

scenario considers no SGT (but includes time-varying load profiles) while SC2A and SC2B

scenarios represent the addition of PV to the network with different penetration levels. More-

over, this application of PV includes the effects of clouding as discussed in Section 3.3.3. This

modelling also ensures that the intermittent nature of the supply from PV, as well as the daily

and seasonal cycles, are added into the analysis. Unlike the DSR application presented in

Section 3.3.2, the application of DSR in SC3 is done for peak shaving i.e. demand reduction

during peak times to optimise the energy efficiency. Finally, SC4 includes ES resources, which

are assumed to be locally available only to buses B5 and B6 (combined 40 MW load). Given

that these loads are the furthest from the main supply, it is expected that the use of ES will

greatly reduce not only the ENS of the customers at the associated LPs D4 and D5 but also the

average system ENS. This ES configuration is designed to supply energy in the event of a fault

occurrence that causes outage to either D4 or D5. Furthermore, it is modelled to account for

the variation of its SOC based on solar irradiation, load demand, and electricity tariff during

grid supply conditions, as discussed in Section 3.3.4.

Table 5.14: Network Scenarios for the RBTS-15PC with SGTs.

ID Scenario Description

SC1 Base case Using time-varying load profiles, no SGTs
SC2A PV 25% 25% PV penetration, accounts for PV clouding & stochasticity
SC2B PV 50% 50% PV penetration, accounts for PV clouding & stochasticity
SC3 DSR Peak shaving & better energy efficiency for demand reduction
SC4 ES Applied at Buses 5&6, accounts for varying SOC of ES
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5.5.2 Impact of SGTs & MOR Validation

This section presents the results in terms of ENS reductions from the base case that are realised

when SGTs are integrated into the RBTS 15PC network. Additionally, the accuracy of the de-

veloped MOR methods is quantified. Table 5.15 presents the average ENS obtained in each

scenario with the corresponding reduction in ENS when each SGT is integrated. As expected,

the ENS to customers is progressively reduced as the PV penetration increases from 25% to

50% in scenarios SC2A and SC2B, respectively. Noticeably, the implementation of DSR for

peak shaving leads to a slightly improved network performance as compared to a relatively

low PV penetration (SC2A). Furthermore, ES implementation nearly halves the system ENS

with respect to the base case, where the LPs D4 and D5 present poor reliability. It is important

to note the consistency with which the developed MOR methods can demonstrate the same

reduction in ENS as is obtained from the original network. This demonstrates the advanced

capability of the MOR methodology to accommodate SGTs and enable accurate quantification

of their impacts on network reliability, while invariably reducing the computational time re-

quired for MCS analyses. The average ENS in each network scenario (presented in Table 5.15)

is presented graphically using Figure 5.9(a) while the percentage reduction of the ENS from

the base case is presented in Figure 5.9(b).

Table 5.15: Reliability performance of the RBTS-15PC with SGTs.

Network SC1 & SC2A & *(%) SC2B & *(%) SC3 & *(%) SC4 & *(%)
Original 486.55 453.92 6.71 422.44 13.18 445.24 8.49 285.30 41.36
U-MOR 524.11 482.66 7.91 455.82 13.03 471.97 9.95 295.49 43.62
SP1-MOR 480.41 448.75 6.59 417.27 13.14 439.22 8.57 281.83 41.33
SP2-MOR 502.60 471.83 6.12 433.83 13.68 461.69 8.14 285.14 43.27

& ENS (MWh/year), *Reduction from base case (SC1)

5.6 Conclusions

Despite the current U-MOR methodology limitation of only reducing a system to 2 states, this

chapter explores the use of SP techniques to enhance the accuracy of the proposed method-

ology especially for networks presenting radial configurations and with spatially distributed

loads. The SP techniques are applied to reduce the system state space dimension, based on

the designed failure levels, before applying the proposed U-MOR methodology to reduce the

network to 2 states. SP is justified by considering that practical power systems are hardly likely

to encounter system states with simultaneous failure of multiple PCs (high failure levels). The

pruning of these low probability states before the application of U-MOR increases the accuracy

of assessing ENS while extending the applicability of the aggregation method to incrementally
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Figure 5.9: Impact of SGTs on reliability performance of reduced order networks.

larger systems. Also, MOR is further enhanced by the inclusion of time-varying load profiles

to provide a more realistic ENS assessment. Finally, through accurate impact assessments, the

chapter demonstrates the advanced capability of the proposed MOR methodology to accom-

modate SGTs whose spatio-temporal variation adds substantially to network complexity.



Chapter 6

Conclusions and Future Research

This chapter summarises the main results of this research. This is followed by a detailed

discussion of the key research limitations which are complemented by tentative approaches that

are envisaged to overcome them in the future work. Finally, the chapter provides promising

future research directions that can be followed to extend the main outcomes of this thesis.

6.1 Synopsis

This thesis presents probabilistic methodologies for distribution network reliability assessment

that consider not only the variability of DERs (e.g. clouding effects in PV) but also the tempo-

ral variation of demand. Deployment techniques are proposed that combine the modelled SGTs

to maximise their benefits in terms of CoS such as combining DSR and ES which proves most

effective for reliability enhancement. Given that network aggregation is considered especially

useful in simplifying systems endowed with SGTs, this research investigates novel techniques

based on MOR to reduce the complexity of large networks and result in appreciable savings on

the computational simulation time required for analyses. Collectively, these contributions are

useful in an industry context as they motivate the use of reliability assessment methodologies

for network planning as opposed to the statistical methods commonly used to assess reliability

at the end of a reporting period merely to fulfil regulator-set obligations. The main reasons

for the aversion to reliability assessment methodologies in industry are the high computational

requirements and modelling complexity. Moreover, as some DNOs realise satisfactory per-

formance using reactive maintenance and network investment, there is a reduced motivation

to explore these techniques. However, this research develops methods and analyses that pro-

vide fast and accurate reliability results and quantify not only the effects of SGT integration
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but also the associated risk in terms of customer supply outages which has correlated financial

implications.

Chapter 2 examines the background, literature review, challenges and current solutions, related

to the continuity of electricity supply (within the wider context of QoS) in power networks.

It presents relevant interruption data highlighting also the different instruments used for reg-

ulation of CoS levels in different countries. The chapter consists of an overview of both the

most widely used metrics and CoS assessment methodologies in power distribution networks

followed by an analysis of the impact of the considered SGTs (PV, DSR and ES) on network

functionality (and reliability). Given the added complexity to networks due to SGTs, the chap-

ter also discusses the state of the art in power network aggregation/reduction methodologies.

Finally, the chapter presents the proposed contributions of this research to the literature re-

viewed. Specifically, this includes the advancement of a reliability assessment methodology

based on MCS SDS, improved modelling of PV to capture the temporal variations, a novel

application of DSR during the periods of highest fault probability, the inclusion of ES state-

of-charge variation based on ambient conditions, electricity tariff and connected demand, and

lastly, the novel use of MOR for network aggregation in reliability assessment.

Using relevant models of MV distribution networks, Chapter 3 provides an integrated approach

for assessing the impact of SGTs on reliability performance. The key contributions include an

accurate demonstration of the spatio-temporal variation of PV, the variability of the state of

charge in coordinated ES, and the use of demand-manageable loads. Using time-sequential

MCS analyses based on SDS, special attention is given to the perceived level of CoS from

the customer perspective by calculating average values and probability distributions of both

the system- and customer-oriented indices. One of the main drawbacks in using only the

system-oriented indices is that they include customers who enjoy uninterrupted power sup-

ply for substantially long periods, thereby concealing some of the shortcomings of network

performance, especially to worst served customers. Accordingly, this research emphasises the

use of customer-oriented indices which measure system reliability for only those customers

who are affected by interruptions. Moreover, the chapter provides a rigorous characterisation

of varying customer groups by presenting the reliability assessment for different load sectors

(rural, suburban, urban) in addition to the use of risk metrics (CVaR) to define the expected

values of the reliability indices in the worst-case (low probability) scenarios. Finally, the range

of variability and effectiveness of SGTs in different spatial configurations is illustrated while

also allowing for an analysis of the impact of undergrounding on reliability through load-sector

performance comparisons.

Chapter 4 proposes a novel application of model order reduction techniques for the specific

problem of network aggregation given the complexity of modelling detailed networks. Using
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relevant case studies based on both meshed and radial configurations, the proposed MOR-for-

reliability methodology is used to derive simplified reliability models of electricity networks

that contain the most important system dynamics while minimising the error of the consid-

ered reliability metrics. Time-sequential MCS analyses based on STS are carried out on both

original and reduced order systems to verify that the resulting reduced-order models provide a

reasonably accurate reliability assessment while being significantly faster to simulate.

Chapter 5 explores enhancements to the MOR-for-reliability methodology proposed in Chapter

4. This is achieved using a novel application of state pruning techniques, prior to performing

MOR, that substantially increases the reliability assessment accuracy, especially for radial net-

works. The state pruning is justified by considering the operation of practical power systems

where it is hardly likely to encounter system states with simultaneous failure of multiple PCs.

Therefore, such low probability states are pruned before MOR thereby extending the applica-

bility of the MOR method to incrementally larger systems. Another key contribution of this

chapter is that MOR is further enhanced by the inclusion of time-varying load profiles to pro-

vide a more accurate assessment of ENS. Finally, by combining the MOR improvements to

the use of time-varying load profiles, this chapter demonstrates the advanced capability of the

developed network aggregation procedure to accurately accommodate the impact of SGTs in

simplified/reduced system models.

6.2 Research Limitations and Proposed Future Solutions

This section discusses the key research limitations which are each complemented by the tenta-

tive approaches that are envisaged to overcome them in the future work.

6.2.1 SGT Modelling

6.2.1.1 Failure of PV and ES Assets

The current research assumes an ideal operation of PV and ES assets such that their effec-

tiveness is limited only by their power capacities and in the case of PV, coincidence with the

demand peaks. Future analyses will provide for more realistic modelling by including the fail-

ures of this equipment, their associated repair times as well as the life-cycle of each asset.

Although these statistical data are not easily/readily available, the inclusion of these failure

parameters is vital to making the case of mass adoption of these technologies despite their al-

ready well-known benefits. Not to mention, this will be important to investigate how the usage

of these assets can be mapped onto particular reliability levels. Therefore, the new reliability
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assessment methodology will provide less optimistic results, recognising the fallibility of the

deployed SGTs, as well as the system PCs.

6.2.1.2 Large-scale PV and ES

This research models the use of PV and ES as local MG units at customer premises. However,

future distribution grids will also have PV farms and/or ES connected at the main substation

and even higher voltage levels. This will be to emulate large-scale ES typically owned, con-

trolled and managed by DNOs. Currently, the emphasis in this type of ES-configuration is to

improve energy efficiency and provide balancing services such as frequency response and re-

serve services. However, future research will quantify plausible reliability enhancements from

this ES-configuration. Moreover, analyses will include assessment of network hosting capac-

ity for the proposed large-scale PV-based DG, as performed in [160] for wind-based DG, to

ensure that relevant DG sizes are modelled while accounting for relevant operational network

constraints. For completeness at an advanced stage, the analysis will also require integration

with current use-of-system charges methodologies as well as evaluation of the contribution to

the generation capacity margin.

6.2.2 Reliability Assessment Methodology

6.2.2.1 Expected PC Lifetimes

This thesis makes a substantial attempt to reduce the simplifying assumptions required for

modelling. However, each PC is modelled to have the same expected lifetime (40 years) yet

different PCs have different ageing patterns due to location, operating characteristics, etc. Sim-

ilarly, PCs located near the coasts might deteriorate faster due to salt and storms whereas inland

equipment may have longer lifetimes punctuated with different types of climate stresses. Also,

the manufacturer of a PC will certainly have a significant impact on its useful life. Therefore,

future work will include the provision of variable PC replacement periods based on the nature

of the PC, number and duration of failures, and socio-economic factors that may prompt or de-

lay PC replacement. This will involve the application of variants of the ‘bathtub’ distribution

curve e.g. the ‘saw tooth bathtub’, to capture PC replacement after different periods. Simpli-

fying assumptions will be made e.g. categorising excessively long interruptions (>MTTR) as

direct requirements for early PC replacement.
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6.2.2.2 Network and Load Modelling

It is also true that the generic LV and MV network models can be more representative of the

actual distribution networks by updating them with location-optimised MG, shunt capacitors,

isolators, etc. This can also look at possible microgrid applications for improvement of the

local CoS by including e.g. peer-to-peer trading, and energy arbitrage i.e. taking advantage

of time-varying electricity prices by selling/reducing demand at appropriate times. Not to

mention, the load models used in the future work will consider both the seasonal variations

of the demand profile as well as the daily temporal variation that is currently considered. In

addition, dynamic modelling will be used to develop accurate coefficients for polynomial or

exponential load models that will adequately categorise different load types (e.g. constant

impedance, current and power used in static models), especially for transient studies.

6.2.2.3 MCS Resolution

The current time-sequential MCS methodology based on SDS has got a significant limitation

of the resolution. For more accurate reliability assessments, it is necessary to model the min-

imum length of a time step to be at least the length of a SI (3 min in the UK, 1 min in the

USA). Invariably, the higher resolution (i.e. smaller timesteps) increases the computational

burden and requires more advanced methods for faster MCS convergence. Therefore, on top

of investigating variance reduction/MCS acceleration techniques such as control and antithetic

variates [125], the future work will also assess how Multilevel MCS [161, 162] methods may

be used to enable time-step reduction. This MCS resolution enhancement will have the added

advantage of allowing for an integrated reliability and power quality analysis as these smaller

timesteps will make it possible to perform transient studies.

6.2.2.4 Range of Reliability Indices

The range of the reliability performance results should be extended by disaggregating the stan-

dard reliability indices into component-based contributions, to further propose reliability en-

hancement solutions such as targeted asset replacement or preventive maintenance, which are

cognisant of pre-existing network infrastructure. This should be accompanied by disaggrega-

tion of fault statistics and reported reliability metrics by load-sector (rural, suburban, urban)

as recommended by CEER [21]. Furthermore, probability boxes [163], which are often used

in risk analysis or quantitative uncertainty modelling, will also be used to illustrate results due

to the variability of DERs, the empirical distributions of PC reliability data (failure rates and

repair times), and realised reliability indices. This uncertainty about the probability distribu-

tion shapes of both inputs (PC reliability data) and outputs (indices) can be better characterised
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using techniques e.g. confidence bands, which are distribution-free i.e. making no assumption

about the shape of the underlying distribution.

6.2.3 Model Order Reduction

6.2.3.1 Computation of System Gramians

The proposed MOR-for-reliability methodology represents a significant step towards a sim-

plified and accurate analysis of aggregating complex networks. Nevertheless, the proposed

approach exhibits a few limitations. With the current formulation, the number of PCs of

the original system that can be modelled is limited by hardware constraints. The two main

computational-memory bottlenecks arise from building the state transition matrix A (4.13) and

obtaining the system Gramians (4.4) by solving computationally expensive Lyapunov equa-

tions [89, 164]. In this thesis, these issues were tackled by developing ad-hoc programming

solutions and adopting the matrix equation sparse solver (MESS) toolbox [165] for a more ef-

ficient resolution of high-order Lyapunov equations. In future work, different techniques will

be explored to obtain a faster computation of the relevant Gramian matrices, allowing for the

simulation of larger systems. These techniques will exploit the low-rank property for solutions

of large-scale, sparse Lyapunov equations [89] e.g. methods based on the Arnoldi process

[166, 167] and Krylov subspace methods [167, 168]. A distributed system reduction will also

be investigated, deriving the simplified grid model as a collection of smaller interconnected

systems, each obtained with the proposed MOR approach.

6.2.3.2 Time-varying Failure Rates and PC Ageing

The current MOR methodology only utilises constant PC failure and repair rates to construct

the state space representation as given by (4.1). This means that unlike the analyses presented

in Chapter 3, the proposed methodology in Chapter 4 cannot adequately account for PC ageing

(using the expected lifetime bathtub for example) which is important for accurate reliability

analyses. Moreover, the use of spatially disaggregated PC failure rates is important to ensure

that the effects of varying network topologies and load sectors (urban, suburban and rural) are

accurately modelled in reduced-order networks. Future work will implement these enhance-

ments by utilising alternative MOR techniques presented in the literature for time-varying dy-

namical systems, such as the ones in [169, 170] which are also reliant on balanced truncation,

as utilised in this thesis.
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6.2.3.3 Markov Property of Reduced Order Models

For MCS analyses, the current methodology only returns models of order r = 2. Higher values

of r result in system matrices A in (4.13) that are not in Metzler form. Therefore, the associ-

ated system lacks the Markov property and cannot be simulated with MCS methods. Future

research will test new methods for the approximation of Metzler matrices. Work in [171, 172]

investigated this aspect but the proposed methods were not directly applicable to reliability

studies because they focused on the stability of the resultant Metzler matrix rather than its

Markovian properties. Another alternative will also be to compare the proposed approach with

other MOR approaches e.g. moment-matching.

6.2.3.4 Reliability Metrics for Frequency and Duration of Interruptions

The frequency and duration of interruptions are not explicitly included in the chosen state-space

representation (4.1) of the system reliability. This means that reliability metrics - SAIFI and

SAIDI can be calculated ex-post with the time-sequential MCSs but cannot be used as relevant

metrics over which the approximation error of the proposed MOR procedure is minimised.

However, SAIFI and SAIDI represent two fundamental indices in the evaluation of network

reliability and therefore, to explicitly consider them in the MOR procedure, the current model

will be expanded in future works, for example including additional states in (4.13) that keep

track of the failure times of the different power components.

6.3 Future Research Directions

Further to the aspects of future research already described, the most promising alternative to

the current aggregation methodology limitations is to use machine learning for network aggre-

gation. Like MOR, this technique has already demonstrated wide applicability in power engi-

neering research problems as well as for reliability assessment [173, 174]. However, machine

learning has not yet been used for the specific purpose of network aggregation for reliability.

Studies such as [175] represent a good starting point for its application as an extension of the

results presented in this thesis. Therefore, future research will aim to develop a network ag-

gregation methodology that utilises traditional machine learning algorithms or artificial neural

networks for state-space classification. This will then be integrated into the already developed

time-sequential MCS methods to produce a reliability assessment approach that will overcome

network complexity in terms of system topology, the stochastic distribution of faults, and the

demand usage patterns. The major contribution will be the provision of reliability equivalent

models that represent the most important system states while providing substantial savings in
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the computational time required for reliability analyses. Moreover, the use of machine learn-

ing will introduce a ‘dynamic’ reliability assessment that will take advantage of new system

conditions to produce “on-line” updates of reduced-order models. This will be integrated into

the general theme of this research which is to assess SGT impacts in more accurate ways. It is

also important to mention that techniques based on artificial neural networks have been used

to monitor distribution systems where the emphasis is on overcoming the complexity added by

DG installations [176].

Future research will also explore the quantification of the financial impact of the reliability-

improvement solutions proposed by the deployment of smart grid functionalities through

known/estimated cost implications. It will invariably include the development of new customer

and system based economic-reliability indices. The resultant economically integrated reliabil-

ity assessment methodology will provide economic justifications from a reliability perspective,

in addition to the enhancements (justifications) in terms of improved network performance

through implementation of SGTs. Hopefully, this will not only serve as an impetus for DNOs

to consider SGT applications for network performance improvements but also encourage the

use of fully integrated fast reliability methods in core planning processes and maintenance

procedures for distribution networks.
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[162] A. N. Huda and R. Živanović, “Accelerated distribution systems reliability evaluation

by multilevel Monte Carlo simulation: implementation of two discretisation schemes,”

IET Generation, Transmission & Distribution, vol. 11, pp. 3397–3405, Sep 2017.

[163] S. Ferson, M. Balch, K. Sentz, and J. Siegrist, “Computing with confidence,” in ISIPTA

2013 - Proceedings of the 8th International Symposium on Imprecise Probability: The-

ories and Applications, pp. 129–138, 2013.

[164] W. H. a. Schilders, H. a. V. D. Vorst, and J. Rommes, Model Order Reduction: The-

ory, Research Aspects and Applications, vol. 13 of Mathematics in Industry. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1st ed. 20 ed., 2008.

[165] J. Saak, M. Köhler, and P. Benner, “Matrix Equation Sparse Solver,” 2019.



References 181

[166] K. Jbilou and A. Riquet, “Projection methods for large Lyapunov matrix equations,”

Linear Algebra and its Applications, vol. 415, pp. 344–358, Jun 2006.

[167] M. Hached and K. Jbilou, “Numerical solutions to large-scale differential Lyapunov

matrix equations,” Numerical Algorithms, vol. 79, pp. 741–757, Nov 2018.

[168] V. Simoncini, “A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equa-

tions,” SIAM Journal on Scientific Computing, vol. 29, pp. 1268–1288, Jan 2007.

[169] J. Roychowdhury, “Reduced-order modelling of linear time-varying systems,” in

IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical

Papers, (New York, New York, USA), pp. 92–95, ACM Press, 1998.

[170] N. Lang, J. Saak, and T. Stykel, “Balanced truncation model reduction for linear

time-varying systems,” Mathematical and Computer Modelling of Dynamical Systems,

vol. 22, pp. 267–281, Jul 2016.

[171] J. Anderson, “Distance to the nearest stable Metzler matrix,” in 2017 IEEE 56th An-

nual Conference on Decision and Control (CDC), vol. 2018-Janua, (Melbourne, VIC,

Australia), pp. 6567–6572, IEEE, Dec 2017.

[172] T. Kaczorek, “Positive stable realizations with system Metzler matrices,” Archives of

Control Sciences, vol. 21, pp. 167–188, Jan 2011.

[173] N. Amjady and M. Ehsan, “Evaluation of power systems reliability by an artificial neural

network,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 287–292, 1999.

[174] A. M. Leite da Silva, L. C. de Resende, L. A. da Fonseca Manso, and V. Miranda,

“Composite reliability assessment based on Monte Carlo simulation and artificial neural

networks,” IEEE Transactions on Power Systems, vol. 22, pp. 1202–1209, Aug 2007.

[175] G. Li, Y. Huang, Z. Bie, and T. Ding, “Machine-learning-based reliability evaluation

framework for power distribution networks,” IET Generation, Transmission and Distri-

bution, vol. 14, pp. 2282–2291, Jun 2020.

[176] J. H. Menke, N. Bornhorst, and M. Braun, “Distribution system monitoring for smart

power grids with distributed generation using artificial neural networks,” International

Journal of Electrical Power and Energy Systems, vol. 113, pp. 472–480, Dec 2019.



Appendix A

MATLAB Model for MCS based on
SDS

This thesis utilises the MATLAB code provided in this appendix to implement the time-

sequential MCS methodology provided by Figure 3.9. The code includes use of time-varying

PC failure rates and demand profiles (Section 3.2), application of backup action (Section 3.3.1)

to alleviate network faults subject to SQS regulations regarding supply loss to GD, and differ-

entiation of system interruptions into SIs and LIs (Section 3.2.1). Also, the code configures the

correlation between the moments when faults occur, and the actual load demand interrupted

using the theoretical supply interruption model in Figure 3.10. Modifications of this code have

been used for the reliability analyses presented in Sections 3.3-3.6.

Input Data and MCS Code
%Time-sequential MCS based on SDS for the Suburban MV network%

%Time step = 30 mins%

clear

clc

tic;

%--------------------------------------------

% Input Reliability Data - Failure rates(Lambda) and

% mean repair times (mttr)

%number of Power Components

buses33=4;
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buses11=168;

busesLV=88;

busesLV_1=44;

busesLV_2=44;

lines11=66;

lines11_1=52;

lines11_2=14;

CBs33=3;

CBs11=101;

fuses=44;

trafos3311=2;

trafos1104=44; %520 PCs

% Length of lines/cables: (km)

length_lines_1=0.5; %(km) % define length for

% each particular line/cable

length_lines_2=0.8; %(km)

%Definition of lambdas

lambda_bus_33=0.08;

lambda_bus_11=0.005;

lambda_bus_LV_1=0.005;

lambda_bus_LV_2=0.005;

lambda_line_11=0.091; % This is per km;

lambda_CB_33=0.0041;

lambda_CB_11=0.0033;

lambda_fuse=0.0004;

lambda_trafo_3311=0.01;

lambda_trafo_1104=0.002;

%-------------------------------------------

%Definition of MTTRs

mttr_bus_33=140;

mttr_bus_11=120;

mttr_bus_LV_1=24;

mttr_bus_LV_2=24;

mttr_line_11=9.5;

mttr_CB_33=140;

mttr_CB_11=120.9;
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mttr_fuse=35.3;

mttr_trafo_3311=205.5;

mttr_trafo_1104=75;

%Lambda input arrays

l_bus_33=lambda_bus_33*ones(1,buses33);

l_bus_11=lambda_bus_11*ones(1,buses11);

l_bus_LV_1=lambda_bus_LV_1*ones(1,busesLV_1);

l_bus_LV_2=lambda_bus_LV_2*ones(1,busesLV_2);

l_bus=[l_bus_33 l_bus_11 l_bus_LV_1 l_bus_LV_2];

l_line1=lambda_line_11*length_lines_1*ones(1,lines11_1);

l_line2=lambda_line_11*length_lines_2*ones(1,lines11_2);

l_line=[l_line1 l_line2];

l_CB_33=lambda_CB_33*ones(1,CBs33);

l_CB_11=lambda_CB_11*ones(1,CBs11);

l_CB=[l_CB_33 l_CB_11];

l_fuse=lambda_fuse*ones(1,fuses);

l_trafo_3311=lambda_trafo_3311*ones(1,trafos3311);

l_trafo_1104=lambda_trafo_1104*ones(1,trafos1104);

l_trafo=[l_trafo_3311 l_trafo_1104];

%MTTR input arrays

m_bus_33=mttr_bus_33*ones(1,buses33);

m_bus_11=mttr_bus_11*ones(1,buses11);

m_bus_LV_1=mttr_bus_LV_1*ones(1,busesLV_1);

m_bus_LV_2=mttr_bus_LV_2*ones(1,busesLV_2);

m_bus=[m_bus_33 m_bus_11 m_bus_LV_1 m_bus_LV_2];

m_line=mttr_line_11*ones(1,lines11);

m_CB_33=mttr_CB_33*ones(1,CBs33);

m_CB_11=mttr_CB_11*ones(1,CBs11);

m_CB=[m_CB_33 m_CB_11];

m_fuse=mttr_fuse*ones(1,fuses);

m_trafo_3311=mttr_trafo_3311*ones(1,trafos3311);

m_trafo_1104=mttr_trafo_1104*ones(1,trafos1104);

m_trafo=[m_trafo_3311 m_trafo_1104];
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% Simulation input variables

years=1000;

multiplier=365; % down to days scale

days=years*multiplier;

lambda1=[l_bus l_line l_CB l_fuse l_trafo];

mttr=[m_bus m_line m_CB m_fuse m_trafo];

lambda=lambda1/multiplier; %failure/day

% Variation of PC failure rates according to the Bathtub distribution

% Section 3.2, Expected lifetime = 40 years

bathtub = 40 * multiplier; % 40 years in days

step = bathtub + 1;

% Different steps of the bathtub over 14600 days (40 years)

x = 1/step : 1/step : 1-1/step ;

y = zeros(bathtub,length(lambda));

for n = 1:length(lambda)

y(:,n) = (lambda(n))./(pi*sqrt(x.*(1-x))); % Beta PDF with

% mean value = lambda(n)

end

dim = size(y);

a = 1;

b = dim(1);

for m = 1:25 % (40 years * 25 times = 1000 years of simulation)

LAMBDA(a:b,:)=y;

a=a+dim(1);

b=b+dim(1);

end

% Weibull parameters Short Interruptions (SIs):

G1=14.25;

b1=1.95;

% Weibull parameters Long Interruptions (LIs):

G2=14.35;

b2=2.35;

%--------------------------------------------

%Main SDS Code:

U1=rand(days,length(lambda));

U2=rand(days,length(mttr));

TTF=zeros(days,length(lambda));
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TTR=zeros(days,length(lambda));

b3=2; % RAYLEIGH Distribution: beta=2

G3=mttr/(gamma(1+(1/b3)));

for k=1:days

for i=1:length(lambda)

% Inverse Exponential CDF for Fault Rates

TTF(k,i)=-1/LAMBDA(k,i)*log(U1(k,i));

% Inverse Rayleigh CDF for TTR

TTR(k,i)=G3(i)*(-log(U2(k,i)))^(1/b3); %given in hours

end

end

f=find(TTF<1);

SI_LI=randsrc(length(f),1,[0 2;0.54 0.46]); % 0='SIs' 54%prob ,

% 2='LIs' 46%prob

LI=find(SI_LI);

SI=find(SI_LI<2);

f1=TTR(f); % duration of interr. in hours

f1(SI)=0; % vector divided in SIs and LIs (in hours)

f0=f1*2; % (in 30min divisions) (i.e. adjustable accuracy)

f0(f0<2 & f0>0)=2; % The minimum duration (max.accuracy) for LIs is

% 1h (2x30min) This is because the time-step is 30min (1 time-step = SI)

f2=round(f0);

Act_of_SIs = 100*length(find(f2==0))/length(f2); % Actual %age number of SIs

%-----------------

% Weibull (Random Variates) for SI and LI Distributions (over the day)

% This defines the exact time (in hours) at which SI-LI happen in day

U3=rand(length(SI),1);

T_SI=zeros(length(SI),1);

for j=1:length(SI)

T_SI(j)=G1*(-log(U3(j)))^(1/b1); % Times SIs

while T_SI(j)>24

U4=rand;

T_SI(j)=G1*(-log(U4))^(1/b1);

end

end
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U5=rand(length(LI),1);

T_LI=zeros(length(LI),1);

for l=1:length(LI)

T_LI(l)=G2*(-log(U5(l)))^(1/b2); % Times LIs

while T_LI(l)>24

U6=rand;

T_LI(l)=G2*(-log(U6))^(1/b2);

end

end

% Time (in 30min divisions) at which SI-LI happen in day

T_SI_2=T_SI*2;

T_LI_2=T_LI*2;

T_SI_30min=round(T_SI_2); %rounded values (30min) of occurrence (SIs)

T_LI_30min=round(T_LI_2); % " (LIs)

T_SI_30min(T_SI_30min<1)=1; % This is to make sure that the rounded value

T_LI_30min(T_LI_30min<1)=1; % doesn't give a failure in time '0'

%-----------------

% Output Matrix 'B' for PSS R©E (iterations=days):

B=ones(days,length(lambda));

B(f)=f1; % 0='SIs' , 1=Normal Operation , 'duration of 'LIs' (value in h)

%------------------

% 'C', same Matrix 'B', but with time of occurrence of faults

B_SIs=find(B==0);

B_LIs=find(B~=0 & B~=1);

C=zeros(days,length(lambda)); % it must be a 'zeros' matrix to avoid

% confusion with other values (ones)

C(B_SIs)=T_SI_30min; %(in rounded 30min over the day)

C(B_LIs)=T_LI_30min;

%------------------------------------------

tElapsed=toc;

save MCS_SDS_SU B C f2 Act_of_SIs tElapsed % saved variables

MCS Resolution – 30 minutes time-step
% ADJUSTMENT OF MCS Resolution to 30-mins timesteps to implement a time

% sequential analysis with correlated demand profiles.
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clear

clc

load MCS_SEST_SU C

tic;

dim = size(C);

exp_n = 48; % Determines the desired step size - 48 = 24h * 2 (30 min)

for k = 1:dim(1,2)

p = 1;

for n = 5000:5000:365000 % Iteration steps of 5000 days

m = n-4999;

a = C(m:n,k); % works on column(PC) by Column(PC)

for i = 1:length(a)

a0 = i;

if a(i)==0

S(a0,:) = ones(exp_n,1);

else

b = ones(exp_n,1);

b(a(i)) = 0; % a(i) has to be an integer. This is

S(a0,:) = b; % ensuredby matrix C having only integers.

end

end

P = zeros(exp_n*i,1);

startpoint1 = 1;

endpoint1 = 1;

for j = 1:i

endpoint1 = startpoint1 + (exp_n-1);

P(startpoint1:endpoint1,1) = S(j,:);

startpoint1 = endpoint1 + 1;

end

SP(:,p) = P;

p = p+1;

end

p = p-1;

A = zeros(length(P)*p,1);

startpoint2 = 1;

endpoint2 = 1;
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for q = 1:p

endpoint2 = startpoint2 + (length(P)-1);

A(startpoint2:endpoint2,1) = SP(:,q);

startpoint2 = endpoint2 + 1;

end

S1(:,k) = A;

clear S SP

end

for z = 1:dim(1,2)

miniD(:,z) = S1(:,z);

end

% miniD is the output matrix with mostly ones and zeros situated

% at the exact time when SIs and LIs occur.

%-------------------------------------------------------

%-------------------------------------------------------

Classification between SIs and LIs
f0 = miniD==0; % find interruptions in Matrix D

miniD(f0) = f2; % allocate interruption durations from vector f2

% Extend those durations for LIs only to the corresponding timesteps:

f1 = find(miniD>1);

for m = 1:length(f1)

for t = 0:(miniD(f1(m))-1)

miniD(f1(m)+t) = 0;

end

end

% The new mini matrix D is the output matrix for export to PSS R©E to carry

% out risk and power flow analysis in 30min time steps.

% Because miniD is just 1s and 0s (PC states), we can afford to convert it

% to uint8 (using 1 byte) instead of leaving D as a double (8 bytes).

d = uint8(miniD);

TE = toc;
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save D d TE

Application of Backup Action
% Application of Backup action through normally open switches at the end of

% each feeder.

% Step 1 - Create a submatrix 'Dnew' from 'd', with only those PCs that are

% affected by the backup action in the network (i.e. SQS legislation: 3h,

% 15 min, etc., depending on interrupted GD).

% For the Suburban MV network, the code applies backup action according to a

% time limit of maximum 3h (6X30min time steps) and generates a matrix

% 'Dnew_BV' with the required backup action for each PC (in each column).

clear

clc

load D d

Dnew = d(:,PCs_A);

dim = size(Dnew);

B = zeros(dim);

for j = 1:dim(1,2)

A = Dnew(:,j);

n = diff([3; A; 3]==0); % '3' can be any integer

f1 = find(n==1);

dur = (find(n==-1)-find(n==1));

for m = 1:length(f1)

if dur(m) > limitvalue

% For each LI, this is the limit value to track (backup

% time=3h) (6x30min steps) If we want to set backup to

% a fixed value of 3h, then: set q=6!!!

q = randsrc(1,1,[2 3 4 5 6]); % If the interruption

% is >6(3h), then q is the random (uniform) time limit

% for backup:either 2(1h), 3(1.5h), 4(2h), 5(2.5h) or

% 6(3h) time steps

for p = q:(dur(m)-1)

B(f1(m)+p,j) = 1;

end
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end

end

end

Dnew_BV = B;

Backup_Vector = sum(Dnew_BV,2); % Sums along the rows to ensure

% a column vector with on/off status for the backup switch

Backup_Vector(Backup_Vector~=0) = 1;

saveStructBV.(['Backup_Vector' num2str(ij)]) = Backup_Vector;

save (['Backup_Vector' int2str(ij)], '-struct', 'saveStructBV',...

['Backup_Vector' num2str(ij)]);

% Backup_Vector is the input for the backup switch N in PSS R©E.
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Python Model for Automation of
PSS R©E

After generating the state duration of each PC for each simulation timestep, the next step is to

run power flow analyses to determine the impact of each state in terms of the total number of

customers experiencing supply interruption and the corresponding energy not supplied. Given

the length of simulation, the use of PSS R©E can be automated using application program in-

terface (API) routines. These routines are defined for PSS R©E using various syntaxes namely

batch commands, Fortran and Python. This thesis uses the Python code in this appendix which

corresponds to the analysis for the suburban MV network. Accordingly, different code modifi-

cations have been used for the reliability analyses presented in Sections 3.3-3.6.

# Time-sequential MCS for the suburban Network (44 LPs, 520 PCs,

# 1000 years, 30-mins timestep)

# The code also considers the variation of load profile and power factor

# (PF).

#-----------------------------------------------------------

# Read Load Profile Data (Residential max demand) (17520 x 30min steps)

#Residential loads

LOAD=[]

h=open(r"""C:\Brian\PhD\MBN\Events_Conferences\SEST_2019\MBN\SEST\SU\

Base_case\Demand_Data\Residential\lp.txt""", 'r')

i = 0

while i < 17520:

temp=float(h.readline())

LOAD.extend([temp])

i = i + 1

h.close()
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# read PF data

PF=[]

h=open(r"""C:\Brian\PhD\MBN\Events_Conferences\SEST_2019\MBN\SEST\SU\

Base_case\Demand_Data\Residential\pf.txt""", 'r')

i = 0

while i < 17520:

temp = float(h.readline())

PF.extend([temp])

i = i + 1

h.close()

#----------------------------------------------------------

import os,sys

p=1

while p < 1001:

path1="C:\Brian\PhD\MBN\Events_Conferences\SEST_2019\MBN\SEST\SU\

Base_case\Text_Files_MCS_to_PSSE\%d" %(p)

os.chdir(path1)

psspy.case(r"""C:\Brian\PhD\MBN\Events_Conferences\SEST_2019\MBN\

SEST\SU\Base_case\PSSE_model\SEST_Suburban_Backup.sav""")

# suppress outputs in the PSSE display

psspy.report_output(6,"",[0,0])

psspy.progress_output(6,"",[0,0])

psspy.alert_output(6,"",[0,0])

#initialise load status arrays (0=interrupted/not 0 = normal operation)

l_1=[]

l_2=[]

l_3=[]

# insert all load arrays until:

l_44=[]

# read 17520 x 30min status (0-open or 1-closed) coefficients

NPCs=522 # declare number of power components (+ 2 Backups =522 PCs)

PC=[0]*NPCs #declare empty array of loads

npc=0

while npc<NPCs:

PCtemp=[]

exec "f=open('PC%d.txt', "r")" % (npc+1)

i = 0

while i < 17520: ### 17520 steps (1year in 30min)

temp=float(f.readline())

PCtemp.extend([temp])
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i = i + 1

f.close()

PC[npc]=PCtemp

npc=npc+1

N=0

while N<17520:

psspy.case(r"""C:\Brian\PhD\MBN\Events_Conferences\SEST_2019\MBN\SEST\

SU\Base_case\PSSE_model\SEST_Suburban_Backup.sav""")

#----------------------------------------------------------------

# Create subsystem with 44 loads (Residential)

psspy.bsys(2,0,[0.0,0.0],0,[],44,[1017,10113,10119,10122,1027,10212,

10216,10220,1036,1047,10413,10417,1059,10513,10519,10524,10530,10535,

10539,1066,1078,10714,10719,10723,1086,1097,10912,10916,10920,1106,

1117,11112,11116,11119,2016,2027,20212,20216,20220,2036,2047,20412,

20416,20419],0,[],0,[]) #buses IDs

# Change Load Profile (All residential customers)

psspy.scal(2,0,1,[0,0,0,0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0])

psspy.scal(2,0,2,[2,0,1,0],[LOAD[N],0.0,0.0,0.0,0.0,0.0,0.0])

# change PF

psspy.scal(2,0,1,[0,0,0,0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0])

psspy.scal(2,0,2,[2,0,4,0],[ 0.0,0.0,0.0,0.0,0.0,0.0,PF[N]])

#-------------------------------------------------------------

# Change status (on/off) for all Power Components (520 + 2Backup PCs):

# Buses 33kV

if PC[0][N]==0: psspy.dscn(1)

if PC[1][N]==0: psspy.dscn(2)

if PC[2][N]==0: psspy.dscn(11)

if PC[3][N]==0: psspy.dscn(21)

# Buses 11kV

if PC[4][N]==0: psspy.dscn(12)

if PC[5][N]==0: psspy.dscn(13)

if PC[6][N]==0: psspy.dscn(22)

# insert all buses until:

if PC[171][N]==0: psspy.dscn(20417)

# Buses 0.4kV

if PC[172][N]==0: psspy.dscn(1016)

if PC[173][N]==0: psspy.dscn(1026)

# insert all buses until:

if PC[259][N]==0: psspy.dscn(20419)
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# lines (0.5km)

if PC[260][N]==0: psspy.branch_chng_3(100,1011,r"""1""",[0,_i,_i,_i,

_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,_f,_f,

_f,_f,_f,_f,_f],_s)

if PC[261][N]==0: psspy.branch_chng_3(1012,1021,r"""2""",[0,_i,_i,

_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,_f,

_f,_f,_f,_f,_f,_f],_s)

# insert all lines until:

if PC[311][N]==0: psspy.branch_chng_3(2042,20417,r"""66""",[0,_i,

_i,_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,

_f,_f,_f,_f,_f,_f,_f,_f],_s)

# lines (0.8km)

if PC[312][N]==0: psspy.branch_chng_3(1033,1034,r"""21""",[0,_i,_i,

_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,_f,

_f,_f,_f,_f,_f,_f],_s)

# insert all lines until:

if PC[325][N]==0: psspy.branch_chng_3(20413,20414,r"""65""",[0,_i,

_i,_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,

_f,_f,_f,_f,_f,_f,_f],_s)

# 33kV breakers

if PC[326][N]==0: psspy.system_swd_chng(1,2,r"""1""",[0,_i,_i,_i],

_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

if PC[327][N]==0: psspy.system_swd_chng(2,11,r"""1""",[0,_i,_i,_i],

_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

if PC[328][N]==0: psspy.system_swd_chng(2,21,r"""1""",[0,_i,_i,_i],

_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

# 11kV breakers

if PC[329][N]==0: psspy.system_swd_chng(12,13,r"""1""",[0,_i,_i,_i],

_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

if PC[330][N]==0: psspy.system_swd_chng(13,23,r"""1""",[0,_i,_i,_i],

_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

# insert all breakers until:

if PC[429][N]==0: psspy.system_swd_chng(10716,10720,r"""1""",[0,_i,

_i,_i],_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

#switch fuses:

if PC[430][N]==0: psspy.system_swd_chng(1016,1017,r"""1""",[0,_i,_i,

_i],_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

# insert all fuses until:

if PC[473][N]==0: psspy.system_swd_chng(20418,20419,r"""1""",[0,_i,

_i,_i],_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)
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# 33_11 kV Transformers

if PC[474][N]==0: psspy.two_winding_chng_5(11,12,r"""45""",[0,_i,_i,

_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,

_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,

_f],_s,_s)

if PC[475][N]==0: psspy.two_winding_chng_5(21,22,r"""46""",[0,_i,_i,

_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,

_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,

_f],_s,_s)

# 11_04 kV Transformers

if PC[476][N]==0: psspy.two_winding_chng_5(1015,1016,r"""1""",[0,_i,

_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,

_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,

_f,_f],_s,_s)

# insert all transformers until:

if PC[519][N]==0: psspy.two_winding_chng_5(20417,20418,r"""44""",[0,

_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,

_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,_f,_f,_f,_f,

_f,_f,_f],_s,_s)

# BACKUP SUPPLIES (PC521/PC522 text files)

if PC[520][N]==1: psspy.system_swd_chng(3,111,r"""1""",[1,_i,_i,_i],

_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

if PC[521][N]==1: psspy.system_swd_chng(3,204,r"""1""",[1,_i,_i,_i],

_f,[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

# Check for Bus Islands (Tree Option)

psspy.tree(1,0)

psspy.tree(2,1)

psspy.tree(2,1)

psspy.tree(2,1)

psspy.tree(2,1)

psspy.tree(2,1)

# Solve Newton-Raphson

psspy.fdns([2,0,0,1,1,0,99,0])

#### 'if' loops for substation (2 trafos in //)

### If Trafo 'GSP1' Fails (or PCs associated):

if PC[474][N]==0 or PC[2][N]==0 or PC[4][N]==0 or PC[327][N]==0

or PC[329][N]==0:

ierr,tload2=psspy.brnmsc(21,22,'46','PCTMVA')

if tload2 > 100:

psspy.two_winding_chng_5(21,22,r"""46""",[0,_i,_i,_i,_i,_i,

_i,_i,_i,_i,_i,_i,_i,_i,_i],[_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,
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_f,_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],[_f,_f,_f,_f,_f,_f,_f,_f,

_f,_f,_f,_f],_s,_s)

# switch on backups should both transformers be out of service

psspy.system_swd_chng(3,111,r"""1""",[1,_i,_i,_i],_f,[_f,_f,

_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

psspy.system_swd_chng(3,204,r"""1""",[1,_i,_i,_i],_f,[_f,_f,

_f,_f,_f,_f,_f,_f,_f,_f,_f,_f],_s)

# Re-check for Bus Islands (Tree Option)

psspy.tree(1,0)

psspy.tree(2,1)

psspy.tree(2,1)

psspy.tree(2,1)

psspy.tree(2,1)

psspy.tree(2,1)

# Solve Newton-Raphson again

psspy.fdns([2,0,0,1,1,0,99,0])

### Repeat for Trafo 'GSP2'

### Get Output Files (44 Loads)

ierr,l1=psspy.brnmsc(1016,1017,'1','PCTCPA')

l_1.extend([l1])

ierr,l2=psspy.brnmsc(10112,10113,'1','PCTCPA')

l_2.extend([l2])

ierr,l3=psspy.brnmsc(10118,10119,'1','PCTCPA')

l_3.extend([l3])

# obtain load output files until:

ierr,l44=psspy.brnmsc(20418,20419,'1','PCTCPA')

l_44.extend([l44])

N=N+1

path2="C:\Brian\PhD\MBN\Events_Conferences\SEST_2019\MBN\SEST\SU\

Base_case\Results_Text_Files_PSSE_to_Matlab\%d" %(p)

os.chdir(path2)

l_1 = str(l_1)[1 : -1];

sys.stdout=open('Results\L1.txt','a')

print l_1

l_2 = str(l_2)[1 : -1];

sys.stdout=open('Results\L2.txt','a')

print l_2
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l_3 = str(l_3)[1 : -1];

sys.stdout=open('Results\L3.txt','a')

print l_3

# print load text files until:

l_44 = str(l_44)[1 : -1];

sys.stdout=open('Results\L44.txt','a')

print l_44

sys.stdout.close()

p+=1



Appendix C

MATLAB Model for MOR

This appendix provides the MATLAB code developed for the MOR procedure discussed in

Section 4.4.2 and summarised using Algorithm 1. The initial state space representation is

generated before computing the relevant system Gramians that allow for a truncation of less

important system states based on their HSVs. The reliability of the resultant reduced order is

then assessed using a time-sequential MCS based on STS. Modifications of this code have been

used for the reliability analyses presented in Section 4.5 as well as the enhancements discussed

in Chapter 5.

Generating the State Space Representation
%MOR for a simple 4PC system.

clear

close all

clc

tic

%---------------------------------------------------%

Days = 365;

H = 24;

dt = 1; % Timestep in hours

tsperyear = Days*(H/dt); %8760

PCs = 4; % Number of Power components

N = 2^PCs; % Number of states

n = 1; % states of the reduced order system minus 1.
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%Edit n to change the size of the reduced system%

lambda1 = [0.08 0.1 0.1 0.08]; % PC failure rates per year - Bus,line

lambda = lambda1/tsperyear; % Failure rate per timestep.

MTTR = [140 20.5 20.5 140];

MTTR = MTTR/dt; % Because MTTR is given in hours.

mu = 1./MTTR; % Repair rate.

%----------------------------------------------------%

%[AA] = f_Dynamics_matrix(N,lambda,mu); % Dynamics matrix ==

% State transition matrix Build the system matrix A by checking

% for associated PC transitions

Bin_states=dec2bin(flipud((0:N-1)'));

dim=size(Bin_states);

SM=zeros(dim); % State Matrix

for i = 1:dim(2)

SM(:,i) = str2num(Bin_states(:,i)); % State 1 is when all PCs are in

% service and state N is when all PCs are down.

end

AA = zeros(dim(1));

for k=1:length(SM)

difr=zeros(dim);

statechng=zeros(length(SM),1);

for i=1:length(SM)

difr(i,:)= SM(k,:) - SM(i,:); % State_transitions

statechng(i,:)=sum(abs(difr(i,:))); % State_change_possibility

end

truepos = find(statechng==1); % Only_possible_jumps_are_to_state xyz

TLmu = zeros(1,length(truepos)); % Associated_jump_prob_values

for j=1:length(truepos)

temp=find(difr(truepos(j),:)~=0);

if difr(truepos(j),temp)<0

TLmu(j)=mu(temp);

else

TLmu(j)=lambda(temp);

end

end



Appendix C. MATLAB Model for MOR 201

AA(k,truepos) = TLmu;

AA(k,k)= -(sum(AA(k,:)));

clearvars truepos;

end

AA=AA'; %This is the algebraic (dynamics) matrix equation

BB = zeros(N,1); % original B

D1 = 7.5; % Demand at bus 1 in MW.

D2 = 10; % Bus 2 for 3PC system.

TD = D1+D2;

CC = [TD D1 TD D1 TD D1 D1 D1 0 0 0 0 0 0 0 0];

CC = TD-CC; % CC == original C

DD = 0 ; % original D

ini = zeros(N-8,1);

xx0 = [0.3;0.2;0.05;0;0.05;0.2;0.1;0.1;ini]; % Original Initial conditions

syss = ss(AA,BB,CC,DD); % Original system!

Order Truncation
Astar = AA(2:end,2:end);

B = AA(2:end,1); % control matrix

A = bsxfun(@minus,Astar,B);

D = CC(:,1); % direct term / feedforward/ feedthrough matrix

C = CC(:,2:end) - D; %Output Matrix == sensor matrix

x0 = xx0(2:end);

sys = ss(A,B,C,D); % Generate state space representation.

W = gram(sys,'o'); % observability gramian

[V,dia]=eig(W); % V and dia are the Eigenvectors and Eigenvalues

% respectively for observability gramian matrix, W.

V = flipud(rot90(V,2)); % V and dia must be in a non-increasing order.

%-----------------------------------------------------------%

% New system------------------------------------------------%

A_new = V\A*V; % This is the equivalent of inv(V)*A*V

B_new = V\B; % == inv(V)*B

C_new = C*V;

D_new = D;

x0_new = V\x0; % inv(V)*x0;

sys_new=ss(A_new,B_new,C_new,D_new);
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%Reducing it to n orders:

%--------------------------------------------------------------------%

A_red = A_new(1:n,1:n);

B_red = B_new(1:n,1);

C_red = C_new(:,1:n);

D_red = D_new;

x0_red = x0_new(1:n);

sys_red = ss(A_red,B_red,C_red,D_red);

%--------------------------------------------------------------------%

A_temp = bsxfun(@plus,A_red,B_red); %Major timesaver

Z1 = zeros(1,1+n);

A_ra = [Z1;B_red A_temp]; %A_ra - A matrix for the reduced augmented system

for k=1:length(A_ra)

A_ra(1,k) = -sum(A_ra(:,k));

end

B_ra = zeros(n+1,1);

C_ra = C_red + D_red;

C_ra = [D_red C_ra];

D_ra = zeros(size(C_ra,1),1);

x0temp = 1-sum(x0_red);

x0_ra = [x0temp;x0_red];

sys_ra = ss(A_ra,B_ra,C_ra,D_ra);

%-------------------------------------------------------------------%

%-------------------------------------------------------------------%

TE=toc;

save(['MOR_n' int2str(n+1)],'sys_ra','x0_ra','TE') %Reduced order system
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