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Abstract

The impact the ionospheric electron density has on satellite-based applications, such

as satellite communication and navigation systems, is of important consideration, as

these signals must propagate through the ionosphere. The excess signal delay due to

the ionospheric electron density is one of the main error sources in Global Navigation

Satellite Systems (GNSS). One method to study the global behaviour of electron density

is ionospheric tomography, a technique that allows estimation of the electron density in

the ionosphere through line-integral observations between GNSS satellites and receivers.

The research presented in this thesis benefits from the Multi Instrument Data Analysis

System (MIDAS) (Mitchell and Spencer, 2003), an ionospheric tomography software

that was originally capable of producing global or regional three-dimensional ionospheric

electron density reconstructions from GPS observations.

GPS-based ionospheric tomography is first assessed in this thesis. This method

shows accurate results in regions with high density of ground receivers. However, regions

with sparse or uneven ground-receiver coverage give rise to geometric limitations, which

lead to large errors in electron density estimation. To overcome this, a multi-GNSS

(GPS-GLONASS-Galileo) based ionospheric imaging method is presented in this thesis.

The method combines observations from different constellations of satellites orbiting

around the Earth, which improves the availability and coverage of measurements for a

given receiver network. The technique is evaluated for both under quiet and disturbed

geomagnetic conditions, through simulation as well as experiment. The analysis quan-

tifies the improvement of multi-GNSS tomography over single-GNSS tomography for

electron density imaging in the ionosphere. The electron density images can be used to

apply corrections to ionospheric delay in precise positioning algorithms.

Many GNSS precise positioning algorithms rely on ionospheric corrections to calcu-

late the position. However, there is still room for improvement in reducing atmospheric

and ionospheric induced errors. Application of corrections from multi-GNSS tomog-

raphy is therefore proposed in this thesis to support GNSS positioning. Ionospheric

corrections from a global network of multi-GNSS receivers are used in a single-frequency

positioning method. The results show that this approach allows positioning accuracies

comparable to dual-frequency positioning to be obtained, confirming the potential of

using ionospheric corrections from multi-GNSS tomography.
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1 Introduction

The solar-terrestrial environment comprises the space from the Sun to the Earth, and

includes the Earth’s atmosphere and magnetic field. The ionised region of the upper

atmosphere, called the ionosphere, encompasses the region from ∼ 70 km to 1000 km

above the Earth’s surface. It is formed mainly through the absorption of electromagnetic

solar radiation by the atmosphere as well as from particle precipitation at high latitudes.

It varies both spatially and temporally and is influenced by changes in solar emissions,

atmospheric dynamics and interplanetary and geomagnetic fields.

The ionosphere acts as dispersive medium to electromagnetic waves, where the

signals are refracted and delayed depending on their frequency. The extent to which

a signal with a given frequency is refracted depends also on the electron density of

the ionosphere in which it is propagating. This means signals used in applications

such as satellite communications that utilise trans-ionospheric propagation experience

signal delays due to the electron density along their paths — typically quantified as

the slant Total Electron Content (sTEC), the integrated electron density along the

satellite-receiver signal path. These delays need to be corrected for successful use of

satellite communication applications, which requires the estimation of the ionospheric

electron density.

Different instruments are nowadays used to estimate the ionospheric electron density

through various techniques. Among them, Global Navigation Satellite System (GNSS)

constellations are one of the most common instruments to sense the ionosphere due to

their availability, global coverage and cost-efficiency. They provide global or regional

measurements, depending on the satellite to receiver geometry and the ground-receiver

coverage over the area. Due to the dispersive nature of the ionosphere, signals from

different frequency bands can be linearly combined to calculate the sTEC along the

satellite to receiver path. Other ground instruments are also widely used to understand

the physics of the ionosphere as well as independent validation tools for ionospheric

models or algorithms. For example, ionosondes are low-cost vertical radio sounding

instruments, which can estimate the ionospheric electron density up to the F-layer peak

height. The Incoherent Scatter Radar (ISR) is the most accurate ionospheric sensing

instrument, but it also has the highest power consumption, and thus is expensive to

build and operate.
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This thesis uses GNSS as the primary source of ionospheric measurements, with

ionosondes and ISRs being used to valid the results. GNSS ground receivers provide

valuable information about the ionosphere in the form of ray-path integrations of elec-

tron density (sTEC). Ionospheric tomography, which is an inversion imaging technique,

ingest these sTEC measurements to reconstruct and create three or four-dimensional

maps of the electron density of the ionosphere. The maps can then be used to estimate

ionospheric delays experienced by GNSS signals.

Ionospheric delay estimation is much needed in GNSS-based navigation systems.

In practice, most GNSS use a simplified two-dimensional ionosphere to correct for

delays, which may not be sufficient in regions with strong ionisation gradients, such as

equatorial or polar regions. Ionospheric tomography addresses this problem by providing

three-dimensional distribution of electron density, which enables the ionospheric delay

through the entire signal path to be calculated. It must be noted, however, that the

accuracy of the maps depends on the number and distribution of observations, which is

determined by the number of satellites and ground-receivers. Thanks to the increasing

global availability of GNSS, data from different systems, such as GPS, GLONASS

and Galileo, can now be used in ionospheric tomography to significantly improve the

accuracy of three-dimensional ionospheric mapping, and therefore the ionospheric delay

estimations for GNSS signals.

This dissertation aims to develop a novel multi-constellation ionospheric tomography

framework using the Multi Instrument Data Analysis System (MIDAS) (Mitchell and

Spencer, 2003) — a tomography software package developed at the University of

Bath that can produce three and four dimensional images of the ionospheric electron

density. The software is used to provide accurate ionospheric delay corrections for GNSS

positioning methods. To achieve the main goal, intermediate objectives were set, which

are summarised below:

• Evaluate the current state of MIDAS: Create a simulation framework to evaluate

the accuracy of MIDAS over different regions with differing ground receiver

coverage. At this stage only observations from GPS are used.

• Implement multi-constellation MIDAS (MIDAS-Multi): GLONASS and Galileo

constellations are included into MIDAS. In addition, a novel method to estimate

satellite and receiver Differential Code Biases (DCBs) using MIDAS-Multi is

developed.
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• Validate ionospheric corrections from MIDAS-Multi: Ionospheric delay corrections

and satellite DCBs calculated from MIDAS-Multi are evaluated. The potential

use of the corrections for GNSS positioning is assessed.

1.1 Thesis structure

This thesis is divided into 8 chapters. Chapters 2-4 provide the required background

theory to support the scientific contribution introduced in this thesis. Chapters 5-7

discuss the research on ionospheric tomography and satellite-based positioning using

ionospheric corrections. Chapter 8 concludes this thesis with an overall discussion and

proposes possible future work that can be carried out in this area. A brief description

of the structure of each chapter is given below:

Chapter 2: Solar-terrestrial environment

Chapter 2 provides an overview of the

composition, variation and structure of

the ionospheric electron density. An in-

troduction to how the radio signals travel-

ling through the upper atmosphere, such

as satellite-based communications, are

influenced by free electrons within the

ionosphere is presented in this chapter.

Chapter 3: Ionospheric sensing techniques
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The most relevant ionospheric sensing

techniques are introduced in Chapter 3.

This includes trans-ionospheric instru-

ments such as GNSS, and ground-based

instruments such as ionosondes and In-

coherent Scatter Radars (ISRs). An in-

troduction about the different GNSS is

first provided, the most relevant sensing

instrument discussed in this thesis. In

addition, the theory behind the use of observations from GNSS for ionospheric moni-

toring is described. Secondly, an overview of ionosondes and ISRs and the use of their

observations for sensing the ionosphere is provided.
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Chapter 4: Ionospheric tomography

The Ionosphere
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i=k
i=2

i=1

Receiver Receiver

Chapter 4 describes the theory be-

hind ionospheric tomography. The

mathematical description of the tomo-

graphic problem, and how it is solved

for the ionospheric case are discussed

in this chapter. The use of regularisa-

tion techniques to make the ill-posed

problem well-posed are described. In

addition, the theory and special fea-

tures of the most relevant ionospheric

tomography algorithms are discussed. Particular attention is given to MIDAS, the

software used throughout the work described in this thesis.

Chapter 5: Simulation framework to evaluate ionospheric tomography

A novel simulation approach to test

the quality of an ionospheric tomo-

graphic inversion technique is out-

lined in Chapter 5. The evaluation

method, which uses observations from

ISR scans to create a realistic iono-

spheric representation, is first intro-

duced. The use of this ionospheric

representation to create simulated ob-

servations, and the process to assess the accuracy of the ionospheric tomography

algorithm are later discussed. Finally, the results gathered assessing the MIDAS algo-

rithm using the simulation framework are presented in this chapter. The content of this

chapter is published in the Advances in Space Research journal (Bruno et al., 2019).
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Chapter 6: Multi-constellation ionospheric tomography
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The increasing number of receivers track-

ing satellites from different GNSS, has

enabled the transition from GPS-only to

multi-constellation tomography. Chap-

ter 6 investigates the potential for im-

provement in ionospheric mapping using

the increased number of satellites in view

— the multi-GNSS (GPS-GLONASS-

Galileo) based MIDAS. First, two study

regions are introduced, one mid-latitude and one equatorial. Europe and Brazil are

chosen as they both have good ground-based coverage from multi-constellation GNSS

receivers. The methods to evaluate the results, by simulation and by experiment, are

later described. A comparison between multi-GNSS tomography and single-GNSS

tomography for electron density imaging in the ionosphere is presented.

Chapter 7: Global ionospheric delay corrections for single-frequency GNSS

positioning
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There are different approaches to assess

the ionospheric estimations calculated

with MIDAS. One solution is using exter-

nal products, such as Global Ionospheric

Maps (GIMs) as presented in Chapter

6. Another solution is validating against

physics-based models (IRI, NeQuick 2)

or third-party solutions. Unfortunately,

none of the above provide a reference

for validation, because the absolute electron density distribution within the ionosphere

is unknown. Chapter 7 assesses the accuracy of the multi-constellation versions of

MIDAS in the positioning domain. Ionospheric delays and satellite biases are provided

to reference stations with a priori precisely known locations. The method to estimate

the position of these reference stations is first described. The difference in positioning

performance is used as a quality measurement for each of the provided ionospheric

corrections. The main goal of this chapter is to quantise the accuracy of MIDAS in

the positioning domain. Therefore, results from multi-constellation configuration and

dual-frequency positioning are compared.
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2 Solar-terrestrial environment

Introduction

This chapter introduces the solar-terrestrial environment and the ionosphere, together

with the influence of ionospheric free electrons on electromagnetic waves as they propa-

gate through the upper atmosphere. The chapter is structured as follows: Section 2.1

gives an introduction to the coupling between the Sun’s emissions and the Earth’s upper

atmosphere. Section 2.2 discusses the physical and chemical composition and structure

of the ionosphere. In Section 2.3, the effect of free electrons within the ionosphere on

electromagnetic waves propagating through the upper atmosphere is explained. Finally,

a summary concludes this chapter.

2.1 The influence of the Sun

The Sun is a star that continuously emits electromagnetic radiation into interplanetary

space. This radiation, together with a plasma outflow that carries millions of charged

particles per second away from the Sun, results in the solar wind that constantly

bombards the near-Earth system. The interplanetary magnetic field is a part of the

Sun’s magnetic field that is carried into interplanetary space by the solar wind. Due to

the high electrical conductivity of the solar wind, the plasma and the magnetic field are

frozen together. As the solar wind approaches the Earth, the plasma and the frozen-in

interplanetary magnetic field interact with the outer geomagnetic field, also known as

the magnetosphere. The magnetosphere acts as a shield against the solar wind plasma,

forcing most of it to be swept around the Earth without penetrating the magnetosphere.

Solar X-Ray and Extreme Ultra-Violet (EUV) radiation reaching the Earth is absorbed

by the atmosphere, which ionises neutral atoms and molecules of the atmosphere to

form the ionosphere. In addition, when the solar wind interacts with the geomagnetic

field, particles can penetrate into the ionosphere along open magnetic field lines at the

poles. The solar wind is therefore identified as a significant medium that couples the

activity of the Sun with the Earth’s atmosphere, making it extremely important for

solar-terrestrial relations.

The composition and intensity of the Sun’s emissions, and therefore the solar wind,

is not constant, but driven by the Sun’s activity. These activity periods occur with a
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periodicity of around 11 years (Schwabe, 1843; Maunder, 1904), known as solar cycles,

and have a strong influence on ionospheric dynamics. During the solar maximum when

the solar activity is at its highest, larger events on the Sun such as solar flares increase

the intensity and speed of the solar wind. This increases the number of particles formed

within the ionospheric plasma. In contrast, during solar minimum when solar activity is

low, the emissions from the Sun are weaker, decreasing the intensity of the solar wind

and therefore the global mean ionospheric plasma density.

2.2 The ionosphere

The ionosphere is a layer in the upper atmosphere composed of free electrons and

positive ions. It is created through the absorption of solar X-Ray and EUV radiation by

the neutral atmosphere, which ionises atoms and molecules in the atmosphere, causing

them to release free electrons. The composition of the ionosphere changes both spatially

and temporally, driven by ion and electron production, loss and recombination processes.

The region extends from ∼ 70 km to 1000 km above the Earth’s surface.

Although the idea of an ionised layer in the upper atmosphere was first postulated

by Gauss in 1839, it did not become widely accepted until the beginning of the 20th

century. In 1901, Marconi sent a transatlantic radio signal from Cornwall, England, to

Newfoundland, Canada, which was made possible thanks to the presence of free electrons

within the upper atmosphere. However, it was not until 1931 that the first theory of the

formation of an ionised region in the atmosphere was described by Chapman (1931).

2.2.1 Formation of the ionosphere

The density of free electrons in the ionosphere (N) varies over time and space, driven

by the balance between production (q), loss (L) and transport (div(Nv)) processes of

ions and electrons. The variation of the electron density with time can be expressed by

the continuity equation (Hargreaves, 1979):

dN

dt
= q − L− div(Nv) (2.1)

where div indicates the divergence operator — the term that indicates if there is more

of the field vectors exiting an infinitesimal point than entering it — and v is the mean

drift velocity of electrons.
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The production term (q) in Equation 2.1 is mainly driven by X-Ray and EUV

radiation from the Sun, which is absorbed by the neutral atmosphere to produce ions

and free electrons within the ionosphere. This phenomenon is known as photoionisation.

The production rate depends on the absorption of solar radiation, which in turn depends

partly on the solar activity and solar zenith angle. The intensity of radiation is strongest

at high altitudes in the ionosphere, and decreases as altitude decreases. In contrast, the

density of neutral atoms and molecules in the atmosphere decrease as altitude increases.

The combination of these two phenomena produces a layer of electrons with a maximum

density in an optimal altitude within the ionosphere, with lower densities above and

below (Figure 2.1). In addition to solar radiation, ionised particles from the Sun

travelling in the solar wind also contribute to the production process in the ionosphere.

When the solar wind interacts with the geomagnetic field, particles can penetrate the

ionosphere along open magnetic field lines — the main source of production at high

latitudes (Barclay, 2003). The second term in the continuity equation (Equation 2.1) is

Loss or Recombination (L). Recombination is the reverse process of photoionisation.

During this process, negatively charged electrons and positively charged ions combine

together to form neutral atoms or molecules again. Recombination is the main process

that reduces the number of free electrons in the ionosphere. The last term in Equation

2.1 is the transport process (div(Nv)). During this process, the movement of plasma can

occur both horizontally and vertically, which changes the electron and ion densities at a

given location. The transport process is sometimes referred to as diffusion (Hunsucker

and Hargreaves, 2003).

All three processes contribute to the electron density in the ionosphere at any given

time and location. Photoionisation dominates during the day due to the availability

of radiation from the Sun. The peak electron density in the ionosphere is therefore

found slightly later than local noon. Recombination and diffusion in the ionosphere, on

the other hand, take place throughout the day, but are especially important at night.

During the night, recombination reduces the number of free electrons in the ionosphere

as photoionisation no longer (or minimally) occurs due to the absence of solar radiation.

In addition to the diurnal variation, the solar cycle also has an impact on the density

of the ionospheric plasma, with larger densities in the ionosphere generally found during

solar maximum. Figure 2.2 shows an example of day-time and night-time electron

density vertical profiles during solar maximum and minimum.
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Figure 2.1: Variation in the density of the neutral atmosphere and solar intensity with
height, and its impact on the formation of a ionised layer (McNamara, 1991).

2.2.2 Structure of the ionosphere

The ionosphere varies continuously with time of day, season, location and with the solar

cycle. This section describes the spatial variation of the ionospheric electron density

over the globe.

2.2.2.1 Vertical structure

The vertical distribution of free electrons in the ionosphere is determined by two main

conditions — density of the neutral atmosphere and intensity of solar radiation. The

density of neutral atoms and molecules in the atmosphere that can be photoionised

decrease as altitude increases. The radiation from the Sun, however, is absorbed as it

propagates down through the upper atmosphere, decreasing the intensity of the solar

radiation as it reaches lower altitudes. The process, as illustrated in Figure 2.1, produces

a layer of ionised plasma with a maximum density at an optimal altitude that varies

with solar and atmospheric conditions experienced at given time and location (Figure

2.2).

The basic vertical structure of the ionosphere contains four layers (Hunsucker and

Hargreaves, 2003) known as D, E, F1 and F2 layers. As the ionospheric electron density

is driven by the Sun, these regions are highly variable with season, time of day and

solar activity.
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Figure 2.2: Day-time and night-time electron density profiles from the ionosonde at
Juliusruh (Germany) the 2019-01-01 (solar minimum, dashed lines) and 2014-01-01
(solar maximum, solid lines).

The D layer is the lowest region of the ionosphere, starting at ∼70 km and reaching

up to ∼90 km above the Earth’s surface. It is characterised by a relatively weaker

electron density compared to the higher layers because the radiation from the Sun is

weaker at low altitudes (see Figure 2.1). Furthermore, the atmosphere is denser in

this region compared to higher altitudes, leading to a higher collision rate, and thus a

greater recombination rate. This layer is absent at night due to the low overall electron

density and high recombination rate. The E layer is the region from ∼90 km to ∼150

km altitude. This layer is mainly driven by the equilibrium between production and

loss, with the transport term having a minimal effect on plasma distribution. The most

remarkable feature in the E-region is the sporadic-E, an irregular thin layer of '1 km

extension in height (Barclay, 2003). This is particularly strong at low latitudes and

it may reflect signals that otherwise would penetrate higher altitudes. The E-region

is present throughout the night, but remains weakly ionised. The F layer is found

between ∼150 km and ∼600 km, and comprises of the F1 and F2 sub-layers. This

is the most important layer for radio propagation as it has the greatest density of

electrons of any layer. Photoionisation is the main driver in this layer during the day.
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Diffusion becomes more important than recombination as the height increases due to the

decreasing density of the neutral atmosphere (Figure 2.1). This change in the dominant

process leads to a division of the F layer into F1 and F2 layers. The F1 layer can be

considered as a transition region between the E-layer and the upper ionosphere as it

is also driven by the equilibrium between production and loss. The F2 layer peaks

where recombination and diffusion are equally important. At night, only the F2 layer

survives, as it has the highest electron density concentration in the ionosphere and the

recombination rate is smaller due to the decrease in the density of the neutral atmosphere.

Above the F2-region, from about 600 to 1000 km, the electron density decreases

exponentially with altitude. This region is known as the topside ionosphere. Beyond

1000 km, the topside ionosphere gives way to the plasmasphere, which is dominated by

the geomagnetic field. The plasmasphere is often considered a part of the ionosphere

for radio and satellite navigation applications, as although the electron density is very

low in the plasmasphere, it has an impact on radio waves that propagate through the

region (Garriott and Rishbeth, 1969).

2.2.2.2 Global morphology

The global distribution of free electrons within the ionosphere is not homogeneous, and

varies in both latitude and longitude. The longitudinal variation of the ionospheric

plasma density is mainly related to the change in the solar zenith angle, which results in

a local diurnal variation. The latitudinal variation, on the other hand, is affected mainly

by the geomagnetic field, resulting in significant differences between low, middle and

high latitude regions. The ionosphere at low-latitudes or the equatorial region, is mainly

driven by photoionisation from solar radiation, and loss due to recombination. As the

geomagnetic field is closed, no direct impact from particle precipitation is observed

in this region. A dominant feature in the global ionospheric electron density at these

latitudes is the equatorial anomaly (Hargreaves, 1979). The plasma at the equator is

uplifted during the day. During post sunset hours there is a strong enhancement in

the electric field, causing the plasma to reach higher altitudes. As it travel upwards

at the magnetic equator, the plasma is guided along the magnetic field lines to lower

altitudes on either side of the (magnetic) equator, resulting in an enhanced electron

density at higher equatorial latitudes. This phenomenon is also known as the fountain

effect (Hargreaves, 1979). The enhancements are located about 10− 20◦ either side of

the magnetic equator in the F region (see Figure 2.3), and is usually where the largest

electron densities are found.
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Similar to equatorial latitudes, the mid-latitude region is mainly defined by solar

photoionisation and chemical recombination. It is the least variable of the regions. The

electron density distribution at mid-latitudes is dominated by the solar zenith angle

and changes minimally during the day. The mid-latitude region is directly linked to

the polar regions, and can therefore suffer significant variability during geomagnetic

disturbances in the polar regions.

In the high latitude or polar region, ionospheric behaviour is closely coupled with to

the near-space environment. The magnetosphere acts like a shield against the energy

particles within the solar wind, forcing them to be swept around the Earth. The

geomagnetic field at the poles however are open, which enables the solar wind to couple

with this open field and penetrate into the polar ionosphere. This particle precipitation

from the solar wind makes the region dynamic and more accessible to sporadic solar

events (Hunsucker and Hargreaves, 2003). These events can be extremely intense,

especially during high solar activity periods.

The electron density in the ionosphere is commonly characterised using the Total

Electron Content (TEC) along a defined path. The vertically integrated electron density

is known as Vertical Total Electron Content (vTEC). Figure 2.3 shows the ionospheric

vTEC obtained from the International Reference Ionosphere (IRI)-2016 model (Bilitza

et al., 2017). This model describes the monthly averages of electron density for the

altitude range of 60 km to 2000 km, measured using different sources such as ionosondes

and incoherent scatter radars. Both the TEC and vTEC are usually given in TEC units

(TECu) (1 TECu = 1016 electrons per m2).
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Figure 2.3: Ionospheric vTEC obtained from the IRI-2016 model for 1 January 2020 at
9:30 UTC.

2.3 Ionospheric radio propagation

Electromagnetic waves propagating the ionosphere interact with free electrons in the

region, which affect their propagation velocities to varying degrees based on the signal

frequency. This is because the ionosphere is a dispersive medium where the refractive

index is dependent on both the frequency of the electromagnetic signal and the electron

density of the ionosphere. In an ionised medium, the refractive index (n) is given by

the Appleton-Hartree equation (Appleton, 1924):

n2 = 1 +
X

1− jZ − Y 2

2(1−X − jZ)
±

√
(

Y 4

4(1−X − jZ)2
+ Y 2)

(2.2)

where X,Y and Z are dimensionless terms that define the medium and its relationship

with the frequency of the signal:

X =
Ne2

meε0ω2
where ω = 2πf

Y =
Be

me
and Z =

rcol
ω2

(2.3)
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where N is the electron density, e is the electron charge, me is the electron mass, ε0

is the permitivity of free space, ω corresponds to the angular frequency of the radio

signal, f is the frequency of the radio signal, B is the magnetic flux density and rcol is

the rate of collision between electrons and other particles (Davies, 1990). If collisions

are considered to be negligible (rcol = 0) and the magnetic field is neglected (B = 0),

the refractive index, n, can be approximated to:

n2 = 1 +X = 1 +
Ne2

meε0ω2
(2.4)

From Equation 2.4, it can be seen that the refractive index changes with the

frequency of the signal. This makes the ionosphere a dispersive medium, which means

that electromagnetic waves propagating through the region experience different velocities

depending on the frequency of the signal. For a modulated signal — i.e. one that

can have two or more signals of different frequencies (the envelope) superimposed on

a another signal (the carrier) of a different frequency — that is travelling through

the ionosphere, this means the different frequency components of the signal travel at

different velocities. Due to this effect the ionosphere has on the carrier phase and

envelope of the signal (which are of two different frequencies), the refractive index of

the ionosphere can be divided into two components — the phase (nph) and group (ngr)

refractive indices.

nph =
c

vph
ngr =

c

vgr
(2.5)

where vph and vgr correspond to the phase and group velocities, respectively, and c is

the speed of light in vacuum. vph and vgr in the plasma are defined as (Davies, 1990):

vph =
ω

κ
and vgr =

dω

dκ
(2.6)

where κ corresponds to the wave number and ω is the angular frequency. These

parameters are given as:

κ2 =
ω2 − ω2

p

c2
and ωp = 2πfp (2.7)

where ωp is the plasma angular frequency and fp, the plasma frequency, corresponds to

the oscillation frequency of electrons in the ionosphere (Rishbeth and Garriott, 1969).
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Substituting Equation 2.7 into Equation 2.6 the phase and group velocities can be

expressed as:

vph =
c√

1−
f2p
f2

vgr =
c√

1 +
f2p
f2

(2.8)

From Equation 2.8, it can be seen that the phase velocity will always be larger than

the group velocity. This translates to an advancement of the phase by the same amount

as the group is delayed, and are generally referred to as phase advance and group delay.

Substituting Equation 2.8 in Equation 2.5, the nph and ngr refractive indices can be

approximated by:

nph =

√
1−

f2p
f2
' 1− 1

2
×
f2p
f2

ngr =

√
1 +

f2p
f2
' 1 +

1

2
×
f2p
f2

(2.9)

The approximation
√

1± a2 ' 1± 1

2
×a2 can only be used when a << 1. In this case,

f (order of GHz) is much larger than fp (order of MHz), and thus this approximation

is justified. Referring back to Equation 2.4, the plasma frequency (fp) can be defined in

terms of the electron density (N) as:

f2p =
Ne2

4π2meε0
(2.10)

The plasma frequency at the peak of an ionised region is also referred to as the

critical penetration frequency. When a radio signal arrives at the ionosphere from below,

two possible scenarios can occur. If the signal has a frequency lower than fp, it is

reflected back to the Earth. If the frequency of the signal is larger than the local fp, the

signal passes through the ionosphere without reflection. In other words, fp indicates

the minimum frequency needed for a signal to travel through a specific region of the

ionosphere at a given time.

Substituting Equation 2.10 in Equation 2.9, the phase and group refractive indices

of a medium relative to local electron density can be defined as:

nph = 1− Ne2

8π2ε0mef2
ngr = 1 +

Ne2

8π2ε0mef2
(2.11)
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It must be noted that, as the plasma frequency changes with N , the propagation

of a given signal depends on the electron density of the ionosphere. Under nominal

ionospheric conditions, signals transmitted from the Earth with frequencies / 7 MHz

can be typically considered to be reflected back towards the ground. In reality however,

if the signal is below the critical frequency, it is continuously refracted towards the

Earth’s surface as the refractive index changes with the electron density. This occurs

until such an angle is reached that the signal is ’reflected’ back towards the Earth. In

contrast, signals with frequencies ' 9 MHz typically travel through the ionosphere and

reach outer space. The two processes of signal propagation are illustrated in Figure 2.4.

The dynamic behaviour of the ionosphere, which changes constantly and has a daily

periodicity, has therefore a significant impact on radio propagation. As fp is a function of

the ionospheric electron density, variations in the electron density will impact the propa-

gation of a signal with a given frequency and determine if it would propagate through or

get reflected back towards Earth. In addition, the take-off angle — the angle at which the

signal is transmitted at relative to the ground — is of important consideration. Signals

transmitted with lower take-off angles travel through more ionospheric plasma, and can

therefore be reflected back more easily than signals transmitted with high take-off angles.

Reflected signal
Directional transmitter

Signal travelling through ionosphere

The Earth

Figure 2.4: Example of one of multiple propagation paths of refracted and trans-
ionospheric signals.

2.3.1 Propagation of satellite navigation signals

In satellite navigation, the frequencies of the waves travelling from satellites in space to

the Earth lie between 1-3 GHz. These signals travel through the ionosphere, as their
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frequencies are much larger than fp in the ionosphere (0.1 − 9 MHz). As mentioned

in Section 2.2, TEC is the total electron density integrated along a given signal path,

which is the path between the transmission satellite (S) and receiver (R) for satellite

navigation systems.

sTEC (TECu) =

∫ R

S
Ndl (2.12)

where Slant Total Electron Content (sTEC) corresponds to the TEC along the path

from satellite to receiver. For TEC derived from satellite-receiver ray paths, the term

sTEC is generally used to distinguish from vTEC that is commonly used in ionospheric

research. An illustration of vTEC and sTEC between a satellite and ground receiver is

given in Figure 2.5.

vTEC

sTEC

Figure 2.5: Illustration of ionospheric vTEC and satellite to receiver sTEC.

As the signal from the satellite is refracted when travelling through the ionosphere

on its way to a receiver on the Earth, the path length (l) and geometric distance (p)

between satellite and receiver are not equal.

l = c

∫ R

S
dtvacuum + dtiono = c

∫ R

S

dlvacuum
c

+
dliono
viono

=

= c

∫ R

S

p− dliono
c

+
dliono
viono

=

∫ R

S
(p− dliono) + n dliono = p+

∫ R

S
(n− 1)dl

(2.13)

Therefore, the ionospheric path length delay/advance produced in the signal due to
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the ionospheric electron density (I) is the integration of the refractive indices through

the satellite to receiver path (McNamara, 1991):

I(m) =

∫ R

S
(n− 1)dl (2.14)

Using Equation 2.11 in Equation 2.14, the relation between ionospheric delay, the

refractive indices (nph and ngr) and frequency of a propagating satellite navigation

signal can be expressed as:

I(m) =

∫ R

S
(1± e2Ndl

8π2ε0mef2
− 1) = ± e2

8π2ε0mef2

∫ R

S
(Ndl) =

= ± e2

8π2ε0mef2
× sTEC =

40.3× 1016

f2
× sTEC

(2.15)

2.4 Summary

This chapter provided an overview of the driving processes that create the ionosphere,

the morphology of the ionospheric plasma and the effect free electrons within the

ionosphere have on radio signals propagating the region.

The ionosphere is the ionised layer of the upper atmosphere. It is created from the

ionisation of the neutral atmosphere from solar radiation, and particle precipitation

along the geomagnetic field at high latitudes. The density of the plasma containing ions

and free electrons varies both spatially and temporally. The electron density changes

with latitude and has three main regions: low-latitude (or equatorial), mid-latitude and

high latitude (or polar). It also changes with altitude as the density and pressure of

the neutral atmosphere changes. Variation of the electron density with time is seen

diurnally, seasonally and with the solar cycle as the ionisation processes are driven by

solar activity and related emissions from the Sun.

The ionosphere acts as a dispersive medium to electromagnetic signals, where free

electrons within the ionosphere change the phase and group velocities of propagating

radio signals. The effect on the signals is driven by the refractive index, which is

dependent on the frequency of the signal and the electron density of the ionosphere.

Depending on the frequency of the radio signal arriving at the ionosphere and the local

plasma frequency, the signal can be reflected back or refracted when travelling through

18



the ionosphere.

The impact the ionospheric electron density has on satellite-based applications, such

as satellite navigation systems, is an important consideration, as these signals must

propagate through the ionosphere. The upper atmosphere introduces an advance/delay

in the path relative to the signal frequency and sTEC measured between the satellite

and the receiver. A comprehensive understanding of the ionosphere and its behaviour is

therefore required to ensure successful correction of the ionospheric delay and therefore

successful operation of these systems. The next chapter discusses sensing techniques

that can be used to measure and study the ionosphere.
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3 Ionospheric sensing techniques

Introduction

Various techniques have been developed to calculate the ionospheric electron density

distribution over time and space, from the lowest part of the ionosphere and into the

plasmasphere.

A review of three different instruments for measuring the ionospheric electron density

is provided in this chapter, with a focus on the limitations and capabilities of each

of them. These instruments are the GNSS constellation of satellites, vertical radio

sounding instruments (also known as ionosondes) and Incoherent Scatter Radars (ISRs).

GNSS are able to provide global-scale and near real-time coverage of the ionospheric

total electron content, whereas ionosondes and ISRs can observe the electron density

with high accuracy over their locations. These instruments provide key measurements

for the research described in this thesis, both as input parameters and as validation

measurements.

3.1 Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS) are composed of constellations of satellites

orbiting around the Earth. These satellites broadcast radio signals that carry infor-

mation about their position and the time when the signals were transmitted. GNSS

receivers on the ground or in space can use these signals from multiple satellites and

estimate their Position, Velocity and Time (PVT). The signals from these satellite

constellations are a unique and important resource for ionospheric measurements as

they provide near real-time global coverage.

GNSS satellites orbit the Earth in the Medium Earth Orbit (MEO), at an altitude

of ∼22000 km. They transmit electromagnetic waves with frequencies between '
1.2 and 1.6 GHz. Current operational systems have at least two allocated bands for

transmission, each one with a different centre frequency. The first successful satellite

positioning system was the Navy Navigation Satellite System (NNSS), also known as

TRANSIT, built by the U.S. military in the 1960s (Parkinson and Gilbert, 1983). In

1996, it was substituted by the Global Positioning System (GPS) (Parkinson et al.,
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1996). Other countries have also launched their own global navigation satellite systems.

Russia developed GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) in

1982 (Ivanov and Salischev, 1992; Dvorkin et al., 2009), intended initially for military

purposes, but now available for civilian use. BeiDou (Chengqi, 2012), the Chinese GNSS,

became fully operational in 2012. Finally, the European Galileo project (Benedicto

et al., 2000), is the first GNSS developed under civilian control. The first generation of

satellites (full constellation of 22 satellites) were fully operational by 2020, while the

second generation of satellites is planned to be available by 2025.

In addition to GNSS, Regional Navigation Satellite Systems (RNSS) have also been

launched by several countries to augment existing GNSS services. These systems enhance

precise Positioning, Navigation and Timing (PNT) applications over specific areas of

the Earth, and can therefore have a great impact regionally. Currently operational

RNSS are the Japanese Quasi-Zenith Satellite System (QZSS) (Takahashi, 2004; Murai,

2014) and the Indian Regional Navigation Satellite System (IRNSS) (Ganeshan et al.,

2005); the latter recently renamed as NAVigation with Indian Constellation (NavIC).

QZSS’s orbits are designed to continuously provide at least one satellite near zenith

over Japan, intended to overcome the probable obstruction of GPS signals by high-rise

buildings in urban areas. The NavIC, on the other hand, serves as a complementary

system in India and over an area extending up to 1500 km from its boundaries.

3.1.1 GNSS observations

The fundamental quantity measured by any GNSS receiver is the time delay of the

signal when propagating between a satellite and receiver. This is converted to the

corresponding distance (or range p) by multiplying it by the speed of light (c).

p = (tr − ts)× c (3.1)

where tr and ts represent reception and transmission time respectively. In an ideal system,

three simultaneous satellites are needed to determine the exact position of the receiver

in three dimensional space. Each satellite gives the position of the receiver somewhere

on a sphere of radius p centred at the position of the satellite. The intersection point of

different spheres from different satellites gives the location of the receiver (Figure 3.1).
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p2

p1 p3

Receiver

Figure 3.1: GNSS positioning theory

In a real system, however, the range measurement of the receiver (p) is biased by

instrumental errors, atmospheric delays and other errors such as noise and multipath,

resulting in the measured range between the satellite and receiver usually being referred

to as pseudorange (ρ). The mathematical expression taking into account these effects

on the signal gives the expressions for the pseudorange:

ρ = p+ psag + c× (br − bs − brelclk + breldel) + c× (dr + ds) + T + I + ε (3.2)

where psag corresponds to the Sagnac delay, br and bs correspond to receiver and

satellite clock errors, brelclk and breldel correspond to the relativistic clock error and the

relativistic signal delay due to space-time curvature, dr and ds refer to receiver and

satellite instrumental biases, and T and I represent the errors generated as the signal

propagates through the troposphere and the ionosphere, respectively. Any unmodelled

errors, such as multipath or hardware noise, are represented by ε. Once all errors

are accounted for, the position of the receiver can be calculated from ρ (see Figure

3.1). While the receiver position (x, y, z) would theoretically require observations

from 3 satellites, as the user has to estimate the receiver clock error (br), simultaneous

observations from at least four satellites are needed to accurately arrive at the position

solution.
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The range p may also be derived from the carrier phase (ϕ, presented in meters) of

the signal, which can be represented in a similar way:

ϕ = p+ c× (br − bs − brelclk + breldel) + c× (δr + δs) + T − I + λM + ε (3.3)

where δr and δs correspond to the receiver and satellite instrumental biases in the

carrier phase measurement and M is the integer ambiguity term, which introduces a

delay that is proportional to the wavelength λ of the signal (i.e. the number of cycles of

the wavelength). It can also be seen that the I term has a negative sign in Equation

3.3, as opposed to a positive term in Equation 3.2. This is because, as mentioned in

Section 2.3, the phase of the signal is advanced and the group is delayed when travelling

through the ionosphere. In contrast to the pseudorange being calculated from the total

time delay the signal travels from satellite to receiver, the carrier phase is calculated

from the number of cycles of the signal that was required to travel from the satellite

to the receiver. As the wave-length of the carrier phase is short (∼19-25 cm), the

carrier phase measurement is much more precise than the code-based pseudorange

measurement (Teunissen and Montenbruck, 2017).

3.1.2 Estimating the ionospheric delay

GNSS signals propagating from a satellite to a receiver on the Earth are delayed/advanced

as they pass through the ionised upper atmosphere. As given in Equations 2.12 and

2.15, this effect of the ionosphere on the signal (I) is directly proportional to the integral

of the refractive index along the satellite to receiver ray path.

I =

∫ S

R
(1− n)dl =

40.3× 1016

f2
× sTEC (3.4)

The 40.3 × 1016/f2 factor translates the sTEC from TECu to delay in metres.

Equation 3.4 shows that I changes with the signal frequency f , which shows the

dispersive nature of the medium. By recording pseudorange (Equation 3.2) or phase

(Equation 3.3) observations at two different frequencies from the same satellite, the

frequency-dependent terms can be isolated and the sTEC along the satellite-receiver

ray path derived. This is called the geometry-free linear combination (Mannucci et al.,

1998).

ρ1 − ρ2 = ρGF = c× (dr,1 − dr,2) + c× (ds,1 − ds,2) + (I1 − I2) + εGF (3.5)
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where ρGF corresponds to the geometry-free pseudorange observation. The same

differential process can also be applied to phase observations.

ϕ1−ϕ2 = ϕGF = c×(δr,1−δr,2)+c×(δs,1−δs,2)−(I1−I2)+(λ1M1−λ2M2)+εGF (3.6)

where ϕGF corresponds to the geometry-free carrier-phase observation. By substituting

Equation 3.4 in Equation 3.5 or 3.6, all the frequency dependent terms, such as the

satellite to receiver sTEC (sTEC), can be obtained.

3.1.2.1 Inter-frequency differential code biases

The differences between the instrumental biases of the code-based pseudorange at two

different frequencies are known as inter-frequency differential code biases, or Differential

Code Bias (DCB) for short (Lanyi and Roth, 1988).

DCBr = dr,1 − dr,2 DCBs = ds,1 − ds,2 (3.7)

where DCBr and DCBs represent the receiver and satellite DCBs respectively. The dr

and ds biases are generated by the analog and digital processes of the signal generation

unit and of the antenna of both the satellite and receiver. The absolute bias of a single

signal is not observable as the biases are frequency dependant and can only be observed

through signal differencing. Therefore, only the differential code biases between signals

can be observed. The DCBs can be constant throughout the day or even over several

days based on the stability of the satellite and receiver hardware (Coco et al., 1991;

Wilson and Mannucci, 1993).

It must be noted that, although both Equations 3.5 and 3.6 can be used to measure

the I, the sTEC derived from the two equations will be different. This is because,

the sTEC obtained from the differential pseudorange (Equation 3.5) provides absolute

values biased by the DCBs. These values tend to be very noisy due to the precision of

the pseudorange measurements, especially at low elevations (< 10◦) when the signal is

subject to multipath. In contrast, sTEC calculated using the carrier phase (Equation

3.6) are more precise and have minimal noise. However, the presence of the M terms

in Equation 3.6 makes the sTEC results relative if the integer ambiguity term is not

accounted for, and cannot provide information on the true sTEC along the path.
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One solution to obtain the absolute sTEC with minimal noise is the Carrier-to-Code

Levelling (CCL) method (Ciraolo et al., 2007). This technique is based on the geometry-

free linear combinations of both the code and phase measurements. By computing

the average difference between phase and code for every satellite pass (arc), the TEC

retrieved from the ϕGF can be calibrated, and an absolute sTEC can therefore be

derived, which also has minimal noise.

〈ϕGF,arc − ρGF,arc〉 = δr,GF + δs,GF + λM −DCBr −DCBs − εGF,arc (3.8)

It is worth mentioning that Equation 3.8 does not consider the effect of noise and

multipath on ϕGF,arc, as these effects are ' ×100 smaller than the ones in ρGF,arc.

The δr, δs and M terms are assumed to be constant for the duration of the arc.

ϕGF − 〈ϕGF,arc − ρGF,arc〉 therefore removes these terms, but introduces DCBs, noise

and multipath coming from the code (pseudorange) measurement (ρGF ):

ϕGF − 〈ϕGF,arc− ρGF,arc〉 = sTECCCL = sTECabsolute +DCBs +DCBr + εGF (3.9)

where sTECCCL is the measured CCL sTEC and sTECabsolute corresponds to the

absolute sTEC. The average εGF can be assumed to be negligible over each satellite

pass by using a suitable elevation cut-off to minimise multipath, and the effect can be

ignored in the carrier-to-code levelling process (Ciraolo et al., 2007). sTECabsolute can

then be obtained by calculating satellite and receiver DCBs and removing their effect

from sTECCCL. The sTEC based on pseudorange, phase and CCL are illustrated in

Figure 3.2.

3.1.2.2 Estimating inter-frequency differential code biases

Different techniques have been developed to estimate DCBs from GNSS satellites and

receivers, which can be categorised into two main groups: techniques that estimate

ionospheric sTEC/vTEC and DCBs together, and those that estimate the electron

density distribution first (or rely on third party solutions for the estimate) and then

calculate the DCBs. The methods that simultaneously compute the vTEC and the

satellite and receiver DCBs are introduced first, followed by the second approach that

uses a two-step process.

For a given receiver, the sTEC unknowns for each satellite have different time and

geometry dependencies. In addition, the DCBs have to be estimated. This makes the
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Figure 3.2: Differential pseudorange and carrier-phase from GPS G03 satellite on the
1st of January 2019.

observation equation system rank deficient, meaning that the system has more unknowns

than equations, and cannot be directly solved. This can be addressed by translating all

sTEC measurements to vTEC by means of an elevation-dependent geometry scaling

factor. This removes the geometry dependency from the sTEC, decreasing the number

of unknowns in the system (1 vTEC per receiver vs. 1 sTEC per satellite-receiver

pair) and making it solvable. The most common technique to independently solve all

unknowns is by means of the least squares method as demonstrated by Wilson et al.

(1995), Mannucci et al. (1998), Ma et al. (2014), and Vierinen et al. (2016). In N. Wang

et al. (2016) and Zha et al. (2019), the combined DCBs +DCBr is computed alongside

the vTEC by least squares estimation. In these works, a second step is incorporated

to separate the satellite and receiver DCBs by assuming a zero-mean satellite DCB

reference regularisation for each individual constellation. Another method introduced

by Sardón et al. (1994) was the use of a Kalman Filter to estimate the DCBs and vTEC

simultaneously. In this case, a receiver was set as the reference and the remaining biases

were estimated relative to that receiver.

The second approach to estimating DCBs is less common, as it requires a two-step

process or relies on external information. Montenbruck et al. (2014) used ionospheric

TEC from the Global Ionospheric Map (GIM) estimated by different International

GNSS Service (IGS) Analysis Centres. sTEC values were calculated using these maps,

and the combined DCBs were then estimated using the least squares method. To

separate satellite and receiver DCBs, the same zero-mean satellite reference method as
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in N. Wang et al. (2016) was used.

In Dear and Mitchell (2006) a variation of the second approach was implemented

where ionospheric tomography was used to obtain absolute sTEC (sTECabsolute). The

DCBcombined (DCBs + DCBr) were retrieved by comparing the sTEC values from

ionospheric tomography with the sTECCCL for each satellite-receiver pair:

DCBcombined = sTECCCL − sTECabsolute (3.10)

3.1.3 Positioning theory

One of the methods to assess ionospheric tomography is in the positioning domain

(Chapter 7). In this work, single-frequency pseudorange observations from GPS only are

used in a Single Point Positioning (SPP) algorithm. This method provides epoch-wise

positions, without carrying any information from epoch to epoch. As this method only

uses pseudorange observations to calculate the position, no phase ambiguities have to

be estimated.

As discussed in Section 3.1.1, pseudorange observations have generally larger noise

than carrier-phase observations. Therefore, to reduce the noise in the solution, a

pseudorange smoothing technique, as defined by Hatch (1983) and Teunissen (1991)

is used. This results in pseudorange observations with carrier-phase noise levels. In

order to compute the position from Equation 3.2 all error terms defined in the equation

must be corrected for. These terms, and how they can be solved for are discussed in

the following sections.

3.1.3.1 Sagnac effect

The Sagnac delay (psag) refers to the delay generated by the rotation of the Earth-

Centred Earth-Fixed reference frame during signal propagation. One possibility to

correct the delay is to rotate the satellite position backwards around the Earth by an

angle relative to the signal travel time (ttravel) (Ashby, 1995).

psag = ~Ω× ttravel where ttravel =
~R× ~S

c
(3.11)

where ~Ω is the rotation vector of the Earth, ~R corresponds to the receiver position

vector, ~S is the satellite position vector and c is the speed of light in vacuum. This
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approach has been used in this thesis.

3.1.3.2 Satellite clock and instrumental delay

Estimates for each of the satellite clock errors bs are calculated and made publicly

available by the IGS. These clocks corrections are calculated from the ionosphere-free

linear combination, which combines signals from two different frequencies. To use these

satellite clock corrections for single frequency positioning, a term called Timing Group

Delay (TGD) must be applied to the satellite clock error provided by IGS:

TGD = DCBnm ×
f−2
n

f−2
n − f−2

m
(3.12)

where DCBnm is the differential code bias between signal frequency suffix n and m,

and f is the frequency of the signal.

In addition to the satellite clock corrections, the excess clock relativistic error (brelclk)

is also calculated and corrected for. This effect is caused by the orbital eccentricity

that causes a residual variation in distance and velocity over and above that which has

already been compensated for in a circular orbit. The correction term is calculated

following Ashby (1995):

brelclk = −2× S × V
c2

(3.13)

where S and V corresponds to satellite position and velocity respectively. The additional

term of the relativistic path delay (breldel) is neglected in this work, as it is ∼1000 times

smaller than the clock relativistic effect, only accounting for ∼2 cm error in the

positioning estimation (Teunissen and Montenbruck, 2017)).

3.1.3.3 Tropospheric delay

The tropospheric delay (T ) is calculated in two steps. First, the zenith tropospheric

delay (ZTD) is estimated using the Saastamoinen model (Saastamoinen, 1972):

ZTD =
0.0022767× P0

1− 0.00266× cos(2Φ)− 0.00028× h
+ 0022767×

[
1255

T0
+ 0.05

]
×wp (3.14)

where:
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T0 = 288.15− 6.5× h
1000

P0 = 1013.25(
288.15

T0
)−5.255877

wp = 0.5× exp (24.3702− 6162.3496

T0
)

where P0 corresponds to the atmospheric pressure, Φ is the receiver’s latitude, h is

the receiver’s height, T0 corresponds to the atmospheric temperature and wp is the

pressure of water vapour. This model provides zenith tropospheric delay. To obtain the

slant tropospheric delay, the Ifadis mapping function (Ifadis, 1986) is used:

MF =

1 +

[
a

1 + b/(1 + c)

]
sin(e) +

[
a

sin(e) + b/(sin(e) + c)

] (3.15)

where e is the elevation angle, and a, b, c are parameters that depend on atmospheric

temperature and pressure. The values of these parameters are retrieved from (Ifadis,

1986). Therefore, the tropospheric delay is given by:

T = MF × ZTD (3.16)

3.1.3.4 Satellite transmission time correction

Although RINEX files store observations at the time of reception, no information about

the satellite transmission time is saved. Therefore, the time of transmission has to be

calculated, which is done by subtracting the signal’s time of travel ttravel (Equation

3.11) from the reception time. This is then used to calculate the satellite position at

the time of transmission. As ttravel is a function of the satellite position (S), which

is unknown at transmission time, an iterative approach is needed. On each iteration,

the updated satellite position is used compute a refined estimate of ttravel. It has been

demonstrated that three iterations are sufficient to get differences between ttravel of the

last two iterations within the order of 3−7 second (De Jonge, 1998).

3.1.3.5 Ionospheric delay

Each GNSS provides ionospheric corrections for single-frequency users based on differ-

ent models, which are broadcast within the satellite navigation signals. For example,

GPS uses the Klobuchar model (Klobuchar, 1987), whereas Galileo uses the NeQuick

model (European Commission, 2016). These broadcast models are capable of removing
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∼ 50− 70% of the ionospheric delay.

An alternative solution to the use of models is to use real-time ionospheric mapping

to estimate the ionospheric delay, which provide both two-dimensional vTEC and

satellite DCBs. The biases are important because they need to be accounted for to

make use of the information correctly. Analysis centres within the IGS, such as Centre

for Orbit DEtermination (CODE), provide GIMs on a daily basis and the usage of

these maps for ionospheric corrections has been validated in several studies. Ionospheric

corrections from GIMs were included in Precise Point Positioning (PPP) models in

Banville et al. (2014) and Rovira-Garcia et al. (2016), where the results showed improve-

ments in convergence time in both single and Dual-Frequency Precise Point Positioning

(DF PPP) of ∼60% over results without using GIM information. Rovira-Garcia et al.

(2020) and Zhang et al. (2019) show that sub-meter level positioning accuracies can

be achieved in Single-Frequency Precise Point Positioning (SF PPP) with corrections

from different GIMs. The benefit of using GIMs over broadcast models to provide

ionospheric corrections in SF PPP, DF PPP and SF SPP are presented in Su et al. (2019).

One drawback of using GIMs is that they generally approximate the ionospheric

electron density to a single height layer. An elevation-dependent geometry factor is

therefore needed to transform the vTEC into sTEC, which may introduce additional

errors. An alternative method is to create three-dimensional maps with multiple vertical

layers using ionospheric tomography. The impact on SF SPP accuracy of an additional

layer in height in GIMs was evaluated by N. Wang et al. (2018). The results show

significant improvement when using 2-layer GIMs than single layer maps to provide

ionospheric corrections. GPS ionospheric tomography has previously been reported as

a valid source to provide ionospheric corrections for SF SPP (Allain and Mitchell, 2009;

Allain and Mitchell, 2010). All these methods provide sTEC measurements, from which

the ionospheric delay can be retrieved following Equation 3.4.

3.1.3.6 Positioning method

Once all the error terms are addressed, the corrected pseudorange (ρ̃) is now given by:

ρ̃ = ρ− psag + c× (bs + brelclk − TGD)− T − I (3.17)

In this work, to compute the position of the receiver, the single-frequency SPP Best

Linear Unbiased minimum variance Estimator method, or BLUE method (Teunissen,
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2000), is used to calculate the position. This algorithm subtracts the computed pseudo-

range from the observed measurements (∆ρ̃ = ρ̃− pmeas), where pmeas is the distance

from the given satellite to the estimated receiver position. Thus, the equations for a

single epoch can be given as:



∆ρ̃1

∆ρ̃2

...

∆ρ̃m


︸ ︷︷ ︸

y

=



LOS1(t) 1

LOS2(t) 1

...
...

LOSm(t) 1


︸ ︷︷ ︸

A

∆rr(t)

dtr


︸ ︷︷ ︸

x

(3.18)

where LOS corresponds to the satellite-receiver line-of-sight unit vector, ∆r is the

estimated receiver position correction, dtr corresponds to the estimated receiver clock

error and m denotes the number of visible satellites with elevation > 10 degrees at the

given epoch t. This elevation cut-off is selected to mitigate the effect of multipath.

Due to signals having different elevations and thus different multipath and noise

effects, the quality of the data varies. Therefore, a weighting matrix W is used to

account for the different quality of each observation.

W =



1

σ2i,1
. . .

1

σ2i,j


(3.19)

where σi,j corresponds to the uncertainty of the observations between satellite i and

receiver j. The uncertainty of a measurement is determined using an elevation-dependent

function that gives larger weights to observations at higher elevations.

σi,j ∝ sin(e) (3.20)
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x is now solved by means of weighted least squares:

x = (ATWA)−1ATWy (3.21)

As the least squares method solves the position of the receiver by iteration, each

iteration the position of the receiver is corrected and updated for the next iteration.

A maximum of 10 iterations for each epoch is used in this analysis. As the location

of each receiver is unknown, for the first iteration of every epoch the receiver is set at

x = y = z = 0. The estimated clock value (dtr) is a combination of the receiver clock

error plus the receiver hardware delay.

While GNSS is a valuable source of observations in the field of ionospheric imaging,

it might not be always sufficient to estimate the global ionospheric electron density

distribution. This is because, the quality of GNSS-based outputs is influenced by the

GNSS receiver network coverage, which determines the amount of available GNSS data.

In challenging scenarios, such as regions with sparse ground receiver coverage, the

available data may not be sufficient to cover the entire globe with high accuracy. In

addition, GNSS only provide sTEC measurements, but not information on the electron

distribution along the signal path. In such cases, other data sources can be used

to enhance ionospheric tomography imaging (Chapter 4). Two of the most common

instruments used to support tomography are ionosondes and Incoherent Scatter Radars

(ISRs). Ionosondes can provide an estimate of the full height profile up to the F-layer

peak, while Incoherent Scatter Radio detection and ranging (ISR)s can reach altitudes

comparable to the topside of the F-layer.

3.2 Ionosondes

Ionosondes are vertical sounding instruments used to measure the vertical profile of the

ionosphere up to the F2 peak height. The principle of the vertical sounding technique

was first introduced in 1925 (Appleton and Barnett, 1925; Breit and Tuve, 1925) with

the goal of confirming the existence of the ionosphere. The technique consists of a High

Frequency (HF) radio transmitter and a receiver, either co-located (mono-static) or

separated from each other (bi-static) (Hunsucker and Hargreaves, 2003). The HF radio

signals are reflected from the ionosphere where the plasma frequency corresponds to

the transmitted radio frequency.

Ionosondes transmit a discrete set of frequencies generally between 1.5− 12 MHz,
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and measure the time taken for each signal to be reflected back. Using this time of

arrival, the distance to the height where the reflection occurred can be calculated.

This provides a profile of plasma frequency (frequency of the signal at reflection) with

height. As the plasma frequency is related to the electron density in the ionosphere

(Equation 2.10), these ionosonde measurements can be used to calculate the verti-

cal profile of the electron density in the ionosphere. Figure 3.3 shows an idealised

ionogram (Hunsucker and Hargreaves, 2003), which is a visual representation of the

virtual height of reflection calculated by ionosondes against the transmitted frequency.

The height is referred to as ”virtual height” due to the delay introduced by the iono-

sphere, which causes the measured delay to be longer than the real delay. This results

in the measured height of the reflection point being larger than the true reflection height.

Figure 3.3: Idealised ionogram (Hunsucker and Hargreaves, 2003)

It must be noted that ionosonde observations only reach up to the F2 peak height,

as signals exceeding the plasma frequency are not reflected back and propagate through

the ionosphere. Therefore, the electron density in the topside of the ionosphere has to

be estimated. The technique used in this thesis to estimate this topside ionospheric

electron density is by approximating the vertical profile of the topside electron density

to a Chapman profile (Chapman, 1931):

Ntopside(h) = Nm(F2)× e(1−zh(h)−e−zh(h)) where zh(h) =
h− hm(F2)

HT
(3.22)

where Nm(F2) is the electron density at the F2 peak height, h is the height of the current
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electron density value, hm(F2) corresponds to the F2 layer peak height, HT is known as

the scale height and zh is the normalised height. Nm(F2) and hm(F2) can be directly

retrieved from the ionosonde measurements, whereas the HT is generally calculated

from the bottomside electron density profile generated from the measurements (Huang

and Reinisch, 2001).

With the advances in technology over the last century, ionosondes have become

relatively portable and light devices compared to the first standard ionosondes and

other ionospheric sensing devices. The main limitation of ionosondes is the incapability

to obtain information of the ionosphere above the maximum ionisation point of the F2

layer. Nevertheless, ionosonde measurements have been widely used for validation of

ionospheric sensing methods and models in the past, and continue to be used in current

research. Observations from ionosondes are also used alongside GNSS measurements

to improve the vertical resolution of ionospheric sensing techniques, in particular

ionospheric tomography (Chartier et al., 2012), addressing a traditional weakness when

using ground GNSS receivers only.

3.3 Incoherent Scatter Radars (ISRs)

Over the last decades, ISRs have been widely used to measure the ionospheric electron

density, and to provide independent verification for other experimental techniques such

as ionospheric tomography. These radars provide vertical ionospheric electron density

profiles, similar to the ionosondes, but for both above and below the F2 peak. These

instruments can also scan the ionosphere in slant directions, as opposed to only vertically.

In addition, multiple ionospheric parameters, such as electron and ion temperatures,

can be inferred from the radar return.

ISRs were first introduced by Gordon (1958). The theory behind ISRs, as described

in Beynon and P. J. S. Williams (1978), involves the back scattering of small amounts

of energy from ionospheric electron density fluctuations. From the energy scattered

back, electron and ion densities, temperature and mass can be obtained. As the energy

scattered back is very small, very high precision receivers are needed, which consequently

makes the estimation of the parameters very precise. ISRs operate at higher frequencies

than ionosondes, typically between 50 MHz to 1000 MHz. As the transmitted frequencies

are larger than the ionospheric plasma frequency range (0.1− 9 MHz), the retrieval of

electron density height profiles for the entire ionosphere is enabled. The radars consist of

steering antennas, which makes it possible to gather electron density distributions along
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different paths around the antenna. This feature enables the creation of two-dimensional

electron density scans of the radars’ sky view. The main ISRs used in ionospheric

studies are the following:

• Jicamarca Radio Observatory, Peru (-76.52◦ longitude and -11.57◦ latitude)

• Arecibo Observatory, Puerto Rico (-66.45◦ longitude and 18.20◦ latitude)

• Millstone Hill radar, Haystack Observatory, USA (-71.29◦ longitude and 42.37◦

latitude)

• European Incoherent SCATter (EISCAT) radar, Scandinavia (19.2◦ longitude and

69.6◦ latitude, and 16.03◦ longitude and 78.15◦ latitude)

Only EISCAT and Millstone Hill radars are introduced in this chapter, as they are the

only ISRs relevant to this thesis.

3.3.1 EISCAT radar

Figure 3.4: EISCAT radar
locations.

EISCAT has three radar systems in Scandinavia:

two transmitters co-located with their receivers near

Tromsø, Norway (19.2◦ longitude and 69.6◦ lati-

tude), and another transmitter in Svalbard, Norway

(16.03◦ longitude and 78.15◦ latitude). Two further

receivers at Kiruna in Sweden and Sodankylä in

Finland enable the radar to operate as a tristatic

system if required (Rishbeth and P. Williams, 1985).

The location of each radar is shown in Figure 3.4.

The benefit of using a multi-static system is that

larger resolutions in height can be achieved by the

intersection of two or more beams. Rishbeth and

P. Williams (1985) reviewed how physical principles

of the ISR sensing technique can be applied for the

EISCAT radar in particular, describing how exper-

iments were designed and how data was analysed.

EISCAT was first used as an independent verifica-

tion of ionospheric tomography in 1992, as reported

by Pryse and Kersley (1992). EISCAT’s coverage

extends from the north of Europe up to the north

pole, which makes it ideal for studying the polar

ionosphere.
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3.3.2 Millstone Hill radar

The Millstone Hill radar has its transmitter and receiver antennas co-located in the

Haystack Observatory, Massachusetts (USA). It was built in 1963, and the physical the-

ory behind the radar’s parameter estimation processes and first results were introduced

by Evans (1965). The location of the observatory at sub-auroral latitudes, combined

with the steerable antenna’s operational range, permits observations over a latitude

span encompassing the region between the polar and the near-equatorial ionosphere.

In addition to their contribution to the physical understanding of the ionosphere,

ISRs have proven to be important instruments in providing independent verification

for other experimental techniques such as ionospheric tomography (Pryse and Kersley,

1992; Walker et al., 1996; Meggs et al., 2005; Bust et al., 2007; Van De Kamp, 2013).

It must be noted, however, that ISRs need high power transmitters and hardware

capable of receiving very weak signals. Therefore, in comparison with other ionospheric

measurement instruments, ISR is an expensive sensing tool, which has resulted in only

a limited number of radars having been constructed.

3.4 Summary

This chapter reviewed some of the most common techniques used to observe the iono-

spheric electron density distribution.

With the availability of multiple constellations, GNSS has become an important

tool for studying the ionosphere. The GNSS constellations are a unique resource for

ionospheric measurements as they provide instantaneous global coverage, continuous

operation, high temporal resolution and near real-time data acquisition. The ionospheric

measurements from GNSS makes use of the delay of the radio signal (due to the electron

density) as it propagates through the ionosphere. As this is dependent on the frequency

of the signal, it makes multi-frequency GNSS signals an ideal source for ionospheric

sensing. These instruments, however, do not provide information about the vertical

distribution of electrons along the signal path, which must be supplied from other

instruments in order to derive accurate estimations of the ionospheric electron density.

Ionosondes can provide very accurate vertical electron density measurements up

to the peak electron density using HF radio signals reflected from the ionosphere.

These instruments can be used to retrieve the electron density at different heights by

transmitting signals with different discrete frequencies vertically into the ionosphere
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and calculating the time taken to receive the reflected signals. The measurements are

used to create ionograms that provide height information with varying frequency, which

can be translated to electron density. These profiles can be used to validate (Wen et al.,

2008) or enhance (Hernández-Pajares et al., 1999) ionospheric tomography.

Incoherent scatter radars are another important instrument used for ionospheric

sensing. They measure the small amount of energy of a transmitted signal that is back

scattered from electron density structures in the ionosphere. These instruments are

capable of sensing the ionospheric electron density with high accuracy, thus making

them very reliable tools for ionospheric tomography validation. However, this comes

at a high cost due to its power requirements as high power transmitters and hardware

capable of receiving very weak signals are needed. ISRs are widely used over different

locations, such as at high latitudes (e.g. Scandinavia) (Walker et al., 1996; Meggs et al.,

2005; Spencer and Mitchell, 2007) or equatorial regions (Chartier et al., 2012). They

are, however, geographically limited to measure only the area over the radar location.
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4 Ionospheric tomography

Introduction

The use of radio tomography to determine the distribution and density of free electrons

in the ionosphere (ionospheric tomography) was first proposed by Austen et al. in 1986.

Advances in the field now enable full three or four-dimensional imaging of the ionosphere

as demonstrated in Fremouw et al. (1992), Hernández-Pajares et al. (1998), Mitchell

and Spencer (2003), and Bust and Mitchell (2008).

The use of sTEC measurements from a global GNSS ground receiver network in

tomography is a powerful method for producing accurate global-scale electron density

maps of the ionosphere (Davies and Hartmann, 1997; Jakowski et al., 2001). The

technique is widely used within the scientific community for different purposes, such as

to better understand the ionosphere and its behaviour, and to provide ionospheric delay

corrections for GNSS positioning. Improved availability of data in the last two decades,

due to densification of ground-based GNSS receiver networks and the availability of

several GNSS systems, allows for more accurate ionospheric mapping, especially over

regions with dense GNSS receiver networks.

This chapter explains the theory behind ionospheric tomography, followed by a

review of Multi Instrument Data Analysis System (MIDAS), the ionospheric tomography

software used for the research described within this thesis. While MIDAS can use

different data from different instruments, due to the nature of this research project (i.e.

providing ionospheric corrections for GNSS), the discussion is focused on the use of

GNSS measurements as the input data source to MIDAS. The chapter closes with an

overview of current alternative state of the art in ionospheric tomography software and

finally, a summary.

4.1 Reconstruction theory

Radio tomography was first introduced by Radon in 1917, while the first experimental

work using tomography to estimate the ionospheric electron density was described

in Austen et al. (1988). Tomography is an inverse problem (Hounsfield, 1980) that

involves the reconstruction of an object of interest from line-integral measurements of
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signals passing through the object. It allows to create two, three or four-dimensional

images of the object of interest. In the case of ionospheric tomography, the line-

integral observations are sTEC measurements, derived from GNSS phase or pseudorange

observations:

sTEC =

∫ R

S
N(l) dl (4.1)

where N is the electron density per unit volume, l the distance along the ray path from

satellite (S) to receiver (R) and sTEC is the columnar electron density expressed in

TECu, where 1 TECu = 1016 electrons/m2. While individual sTEC measurements

provide no information about the electron distribution along the ray path, a series

of sTEC data from ray paths crossing each other in the ionosphere can be inverted

into spatial maps of electron density. sTEC measurements can be used for ionospheric

tomography when a GNSS receiver network consisting of a sufficient number of receivers

that enables large spatial coverage is available.

In ionospheric tomography, the electron density is assumed constant within a

sufficiently small volume around a point (a ‘voxel’) in the ionosphere. The contribution

to the measured sTEC of each length of ray passing through a voxel is then the

multiplication of that electron density and the length of the ray path passing through

the voxel. The total sTEC of a single ray path is the summation of these segments. For

k ray paths and m voxels, this may be expressed as:

~y =

i=k∑
i=1

j=m∑
j=1

Ai,j × xj (4.2)

where ~y contains all the sTEC measurements, Ai,j is an array containing the lengths

of the k rays within individual m voxels, and x contains the electron density in each

of the m voxels. Figure 4.1 shows an illustrated example of voxels and rays in a

two-dimensional representation of the ionosphere.

Equation 4.2 can also be expressed in matrix form as:

~y = A~x (4.3)

where A is an k ×m matrix of the path lengths within each voxel, ~x is the electron
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The Ionosphere

j=1 j=2

j=m

i=k
i=2

i=1

Receiver Receiver

Figure 4.1: Ionospheric tomography example, showing ray paths intersecting a grid of
voxels

density within each of the m voxels, and ~y are the k observed sTECs. This gives an

inverse problem for which ~x has to be solved.

4.2 MIDAS

The Multi-Instrument Data Analysis System (MIDAS) (Mitchell and Spencer, 2003)

is a MATLAB software suite that uses data from different instruments to reconstruct

the ionospheric electron density distribution using tomography. It is based on the

theory introduced in Section 4.1, and can ingest data such as line integral measurements

from ground and space-based GNSS observations or ionosonde data. An example of a

three-dimensional ionospheric map created using MIDAS is given in Figure 4.2.

While MIDAS can ingest data from many instruments, the main data source for

ionospheric tomography with the software has so far been GPS. The algorithm primarily

uses two types of data as input to compute the ionospheric image when using GPS

(or GNSS) measurements. First, to obtain phase and pseudorange observations from

GNSS, Receiver INdependent EXchange (RINEX) files from a list of ground-receivers

are used. Second, orbital information for each satellite is retrieved from Standard

Product 3 orbit (SP3) files. These data are used to compute the observed ionospheric

sTEC measurements (~y) and the corresponding raypath geometry (A), from which

three-dimensional images of the electron densities of the ionosphere (~x) are reconstructed.
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Figure 4.2: Three-dimensional mapping of the ionosphere using MIDAS for October 30,
2003, 21:00 UT, from Mitchell et al. (2013)

4.2.1 MIDAS tomography

Ionospheric tomography with MIDAS using GNSS as the source data enables accurate

imaging of the electron density. However, it is limited by the satellite-to-receiver geome-

try when only ground-based receivers are used because of the lack of horizontal ray-paths

through the ionosphere; which results in limited information on the vertical distribution

of the ionospheric electron density. Another limitation is not having sufficient data to

cover the entire geographical area with evenly-distributed receivers. These limitations

can cause the problem to have more unknowns than equations, and thus make the

inversion underdetermined.

MIDAS algorithm can address this lack of observations from GNSS by using Empirical

Orthonormal Functions (EOFs) to map the voxel-based problem into a function-based

problem, in either the vertical, the horizontal or in both domains. These functions

can provide a realistic approximation of the vertical and horizontal distribution of the

electron density to compensate for the possible lack of observations in the reconstruction.

The standard MIDAS setup uses both function-based and voxel-based problems, which

enables the combination of voxels in the horizontal domain with EOFs in the vertical

domain. The vertical orthonormal functions are the singular values derived from a set of

41



normalised ionospheric vertical profiles either from models such as Chapman (Chapman,

1931), or from external data sources such as ionosondes or ISRs. Figure 4.3 gives an

example of 5 Chapman EOFs.
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Figure 4.3: Example of 5 EOFs calculated from Chapman vertical profiles.

The EOFs, either vertical or horizontal, are included in the inversion problem as a

mapping matrix M, which transforms the problem from voxel-based to one for which

the unknowns are the coefficients of the orthonormal basis functions. The problem

defined in Equation 4.3 is now expressed mathematically as:

~y = AM~z (4.4)

where ~z is the unknown coefficients of each orthonormal basis function and matrix M

defines the mapping from a voxel-based representation to a function-based one by using

basis functions; such that AM defines a basis set of line integrations of electron density

through the geometry volume defined by A.

The inverse solution may still be unstable because the problem is still ill-posed

due to limited data coverage over a given geographical area, which makes the solution

unsolvable. To make the problem well-posed, and therefore the solution unique, MIDAS

is capable of aiding the inverse problem with various techniques, such as regularisa-

tion (Mitchell and Spencer, 2003; Panicciari et al., 2015), Kalman filtering (Spencer and

Mitchell, 2007) or data assimilation on a physics-based model (Da Dalt et al., 2014).
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In this thesis, only the first version, which uses regularisation techniques, is con-

sidered. This option uses the well-established Tikhonov regularisation (Tikhonov and

Arsenin, 1977). Instead of selecting all possible values in the geographical space defined

by A, Tikhonov regularisation only selects the subset with reliable values — i.e. with

best receiver coverage. To do this, Tikhonov introduced the following parametric cost

function:

f(z) = ||~y −AM~z||2 + η||RM~z|||2 (4.5)

where f is the cost function of the method with respect to ~z, η is the regularisation

tuning parameter and R refers to the regularisation matrix. The inversion is now solved

by the Regularised Least Square (RLS) technique, which minimises the cost of f(z):

~z = (MTATAM + ηMTRTRM)−1ATMT~y (4.6)

It must be noted that while this approach enables a unique solution to be obtained,

it is now highly dependent on the regularisation. This is because the η parameter sets

the influence of the regularisation on the inversion. A small η value will reduce the

effect of the regularisation, which, if the problem is ill-conditioned, the solution may

enhance small artefacts and noise in the solution. Conversely, as the η value gets bigger,

the regularisation will drive the solution according to R. This means, if η is too big,

the regularisation would smoothen the solution and small structures in the electron

density would disappear from the reconstructed images.

Once ~z is obtained, the electron density ~x is calculated by combining Equations 4.3

and 4.4:

~x = M~z (4.7)

Using ~x, it is now possible to evaluate the accuracy of the inverse problem by

calculating the predicted observation ŷ and comparing with real observed data ~y.

ŷ = A~x (4.8)

For a successful tomographic inversion, the predicted observation has to be as close
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to the real observed data vector ~y as possible. Any differences between ŷ and ~y can be

due to a number of factors, such as poor data coverage, poor data quality or a poorly

defined R (Panicciari et al., 2015).

4.2.2 TEC calibration

As mentioned in Section 3.1.2, the sTEC observations coming from either ρGF , ϕGF or

CCL are offset by either DCBs or phase ambiguities. MIDAS addresses the impact these

parameters may have on the estimation of ~z by removing them through observation-

differencing. To calibrate sTEC measurements, all frequency dependent terms and

constants over time for each satellite pass, such as phase ambiguities and DCBs, are

removed using the ray differencing technique (Andreeva et al., 1992). This method

computes the time-differences in raypath geometries (A) and measurements (~y):

D~y = D(A~x) (4.9)

D~y = (DA)~x+ A(D~x) (4.10)

where D corresponds to the matrix containing the differential rays over time. If short

enough time periods are considered, the ionospheric electron density can be assumed to

remain constant, thus D~x ' 0. During this period, all offsets in ~y, such as DCBs, are

also assumed to remain constant, isolating the sTEC information within ~y. This means

the D matrix only applies to A and ~y parameters.

D~y = DA~x (4.11)

Combining Equation 4.11 with Equation 4.6, ~z can now be defined as:

~z = (MTATDTDAM + ηDTRTMTRMD)−1MTATDTD~y (4.12)

Solving this equation for ~z and using Equation 4.7, the tomographic algorithm can

now provide absolute ~x values without any biases from uncalibrated observations.

As mentioned before, apart from GPS observations (see e.g. Bernhardt et al., 1998;

Materassi and Mitchell, 2005; Rose et al., 2011), additional measurements from different

instruments can be used in MIDAS as input or validation data. These additional

measurements generally come from ionosondes and ISRs, introduced earlier in Chapter

3. The use of these instruments with MIDAS was demonstrated in Chartier et al. (2012),
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where ionosonde peak densities were used as absolute point measurements in addition to

GPS data, and observations from the Jicamarca ISR, were used to assess the accuracy

of the method. In Meggs et al. (2005) and Spencer and Mitchell (2007), data from

the EISCAT radar was used as an independent verification of MIDAS images over the

Northern hemisphere. More details on the use of different data sources in MIDAS are

summarised in Mitchell and Spencer (2003).

4.3 State of the art

This section gives a brief review on other most relevant ionospheric tomography methods

currently available.

4.3.1 IDA4D

Ionospheric Data Assimilation Four-Dimensional (IDA4D) (Bust et al., 2004) was devel-

oped by the Applied Research Laboratories at the University of Texas. It is based on

the Four-Dimensional VARiational (4DVAR) data assimilation technique (Daley, 1991),

where the underlying idea is to create a method to combine a background model with

actual measurement data. It is capable of ingesting different types of ionospheric electron

density measurements, such as ground and space-based GPS, ionosondes and radars.

The background specification for the IDA4D algorithm can be based on empirical models

or global representations of the ionosphere, which is used as the initial guess. Using a

minimisation technique that takes the data, its deviation from the background model

and their covariances into account, the three-dimensional electron density distribution

is estimated. These images are then projected forward in time through a Kalman filter,

where they are used as the background model for the next step.

The main advantage of IDA4D is the flexibility it provides. The three-dimensional

electron density grid can be entirely irregular, which makes it possible to increase or

decrease the resolution of the results in given regions without compromising the image

quality. In addition, 4DVAR can determine the influence the input measurements and

background model have on the results using their covariances. In comparison to MIDAS,

the main drawback of IDA4D is the need of a background ionosphere to be used as

an initial guess, which introduces a potential source of noise and errors. The use of a

Kalman filter instead of a regularisation technique to estimate the electron density is

another difference compared to the version of MIDAS used in this thesis.
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4.3.2 GAIM

The Global Assimilative Ionospheric Model (GAIM) (C. Wang et al., 2004) was devel-

oped by the University of Southern California and Jet Propulsion Laboratory. GAIM

is based on a physics-based ionospheric model, which is then refined by the 4DVAR

data assimilation technique to retrieve the 3-dimensional electron density. Line-of-sight

TEC measurements from different ionospheric sensing instruments, such as ionosondes

and ground and space-based GPS receivers are provided as observed inputs into the

4DVAR assimilation. GAIM uses electron density measurements from a database of

post-processed observations to adjust the parameters of the physics-based model, such

as ion production rates, temperature and neutral wind. This updated model is then

combined with available real-time measurements in a Kalman filter-based assimilation.

GAIM can provide near-real time and short-term forecasts of ionospheric electron

density distributions.

The use of the updated physics-based model is the main feature of GAIM. As the

model is updated with real measurements, the electron density distribution described by

GAIM becomes increasingly representative of the real conditions, which consequently

improves the convergence of the Kalman filter. However, the mandatory use of a

physics-based model and the need for its continuous update can be a potential source

of errors, and can be a drawback when compared to other tomography techniques. As

with IDA4D, the need of a background ionosphere (a physics-based model in this case)

and the use of a Kalman filter instead of a regularisation technique to estimate the

electron density are the main differences in GAIM compared to the MIDAS version

used in this work.

4.3.3 Fast PPP

Fast Precise Point Positioning (Fast-PPP) is a method that provides ionospheric cor-

rections for GNSS in real-time (Rovira-Garcia et al., 2015). It was developed by the

Research Group of Astronomy and Geomatics (gAGE) at the Universitat Politècnica de

Catalunya (UPC). This method uses available GPS TEC measurements to estimate

the ionospheric electron density and satellite and receiver DCBs. The method consist

of three Kalman filters. In the first Kalman filter, the satellite and receiver clock

corrections are estimated. The second Kalman filter estimates the slow-varying parame-

ters — the tropospheric delay, carrier-phase ambiguities and satellite orbit corrections.

The ambiguities are used to adjust the geometry-free phase measurements (ϕGF ) and

calculate the absolute sTEC. The sTEC measurements are then ingested into the third
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Kalman filter, which performs two-layer ionospheric tomography and refines the DCBs.

Fast-PPP provides vTEC for two vertical layers of the ionosphere with limits at 50, 500

and 5000 km from the Earth’s surface, which provides higher accuracy than single-layer

tomography (Juan et al., 1997; Allain and Mitchell, 2009). The accuracy of the DCBs

and ionospheric delays are typically ' 1 TECu, which allows this method to provide

ionospheric corrections for precise positioning applications, such as PPP.

The main benefit of using Fast-PPP is that, apart from the ionospheric electron

density and DCBs, it also continuously estimates GNSS-related parameters such as

phase ambiguities, satellite orbits and clock errors. In addition, it does not require a

background model ionosphere as an initial guess. However, Fast-PPP needs to estimate

the phase ambiguities in the second filter to calibrate the phase sTEC measurements

used for ionospheric tomography, which can introduce additional errors to the estimated

electron density. This tomography technique also only solves for the electron distribution

over a two-layer grid, while other methods, such as MIDAS, can estimate the electron

density distribution over a larger number of vertical layers.

4.4 Summary

This chapter reviewed the theory behind ionospheric tomography — an imaging tech-

nique that reconstructs the ionospheric electron density from line-integral measurements

in an inversion process. A well established data source for ionospheric tomography

is sTEC derived from GNSS satellite-to-receiver ray-paths, which can be fed into the

inversion method.

The ionospheric tomography algorithm used in this thesis, MIDAS, can ingest both

phase and pseudorange dual-frequency observations of GNSS to derive either calibrated

or uncalibrated (relative) sTEC measurements. The measurements are then inverted to

reconstruct four-dimensional images of the ionospheric electron density as a function of

latitude, longitude, height and time. This makes MIDAS an ideal method for sensing

the global ionospheric electron density.

In addition to MIDAS, this chapter also provided an overview of alternative iono-

spheric tomography methods currently in use. IDA4D and GAIM algorithms, based

on the 4DVAR data assimilation technique, use a background ionospheric model as a

reference and assimilate TEC measurements from different sources into this background

ionosphere model. The Fast-PPP method, in contrast, does not use any ionospheric
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model, but combines three different Kalman filters to calculate satellite and ionospheric

corrections for GNSS. The first filter estimates the satellite and receiver clock errors,

while the second calculates the tropospheric delays, phase ambiguities and satellite

orbit corrections. In the final Kalman filter, two-layer ionospheric electron density maps

and satellite DCBs are generated from phase observations. The corrections from this

techniques can be used in application such as PPP.
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5 Ionospheric tomography

evaluation

Introduction

Assessing the accuracy of tomographic algorithms is a challenging task as no reference

specification is available to define the true ionosphere. Ionospheric tomography is

typically verified using other independent experimental data sources as has been demon-

strated in previous studies, such as incoherent scatter radars (Pryse and Kersley, 1992;

Walker et al., 1996; Mitchell et al., 1995; Meggs et al., 2005) and ionosondes (Hernández-

Pajares et al., 1998; Lee et al., 2008). However, such a verification is complicated by

the fact that all instruments have associated measurement errors, and the evaluation is

limited by the accuracy of the instruments. Furthermore, the majority of these systems

are localised and do not cover large regions of the Earth.

This chapter outlines a new simulation approach that enables the evaluation of the

quality of ionospheric tomography inversions. The approach uses two-dimensional iono-

spheric electron density distributions derived from ISR (see Section 3.3) and ionosonde

(see Section 3.2) observations, which are spatially extrapolated to create a realistic

3-dimensional ionospheric representation. sTEC measurements are then simulated by

integrating the electron density along signal paths propagating this ionosphere, defined

by real geometries between GPS satellites and ground receivers. This data set, for which

the reference ionosphere is now known, is used as an input to MIDAS to estimate the

spatial distribution of the ionospheric electron density. The reconstructed ionospheric

maps are then compared with the reference ionosphere to calculate the difference be-

tween the images and the reference. Three of the most critical issues when imaging the

ionosphere with GPS are tested: the impact of satellite and receiver DCBs, receiver

coverage of the geographical grid, and the lack of horizontal rays. MIDAS is evaluated

for three geographic regions with differing ground-receiver networks, which evaluates

the impact ground-receiver coverage has on the reconstructions.

The chapter is structured as follows. Section 5.1 gives a brief introduction to the

evaluation framework. Section 5.2 discusses the creation of the ionospheric models
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and introduces the simulated observations. The important parameters needed for the

reconstruction are then described and selected in Section 5.3. Finally, the results are

shown and discussed in Section 5.4. The chapter is concluded with a summary.

5.1 The evaluation framework

The framework used to evaluate the inversion outputs of MIDAS is based on ISR

two-dimensional electron density distributions across latitude and height, and vertical

ionosonde observations. These maps are used to create a reference ionosphere which

can be used to find the best approach for imaging the ionosphere with MIDAS and to

assess its accuracy. Data from two different ISRs and co-located ionosondes are used

in this chapter. The first is the the EISCAT radar located in Scandinavia, while the

second ISR is located at the Millstone Hill observatory in Massachusetts, USA. The

ISRs enable two different models to be created that represent the different ionospheric

electron density conditions observed in these regions.

Figure 5.1: Flowchart of the evaluation method described in this chapter.

The flowchart in Figure 5.1 presents the simulation framework used for assess-

ing MIDAS. Simulated sTEC measurements (STECsim in Figure 5.1) are obtained

by integrating through the ionospheric representation (Ionospheric model in Figure

5.1) using real satellite-receiver geometries for the ray paths (Ray paths in Figure

5.1). These measurements are then input to MIDAS to reconstruct and estimate the

three-dimensional electron density using tomography (Nestimated in Figure 5.1). The ac-

curacy of MIDAS is evaluated by comparing the Nestimated against the ionospheric model.

It is helpful at this stage to define some of the terminology used in this chapter.
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‘Ionospheric model’ refers to the three-dimensional distribution of the ionospheric

electron density generated using ISR two-dimensional distributions and ionosonde

vertical distributions. The model is considered to be the reference ionosphere that is

used to test the tomography procedure and against which the inversions are compared.

‘Simulation’ refers to the creation of artificial observations (STECsim in the flowchart)

of the ionospheric model, which are used as an input to MIDAS. ‘Reconstruction’ refers

to the use of these simulated observations to create a representation of the ionosphere

by MIDAS (Nestimated in the flowchart).

5.2 The reference ionospheric models and simulated ob-

servations

5.2.1 Specification of the reference ionosphere

As mentioned before, two reference ionospheric models are created using observations

from two different ISRs and co-located ionosondes. The models are created for the eval-

uation of MIDAS as they provide more realistic electron density values and structures

than the ones provided by a statistical model such as IRI-2016. This is important as it

allows to assess the achievable accuracy of MIDAS in conditions as close to reality as

possible.

The EISCAT measurements were obtained for 07 January 2002 12:30 UT and used

to image the ionospheric electron density from latitude 64◦-78◦ N at longitude 19◦ E.

The altitude range of the image is from 80-600 km altitude (Figure 5.2a)). The Millstone

Hill ISR measurements were gathered at 16:15 UT on 30 July 2010, as seen in Figure

5.2b). The data measured the electron density of the ionosphere from latitude 42◦-48◦

N at longitude 72◦ W, and 80-600 km altitude.

As ISRs only provide two-dimensional representations of the ionospheric electron

density, the data from these radars must be extended over a larger grid to create

three-dimensional ionospheric representation, which are created using the following 4

steps:

1. First, a three-dimensional ionospheric background distributions is created using

the IRI-2016 model.

2. The vertical electron density profile of this background model is augmented by

normalised ionosonde electron density values from co-located ionosondes. This
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Figure 5.2: a) Original EISCAT radar electron density distribution from 2002-01-07
at 12:30 UT and b) Original Millstone Hill ISR electron density distribution from
2010-07-30 at 16:15 UT.

is performed by normalising the electron density profile from the ionosonde, and

multiplying it with the densities in the background IRI model.

3. The electron density values from the ISRs are added at their respective coordinates

and heights, and the edges of the grid are described by the background ionosphere

derived from IRI and ionosonde data.

4. Finally, linear interpolation is used to define gaps in the grid between regions

described by the ISR electron density and boundaries described by the IRI model.

The model derived from EISCAT is extended to 30◦ - 80◦ N latitudes, 15◦ W - 40◦

E longitude and up to 800 km altitude. The second ionospheric model, created with

observations from the Millstone Hill ISR, is extended to cover latitudes from from 20◦ -

70◦ N, longitudes from 125◦ - 70◦ W and up to 800 km altitude.

The two ISR are located in different latitudes, EISCAT is located in high-latitude

whereas Millstone Hills is in mid-latitude. Therefore, each model provides information

on different ionospheric conditions. EISCAT model shows more spatial variability in

the electron density distribution and will therefore be more challenging to reconstruct

using ionospheric tomography. Millstone Hill model, on the other hand, shows a very

quiet ionosphere, and will provide a baseline of the expected performance of MIDAS

under stable conditions. Figure 5.3a) shows a latitudinal slice for the EISCAT-based

model (22◦ E longitude) and Figure 5.3b) for the Millstone Hill-based model (72◦ W

longitude).
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Figure 5.3: a) EISCAT ionospheric model’s latitudinal slice at 22◦ E longitude derived
from measurements obtained on 2002-01-07 at 12:30 UT, and b) Millstone Hill input
model’s latitudinal slice at 72◦ W longitude derived from measurements obtained on
2010-07-30 at 16:15 UT.

5.2.2 Simulated observations associated with the reference ionosphere

The two ionospheric models making up the reference ionosphere are used to test three of

the most critical issues when imaging the ionosphere with GPS: the impact of satellite

and receiver DCBs, poor receiver coverage of the geographical grid, and the lack of

horizontal rays that provide information on the vertical distribution of the electron

density. If the algorithm is not robust against DCBs, the reconstructed electron density

may be shifted by a constant value proportional to the biases. Meanwhile, an uneven

coverage or lack of horizontal rays may harm the horizontal and/or vertical accuracy of

the reconstructed ionosphere. It is important to note that observations from GPS only

are used in this chapter.

Following the flowchart in Figure 5.1, once the ionospheric models are defined,

the first step in the simulation framework is to calculate the simulated GPS sTEC

measurements, which provide input data for MIDAS. The electron density given by the

ionospheric models is integrated along satellite-to-receiver ray paths propagating the

ionosphere for a set of actual satellite positions and receiver locations. To evaluate the

impact of DCBs, real satellite DCBs from CODE and normally distributed random

receiver DCBs (µ = 0 and σ = 10 TECu) are added to each TEC measurement to make
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the simulated observations realistic. The effect, if any, that these satellite and receiver

DCBs have on the reconstructions is then analysed.

The effect of the density and distribution of the GPS ground receivers is tested by

using three receiver networks in three different geographical regions: Europe, North

Asia and North America. These regions are selected as they present very different

ground-receiver geographical distributions, which are shown in Figure 5.4. The cyan

dots represent the GPS receiver positions in each region, and the highlighted areas

are regions with higher receiver densities used later in Section 5.4. The impact of

the receiver density in each of these three different regions is analysed using the two

ionospheric models in Section 5.2.1, separately. This provides information about the

influence of receiver distribution and density on the reconstructions of each reference

model.

Figure 5.4: Location of the GPS receivers used for the reconstruction.

5.3 Selection of optimal parameters for MIDAS

MIDAS requires the configuration of certain parameters — i.e. the desired electron

density image size and resolution, and the source and number of EOFs. Therefore, once

the input observations for the reconstruction are simulated (using the ISR/IRI/ionosonde

model), the two critical parameters within the MIDAS algorithm need to be configured

to optimise the performance of MIDAS.

5.3.1 Grid resolution

The first step after creating the ionospheric models and choosing the receiver networks

is determining the three-dimensional grid resolution to be used for each experiment.

The aim is to select the resolution that provides the most accurate images for each
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ground-receiver configuration. This is done by conducting a receiver density analysis,

where the performance of ionospheric reconstructions with different grid resolutions

and numbers of receivers are evaluated. For this analysis, idealised, evenly distributed

receiver networks are considered for all regions (Europe, North Asia and North America),

and sTEC measurements are simulated from the EISCAT reference ionosphere model

as described in Section 5.2.2. These measurements are inverted with MIDAS into

three-dimensional ionospheric maps, which are compared with the reference model

by computing mean errors in vTEC relative to the reference ionosphere. Figure 5.5

shows three examples of idealised receiver densities used, where the receivers are evenly

distributed over Europe.

Figure 5.5: Three examples of the receivers distribution over the grid and 5x5 degree
bins.

In order to provide a comparison between results of this investigation and a re-

alistic ground receiver distribution, results with the receiver distributions given in

Figure 5.4 are also analysed. The grids for the receiver networks are divided into

5x5 degree latitude and longitude bins (see Figure 5.5), and the number of receivers

per bin is calculated. This analysis provides a close approximation to the grid resolu-

tion that is required, depending on the receiver density and distribution of each scenario.

The simulation reconstructs the ionospheric electron density with 5, 2, 1 and 0.5

degree steps in latitude and longitude and using from 4 to 625 receivers in total equally

distributed over the region. Figure 5.6 presents the results from the experiment. The

mean (diamond) and standard deviation (line) of the number of receivers per bin for

each of the three regions from Figure 5.4 is shown in Figure 5.6a). Mean errors in vTEC

in the idealised scenario are presented as a function of number of receivers per bin in

Figure 5.6b).
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Figure 5.6: a) Mean and standard deviation of receivers per bin for the three scenarios
under study. b) Mean error in vTEC for different numbers of receivers within each 5x5
degree bin. The horizontal axis has a logarithmic scale.

It can be seen from Figure 5.6b) that there is a significant improvement when

moving from a reconstruction with 5◦ resolution to one with 2◦ resolution for all receiver

densities. Errors with 1◦ resolution stay lower than 2◦ for receiver densities up to 0.2

receivers per bin, but starts to increase rapidly for receiver densities lower than this.

The difference between the vTEC errors when using 1◦ and 0.5◦ steps is very small

(around 0.2 TECu) for receiver densities > 1 receivers per bin. The errors increase

dramatically for 1◦ and 0.5◦ grids with low receiver density (< 0.2 receivers per bin),

which is due to insufficient data being available to properly reconstruct the ionosphere

at such high resolutions. It is worth mentioning that the higher the resolution of the

reconstructed ionospheric electron density, the longer the computational time needed

to create the image. Considering the results in Figure 5.6, a resolution of 1◦ degree in

latitude and longitude is selected for Europe and North America, whereas a step of 2◦ is

used in North Asia as it has a lower density of receivers compared to the other two regions.

It must be noted that the distribution of the receivers in this experiment is optimal
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in each of the 4 simulated cases, as the receivers are evenly distributed over the region.

In reality, the receivers are not as evenly distributed, and the results over regions with

sparse receiver coverage will not be as good as in this idealised experiment.

5.3.2 Orthonormal basis functions

As introduced in Section 4.2, one of the key features of MIDAS is the use of EOFs in the

vertical domain. These functions provide a realistic approximation of the vertical elec-

tron density profile to compensate for the lack of vertical accuracy in the reconstruction.

Depending on the region of the ISR used to create each ionospheric model, an ionosonde

measurement close to the time of the ISR observation (Chilton for EISCAT model and

Boulder for Millstone Hill model) is used to calculate the EOFs. As the ionosonde

observations only reach up to the F2 peak height, the topside of the ionosphere had to

be modelled using the Chapman profile as introduced in Section 3.2. The parameters

to calculate the profile are however unknown, and calibration is therefore required. A

novel approach to calibrate the ionosonde using accurate vTEC values from MIDAS

reconstructions is introduced in this chapter. This approach aims to match the vTEC

retrieved from MIDAS reconstructions at the location of the given ionosonde to the

vTEC obtained from the ionosonde once the topside profile is calculated. The scale

heights, (HT ), needed to reconstruct the topsides are calculated (see Equation 3.22).

These values are retrieved by iteration. The (HT ) value that makes the ionosonde

full profile vTEC closer to the MIDAS vTEC at each grid point is used to create new

Chapman function. These functions are used to retrieve the EOFs that aid MIDAS.

This novel method is later referred to as topside calibrated ionosonde. The results using

this method and the full ionosonde profiles provided by each instrument manufacturer

as sources to calculate the EOFs for MIDAS are later compared in Section 5.4.3. Only

1 and 2 EOFs are used in MIDAS in this analysis.

5.4 Results

This section presents the results from the analysis of DCB estimation, and of horizontal

and vertical accuracy of MIDAS electron density for the six reconstructed ionospheric

images (three regions with different receiver distributions (Figure 5.4) using two iono-

spheric models). For clarity, the results concerning each critical feature mentioned

in Section 5.2.2 – bias estimation, horizontal and vertical accuracy – are investigated

separately.
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5.4.1 Bias estimation

The impact of the satellite/receiver combined DCBs on MIDAS ionospheric electron den-

sity reconstructions is first analysed. The errors between the combined DCBs introduced

in each simulated sTEC measurement used as input data, and the combined DCBs

retrieved from MIDAS are presented here. Only results from Europe are considered for

simplicity.

Figure 5.7: Histograms of a) DCB estimation errors and b) DCB estimation errors
percentage, for each ray over Europe.

The satellite and receiver combined DCBs are calculated following the theory in-

troduced in Section 3.1.2.2 (see Equation 3.10). MIDAS calibrates for these biases

during the inversion process by using the ray-differencing technique as described in

Section 4.2.2. Figure 5.7a) shows the errors between the calculated and the input DCBs

for all the satellite-receiver pairs in two areas, the full European grid and a smaller

area in central Europe with higher receiver density than the full European region (see

highlighted area in Figure 5.4). This region is referred to as the ’good coverage region’.

The relative error is calculated by comparing the absolute value of the DCB errors to

the measured sTEC of that path. Figure 5.7b) shows how well the biases are estimated

for each satellite-receiver pair. The mean of the errors in both areas is approximately
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2% of the total sTEC. Approximately 99% of the rays that are in the good coverage

region have errors less than 5% of the total sTEC. This generally accounts for errors

< 1 TECu in mid-latitude regions, which demonstrates the accuracy of MIDAS in DCB

estimation.

In order to test if bias estimation errors depend on the measured sTEC, the values

of the simulated sTEC observations for each ray-path are multiplied by 10 in the next

analysis, without modifying the bias values. Figure 5.8 shows the absolute and relative

errors in DCB estimation for results with enhanced sTEC.

Figure 5.8: Histograms of a) DCB estimation errors and b) DCB estimation errors
percentage, for each ray over Europe after multiplying the TEC values of the simulated
observations by 10.

By comparing Figure 5.7 and Figure 5.8, it can be seen that the absolute errors in

DCB estimation have increased by a factor of 10 in accordance with the increase in

sTEC, without changing the error percentage. Table 5.1 shows numerical mean and

standard deviation values for the results shown in Figures 5.7 and 5.8, which also shows

the increase in the values by a factor of 10 corresponding to increase in sTEC. This

means that the errors do not depend on the values of the DCBs, but on the values of

the sTEC.
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Table 5.1: Mean and STD of errors in DCB estimation.

Full European grid Good coverage region Europe

Absolute error Relative error Absolute error Relative error

sTEC 10 * sTEC sTEC 10 * sTEC sTEC 10 * sTEC sTEC 10 * sTEC

Mean (TECu) 0.938 9.388 3.176% 3.175% 0.7564 7.564 2.665% 2.665%

STD (TECu) 0.443 4.429 2.148% 2.147% 0.194 1.942 0.751% 0.751%

Therefore, in order to analyse the effect the inversion method has on the DCB

estimation, reconstructions from MIDAS using simulated measurements that are biased

and unbiased by DCBs are compared. From Figure 5.9, it can be seen that vTEC

reconstructions in MIDAS from biased and unbiased sTEC simulations are the same.

This proves that the errors seen in Figure 5.7 and Figure 5.8 are not caused by the

DCBs, and that the method is therefore robust for bias estimation.
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Figure 5.9: Comparison of reconstructed TEC from simulated TEC data with and
without DCBs.

5.4.2 Horizontal accuracy

A detailed analysis of the effect of receiver coverage on the horizontal accuracy of MIDAS

ionospheric reconstructions is shown in this section. This is performed by comparing
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reconstructed vTEC results with the reference ionospheric models.

The first analysis illustrates the distribution of absolute vTEC errors across the

grid by calculating the vTEC errors relative to the reference ionospheric model. Figure

5.10 shows absolute vTEC errors, limited to 5 TECu to highlight small variations in

the errors. Black dots represent the GPS receiver locations. The results from both

ionospheric models show the effect of receiver coverage on the quality of the recon-

structed data. Areas with few or no receivers (North Asia) show large deviations from

the ionospheric model (1-3 TECu), where the algorithm is not able to reconstruct the

electron density correctly. Over regions with good coverage such as Europe or North

America, where many receivers are available, the errors are in the range of 0-1 TECu. It

is worth mentioning that the errors beyond the edges of the grid increase dramatically

in all regions. This is due to most of the rays falling out of the grid in those areas,

causing a lack of available observations, which is clearly visible in North America.

Figure 5.10: Maps of the absolute vTEC errors over Europe, North America and North
Asia using EISCAT and Millstone Hill input models.

Figure 5.11 shows relative vTEC errors for the same reconstructions to evaluate the

effect of vTEC values of each model on the errors. The colourmap is limited to 10% to

highlight small variations at low percentages. Absolute errors over Europe and North

America in Figure 5.10 for both models are very similar. Results from the EISCAT

model, however, show lower relative errors compared to the Millstone Hill model in

Figure 5.11. This is probably because EISCAT model has higher electron density values
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than Millstone Hill model. Also noteworthy is that in the region with good receiver

coverage the accuracy is 60% to 95% better than in areas with a lower receiver density.

This demonstrates that the receiver coverage is an important factor in MIDAS.

Figure 5.11: Maps of relative vTEC error over Europe, North America and North Asia
using EISCAT and Millstone Hill input models. The triangles in the maps correspond to
the locations of the ionosondes used to create the reference model (Tromsø and Boston)
and the ones used to create the vertical EOFs for MIDAS (Chilton and Boulder).

When comparing the results from Europe and North America with Asia, the effect

of the chosen grid resolution can be seen. Overall, if the area of study is sufficiently

covered with ground receivers, an accurate representation of the ionospheric total

electron content can be obtained. The results over Asia show errors of 1-3 TECu in

Figure 5.10 due to the low resolution of the reconstruction. In order to obtain high

accuracy results (relative errors below ∼2%), a larger receiver network and a higher

resolution reconstruction is needed, as seen in the good coverage region in Europe and

North America in Figure 5.11.

5.4.3 Vertical accuracy

The accuracy of the vertical electron density distribution of tomographic images is

also an important factor for high-precision applications. Therefore, the third goal is to

evaluate the vertical accuracy of the MIDAS algorithm. This is done by comparing the

vertical electron density distribution of the reconstructions with those of the ionospheric

reference models that provide the input to the algorithm. Ionospheric reconstructions
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for two regions are investigated to analyse the influence of the type and number of

EOFs used to aid MIDAS: Europe with the EISCAT model and North America with

the Millstone Hill model. Performance is compared for a single EOF and 2 EOFs, calcu-

lated from both original ionosonde profiles as well as topside calibrated ionosonde profiles.

Figure 5.12 presents the reconstructed vertical electron density profiles for the

European region with the EISCAT ionosphere model at Tromsø (radar location) and

Chilton (ionosonde location) in the upper row. The lower row gives vertical density

profiles for the North-American region with the Millstone Hill ionosphere model at

Boston (radar location) and Boulder (ionosonde location). These locations are shown

in the maps in Figure 5.11. The ’true’ vertical electron density profile derived from the

reference model at each location is added for comparison.
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Figure 5.12: Reconstructed vertical electron density profiles at Europe (EISCAT model)
and North America (Millstone Hill model) obtained using 1 or 2 EOFs, compared with
the true vertical electron density distributions at different locations.

The results in Figure 5.12 shows that the reconstructed ionospheric peak densities

are underestimated when using the EISCAT input model and EOFs derived directly
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from the Chilton ionosonde data. In contrast, the results using EOFs derived from the

topside calibrated ionosonde approach (Section 5.3.2) show closer agreement to the true

profile for the majority of the results. An improvement in the thickness of the F region of

the profiles can also be seen when using EOFs derived from the calibrated ionosonde data.

The main parameters of the reconstructed ionosphere and their errors at Tromsø,

Chilton, Boston and Boulder are summarised in Table 5.2. For both ionospheric models,

it can be seen that the results when using only 1 EOF derived from calibrated ionosonde

data (the highlighted column in the table) provide the best estimation of the F2 peak

electron density.

Analysing the reconstruction of the EISCAT ionospheric model (Table 5.2a and b),

it can be seen that by using EOFs derived from calibrated ionosonde data, the errors

in the estimations of the peak electron densities have been reduced by 20− 40% when

compared with EOFs from uncalibrated (standard) ionosonde data. The results of

the Millstone Hill ionospheric model (Table 5.2c and d), on the other hand, show no

major improvement compared to results using original ionosonde data. This is likely

because the ionosonde used for the input model (Tromsø) and the ionosonde used for

the EOFs (Chilton) are in two different latitudinal regions — high latitude and mid

latitude, respectively. This is not the case in the Millstone Hill model, where both

ionosondes are in similar latitudes. The improvement seen when using the vTEC topside

calibrated ionosonde shows that the influence the topside ionosphere information has on

the reconstruction, particularly when the source of the EOFs are in a different region

to that of the input model. When considering the impact of the number of EOFs, the

errors when using 2 EOFs are larger in comparison with the errors obtained when using

1 EOF only. This is caused by the increase in the number of unknowns when increasing

the number of EOFs, which makes the problem more difficult to solve when the data

are insufficient.

Given the results in Figure 5.11 and Table 5.2, it can be concluded that the topside

calibrated ionosonde method to calculate EOFs improves the overall vertical accuracy of

this ionospheric electron density imaging algorithm, even when the location of interest

is at a significant distance from the ionosonde that provides information for the EOFs.
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Table 5.2: Parameters of the reconstructed ionosphere and their errors at a) Tromsø
and b) Chilton using the EISCAT ionospheric model; and c) Boston and d) Boulder
using the Millstone Hill ionospheric model.

EOFs from ionosonde data EOFs from calibrated ionosonde data Input

a) Tromsø 1 EOF Error (%) 2 EOFs Error (%) 1 EOF Error (%) 2 EOFs Error (%)

Peak height
(km)

240 20
(7.69%)

220 40
(15.38%)

260 0 (0.0%) 240 20
(7.69%)

260

Peak density
(×1011m−3)

6.47 6.20
(48.95%)

6.04 6.64
(52.36%)

10.85 1.82
(14.42%)

9.62 3.05
(24.01%)

12.68

vTEC
(TECu)

11.07 1.66
(17.69%)

7.31 2.09
(22.27%)

9.24 0.16
(1.73%)

7.24 2.16
(22.99%)

9.41

b) Chilton 1 EOF Error (%) 2 EOFs Error (%) 1 EOF Error (%) 2 EOFs Error (%)

Peak height
(km)

240 20
(7.692%)

220 40
(15.384%)

260 0 (0.0%) 250 10
(4.846%)

260

Peak density
(×1011m−3)

7.78 8.59
(52.47%)

8.03 8.34
(50.94%)

14.66 1.71
(10.47%)

15.14 1.23
(7.53%)

16.37

vTEC
(TECu)

13.31 0.23
(1.78%)

12.06 1.01
(7.74%)

12.49 0.58
(4.49%)

11.90 1.17
(8.99%)

13.08

c) Boston 1 EOF Error (%) 2 EOFs Error (%) 1 EOF Error (%) 2 EOFs Error (%)

Peak height
(km)

200 40
(16.66%)

200 40
(16.66%)

220 20
(8.33%)

200 40
(16.66%)

240

Peak density
(×1011m−3)

4.23 0.13
(3.16%)

4.82 0.45
(10.31%)

4.65 0.27
(6.36%)

5.21 0.83
(19.06%)

4.37

vTEC
(TECu)

8.28 0.10
(1.23%)

7.80 0.58
(7.01%)

8.18 0.20
(2.44%)

7.70 0.67
(8.09%)

8.38

d) Boulder 1 EOF Error (%) 2 EOFs Error (%) 1 EOF Error (%) 2 EOFs Error (%)

Peak height
(km)

200 40
(16.66%)

200 40
(16.66%)

220 20
(8.33%)

200 40
(16.66%)

240

Peak density
(×1011m−3)

4.24 0.19
(4.48%)

4.82 0.38
(8.65%)

4.64 0.20
(4.57%)

5.16 0.72
(16.25%)

4.44

vTEC
(TECu)

8.29 0.22
(2.68%)

7.84 0.67
(7.92%)

8.16 0.35
(4.19%)

7.73 0.78
(9.19%)

8.52
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5.5 Conclusions

This study introduced a novel simulation framework in which a realistic reference

ionosphere was created based on the combination of ISR/IRI/ionosonde measurement

data. Using this method, the accuracy of imaging the ionosphere with MIDAS and GPS

signals was evaluated. The results show the importance of the distribution and density

of GPS receivers, the selected imaging resolution and the use of a realistic representation

of the vertical electron density profile.

From the regions studied, North Asia showed errors in vTEC larger than 10% in the

ionospheric reconstructions, caused by the limited resolution due to the small number

of receivers distributed over the area. In contrast, in the regions with sufficient receiver

coverage (Europe and North America), the errors in vTEC were below 2% for the

majority of the area under study.

The Satellite/receiver combined DCBs were estimated and compared to the simu-

lated values. Relative errors < 2% over Europe were found, which did not increase as

the simulated input sTEC increases. In addition, equivalent estimated TEC values from

MIDAS reconstructions with and without simulated DCBs in the input measurements

were obtained, which therefore demonstrates the robustness of MIDAS against both

satellite and receiver DCBs. The potential of this MIDAS to estimate DCBs is therefore

demonstrated in this chapter.

The investigations carried out in this chapter also underlined the importance of the

data sets and methods used to derive the EOFs. Although the obtained vTEC results

were very accurate, the vertical electron density distribution differed from the input

models. When using the EISCAT model with original ionosondes to calculate the EOFs,

errors over 50% in the peak height and density estimation were observed. However,

by using the vTEC topside calibrated ionosonde method, the accuracy of the vertical

electron density profile was improved (maximum errors of 14% using 1 EOF), while the

absolute vTEC remained as accurate as in previous analysis.

5.6 Summary

An evaluation method for ionospheric tomography was presented in this chapter. The

main purpose was to create a realistic simulation framework to assess MIDAS. Two

electron density representations of the ionosphere were created using data from two-
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dimensional electron density distributions from ISRs, vertical electron density profiles

from co-located ionosondes, and IRI-2016 model. By integrating through these iono-

spheric representations, simulated sTEC observations were retrieved.

Satellite and receiver DCB estimation using MIDAS was demonstrated. These

biases are of important consideration, as they are related to the satellite to receiver

TEC measurements (see Section 3.1.2.1) that are generally used as input to MIDAS.

In addition, two ionospheric representations were used as input data in the MIDAS

software to test the vertical and horizontal accuracy of the imaging algorithm. The

results highlight the influence of the GPS ground receiver coverage, and therefore the

data coverage, on the accuracy of the electron density images.

This chapter has proven that one of the most important features for high accuracy

ionospheric tomography is the data coverage. Following this line of research, the next

chapter investigates the addition of GLONASS and Galileo satellites observations into

MIDAS algorithm.
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6 Multi-constellation ionospheric

tomography

Introduction

The availability of satellites from multiple GNSS constellations has increased the achiev-

able accuracy in precise positioning applications (e.g. Hernández-Pajares et al., 2003;

X. Li et al., 2015; Cai et al., 2015; Tegedor et al., 2014)). However, there is still

a need to improve the precision of atmospheric and ionospheric corrections to levels

required by these applications. The majority of the ionospheric delay, '99.9%, can in

theory be corrected using dual-frequency ionosphere-free linear combinations (Mannucci

et al., 1998), which remove all frequency-dependent effects from the GNSS observables,

such as the ionospheric delay. However, this combination, obtained by differencing the

time delay of signals of two frequencies, increases the noise in the solution (Teunissen

and Montenbruck, 2017) and introduces the need to correct for DCBs (Wilson and

Mannucci, 1993; H̊akansson et al., 2017). This is because the hardware of both the

satellite and receiver introduce a different delay to signals having different carrier

frequencies, resulting in a bias in the differenced measurement. Differential multipath

from poorly sited antennas can additionally contribute to these biases. DCBs bias sTEC

measurements derived from each satellite-receiver pair and the effect is experienced by

all GNSS constellations.

Some precise positioning applications rely on externally-provided ionospheric cor-

rections, which generally require ionospheric slant delay corrections that are directly

proportional to sTEC. The most common correction sources come from ionospheric

tomography images from GPS observations (Hernandez-Pajares et al., 2000; Colombo

et al., 2000), Global Ionospheric Maps (GIM) (Banville et al., 2014; X. Li et al., 2013),

or ionospheric models (Psychas et al., 2019; Z. Li et al., 2019). It has been demonstrated

by previous studies (Juan et al., 1997; Allain and Mitchell, 2009) that three-dimensional

ionospheric tomography shows better performance in positioning corrections than two-

dimensional ’thin-shell’ solutions derived from GIMs or models, as it allows estimation of

the electron density along the satellite to receiver path without using a mapping function.

The new aspect to this chapter is the use of multiple constellations in tomography and
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to investigate the errors through both simulation and experiment.

The use of ionospheric tomography and data assimilation with GPS to study the

ionosphere is well established in the research community (e.g. Bernhardt et al., 1998;

Materassi and Mitchell, 2005; Saito et al., 2017). Leitinger et al. (1997) first proposed

the use of combined GPS and GLONASS data for ionospheric imaging. In recent

years, regional and global TEC maps from GPS and GLONASS observations were

presented in Kunitsyn et al. (2011), while Yin et al. (2011) used the combination of

GPS and GLONASS to create three-dimensional images of the Antarctic ionosphere;

where GLONASS was shown to improve the results, in part due to the higher orbital

plane used by its satellites. As the European Galileo constellation has not been fully

operational for many years yet, not many studies have been conducted to investigate

the effect of combining GPS/GLONASS with the Galileo constellation for ionospheric

tomography. This chapter evaluates the combination of GPS-GLONASS-Galileo global

constellations (hereafter known as Multi) for ionospheric tomography. The aim is to

show the potential improvement in horizontal accuracy when imaging the ionospheric

electron density with MIDAS.

The chapter is structured as follows. First, an introduction to the method that

estimates satellite DCBs is given. This is followed by a simulation to select the optimal

horizontal resolution for the ionospheric images, which additionally provides a reference

of the achievable accuracy under ideal conditions. Finally, electron density maps and

DCBs retrieved using actual data from equatorial (Brazil) and mid-latitude (Europe)

regions are presented and discussed.

6.1 Satellite DCB estimation

As discussed in Chapter 5, one of the main limiting factors of MIDAS is the limited

geometry due to sparse ground-receiver coverage, which can lead to large errors in the

electron density estimation (Bruno et al., 2019). This limitation can be addressed in

two ways: by increasing the number of ground receivers or the number of satellites from

different GNSS constellations used in MIDAS. The impact of different ground-receiver

networks was analysed in Chapter 5. The latter technique is addressed in this chapter

by combining constellations in MIDAS.

For satellite and receiver DCB estimation, the same approach as that used in

Chapter 5 (and described in Section 3.1.2.2) is implemented here, although with an
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additional step: The combined DCBs are separated to satellite and receiver DCBs

using the method defined in (N. Wang et al., 2016). This method solves the individual

satellite and receiver DCBs from the combined DCBs using regularised least squares,

where a zero-mean distribution regularisation on all satellite DCBs for each individual

constellation is assumed. As this second step is completely independent from ionospheric

tomography, this method allows to estimate DCBs from a given constellation even

if no observations from that constellation were used to create the ionospheric maps.

Therefore, in this work, satellite DCBs from GPS, GLONASS and Galileo constellations

are estimated using ionospheric images from both MIDAS-GPS and MIDAS-Multi.

An elevation cut-off of 10◦ is also implemented in this chapter, thereby assuming the

average noise (ε in Equation 3.9) to be negligible over each satellite pass.

6.1.1 Dataset

Regional ionospheric electron density maps for mid and low latitudes are created in

this chapter, both for a simulated scenario (Section 6.2) and with actual observations

(Section 6.3). For the mid-latitude analysis (Europe), a total of 99 receivers from the

IGS, EUREF and UNAVCO networks are used, all of them providing GPS, GLONASS

and Galileo dual-frequency phase and pseudorange observations. For the low-latitude

analysis (Brazil), 27 ground receivers from IGS and IBGE networks are used. Figure

6.1 shows the locations of all GNSS receivers used in this chapter.

Figure 6.1: Locations of ground GNSS receivers used for inversion in a) Europe and b)
Brazil.
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The EOFs used to augment the inversions are created from ionosonde observations

from Juliusruh (Germany) and Fortaleza (Brazil) to aid the vertical resolution at mid

and low latitude images respectively. Ionosonde observations are used as they help

estimating the hm(F2) for the Chapman profiles. Two EOFs are used in all experiments

described in this chapter. These basis functions are incorporated into MIDAS following

the theory introduced in Section 4.2.

The region over which an image is analysed is determined based on the availability

of observations. Figure 6.2 shows the number of actual TEC observations per vertical

column of 1-by-1 degree size over a 2-hour period for the nominal day 18 September

2017. Europe is shown in the top row and Brazil in the bottom row, with the left hand

side showing MIDAS-GPS and the right hand side MIDAS-Multi.

Figure 6.2: Number of TEC measurements used to create a single image in Europe and
Brazil from MIDAS-GPS and MIDAS-Multi.

The number of observations decreases dramatically at the edges of the grid where

there are less ray-paths. Therefore, only the ionospheric results from the dashed line
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areas in Figure 6.2 are analysed in this chapter, unless otherwise stated.

6.2 Simulation results

The aim of this research is to evaluate the accuracy and the horizontal resolution

improvement that can be achieved when using multiple satellite constellations in iono-

spheric tomography. Therefore, an end-to-end simulation is performed to determine

the achievable accuracy with different three-dimensional grid resolutions that would

be suitable for GPS and Multi-constellation tomography. In this stage of the analysis,

ionospheric images for 18 September 2017 are generated using different grid resolutions

and different combinations of constellations. Simulated GNSS TEC measurements

from Europe and Brazil are used as input data for the MIDAS ionospheric tomography

algorithm. The TEC is calculated by integrating the electron density along satellite-to-

receiver ray paths through a known simulated ionosphere — IRI-2016 (Bilitza et al.,

2017). The IRI-2016 model is used in this simulation to provide a reference ionosphere

on the same day of the actual observations i.e. on 18 September 2017. Actual re-

ceiver (Figure 6.1) and satellite geometries of each constellation are used to obtain the

satellite-receiver ray paths for the entire day. To create a more realistic simulation,

satellite DCBs, receiver DCBs and random noise are added to each emulated observation.

For the satellite DCBs, values from Multi-GNSS EXperiment (MGEX) (Montenbruck

et al., 2014) are used, whereas bias values, ranging from 0 to 9.9 and 0 to 2.7 TECu

in Europe and Brazil, respectively, are applied as receiver DCBs, with a 0.1 TECu

difference between consecutive receivers. Since MIDAS is run in the differential phase

mode, these will only affect the final re-estimation of the DCBs. For the noise term,

normally distributed random noise (µ = 0 and σ = 5% of the IRI-integrated sTEC)

is added to each emulated sTEC. As these noise values are quite large for differential

phase noise, the simulation assumes harsh and noisy environments for the receivers.

This simulation is therefore considered as a worst-case scenario. Different image resolu-

tions are analysed, namely 5, 4, 3, 2, 1, 0.5, 0.4 and 0.3 degree pixels in latitude-longitude.

The analysis is done by comparing the vTEC and satellite DCBs estimated with

MIDAS reconstructions against the IRI reference ionosphere model and reference MGEX

DCBs that were used to create the emulated sTEC measurements. The results provide

a reference for the error estimates that can be expected under conditions that are

represented by the model – i.e. geomagnetically quiet conditions. Figure 6.3 shows the

absolute (panels a and c) and relative (panels b and d) vTEC errors for each horizontal

grid resolution that was run. The errors are computed by comparing the known IRI
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model vTEC with the results from the simulation inversion that was used to generate

the electron density maps.
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Figure 6.3: Absolute and relative vTEC errors — mean (bars) and standard deviation
(black lines) — between IRI and MIDAS-GPS (blue bars) and between IRI and MIDAS-
Multi (red bars) images with simulated observations over Europe (panels a-b) and Brazil
(panels c-d) for each resolution.

The figures over Europe (panels a-b) and Brazil (panels c-d) show comparable

performances for all resolutions down to 1 or 2 degrees, with larger errors for 0.5, 0.4

and 0.3 degree resolutions. Multi constellation tomography reduces the errors compared

to GPS-only in all simulations. Noteworthy is that the addition of constellations is

more beneficial in Brazil where the receiver network is more sparse, especially at very

high resolutions.

Based on the balance between accuracy and resolution, the 2-degree resolution is

selected for further investigation,

6.2.1 Vertical TEC error distribution

Figures 6.4 and 6.5 show the temporal and spatial vTEC distributions over Europe

and Brazil calculated with MIDAS. The mean vTEC results plotted over time for the

regions of interest (areas denoted by dashed lines in Figure 6.2) for IRI, MIDAS-GPS
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and MIDAS-Multi are presented in Figure 6.4. The vTEC values are averaged for each

hourly image to obtain the mean vTEC. In addition, the Root Mean Square Error

(RMSE) compared to the reference IRI vTEC is shown in the legend. The values show

that there is a definite improvement in the overall error with the multi-constellation

results. Considering the mean errors for both MIDAS-GPS and MIDAS-Multi (i.e. the

difference between the mean vTEC of each reconstruction and the IRI reference) the

values are observed to be below 0.5 TECU for both Europe and Brazil for the majority

of the images. It is interesting to note that an increase in the errors by ∼1 TECu over

Europe is observed at certain times of day (at 10 UT and 14 UT) with results from

MIDAS-GPS. A similar issue is again observed in the Brazil results, with errors ∼ 1-2

TECu at 15 and 23 UT. These errors are reduced with MIDAS-Multi.
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Figure 6.4: Mean vTEC from IRI, MIDAS-GPS and MIDAS-Multi over a) Europe and
b) Brazil. Time is in UT hours.

Figure 6.5 shows the vTEC error distribution for each latitude/longitude in Europe

and Brazil, where the mean absolute vTEC error value for each latitude/longitude pixel

over the entire day is calculated. As mentioned before, larger errors are found at the

edges of the grid, as many rays crossing the ionosphere fall out of the area under study.

Given the large errors towards the edges of the grids, the region of good data coverage

shown by the dashed lines is selected for the analysis for each location, where the errors
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are found to be below 0.5 TECu and ∼1.5 TECu in Europe and Brazil, respectively.

Figure 6.5: Mean absolute vTEC error between IRI and MIDAS-GPS, and IRI and
MIDAS-Multi over Europe and Brazil. The dashed lines represent the region of high
measurement density.

An improvement in vTEC of ∼ 0.3 TECu and ∼1 TECu is observed with MIDAS-

Multi with respect to MIDAS-GPS for Europe and Brazil, respectively.
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6.2.2 Satellite DCB estimation

The validation of satellite DCBs by comparing the MIDAS-estimated satellite DCBs

against the MGEX DCBs from the end-to-end simulations is shown in Figure 6.6. The

blue colour represents the GPS, GLONASS and Galileo satellite DCBs calculated from

MIDAS-GPS results, while the red colour represents biases from MIDAS-Multi results.
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Figure 6.6: MGEX (simulated values) and MIDAS (estimated values) satellite biases
across all constellations (TECu). Panel a) show results from Europe and panel b) from
Brazil. The RMSE of the satellite bias for both MIDAS-GPS and MIDAS-Multi are
given as an inset of the respective panel.

Similar to the vTEC results in previous section, the satellite DCB estimation over

Europe shows only a very small improvement between MIDAS-GPS and MIDAS-Multi,

with RMSE < 0.3 TECu. In contrast, the RMSE over Brazil increases up to 1.16 TECu

with MIDAS-GPS, whereas for MIDAS-Multi it increases only up to 0.57 TECu, which

represents an improvement of 0.59 TECu. Table 6.1 provides a summary of the RMSE

between DCBs from MGEX and DCBs estimated from MIDAS images.
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Table 6.1: Summary of RMSE between MGEX and MIDAS with simulated data for all
constellations individually. RMSE are given in TECu.

Region Images
Sat. bias RMSE (MGEX – MIDAS) in TECu

GPS GLONASS Galileo

Europe
MIDAS-GPS 0.22 0.22 0.45

MIDAS-Multi 0.18 0.14 0.28

Brazil
MIDAS-GPS 1.13 1.19 1.18

MIDAS-Multi 0.55 0.48 0.71

As can be seen in Table 6.1, MIDAS-Multi provides a small improvement of 0.04−0.17

TECu in RMSE (18 − 37%) over Europe. In contrast, Brazil sees a much larger im-

provement of 0.47− 0.71 TECu in RMSE (39− 59%) when using multi-constellation

tomography. Larger errors are found over Brazil relative to Europe for all results

as less ground receivers are available over the region, which reduces the number of

available measurements from each satellite. The multi-constellation observations to

some level compensates for the lack of receivers in the region, which is why a significant

improvement is observed.

The results shown in Figure 6.4-6.6 and Table 6.1 provide a reference of the achiev-

able accuracy under geomagnetically quiet conditions over Europe and Brazil. Overall,

errors below 5% in vTEC and DCB estimation are obtained over Europe and Brazil for

MIDAS-Multi.

6.3 Experimental results

The receiver network used for the simulation (see Figure 6.1) is also used in the exper-

imental element of this chapter. This section analyses reconstructions of true events

created from MIDAS-GPS and MIDAS-Multi for both geomagnetically quiet (13-18

September 2017) and disturbed (07-09 September 2017) periods.

To assess the performance of MIDAS-Multi with actual independent data, the

ionospheric electron density maps are compared with vTEC maps (GIMs) from the

independent software package MIT Automated Processing of GPS (MAPGPS) (Rideout

and Coster, 2006). In addition, the satellite DCBs retrieved from MIDAS are compared

with the DCBs from the MGEX. It must be noted that this validation provides a
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comparison of the ionospheric results from MIDAS, rather than a complete knowledge

of the absolute errors. This is because, the true electron density distribution within the

ionosphere is not known to the levels of accuracy being considered in these experimental

results. Nevertheless, a consistent approach between the simulation and the experiment

is utilised to gain insight into the errors.

6.3.1 Vertical TEC errors

This section compares vTEC between MIDAS images and MAPGPS GIMs. Results

from MAPGPS are used for this analysis as it provides higher temporal and spatial

resolution than any other GIM. The MAPGPS software uses data from more than 2000

globally distributed receivers to produce global TEC maps. For the dates analysed

in this thesis, this method uses observations from GPS satellites only. The data is

provided in 1-by-1-degree latitude-longitude bins every 5 minutes, over locations where

data is available. The maps are made available by the Open Madrigal Initiative. As the

GIMs only provide vTEC information, MIDAS images are vertically integrated at each

latitude/longitude grid point. A common image resolution is also implemented for both

GIMs and MIDAS images where the vTEC values from GIMs are interpolated to match

the chosen resolution of the MIDAS images. Figures 6.7 and 6.8 present the comparison

of mean and standard deviation of vTEC over time between MAPGPS, MIDAS-GPS

and MIDAS-Multi for the geomagnetically quiet period and for the disturbed period,

respectively.

The MIDAS-GPS vTEC results given in Figures 6.7 and 6.8 show similar values

compared to the MIDAS-Multi images, with differences in the mean vTEC Root Mean

Square (RMS) between single and multi-constellation below 0.5 TECu for both quiet

(Figure 6.7) and disturbed (Figure 6.8) periods. MIDAS-Multi shows a more stable

performance than MIDAS-GPS over Europe, especially on 08 September 2017 (Day

Of Year (DOY) 251) when the effect of the geomagnetic storm in the ionosphere was

strongest. During the disturbed period, the vTEC results from MIDAS-Multi are in

better agreement to MAPGPS, improving results from MIDAS-GPS in ∼24% (from

1.85 TECu to 1.41 TECu). On the other hand, the vTEC results from MIDAS-GPS and

MIDAS-Multi over Brazil show very similar results regardless of geomagnetic activity,

with vTEC RMS differences below 0.4 TECu (∼1%) between them.

Figures 6.9 and 6.10 show the distribution of the differences in mean vTEC between

MAPGPS and MIDAS in Europe and Brazil for the geomagnetically quiet (Figure 6.9)

and disturbed (Figure 6.10) periods. These maps show not only the highlighted regions
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Figure 6.7: Mean (line) and STD (bars) vTEC from MAPGPS, MIDAS-GPS and
MIDAS-Multi during the geomagnetically quiet period (13-18 September 2017) over a)
Europe and b) Brazil. Time is in UT hours.
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Figure 6.8: Mean (line) and STD (bars) vTEC from MAPGPS, MIDAS-GPS and
MIDAS-Multi during the geomagnetically disturbed period (07-09 September 2017)
over a) Europe and b) Brazil. Time is in UT hours.

in Figure 6.2, but also the surrounding areas where the grid extends to highlight the

larger errors found at the edges of the grid.
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Figure 6.9: Mean absolute vTEC differences between MAPGPS and MIDAS-GPS,
and MAPGPS and MIDAS-Multi over Europe and Brazil during the geomagnetically
quiet period (13-18 September 2017). The dashed lines represent the region of high
measurement density.

An improved agreement between MAPGPS and MIDAS-Multi in electron density

estimation, compared to MIDAS-GPS, is observed in these figures. Over Europe, the

agreement between MAPGPS and MIDAS vTEC images at high latitudes (> 60◦)

is greatly increased with the addition of GLONASS and Galileo constellations into

MIDAS, due to more high-elevation observations provided at higher latitudes by the

higher inclination angle (64.8◦) of the orbital planes of the satellites in the GLONASS

constellation. The improvement is also noticeable over the mainland (highlighted region

in Figure 6.2), where the vTEC differences between MAPGPS and MIDAS are reduced

to ∼0.5 TECu (quiet period) and ∼1 TECu (disturbed period) when using MIDAS-Multi.

Over Brazil, similar vTEC difference distributions are found between MIDAS-GPS and

MIDAS-Multi when compared to MAPGPS. The differences are however reduced when

using MIDAS-Multi — ∼0.5 TECu smaller than MIDAS-GPS during both quiet and
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Figure 6.10: Mean absolute vTEC differences between MAPGPS and MIDAS-GPS,
and MAPGPS and MIDAS-Multi over Europe and Brazil during the geomagnetically
disturbed period (07-09 September 2017). The dashed lines represent the region of high
measurement density.

disturbed periods, thereby showing a better estimation of the electron density with

MIDAS-Multi relative to MIDAS-GPS for Brazil as well.

6.3.2 Satellite DCB estimation

The DCBs retrieved from MIDAS-GPS and MIDAS-Multi are compared to those pro-

vided by the MGEX project. Figure 6.11 shows the satellite DCB comparison for the

geomagnetically quiet period for Europe and Brazil. The blue colour represents the

GPS, GLONASS and Galileo satellite DCBs calculated from MIDAS-GPS, while the

red colour represents biases for the same satellites from MIDAS-Multi.

For the geomagnetic quiet period, no significant differences are observed between
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Figure 6.11: MGEX and MIDAS satellite biases (TECu) during the geomagnetically
quiet period (13-18 September 2017). Panel a) show results from Europe and panel b)
from Brazil. The blue dots represent MIDAS-GPS results, while the red dots represent
the MIDAS-Multi results. The RMS difference of the satellite DCBs between MGEX
and MIDAS are given as an inset of the respective panel.

DCBs estimated from MIDAS-GPS and MIDAS-Multi. All RMS differences between

MGEX and MIDAS are below 1.7 TECu over Europe and 2.4 TECu over Brazil.

For the geomagnetically disturbed period, the bias differences are shown indepen-

dently for each day so as to isolate the effect of the geomagnetic storm that occurred

on DOY 251 (08 September 2017). This comparison is presented in Figure 6.12.

The results show no great impact when using GLONASS and Galileo observations

alongside GPS in the European region (panels a)-c)), with a maximum improvement of

0.09 TECu in satellite DCB RMS difference between MIDAS-GPS and MIDAS-Multi.

However, a larger improvement is observed when combining different constellations in

Brazil (panels d)-f)), where a decrease of 0.24 TECu in DCB RMS difference is observed

on DOY 251. A summary of the RMS differences between DCBs from MGEX and

DCBs estimated from MIDAS images is given in Table 6.2, which can be compared to

the simulation results given in Table 6.1. Satellite DCBs for all constellations, from

both MIDAS-GPS and MIDAS-Multi images, are evaluated during both quiet and

disturbed periods. For the disturbed period, only DOY 251 is considered since the

geomagnetic conditions of DOY 250 and 252 did not have a significant impact on the

DCB estimation process.
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Figure 6.12: MGEX and MIDAS satellite biases (TECu) during the geomagnetically
disturbed period (07-09 September 2017). Panels a)-c) show results from Europe and
panel d)-f) from Brazil. The blue dots represent MIDAS-GPS results, while the red
dots represent the MIDAS-Multi results. The RMS difference of the satellite DCBs
between MGEX and MIDAS are given as an inset of the respective panel.

The results show improvements in the RMS difference up to 0.9 TECu between

DCBs estimated from single and multi-constellation MIDAS. DCBs for all constellations

estimated from MIDAS-Multi are in closer agreement with MGEX than DCBs estimated

with MIDAS-GPS only. For both single and multi-constellation images, RMS differences

in the biases of ∼3 TECu higher over Brazil and ∼2 TECu higher over Europe are

found in the estimation of GLONASS satellite DCBs with respect to GPS and Galileo

satellites, for both quiet and disturbed periods. This is addressed in the following

section (Section 6.4).
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Table 6.2: Summary of RMS differences between MGEX and MIDAS with actual data
for all constellations. RMS differences are given in TECu.

Region Period Images
Sat. bias RMS difference
(MGEX – MIDAS) in TECu

GPS GLONASS Galileo

Europe

Quiet period
MIDAS-GPS 0.87 2.60 0.28

MIDAS-Multi 0.78 2.60 0.20

Disturbed period
MIDAS-GPS 0.91 2.72 1.00

MIDAS-Multi 0.85 2.62 0.82

Brazil

Quiet period
MIDAS-GPS 0.86 3.74 0.46

MIDAS-Multi 0.81 3.74 0.34

Disturbed period
MIDAS-GPS 1.13 3.77 1.58

MIDAS-Multi 1.03 3.58 0.79

6.4 Discussion and conclusions

This chapter analyses the potential use of multi-constellation tomography to estimate

the ionospheric electron density. A simulated scenario is used to assess the trade-off be-

tween accuracy and resolution for single and multi-constellation tomography. Following

the results from the simulation, three-dimensional electron density images are created

at 2-degree resolution from actual observations to evaluate the achievable accuracy in

estimating TEC with GNSS ionospheric tomography.

The simulation provides an estimate of the errors expected under geomagnetically

quiet conditions over Europe and Brazil. When evaluating the vTEC over the high-

lighted region in Figure 6.2, the simulation shows the potential of MIDAS for accurately

imaging the ionosphere. For Europe, the mean absolute error (RMSE) with MIDAS-GPS

was 0.37 (0.53) TECu, and 0.26 (0.39) TECu with MIDAS-Multi. For Brazil, the mean

absolute error (RMSE) with MIDAS-GPS was 1.57 (2.36) TECu, and 1.08 (1.65) TECu

with MIDAS-Multi. The simulation therefore indicates that there is an improvement in

the estimation of the vTEC over both Europe and Brazil when using the MIDAS-Multi.

The mean absolute errors from MIDAS-Multi over Europe account for '4 cm delay in

L1, and therefore has the potential to be used as ionospheric delay corrections for precise

applications (such as PPP) where ionospheric corrections with maximum absolute errors

below ∼5 cm are generally required (Psychas et al., 2019). Over Brazil, however, the
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vTEC mean absolute errors from MIDAS-Multi increases up to 1.57 TECu (∼24 cm),

which does not meet the requirements of 5 cm. The implication of this is that the

more complex ionospheric dynamics related to the equatorial anomaly and a sparse

ground receiver network in the region result in insufficient observations for high ac-

curacy imaging, even with a greater number of satellites contributing to the observations.

The simulation also demonstrates an improvement in the estimate of the satellite

DCBs over Brazil when using the MIDAS-Multi, which improves the precision by ∼50%

compared to MIDAS-GPS. Over Europe, however, the improvement evaluated by the

mean difference and RMSE between single and multi-constellation is smaller (∼0.09

TECu or ∼30%). It can therefore be concluded that MIDAS-Multi gives a better or

similar overall performance than MIDAS-GPS in estimating DCBs, depending on data

coverage, and has potential to replace MIDAS-GPS in future applications.

The experimental analysis during geomagnetically quiet conditions compares the

vTEC maps from MIDAS against vTEC maps from MAPGPS. For Europe, the mean

absolute (RMS) difference between MIDAS-GPS and MAPGPS is 1.01 (1.28) TECu, and

1.01 (1.27) TECu between MIDAS-Multi and MAPGPS. For Brazil, the mean absolute

(RMS) difference between MIDAS-GPS and MAPGPS is 2.34 (2.96) TECu, and 2.10

(2.63) TECu between MIDAS-Multi and MAPGPS. When comparing the results over

Europe from actual observations with the results obtained from the simulated scenario,

vTEC RMS differences > 3− 5 times larger are observed in the experimental analysis.

Over Brazil, however, the vTEC RMS differences between MIDAS and MAPGPS are

only ∼2 times larger than what was expected from the simulation. The vTEC results

during the quiet period (∼16 cm in Europe and ∼37 cm in Brazil) do not meet the 5 cm

requirement for precise ionospheric corrections. Nevertheless, as mentioned before, the

comparison against MAPGPS does not provide absolute errors, as none of the methods

are capable of providing actual ionospheric electron density values to within a known

accuracy.

During periods of high geomagnetic activity, small irregularities created in the

ionospheric plasma make high accuracy imaging of the ionospheric electron density

more challenging. In addition, the use of 2 EOFs only could increase the difficulty as

all small perturbations in the vertical electron density distribution may be smoothed.

For Europe, the mean (RMS) difference between MIDAS-GPS and MAPGPS is 1.28

(1.85) TECu, and 1.02 (1.41) TECu between MIDAS-Multi and MAPGPS. For Brazil,

the mean (RMS) difference between MIDAS-GPS and MAPGPS is 2.18 (3.06) TECu,
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and 2.10 (2.91) TECu between MIDAS-Multi and MAPGPS. The results during the

disturbed period (∼17 cm in Europe and ∼34 cm in Brazil) do not meet the requirement

for precise ionospheric corrections. Nevertheless, all differences between quiet and

disturbed period are also below 1 TECu, showing that MIDAS performs consistently

well regardless of geomagnetic activity.

The differences between satellite DCBs estimated using MIDAS and MGEX with

experimental data show a zero-mean distribution for every constellation. The RMS

differences for the experimental analysis are provided earlier in Table 6.2. The differences

between satellite DCBs estimated with MIDAS and MGEX are also observed to be

larger for the real events than with the simulation. It must be noted that Galileo

satellite DCBs estimated during the disturbed period experience larger RMS differences

compared to the DCBs from GPS and GLONASS satellites — ∼1 and ∼0.75 TECu for

MIDAS-GPS and MIDAS-Multi, respectively, compared with ∼0.35 TECu and ∼0.15

TECu for GPS and GLONASS satellites. The larger values (of RMS differences) for

Galileo is the result of two of its satellites having very large DCBs (∼60 and ∼80 TECu

— the largest in the data), which leads to any small variations on these satellites causing

a dramatic increase in the errors. The RMS differences percentage of these satellites

only increase around 2− 3%.

An interesting observation in the DCB estimation results for GLONASS is the

significantly smaller values (∼4-10 times smaller) obtained for the simulated scenario,

than for the real events. These differences may be caused by a known problem related

to estimating the inter-frequency biases of GLONASS receivers. Wanninger (2012)

shows different inter-frequency biases depending on the frequency of the signal, which

in GLONASS is different for each satellite, and the type of receiver, which has a direct

impact on the estimation of the satellites DCBs as observations from all receivers are

equally processed in MIDAS. Figure 6.13 shows the differences in DCB estimation be-

tween MIDAS and MGEX for GLONASS satellites, both in TECu (a) and nanoseconds

(b), and sorted by frequency channel. The relationship between the channel and the

DCB difference is clearly visible, with larger differences at channels further from the

central frequency. This distribution is aligned with the results found by other authors

using the MGEX ground receiver network (N. Wang et al., 2016; N. Wang et al., 2020).

Overall, the differences between MIDAS-GPS and MIDAS-Multi show that small im-

provements can be achieved with multi-constellation tomography at 2-degree resolution.

Differences below 0.3 TECu (< 1%) are seen between MIDAS-GPS and MIDAS-Multi
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Figure 6.13: Differences between GLONASS satellite DCBs from MGEX and GLONASS
satellite DCBs estimated with MIDAS (blue from MIDAS-GPS and red from MIDAS-
Multi), both in TECu (a) and nanoseconds (b). The DCBs are sorted by channel. The
black dashed line represents the results from N. Wang et al. (2016).

in vTEC RMS during the quiet period, which increase to a maximum of 1 TECu

(2%) in RMS during disturbed periods. The differences in DCB estimation between

single and multi-constellation tomography are also found to be very small for images

over Europe and Brazil, with DCB differences < 0.54 TECu. Although these results

indicate the benefit of including multiple constellations for tomography-based satellite

DCB estimation is small, it is worth mentioning the values are also dependent on the

image resolution. The simulation process, presented in Section 6.2, showed that larger

improvements can be achieved at very high resolutions (0.3 degrees). However, the

simulation study is limited, as IRI provides a smooth representation of the ionospheric

electron density, and structures like Travelling Ionospheric Disturbances (TIDs) and

scintillation-inducing density gradients are not modelled, which can cause larger errors

in the electron density estimation in MIDAS and losses of lock on the signals at the

receiver.
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6.5 Summary

This chapter presented an approach to use multiple GNSS constellations to estimate the

three-dimensional ionospheric electron density. The work carried out has demonstrated

the potential benefit of multi-constellation tomography within the MIDAS algorithms.

The tomographic reconstructions of electron density using single and multi-constellation

GNSS data were compared with vTEC images retrieved from the Open Madrigal Initia-

tive, calculated using the MAPGPS software from MIT. The results from MIDAS-Multi

images show a small improvement compared to MIDAS-GPS. This shows that there is a

quantifiable advantage, even if small, in using the multiple constellations for ionospheric

imaging using tomography.

Satellite and receiver DCBs were also independently estimated from the ionospheric

images, assuming a zero mean, with daily bias values validated against DCBs provided

by MGEX. During the geomagnetically quiet period, only small differences are observed

between MIDAS-GPS and MIDAS-Multi DCBs estimations. However, during the dis-

turbed period, larger differences are observed when estimating DCBs from MIDAS-GPS

when compared to MIDAS-Multi.

The results during the quiet period are also validated in a simulated scenario. Over-

all, differences in vTEC are observed over Europe between results from the simulation

and the actual data, with values below 1 and 0.5 TECu in RMSE for MIDAS-GPS

and MIDAS-Multi, respectively. The results from Europe are well within the 5 cm

requirement for ionospheric precise corrections in precise positioning application. Over

Brazil, the differences are observed to be ∼2 TECu and ∼1 TECu for single and

multi-constellation images respectively.

It must be noted, however, that the results presented in this chapter do not provide

an actual ground-truth validation for the experimental part of the results. This is

addressed in the next chapter where MIDAS-Multi is validated in the positioning

domain.
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7 Ionospheric tomography

corrections for single-frequency

positioning

Introduction

The excess delay caused by the ionospheric electron density can be corrected using the

dual-frequency ionosphere-free linear combination. However, this technique is not valid

in single-frequency GNSS receivers. With these receivers, additional information of

the actual ionospheric electron density is required to estimate the excess signal delay

introduced by the ionosphere. The most common approach used by single frequency

receivers to correct for ionospheric delay is the use of empirical models.

The aim of this chapter is to test the achievable accuracy of ionospheric tomography

using multiple GNSS constellations, which has been proven as a valid alternative to GPS

tomography in Chapter 6. The true electron density distribution within the ionosphere

is unknown. The position of the receiver, however, is known at the cm-level, and the

navigation accuracy can therefore be used as ground-truth for validation. Different

approaches are used to calculate the unknown ionospheric delay on single frequency

signals: (1) no corrections, (2) Multi-GNSS tomography, (3) GIMs from the IGS and

(4) dual-frequency positioning. The latter serves as a reference that gives the best

achievable position solution in terms of ionospheric corrections.

7.1 Receiver position estimation

This chapter analyses positioning results from GNSS ground receivers throughout the

year 2019. This year is selected because of the availability of multi-constellation GNSS

receivers. Ionospheric electron density maps are created using Multi-GNSS MIDAS

using RINEXv3 files from globally distributed multi-constellation GNSS receivers from

the MGEX project (Montenbruck et al., 2017). These receivers provide observations

every 30 seconds from GPS, GLONASS and Galileo constellations simultaneously. In

addition to the electron density maps, satellite DCBs are also estimated. Figure 7.1
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shows the location of the receivers used to create MIDAS maps, and the ones used for

validation.

Figure 7.1: Locations of ground GNSS receivers used for inversion and validation.

Orbital information for all constellations is provided by MGEX, which gives satellite

positions every 15 minutes. A 9th order Lagrange interpolation is therefore used to

retrieve satellite positions and velocities every 30 seconds. The maps created from

MIDAS are run for a spatial resolution of 2.5 degrees in latitude, 5 degrees in longitude

and 100 km in height, from 0 to 1200 km above the Earth’s surface. The temporal

resolution of the maps is selected to be 1 hour.

7.1.1 Positioning method

The single-frequency positioning method described in Section 3.1.3 is used in this chapter

to estimate the position of the receivers. As described in Section 3.1.2, the ionospheric

delay can be corrected through multiple means such as GIMs, ionospheric models

and ionospheric tomography. In this chapter, the accuracy of the ionospheric delay

corrections from four different sources are assessed. First, the position estimated with

no ionospheric corrections (hereafter Uncorrected) is used as reference to observe the im-

provement of the other correction methods. The second approach is the use ionospheric

tomography with MIDAS for ionospheric correction. As many researchers have shown

the improvement of using 2D and 3D GIMs or models over the Klobuchar or NeQuick

broadcast models (Allain and Mitchell, 2009; Feltens et al., 2011; N. Wang et al., 2018;

Su et al., 2019), GIMs from CODE are then considered to calculate ionospheric correc-
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tions (hereafter CODE). Finally, the dual-frequency combination is used to calculate the

position (hereafter Dual). This combination removes the first order ionospheric delay,

although the process introduces noise and increases multipath errors in the final solution.

In the case of the Uncorrected and Dual approaches, no additional ionospheric

corrections are required. In the case of MIDAS, the sTEC is retrieved by integrating

the satellite-to-receiver raypaths through each three-dimensional electron density image.

Hourly MIDAS images are interpolated in time to match the GNSS receiver cadence

(30 seconds) and therefore provide standalone solutions every epoch. In contrast, the

GIMs from CODE provide two-dimensional electron density maps only. Therefore, to

retrieve the sTEC from the GIMs, the mapping and interpolation method described in

Schaer et al. (1998) is performed. As introduced earlier, satellite DCBs (for MIDAS

and CODE cases only) are used to calculate the TGD, and hence correct the satellite

clock errors.

7.2 Experimental results

This section presents a comparison of ionospheric products between MIDAS and CODE,

as well as positioning accuracy results from all four ionospheric correction sources. Six

receivers from different regions around the Earth (see Figure 7.1) are used for the

validation of the results.

7.2.1 Ionospheric comparison

A comparison between ionospheric electron density and satellite DCBs from MIDAS

and CODE is provided in this section. VTEC differences between maps from the two

approaches for every electron density map (1 every hour) are calculated for the entire

year, and the RMS for each latitude-longitude voxel is performed. Figure 7.2 shows the

geographical distribution of the RMS vTEC differences between MIDAS and CODE

maps for 2019.

The figure shows the largest differences between MIDAS and CODE over the oceans,

where few receivers are available. Over the mainland at low latitude, where some

validation receivers are located, the RMS difference is below 4 TECu, which corresponds

to ∼60 cm in L1. At mid latitude, however, the differences are below 2 TECu.
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Figure 7.2: Map of the RMS of the vTEC differences between MIDAS and CODE maps
from 2019.

Figure 7.3 shows the estimated satellite DCB comparison between MIDAS and

CODE. RMS differences for each GPS satellite for the entire year are calculated from

daily satellite DCBs.
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Figure 7.3: Differences in RMS between MIDAS and CODE daily satellite DCBs for
2019.
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68% of the satellites (22 out of 32) have differences below 3 TECu, while differences

between 4.5− 6 TECu are found for PRNs 19-22. These differences have a direct impact

on the MIDAS and CODE ionosphere-corrected position estimation.

7.2.2 Positioning validation

Data from six ground receivers are used to carry out the position validation following

ionospheric corrections based on the four different methods. Figures 7.4 and 7.5 show

the diurnal variation of horizontal and vertical position errors, respectively, for results

from PERT (Australia), GOP6 (Europe) and CHPG (South America). Positions are

calculated every epoch (30 s) for the entire year of 2019. The yearly average for each

epoch is then retrieved, thus providing the diurnal variation of position errors. The RMS

Error (RMSE) for the whole year for each ionospheric correction method is provided as

an inset on each figure.
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Figure 7.4: Diurnal variation of horizontal errors in the positioning estimation of a)
PERT, b) GOP6 and c) CHPG with ionospheric delay uncorrected (blue), estimated
from MIDAS (red), from CODE (yellow) and position estimated from dual-frequency
observations (purple).

The results show that PERT and GOP6 experience RMSEs below 2 and 4 metres,

respectively, for all ionospheric correction sources (MIDAS, CODE and Dual). Larger

errors are found in CHPG, especially during local post-sunset (0-9 h UTC) when the
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Figure 7.5: Diurnal variation of absolute vertical errors in the positioning estimation of
a) PERT, b) GOP6 and c) CHPG with ionospheric delay uncorrected (blue), estimated
from MIDAS (red), from CODE (yellow) and position estimated from dual-frequency
observations (purple).

effect of scintillation in the ionosphere is strongest (Spogli et al., 2013). The diurnal

variation of the ionospheric electron density is negligible in the horizontal errors given in

Figure 7.4, which is in contrast to the vertical errors in Figure 7.5, where this variability

is clearly visible. Larger differences between CODE and MIDAS/Dual are also observed

during local day-time in the vertical component — 0-9 h UTC in PERT, 9-18 h UTC

in GOP6 and 15-21 h UTC in CHPG. Corrections from MIDAS and Dual improve

the results from CODE in ∼0.5 metres. It is worth noticing that the performance of

dual-frequency positioning does not always improve MIDAS positioning results. This is

likely because the combination of signals from two frequencies increases the noise level

of the pseudorange, and the estimated position can therefore be less precise.
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Figures 7.4 and 7.5 showed that the ionospheric delay corrections impact mostly

the vertical component of the estimated position. Therefore, Figure 7.6 presents the

variation of the vertical component of the estimated position errors throughout the year

2019. The figure shows the daily mean errors calculated from the results from each

ionospheric correction method.
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Figure 7.6: Vertical errors in the positioning estimation of a) PERT, b) GOP6 and c)
CHPG with ionospheric delay uncorrected (blue), estimated from MIDAS (red), from
CODE (yellow) and position estimated from dual-frequency observations (purple) for
the entire 2019.

For the PERT receiver, an increase in the vertical error is observed during the local

summer (Dec-Apr) relative to the rest of the year, when no ionospheric corrections

(Uncorrected) are used in the position solution. This is likely related to the increase in

solar radiation over the summer, when longer daylight periods are generally experienced.

A similar increase is also observed in CHPG with the uncorrected position estimation

over local Spring (Oct-Dec), which may also be related to the longer daylight hours.

No noteworthy variations are observed in 2019 at GOP6. Table 7.1 summarises the

horizontal and vertical components of the position errors for all validation receivers.
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Table 7.1: Summary of position estimation results in metres. The percentage im-
provement for each ionospheric correction method compared to Uncorrected is given in
brackets.

Receiver
Vertical position RMSE Horizontal position RMSE

Uncor. MIDAS CODE Dual Uncor. MIDAS CODE Dual

PERT 1.25 0.51 (60%) 1.04 (17%) 0.58 (54%) 1.61 1.59 (2%) 1.65 1.79

GOP6 3.59 1.07 (70%) 1.41 (61%) 0.98 (73%) 2.41 1.39 (43%) 1.24 (49%)) 1.28 (47%)

TLSE 3.08 1.19 (62%) 1.07 (66%) 1.23 (61%) 2.41 1.36 (44%) 1.16 (52%) 1.47 (40%)

USN8 3.67 2.26 (39%) 2.14 (42%) 2.29 (38%) 2.31 2.13 (8%) 2.04 (12%) 2.19 (6%)

JFNG 4.11 2.20 (47%) 2.40 (42%) 2.45 (41%) 1.58 1.18 (26%) 1.08 (32%) 1.21 (24%)

CHPG 6.37 3.35 (48%) 3.62 (44%) 3.32 (48%) 3.70 3.27 (12%) 3.14 (16%) 3.27 (12%)

From Table 7.1, ionospheric corrections from all of the methods are observed to

improve the accuracy of the vertical component of the estimated position in comparison

to the uncorrected. MIDAS shows the best performance of the three ionospheric

correction methods and is also comparable to dual frequency position estimations.

Considering the dual-frequency approach, the effect of the increase in the noise level

in the position estimation is visible in the table. For horizontal errors, ionospheric

corrections from MIDAS and CODE provide larger position estimation correction

percentages for all receivers than Dual.

7.3 Conclusions

This chapter showed the accuracy of the ionospheric four-dimensional maps and satellite

DCBs estimated from MIDAS-Multi. In addition, the potential use of MIDAS-Multi

for providing ionospheric corrections to support single-frequency positioning estima-

tion was introduced. The chapter showed that ionospheric corrections from MIDAS

can compensate for the ionospheric delay at an equivalent level to that provided by

dual-frequency positioning, and can sometimes provide a better positioning estimation.

VTEC maps and satellite DCB estimations from MIDAS and CODE were compared

in this chapter. Global electron density maps for the entire 2019 were created, and the

RMS difference for each latitude-longitude voxel was calculated. Differences between

MIDAS and CODE below 2 TECu (∼30 cm) at mid latitude and below 4 TECu (∼60

cm) at low latitude were obtained. The differences in DCB estimation were larger, with

errors larger than 3 TECu for ∼30% of the satellites. These results suggest that the

differences between MIDAS and CODE in satellite DCB estimation can have a larger
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influence in position estimation than the influence of the differences in ionospheric delay

estimation.

The positions estimated with corrections from MIDAS and Dual were in very close

agreement, with a maximum difference in RMSE of 0.25 metres in the vertical component

of the position (JFNG receiver). Dual frequency positioning requires the combination

of observation from two frequencies, which increases the noise of the measurements and

hampers the receiver position estimation. This was reflected in the performance of Dual

for several validation receivers, as the estimated position was sometimes worse than the

position estimated with single-frequency observations corrected with either MIDAS or

CODE.

The ionospheric corrections from CODE were especially efficient in reducing the

horizontal error in the position estimation, with improvements in RMSE between 4−8%

compared to MIDAS and between 4− 12% compared to Dual. This was likely due to

a higher accuracy in satellite DCB estimation by CODE. Further research is however

required to confirm this hypothesis. The vertical error is improved in 2 receivers by 0.12

m in RMSE compared to the errors obtained using corrections from MIDAS. MIDAS, on

the other hand, improves the vertical accuracy of the estimated position in 4 receivers

by 5 − 32% compared to corrections from CODE. These differences were within the

range of 2− 4% TECu differences observed in the vTEC comparisons.

These results provide a benchmark under quiet geomagnetic conditions and during

solar minimum. As the errors using corrections from MIDAS are in the same range

as the errors from dual-frequency positioning, the majority of the ionospheric delay is

assumed to be corrected with MIDAS. This therefore applies to solar maximum, where

the majority of ionospheric delay errors would also be corrected and similar positioning

results would be obtained.

7.4 Summary

Single-frequency positioning for six globally distributed receivers for the entire year of

2019 was performed in this chapter. Four ionospheric delay and satellite DCB correction

methods — Uncorrected, MIDAS, CODE and Dual — were applied, and the accuracy

in the receiver position estimation was compared. Actual data from globally distributed

290 multi-GNSS receivers were used in MIDAS to create four-dimensional electron den-

sity images of the ionosphere. Slant TEC values for each of the validation receivers (not
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assimilated to get the solution) were then integrated though these maps. In addition,

satellite DCBs were calculated from combined (satellite + receiver) DCBs. GIMs from

CODE were also used as an ionospheric correction source. These files provide daily

satellite DCBs and two-dimensional ionospheric maps, which are used to calculate the

sTEC for each receiver. Finally, dual-frequency positioning was performed.

The positioning estimations from three ionospheric correction methods (plus dual-

frequency positioning) were compared. The ionospheric delay affects mostly the vertical

component of the position estimation. Ionospheric corrections from MIDAS can improve

the vertical accuracy of the position estimation between 8− 63% in RMSE compared to

the uncorrected solutions.

This chapter has therefore demonstrated the accuracy of the ionospheric electron den-

sity maps calculated with MIDAS-Multi and their potential use as a source of ionospheric

correction for globally distributed GNSS-receiver positioning. The computational ef-

fort of such technique is however larger, and its use is therefore subject to the application.
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8 Conclusions

The study, implementation and validation of a multi-constellation ionospheric tomog-

raphy method has been explored in this thesis. The use of the GPS constellation to

image the ionospheric electron density has already been well studied and documented.

Extending this technique to multiple constellations, however, has not yet been addressed,

as satellites from different constellations were not available until recently. This thesis

therefore explores the potential use of observations from GLONASS and Galileo constel-

lations in addition to GPS in an ionospheric tomography algorithm called MIDAS. The

work carried out and the collected results are summarised in this chapter. Further work

to improve the multi-constellation tomography imaging technique is also discussed.

MIDAS is an ionospheric tomography algorithm. The techniques involves the use

of sTEC line-integral measurements (see Chapter 3) from satellites orbiting the Earth

to receivers on the ground, where these observations are inverted to retrieve three-

dimensional electron density reconstructions. MIDAS and ionospheric tomography are

described in Chapter 4. The first objective of this thesis was to validate an assess the

current capabilities and limitations of MIDAS. A simulation framework was developed

and the vertical and horizontal accuracy of MIDAS was assessed over different locations

with differing ground receiver networks. This analysis is documented in Chapter 5. The

results show the potential of MIDAS when sufficient observations are gathered, with

errors below 0.2 TECu in regions with a high density of ground receivers. Over regions

with sparse receiver coverage, however, the errors can increase up to 5 TECu and higher.

These results demonstrate that coverage and geometry of observations are the main

limiting factors for accurate imaging of the ionospheric electron density with MIDAS.

To address this issue, a multi-constellation (GPS-GLONASS-Galileo) version of

MIDAS (MIDAS-Multi) was developed. The addition of extra satellites increases the

density of sTEC observations and improves their geometry, without increasing the

number of ground receivers. In addition to the electron density images, MIDAS-Multi is

now also capable of calculating satellite DCBs independently for every constellation, an

addition introduced in this thesis. The new version of MIDAS was tested and validated

against MIDAS with observations from GPS only, both in a simulated scenario and with

experimental data. Europe (mid-latitude) and Brazil (low-latitude) were selected to

validate the methods, as both regions have good multi-constellation receiver networks.

99



The method and the collected results are discussed in Chapter 6. In addition to vTEC,

satellite and receiver DCBs were independently estimated for the first time using MIDAS.

The IRI-2016 model was used as a-priori known ionosphere in the simulated scenario.

Ionospheric products from MGEX (satellite DCBs) and MIT (GIMs) were used as

external validation sources when using actual observations to image the ionospheric

electron density. VTEC results from the simulated scenario show that MIDAS-Multi

has better accuracy relative to MIDAS-GPS imaging, especially at resolutions > 0.5

degree-step in latitude/longitude. MIDAS-Multi reduced errors in vTEC and in satellite

DCB estimation by 10− 25% and 1− 7%, respectively. The vTEC results from actual

data confirmed the simulation results, where MIDAS-Multi improved between 1− 12%

and 1 − 24% the vTEC results from MIDAS-GPS during geomagnetically quiet and

disturbed periods, respectively. The accuracy of satellite DCBs estimated with MIDAS

improved by 5− 10% relative to MIDAS-GPS when using MIDAS-Multi.

Although an improvement with MIDAS-Multi relative to MIDAS-GPS has been

demonstrated in simulated and experimental scenarios, none of the validation methods

in Chapter 6 provide an actual ground-truth validation because the true electron density

distribution within the ionosphere is unknown. The position of the receiver, however, is

known at the cm-level, and the navigation accuracy can therefore be used as ground-truth

for validation. This approach was used to additionally validate MIDAS-Multi for the

positioning domain in this thesis (Chapter 7). Single-frequency pseudorange positioning

was performed with three types of ionospheric corrections: Uncorrected, corrections

from MIDAS and corrections from GIMs (from CODE). In addition, dual-frequency

positioning was used as a benchmark, which removes the error introduced by the

ionospheric electron density; although it has the negative effect of increasing the noise

of the measurements that can hamper the receiver position estimation. The method

to calculate the receiver position and the results obtained are discussed in Chapter 7,

where the errors in the position estimation from the four ionospheric correction methods

(Uncorrected, MIDAS, GIM and dual-frequency) are compared. Ionospheric corrections

from MIDAS was found to improve the vertical accuracy of the position estimation

between 8− 63% in RMSE compared to the uncorrected solutions. When comparing

the positioning performance between using corrections from MIDAS and dual-frequency

positioning, the estimated positions are in very close agreement, with a maximum

difference in RMSE of 0.25 metres in the vertical component of the position. These

results demonstrate the practical application of MIDAS as an ionospheric correction

source for single-frequency positioning.
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In summary, the key results of the research are:

• The accuracy and capabilities of MIDAS have been demonstrated through a

simulation framework. The geometry limitation, due to poor data coverage, was

investigated and quantified.

• MIDAS was extended to include multiple GNSS constellations, thus creating

the MIDAS-Multi version. This version addresses the geometry limitation by

adding extra satellites rather than investing in large ground-receiver networks. In

addition, a method to estimate satellite DCBs independently from satellite/receiver

combined DCBs was developed for MIDAS.

• The potential use of MIDAS to aid GNSS positioning methods (in particular, in

single precise positioning) was demonstrated, achieving accuracies comparable to

dual-frequency positioning.

In terms of future experiments, the work of this thesis can be potentially extended

with further studies:

The addition of BeiDou GNSS constellation is one factor that can further improve

the performance of MIDAS-Multi. This will help increase the available data for each

MIDAS image, thereby reducing the geometry limitation of the method. Another

important study would be analysing the large GLONASS DCB differences observed

in Chapter 6. In addition, the potential use of MIDAS-Multi for precise positioning

applications has to be further investigated. The positioning method used as validation

in this thesis was able to achieve sub-meter accuracies. Precise positioning methods,

however, are capable of achieving sub-centimetre level accuracies. The use of ionospheric

corrections from MIDAS in such applications therefore needs to be further investigated.

Finally, the growing global availability and the low cost of smart devices makes them

an ideal tool for ionospheric tomography. The potential of smartphones for sensing the

ionospheric electron density has already been validated in Bruno et al. (2020), indicating

that ionospheric tomography based on smart devices may be achieved in the near future.

The research carried out in this thesis has demonstrated the potential use of MIDAS

for estimating either global or regional three-dimensional ionospheric electron density

distributions. The addition of multiple constellations into the software has increased the

accuracy and resolution capabilities of MIDAS. By solving satellite DCBs independently,

the ability of MIDAS to provide ionospheric corrections to support GNSS positioning

methods has been demonstrated.
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