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Abstract 

Spent coffee grounds (SCG) are the organic residue obtained from the coffee brewing 

process, and are produced in industrial, commercial and residential settings. 

Approximately 9 million tonnes of SCG is now produced globally, yet is still largely 

disposed of in landfill or sent to low value food waste processing, such as Anaerobic 

digestion. However, SCG contain a huge abundance of potentially valuable 

biomolecules, including fatty acids, proteins and polysaccharides that could be further 

valorised to produce fuels and chemicals.  

To fully exploit the value from the biomass then an integrated biorefinery can be 

established. This type of biorefinery includes multiple platforms that produce an array of 

products, maximising the potential value from a feedstock, while reducing the waste 

produced. This is normally accomplished by fractionating the biomass or reusing the 

waste streams in subsequent conversion processes to yield increased high-value 

production in addition to the main product obtained in the biorefinery. As such, integrated 

biorefineries can normally handle a large variation in the feedstock entering the system. 

In this thesis, SCG were evaluated as a potential biorefinery feedstock towards the 

production of biofuels and higher-value chemicals.  Initially, SCG were considered as the 

only feedstock in a biorefinery configuration aimed at the production of 5-

hydroxymethylfurfural (HMF) as the main product. The feedstock was firstly processed 

in an organosolv fractionation to separate the biomass into an aqueous fraction, a 

hydrophobic bio-oil and a solid material. It was found that the organic and aqueous 

fractions were rich in lipids and depolymerised hemicellulose, respectively. These 

fractions were characterised and presented the potential to be further used in some 

biorefinery processes. The solid fraction obtained from the organosolv fractionation was 

rich in cellulose. This fraction was further processed in a combination of enzymatic 

hydrolysis and enzymatic isomerisation to yield fructose, which was dehydrated to yield 

HMF. 

Following on the success of demonstrating that SCG can effectively be used as a 

feedstock in a HMF biorefinery, SCG were tested as a potential blending agent with a 

microalgae strain of Scenedesmus acutus. The blends of these two biomasses were 

tested in a biorefinery designed towards the production of bioethanol, lipids, a biocrude 

oil and biochar. The configuration of this biorefinery was initiated with an acid 

pretreatment to depolymerise the biomass macromolecules into fermentable sugars. The 

produced sugars were then fermented into bioethanol using a strain of Saccharomyces 
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cerevisiae. This fermented broth was then submitted to a lipid extraction followed by an 

extraction of the produced bioethanol, the presence of which aided in the lipid extraction 

process. The solid extracted stillage obtained was finally submitted to a hydrothermal 

liquefaction to produce biocrude and biochar, The use of blends of SCG with microalgae 

demonstrated higher production of carbohydrates and slightly lower lipids extracted than 

the microalgae when processed alone in the same biorefinery configuration. This study 

demonstrated that blends of SCG with microalgae can effectively tackle the seasonality 

problem associated with microalgae-based biorefineries.  

Microalgae production has numerous advantages, including the rapid production that 

can be carried out in non-arable land. However, this requires a relatively large area to 

install the microalgae production facility, the technology and investment to do this and a 

higher value portfolio of products to make it economically viable. An alternative, that is 

gathering a large amount of research interest recently, is the production of fuels from 

macroalgae (seaweed) that can take place both in freshwater and saltwater ecosystems. 

This flexibility presents an opportunity towards this biomass type as there are large areas 

of saltwater that can be explored in the macroalgae production. However, just like in 

microalgae, macroalgae also present a seasonality problem. To this end, two strains of 

macroalgae, Ulva lactuca and Chorda filum, were blended with SCG and tested in an 

integrated biorefinery approach designed for the production of HMF. The feedstock was 

initially submitted to an acid dehydration yielding HMF, which was subsequently 

extracted. The HMF-free stream was then submitted to a second acid dehydration to 

produce more HMF, which was also extracted in a downstream process. The resulting 

solid stream obtained was rich in lipids, lignin, protein and unreacted carbohydrates. This 

stream was finally processed in a hydrothermal liquefaction to produce biocrude and 

biochar. The blends of SCG and macroalgae proved to effectively mitigate the availability 

of macroalgae during low production seasons. In addition the combination of a lipid rich 

SCG source, coupled with the high C6 content of macroalgae presented improved 

conditions towards the production of HMF, with no isomerisation needed to produce the 

HMF and higher yields of HMF in the combined system for when SCG and microalgae 

when processed separately.  

Ultimately, SCG is a highly suitable feedstock for the production of biofuels and 

chemicals in an integrated biorefinery concept. The relative lack of supply of SCG, albeit 

all year-round production, can be mitigated against by blending with alternative 

feedstocks to produce an array of suitable components including HMF.  
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1.1  Introduction 

1.1.1 Motivation for biorefinery development 

The rapid growth of the global economy has been largely driven by energy dependent 

industries. Some of these industries, like chemical or fuel manufacture and electricity 

generation are still heavily reliant on fossil fuel-based feedstocks. However, this 

exploitation and dependency on fossil-based feedstocks has led to many issues such as 

price fluctuations, fast consumption of fossil reserves and negative environmental 

impacts in term of global warming and climate change. Therefore, it is vital that new more 

sustainable routes to energy and materials manufacture are developed. The 

transportation sector is predominantly reliant on fossil-based feedstocks, and accounts 

for up to 25% of all greenhouse gas emissions. In addition to this, the increasing 

acquisition of cars worldwide accompanied by an increase in the fuel consumption and 

therefore in the combustion gases released into the atmosphere led petroleum 

companies to accelerate their fuels production. This implies higher amounts of fossil fuels 

to be used in refineries which led to a higher exploitation of fossil fuel reservoirs. The 

current predictions calculate that petroleum will last until the 2050s (1), before extreme 

price volatility driven by dwindling confidence in reserves becomes the norm. One 

potential replacement for fuels and chemical are derived from biomass which will 

inevitably be part of the transition from fossil fuels to a full renewable energy sector.  

Biomass composition highly depends on its nature and place of origin. The most 

commonly biochemical composition of biomass includes carbohydrates, lignin, lipids, 

proteins and other biomolecules, though this is of course dependent on the biomass 

type. To this end, biomass can be processed in a combination of chemical and/or 

biochemical processes to yield value added products similar to a refinery. This has led 

recently to the concept of integrated biorefinery. Where multiple feedstocks can be 

processed in combination using multiple production routes, and represents an optimal 

opportunity to achieve the full valorisation of the biomass using a combination of 

chemical, thermochemical, biochemical and biological processes to achieve the desired 

products and by-products. In this concept, the production methods in the biorefinery are 

organised in such a design to achieve the maximum possible yields of the main 

bioproducts and to use the biomass to its maximum extent without any or with minimal 

waste.  

Biorefineries can comprise a few or several conversion processes. These correspond to 

the units where biomass is transformed and/or separated into products or intermediates 

that can be further upgraded in subsequent conversion units. The conversion processes 



3 
 

used in biorefineries can be grouped by three main types: thermochemical, chemical and 

biochemical.  

There are multiple pathways for biomass to be converted into value added products. The 

various possible combinations of processes lead to a wide range of possible products 

(Figure 1-1).  

 

Figure 1-1 – Possible pathways from the different types of biomass into products possible to be obtained in 
a biorefinery (adapted from de Jong et al (2)) 

 

  



4 
 

1.2  Pretreatment 

Biomass must be pretreated first, to allow further processing. The pretreatment is one of 

the most important processes in a biorefinery design as it converts the biomass in its 

most native form to intermediates that can be converted to the final products and by-

products in the downstream processes. It is considered a critical operation in a 

biorefinery as it has a direct influence on the downstream processes results.  

There are a large range of suitable biomass pretreatment operations presented across 

the literature. Most of these focus on the degradation of the raw biomass into 

oligosaccharides, which can then be further processed into sugars. This is highly 

dependent on the severity factor that can be defined as the effect of conditions such as 

the temperature, acidity and duration of the process in the biomass constituents (3). The 

produced monosaccharides are a suitable platform for fermentation or dehydration into 

further chemical building blocks. Other pretreatment methods include physical treatment, 

biological pretreatments and chemical fractionation that focus on dividing the biomass 

main components (cellulose, hemicellulose and lignin) into different fractions to be 

upgraded separately in downstream processes. Therefore, the pretreatment process 

must be carefully planned always taking into consideration the final products desired.  

1.2.1 Physical pretreatment 

The physical pretreatment of biomass, commonly known as comminution, is a key 

operation in lignocellulosic biorefineries. Regardless of the biomass type to be used in 

the biorefinery, this biomass needs to go through a grinding milling process that intends 

to decrease the biomass into a more digestible size for the following operations. The 

desired size can be in between the range of micrometres to centimetres, which depends 

on the downstream processes: under 20 μm for food packaging applications, below 100 

μm for combustion and gasification processes, and between 100 and 500 μm for biofuel 

production (4,5). 

1.2.2 Steam pretreatment 

The biomass is pretreated with steam (160 °C to 270 °C) and pressures between 0.4 

and 4.8 MPa. Such conditions lead to the steam diffusion in the biomass, which 

condenses into hot water in the biomass microporous (6). This hot water helps in the 

biomass heating process which releases organic acids from hemicellulose causing a 

decrease in the pH (7). The release of these acids cause a slightly acidic pH and act as 

a catalyst in the hydrolysation process of the hemicellulose and degradation of lignin into 

smaller molecules (8,9). This depolymerisation of hemicellulose and lignin makes the 

cellulose in the solid phase more accessible to downstream processing. Once the vessel 
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pressure is released rapidly, a flash evaporation of the hot water inside the biomass 

microporous occurs, which triggers an explosion of the biomass causing a rupture of its 

fibres.  

Advantages of this process include the lack of chemicals used and low energy 

requirements, while disadvantages comprise the incomplete depolymerisation of the 

lignocellulosic structure, the risk of extensive polymerisation of hemicellulose monomers 

producing inhibitors to the downstream processes and the need to wash and/or 

neutralise the aqueous fraction obtained. 

1.2.3 Liquid hot water pretreatment 

This process also known for hydrothermolysis is similar to the steam pretreatment. As 

the names indicates it uses liquid hot water instead of the steam used in the previous 

method. Temperatures are usually between 160 and 230 °C. Just like in the previous 

process, the hemicellulose is hydrolysed into the aqueous phase and the lignin is 

decomposed into smaller molecules by the same principle, leaving the cellulose in the 

solid phase.  

Advantages of this process include the low energy requirements due to the low 

temperatures used in the process. Such temperatures decrease the probability of 

inhibitor formation, which also acts as a double advantage as it disregards the need for 

a washing/neutralisation step of the aqueous stream. The biggest disadvantage of this 

process is the lower concentration of the mono and oligosaccharides in the aqueous 

phase due to the higher amounts of water involved in the process. Further disadvantage 

is the possibility of an extensive hydrolysis degrading the monosaccharides into 

aldehydes. Such aldehydes can act as inhibitors in downstream processes such as 

fermentation. However, this can be avoided by controlling the medium pH in the range 

between 4 and 7. 

1.2.4 Acid pretreatment 

This method has received broad attention and has been used widely in research due to 

its hydrolysis effect on the biomass. Sulfuric acid is commonly chosen as acid in 

concentration lower than 4% w/w. Reaction temperatures range from 140 to 215 °C. 

Residence times vary between seconds to almost an hour. Previous research has 

demonstrated that a two-step acid pretreatment can be carried out to improve sugar 

recovery (10). The concept of this process is relatively similar to the one in liquid hot 

water pretreatment. However, the acid is added to the solution, which induces further 

release of acids, resulting in a higher severity factor for this pretreatment. The severity 

factor of the pretreatment should take into account the downstream processes and the 
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desired products. While inhibitors such as furfural and 5-hydroxymethylfurfural might not 

be desirable in the fermentation process, these aldehydes can be valuable intermediates 

in the upgrading to high value chemicals and biofuels. 

The high conversion rate of biomass into oligo and monosaccharides is the main 

advantage of this process. On the other hand, the extensive hydrolysis may be seen as 

a disadvantage if fermentation is the subsequent process. The use of acid can act as a 

double disadvantage as it makes the process more expensive (higher impact on large 

scale) and requires a more costly reactor construction due to its corrosive effect. On 

another hand, some of the products of an extensive hydrolysis, such as furfural and 5-

hydroxymethylfurfural, are high value products that can be recovered after the 

pretreatment and add value to the biorefinery. 

1.2.5 Carbon dioxide explosion 

This method uses supercritical carbon dioxide to improve the depolymerisation of the 

biomass. The gas stream is fed to the system under high pressures (about 70 to 270 

atm) and the reactor is heated until the set temperature (up to 200 °C) at which it is held 

for the duration of the process (3). The CO2 dissolves in water and forms carbonic acid, 

lowering the pH of the solution which helps in the hydrolysis process of biomass. The 

high pressures lead to the diffusion of the liquid phase and into the biomass microporous 

and increases the depolymerisation yields. Once the high pressure is released the 

vaporisation of the liquid phase inside the microporous occurs, inducing the explosion of 

the biomass. Advantages to the process are the high solids capacity of the process and 

the low prices of the solvents (water and CO2), however the high pressures used require 

high cost equipment.  

1.2.6 Organosolv Fractionation 

There is a growing interest in organosolv fractionation for biorefineries as it offers a 

different type of pretreatment when compared to the previously studied pretreatments. 

This operation not only depolymerises the biomass into its oligomers and monomers but 

also allows the separation of the biomass into three separate fractions of its main 

constituents: cellulose, hemicellulose and lignin enriched fractions. The reaction is 

carried out at temperatures between 100 and 250 °C, which depends mostly on the use 

of acid. Higher temperatures do not require any acid as such temperatures are enough 

to depolymerise the biomass and releasing organic acids from the process. However, 

those temperatures are energy consuming and the addition of acid that works as a 

catalyst decreases the temperatures to start the reaction. In fact, it was found that the 

addition of mineral acids such as sulfuric acid, hydrochloric acid or phosphoric acid 
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increases the level of delignification and xylan depolymerisation of the pretreatment (11–

13). The name organosolv fractionation origins from the use of a solvent system 

composed of an organic solvent and water (14–16). This organic solvent are typical 

methanol, ethanol or higher molecular weight alcohols and/or ketones (11).  

A variant of the organosolv fractionation, termed clean fractionation, has been drawing 

the attention of the researchers in the last years (17,18). This method uses a ternary 

system of solvents (water, ethanol and methyl isobutyl ketone) to isolate a relatively rich 

cellulose fraction into the solid phase, while the hemicellulose is separated into the 

aqueous fraction and the lignin in the organic fraction. Since this point, acetone has 

replaced ethanol as this solvent has a lower boiling point which makes its recycling less 

energy demanding, an improved separation of the organic and aqueous fractions without 

the use of any salts (19). This approach has been of relative interest in the last years as 

it has been widely used in the literature (20–28).   

Advantages of this operation include the easy recycling of solvents and separation of 

biomass main constituents into different streams while also depolymerising the biomass. 

Disadvantages are the need for washing the solids with the reaction solvent followed by 

a water wash and the energy associated with the recycle of the solvents. 

1.2.7 Biological pre-treatment 

Unlike the alternative pretreatment operations, the biological pretreatment does not 

require high temperatures. Most biological pre-treatments use fungi to depolymerise the 

biomass. White-rot, soft-rot and brown-rot fungi are the three main types of fungi studied 

in the lignocellulosic biomass degradation. Processes based around white-rot fungi 

appear to offer the best results as it acts primarily in the delignification of the biomass 

which then results in better saccharification yields (3,29,30). This is then followed by soft-

rot fungi and lasted by brown-rot fungi that focuses on the depolymerisation of cellulose 

that is “protected/shielded” by the lignocellulosic structure of the biomass and therefore 

leads to lower saccharification yields. This operation is mostly used as a pretreatment 

step previous to the fermentation of the resulting broth towards the production of 

bioethanol and further upgrading of the remaining streams to biogas, methane and 

transesterification of the lipids to biodiesel (30).  

A few of the biggest downsides with this technology are the extremely long residence 

times of the biomass (10 to 14 days), which are simply impractical compared to the 

alternatives, and the large area of land required to install the equipment necessary for 

this operation.  
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1.3  Biorefinery conversion platforms 

1.3.1 Thermochemical conversion processes  

Thermochemical processes use elevated temperatures to promote the depolymerisation 

and deconstruction of the biomass. The most commonly used thermochemical 

processes include combustion, pyrolysis, gasification and liquefaction.  

Combustion is the simplest energy conversion process in which biomass is subjected to. 

In 2004 the energy produced from biomass combustion represented around 97% of the 

total energy produced by biomass (31). Although this process is still commonly seen 

across several industries, biomass also represents a wealth of functionality which make 

it ideal for the production of more valuable chemical precursors and liquid fuels. 

The most researched conversion technique is arguably pyrolysis. Pyrolysis is undertaken 

between approximately 350 °C and 650 °C, on dry biomass feeds in the absence of 

oxygen.  Pyrolysis can be divided into three different types: slow, fast and flash pyrolysis. 

Slow pyrolysis is characterised by a long residence time - it can last hours or even days 

– at a slow heating rate (lower than 10 °C per minute). The final product of this process 

is targeted to be an energy dense carbonous char (usually known by charcoal) aimed for 

heating purposes. With fast pyrolysis the heating rate is much higher (approximately 

1000 °C per second) and the residence time is much shorter (in the order of seconds). 

The high temperature rates cause the drying and volatilisation steps to happen nearly 

instantaneously resulting in a gas phase that is separated from the solid phase by filters 

or cyclones. Another characteristic of the fast pyrolysis is the fast quenching applied to 

the gas phase resulting in a bio-oil (maximum yield approximately 70% w/w of the 

biomass). Apart from the bio-oil, also char is produced from this process.  

While fast pyrolysis is designed for the production of bio-oil, flash pyrolysis is more 

focused on charcoal. Unlike the previous pyrolysis processes, flash pyrolysis occurs at 

higher pressures than the atmospheric one (between 2 and 25 atm). Compressed air is 

injected in a high-pressure chamber where electric heaters initiate the reaction at the 

bottom of the reactor. The process lasts about 30 to 45 minutes. The gas phase can be 

further used in the production of heat and power.  

At higher temperatures, gasification process occurs (750 °C to 1500 °C) and can be 

carried under pressure or atmospheric pressure. The process is relatively similar to 

combustion, however the lower concentrations of oxygen in the chamber (usually in 

stoichiometric ratios) and the low residence time (seconds to few minutes) do not allow 

for a complete combustion. In fact, instead of yielding syngas, containing hydrogen and 
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carbon monoxide as its main constituents as well as methane, short hydrocarbons and 

carbon dioxide. The main applications of syngas include its conversion to methane as 

an alternative to natural gas, methanol and hydrocarbons through Fischer-Tropsch 

synthesis. 

In addition to syngas, tar is also obtained from the process as a by-product. Ideally, it 

should be char but the short residence time in the gasification chamber is not enough to 

reach thermodynamic equilibrium, leading to viscous tars that may present issues 

downstream to this process.  

The gasification process is often found alongside a Fischer-Tropsch synthesis as the 

latter uses the downstream main product of the first one, syngas. Carbon monoxide and 

hydrogen are submitted to a high pressure environment at moderate temperatures in the 

range from 200 °C to 350 °C depending on the final product choice (32). On one hand, 

the lower temperatures process (200 °C to 240 °C) is often catalysed by a cobalt or iron-

based catalyst is designed to produce paraffin waxes. On the other hand, the process 

using higher temperatures (300 °C to 350 °C), commonly using an iron-based catalyst, 

yields short chain hydrocarbons and gasoline (32).  

Such reactions often happen in a fluidised catalyst bed reactor as this design allows for 

fast cooling of the catalyst that would otherwise overheating which could lead to catalyst 

deactivation and an undesired production of methane (32). Challenges to this process 

include the inlet hydrogen:carbon monoxide ratio (2:1) or the fouling on catalyst, which 

can be avoided by removing syngas contaminants in a gas conditioning process after 

gasification. However, such process is usually expensive (33,34).   

Biomass can also be thermally processed in water. This is termed hydrothermal 

carbonisation (HTC), to produce a solid fuel, or hydrothermal liquefaction (HTL) to mainly 

produce bio-crudes (35). Hydrothermal carbonisation occurs in the presence of water at 

temperatures between 180 and 250 °C at moderate to high pressures (25 atm) to ensure 

the water remains in its liquid state. The reaction can last from minutes to hours, even 

though some authors conjectured most of the coal is produced in the first 20 minutes 

(36). Whereas hydrothermal liquefaction is undertaken at 250 – 370 °C over rapid time 

scales (37). This results in a biocrude product, as well as a aqueous phase containing 

nutrients and a char. Sevilla and Fuertes suggest that the initial step in the hydrothermal 

process is the hydrolysis of cellulose and hemicellulose into its oligomers, due to the 

presence of water (38). This is followed by further hydrolysis into monomers, organic 

acids, furfural, 5-hydroxymethylfurfural and aldehydes which undergo further 
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dehydration and decarboxylation to liquid intermediates before the polymerisation to 

either char or bio-crude takes place (38). 

For HTC the main product from this process is a coal with low moisture content and 

lightly hydrophobic making it good for storage. One of the great advantages of this 

process is its high efficiency as most of the carbon from the feedstock is converted to 

coal with little production of carbon dioxide and methane (39). The HTL process is 

similarly efficient and results in a far more stable bio-crude than pyrolysis. Further 

advantages of both processes include the fact that this is an exothermic process and the 

use of the resulting water as fertilizer due to the excess nutrients dissolved in it.  

One of the main attractions of HTL is the high heating values of the bio-oil produced (40). 

Also, the moisture levels of the biocrude are also lower when compared to the one 

produced by pyrolysis, which not only has a positive impact on its storage but also a 

reduction of fixed and operating costs of the handling and storage equipment (41). 

However, the higher pressures registered in HTL require more robust reactors that 

intrinsically are more costly. 

In addition to the biocrude produced in HTL, biogas and biochar are the by-products in 

this process. Considerable amounts of aqueous phase are also generated in this 

process. Instead of spending energy and funds on the treatment of this stream previous 

to discharging, higher value applications for this phase include recycling to a new HTL 

reaction, as a growth media for algae, its use in supercritical water gasification or 

anaerobic digestion. It has been demonstrated that the recycling of the aqueous phase 

can lead to higher biocrude yields and improved high heating values in addition to a 

reduction in freshwater consumption (42,43). Also, the nutrients in the aqueous phase 

(mostly phosphorous and nitrogen) make this stream a suitable growth media for 

microalgae even though this stream can carry some inhibitors such as phenols and 

metals which would require a dilution of such phase (44,45). The aqueous phase can be 

used in supercritical water gasification to yield a gas rich in hydrogen (46). Finally, 

anaerobic digestion can be used in the aqueous phase to convert the organic 

compounds (that were not degraded during the HTL process) into biogas, however the 

low efficiency registered is still a challenge (47,48).   

1.3.2 Biological conversion platform 

Biological conversion operations deal with the transformation of raw feedstocks and 

intermediate materials by using living whole cell microorganisms or enzymes derived 

from biological species to perform these operations.  
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1.3.2.1  Enzymatic hydrolysis 

In an integrated biorefinery context, the enzymatic hydrolysis is commonly applied after 

the pretreatment and before fermentation. This is because the slurry obtained from 

pretreatment can have relatively high concentration of oligomers and polymers such as 

cellulose. In most cases, these molecules cannot be consumed by the fermenting 

agents. Therefore, a saccharification of such molecules is required. 

The most commonly used enzymatic hydrolysis is the hydrolysis of cellulose and 

cellobiose using cellulases. The cellulase is adsorbed onto the cellulose surface, which 

performs the depolymerisation into glucose and is then followed by a desorption of the 

cellulase. The cellulase is then adsorbed in another cellulose molecule to repeat the 

cycle. This process is carried out under mild conditions, usually at temperatures between 

40 and 50 °C and pH in the range from 4 to 5 (49).     

Enzymatic hydrolysis presents some advantages when compared to acid hydrolysis. 

Enzymatic hydrolysis is carried out at lower temperatures and more neutral pH values, 

achieving higher yields. In fact, according to Ogier et al, an cellulose hydrolysis yield 

close to 100% yield can be achieved using enzymatic hydrolysis (50). Enzymatic 

hydrolysis does not produce any inhibitory compound, contrary to what can happen in 

the acid hydrolysis (51,52). However, enzymatic hydrolysis has some drawbacks such 

as the long residence time required, up to several days, contrary to the few minutes 

required in the acid hydrolysis. Higher cost of enzymes compared to acids such as 

sulphuric acid and the inhibition of further hydrolysis caused by the produced sugars 

represent other drawbacks.  

1.3.2.2  Fermentation 

Fermentation is commonly used to mean a process using a life cellular organism 

converting a carbon source into a range of useful products. This is one of the most used 

operations in biorefinery studies with over 60 industrial conversions now developed (53). 

The conditions (temperature, pH and aerobic/anaerobic atmosphere) and the product 

obtained depend on the microbial agent used. In fact, there are five main types of 

fermentation processes: focused on the production of microbial biomass, microbial 

enzymes, microbial metabolites, recombinant products and focused on the modification 

of a compound added to the fermentation process (also known by transformation 

process) (54). The production of microbial biomass focuses mainly on the production of 

yeast for baking purposes and the production of microbial cells for human and animal 

feed in the form of protein. The production of enzymes, as the name says, focuses on 

the production of these biological entities to be used in a wide range of applications, 
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going from baking, brewing, soft drinks, dairy, laundry to pharmaceutical products. 

Microbial metabolites fermentation aims to yield products of considerable economic 

importance such as alcohols, organic acids (citric acid, butyric acid or glutamic acid), 

nucleotides or vitamins. Recombinant products fermentations use genetically 

engineered organisms to yield important peptides such as insulin, interferon or bovine 

somatostatin. The last fermentation type uses microbial cells to perform a transformation 

process on compounds to higher value related products. Dehydration, isomerisation, 

dehydrogenation, decarboxylation, oxidation, amination or deamination are some of the 

conversion processes in this type of fermentation.  

The most commonly type of fermentation found in biorefinery studies is the microbial 

metabolites fermentation. The production of bioethanol is one of the most used 

operations. Bioethanol is a more sustainable replacement for gasoline in the transport 

sector. To perform this process, the biomass has to go through a pretreatment step to 

depolymerise it into fermentable sugars. These fermentable sugars are then consumed 

by the yeast that produces energy, carbon dioxide and ethanol, a process can be 

described by the Krebs cycle. Other fermentations commonly found in the literature 

include the production of butyric acid, butanol or biohydrogen (55). 

1.3.2.3  Anaerobic digestion 

This process was initially developed to deal with the sewage sludge in municipal 

treatment plants. In these plants the sludge is put in contact with microorganisms in the 

absence of air, converting the organic waste to carbon dioxide and methane (mixture of 

gases commonly known as biogas). However, the current incentive towards the 

replacement of fossil fuels with the production of fuels from renewable sources has 

drawn an increased attention to this process (56). The wide range of biomass and 

biowaste feedstocks that can be used in this process are also an advantage towards its 

use. The concept behind this operation is based on methanogenesis that consists on the 

organic matter molecules being broken down by the microorganisms into the carbon 

dioxide and methane. Biogas composition is usually found to be 60% of methane and 

40% of carbon dioxide (57). After the anaerobic digestion process the methane is 

commonly separated from the carbon dioxide and the other vestigial gases, so that it can 

be used as an energy source.  

Compared to the aerobic digestion, the anaerobic process has the advantage that the 

absence of oxygen does not allow a fast growth of the microorganisms, which by its turn, 

leads to a higher conversion of the waste/biomass into biogas (58). When compared to 

thermochemical gasification (other process that converts biomass to biogas), anaerobic 
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digestion has the advantage that biomass does not need to be dried previous to this 

process. The energy savings from the non-drying of biomass are of particular interest 

mainly for biomass feedstocks with high moisture content (57).  

1.3.3 Chemical conversion platform 

1.3.3.1  Hydrolysis and dehydration 

Hydrolysis is a common chemical process used to break down biomass macromolecules 

in the presence of water into its monomers. The most common used variant of hydrolysis 

is the acid catalysed hydrolysis. This process is usually carried at medium temperature 

in the range of 100 and 150 °C and the main products aimed in the biorefinery literature 

include 5-hydroxymethylfurfural (HMF), furfural, levulinic and formic acid (59–61). 

Furfural has a 5-carbon structure which makes it possible to be obtained from C5 sugars 

(pentoses) present in the hemicellulose, while HMF with a 6 carbons structure is derived 

from C6 sugars (hexoses such as mannose and glucose). Levulinic and formic acid are 

products of an extended hydrolysis process which leads to a degradation of the 

monomeric sugars. These products have a high importance in the market as it was 

demonstrated when the United States Department of Energy (DoE) included HMF and 

levulinic acid in the top 12 bio-based platform chemicals (62). 

Contrary to the hydrolysis, the dehydration process consists on the loss of a molecule of 

water from one or two molecules. The most common dehydration found in literature is 

the Fischer esterification which uses an alcohol and a carboxylic acid to yield an ether. 

This process is usually catalysed by an acid (commonly sulfuric acid).  

1.3.3.2  Transesterification 

The transesterification process is a classic organic reaction with many industrial 

applications: from the polymerisation of lactones to the process of curing alkyd resins 

and the production of polyester. However, this process has received an increased 

interest in the biofuels field in the recent years as it is responsible for the production of 

biodiesel from lipids. The reaction takes place when a carboxyl acid is put in contact with 

an alcohol, producing an ester as the name indicates. This reaction occurs naturally as 

it is an equilibrium process. However, research have shown that this reaction can be 

catalysed by an acid or base (63,64). 
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1.4  Major industrially produced fuel products from biorefineries  

From these platforms a range of products can be produced. To this end, this section 

discusses the most commonly produced biofuels and their precursors obtained in an 

integrated biorefinery context.  

1.4.1 Heat and power 

Heat and power are amongst the most conventional forms of energy obtained from 

biomass. Power generation starts with the combustion of the biomass in a combustion 

chamber where a stream of water circulating in a closed system is heated and converted 

to steam due to the high temperatures registered in the chamber. This steam passes 

through a turbine that induces the movement of an electrical generator that converts the 

mechanical energy into electrical power. When the heat is also collected from the steam 

exiting the turbine and going through a condensation process, the unit is called combined 

heat and power plant instead of just power plant. Currently, approximately two fifths of 

the biomass power units in Europe are producing both power and heat (65).  

The International Energy Agency reported that 2019 had an increase of 5% in power 

production from biomass relatively to the previous year (66). Such results fall under the 

6% goal to achieve the Sustainable Development Scenario in 2030. However, a growth 

in this percentage is expected in coming years with increased production of heat and 

power from biomass and waste co-generation plants. In fact, the generation of power 

from municipal waste is increasing its interest in China (66). 

1.4.2 Gaseous bioproducts 

1.4.2.1  Biogas 

This product is mainly composed of carbon dioxide and methane usually in a ratio of 2:3. 

This gas is obtained from the anaerobic digestion of organic matter. One of the 

advantages to the use of this process and the production of biogas is the flexibility on 

the choice of feedstock: the microorganisms responsible for this reaction degrade the 

organic matter from the various biomass generation types to municipal waste (67). 

Energy wise, biogas has a much lower calorific value (23.1 MJ/m3) when compared to 

pure methane (39.8 MJ/m3), which by its turn has a similar calorific value to natural gas 

(38.7 MJ/m3) (68). Therefore, it is common to refine biogas after the anaerobic digestion. 

This process consists on the removal of carbon dioxide, nitrogen, oxygen, hydrogen, 

moisture and other trace gases. The resulting gas from the refining process is known by 

biomethane or renewable natural gas. In fact, if the refining process is thorough enough 

and the biomethane fulfils the natural gas industry standards, it can be used as a 

replacement for natural gas in the heat and power industry (69). Additional applications 
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include its use in the transportation sector, lighting, cooking and further upgrading to 

chemicals like the Fischer-Tropsch synthesis (67).  

Some of the biomethane advantages regarding its use in the transportation sector 

include its low requirements of air to be combusted and at the same time a high auto 

ignition resistance (70). However, there are still some challenges regarding the use of 

gaseous fuels in the transportation sector. The gas has to be stored under high pressure 

which makes an expansion required for its use. This expansion can cause some 

alteration in the fuel properties such as density and temperature (68). Also, the presence 

of carbon dioxide in the biomethane gas can be prejudicial as it leads to an increase in 

the emissions of carbon monoxide and the total hydrocarbon content. Such properties 

cause an incomplete combustion and may lead to loss of brake power (71,72).  

1.4.2.2  Bio hydrogen 

Biohydrogen is an alternative source of hydrogen to steam reforming of fossil fuels 

(73,74). The interest on hydrogen has increased in the recent years due to its high energy 

content (122 MJ/kg) and the ability for clean burning (75). Even though hydrogen can be 

obtained through the gasification of biomass, this process also produces carbon dioxide 

which would require a refining of the produced gas to remove the carbon dioxide 

downstream to the gasification process. Such approach leads to increased costs. More 

recent approaches include the use of water electrolysis, dark or photo fermentation 

methods. The dark fermentation process has the advantage that it can use a wide range 

of lignocellulosic wastes as feedstock (76). In this process, the organic matter is digested 

by anaerobic bacteria under dark conditions, therefore the name dark fermentation.  

The advantages of hydrogen as an energy vector include the high energy content, the 

feedstocks used in its production like water through electrolysis or a wide range of 

biomass types going from lignocellulosic biomass, to waste biomass or organic municipal 

waste can be used in dark fermentation (77). Still, one of the main advantages of 

hydrogen when compared to other energy carriers is that the oxidation of this fuel only 

generates water and there is no generation of greenhouse gases.  

However, there are still some challenges to be dealt with when considering hydrogen as 

a transportation fuel. These challenges include safe storage and usage (due to the 

pressures required for is storage and the expansion previous to its use) and how the 

distribution network would be (this includes type of distribution, centralised or 

decentralised production, how the distribution would occur during the transition period 

from fossil fuels to hydrogen, etc). 
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1.4.3 Liquid biofuels and related chemicals 

1.4.3.1  Bioethanol 

Bioethanol is one of the most commonly obtained product in biorefinery literature. 

Ethanol is a colourless liquid with a high octane number which makes it a good feedstock 

to blend with low octane gasolines. The higher oxygen content in bioethanol makes its 

combustion cleaner when compared to petrol. However,  the bioethanol lower energy 

content is a drawback (around 68% lower) (78).  

The wide range of biomass types (first generation biomass, to second generation 

biomass and municipal waste) that can be used in the production of bioethanol is also a 

big advantage of the production of this biofuel. The microorganisms responsible for the 

fermentation to ethanol, consume sugars, mostly monosaccharides and disaccharides. 

Therefore, to achieve the highest possible fermentation yield, it is common to observe a 

pretreatment step previous to the fermentation. This pretreatment depolymerises the 

high complexity of the biomass macromolecules (cellulose and hemicellulose) into 

fermentable sugars to be used by the fermentation microorganisms.  

The production of bioethanol using yeast has been demonstrated to achieve high ethanol 

yields, high productivity and high ethanol concentration in solution before it is considered 

toxic to the yeast growth (79). Saccharomyces cerevisiae is the most commonly used 

yeast strain in the production of bioethanol industrially due to its large range of pH 

tolerance, easy availability and the low cost associated to the process (80). However, 

one of the challenges with this strain is the fact it can only ferment hexoses and not 

pentoses. Still, there are some genetically modified strains that can ferment pentoses 

which improves the ethanol yield (81,82).  

Ethanol is seen as one of the possible biofuels to be used during the transition period to 

a more sustainable bioeconomy. In fact, the most common application for bioethanol at 

a global scale is in fuel blending in the transportation sector. This includes ethanol blends 

of 5 and 10 (E5 and E10, respectively) in petrol. These blends can be used on most of 

the vehicles built after the year 2001 without modification (83). Moving beyond the E10 

includes E65 and E85, however these blends can only be used in a special type of 

vehicles known by Flex Fuel Vehicles that can run any blend between the range of E65 

to E85.  

In 2019 approximately 132 billion of litres of bioethanol were produced worldwide, 

registering an increase of 43% in the last 10 years. These numbers help to show the 

market increase on this product, which looks to be a trend as bioethanol gradually 

replaces fossil fuels in the transportation market.  
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1.4.3.2  Biomethanol 

When compared to bioethanol, biomethanol has a higher energy yield (84). The main 

reason that bioethanol is produced in a large scale is related to the compatibility of the 

gasoline and bioethanol blends. However, biomethanol has a higher carbon dioxide 

mitigation potential, which can turn to be a powerful reason to increase its productivity 

worldwide (85). Biomethanol further advantages include its simple storage at room 

temperature due to the fact it is a liquid and its high volumetric energy density.  

The combination of methanol worldwide plants accounts to a total of 110 million metric 

tons capacity. However, these are mostly fossil fuel based, and a change to renewable 

methanol is needed. Biomethanol can be obtained using a wide variety of biomass 

sources through thermochemical or biological processes. Gasification, pyrolysis and 

liquefaction are the thermochemical processes used to obtain methanol. These 

processes yield syngas which is further processed through a Fischer-Tropsch synthesis 

to produce methanol (86,87). Fast and flash pyrolysis are the most used pyrolysis types 

in the production of liquid biofuels, mainly from pectin and uronic acid biomass 

feedstocks (86,87). However, the thermochemical processes have been widely studied 

and are considered economically unappealing (86). Biochemical processes are an 

alternative as methanol can be produced by anaerobic digestion. This process yields 

methane and ammonia that are used for methanol production by methanotrophic and 

oxidising bacteria, respectively. However, this process is still at its early stage and further 

research is needed.  

The most used application for biomethanol is in the production of formaldehyde further 

used in coatings and plastics. Further application include the transportation sector, one 

of the main drivers towards its 6% production increase in 2018 (88).  

1.4.3.3  Bio-oil 

Bio-oil is commonly associated to the pyrolysis oil, produced from pyrolysis, however 

other conversion methods such as liquefaction also yield a bio-oil. In any of the cases, 

bio-oil main constituents are obtained through the cracking of lignin present in biomass. 

Main constituents include polyphenols and smaller percentages of methylphenols, 

xylenols and eugenol (89). Bio-oil usual calorific content falls between 16 and 20 MJ/kg. 

Such values are relatively smaller than other biofuels such as bioethanol due to their 

content on oxygenated compounds (90). Aside from the oxygenated compounds in bio-

oil, other problem is the presence of water which leads to lower calorific contents and 

lower storage periods. A solution to this problem includes the catalytic pyrolysis of 

biomass which yields a bio-oil with increased calorific values and higher stability (91). 
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Alternatively, the bio-oil obtained from HTL reaction is submitted to a phase separation, 

removing most of the water present in solution.  

One of the applications to bio-oil is its use as fuel in a boiler. Further applications with 

increased value, include bio-oil upgrading to biofuel through hydrodeoxygenation, 

conversion to high value chemicals by separation of bio-oil constituents, or the 

production of carbon materials through polymerization. The hydrodeoxygenation on bio-

oil leads to a biofuel with increased calorific content (can go up to 42-45 MJ/kg) due to 

the lower oxygen content and consequently water content in the fuel (92). Separation 

methods on bio-oil to produce chemicals include distillation (to yield acetol, acetic and 

formic acid) and extraction by solvent (92). The extraction by solvent process yields an 

aqueous phase and an organic phase. The organic phase is mostly composed of 

monophenols to be used in the production of adhesives and resins while the aqueous 

phase can be used to produce hydrogen, alcohols and bio-gasoline.  

1.4.3.4  Biodiesel 

It was estimated that the worldwide production of biodiesel in 2019 surpassed 40 billion 

litres, with Indonesia, USA and Brazil as the main producers (7.9, 6.5 and 5.9 billion litres 

respectively). Reports show that the trend in the production of biodiesel is set to increase 

in the coming years, as biodiesel gets used in the transportation sector in fuel blends 

with diesel (93,94). 

Typical biodiesel molecules are fatty acid esters, fatty acid methyl ester being the most 

common. These molecules are produced by the transesterification process of fats and 

oils (triglycerides) in the presence of an alcohol. The most used alcohol across the 

literature is methanol. Alcohols with lower water content are preferred as the presence 

of water in the reaction leads to the hydrolysis of the triglycerides producing soap, which 

results in lower biodiesel yields. This is the case with lower chain alcohols such as 

methanol (high hygroscopicity). Nonetheless, methanol is still the most used alcohol due 

to the steric hindrance effect (95,96). Previous studies demonstrate that ethanol can also 

be used due to its low price, the fact that it can be produced entirely from renewable 

sources and lower toxicity (97).  

The most important properties when producing biodiesel include the presence of 

impurities, low-temperature operability, kinematic viscosity, exhaust emissions, cetane 

number, energy content, oxidative and storage stability. Low temperature operability 

include measurements such as cloud point, pour point, cold filter plugging point and low 

temperature flow test (98). Cloud point corresponds to the temperature at which the 

formation of crystals with diameter higher than 0.5 μm occurs. The pour point 
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corresponds to the lowest temperature at which the fuel pours. The cold filter plugging 

point is related to the lowest temperature at which a certain volume of biodiesel can flow 

through a previously defined filter size under a certain time limit. A common calorific 

value for biodiesel is around 37.6 MJ/kg (99).   

The other product from transesterification is glycerol that can be further used in the 

production of high value chemicals. These includes the production of hydrogen, 

methanol, pharmaceuticals, cosmetics, lubricants and food additives. However, the 

glycerol obtained from the transesterification process needs to be submitted to a 

combination of purification steps due to the requirements of downstream industries.  

1.4.3.5  Synthetic diesel 

So called ‘synthetic diesel’ has gained increased attention in the last years. This is partly 

due to the potential of renewable electricity to be used to reduce carbon dioxide to more 

reactive precursors which can be used to produce synthetic diesel. One of the problems 

with renewable electricity is its storage and losses during long storage periods. However, 

using the excess electricity to produce chemicals has been raised as a solution to this 

problem. In this context, renewable electricity that exceeds the demand can be used to 

reduce carbon dioxide and produce hydrogen through the electrolysis of water. This 

hydrogen is submitted to a Fischer-Tropsch diesel reaction yielding synthetic diesel as 

the main product. However, one of the challenges to this route includes the location of a 

reliable carbon dioxide source near the synthetic diesel production facility. Samavati et 

al. suggested an integrated facility with gasification process able to produce the carbon 

dioxide required in the Fischer-Tropsch  reaction (100). Another challenge is if synthetic 

diesel is to be used as a fuel continuously throughout the year its supply needs to be 

reliable and the intermittency of renewable electricity might turn to be a problem. Other 

non-renewable sources of synthetic fuel production include natural gas or the gasification 

of coal to feed the Fischer-Tropsch process. 

The main application for synthetic diesel is in the transportation sector where it can be 

used neat or blended with conventional diesel. One of the advantages with synthetic 

diesel is its relatively similar properties when compared to conventional diesel. This has 

a positive impact due to its compatibility with existing engines and therefore there is no 

need for modifications. Furthermore, the relatively low concentration of sulphur in this 

fuel is a positive aspect. Finally, the use of synthetic diesel is considered to recycle 

carbon dioxide as it is firstly used in the production of the diesel by Fischer-Tropsch and 

then produced in the diesel consumption, though the overall energy and carbon balance 

is strongly influenced by the source of the energy used to produce the fuels.  
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1.4.3.6  Dimethyl ether 

Bioderived dimethyl ether is seen as an alternative fuel able to replace fossil fuels in the 

automotive industry due to its compatibility with diesel engines. This is related to its low 

self-ignition temperature and cetane number. Ether has similar physical properties to 

liquefied petroleum gas (LPG), it is immiscible with water and high purity levels makes it 

an attractive alternative to fossil fuels (101). The similar properties, when compared to 

LPG, also allow it to be used in similar supply chain infrastructures (102).  

Dimethyl ether can be produced using different approaches. It can be obtained by the 

catalytic dehydration process of methanol. Considering that this methanol is obtained 

from sustainable sources (e.g. anaerobic digestion of biomass) the fuel can be defined 

as biodimethyl ether. However, this approach can lead to low conversion efficiencies on 

methanol synthesis due to thermodynamic limitations (103). As so, recent research 

suggested an alternative route combining the methanol synthesis and dehydration 

processes in one single step making it an one-step process for biodimethyl ether 

production (104).  

Other important application of dimethyl ether consists on the manufacture of aerosols in 

replacement of banned chlorofluorocarbons due to their harmful properties on the ozone 

layer. Further applications include the production of chemicals such as acetic anhydride, 

methyl acetate, ethylene or propylene (101). 

1.4.3.7  Furfural 

Furfural was considered one of the twelve most value-added products by the United 

States Department of Energy (62). In 2019 the furfural market was estimated to be 

approximately 815 million USD and is expected to have a growth of around 35% until the 

year of 2027 (105). Furfural is a precursor that can be used in the production of a wide 

variety of fuels and chemicals in industries such as plastics, pharmaceutical and 

agrochemical. It consists of a furan ring with a formyl group on position two of the ring. It 

can be obtained from a wide variety of feedstocks but there is a particular one that has 

gained increased attention in the recent years which is hemicellulose from lignocellulosic 

biomass. As opposed to cellulose, which is a polysaccharide exclusively composed by 

glucose, hemicellulose is an heteropolymer and can have a very distinct monomeric 

composition depending on the nature of the biomass.  

Hemicellulose is rich in the C5 monomers that undergo acid catalysed dehydration to 

furfural, and arabinose and xylose are predominantly used. Different biomass feedstocks 

such as sugarcane bagasse, corn stover, birch wood, corncob, rice husk or wheat straw 
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have been demonstrated to be efficient feedstocks used in the production of furfural 

(106–109).  

Two different approaches are used industrially, the first approach is a two-step method 

which consists firstly of a two-phase system (aqueous and organic) to separated 

hemicellulose from the other biomass components (process previously reviewed as 

fractionation of biomass). The second step is a biphasic system where the furfural is 

produced in the aqueous phase and transferred to the organic phase, where it can be 

isolated after the reaction (110). The second approach consists of an acid catalysed 

single-step method which converts the hemicellulose into furfural.  

Furfural has a wide range of applications. These include the downstream upgrading to 

an extensive list of chemicals and fuels in industries such as refineries, pharmaceutical, 

resins and agrochemical. Some of these chemicals include furan, furfural resins, 

tetrahydrofurfuryl alcohol, methyl tetrahydrofuran, methylfuran, furoic acid, succinic acid 

and maleic acid. Examples of fuels that can be obtained from furfural comprise furfuryl 

acetate, levulinic acid and valerolactones derived fuels, bicyclopentane and furfuryl 

alcohol which can be further upgraded to diesel and kerosene.  

1.4.3.8  5-hydroxymethylfurfural  

5-hydroxymethylfurfural (HMF) is formed from the acid catalysed breakdown of C6 

sugars such as glucose, it has a melting point of 31.5-35 °C. HMF is highly reactive and  

the presence of impurities accelerate its polymerisation into dimers and oligomers 

(111,112). 

The molecular arrangement of the HMF consists of a carboxyl and a hydroxyl group 

attached to a furanose ring. This is important as the HMF is mainly obtained by the 

dehydration of certain sugars (113). However, studies have shown that higher yields of 

HMF production are achieved when sugars with a 5-atom ring (furanose) are used as 

feedstock (114,115). For that reason, most of the biomass feedstocks that yield glucose 

from its depolymerisation, have to be submitted to an isomerisation process to fructose. 

This can also play an important role when choosing the ideal feedstock for HMF 

production in a biorefinery.  

HMF is a platform chemical from the furan group as it is considered a valuable precursor 

in a wide range of industries such as the petrochemical, pharmaceutical, resins, solvents 

and polymer industry. This compound has been gained rising interest in the last years 

due to its conversion into 2,5-dimethylfural, one of the most valuable biofuel candidates 

in part due to its high energy density, which is considerably higher than the energy 

density of bioethanol and comparable to gasoline (116,117). Other derivate that can be 
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obtained from HMF is 2,5-furandicarboxylic acid. This compound is a valuable building 

block in the polymer industry, even more when there is the possibility to produce it from 

renewable sources. One of the main potential applications for 2,5-furandicarboxylic acid 

is the replacement of plastic bottles polyethylene terephthalate, commonly known as 

PET. More specifically, 2,5-furandicarboxylic acid units can be polymerised to yield 

polyethylene 2,5-furandicarboxylic acid (PEF), a bio-based polymer with similar 

properties to fossil fuel-based equivalent. Further applications of HMF include the 

production of levulinic acid, another biofuel precursor, and 2,5bis(hydroxymethyl)furan, 

a feedstock in the manufacturing process of polymers such as polyesters and 

polyurethane foams.   
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1.5  Integrated biorefineries 

1.5.1 Concept within the literature 

According to the International Energy Agency (IEA) a biorefinery is “the sustainable 

processing of biomass into a spectrum of marketable products and energy” (118). An 

integrated biorefinery can take more than one type of feedstock to be processed through 

different possible configurations of processes yielding several products. Each 

biorefineries will have its unique configuration depending on both the feedstock and main 

desired products. One of the main characteristics of integrated biorefineries is the 

creation of as little waste as possible. Therefore, the residues obtained from the many 

biorefinery conversion units will be further processed and converted into other products 

and/or intermediates. Ahring et al were amongst the first researchers to use the concept 

of “integrated biorefinery” in 2005 when the authors designed a plant to produce biofuels 

and chemicals from lignocellulosic biomass. Since then numerous studies have been 

published. The feedstock used in biorefineries can be from different sectors such as 

forestry, industry, agriculture, municipal waste and aquaculture.  

An integrated biorefinery is a facility that uses mechanical, chemical, thermochemical 

and biochemical processes to convert the biomass into high value products with 

maximum energy and material recovery (119). In other words, it is a biorefinery that 

utilises the biomass and power to its maximum extent with little or minimal losses. It does 

so by trying to reuse the “wastes” of the main processes in secondary processes and 

convert it into by-products and if possible to use the wastes of these secondary 

processes in other reactions until no more added value products can be obtained from 

the waste streams. In addition to the maximum material recovery, a maximum energy 

recovery can also be employed. This requires an assessment of the biorefinery to 

determine in which operations the energy can be harvested to be reused in other 

processes. This allows the biorefinery to reuse energy that would otherwise be wasted, 

instead of using new energy from the grid that would incur in higher costs. Such systems 

are also known by integrated energy recovery systems. These changes turn the 

biorefinery into a more sustainable, self-dependent and lower emission facility equipped 

with the tools to convert biomass into a variety of final products at minimal cost and high 

efficiency. The inclusion of these integrated recovery systems also leads to a positive 

economic impact on the biorefinery.   

The increased interest in integrated biorefineries is shown by the growing number of 

publications including the words “integrated biorefinery” in the last decade (Figure 1-2). 

This is particularly relevant from 2012 until 2017 which corresponds to the period where 
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there was a significant increase in the number of publications. Previously to 2012 the 

number of studies on integrated biorefineries are relatively constant when compared to 

the year before. Even though the trend has been decreasing slightly since 2017, 26 

research studies were published in 2019 (higher than any year previous to 2017, except 

for 2014). This demonstrates that integrated biorefineries are still a hot topic in the 

research community, with 2020 set to be the most productive year yet (Figure 1-2) for 

articles using integrated biorefineries for biofuel production.  

 

 

Figure 1-2 – Number of publications per year including the words “integrated biorefinery” in the last decade 

 

The studies found in the literature were also grouped into four different types: review 

article, techno-economic, experimental and modelling & simulation. Figure 1-3 shows the 

percentages of these groups in the total number of studies found. Experimental studies 

have a much higher significance when compared to the other group of studies. This 

suggests that research has been focusing on novel and alternative pathways to produce 

biofuels on a sustainable manner rather than reviewing, studying the techno-economics 

and modelling the existing pathways.  
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Figure 1-3 – Percentages of type of studies found in the literature including the words “integrated biorefinery” 

 

1.5.2 Integrated biorefinery processes grouped around the initial feedstock used 

A huge range of feedstocks are available for processing in a biorefinery concept. These 

range from traditional sources such as wood and agricultural crops residues to less 

developed sources such as microalgae or municipal wastes that would otherwise have 

to be disposed of (Figure 1-4). Agricultural residue waste corresponds to a large portion 

of the total feedstocks used, with over a third of the experimental studies in integrated 

biorefineries using this type of feedstock. The remaining feedstock types has a relatively 

similar percentages falling between 10% and 15% with forestry biomass the top one and 

algae the least used one. 

 

 

Figure 1-4 – Significance of each type of feedstock in the experimental publications that include “integrated 
biorefinery” in their title 
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1.5.2.1 Integrated biorefineries using forestry feedstock 

The main industry valorising wood is arguably the paper and pulp sector. In the last 

decade, a number of authors have investigated the integration of paper production with 

biofuel development. For example  Zhang et al investigated an aeration process capable 

to be included in pulp mill to extract manool from black liquor (120). Ajao et al 

demonstrated the production of biobutanol by using an alkaline pretreatment to cook 

yellow birch chips at 170 °C in a mixture of sodium hydroxide, sodium sulphide and water 

to yield a cellulose pulp (121). This pulp was then followed by an enzymatic hydrolysis 

with cellulase and xylanase to depolymerise the oligosaccharides into fermentable 

sugars. These sugars were finally fermented using a Clostridium acetobutylicum strain 

to yield biobutanol under anaerobic conditions. Guigou et al have also used a kraft 

pulping in wood from Eucalyptus grandis (122). However, the biomass was initially 

processed in a hemicellulose extraction with green liquor at a temperature of 155-160 °C 

during two and a half hours. The extracted hemicelluloses were further processed in a 

fermentation with Scheffersomyces stipitis to produce bioethanol with a sugar conversion 

yield of 89%. The resulting hemicellulose-free biomass was the fed into a kraft pulping 

process in a pulp mill industry. Mendes et al also performed a hemicellulose extraction 

but from another strain of eucalyptus (Eucalyptus globulus) chips using two pretreatment 

steps (123). Such extraction allows the hemicellulose to be further processed and 

converted into value-added products, instead of being submitted to the cooking stage in 

a paper pulp mill and dissolved in the black liquor that is burnt for energy recovery. The 

two pretreatment steps consisted of an auto-hydrolysis and acid-hydrolysis. The auto-

hydrolysis consists on the heating of the wood chips dissolved in water up to 150 °C for 

a period of 2 to 3 hours. The acid-hydrolysis was performed after the auto-hydrolysis and 

uses sulphuric acid to hydrolyse the oligosaccharides into monosaccharides. 

Li et al investigated the impact of shortening the duration of the kraft pulping duration on 

woods with high kappa number (124). This can be done as the woods with a high kappa 

number have a higher concentration in lignin, which provides an increased recalcitrant 

nature to cellulose. However, the oxygen delignification process performed downstream 

to the kraft pulping can remove the lignin from the pulp and improve energy savings, 

generation of methanol and better biomass utilisation. The lignin removed from this pulp 

can then be used in the production of value-added products.  

It was found that many of the studies using forestry feedstocks in a biorefinery context 

focus on the lignin extraction as one of the core processes in the biorefinery. Chen et al 

studied a catalytic fractionation process to pretreat wood from Eucalyptus grandis (125). 

In this pretreatment step a Pd/C catalyst was used to separate the biomass components 
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into two main streams: lignin and carbohydrates. This pretreatment step also works as a 

depolymerisation process with 4-propanol guaiacol and 4-propanol syringol being the 

main phenolic products found in the lignin stream. The carbohydrates stream was 

submitted to further catalytic processing with a FeCl3 catalysts to produce 5-HMF, furfural 

and levulinic acid.  

Yoon and Heiningen used fresh green liquor to extract carbohydrates and lignin after the 

pretreatment of green pine (126). This extraction was performed at an alkaline pH to 

neutralise the acidic content induced by the acids released upon pretreatment. The green 

liquor is a sodium oxide solution with percentages ranging from 2 to 6% being studied. 

More concentrated green liquors led to increased yields of wood extracts obtained. The 

authors quantified the carbohydrates and lignin extracted with the yield depending on 

the temperature and pretreatment residence time. The extracted carbohydrates and 

lignin can be further upgraded into value-added products. 

Toledano et al used an organosolv fractionation process with a mixture of ethanol and 

water to extract lignin from olive tree wood (127). This lignin showed a low contamination 

of hemicellulose and depolymerised hemicellulose depending on the severity of the 

organosolv pretreatment. The fractionation process also provided a stream rich in 

cellulose that can be further processed into alternative products. Romani et al also 

developed a organosolv treatment to delignify Eucalyptus globulus, however instead of 

the solvent mixture of ethanol and water, the authors used a mixture of glycerol and 

water (128). The organosolv pretreatment was performed at 200 °C for 69 minutes. The 

authors found the same problem as Toledano et al, where the lignin stream was found 

to be contaminated with hemicelluloses. However, in this case, the lignin was separated 

by precipitation with hydrochloric acid followed by centrifugation. The delignified wood 

stream, mainly rich in cellulose, was washed with sodium hydroxide to neutralise the 

acidic pH of the solution due to the acids released during the pretreatment step. This 

was followed by a water wash, a saccharification into fermentable sugars and 

fermentation with Saccharomyces cerevisiae to produce bioethanol.  

Hundt et al studied the alkaline polyol pulping (AlkaPolP) which fractionated the biomass 

into different streams (129). The authors proved the applicability of the process in various 

types of feedstock such as hardwood, softwood and grass-type. The process delignifies 

the biomass, which is then depolymerised by cellulases for further processing in the 

fermentation processes. 

Tian et al used the recalcitrant lignin (lignin residue obtained after the hydrolysis of 

feedstock) from corn stover, softwood and hardwood to produce lignin nanoparticles 
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(130). This product has gained increased interest in the last years due to its application 

in the biomedical and environmental fields. This study fits well into a complete biorefinery 

design as lignin is commonly discarded without further valorisation (131–133).  

Other integrated biorefinery approaches using woody biomass presented by Cebreiros 

et al used different strains of Eucalyptus and considered the pretreatment of this 

feedstock as well as the downstream processes and valorisation of every stream. An 

integrated biorefinery using Eucalyptus sawdust was therefore developed (134). This 

study comprised two possible approaches. The first approach includes an organosolv 

pretreatment with ethanol at 180 °C for 45 minutes to yield a solid and liquid fraction. 

The solid fraction was then submitted to enzymatic hydrolysis to yield a stream rich in 

glucose. The liquid fraction was fed into an ethanol organosolv precipitation to extract 

lignin. The resulting stillage from this process was mainly xylo-oligosaccharides, xylose 

and acetic acid. On the second approach the Eucalyptus sawdust was hydrolysed in an 

autohydrolysis pretreatment also at 180 °C for 45 minutes. The liquid fraction was rich in 

xylose, oligosaccharides and acetic acid, with some furfural and glucose content. Just 

like in the first approach, the solid fraction was submitted to an enzymatic hydrolysis 

yielding a glucose rich stream. In both enzymatic hydrolysis a non-ionic surfactant was 

added to improve the hydrolysis results. The products of this biorefinery can be further 

converted into high-value products. 

1.5.2.2 Agricultural residues for integrated biorefineries 

The majority of research into integrated biorefineries use agricultural residues as a 

feedstock, with over 20 different feedstocks developed.  

Sugarcane 

One of the most used types is the waste obtained from the sugar cane agriculture. 

Sugarcane was among the first feedstocks used in the production of biofuels. There is a 

clear driver to increase value from both the first generation bioethanol production and 

crystalline sugar production. As such the valorisation of sugarcane bagasse, and other 

wastes obtained after the processing of sugarcane has been heavily discussed. For 

example, in 2015 Ghosh et al studied an integrated biorefinery that produces bioethanol, 

furfural and electricity from sugar cane bagasse (135). Acid hydrolysis and enzymatic 

saccharification were used to yield glucose and xylose. These hexoses were then used 

in the fermentation for bioethanol production using Kluyveromyces sp. while the 

pentoses were used in the production of furfural through a biphasic catalytic dehydration 

process (aqueous stream containing the pentoses and MIBK phase). The enzyme used 

in the enzymatic saccharification was recycled for further use in the same process. The 
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residual stream, rich in lignin, was pelletised and then fed into a gasification process for 

electricity production. 

Sugar cane bagasse has also been used in the production of levulinic acid (136). The 

bagasse was pelletised previous to the pretreatment with liquid hot water at 200 °C for 

30 minutes. This was followed by an enzymatic hydrolysis yielding a sugar stream rich 

in glucose (44 g/L) and xylose (11.7 g/L) and with vestigial concentrations of acetic acid 

and furfural (2.6 and 0.4 g/L, respectively). This stream was finally submitted to a 

dehydration process using methane sulfonic acid as an acid catalyst to produce levulinic 

acid. The authors studied different temperatures, residence times and catalyst 

concentrations for higher levulinic acid yields. It was determined that the highest levulinic 

acid yield (67%) was obtained at a temperature of 206 °C, a reaction time of 30 minutes 

and an acid concentration of 0.63 M. 

Shifting from sugar cane bagasse to sugarcane stalks, later in 2019 Sartori et al 

demonstrated a fractionation process to separate this feedstock into two streams: an 

outside part which is denser and the core of the stalks (137). The outside part of the 

stalks was used in the production of steam and power, while the core of the stalks was 

further treated for sucrose extraction. This stream showed a 34% higher utilization of 

polysaccharides when compared to the sugar cane bagasse. 

The studies performed from Santos et al and Martinez-Guido et al have proposed 

integrated biorefinery approaches in close proximities to sugarcane industries to use the 

waste streams produced in this industry (138,139). In 2014 Santos et al proposed a 

supercritical fluid extraction facility (138). This facility was designed to use the ethanol, 

electricity and carbon dioxide produced in the sugarcane biorefinery to yield bioactive 

compounds such as β-ecdysone. The integration of the supercritical fluid extraction 

facility near to the biorefinery resulted in the reduction of the utilities required in this new 

plant. One year later Martinez-Guido et al presented a comprehensive study to integrate 

a biorefinery in a sugar cane industry (139). The authors suggested retrofitting a sugar 

cane facility by reusing some of the waste streams from the sugar cane industry in a 

biorefinery to produce bioethanol. The biomass was initially pretreated to yield a sugar 

juice which then went through a combination of filtration, purification and crystallisation 

processes to yield sugar. During the sugar production process, some waste streams can 

be recovered and fully upgraded into value added products. One of these streams was 

used in the electrical plant to produce steam which was recycled to the sugar cane plant 

and used in the evaporation processes. Another stream called “cachaza” can be used 

both in the production of biofertilizer and cattle feed. Finally, a stream of bagasse 
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collected from the production of juice sugar was directed to the biorefinery for the 

production of bioethanol.    

A similar feedstock to sugarcane is sugar beet which is also used in the production of 

sugar due to its high content of sucrose. The processing industry of sugar beet leads to 

enormous quantities of sugar beet pulp. This by-product has the potential to be used in 

a biorefinery concept due to its high carbohydrate-content. In 2017 Cardenas-Fernandez 

et al assessed the applicability of sugar beet pulp in an integrated biorefinery (140). The 

design of this biorefinery consisted in the fractionation of the feedstock using a steam 

explosion treatment to separate pectin from a solid cellulose-rich stream. This solid 

stream was submitted to an enzymatic hydrolysis to produce monosaccharides which 

were used in a downstream fermentation to yield bioethanol. The pectin fraction can be 

partially or fully hydrolysed for subsequent enzymatic upgrading to L-gluco-heptulose. 

This product has therapeutic applications in the medicine field in cancer and 

hypoglycaemia. In 2018, Cardenas-Fernandez et al presented a second publication that 

studied the hydrolysis of sugar beet pectin using a α-L-arabinofuranosidae to produce L-

arabinose and galacturonic acid rich backbone. The hydrolysis was performed using 

immobilised α-L-arabinofuranosidae in a packed bed reactor, which can be run for 7 days 

with a minimum 73% performance. The L-arabinose and galacturonic acid were 

separated by tangential flow ultrafiltration yielding an L-arabinose-rich stream with 92% 

recovery of this monomer.  

Similarly, Suhaili et al used other wastes from the processing of sugar beet: sugar beet 

vinasse (141). The authors demonstrated the production of an enzyme (CV2025 ω-

Transaminase) from sugar beet vinasse. The main application of the biocatalyst 

produced is on the production of amines from aldehydes and ketones (142). 

Residues from corn processing 

Another common feedstock used in integrated biorefineries are the waste biomass 

associated with corn food production. The waste streams include corncob, corn straw, 

corn stalks and corn stover. Han et al studied a biorefinery system that used corncob as 

feedstock to obtain glucose and a stream of xylooligosaccharides (143). The process 

started with a pretreatment using gluconic acid that is also a hydrolysis of the 

carbohydrates in corncob. The authors used a response surface methodology to 

optimise the xylooligosaccharides yield obtained from the pretreatment. This 

pretreatment yielded a solid fraction rich in glucose and a liquid fraction rich in 

xylooligosaccharides with an 18% yield. The solid fraction was further hydrolysed using 

cellulases from where 290 g of glucose was obtained from 1 kg of corncob.  
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Corncob was also used as a feedstock to produce a biodiesel, bioethanol and lignin-

based sunscreen (144). The feedstock was pretreated using a solution of 1% of sulphuric 

acid to yield a liquid stream rich in hemicellulose hydrolysates and a solid stream. The 

liquid stream was fed into a yeast (Trichosporon cutaneum) fermentation from where 

microbial lipids were obtained. Such lipids were submitted to a transesterification using 

an alkali catalyst to produce biodiesel. The resulting solid residue after pretreatment was 

submitted to an enzymatic hydrolysis from where a liquid stream rich in glucose was 

obtained. This stream was used in a fermentation process with Saccharomyces 

cerevisiae to yield bioethanol. Finally, the lignin-based sunscreen was obtained by 

adding the resulting solid stream after the enzymatic hydrolysis to a carrier lotion. 

In 2018 Gandarias et al studied an innovative integrated biorefinery approach that used 

corncob to produce 2-methylfuran (145). The corncob was initially mechanically 

processed and fed into a pretreatment step at 200 °C without any catalyst, process 

usually called an auto-hydrolysis pretreatment to yield a sugar liquor. The authors 

mentioned that such pretreatment conditions are designed for a higher production of C5 

sugars rather than C6, which allowed the extraction of these sugars in two separate 

streams. This separation allowed higher overall yields of furfural and HMF which were 

produced from C5 and C6 sugars, respectively. The production of furfural was performed 

through a catalytic dehydration of the C5 fraction using a solid acid catalyst. The 

produced furfural was subsequentially separated from the resulting aqueous solution 

using an organic mixture of 5-methyltetrahydrofolate, toluene and 2,5-dimethylfuran. 

In 2020 Li et al presented a biphasic pretreatment process with methyl isobutyl ketone 

and water to fractionate and convert corn stalk into furfural and residual streams (146). 

The results show that furfural reached a 52% yield, with only 2.3% of hemicelluloses left 

in the residue. The residues showed a high content in lignin and glucan and when 

submitted to an enzymatic hydrolysis resulted in a glucose yield of 85.5%. This stream 

can be used in a fermentation process to yield bioethanol. The residue stream from the 

enzymatic hydrolysis was rich in lignin and is a by-product of this biorefinery design.  

Corn stover was used in an integrated biorefinery designed by Yang et al where the 

authors demonstrated that an acidic steam explosion pretreatment followed by an 

alkaline ethanol post-treatment of this feedstock leads to a cellulose rich-enriched stream 

(147). An increase in the concentration of sodium hydroxide from 0.05% to 4% in the 

alkaline ethanol post-treatment resulted in reduced lignin content in this cellulose-

enriched fraction of 10.7% (reduction from 32.8%). The cellulose-enriched fraction was 

then submitted to an enzymatic hydrolysis to yield monosaccharides which could be used 
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in the production of bioethanol through fermentation (not performed in this study). The 

separated lignin fraction after the alkaline ethanol post-treatment and the solid fraction 

after enzymatic hydrolysis were further upgraded into lignin-phenol-formaldehyde resins. 

Later in 2020 Liu et al have gone further and developed an integrated biorefinery 

entailing an enzyme-free mechanocatalytic saccharification on corn stover and a 

subsequent fermentation of the produced fermentable sugars into bioethanol (148). The 

enzyme-free mechanocatalytic saccharification consisted of a combined milling of the 

feedstock, corn stover, with phosphorus pentoxide, acting as a catalyst, followed by 

hydrolysis into fermentable sugars. The authors claim that this design overcomes the 

common problems associated with liquid phase and solid catalysts to convert 

lignocellulosic biomass to glucose. Lignin was also recovered as a by-product in this 

integrated biorefinery approach.  

Corn straw was the feedstock used in an integrated biorefinery presented by Xia et al 

which used an acid pre-impregnated steam explosion to pretreat the biomass (149). In 

this process, the biomass was immersed in a diluted solution of sulphuric acid for a period 

of time (30 minutes in this case) followed by filtration for acid recovery and its reutilisation 

in the acid immersion. The solid fraction was subsequently submitted to a steam 

explosion from where the effluent was washed with water. A pulp and an aqueous 

fraction were obtained. The pulp fraction was used in the production of a hand sheet, 

while the aqueous fraction was concentrated and fermented with Clostridium 

acetobutylicum to obtain butanol. 

Wheat straw 

In addition to the straw from corn, straw obtained from wheat was also studied by other 

researchers. Budarin et al presented an integrated biorefinery that consisted of a 

supercritical carbon dioxide extraction to remove lipids from wheat straw and a low 

temperature pyrolysis by microwave treatment (150). The authors claim that a 

supercritical carbon dioxide extraction did not leave any solvent traces in the products 

which makes them suitable for food, pharmaceutical and cosmetics industries.  The 

streams obtained after pyrolysis such as gas fraction, bio-oil and biochar were further 

used in the biorefinery design. The gas fraction was used for power generation. The bio-

oil was submitted to a water treatment which separated it into an organic fraction, used 

in the production of chemicals and power generation, and in a sugar stream to be fed 

into biochemical processing, such as fermentation for bioethanol production. Finally, the 

solid char was submitted to an aqueous extraction of the organic compounds that can 

be fed into the biochemical processing, while the inorganic compounds were further used 
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in power generation. This biorefinery design used several integrational pathways, 

recovering energy and material (such as carbon dioxide) to be reused within the 

biorefinery units. 

Morais et al suggested the optimised production of a glucan stream from wheat straw in 

an autohydrolysis at high CO2 pressure (up to 60 bar) (151). The process yielded 

oligosaccharides and increased the digestibility of cellulose to be subsequently 

processed in an enzymatic hydrolysis. Both the autohydrolysis and the enzymatic 

hydrolysis with cellulase resulted in a glucose yield of 82% from glucan.   

Nuruddin et al and Jahan et al characterised different straw feedstocks and assessed 

their use and impact in the proposed biorefinery designs. Nuruddin et al assessed the 

composition of rice straw, wheat straw, corn stalks and dhaincha (152). The feedstocks 

were fractionated with formic acid, peroxyformic acid and peroxide followed by an acid 

hydrolysis. The authors demonstrated that dhaincha and corn stalks have higher content 

of cellulose (42.8 and 43%, respectively), while rice straw and corn stalks have higher 

percentage of hemicellulose (32.9 and 31.2, respectively) and dhaincha has higher 

content in lignin (19.7%).  

Jahan et al assessed several agricultural waste feedstocks in an integrated biorefinery 

design towards the production of dissolving pulp (153). The authors performed a 

characterisation of the agricultural wastes studied (rice and wheat straw, lentil stalks, 

mustard branch and stem) previous to its treatment. These feedstocks showed relatively 

similar compositions: cellulose ranging from 35 to 40% and a lignin content in the range 

of 23 to 26%. However, the ash content goes from 4% and 5% in lentil stalks and mustard 

branch up to 15% in rice straw. The feedstock was initially pretreated in a prehydrolysis 

step from where 32 to 39% of the biomass was dissolved into a liquor. This liquor was 

mainly composed by lignin, acetic acid, oligo and monosaccharides. It was further used 

in the production of bioethanol by fermentation or alternatively in the production of other 

high value products such as furfural. The presence of acetic acid in the prehydrolysis 

liquor acted as an inhibitor in the fermentation process. Therefore, its separation from 

this stream led to an increase in the bioethanol yield. This separation can be performed 

by adsorption or liquid-liquid extraction, being the acetic acid one of the by-products of 

this biorefinery design. The resulting biomass after the prehydrolysis was then cooked 

through a kraft process to produce pulp. The pulp yields are relatively low, ranging from 

30 to 38%, being the lowest yield corresponding to wheat straw and the highest to lentil 

stalks. The pulps were subsequently bleached achieving relatively high brightness (87% 

to 90%). 
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Residues from the edible oil industry 

Another agricultural waste frequently used in integrated biorefinery studies is the waste 

streams obtained after the processing of palm oil biomass. In 2015 Ali et al proposed a 

biorefinery to reuse the waste after a palm oil mill industry to produce a wide variety of 

high value products (154). Wastes such as empty fruit bunch, mesocarp fibre, palm 

kernel shell and palm oil mill effluent are proposed as feedstock to be used in the 

biorefinery. Later in 2017 Yusof et al demonstrated a bioethanol based biorefinery design 

using oil palm frond (155). The feedstock was pretreated using a wet disc mill, from 

where 80% of holocellulose was recovered. 95% of the recovered holocellulose was 

converted to glucose and xylose in a saccharification. The produced sugars were finally 

fermented using a culture of Saccharomyces cerevisiae to yield bioethanol. The 

produced bioethanol was finally distilled and purified to obtain a product with 98.9% 

purity. In 2019 Burhani and Triwahyuni have also assessed an integrated biorefinery to 

produce bioethanol but this time using empty fruit bunch from palm oil (156). In this study 

the holocellulose is saccharified and fermented with Saccharomyces cerevisiae to 

produce bioethanol while the lignin was extracted with black liquor, followed by 

purification and upgrading to flame retardant additives.  

The production of olive oil generates four times the amount of waste as it generates of 

olive oil which poses a disposability problem of this waste. However, this can be used in 

the production of biofuels as it was demonstrated by Schievano et al when they used 

pomace in a supercritical carbon dioxide extraction using ethanol as a polar co-solvent 

to extract polyphenols and fatty acids (157). The remaining biomass fraction can be 

either fed into a combustion for heat and power production, or to a pyrolysis for bio-oil 

and biochar production. Later in 2018 Goldfarb et al presented an integrated biorefinery 

that intends to tackle the disposal problem of olive waste (158). In addition to the 

supercritical carbon dioxide extraction of polyphenols and lipids presented by Schievano 

et al, Goldfarb et al suggested that the resulting solids can be further processed in a 

pyrolysis unit to yield bio-oil and biochar. The study also showed that the biochar can be 

used in an activation process for application in water treatment systems, removing heavy 

metals from water. This study demonstrates that both carbon dioxide activation and 

potassium hydroxide activation processes are suitable for the production of activated 

carbon. 

Other authors opted for less common feedstock sources such as cottonseed (Zhu et al 

(159)), vine shoots (Davila et al (160)), sunflower (Kachrimanidou et al (161)), soybean 

(Sekhon et al (162)) and horse chestnut burs (Gullon et al (163)). The integrated 

biorefinery approach presented by Zhu et al shows a two-phase extraction on cottonseed 
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(159). This extraction was performed at 40 °C for a period of 20 minutes and with the 

help of petroleum ether and methanol in a ratio of 1:3. The process generated three 

streams from cottonseed: an upper phase, a lower phase and nontoxic cottonseed meal 

as denominated by the authors. Crude sterol, gossypol and raffinose were the products 

obtained from the lower phase through a combination of separation processes such as 

crystallization and numerous evaporations. The upper phase was submitted to a 

supercritical methanol reaction from where the products were separated by 

crystallization yielding a crude sterol stream and a residual solvent stream. The crude 

sterol was recrystallised which resulted in the sterol final product, while the residual 

solvent went through a separation from where a glycerine phase and a biodiesel phase 

were obtained. Glycerine and biodiesel were obtained by refining of these two phases. 

In 2015 Kachrimanidou et al studied the fractionation of sunflower meal (residue after 

the sunflower oil extraction) in water to yield an aqueous fraction, a protein-rich fraction 

and a lignocellulosic-rich fraction (161). The protein-rich fraction was submitted to an 

alkaline extraction followed by an acid precipitation to yield a protein isolate with 94% 

purity. The lignocellulosic-rich fraction was submitted to a solid state fermentation with 

Aspergillus oryzae. This was then combined with the aqueous fraction and the residue 

of the protein fraction to be used in an enzymatic hydrolysis. The product of this 

hydrolysis is further processed in a microbial bioconversion to produce poly(3-

hydroxyburtyrate). The bioreactor was set at 30 °C, with a pH between 6.7 and 6.9 and 

using an air flow rate of 1 vvm (airflow unit in a bioreactor). The authors proposed the 

integration of this design in a sunflower-based biodiesel biorefinery leading to the recover 

and utilisation of the residues from the production of sunflower oil. In 2016, 

Kachrimanidou et al demonstrated that poly(hydroxyalkanoates) can be recovered from 

cells of a bacteria (Cupriavidus necator) (164). These cells were lysed by crude enzyme 

produced in the solid state fermentation in their integrated biorefinery design in 2015 

(161). 

In 2016 Davila et al presented an autohydrolysis process on vine shoots at 201 °C that 

yielded a solid phase and a liquid phase rich in oligosaccharides, monosaccharides and 

other minor compounds (160). The solid stream, rich in cellulose and lignin, was further 

studied in a second publication in 2017, in which a delignification process was also 

carried out (165). This delignification was performed using a solution of 12% of sodium 

hydroxide at 124 °C for a period of 105 minutes. These conditions led to an extraction of 

67% of the lignin present in the solid phase into a liquid phase from where the lignin was 

recovered after precipitation. The resulting delignified solid stream had a glucan content 

of 69.4%. This stream was subsequently submitted to an enzymatic hydrolysis from 
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where a glucose-rich liquid phase was collected, while the remaining solid phase was 

mainly composed by lignin. The combination of these two studies by Davila et al forms 

what can be seen as the initial treatment in an integrated biorefinery to produce 

intermediates. These intermediates, glucose and lignin, can then be used in upgrading 

processes to produce biofuels and high value chemicals.  

Sekhon et al presented a study where insoluble fibre from soybeans were used as a 

feedstock in an integrated biorefinery to produce bioethanol (162). The insoluble fibre 

was obtained from soybeans by an enzyme-assisted aqueous extraction process. This 

stream was rich in proteins and carbohydrates. The authors assessed five different 

designs to produce bioethanol. The first design used a soaking aqueous ammonia 

pretreatment at 80 °C for 12 hours as a pretreatment followed by saccharification and 

fermentation. The second design replaced the soaking aqueous ammonia pretreatment 

by a liquid hot water pretreatment (at 160 °C for 20 minutes) and maintained the 

saccharification and fermentation. In both of these designs the saccharification was 

carried out at 50 °C for 2 days and the fermentation occurred at 35 °C over 48 hours 

using Saccharomyces cerevisiae. The third design consisted of a single process 

comprising a simultaneous saccharification and fermentation (S. cerevisiae) at 37 °C for 

a period of 3 days. The fourth design used the same simultaneous saccharification and 

fermentation with S. cerevisiae but added a second simultaneous saccharification and 

fermentation. However, the bacteria used in this second fermentation was Escherichia 

coli. Finally, the fifth design added a liquefaction process to the fourth design previous to 

the first simultaneous saccharification and fermentation. The authors concluded that the 

saccharification of the insoluble fraction with enzymes (a mixture of pectinase, cellulase 

and xylanase) led to better bioethanol results when compared to the soaking aqueous 

ammonia and liquid hot water pretreatments. The authors have also demonstrated that 

the combination of the insoluble fibre with corn increases the ethanol production rate 

while oil recovery of the stillage after fermentation.   

Dried distillers grains and solubles (DDGS) 

Dried distillers grains are other waste that was found in more than one integrated 

biorefinery publication. In 2014 Lupitskyy et al presented a study using dried distillers 

grains in a hydrolysis that served as a pretreatment step to produce a xylose-rich stream 

(166). In addition to this stream, two co-product streams were also generated from the 

mechanical treatment of the feedstock (fine fraction) and the pretreatment (residual 

fibre). The authors determined that the first stream had a higher content in protein while 

the second stream was richer in lipids. Both these streams could be used in animal feed 

as additives. In the same year Fonseca et al demonstrated that the high hemicellulose 



37 
 

content in dried distillers grains can be an advantage in an integrated biorefinery concept 

(167). An acid hydrolysis of the dried distillers grains was performed in a percolation 

reactor with liquid recirculation. A two-stage hydrolysis process was carried out which 

allowed an arabinose and a xylose-rich streams (81.5% and 85.2%, respectively). This 

design led to a pentose yield of 94%. This study could be employed as an initial 

pretreatment step in an integrated biorefinery using the dried distillers grains where the 

two pentose streams can be further upgraded to biofuels and high-value chemicals. 

1.5.2.3 Municipal and industrial food wastes 

One huge source of biomass, in addition to the agricultural residues, is food waste 

disposed of in urban areas, by supermarkets due to spoilage or as a by-product of 

industrial food processing. 

One large food waste type are the peels obtained from fruits and vegetables. In 2014 

Naranjo et al proposed various biorefinery designs using banana waste, both pulp and 

peel, in the production of polyhydroxybutyrate as the main product (168). The first 

scenario was a straightforward design only processing the banana pulp in a hydrolysis 

and fermentation conversion processes to yield polyhydroxybutyrate. The second 

scenario added an enzymatic hydrolysis step to the peel waste, producing mainly 

glucose and xylose. While xylose was exclusively used in the production of 

polyhydroxybutyrate, glucose was partially used in the production of polyhydroxybutyrate 

but also in the production of bioethanol. The pulp hydrolysis consisted of a liquefaction 

(carried out at 90 °C during 3 hours using alpha amylase) and a saccharification (run at 

70 °C for 2 days) using glucoamylase. The banana peel hydrolysis process used an 

autohydrolysis process (liquid hot water at 170 °C) followed by saccharification of 

cellulose by cellulases. The production of polyhydroxybutyrate and ethanol was 

performed by fermentation processes using Burkholderia sacchari and Pichia stipites, 

respectively, as the microbial agents. The third scenario used the second scenario but 

also included a mass and energy integration. The energetic integration led to a reduction 

of 31% in the energy used while the mass integration saved up to 35% of water. 

In 2018, Talekar et al applied a hydrothermal treatment to pomegranate peels waste 

(169). In this study the authors studied the hydrothermal treatment using a range of 

temperatures from 100 to 130 °C, different liquid-solid ratios and a treatment duration 

ranging from 20 to 60 minutes. This treatment resulted in a recovery of three streams: a 

pectin-rich stream, phenolics-rich stream and a residue from this process. The optimal 

hydrothermal treatment conditions were found at 111 °C, 12.5 liquid-solid ratio and 39.5 

minutes, resulting in a 20.9% and a 11.9% pectin and total phenolics yields, respectively. 
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The residue from this hydrothermal treatment was subsequently submitted to an 

enzymatic hydrolysis into fermentable sugars which were then fermented to yield 80 g of 

bioethanol per kg of biomass. This resulted in an 88% bioethanol yield from the 177 g of 

glucose produced per kg of biomass processed.  

In 2019 Dlangamandla et al demonstrated the hydrolysis of peels from Citrus sinensis 

and Malus domestica, cobs from Zea mays and Quercus robur using Nepenthes mirabilis 

(commonly known as tropical pitcher plant) digestive fluids (170). The authors 

determined that these digestive fluids present a good hydrolysis potential of holocellulose 

and phenolic compounds due to their content in carboxylesterases, β-glucosidases and 

xylanases. Such process presents the potential to be used within an integrated 

biorefinery approach.  

In 2020 Tsouko et al developed an integrated biorefinery to extract free sugars, essential 

oils, a phenolic extract and pectin also from orange peels (171). The remaining stream 

was further processed in a chemical and enzymatic hydrolysis to yield a hydrolysate rich 

in sugars. This stream was then used in the production of bacterial cellulose by 

fermentation using Komagataeibacter sucrofermentants. The free sugar stream was also 

submitted to this fermentation using the same bacteria. A process design was also 

performed from where it was determined that 62% of energy requirements could be 

saved.  

Similarly, Ebikade et al demonstrated an integrated biorefinery approach to repurpose 

potato peel waste (172). In this approach the potato peel waste was initially submitted to 

an ultrasonic extraction using methanol and water in a ratio 50:50 to extract antioxidants 

such as chlorogenic acid and caffeic acid. The compounds that were not extracted were 

then processed in a hydrolysis and simultaneous dehydration of the sugars into 5-

hydroxymethylfurfural with a yield of 54%. The effluent from this reaction was treated in 

a liquid-solid separation. The HMF was extracted from the liquid phase in a separation 

with an organic solvent. The HMF was collected from the organic solvent by distillation 

while the organic solvent was recycled by distillation. Finally, the solid phase recovered 

from the liquid-solid separation, mainly rich in residual lignin, was submitted to a pyrolysis 

reaction yielding biochar. 

Zhang et al have used another municipal waste such as green tea leaves to demonstrate 

an efficient extraction and recovery of protein from this feedstock (173). The process 

consisted of a pretreatment using ethanol as a co-solvent, a mild alkaline treatment, 

protein extraction, hydrolysis and fermentation. The ethanol pretreatment (ethanol 

recycling) resulted in the extraction of phenols, lipids and organic acids. The alkali 
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treatment resulted in a stream rich in pectins and some protein. However, most of the 

protein was recovered on the protein extraction process (75%) with some lignin, pectin 

and residual amounts of hemicellulose. The residue stream resulting from the protein 

extraction was rich in carbohydrates and had the potential to be submitted to a hydrolysis 

followed by fermentation. The authors suggested that pectin is possibly one of the most 

crucial constraint towards the efficient extraction of protein from leaves. 

In addition to the waste obtained from municipalities, researchers have also accessed 

the use of waste streams obtained from industrial activities. In 2014 Ichsan et al used a 

waste stream obtained from a palm mill oil facility, while other used waste streams from 

pulp paper mills, and Rosberg et al repurposed the carbon dioxide obtained from a 

bioethanol biorefinery. 

Ichsan et al studied the suitability of an industrial waste water such as palm mill oil 

effluent as a growth media for microalgae (174). This effluent was demonstrated to be a 

suitable feedstock in the production of biogas by anaerobic digestion. However, the 

authors have proved that it can also be used in the growth of microalgae (Spirulina sp., 

Chlorella sp. and a wild algae strain). This study fits in an integrated biorefinery approach 

as the produced algae can then be used in the biorefinery for the production of biofuels 

and energy. The study presented by Chavan and Mutnuri goes in line with the work 

presented by the previous authors (175). In this study Spirulina platensis was grown 

using the nutrients present in domestic wastewater.   

The work presented by Alexandri et al studied two different integrated biorefinery designs 

using the spent sulphite liquor from a pulp paper mill (176). Both these designs include 

the extraction of lignosulphonates with organic solvents (isopropanol and ethyl acetate 

in the first and second design, respectively). The second design also included a 

nanofiltration step previous to the lignosulphonates extraction to yield a fraction rich in 

carbohydrates and free from toxic compounds. The resulting stream after extraction was 

further used in fermentation processes using Actinobacillus succinogenes (in the first 

design) and Basfia succiniciproducens (in the first and second design) to produce 

succinic acid. Both the designs demonstrated this waste from pulp paper mills can be 

integrated in a biorefinery towards the production of value-added products. 

Zambare and Christopher assessed the hydrolysis of primary sludge into fermentable 

sugars (177). Primary sludge is the solid waste recovered after the effluent treatment on 

a pulp and paper mill industry. The authors studied the hydrolysis variables such as 

reaction time, enzyme, solids and surfactant amount to improve hydrolysis yield. Another 

studied variable in this biorefinery includes enzyme recovery. The optimal conditions 
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yielded a hydrolysate that was then fermented using Saccharomyces cerevisiae to 

produce bioethanol with a yield of 92% and Cutaneotrichosporon oleaginosum resulting 

in a biolipid yield of 38%. The authors have also achieved a 40% enzyme recovery by 

centrifugation and ultrafiltration of the hydrolysate. The reuse of the primary sludge not 

only allows the production of value-added product but also contributes to the reduction 

of disposal costs. 

Rosenberg et al studied the use of carbon dioxide and waste heat obtained from a 

bioethanol biorefinery in the growth of microalgae (Chlorella vulgaris) (178). The grown 

microalgae can then be used in the biorefinery towards the production of bioethanol. 

Spent coffee grounds 

Coffee is the second most traded commodity only after oil (179). The yearly consumption 

of coffee beans in 2020 was estimated at 9.8 million tonnes and the estimations predict 

a consumption of 10 million tonnes in 2021 (180). The coffee beans are roasted and 

ground to the correct size (depending on the brewing process). The coffee beans 

brewing process can happen at different temperatures and pressures, depending on the 

brewing process (pressure, infusion or filtration). The brewing process extracts part of 

the components present in the coffee beans, leaving behind carbohydrates, lipids, 

proteins, metabolites and other chemical compounds. The solid residue left after the 

brewing process is called spent coffee grounds (SCG). Composition of SCG are 

commonly found to be around the following values: carbohydrates 39-55% (w/w), lignin 

0-26%, lipids 2-24%, proteins 10-18%, chlorogenic acids 1-3%, caffeine 0-0.4%. 

SCG were initially considered a waste to be disposed in landfills. This would incur in 

disposal costs which is not an ideal situation mainly when the so called “waste” has the 

potential to be converted into value added products. The idea that SCG were waste 

changed with time and the first applications included its use as animal feed, fertiliser and 

substrate in the production of fungus. Later, SCG were used in industrial boilers for 

energy generation. However, due to SCG composition in a wide range of biomolecules 

has driven research to focus on the use of SCG as a feedstock in the production of value-

added products in biorefineries. An advantage of this feedstock is its high content in 

carbohydrates and relatively high in triglycerides. Additionally, SCG can currently be 

obtained for free or negligible costs, including its collection and transportation from coffee 

shops. Currently no research has demonstrated an integrated biorefinery from SCG. 

1.5.2.4 Plant/herbaceous based biomass grown specifically for the bioeconomy 

A further feedstock for integrated biorefineries are grasses and related plants grown 

specifically for use in the bioeconomy. Most of the publications presented in this section 
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focus on the use of grass-based biomass in their integrated biorefinery designs. 

However, interestingly none of the studies presented actually used the same species of 

grass. The wide range of available grass-based feedstocks in the different regions of the 

planet allows for different products to be obtained from different feedstocks and 

biorefinery designs.  

Bals et al presented an integrated biorefinery designed for the extraction of sugars and 

protein from switchgrass after an ammonia fibre expansion process that was used as a 

pretreatment (181). This study evaluated the benefits of the protein extraction happening 

before or after the hydrolysis process. The authors showed that even though the 

extraction of protein performed previous to the hydrolysis may lead to slightly lower sugar 

yields than when the extraction was performed after hydrolysis, the trade-off was 

worthwhile. This is because the extraction of protein after the hydrolysis leads to a much 

lower protein extraction yield. The protein stream was filtered and the proteins were 

recovered from this stream, while the sugar stream can be fed into a fermentation 

process (not performed in this work). The remaining biomass after protein extraction and 

sugar removal is also ash free. This is because the ash is removed upon protein 

extraction. Which makes this a good stream for heat and power production.  

In 2014 Sun et al have also performed a pretreatment on sweet sorghum stems (182). 

The study included the hydrolysis of this feedstock to produce alkali-soluble 

hemicelluloses. The sorghum stems were initially submitted to a hydrothermal 

pretreatment. Different temperatures (110 to 230 °C) and residence times (30 minutes 

to 2 hours) were evaluated in this process.  The effluent from this process was secondly 

treated in an alkaline post treatment at 90 °C for 2 hours using a sodium hydroxide 

concentration of 2% w/w. The results showed that the highest hemicellulose yield of 61% 

was obtained for a reaction at 130 °C for one hour. In the same year, Sun et al presented 

a second study with sweet sorghum stems in an identical biorefinery approach to 

produce xylooligosaccharides and lignin (183). With this study the authors intend to 

improve the understanding of the lignin hydrolysis allowing its use in biorefineries 

towards the production of high-value products.  

Wu et al used the biomass from Eulaliopsis binata to produce dissolving pulp in an 

integrated biorefinery (184). In this approach the feedstock was initially processed in an 

acid pretreatment to which removes 90% of the hemicelluloses. The resulting stream 

was then submitted to an ammonium sulphite treatment followed by potassium hydroxide 

treatment resulting in a lignin removal of 92%. The resulting pulp showed a α-cellulose 

purity of 92%, while the pretreatment liquor was rich in xylose. Although the authors did 
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not perform any more reactions on the liquors obtained, it is mentioned that the 

pretreatment liquor can be further used in the production of bioethanol by fermentation 

due to its high xylose content. The authors also suggest that the ammonium sulphite and 

potassium hydroxide treatment liquor can be used to produce fertiliser.  

Popy et al also produced a pulp stream in their study where Saccharum spontaneum 

was used as the feedstock (185). The biomass was pretreated with potassium hydroxide 

at 90 °C for 2 hours to extract silica, lignin and hemicellulose. This resulted in a lignin, 

hemicellulose and silica removal of 76%, 41% and 75%, respectively. The resulting pulp 

was further treated for improved delignification with different concentrations of potassium 

hydroxide (6 to 12% w/w), different temperatures (70 to 90 °C) and residence times (1 to 

2 hours). Lignin was recovered from the black liquor obtained and further upgraded in a 

four-step synthesis with lignin, phenol, formaldehyde, sodium hydroxide and urea into a 

lignin-phenol-formaldehyde resin.  

Kuglarz et al demonstrated the production of bioethanol and succinic acid in an 

integrated biorefinery approach using industrial hemp, also known as Cannabis sativa 

L., as feedstock (186). The hemp was pretreated in two different ways: a) acid 

pretreatment with 1.5% sulphuric acid by steam injection in the reactor for 10 minutes 

and b) alkali pretreatment with 3% hydrogen peroxide for a period of 60 to 120 minutes 

at 90 °C. The acid pretreatment resulted in a high cellulose recovery (higher than 95%) 

while solubilising 49 to 59% of hemicellulose. After the pretreatment, the effluent was 

separated into a solid and a liquid fraction. The solid fraction, rich in cellulose, was 

hydrolysed using enzymes for glucose production and then fermented with 

Saccharomyces cerevisiae into bioethanol. The liquid fraction, mainly rich in xylose, was 

used in a fermentation with Actinobacillus succinogenes to produce succinic acid. It was 

determined that the alkali pretreatment showed a delignification of 35 to 41% and 

showed better ethanol yields after enzymatic hydrolysis and fermentation. However, 

when balancing the ethanol and succinic acid production, the acid hydrolysis showed 

better results. 

Calvo et al demonstrated an integrated biorefinery using Arundo donax for the production 

of polyhydroxyalkanoates (187). The feedstock was initially pre-treated with an ionic 

liquid (1-ethyl-3-methylidazolium acetate) for 3 hours at a temperature of 160 °C. This 

was followed by an enzymatic pretreatment using cellulase and hemicellulase to 

hydrolyse the carbohydrates at 50 °C. The produced fermentable sugars were then used 

in a dark fermentation process to produce a hydrogen and carbon dioxide-rich gas 

fraction. No methane production was observed during the experiments. In addition to this 
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gaseous fraction, the dark fermentation conditions were also designed to produce a liquid 

fraction rich in organic acids. These organic acids are to be used as substrate in the 

production of the polyhydroxyalkanoates by biological conversion using bacterial agents. 

Results show that this operational unit yielded a high concentration of the monomer 3-

hydroxybutyrate (95%).   

Schwarz et al demonstrated an integrated biorefinery approach that used grass silage to 

produce fermentable sugars, lignin, steam and electricity (188). The grass silage was 

initially separated into a liquid and a solid phase. The liquid phase denominated as press 

juice was directed into a fermentation, while the cake was submitted to a mechanical 

saccharification. The effluent from this saccharification was fed into a second solid-liquid 

separation. The hydrolysate could be used in a fermentation process while the solid 

phase was further processed in an organosolvation which consisted of adding a solution 

of ethanol and water in a ratio of 60-40 to the solids and heat this mixture until 195 °C 

for 80 minutes. The products from this process were separated in a third solid-liquid 

separation. Lignin was also recovered from the liquid fraction by precipitation. The 

authors suggest that resulting stream can be used in an anaerobic digestion for heat and 

power generation. Finally, the solid fraction was further hydrolysed. In a later study in 

2018, Schwarz et al built on their previous work to demonstrated that grass silage can 

also be used to produce poly-3-hydroxybutyrate (189). In this approach the feedstock 

was separated in a press juice and a press cake. The press juice was used as a nutrient 

source for the growth of Cupriavidus necator while the press cake was used in a 

mechanically assisted saccharification. The hydrolysates were separated from the solids 

and used in a lactic acid fermentation. This broth was then combined with the full-grown 

cell of Cupravidus necator to produce poly-3-hydroxybutyrate which was further purified. 

Other research has focused on the use of seeds as feedstocks in biorefinery approaches. 

Kurniawan et al used kapok seeds in an integrated biorefinery study to converted them 

into biofuels (190). The seeds and the seed cake were initially submitted to a noncatalytic 

subcritical methanol transesterification process using methanol produced in situ to yield 

biodiesel. The remaining biomass after the transesterification process was fed into a 

pyrolysis unit to produce bio-oil and biochar. Indian mustard seed oil plant was used by 

Chen et al to produce ethyl biodiesel and bio-lubricants (191). While the ethyl biodiesel 

was produced by ethanolysis at 35 °C for 50 minutes and a potassium hydroxide content 

of 1.1% w/w. This unpurified ethyl biodiesel was then used in the production of bio-

lubricant.  
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This further demonstrates that second generation biomass can be processed in an 

integrated fashion using multiple unit operations to produce an array of products with 

little waste generated. 

1.5.2.5 Future sources of biomass: 3rd generation marine biomass 

While the use of second generation lignocellulose discussed above is well established, 

concerns over competition with land, the ultimate need for higher yields and competition 

with virgin forest have led to a large research effort in alternative marine feedstocks.  In 

this section, a group of innovative biomass sources are presented as possible future 

feedstocks in the production of biofuels in biorefineries. All work done to date on these 

resources is still on the lab or pilot scale but shows promise to deliver another biomass 

resource for the bioeconomy.  

Microalgae 

Microalgae consist of a varied set of prokaryotic and eukaryotic unicellular 

microorganisms that can be grown in adverse conditions due to their simple cellular 

structure. These microorganisms can be found both in terrestrial and aquatic 

environments. The latter include both freshwater and saltwater ecosystems. The wide 

variety of strains that can be found in all of these ecosystems account for thousands of 

species. Mata et al reported that there are around 50 thousand microalgae species, from 

which only 60% have been studied (192).  

Microalgae were firstly grown in commercially  large-scale systems back in the 1960’s 

when researchers in Japan efficiently grown a culture of Chlorella (193,194). This was 

followed by a growth of Arthrospira platensis in the 1970’s in Mexico (194).  In fact, the 

interest in the production of energy from microalgae sources grew in the 1970’s due to 

the first oil crisis (193). This started some research programs such as the one at the U.S. 

National Renewable Energy Laboratory which initially started on the production of 

hydrogen from microalgae but later focused on the production of biodiesel from the same 

feedstock (195). Researchers concluded that this was a feasible route, however it 

requires further research due to the high costs registered both in the microalgae growth 

and its upgrading to biodiesel. Current worldwide problems such as climate change and 

global warming, in combination with the crude oil price fluctuations, have increased the 

recent interest in renewable and greener solutions such as microalgae towards the 

production of biofuels. Microalgae are still heavily researched for biofuels production 

which is shown by the increasing number of studies using this biomass in biorefineries.  

These microorganisms can grow in very harsh conditions due to their adaptability and 

ability to change their internal structure (192). Another microalgae advantage is their 
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ability to grow using different metabolisms, which can go from autotrophic, heterotrophic, 

mixotrophic to photoheterotrophic. The cultivation of microalgae requires mainly a source 

of carbon, nutrients and light to subsist and perform its photosynthesis activity (196). 

Other parameters include temperature, pH, amount and type of nutrients supplied.  

The cultivation of microalgae in biorefineries and in the production of biofuels requires a 

previous evaluation on the type of microalgae and its conditions of growth. This is not 

only due to a correct growth of the microalgae but also its appropriate content of its 

constituents. As an example, a biorefinery primarily designed for the production of 

biodiesel will preferably use a microalga with higher content on lipids, while a bioethanol 

biorefinery will focus on microalgae with higher content in carbohydrates. Additionally, 

the harvest time also has an influence on the microalgae content. On their study on the 

influence of the harvest time on the conversion yield, Dong et al have also reported a 

high protein content for early harvest microalgae, higher carbohydrate content for mid 

and late-harvest time and high lipid content for late harvest time (197).  

Microalgae present some important properties that contribute to its increased popularity 

in the production of biofuels. Some of these advantages include the ability of microalgae 

to grow in water unsuitable for human consumption, high growth rates and high overal l 

biomass yields when compared to forestry and agricultural biomass (192).  However, 

there are still many challenges to overcome. The processing of the microalgae needs 

consider its water content. If a dried biomass is required, a dewatering step is needed 

which increases the biofuel production costs (198). The lipid extraction and purification 

processes are also highly energy intensive (199). Microalgae are seasonal 

microorganisms which leads to a lower availability of this feedstock in certain seasons 

throughout the year. These reasons lead to a biofuel production process with increased 

costs. To make microalgae-based biofuels competitive with fossil fuels, further research 

is needed. 

Subhash and Mohan were amongst the first authors to present a microalgae based 

biorefinery in 2014 when they demonstrated the production of biohydrogen from a fat-

free microalgae mixture (after lipid extraction) (200). In this study the fat-free microalgae 

were initially acid pretreated for 30 minutes with 3% of sulphuric acid at 121 °C. The 

pretreated effluent was separated into a solid and liquid fraction by centrifugation. The 

separated solid, separated liquid and an unseparated fraction of the pretreated effluent 

were all submitted to separate dark fermentations for biohydrogen production. The 

results show that the separated liquid fraction resulted in a higher biohydrogen yield (217 
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ml per grams of algal biomass) when compared to the separated solid and the 

unseparated pretreated effluent (122 and 112 ml/g of algal biomass, respectively). 

In 2015 Patnaik and Mallick developed an integrated biorefinery that used the microalgae 

Scenedesmus obliquus to produce biodiesel, glycerol, omega-3 fatty acids and 

bioethanol (201). The first step in this biorefinery approach is the lipid extraction using a 

mixture of chloroform and methanol as extraction solvent in the ratio of 1:2. These lipids 

were then transesterified, yielding 38 g of biodiesel from 100 of microalgae. 3 g of 

glycerol and 2 g of omega-3 fatty acids were obtained as by-products from the 

transesterification of lipids. The free-lipid biomass was then used in an acid hydrolysis 

with 2 N of sulphuric acid to obtain fermentable sugars that were fermented with 

Saccharomyces cerevisiae to obtain 17 g of bioethanol from 100 g of biomass.  

A specie of photosynthetic cyanobacterium, Arthrospira platensis (Spirulina), was used 

in an integrated biorefinery study towards the production of bioethanol and lactic acid in 

the work presented by Esquivel-Hernandez et al in 2019 (202). In this investigation three 

different pretreatments for metabolites extraction were studied: supercritical fluid 

extraction, microwave assisted extraction with polar solvents and with non-polar 

solvents. The pretreated biomass was then fermented with Saccharomyces cerevisiae 

and Lactobacillus acidophilus to yield bioethanol and lactic acid, respectively. The 

microwave assisted extraction with non-polar solvents resulted in the highest bioethanol 

concentration achieved with 3.0 g/L, while the supercritical fluid extraction yielded the 

highest concentration of lactic acid obtained, 9.7 g/L. 

Later in 2016 Dong et al also used a strain from the genus Scenedesmus, Scenedesmus 

acutus, to compare two different integrated biorefinery approaches for the production of 

bioethanol and lipids (203). In the first approach the microalga was fed into an acid 

pretreatment at 155 °C for 15 minutes with an acid concentration of 2% (w/w). This 

pretreatment acts as a hydrolysis step for the subsequent processes. The resulting 

stream was used in a solid-liquid separation where the liquor is fed into a fermentation 

with Saccharomyces cerevisiae to yield bioethanol. The bioethanol was recovered from 

the fermentation broth by distillation. The solid obtained in the solid-liquid separation was 

submitted to a lipid extraction. The authors concluded that the lipids were mainly 

entrapped in the solids. Therefore, the lipids were extracted from the solids using hexane 

as extraction solvent. The hexane was then recovered by distillation and recycled to the 

lipid extraction while the lipids were collected after distillation. However, the authors also 

determined that in this approach there is a high concentration of carbohydrates 

entrapped in the solid fraction. Therefore, a new approach was developed. In this 
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subsequent approach, the microalgae were submitted to the same acid pretreatment. 

The major change was there was no solid-liquid separation as the pretreated effluent 

was directly used in the fermentation (same conditions as before). The fermented broth 

was then distilled for ethanol recovery while the remaining fermented broth was used in 

lipid extraction and distillation for lipid recovery. The authors concluded that in this 

second approach almost all the fermentable sugars were used in the production of 

bioethanol. In fact, this approach led to an improved utilisation of the carbohydrates to 

bioethanol, 31 GGE per ton of biomass compared to the 20 GGE per ton of biomass 

obtained in the initial approach. It was also concluded that the fermentation of the 

pretreated slurry did not affect the lipids in solution. An 87% of lipid recovery was 

achieved in this approach. The recovered lipids can be further used in the production of 

biodiesel or in the production of non-isocyanate polyurethanes due to the high content 

of unsaturated fatty acids in the lipid fraction. 

In 2018 Zhang et al presented an integrated biorefinery based on another microalgae 

type, Phaeodactylum tricornutum (204). This approach used a series of extractions and 

purifications to obtain three bioactive compounds. The microalga was initially used in an 

ethanol extraction to yield an ethanol extract and residue 1. Both of these intermediates 

were then submitted to a hexane extraction separately from where both hexane phases 

obtained were combined, concentrated and purified to obtain a concentrated 

eicosapentaenoic acid. The other stream obtained from the hexane extraction of the 

ethanol extract was called a hydroalcoholic phase that was purified to obtain fucoxanthin. 

Finally, the other product of the hexane extraction of the residue 1 is called residue 2. 

This is submitted to deproteinization and further purified to obtain a purified stream of 

chrysolaminarin.  

In 2020 the seasonality of microalgae (Monoraphidium sp.) was addressed by blending 

it with domestic sewage water sludge (205). The blends of these two feedstocks were 

processed in a hydrothermal liquefaction process. The authors studied variables such 

as feedstock ratio, reaction temperature and duration to optimise the biocrude 

production. The results show the optimal conditions include a 3:1 ratio of microalgae to 

domestic sewage sludge, 325 °C for a period of 45 minutes. A yield of 39.4% (w/w) was 

obtained for the abovementioned conditions. This yield was higher than the one achieved 

when processing this microalga and the domestic sewage sludge separately.  

Ashokkumar et al have also used domestic sewage but this time to grow Chlorella sp. 

and used the grown microalgae in the production of biodiesel and biochar (206). In this 

approach a Soxhlet extraction method with chloroform and methanol in a ratio of 2:1 was 
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used to extract the lipids from Chlorella sp. The lipids were then separated from the 

extraction solvents by distillation and converted to biodiesel in a two -step method: 

esterification of the free fatty acids followed by transesterification to biodiesel. The lipid-

free biomass was further used in the production of biochar by slow pyrolysis at 400 °C.  

Macroalgae and aquatic plants 

Macroalgae have a much more complex structure when compared to microalgae. While 

microalgae are prokaryotic and singular eukaryotic microorganisms, macroalgae have 

multicellular eukaryotic organisms. Macroalgae sizes can go from a few millimetres to a 

length up to 50 metres. Macroalgae can be classified into three main types 

Heterokontophyta or Ochrophyta (brown algae), Chlorophyta (green algae) and 

Rhodophyta (red algae) (207). This classification depends on the pigments present in 

these macroalgae, apart from chlorophyll that is present in all these classes.  

Macroalgae was initially used for food and medical purposes. However, due to the 

current climate change crisis and all the implications associated to it, researchers started 

evaluating macroalgae as a feedstock towards the production of biofuels. The Food and 

Agriculture Organization of the United Nations reported an increasing production of 

seaweed worldwide every year. Additionally, out of the 32.4 million tonnes of seaweed 

collected in 2018, 97.1% were farmed (208). These numbers demonstrate the increased 

attention that has been payed to seaweed. Even though most of these macroalgae are 

for food purposes, there is the potential, technology, knowledge and space availability 

for the production of macroalgae. In fact, the production of macroalgae presents some 

relevant advantages such as the availability of unused ocean areas, seaweed are a high 

carbohydrate and low lignin biomass source, no need of freshwater for its growth, carbon 

dioxide fixation, fast and straightforward growth.  

Naturally, the numerous macroalgae across the planet have different compositions due 

to their different species and environments that they grew in. Due to this variability, it is 

difficult to quantify the biochemical composition of macroalgae. Several authors 

assessed some macroalgae species commonly found in their regions. Examples include 

authors such as Beacham et al, Parthiban et al, Rohani-Ghadikolaei et al and 

Manivannan et al have presented studies that include seaweed biochemical composition 

in South-West England, Tuticorin coast in Malaysia, Persian Gulf of Iran and southeast 

cost of India, respectively (209–212).  

Macroalgae has also been studied as a possible feedstock in the production of biofuels. 

In 2020 Prabhu et al demonstrated a biorefinery approach to process a strain of Ulva 

ohnoi, in a series of filtration and extraction steps to yield several products (213). The 
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authors used a combination of filtration and extraction steps to yield a salt-rich fraction, 

a starch-rich fraction, a lipid-rich fraction, an Ulvan-rich fraction, a protein-rich fraction 

and a cellulose rich-fraction. The salt and starch-rich fraction are obtained from the 

microfiltration of the homogenised feedstock in water. The filtrate was centrifuged to yield 

a liquid phase from where the salt-rich fraction was obtained and a solid fraction to be 

washed with ethanol and centrifuged again to obtain a solid starch fraction. The solid 

fraction obtained from microfiltration was washed with ethanol previous to a second 

microfiltration. This second filtrate was concentrated for lipid recovery while the solid 

fraction was submitted to centrifugation for ulvan-rich fraction removal. The solid 

resultant from this process was finally submitted to another extraction and centrifugation 

to yield a liquid fraction rich in protein and a solid fraction rich in cellulose.  

Azolla filiculoides, a strain of an aquatic fern, has also been assessed as a feedstock in 

the biorefinery presented by Dohaei et al in 2020 (214). Just like in the study presented 

by Esquivel-Hernandez et al, the presented study also combines a series of extraction 

and purification processes but this time to recover lipids, protein and phenolics from the 

biomass, previous to the production of biomethane. The feedstock was initially used in a 

lipid extraction using a Soxhlet method with hexane for 24 hours, from where a maximum 

lipid yield of 18% was achieved. The resulting biomass fraction was then submitted to a 

protein extraction using two extraction steps. The first extraction was performed using 

an ultrasound assisted water method with sodium hydroxide extraction to achieve a 24% 

recovery of protein. The second extraction used trichloroacetic acid which resulted in a 

12% protein recovery. The resulting biomass was then submitted to an extraction of the 

phenolic compounds from where chlorogenic acid, caffeic acid and tannic acid were 

obtained. Finally, the solid stream obtained after this series of extractions was used in 

an anaerobic digestion to produce biomethane.  
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1.6  Overall products from integrated biorefineries 

All of these examples of integrated biorefineries produce a wide range of products. With 

over eighteen different products appearing in the reviewed literature more than one time 

(Figure 1-5). The products that only appeared once in the literature were grouped and 

are represented in the last column called “Others”. Bioethanol and carbohydrates appear 

30 and 24 times, respectively in the literature. The production of carbohydrates in 

reviewed studies were most commonly applied to produce bioethanol by fermentation. 

Even when this fermentation step was not completed many of the authors that achieved 

the production of carbohydrates as a final product, mentioned bioethanol as a possible 

application. Considering the abovementioned, there is a trend in the literature towards 

the production of bioethanol in integrated biorefinery approaches. This might be due to 

the straightforward and low-cost fermentation process of the fermentable sugars into 

bioethanol. Also, there are already circulating in the market blendstocks of petrol 

products and bioethanol that aim to help in the transition towards more sustainable use 

of fuels in the transportation sector.  

 

 

Figure 1-5 – Number of times the products appeared in the literature including “integrated biorefinery” as 
product or by-product 

 

Lipids and biodiesel are among the most commonly obtained products in the literature 

with at least 10 applications. Just like in the previous case, lipids are the feedstock used 

in the production of biodiesel by a transesterification process. These results show the 

importance of biodiesel has in the research community as one of the main biofuels to 

replace petrol-based fuels, diesel in this case.  
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Other products with high significance in the reviewed literature include protein (7), lignin 

(17), bio-oil (5), biochar (10) and biomethane (6). Just like in the case of carbohydrates 

with bioethanol and lipids with biodiesel, lignin, bio-oil and biochar can also be 

considered feedstock-product pairs. An attractive application of lignin is its use in 

pyrolysis and hydrothermal liquefaction processes to yield both bio-oil and biochar. Even 

though lignin contains a wide range of phenolic compounds that can be further employed 

in the production of high-value product, its recalcitrant nature makes it difficult to be 

broken into its monomers (215). However, advances have been made and recent 

research demonstrated effective methods to depolymerise lignin into its monomers 

which allows the conversion of these monomers into high-value products (216,217). 
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1.7  Aims and Objectives 

The overall aim of this thesis is to develop an integrated biorefinery around the use of 

spent coffee grounds (SCG). While a number of studies have demonstrated the suitability 

of coffee grounds for valorisation, this is yet to be established in an integrated biorefinery 

methodology, where all fractions of the biomass are valorised and multiple feedstocks 

can be appropriately used.  

To this end the first objective, detailed in the first research chapter is to assess SCG as 

a feedstock alone, with the aim of producing 5-hydroxymethylfurfural (HMF), lipids and 

a solid heating fuel. A simple organosolv fractionation will be assessed and the value 

compounds produced alongside this product established.  

The second objective, given in the second research chapter, is to determine the 

possibility of using SCG co-processed with the lipid rich microalgae Scenedesmus 

acutus. This will establish whether SCG could be used to tackle the low availability of 

microalgae during winter and autumn seasons. The feedstocks (SCG and microalgae) 

will be processed separately as a control and together in two different percentage blends 

to simulate these seasons. The aim of this section will be to establish the suitability for 

producing lipids, ethanol through fermentation and HTL products. 

The final objective, given in the final research chapter will assess the production of 5-

hydroxymethylfurfural in a biorefinery, though using alternative blends of macroalgae 

and SCG. As in the previous chapter, SCG will be used to simulate making up for the 

low availability of seaweed in short-supply seasons, with HMF, lipids and HTL products 

all being assessed to valorise the full feedstock. 
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2.1 Context 

Tackling climate change requires sustained and immediate action from national 

governments in reducing emissions. This includes changes not only in the transport and 

industrial sectors but also in waste management. Large amounts of waste are produced 

worldwide, leading directly to elevated greenhouse gas emissions. As such, waste is the 

fourth largest source of greenhouse gas emissions, after the transport, agricultural and 

industrial sectors.  

One plausible solution to address this problem is the reuse of biogenic wastes, producing 

an array of products that are typically sourced from petrochemicals. One such waste are 

spent coffee grounds (SCG), with a range of work demonstrating the suitability of this 

feedstock for the production of biofuels. This is in part due to the diverse composition of 

SCG, which is rich in important biomolecules such as carbohydrates, lipids, lignin and 

protein, as well as being simple to process as the material has already been heavily 

broken down.   

To this end, in the following chapter, an integrated biorefinery using SCG as a feedstock 

is presented, producing 5-hydroxymethylfurfural (HMF) alongside other value products. 

When published, this study was the first time SCG were processed in an integrated 

biorefinery approach, and is the first reported production of HMF from SCG. HMF is one 

of the most valuable building blocks in the nascent biorefinery industry as it has the 

potential to be converted into dimethylfuran, a potential greener replacement of gasoline, 

and 2,5-furandicarboxylic acid, the monomer used in the production of polyethylene 

furanoate (PEF), a replacement of polyethylene terephthalate (PET) in the plastic 

industry.  

This chapter is submitted in an alternative format in line with Appendix 6A of the 

“Specifications for Higher Degree Theses and Portfolios” as required by the University 

of Bath. 

All the experimental work in this chapter was undertaken by the author with the exception 

of the following: 

• 2D Nuclear Magnetic Resonance (NMR) was undertaken by Dr. Tim Woodman, 

a co-author in this paper. 

• Fermentation experiments were conducted in collaboration with Paraj 

Brahmbhatt, a co-author in this paper.  

• Solid state NMR was performed by the analytical department personnel at 

Durham University, UK. 
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• ICP-OES was carried out by the analytical department personnel at Medac 

Pharma, UK.  

The full reference for the published paper is 

Pereira, A. P., Woodman, T. J., Brahmbhatt, P., & Chuck, C. J. (2019). The optimized 

production of 5-(hydroxymethyl) furfural and related products from spent coffee grounds. 

Applied Sciences, 9(16), 3369. 
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The optimized production of 5-HMF and related bulk chemicals from 

spent coffee grounds 
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2.2.2 Abstract 

The increasing consumption of coffee worldwide has led to higher amounts of spent 

coffee grounds (SCG) being produced which are generally disposed of in landfill or used 

as compost. However, the wide range of molecules present in SCG such as saccharides, 

lignin, lipids and proteins give this biomass source a large chemical functionality. In this 

work, SCG were fractionated to separate the components into three separate portions 

for further valorization; these were a hemicellulose-enriched fractions (HEF), lignin-

enriched fraction (LEF) and cellulose-enriched fraction (CEF). HEF was effectively used 

in the growth of the oleaginous yeast strain Metschnikowia pulcherrima, additionally, the 

C6 sugars present in this fraction suggests that it can be used in the production of 5-

hydroxymethylfurfural (HMF). The LEF had a considerable high heating value (HHV) and 

would be suitable as a biofuel component for combustion. CEF was efficiently used in 

the production of HMF as 0.35 g of this product were obtained from 10 g of SCG. Such 

results demonstrate that SCG can be effectively used in the production of HMF within a 

biorefinery concept.   
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2.2.3 Introduction 

Coffee is one of the most consumed beverages in the world and as such is becoming a 

daily commodity in most people’s lives (1). Such high consumption of coffee generates 

increasing amounts of spent coffee grounds (SCG). The United States Department of 

Agriculture estimate the yearly consumption to be 9.8 million tonnes of coffee beans 

worldwide (2), which has been increasing steadily since 2011 (2-4). This demand for 

coffee demonstrates the lack of seasonality in the supply of coffee beans and the 

increasing availability of SCG to be industrially used and converted to fuels and high 

value chemicals. 

SCG were initially considered a waste, being landfilled or disposed in the sea (5,6). 

However, the compositional analysis reveals the presence of carbohydrates (42-55 % 

w/w), lignin (0-25 % w/w), lipids (2-24 % w/w), protein (10-18 % w/w), caffeine (0-0.4 % 

w/w), chlorogenic acids (1-3 % w/w) and ash (1-2 % w/w) (7-12). This composition lends 

itself to the production of fuels and higher value chemicals, and as such is a highly 

suitable feedstock to be used in the biorefinery industry.  

Initially, as the calorific value of SCG were considered to be similar to agro-chemical 

residues SCG were used directly for heat generation in industrial boilers (13). However, 

due to the increased heteroatom content, emissions from direct combustion are 

particularly hazardous. More suitably SCG have been pyrolyzed, yielding between 55% 

and 85% bio-oil, depending on the reaction conditions and moisture content (14). The 

pyrolysis process is particularly attractive and as such higher value compounds such as 

diterpenes can be extracted from the bio-oil. To this end, Peshev et al. added a 

downstream nanofiltration process that used the permeate and retentate in the 

production of further products (15,16). 

The pyrolysis yields are so high as SCG contain up to 15% triglyceride oil. Alternative 

work has therefore focused on the extraction and transesterification of these lipids into 

biodiesel (14, 17-19). However, the low triglyceride oil content in SCG requires large 

amounts of SCG to produce considerable amounts of biodiesel, and as such cannot be 

produced as economically as from other glyceride sources. 

Due to the high carbohydrate content, SCG have also been used in the production of 

ethanol through fermentation. Mussatto et al. used an acid pretreatment of the SCG, 

followed by enzymatic step to release the monosaccharides. The authors compared 

three different yeast strains on both SCG and coffee silverskin. The SCG used led to 

much higher ethanol productions (11.7 g/L) compared to the coffee silverskin (producing 

less than 1 g/L) (20). Rocha et al, developed a biorefinery approach through fermentation 



79 
 

of the SCG after the extraction of oil. This new design led to higher ethanol 

concentrations with a final titer of 19 g/L, while the extracted oil was used in the 

production of biodiesel.  

However, with the unique diversity of molecules present in SCG there is also a large 

potential to produce higher value chemicals alongside fuels. Burniol-Figols et al. 

developed a biorefinery design to produce chlorogenic acid and bioethanol (21). The 

process included the extraction of phenolics to be converted into chlorogenic acid where 

the extraction residues were submitted to an acid hydrolysis, to depolymerize the sugars 

into monosaccharides, followed by fermentation to ethanol. Karmee evaluated a wide 

range of processes to come up with SCG-based biorefinery design (10). The evaluated 

processes included: different oil extraction processes, the production of biodiesel 

through base, acid, lipase catalysis or in-situ transesterification of the extracted oils, the 

catalytical upgrading of the oils to renewable diesel, production of bioethanol through 

hydrolysis and fermentation of the carbohydrates. The author also reported additional 

products such as carotenoids, antioxidants and polymers, such as polyols, polylactic acid 

and polyhydroxyalkanoates. 

Caetano et al. presented a design composed of two initial extractions, one aqueous and 

one lipophilic, followed by the fermentation of the remaining solid waste (22). The first 

extraction was intended to remove high value extracts for upgrading to pharmaceuticals 

or for the cosmetic industry, while the product of the second extraction were triglycerides, 

used in the production of biodiesel. Using a similar design, Mata et al. replaced the 

fermentation process by pyrolysis and torrefaction to produce biochar and bio-oil (23).  

While the C6 sugars can be fermented into a range of products, another application is in 

the acid catalyzed dehydration to produce 5-hyroxymethylfurfural (HMF) (24). HMF can 

be used in a wide range of applications such as polymers and biofuels. Two of the most 

common applications include dimethylfuran (DMF) and 2,5-furandicarboxylic acid 

(FDCA). While DMF is known for being a potential biofuel with comparable energy 

density to gasoline, FDCA is a building block used in the production of polyesters, one 

of which, PEF, is a potential replacement for PET (25,26). To date, however, there are 

no reports of HMF being produced from SCG. 

In this work, a conceptual HMF biorefinery was investigated with the SCG being 

fractionated to separate the biomass into three different fractions: a cellulose-enriched 

fraction (CEF), hemicellulose-enriched fraction (HEF) and lignin-enriched fraction (LEF). 

This process has been developed for other lignocellulosic biomass, though has again 

not been demonstrated on SCG, and uses sulfuric acid as a catalyst and a ternary 
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mixture of methyl isobutyl ketone (MIBK), ethanol and water to separate the biomass into 

the various fractions (27). More recent work done by Katahira et al., demonstrated that 

the replacement of ethanol in the ternary system with acetone leads to a more effective 

fractionation process (28). In this investigation, these solvent systems were then 

examined for the suitability to produce multiple product streams from SCG, with a focus 

on the production of HMF.   

2.2.4 Materials and Methods  

2.2.4.1 Materials 

The SCG were obtained from Bio-bean Ltd. They were stored at 4 °C. SCG are 

commonly composed by cellulose (10-13 % w/w), hemicellulose (32-42 % w/w), lignin 

(0-25 % w/w), protein (10-18 % w/w), lipids (2-24 % w/w), ash (1-2 % w/w), caffeine (0-

0.4 % w/w) and chlorogenic acids (1-3 % w/w) (8-12). Pistachio hull was supplied by the 

Wonderful Company (Los Angeles, CA, USA), the compositional analysis is given in the 

Appendix A (Table 2-9). All the chemicals used in the were purchased from Sigma 

Aldrich (Gillingham, UK), and used without further purification. 

2.2.4.2 Clean fractionation 

The fractionation process was carried out in a 300 mL Parr reactor (Parr Company 

Moline, IL, USA, 4560 mini reactors). In this process, 10 g of biomass were fractionated 

in three different solvent systems: (1) methyl isobutyl ketone (MIBK), ethanol and water 

(16/34/50 g/g/g; here forth this solvent system is denominated MEW); (2) MIBK, acetone 

and water (11/44/44 g/g/g, denominated MAW); (3) MIBK and water (16/84 g/g; MW). In 

all these systems, sulfuric acid was used as a catalyst in a concentration of 0.1 M. After 

loading both the biomass and solvent system, agitation was started, temperature 

increased to 140 °C and the reaction was carried out for 1 hour. After the reaction, the 

reactor was cooled down to 30 °C. The obtained suspension was filtered and washed, 

initially with 200 mL of the same solvent system used in the fractionation, and secondly, 

with 650 mL of water to remove any soluble component present amidst the solids. The 

solid residue after filtration was denominated the cellulose-enriched fraction (CEF) and 

was dried at room temperature for 24 hours. Then, 50 mL of MIBK were added to the 

filtrate in a separatory funnel. The solution was mixed and left to rest until two distinct 

phases were observed (an aqueous and an organic phase). Once the phases were 

separated, 50 mL of MIBK were added to the aqueous phase for a second extraction. 

The solution was mixed, left to rest and the two distinct phases were separated. The 

obtained aqueous phase was denominated the hemicellulose-enriched fraction (HEF). 

Both organic phases (obtained from first and second extraction processes) were 

combined and the solvent removed under vacuum. The dried solids obtained from this 
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process were further dried in an oven at 40 °C for 4 days, this was designated the lignin-

enriched fraction (LEF).  

2.2.4.3 Fermentation 

The pH of the HEF fraction was increased to 4. This solution was then used in the 

preparation of four diluted solutions with deionized water: 25% HEF concentrated, 50% 

HEF concentrated, 75% HEF concentrated and a fully concentrated solution (100%). A 

control media of 30 g/L of peptone from soybean meal enzymatic digest and 25 g/L of 

malt extract was also prepared and autoclaved. All these solutions (4 dilutions from HEF 

and the control) were then inoculated with Metschnikowia pulcherrima (National Culture 

of Yeast Collection, NCYC4331) to make solutions with 500,000 cells/mL and a total 

volume of 20 mL in Erlenmeyer flasks. The flasks were sealed and placed in incubators 

at a temperature of 25 °C and 230 rpm for 3 days.   

2.2.4.4 2D NMR 

Solution state nuclear magnetic resonance (NMR) spectra were acquired using a Bruker 

Avance III NMR spectrometer operating at 500.13 MHz for 1H and 125.77 MHz for 13C. 

Samples were investigated in DMSO-d6 at 27 °C unless specified and were referenced 

to the residual solvent signal at 2.50 ppm (1H) and 39.52 ppm (13C). Following this, 1H-

13C correlation spectra were obtained using the “hsqcedetgpsp” pulse sequence, with 

td=256 and ns=128 and a relaxation delay of 1.5s. Spectra were acquired using Bruker 

Topspin 2.1, and processed using Bruker Topspin 3.1. Assignment of the individual 

components follows previous reports (28,29). 

2.2.4.5 Cellulose hydrolysis 

The enzymatic hydrolysis of cellulose was carried out in 50 mL Falcon tubes in an 

incubator at 50 °C. Then, 0.5 g of CEF were added to 5 mL of a 0.1 M buffer of sodium 

acetate and acetic acid with a pH of 4.8. Cellulase (cellulase from Aspergillus niger 

sourced from Sigma-Aldrich, UK) was used as enzyme – 137.04 FPU/mL. Antibiotics 

were also added to avoid contamination: 12 mg/L of tetracyclin and 15 mg/L of 

gentamicin. The reaction was carried out for 72 hours. At the end of the reaction, the 

solution was placed in a hot bath at 85 °C for enzyme deactivation, followed by 

centrifugation to separate the majority of the solids. High Performance Liquid 

Chromatography (HPLC) equipped with an Aminex HPX-87H HPLC column from Bio-

Rad (heated up to 65 °C, with a flow rate of 0.6 mL/min) and a refractive index detector 

was used to determine the sugars content in solution.  
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2.2.4.6 Glucose isomerization 

After hydrolysis, the buffer solution had to be neutralized to a pH of 7 as this is the ideal 

pH for glucose isomerase from Streptomyces murinus (Sigma-Aldrich, UK) – 15 FPU of 

enzyme were added to solution. The reaction was carried out for 24 hours at 60 °C. The 

same conditions (column and detector) used in the glucose analysis were used for 

fructose quantification. The glucose concentrations in the initial solution and the added 

volume of sodium acetate (used in neutralization) were taken into account in the fructose 

yield calculations.  

2.2.4.7 Dehydration to HMF 

The HMF production was carried out in a biphasic system composed of 1.5 g of sodium 

chloride saturated aqueous solution (5 wt% fructose, 5 mM of AlCl3, 3.17 mM of HCl) 

and 3 g of γ-valerolactone (GVL) as the organic solvent. The reaction was performed in 

glass pressure tubes and heated up to 170 °C. After 20 minutes the pressure tubes were 

cooled down to room temperature. The two phases were separated using a separating 

funnel. The HMF present in GVL was extracted from this solvent by mixing 1 part of GVL 

with 1 part of water and 20 parts of cyclopentane in a first extraction. This led to an 

aqueous solution containing 90% of the produced HMF and 43% of GVL (30). By mixing 

the resulting aqueous phase with 20 parts of cyclopentane three more times, the 

percentage of GVL in the aqueous solution is reduced to 0.5% and the percentage of 

recovered HMF is 99% of the total produced. The same Aminex HPX-87H column was 

used in the HMF analysis, however a diode array detector was used at a wavelength of 

280 nm. The 5 mM sulfuric acid aqueous solvent was set to a flow rate of 0.6 mL/min 

and the column heated up to 65 °C. 

2.2.5 Results 

The fractionation process was assessed in three different solvent systems. In the first 

MIBK, ethanol and water were used (MEW), which was compared to MIBK, acetone and 

water (MAW). Both the ethanol and acetone partitioned into the HEF and as these are 

inhibitory to microbes at these concentrations; a solvent system only composed of MIBK 

and water (MW) was also examined. For each one of these three solvent systems, two 

biomass sources were studied: SCG and pistachio hull, allowing the SCG to be 

compared to a lignocellulosic material. The initial mass balance for the three systems is 

given in  Figure 2-1. 
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Figure 2-1 – Cellulose-enriched fraction (CEF), hemicellulose-enriched fraction (HEF) and lignin-enriched 

fraction (LEF) yields obtained in the six different types of fractionation with two feedstock (pistachio hull and 

spent coffee grounds, SCG) and three solvent systems (MEW – MIBK, methanol and water; MAW – MIBK, 

acetone and water; MW – MIBK and water). 

 

2.2.5.1 Hemicellulose enriched fraction (HEF) 

Characterization  

To characterize the HEF, samples were submitted to different analysis methods, HPLC 

was used to evaluate what type of sugars and their quantities are present in this fraction. 

Total organic carbon (TOC) was performed to assess the amount of carbon present in 

the organic compounds (mainly carbohydrates) that can be used as a substrate to grow 

yeast/microalgae or to convert to furans. In addition to this, the amount of nitrogen in 

these fractions was obtained by a total nitrogen (TN) analysis (Figure 2-2). Finally, 

inductively coupled plasma optical emission spectrometry (ICP-OES) was used to 

quantify the metal composition of HEF samples to determine the suitability as a 

fermentation broth. 
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          (a)              (b) 

Figure 2-2 – Total organic carbon (a) and total nitrogen (b) analysis performed on HEF samples obtained 

from the fractionation of pistachio hull (black) and SCG (green). The three solvent systems (MEW, MAW 

and MW) are compared in both analysis 

 

All the processes release suitable levels of micronutrients into the broth for fermentation 

(Table 2-1). Using the MW solvent system for SCG led to increases in sulfur and reduced 

levels of Na, though all other elements were widely similar irrespective of the system 

used. Pistachio hulls had higher concentration of calcium and potassium regardless of 

the solvent system, in line with the elemental composition of the initial feedstock. HPLC 

analysis using a refractive index detector was used to quantify the concentration of the 

sugars present in this fraction (Table 2-2). Interestingly, while xylose (and possible 

arabinose which elutes at the same time) are present in the HEF produced from pistachio 

hulls, there were very few C5 sugars produced from SCG. Instead the soluble HEF 

fraction contained high levels of galactose and mannose, in addition to glucose, maltose 

and cellobiose. This demonstrates that SCG would be entirely unsuitable for the 

production of furfural but rather that fermentation would be a suitable processing step for 

this fraction.  
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Table 2-1 – Summary of inductively coupled plasma optical emission spectrometry (ICP-OES) results 

performed to HEF samples 

System Ca (ppm) K (ppm) Mg (ppm) Na (ppm) P (ppm) S (ppm) Others (ppm) 

Pist - MEW 46.1 123.3 42 503.8 6.9 123 6.0 

SCG - MEW 13.2 56.1 6.2 355.5 7.4 137 10.3 

Pist - MAW 37.9 130.9 1.9 480.2 6.3 105 7.1 

SCG - MAW 21.7 37.0 8.2 10.7 9.9 134 5.8 

Pist - MW 61.9 85.0 6.1 10.7 7.2 258 14.8 

SCG - MW 16.1 24.3 7.4 3.9 7.4 225 5.7 

 

Table 2-2 – Sugar content of HEF samples based on HPLC analysis 

Solvent Biomass 
Cellobiose 

[g/L] 
Maltose 

[g/L] 
Glucose 

[g/L] 
Xylose 
[g/L] 

Galactose/Mannose 
[g/L] 

MEW 
Pist 4.65 0.11 0.0008 0.34 - 

SCG - 1.15 0.0007 - 7.41 

MAW 
Pist - 0.01 0.0007 0.37 - 

SCG - 0.15 0.0007 - 8.21 

MW 
Pist 0.71 0.01 0.0015 4.12 - 

SCG - 0.02 0.0010 - 18.74 

 

To determine the suitability of HEF from SCG for fermentation, the substrate was used 

with Metshnikowia pulcherrima, an oleaginous yeast species which can ferment a large 

range of alternative sugars and has excellent inhibitor tolerance (31). The yeast could 

not grow on the MEW and MAW derived HEF fractions (data not shown) presumably due 

to the elevated levels of both ethanol and acetone in the broth. The number of cells per 

mL increased with time for all the samples (Figure 2-3 (a)). An increase in the 

concentration of the medium was directly proportional to an increase in the number of 

cells. At the end of the first day, the 25% concentrated medium achieved an increase of 

1,204,375 cells per mL, the 50% concentrated medium increased by 2,530,000 in the 

number of cells per mL, the medium with 75% HEF registered an increase of 3,792,500 

in the number of cells per mL while the fully concentrated medium increased by 

7,665,625. This demonstrated that HEF was not toxic to the yeast and rather was limited 

by the carbon available. The fully concentrated medium therefore could potentially be 

used for the fermentation as long as no ethanol or acetone were used in this fractionation 

process, or were removed prior to use.  
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(a) (b) 

Figure 2-3 – Growth of Metschnikowia pulcherrima in HEF substrate obtained from the fermentation of SCG. 

Where a) is the logarithm of the number of cells per mL obtained over 3 days, and b) shows the final cell 

count as a function of the initial sugar loading in the hydrolysate.  

 

2.2.5.2 Lignin enriched fraction (LEF) 

LEF characterization 

In the fractionation the lignin component is depolymerized into a thick bio-oil which is 

recovered from the MIBK. The main use for the LEF is as a biofuel component for 

combustion to be used to recover process energy on site or potentially to be used as a 

liquid fuel in a static combustion engine. As such, the high heating value (HHV) of this 

fraction is the most important features.  

Initially elemental analysis was used to assess the LEF fraction (Table 2-3). This analysis 

not only helps to characterize these samples but can also be used in the calculation of 

the theoretical HHV. According to Ziomek and Williams, lignin is composed by 

approximately 63% of carbon, 5-6% of hydrogen, 0-1% of nitrogen and 1.5-3.5% of sulfur 

(32). In the samples obtained from the solvent systems MEW and MAW in Table 2-3, the 

carbon content is far lower than these values while the nitrogen content is higher. This 

may indicate the presence of protein in these samples. The samples obtained with MW 

show similar content to the one expected from lignin samples. This suggests that 

molecules such as protein and lipids must have migrated to the other fractions (CEF or 

HEF). However, the extremely low percentages of LEF obtained when using the MW 

solvent system suggest that most of the lignin present in both biomass sources may have 

also deposited in the CEF fraction. The experimental HHV was determined using a bomb 
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calorimeter while the theoretical HHV’s were calculated using the percentages of 

elements obtained in the elemental analysis and Equations 2.1-2.3. 

 

 𝐻𝐻𝑉 [𝐵𝑡𝑢/𝑙𝑏]  = 145.44𝐶 + 620.28𝐻 + 40.5𝑆 − 77.54𝑂 Eq. 2.1 

  

 𝐻𝐻𝑉 [𝐵𝑡𝑢/𝑙𝑏]  = 151.2𝐶 + 499.77𝐻 + 45𝑆 − 47.8𝑂 + 27𝑁 Eq. 2.2 

 

 
𝐻𝐻𝑉 [𝐵𝑡𝑢/𝑙𝑏]  = (

654.3𝐻

100 − 𝐴
+ 424.62) × (

𝐶

3
+ 𝐻 −

𝑂

8
+

𝑆

8
) 

Eq. 2.3 

 

Equations 2.1-2.3 are given in British thermal unit per pound which were then converted 

to Joule per gram to be in the same units as the value obtained from the bomb 

calorimeter (32-35). Note that 𝐶, 𝐻, 𝑆, 𝑂, 𝑁 and 𝐴 are the contents of carbon, hydrogen, 

sulphur, oxygen, nitrogen and ash in weight percentage. The value of ash was assumed 

to be null in Equation 2.3. The models show highly similar results to one another, 

although were not as accurate as predicting the calculated HHV values, with the largest 

discrepancies being observed for the SCG LEF fractions (Table 2-4). This suggests that 

in the LEF fraction of SCG there are numerous biomolecules present that simplistic 

models cannot account for. Additionally, the high error between the models and the 

experimental results for the MW samples indicates once more that this solvent system 

leads to fractions with higher percentage of impurities.  

 

Table 2-3 – Elemental analysis results performed to LEF samples. The “total metals” column is a sum of all 

the metals present in the respective sample obtained from ICP-OES, and the “total” column is the sum of 

the elemental analysis and the “total metals” column. 

Solvent Biomass 
Elemental Analysis (%) 

C H N S O Total metals Total 

MEW 
Pist 31.54 3.64 1.35 0.28 14.65 46.15 97.61 

SCG 57.14 6.93 5.69 0.59 18.47 9.51 98.33 

MAW 
Pist 44.52 5.05 1.54 0.34 17.05 29.47 97.97 

SCG 61.84 8.56 2.57 0.81 16.03 8.60 98.41 

MW 
Pist 64.86 7.66 0.26 2.55 19.62 5.44 100.39 

SCG 62.82 9.17 0.74 3.81 21.13 0.15. 97.82 
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Table 2-4 – Experimental and theoretical high heating value (HHV) with respective errors to the experimental 
values. 

Solvent Biomass 
HHVexp 

[J/g] 

Theoretical HHV (1) Theoretical HHV (2) Theoretical HHV (3) 

Btu/lb J/g 
Error 
(%) 

Btu/lb J/g 
Error 
(%) 

Btu/lb J/g 
Error 
(%) 

MEW 
Pist 14,854 5,720 13,306 11.6 5,938 13,812 7.5 5,541 12,889 15.2 

SCG 22,038 11,201 26,053 15.4 11,402 26,521 16.9 11,158 25,953 15.1 

MAW 
Pist 19,339 8,299 19,304 0.2 8,499 19,768 2.2 8,147 18,950 2.1 

SCG 25,818 13,093 30,455 15.2 12,969 30,167 14.4 13,107 30,487 15.3 

MW 
Pist 10,792 12,767 29,695 63.7 12,821 29,822 63.8 12,887 29,976 64.0 

SCG 11,081 13,340 31,030 64.3 13,265 30,854 64.1 13,543 31,500 64.8 

 

The HHV is substantially higher for the SCG components than for the pistachio hulls, 

and higher than is typically found for lignin components alone. Lignin is also a valuable 

source of aromatics, and as such could be used for further chemical production. The LEF 

samples were therefore analyzed by 2D NMR and GC-MS to understand the functionality 

present in the fraction. 

All the spectra obtained in this analysis were compared with previous literature reports 

(29) (Figure 2-4 to Figure 2-7, Table 2-5). The 2D NMR demonstrates the large presence 

of aromatic species in the phase for all species examined. Furthermore, the presence of 

tricin and syringyl are the most prominent units in the pistachio hull, normally observed 

in woody biomass (36). In the SCG spectra for all fractions, the presence of p-coumarate 

and ferulates were observed, these are commonly found in food wastes (37). 

Additionally, carbohydrates were also observed in some of the samples, demonstrating 

some contamination from molecules that should have been deposited in one of the other 

fractions. Species common to both feedstocks include, alkyl-aryl groups, methoxyls, 

guaiacyl and p-hydroxyphenyl units, usually found in lignin. Finally, the samples obtained 

using MW solvent system showed higher number of unidentified peaks, when compared 

to the samples obtained using MEW and MAW.  
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Table 2-5 – Assignments to the labels in Figure 2-4 to Figure 2-6, see Figure 2-7 for the structures identified.  

Label Assignment 

Aα(G) Cα-Hα in β-O-4’substructures (A) linked to a G-unit 

Aγ Cγ-Hγ in γ-hydroxylated β-O-4’ substructures (A) 

G2 C2-H2 in guaiacyl units (G) 

G5/G6 C5-H5 and C6-H6 in guaiacyl units (G) 

H2,6 C2,6-H2,6 in p-hydroxyphenyl units (H) 

OMe C-H in methoxyls 

PCAα Cα-Hα in p-coumarate (PCA) 

PCAβ/FAβ Cβ-Hβ in p-coumarate (PCA) and ferulate (FA) 

S2,6 C2-H2 and C6-H6 in etherified syringyl units (S) 

T6/T8 C6 and C8 in tricin (T) 

 

 Aromatic region Side chain region 

MEW Pist 

  

 (a) 
 

(b) 

MEW 

SCG 

 

 

 (c) (d) 

Figure 2-4 – 2D NMR analysis of LEF obtained using MEW. See Table 2-5 for label assignments.  



90 
 

 Aromatic region Side chain region 

MAW Pist 

  

 (a) 
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SCG 

 

 

 (c) (d) 

Figure 2-5 – 2D NMR analysis of LEF samples obtained using MAW. See Table 2-5 for label assignments.  

 

 Aromatic region Side chain region 

MW  
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MW SCG 

 

 

 (c) (d) 

Figure 2-6 – 2D NMR analysis of LEF samples obtained using MW. See Table 2-5 for label assignments.  
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(A) (G) (H) (PCA) 

 

 

 

(FA) (T) (S) 

Figure 2-7 - Main structures identified using 2D NMR: (A) β-O-4’ alkyl-aryl ethers with acylated γ-OH; (G) 

guaiacyl unit; (H) p-hydroxyphenyl unit; (PCA) p-coumarates; (FA) ferulates; (T) tricin; (S) syringyl unit. 

 

GC-MS was also used to identify the LEF fraction (see Appendix A, Figure 2-11 to Figure 

2-16); this analysis confirmed the presence of smaller lignin units, and of fatty acids, 

which are produced by the hydrolysis of triglycerides in the coffee oil. This would account 

for the higher HHV of the SCG samples. This confirms that the major two components in 

this phase are the lipids and lignin fragments from the SCG. 

2.2.5.3 Cellulose enriched fraction (CEF) 

CEF characterization 

CEF was characterized using four types of solid-state analysis: Fourier-transform 

infrared spectroscopy (FT-IR), solid state NMR (ssNMR), elemental analysis and 

thermogravimetric analysis (TGA). For FT-IR, the elemental analysis and TGA, the CEF 

samples were compared to pure cellulose.  

In the FT-IR analysis, the samples were divided according to the solvent system, allowing 

the comparison between pure cellulose and CEF from pistachio hull and SCG (Figure 

2-8). A large clear peak around 1000-1100 cm-1 is observable in all the spectra. This peak 

is characteristic of a C-O bond in the glucose monomer in cellulose. Additionally, another 

peak was observed around 3000 cm-1; characteristic of an alkyl group from the glucose 

ring was observed for all the fractions. 
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(a) MEW (b) MAW (c) MW 

 

Figure 2-8 – Fourier-transform infrared spectroscopy (FT-IR) spectra of the CEF samples 

 

All the CEF fractions that were obtained from pistachio and SCG differed depending on 

the solvent system used. While distinctive peaks were observed for CEF in the MEW 

extraction, there were a number of other peaks suggesting esters and possibly 

proteinous species in both the MEW solid fractions derived from the pistachio and SCG 

compounds. The cellulose fraction isolated using MAW was the most similar to pure 

cellulose with few other species observable for the SCG other than those for cellulose. 

The spectra relating to the pistachio CEF were highly similar for both MEW and MAW 

solvent extraction. The CEF samples obtained using MW, pistachio in particular, show 

some more unidentified peaks between 1200 and 1800 cm-1. Once more, this may be an 

indicator that the fractionation using this solvent led to samples with higher level of 

impurities. This correlates with the purity of the LEF fraction in the MAW samples and 

demonstrates the poor fractionation potential of the MW system. 

To assess the samples in more detail, the solids were analyzed by solid state NMR 

(ssNMR). A 13C and 1H spectra were obtained for each sample (Figure 2-9). In the 13C 

spectra for the pistachio CEF, peaks characteristic of cellulose were observed between 

60-100 ppm, although further downfield peaks assignable to acid or ester linkages were 

also present. The proton spectrum showed a broad, unresolved peak, which is typical of 

amorphous solid materials in this type of analysis. The 13C and 1H spectra for the SCG 

CEF were far better resolved. These narrower peaks are either associated with highly 

crystalline material, such as cellulose or a “soft” (mobile) component. Both of these 

spectra demonstrate a high level of cellulose has been extracted but that it is heavily 

contaminated with non-aromatic components such as fatty acids/esters or amino 

60

65

70

75

80

85

90

95

100

50015002500

Tr
an

sm
it

ta
n

ce
 (

%
)

Wavelength [cm-1]

Pure Cellulose

Pist

SCG

60

65

70

75

80

85

90

95

100

50015002500

Tr
an

sm
it

ta
n

ce
 (

%
)

Wavelength [cm-1]

Pure Cellulose

Pist

SCG

60

65

70

75

80

85

90

95

100

50010001500200025003000

Tr
an

sm
it

ta
n

ce
 (

%
)

Wavelength [cm-1]

Pure Cellulose

Pist

SCG



93 
 

acid/proteinous material. The elemental analysis of the CEF fraction confirms this likely 

contamination to be protein for both the SCG and pistachio (Table 2-6). Compared to 

pure cellulose all the CEF fractions had elevated carbon, N and S while have lower O.  

 

 13C Spectrum 1H Spectrum 

Pist 

  

SCG 

  

Figure 2-9 – Solid state Nuclear Magnetic Resonance (ssNMR) 13C, 1H spectra for MEW samples. 

 

Table 2-6 – Elemental analysis of CEF. The column denominated “Total” corresponds to the sum of the 

analyzed elements. 

  C (%) H (%) N (%) S (%) O (%) Total (%) 

Cellulose 44.40 6.20 0.00 0.00 49.40 100.00 

MEW 
Pist 50.36 6.82 1.38 0.28 36.52 95.36 

SCG 52.02 7.64 1.38 0.31 36.40 97.75 

MAW 
Pist 52.81 7.17 1.38 0.38 35.80 97.54 

SCG 49.38 7.28 1.65 0.30 39.51 98.12 

MW 
Pist 58.76 7.82 1.23 0.67 30.46 98.94 

SCG 56.11 7.74 3.23 0.46 30.45 97.99 

 

To estimate the amount of cellulose in the samples, thermogravimetric analysis was 

performed on all the six samples of CEF (Figure 2-10). By comparing the reduction in 

weight in the sample to that of pure cellulose, the total cellulose in the samples can be 

estimated (Table 2-7). The percentage of cellulose in the CEF fractions produced from 

pistachio hulls is higher than CEF from SCG, irrespective of the solvent system used. 

This is presumably due to the higher level of cellulose and lower protein and other 
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nitrogen species in the hulls. Additionally, the lower percentage of cellulose in the MW 

fraction demonstrates the poor separation afforded by the MW system.  

  

 

Figure 2-10 – Thermogravimetric analysis (TGA) of CEF samples from pistachio hull and SCG. 

 

Table 2-7 – Percentage of cellulose and ash in CEF samples based on TGA 

Solvent Biomass Estimated %cellulose 

MEW 
Pist 43.7 

SCG 41.0 

MAW 
Pist 45.5 

SCG 37.0 

MW 
Pist 36.6 

SCG 35.5 

 

Production of HMF from CEF 

To demonstrate the suitability of the CEF fraction for HMF production, each fraction was 

converted without any further purification. This was then compared to the same sample 

being enzymatically hydrolyzed to glucose before being converted to HMF and finally to 

the glucose being isomerized to fructose and this converted to HMF (Table 2-8). Each of 

the CEF fractions were compared with the same procedure for pure cellulose. The initial 

production of HMF directly from CEF yielded very low conversions for all systems, 

including pure cellulose. This is expected and is due to the high complexity, crystallinity 

and supramolecular structure of the cellulose (38). Glucose is less stable, soluble and 
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as such higher conversions can be obtained. A 61% yield of glucose was achieved from 

cellulose, although, due to the high stability of the pyranoside ring structure which has 

previously been reported to be a limiting factor to achieve high HMF yields (39), only 

24% of the pure cellulose material was converted to HMF. This is a yield of 14.8% of the 

original starting material. 

A far lower glucose yield was observed for both the CEF for pistachio (24%) and SCG 

(26%). However, when the reduced amount of cellulose of the CEF is factored in, then 

this is a similar yield to cellulose, suggesting that the CEF is not inhibitory to enzymes.  

The most suitable starting material for HMF production is fructose (30). Therefore, all 

glucose streams were isomerized to this sugar. The HMF yields from fructose were far 

higher, with just under 80% of the sugar converted to HMF; this result is similar to 

previous reports (30,40). The glucose produced from both CEF fractions could be 

isomerized yielding similar amounts of fructose, on conversion 69.6% HMF was 

produced from pistachio and 70.3% from SCG. This gave a final yield of 8.2% from the 

original starting material for SCG and 8.0% from pistachio.  

 

Table 2-8 – Summary of the cellulose/CEF hydrolysis, glucose isomerization and fructose dehydration 

Biomass 
Glucose Yield 

(%) 
Fructose Yield 

(%) 
HMF Yield 

(%) 
Overall HMF Yield 

(%) 

Cellulose 

- - 0.8 0.8 

60.8 - 24.3 14.8 

60.8 52.2 73.2 23.2 

CEF from 
Pistachio 

- - 0.1 0.1 

23.7 - 21.8 5.2 

23.7 48.3 69.6 8.0 

CEF from SCG 

- - 0.1 0.1 

25.9 - 22.0 5.7 

25.9 44.9 70.3 8.2 

 

2.2.6 Discussion 

The similar masses obtained in the fractionation process for SCG and pistachio hull 

indicate that this process, initially developed for lignocellulosic biomass sources, can be 

efficiently used in the separation of the components present in SCG. The CEF mass 

yields obtained are approximately in accordance with the higher content of cellulose 

present in pistachio hull than in SCG (14% and 12%, respectively). Both the MAW and 

MEW solvent systems also deposit a range of other components, up to 60%, into this 
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phase. Though this is in accordance with other lignocellulosic biomass separated 

through this method (28). 

The poor performance of the MW system demonstrates how both ethanol and acetone 

aid in the fractionation process. When these solvents are not used most of the lignin 

remains as a solid species and is deposited elsewhere in the system. This reduces the 

ability to used LEF for bioenergy. Despite of the better fractionation performance, the 

presence of ethanol and acetone in the HEF fraction, demonstrated by the increased 

TOC in the phase, make it unsuitable for fermentation. In contrast the aqueous fraction 

produced with MW contained all the micronutrients necessary for growth and could be 

used to grow the oleaginous yeast M. pulcherrima; interestingly the growth of the yeast 

was only limited by the sugar present and not inhibited by the presence of anything in 

the broth. For all the samples, the HEF fraction had a higher total nitrogen content when 

SCG was used. While this will relate to bioactive compounds such as caffeine as well as 

the increased protein content, it did not have an inhibitory effect on the yeast.  

The sugar content of the HEF fraction shows that while HEF from pistachio hull can be 

used in the production of furfural, the absence of C5 sugars in SCG means that furfural 

could not be produced as a co-product with HMF in a SCG biorefinery. Instead, the 

presence of C6 sugars, such as galactose and mannose indicate that this fraction can be 

used in the production of HMF, although with similar issues associated with the 

conversion of glucose. While the sugars in the HEF fraction could be fermented, to 

achieve a good fractionation in the overall system, ethanol and acetone must be used – 

this severely limits the use of these sugars without further costly separations.  

The LEF fraction, solubilized in MIBK, obtained using MEW and MAW had a reasonably 

high HHV (15-26 MJ/kg) when compared to the LEF fraction from MW (approximately 11 

MJ/kg). For both the MEW and MAW solvent systems, the LEF fractions from SCG had 

higher HHV (22-26 MJ/g) than pistachio hull (15-19 MJ/kg). This suggests that this 

fraction of SCG has higher potential to be used as a biofuel component. However, both 

the GC-MS and 2D NMR analysis of this fraction demonstrated the presence of 

depolymerized lignin and fatty acids. Both materials have elevated lipids, though the 

SCG has more. This indicates that this fraction may also be used in the production of 

renewable biodiesel and polymers, however similar to the HEF fraction, the fatty acids 

would need to be separated from the other components, which limit the applicability for 

lower value uses. One possibility would be to extract the lipids prior to the fractionation. 

The final fraction contains the solids left over from the process, predominantly cellulose 

(CEF). The elemental analysis, TGA, ssNMR and FT-IR demonstrate that cellulose is 
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present in both samples, up to approximately 40% of the phase. A large proportion of 

nitrogen and sulfur were also observed suggesting that protein was present, although 

there was no clear indication of high levels of lignin in this phase. As with the other 

phases the CEF fraction from the MW separation was heavily contaminated for both 

biomass sources tested. The CEF fraction can be depolymerized to release glucose for 

either fermentation or further chemical manufacture. For the manufacture of HMF, the 

cellulose is too stable, and little HMF was produced from any of the CEF fractions. 

Indeed, it is only the conversion through multiple enzymatic steps to fructose that yielded 

reasonable HMF concentrations. While only 8.2% of the original starting material of HMF 

was produced from the SCG, 8.0% HMF was produced from pistachio hull. This is partly 

due to low percentage of cellulose in CEF and the thermodynamic equilibrium between 

glucose and fructose which limits the reactions yields (41). According to Al-Tai et al. the 

maximum theoretical yield that can be obtained in the glucose isomerization reaction is 

approximately 50% (42). This was the limiting step and reduces amounts of HMF 

produced per batch. As such, the yields obtained from SCG and pistachio were highly 

similar to crystalline cellulose when the lower amount of cellulose was taken into account. 

This suggests that the fractionation works well, and that there are no inhibitory 

compounds in this phase for further processing.  

Considering the entire process of biomass fractionation (using both pistachio and SCG) 

and the subsequent conversion of CEF to HMF, it was possible to produce approximately 

0.37 g of HMF from 10 g of pistachio hull and approximately 0.35 g from SCG. This value 

of approximately 4% is close to the theoretical possible, considering that there is 14% 

and 12% of cellulose in pistachio hull and SCG, respectively, that the conversion of 

cellulose to glucose is limited to between 75-95%, the conversion of glucose to fructose 

is limited by the kinetic equilibrium between these two sugars, which is translated to a 

maximum theoretical yield obtained is 50% and maximum HMF yield from fructose is 

80%.  

2.2.7 Conclusions 

In the paper a biorefinery based around the organosolv fractionation of spent coffee 

grounds (SCG) was attempted for the first time. The fractionation of SCG led to similar 

results to the fractionation of a lignocellulosic material, in this case pistachio hull. These 

results demonstrate that this organosolv process can effectively separate the 

components present in SCG into three different enriched fractions: yielding a solubilized 

fraction predominantly from hemicellulose (HEF), a cellulose enriched solid (CEF) and a 

lignin enriched organic phase (LEF). The fractionation worked well when ethanol and 

acetone were used, though both of these solvents partitioned into the aqueous phase, 
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inhibiting the use as a fermentation media. On fractionating with just water and MIBK, 

the HEF fraction could be used for fermentation and was only limited by the amount of 

sugars that partitioned there. For the SCG this was predominantly C6 mono- and 

disaccharides.    

The LEF samples for the SCG had very high HHV and were predominantly made up of 

lignin fragments and fatty acids. Both the MEW and MAW solvent systems were suitable 

for this fractionation. Finally, the CEF fraction was analyzed and demonstrated to contain 

large content of cellulose alongside a range of other macromolecules. The CEF fraction 

was shown to be suitable for the production of HMF, with close to the theoretical yield 

obtained when depolymerized to glucose and isomerized to fructose prior to conversion. 

This paper demonstrates that the organosolv process is suitable for fractionating SCG 

and multiple products can be produced in a biorefinery concept.  

2.2.8 Acknowledgments 

We gratefully acknowledge the solid-state NMR group at Durham University for their help 

in running the CEF fraction samples. Solution state NMR spectra were acquired using 

instruments from the Materials and Chemical Characterisation facility at the University of 

Bath. 

  



99 
 

2.2.9 Appendix A 

2.2.9.1 Chromatograms from gas chromatography mass spectrometry 

 

Figure 2-11 – GC-MS chromatogram obtained from MEW – pistachio hull 

 

Figure 2-12 – GC-MS chromatogram obtained from MEW – SCG 
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Figure 2-13 – GC-MS chromatogram from MAW – pistachio hull 

 

Figure 2-14 – GC-MS chromatogram from MAW – SCG 

 

Figure 2-15 – GC-MS chromatogram from MW – pistachio hull 
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Figure 2-16 – GC-MS chromatogram from MW – SCG 
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2.2.9.2 Pistachio hull content 

Table 2-9 – Analysis of pistachio hulls used in this study. 
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Pistachio hull 9.4 5.4 4.0 7.5 6.2 1.3 0.0 0.0 0.0 15.6 11.1 26.6 13.6 5.0 2.8 4.8 0.0 1.4 91.3 
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Chapter 3  

An alternative biorefinery approach to address microalgal 

seasonality: blending with spent coffee grounds 
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3.1 Context  

Microalgal based integrated biorefineries have been gaining increased attention in recent 

years. This is due to the relatively straightforward production of microalgae which is 

considerably higher than the terrestrial biomass type growth, can be grown in non-arable 

lands and therefore does not compete with food crops for arable land, and the lack of 

requirement for potable water in the microalgae growth. In addition, microalgae also have 

a biomolecular rich composition in carbohydrates, lipids and protein. Such composition 

allows for the production of a wide range of biofuels and the repurpose of waste streams 

in the biorefinery to produce further value-added products.  

However, one of the main challenges with microalgal-based biorefineries is the 

seasonality of microalgae. The lower production and therefore, availability of microalgae 

in certain seasons of the year poses a problem to the biorefinery operating levels. One 

solution could be the reduction of the operating levels to match the lowest production of 

microalgae. However, this solution would drastically reduce the product quantities during 

the lower season, as microalgae production can drop down to 40% biomass yield in 

these times. An alternative solution could be the storage of the microalgae during periods 

of higher supply to be used in periods of lower availability. However, elevated capital 

costs, degradation of the microalgae and overall loss of material have been shown.  

To this end, this study aimed to blend the microalgae with spent coffee grounds (SCG) 

in periods of lower availability of microalgae. Just like microalgae, SCG also have a 

diverse biomolecular composition in carbohydrates, lipids and protein. Two blends of 

microalgae and SCG were studied. The first blend with 40% of microalgae and 60% of 

SCG simulates the lower production of microalgae season, while the second blend with 

60% of microalgae and 40% of SCG simulates the intermediate seasons. These blends 

were tested in parallel with both pure feedstocks in a Combined Algal Processing (CAP) 

biorefinery approach developed at the National Renewable Energy Laboratory (NREL) 

designed to produce bioethanol and extract the lipids. In addition to this biorefinery 

design and evoking the concept of integrated biorefinery, a hydrothermal liquefaction 

(HTL) was performed on the solid waste stream from this design to produce bio-crude 

and biochar.   

This chapter is submitted in an alternative format in line with Appendix 6A of the 

“Specifications for Higher Degree Theses and Portfolios” as required by the University 

of Bath. 

All the experimental work in this chapter was undertaken by the author with the exception 

of the following: 
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Acid pretreatment was carried out by Nick Nagle, a co-author in this paper. 

Analytical work was performed by Bonnie Panczak, a co-author in this paper.  

The full journal reference is:  

Pereira, Andre Prates, Tao Dong, Eric P. Knoshaug, Nick Nagle, Ryan Spiller, Bonnie 

Panczak, Christopher J. Chuck, and Philip T. Pienkos. "An alternative biorefinery 

approach to address microalgal seasonality: blending with spent coffee grounds." 

Sustainable Energy & Fuels (2020). 
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3.2.2 Abstract 

An effective method for the production of fuels and chemicals from microalgae is to 

ferment the carbohydrate fraction, extract the lipids and convert the resulting solids 

through hydrothermal liquefaction (HTL). In this process, known as Combined Algal 

Processing (CAP), multiple fuel precursors are produced effectively. However, one of the 

key challenges associated with a microalgae-based biorefinery is the reduced 

productivity of algae in the colder seasons. In this investigation, the potential for spent 

coffee grounds (SCG), a potentially valuable waste stream, to be blended with biomass 

from the microalgae Scenedesmus acutus (HCSD) to make up for the productivity 

shortfalls in periods of lower microalgae productivity to maximize the capacity for 

downstream equipment throughout the year was evaluated. Two different blend ratios 

were compared to only microalgae biomass or SCG, one representing winter season 

(40% microalgae and 60% SCG – blend 1) and another representing autumn and early 

spring (60% microalgae and 40% SCG – blend 2). Pretreatment of the blends showed 

higher monosaccharide release yields compared to microalgae alone, with an increase 

in mannose and galactose specifically. In the fermentation of the pretreated slurries, all 

the monosaccharides were consumed, resulting in ethanol titers of up to 23 g/L for the 

SCG blend, compared to 14 g/L ethanol for the algae alone. The lipid extraction from the 

blends resulted in yields of 95.5-99.7% (which translates to 173.8-193.5 kg/tonne of dry 

biomass processed in this biorefinery scenario) compared to 92.2% in HCSD (216.2 

kg/tonne of dry biomass) and 68.1% in SCG (90.8 kg/tonne of dry biomass) alone. The 

residual solids left after fermentation and lipid extraction were converted via 

hydrothermal liquefaction (HTL) to produce bio-crude. The bio-crude yield was higher for 

microalgae (24.6%) than for the two blend cases (blend 1 - 17.5% and blend 2 - 19.7%). 

Theoretical energy calculations showed that the addition of SCG gave similar yields of 

fuel (gallon of gasoline equivalent) from the blends when compared to microalgae alone 

(94.7 - 96.5% depending on the blend of SCG). This work demonstrates that SCG can 

be easily incorporated with microalgae into a combined processing methodology and can 

therefore be used effectively during periods of lower availability of microalgae 

maintaining maximum operating levels of the conversion process equipment year-round. 

Moreover, co-processing algae with SCG not only leads to increased ethanol titers in the 

fermentation but also improves the lipid extraction yields.  
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3.2.3 Introduction 

Microalgae have been widely demonstrated to be a highly promising candidate for 

alternative fuel production (1,2). While the majority of research has focused on 

lipid based fuels, microalgae also contains substantial protein and carbohydrate 

fractions (3,5). Recently, we demonstrated that by combining processing stages 

together, termed Combined Algal Processing (CAP), the cost of biofuel production 

could be reduced substantially compared to a focus on lipids alone (6). The range 

of products is not limited to fuel products as a range of other bulk chemical 

precursors have been demonstrated (6,7). The CAP configuration includes an acid 

pretreatment to depolymerize the carbohydrates into monosaccharides to be 

fermented to ethanol. The fermented slurry is then submitted to lipid extraction 

with hexane as the extracting solvent. The solvent phase is separated from the 

solids and fed into a distillation column to recover the solvents for reuse in 

extraction and the lipids for upgrading to renewable diesel blendstock. Because a 

significant portion of algal biomass remains after the fermentation and extraction, 

the option of maximizing biofuel yields by carrying out hydrothermal liquefaction 

(HTL) to produce bio-crude was explored (8). 

While microalgae can be grown year round, a key challenge associated with future 

microalgal biorefineries is the lower productivity and consequently, the lower  

availability of microalgal biomass during winter, autumn and spring seasons (9-

12). This low productivity is due to seasonal temperature and insolation 

fluctuations throughout the year. Therefore, it is challenging to optimize and scale 

the downstream equipment. Wendt et al. studied the possibility to store microalgae 

in periods of higher supply (spring and summer) to be used in the lower supply 

seasons (autumn and winter) (13). However, this would require the conversion 

processes to run at less than peak summer levels, as well as risking loss of 

biomass quantity and quality through less than optimal storage, making the overall 

yearly biofuel production rates lower (14).  

In this paper, an alternative solution to this challenge is presented, blending 

microalgae with spent coffee grounds (SCG) in periods of lower productivity 

(autumn, winter and early spring).  With this approach the biorefinery can run at 

design specification operating levels throughout the entire year. During periods of 

higher microalgae supply, the operating levels would be in accordance with this 

availability, while during the periods of lower supply, SCG would be added to make 

up and keep the biorefinery running at high operating rates.  
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The United States Department of Agriculture estimates a yearly consumption of 

9.8 million tonnes of coffee beans worldwide (15). Depending on the coffee bean 

origin and on the brewing process, SCG composition includes carbohydrates (42-

55 % w/w), triglycerides (10-24 % w/w), protein (10-18 % w/w), lignin (0-25 % 

w/w), chlorogenic acids (1-3 % w/w), caffeine (0-0.4 % w/w) and ash (1-2 % w/w) 

(16-21). The high percentages of carbohydrates and triglycerides suggest that this 

can be a suitable feedstock to be blended with microalgae in the biorefinery 

concept. In addition, there is the possibility to obtain this feedstock for little or no 

costs (the only costs to be considered are the collection and transportation costs) 

and the presence of similar components in both SCG and lignocellulosic biomass. 

To this end, we aimed to demonstrate the suitability of SCG as a blending 

feedstock with microalgae in a modified CAP design (Figure 3-1).  

 

Figure 3-1 – Modified CAP biorefinery process configuration employed in this investigation. 
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3.2.4 Materials and methods 

3.2.4.1 Material acquisition 

Scenedesmus acutus 0401 (HCSD) was grown outdoors in flat panel 

photobioreactors under nitrogen deplete conditions to increase the concentration 

of lipids and carbohydrates in the biomass.  The seed was grown in outdoor 

reactors using nitrate as the nitrogen source during scale up. A total of 8 reactors, 

at 660 L/ reactor, were used to produce the biomass.  Harvesting was 

accomplished using Alfa Laval centrifuge (Warren, MI). The harvested biomass 

was shipped frozen to NREL and stored frozen till needed. Spent coffee grounds, 

provided by the NREL café, were homogenized by thorough stirring where big 

agglomerates were broken down to smaller particles. The original composition of 

these two feedstocks is present in Table 3-1.  

Both the algae and spent coffee grounds feedstock samples were prepared as 

follows: 250 g of sample were weighed into a preweighted cannister; followed by 

the addition of deionized water to make up a solution of 25% solids (considering 

the moisture content of both feedstocks – 35.4% for microalgae and 35.9% for 

spent coffee grounds); sulphuric acid was added to obtain a final solution of 2% 

H2SO4. The blends were then prepared by mixing the two feedstocks in the below 

mentioned percentages and the same procedure used in the prepared of the pure 

streams was then followed. The composition of the four slurries prepared are as 

follows: 

• HCSD – Scenedesmus acutus  

• SCG – spent coffee grounds  

• Blend 1 – 40 % HCSD and 60% SCG (w/w) – representing winter 

• Blend 2 – 60 % HCSD and 40% SCG (w/w) – representing autumn and 

early spring 

The percentages of microalgae and SCG in blend 1 and 2 representing winter and 

autumn seasons were based on results obtained from a model previously 

developed at NREL (22-23). 
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Table 3-1 – Original feedstock and blends biomolecular composition. 

 %   Scenedesmus acutus Spent Coffee Grounds 

FAME  23.5 16.3 

Carbohydrates 38.1 50 

 Glucose 27.5 9.7 

 Galactose 1.9 11.2 

 Mannose 8.7 28.7 

Protein  14.7 11 

Ash  2.3 2.2 

Total   78.6 79.5 

 

3.2.4.2 Acid pretreatment 

Pretreatment experiments were carried out in a bath-type ZipperClave® reactor, 

previously described (6,24,25). 250 g of wet biomass were loaded into the reactor. Water 

and sulfuric acid were added achieving a 25% (w/w) total solids and 2% (w/w) H2SO4 

solution (considering the biomass moisture). The reactor was heated up to 155 °C with 

the aid of steam injection at the bottom of the reactor, increasing the pressure inside the 

reactor to approximately 5 bar. After 15 minutes the cannister containing the pretreated 

slurry was removed and cooled in ice water. A set of three replicates for each of the 

feedstocks studied was conducted to provide enough substrate for fermentation.  

A Mettler-Toledo SP precision infrared balance (Columbus, OH) was used to determine 

the total solid content of biomass at 105 °C. Additional pretreatment determinations were 

previously described (6). 

3.2.4.3 Fermentation 

A seed culture of S. cerevisiae D5A was grown in YPD at 37 °C in a shake flask 

at 225 rpm overnight.  

The triplicates obtained in the pretreatment experiments were combined and 

neutralized to an approximate pH of 5. 270 mL of pretreated slurry were added to 

the fermenters and supplemented with 30 mL of 10x yeast extract-peptone (100 

and 200 g/L, respectively) for a total volume of 300 mL. Fermenters were 

inoculated to an initial OD600 of 0.7. Fermentations were run for 48 hours while the 

fermenters were maintained at pH 5.5 (with 5 M NaOH), 37 °C and stirred at 250 

rpm. Samples were taken for HPLC analysis to determine sugar consumption and 

ethanol production during fermentation. 

Control media to replicate the sugars content of either the pretreated algae or SCG 

contained a base of yeast extract (10 g/L) and peptone (20 g/L). In addition, the 

algae control media contained approximately 23.9 g/L glucose, 2.9 g/L galactose 
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and 9.5 g/L mannose, while the spent coffee grounds control media contained 2.7 

g/L glucose, 29 g/L galactose and 54 g/L mannose. Periodic fermentation samples 

were taken for HPLC analysis. 

3.2.4.4 Lipid extraction 

The fermented slurry was put in contact with hexanes (1:1 ratio, w/w) in 

Erlenmeyer flasks with overnight agitation on a multi position magnetic stirrer plate 

(Velp, Bohemia, NY, USA). We have recently learned that ethanol can act as an 

effective co-solvent with hexanes for higher lipid yields, and so the extraction was 

performed before ethanol recovery in contrast to an earlier published procedure 

(6). The samples were then transferred to conical centrifuge tubes and centrifuged 

for 10 minutes at 2000 g. The organic phase (containing both the hexanes and 

lipids that migrated from the fermented slurry) was separated and collected in pre-

weighted glass vials and subsequently evaporated in a TurboVap concentration 

workstation (Caliper Life Sciences, East Lyme, CT, USA) at 40 °C. The glass vials 

were then left overnight in a vacuum oven at 40 °C for further residual solvent 

evaporation. The glass vials were weighed to determine the total lipids obtained. 

FAME extraction yields were calculated based on the FAME content of the original 

feedstock.    

3.2.4.5 Hydrothermal liquefaction and analysis 

The extracted slurry obtained from the lipid extraction was initially vacuum dried 

and then freeze dried to remove water, ethanol and any remaining hexanes. 1 g 

of these solids and 4 g of water were added to the HTL reactors and heated to 

300 °C (26). After 30 minutes of reaction time, the reactors were cooled in cold 

water. The contents of the reactor were then transferred to a separatory funnel. 

Dichloromethane (DCM) was used to help in the removal of any residual 

components left in the reactor and transferred to the separatory funnel. This was 

shaken and left to rest for phase separation. Once the two phases were clearly 

separated, both were removed and collected in separate pre-weighed vials. The 

bio-crude phase was submitted to solvent evaporation in a TurboVap 

concentration workstation at 40 °C followed by overnight evaporation in a vacuum 

oven at 40 °C. Vials were weighed and the dry bio-crude ash-free yields were 

determined considering the initial load of solids including ash. Biochar was 

obtained through filtration of both the organic and aqueous phases when collecting 

them from the separatory funnel. 
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3.2.4.6 Analysis 

Carbohydrate analysis 

Carbohydrate analysis followed the NREL laboratory analytical procedure 

developed by Van Wychen et al (27). This analysis consists of a two-step 

hydrolysis performed on lyophilized material (original feedstocks and intermediate 

solids). Approximately 25 mg of each sample was weighed into a pressure tube, 

followed by the addition of 250 μL of 72% sulfuric acid (Ricca Chemical Company, 

Arlington, TX) with constant vortexing. Pressure tubes were then placed in a water 

bath at 30 °C with vortexing 10 to 15 minutes. After 1 hour, samples were diluted 

with 7 mL of 18.2 mega-ohm water, vortexed and placed in an autoclave for 1 hour 

at 121 °C. Samples were then cooled down, neutralized to a pH of 6-8 using 

calcium carbonate and filtered using 0.2 μm nylon filters to HPLC vials.  

All liquid fraction samples were analyzed for total and monomeric sugars using 

the laboratory analytical procedure developed by Sluiter et al (28). Monomeric 

sugar analysis on pretreated liquor was performed by dilution of the sample 

followed by neutralization to a pH between 608 using calcium carbonate and 

filtered using 0.2 μm nylon filters into LC vials. Total sugars were determined by 

one-step hydrolysis where the samples were diluted and 72% sulfuric acid (Ricca 

Chemical Company, Arlington, TX) was added to make a solution with 4% acid 

concentration. Samples were autoclaved at 121 °C for 1 hour, let to cool down at 

room temperature, neutralized with calcium carbonate to pH 6-8 and filtered to an 

HPLC vial using 0.2 μm nylon filters.  

HPLC analysis on carbohydrates on the original feedstocks, total an monomeric 

sugars was done using a HPLC-RID (Agilent 1100 series, Santa Clara, CA, USA) 

equipped with a Shodex Sugar SP0810 (300 mm x 8 mm) column (Phenomenex, 

Torrance, CA, USA) Cation H+ and Anion CO3
- de-ashing guard cartridges (Biorad 

Laboratories, Hercules, CA, USA). Mobile phase was 18.2 mega-ohm water at a 

flow of 0.6 mL min-1. Column temperature was 85 °C and guard columns were left 

outside at room temperature.  

Monomeric sugars in the fermented samples were analyzed using an HPAEC-

PAD system due to the same elution time of mannose and ethanol. The 

monomeric sugar content of these samples was obtained by dilution and filtration 

of these samples. The HPAEC-DAD system (Dionex ICS-5000+, Sunnyvale, CA, 

USA) using a PA-1 column guard. Mobile phase was 14 mM of sodium hydroxide 

prepared in house from 50% (w/w) sodium hydroxide solution (Fisher Chemical, 
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Hampton, NH, USA) with a flow rate of 1.0 mL min -1. Both the column and guard 

were heated up to 35 °C.  

Ethanol analysis 

Fermentation samples for ethanol analysis were filtered and analyzed for ethanol 

content using an HPLC-RID (Agilent 1100 series, Santa Clara, CA, USA) 

equipped with an Aminex HPX-87H (300 mm x 7.88 mm) organic acids column 

and a Cation H+ guard column (Biorad Laboratories, Hercules, CA, USA). 0.01 N 

sulfuric acid was used as mobile phase at a flow of 0.6 mL min-1. Column was 

heated up to 55 °C. Mobile phase prepared in house using 10 N sulfuric acid 

(Ricca Chemical Company, Arlington, TX, USA).  

FAME analysis 

FAME analysis on the raw biomass and extracted FAME was performed following 

the laboratory analytical procedure developed by Van Wychen et al. where 7 to 

10 g of sample were weighed in GC vials followed by drying in a vacuum oven at 

40 °C for two days (29). 25 μL of internal standard consisting of tridecanoic acid 

methyl ester, 200 μL of 2 : 1 (v/v) chloroform:methanol and 300 μL of 0.6 M HCl: 

methanol were added to the samples using gas-tight syringes. Vials were then 

sealed and vortexed before being placed in a preheated block at 85 °C. After 1 

hour, vials were removed from digital dry block and left to cool down at room 

temperature for no longer than 1 hour. 1 mL of HPLC grade hexane was added to 

the samples. Samples were vortexed and left undisturbed for 1 hour. A fraction of 

the upper phase of the samples (FAME in hexane) was removed from the vials, 

transferred to a new set of GC vials and diluted in hexane depending on the 

biomass nature. A GC-FID (Agilent 7890B, Santa Clara, CA, USA) system 

equipped with a DB-Wax capillary column 30 m, 0.25 mm ID and 0.25 μm FT, a 1 

μL injection at 10 : 1 split ratio, a constant flow rate of 1 mL min-1 of helium, inlet 

temperature of 250 °C and an oven temperature at 100 °C for 1 minute, 25 °C  

min-1 up to 200 °C, hold for 1 minute, 5 °C min-1 up to 250 °C, hold for 7 minutes, 

FID at 280 °C with 450 mL min-1 zero air, 40 mL min-1 of hydrogen and 30 mL   

min-1 of helium. 

Protein analysis 

Percent protein was performed by determining the nitrogen percentage in the 

samples (slurry, liquor or lyophilized solid material) and then using 4.78 as a 

conversion factor to obtain final protein percentage (30). For original biomass or 

intermediate solid samples, approximately 5 to 10 mg (depending if it is original 
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biomass or intermediate solid, respectively) of lyophilized material was weighted 

on a small tin foil sheet, which was then folded and pressed into a packet. For 

liquid and slurry samples, 10 or 20 mg of samples, respectively, was weighted into 

a small tin foil capsule. Nitrogen analysis was performed in an Elementar Vario El 

Cube CHN Analyzer (Ronkonkoma, NY, USA). Samples were combusted at a 950 

°C in an oxygen rich environment, where the produced gas was run through a GC 

column and detected via a thermal conductivity detector.  

Moisture and ash analysis 

The laboratory analytical procedure developed by Van Wychen et al.  was used to 

determine the moisture and ash content in the samples (31). Approximately 25 mg 

of biomass was weighed into pre-weighed crucibles, which were placed in an oven 

at 40°C for two days. Crucibles were removed from the oven, cooled at room 

temperature and weighed to determine moisture content. Same crucibles were 

then placed in a muffle furnace increasing the temperature as follows: 12 min at 

105°C, followed by an increase to 250°C at 10°C/min, 30 min at 250°C, followed 

by an increase at 20 °C min-1 until 575°C, 180 min at 575°C, then a temperature 

decrease and held at 105°C. The crucibles were then cooled at room temperature 

and weighed to determine the ash content.  

3.2.4.7 Theoretical conversion yields calculations 

Theoretical conversion yields were calculated assuming that all fermentable 

sugars are being converted to ethanol with a 51% theoretical yield and the fatty 

acid are converted to renewable diesel with a 78 wt.% theoretical yield (32,33). 

The HTL bio-oil calculation was made using the Demirbas equation (Eq. 3.1) to 

determine the energy content of the bio-oil produced (34). 

 

 
𝐻𝐻𝑉 [𝑀𝐽/𝑘𝑔]  = 33.5(𝐶)  + 142.3(𝐻) − 15.4(𝑂) Eq. 3.1 

 
  

Where 𝐶, 𝐻 and 𝑂 are the percentages of carbon, hydrogen and oxygen, 

respectively, in the bio-oils obtained. All the results were converted to MJ 

equivalent for comparison reasons and then to gasoline equivalents considering 

1 gasoline gallon equivalent is 122.48 MJ (35). Conversion from bio-oil to fuel was 

assumed to be 100% (36). This is then converted to metric units (L/tonne). 
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3.2.5 Results and discussion 

3.2.5.1 Acid pretreatment 

The aim of pretreatment is to depolymerize the carbohydrates present in the 

feedstock into fermentable sugars. The pretreatment of HCSD gave a high level 

of glucose, up to 26.2 g/L (Figure 3-2), approximately 44% of the available glucose 

in the algal biomass is therefore released as monomeric glucose at this stage. 

These yields are calculated based on the sugar concentration before and after 

pretreatment. The monomeric yield is obtained by the ratio of the monomeric 

glucose after pretreatment divided by the total (monomeric and oligomeric) 

glucose in solution before pretreatment. Additionally, lower quantities of galactose 

and mannose are also released with a substantial proportion being present as 

oligosaccharides. Alternatively, SCG does not contain substantial levels of 

glucose, and only 12% of the original glucose present in the SCG is released 

during pretreatment to monomeric glucose. This suggests that at least some of 

the glucan present in SCG is in a recalcitrant form, possibly cellulose. It does not 

appear that the low glucose yields were due to degradation of the glucose to 

hydroxymethyl furfural (HMF) during pretreatment because HMF levels did not 

exceed 1.1 g/l in the liquor phase suggesting that the pretreatment severity was 

not excessively high. However, high levels of galactose and mannose are 

recovered from the pre-treatment, demonstrating that both algal and SCG 

hydrolysates would be suitable for further fermentation. A blend of both the HCSD 

and SCG released approximately the sugar profile that would be expected from 

the proportion of SCG added. In total the sum of sugars available for fermentation 

is therefore higher with the blends than the algal biomass alone.  

 



121 
 

 

Figure 3-2 – Major fermentable sugars released from the pre-treatment, as monosaccharides (blue), 
oligosaccharides (green) and sugars either converted to inhibitors or unavailable for fermentation (grey). 

 

3.2.5.2 Fermentation 

The resulting slurries from pretreatment were pH adjusted and fermented (Figure 

3). In order to determine if the slurries contained inhibitory compounds, control 

fermentations having the same sugar profiles as the HCSD and SCG slurries were 

also investigated. The monomeric sugars were consumed at approximately the 

same rate in the controls as compared to the slurries and is suggestive that there 

are no nutrient limitations or inhibitory compounds in either the HCSD or SCG 

slurries (Figure 3-3 a-d). S. cerevisiae is well suited for these fermentations 

because it can metabolize all three of the major sugars present in both algae and 

SCG.  All sugars were consumed within 24 hours, with some diauxic behavior 

observed with glucose being consumed preferentially.  

The blends of SCG and HCSD behaved similarly with ethanol concentrations of 

20.3 g/L achieved for blend 1 and 18.6 g/L for blend 2 falling between the 

concentrations obtained for microalgae (14.0 g/L) and SCG (22.7 g/L) (Figure 3-3).   
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(a) Control HCSD (b) Control Spent coffee grounds 

  

(c) HCSD (d) Spent Coffee Grounds 

  

(e) Blend 1 (f) Blend 2 

Figure 3-3 – Sugar consumption and ethanol production during fermentation of the various feedstocks 

 

The ethanol produced from the fermentation was compared to the theoretical maximum, 

based on the monomeric sugar content of the pretreated slurry assuming a 51% 

theoretical ethanol fermentation yield (24,32). The yields ranged from 77-94% (Table 

3-2) demonstrating the suitability of fermentation after pretreatment. 
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Table 3-2 – Ethanol titers and yields in the fermentation for the four pretreated slurries 

 Titer [g/L] Yield (%) 

Control HCSD 15.8 ± 0.0 85.6 ± 2.6 

Control SCG 31.1 ± 0.0 71.3 ± 4.6 

HCSD 14.0 ± 0.2 93.6 ± 0.3 

SCG 22.7 ± 0.0 80.3 ± 2.7 

Blend 1 20.3 ± 0.2 76.8 ± 2.6 

Blend 2 18.6 ± 0.1 86.7 ± 4.9 

 

3.2.5.3 Lipid extraction 

After fermentation, the lipids were recovered from the fermented slurry using three 

successive rounds of hexane extraction (Figure 3-4), with a combined yield of 

>92% from the algae and blend materials. This demonstrates that lipid is not being 

consumed or degraded by the yeast during fermentation and the high yield is due 

to the presence of ethanol produced by fermentation acting as a co-solvent. 

However, the lipid yields obtained on the fermented SCG alone, were considerably 

different from the other fermented slurries. In the first extraction the yield was 

considerably lower than the other samples, and overall only 68% of the original 

lipid was recovered. This was presumably due to the formation of a double layer 

observed during the agitation of the SCG fermented slurry with the extraction 

solvent, while this double layer was not observed for microalgae and both blends. 

The surface of the SCG might be more hydrophilic and resistant to hexane mass 

transfer. There are small amounts of surface active compounds (e.g. peptide, 

protein, polar lipids) in algal biomass and these surfactant might help reduce the 

surface tension between the hexane and biomass, increased hexane mass 

transfer for a better extraction (37). On the other hand, stable emulsion caused by 

surfactant is not favored for phase separation after the extraction, but we noticed 

that emulsion was not stable after the extraction and could easily be broken by 

gravimetric settling or a centrifugation. The higher lipid yield in a blend system 

indicates that lipid yield was improved by the presence of algal biomass. This 

problem could be solved by increasing the agitation of extraction or adding a fourth 

extraction step. However, as this was not observed with the blends, it is unlikely 

to be a problem in the biorefinery system. 
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Figure 3-4 – 1st, 2nd and 3rd extraction yields. These yields are calculated based on the amount of lipids 
obtained in extraction and the lipids in the original feedstock 

 

Applied to a biorefinery scenario and given the increased lipid extraction efficiency 

of the blends, an increase in total lipids extracted is realized from the blends over 

algae or SCG alone (Table 3-3).  

 

Table 3-3 – Percentage of lipids extracted and total mass of lipids extracted per tonne of dry biomass 
extrapolated to a biorefinery scenario   

 
% lipids extracted Total lipids extracted [kglipids/tonnebiomass, dry] 

HCSD 92.2 216.9 ± 3.2 

SCG 68.1 90.8 ± 1.2 

Blend 1  95.5 173.8 ± 3.5 

Blend 2  99.7 193.5 ± 0.1 

 

The extracted lipids were converted into fatty acid methyl esters (FAME) to assess 

the lipid profile (Figure 3-5). The fatty acid extracted from HCSD was 

predominantly oleic acid, whereas from the SCG, was linoleic and palmitic. This 

is in keeping with the typical fatty acid profile of both feedstocks (16, 38). The lipid 

extracted from the blends was a direct mixture of the two profiles.  
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Figure 3-5 – Lipid composition (FAME composition as an average between the three extractions) 

 

The composition of residual solids remaining after fermentation, extraction of the 

lipids, and drying is given in Table 3-4. This material is rich in unfermented, 

complex, polymeric carbohydrates and protein. The sum of all the percentages of 

all the components specified is approximately 70%. Such low mass closure can 

be explained by the presence of unquantified compounds in algal biomass (e.g. 

nucleic acids, algaenan, moieties from polar lipids, etc) and unquantified 

compounds from SCG (e.g. lignin, caffeine and chlorogenic acids). After the 

consumption of monomeric carbohydrates during fermentation and the extraction 

of lipids, these unquantified compounds make-up a larger proportion in the 

residual solids. 

 

Table 3-4 – Residual solids composition 

 Carbohydrates (%) Lipid (%) Protein (%) Ash (%) 
HCSD 22.3 ± 0.7 1.9 ± 0.2 30.7 ± 0.2 14.4 ± 0.5 
SCG 21.3 ± 1.3 5.1 ± 0.8 25.2 ± 0.1 16.7 ± 0.8 

Blend 1 23.3 ± 1.5 2.8 ± 0.6 28.3 ± 0.2 14.7 ± 0.6 
Blend 2 20.1 ± 0.1 1.9 ± 0.2 29.8 ± 0.3 14.8 ± 0.1 

 

3.2.5.4 Hydrothermal liquefaction 

The residual solids still have large amounts of organic carbon which has the 

potential to be valorized into further useful components (8). To this end they were 

converted via hydrothermal liquefaction. The dried solids were reconstituted with 

water and subjected to HTL, yielding bio-oil to further improve the biofuel yield of 

the biorefinery. The bio-crude yields are given in Table 3-5.   
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Table 3-5 – HTL bio-crude gravimetric yields (dry ash free basis) 

 Bio-crude gravimetric yield (%) Bio-char gravimetric yield (%) 

HCSD 24.6 ± 0.32 11.0 ± 2.5 

SCG 20.0 ± 6.0 6.4 ± 3.5 

Blend 1 17.5 ± 5.1 9.4 ± 3.4 

Blend 2 19.7 ± 6.3 13.6 ± 0.9 

 

The yields were reasonably similar, ranging from 18 to 25%, being the highest for 

microalgae and the lowest for the blend 1, which is the blend with higher 

percentages of SCG. Unlike the other conversion processes employed, the bio-

crude results for the blends do not fall between the results for SCG and 

microalgae, which correlates with the reduced lipid content in the blends when 

compared to the residual produced from the SCG (Table 3-5).  

3.2.5.5 Biofuel precursor yields in a biorefinery scenario 

The CAP scheme, as applied to microalgae and typical seasonal blends with SCG 

in a biorefinery scenario, produces three biofuel precursors: bioethanol, lipids and 

bio-crude. To directly compare the overall output of each fractionation and 

recovery step, the energy content of each fraction was converted into gasoline 

equivalents (Table 3-6). The HTL bio-crude energy content (Table 3-7) was 

calculated based on its elemental composition (as described in the methods 

section). All the values were then converted to the same units (MJ equivalent) and 

finally to gasoline equivalents in metric units (L per tonne).  

 

Table 3-6 – Fuel yields in the four feedstocks in a potential biorefinery scenario.  

Theoretical calculations HCSD SCG Blend 1 Blend 2 
Total Carbohydrates (% DW) 38 50 45 43 

Ethanol (% DW)a 19 25 23 22 
Gasoline equivalent (L/Tonne)b 162 211 191 182 

MJ equivalent 4754 6191 5616 5329 
Fatty Acids (FAME) (% DW) 24 16 19 21 

Hydrocarbon (% DW)c 18 13 15 16 
Diesel equivalent (L/Tonne) 216 150 176 189 

MJ equivalent 6519 4530 5325 5723 
HTL bio-oil (% DW)d 5 4 4 4 
bio-oil MJ equivalente 1558 1123 1212 1332 

Total Gasoline Equivalent (L/Tonne) 437 404 414 422 

a 51% glucose-to-ethanol theoretical conversion; b 65.8% ethanol-to-gasoline conversion; c 78% FAME-

to-hydrocarbon theoretical conversion; d HTL experimental results; e based on experimental results and 

equation 1 
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Table 3-7 – CHN analysis of bio-crude and respective HHV calculated using Eq. 3.1 

 Elemental Analysis  
 C (%) H (%) N (%) O (%)a HHV [MJ] 

HCSD 74.1 ± 0.3  8.6 ± 0.1 9.2 ± 0.0 8.1 ± 0.3 35.8 
SCG 72.8 ± 0.7 8.2 ± 0.1 9.2 ± 1.0 9.8 ± 0.2 34.6 

Blend 1 74.0 ± 0.5 7.9 ± 0.1 9.0 ± 0.2 9.0 ±0.5 34.7 
Blend 2 75.0 ± 1.9 8.2 ± 0.4 9.1 ± 0.3 7.8 ± 2.5 35.6 

a Determined by the difference between the totals and the sum of carbon, hydrogen and nitrogen 

percentages. 

 

Excitingly, the seasonal inclusion of SCG blended with algae into the CAP process 

produces similar levels of fuel energy (measured in gasoline equivalents). While 

HCSD produced the highest gasoline equivalent value (437 L/tonne), the blends 

with SCG were comparable producing between 414-422 gasoline equivalent 

L/tonne. This is a reduction of between 3.5 - 5.3% respectively, in the energy 

produced compared to when HCSD is used. This is mainly due to the higher 

carbohydrate content, leading to more ethanol which is less energy dense than 

renewable diesel from lipids. And these numbers could be higher if the 

pretreatment resulted in higher monomeric sugar yields, because carbohydrates 

are a better feedstock for fermentation to ethanol than for HTL where they primarily 

contribute to biochar production (39).  Further development of this process to 

better match the feedstock would be warranted to maximize total biofuel yields 

and reduce overall production costs.  Such results suggest that these blends can 

be effective to mitigate periods of lower microalgae supply to maintain biofuel 

precursor production with minimal overall impact.   
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3.2.6 Conclusion 

In this investigation SCG were assessed to evaluate whether they could be used 

to make up the shortfall in microalgae production in colder seasons of the year 

(winter and autumn). To this end, blends of Scenedesmus acutus and SCG were 

co-processed in the CAP process, previously demonstrated to have higher 

economical potential than alternative algal platforms. The aim of the acid 

pretreatment step was to depolymerize the macromolecules in the feedstock into 

fermentable sugars. The pretreatment results were satisfactory as the blends 

yielded higher concentrations of fermentable sugars (glucose, galactose and 

mannose) than the microalgae feedstock. These sugars were then all consumed 

in the fermentation leading to higher quantities of ethanol produced (20.3 g/L for 

blend 1 and 18.6 g/L for blend 2) compared to the 14.0 g/L produced in HCSD. 

The lipids extracted from the fermented slurries of the blends resulted in higher 

overall yields, though this represented a slight reduction in the total amount of 

lipids extracted in the blends (62-68 kg/tonne of wet biomass) compared to the 

lipids extracted from HCSD alone (76.8 kg/tonne of wet biomass) because SCG 

had a lower lipid content than algae. Finally, the residual solids left after the lipid 

extraction were used as feedstock in an HTL process to produce bio-crude. The 

gravimetric yields obtained in this process for the different feedstocks were 

relatively similar, ranging from 18 to 25% (AFDW).  

To assess the potential of these blends compared to pure microalgae, the energy 

content of the three fuel products was compared. Although the blends led to a 

lower total gasoline equivalent than HCSD, the differences registered are 

relatively small (5.3% for the blend representing winter and 3.5% for the blend 

representing autumn). This work demonstrates that SCG can be effectively used 

as a blend in microalgae-based biorefineries using the CAP configuration during 

periods of lower supply of this feedstock. These results also open up the possibility 

that SCG alone could serve as a feedstock for a multi-product biorefinery concept 

similar to that proposed for algal biomass. While it is true that the energy released 

per tonne of SCG was less than either algae alone or the two algae/SCG blends, 

yield improvements are to be expected with further process developments. In 

addition SCG, unlike algal biomass, is already being produced at a volume of 9.8 

million tonnes per year and largely relegated to landfills or low value products. 

This work offers the opportunity to evaluate the commercial potential for large-

scale collection of SCG for production of fuels and chemicals. 
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Chapter 4  

An integrated biorefinery to produce 5-

hydroxymethylfurfural and alternative fuel precursors from 

macroalgae and spent coffee grounds 
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4.1 Context  

Macroalgae represent another source of biomass that does not compete with land for 

food production. However, unlike microalgae, that can be grown in arid lands, 

macroalgae are cultivated in both saltwater and freshwater systems. This can take place 

both through aquacultures, the specific farming of targeted macroalgal strains or through 

wild harvesting in bloom areas. Therefore, macroalgae presents an opportunity to 

countries with extensive coastlines, or that simply do not have the land area for extended 

microalgal cultivation.  

Like other biomass sources, macroalgae require appropriate conditions for their growth. 

While some species prefer warmer water temperatures, others prefer colder waters, and 

extensive biomass production is observed even in climates not suited to microalgal 

growth. The availability of nutrients and solar exposition are variables that lead to 

macroalgae with different biomolecular compositions. In addition, it is rare to be able to 

source just one species from any system. Therefore, an integrated biorefinery using 

macroalgae as its main feedstock, must always take into account the type of macroalgae 

and its biomolecular composition. 

To this end, the present study aimed to convert two species of macroalgae, Ulva lactuca 

and Chorda filum, collected in the South West of the United Kingdom, in an integrated 

biorefinery design to produce 5-hydroxymethylfurfural (HMF). These two macroalgae 

belong to two different families, Chlorophyta (green algae) and Heterokontophyta or 

Ochrophyta (brown algae), respectively. The composition of these macroalgae may be 

different from other samples of the same species collected elsewhere, which might lead 

to different results in the present biorefinery design.  

Similarly to the microalgae presented in chapter 3, the cultivation and processing of 

macroalgae also presents a seasonality problem. To tackle this issue, macroalgae was 

blended with spent coffee grounds (SCG). Two blends were studied for each of the 

macroalgae species used. The blend with lower percentage of macroalga represents the 

season corresponding to the lower production, while the blend with higher percentage of 

macroalga represents intermediate seasons. The blends were tested in parallel with the 

pure feedstocks, both macroalgae and SCG.  

Additionally to the production of HMF, this approach also investigated the co-production 

of a biocrude oil and bio-char, using hydrothermal liquefaction.  

This chapter is submitted in an alternative format in line with Appendix 6A of the 

“Specifications for Higher Degree Theses and Portfolios” as required by the University 

of Bath. 
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All the experimental work in this chapter was undertaken by the author apart from the 

lipid analysis that was performed by Dr. Tim Woodman, a co-author on this paper.  

The paper is to be submitted to the RSC journal Sustainable Energy and Fuels. 
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4.2.2 Abstract 

5-hydroxymethylfurfural (HMF) is a promising platform chemical produced from the 

dehydration of C6 sugars, that is a precursor for a range of renewable fuels and polymers. 

In this study, an integrated macroalgal biorefinery was designed to produce an array of 

products including HMF, hydrothermal liquefaction (HTL) biocrude and a biochar. In this 

process two different species of macroalgae, Ulva lactuca and Chorda filum, were 

investigated and co-processed with spent coffee grounds to assess if such blends could 

be effectively used, with the spent coffee grounds mitigating for lower macroalgae 

availability throughout the year. U. lactuca and the spent coffee ground blends were 

effectively used in a biorefinery design for the production of HMF. Interestingly, blends 

yielded higher amounts of HMF (35-47 g per kg of dry biomass processed) than the 

separate components alone. This is presumably due to the elevated amount of C6 sugars 

being available from the macroalgae, coupled with the presence of lipids from the coffee 

grounds. The lipids likely form a separate organic layer in the dehydration reaction, into 

which the HMF migrates after being formed in the aqueous fraction, halting further 

dehydration reactions to levulinic acid. The HTL on the resultant solids from dehydration 

yielded a relatively similar amount of biocrude (68-78 g per kg of dry biomass) compared 

to spent coffee grounds (SCG) (90 g per kg of dry biomass). However, the C. filum 

biorefinery yielded far lower biocrude and HMF, presumably due to the lower lipid and 

C6 sugar content in this feedstock. Overall, an HMF biorefinery from macroalgae is 

plausible, with spent coffee grounds being a highly suitable material to make up for 

seasonal availability. However, the large difference in yields from macroalgal species 

demonstrates the importance of high lipid content, alongside higher C6 sugar 

composition, in the macroalgal feedstock.  
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4.2.3 Introduction 

Macroalgae is a promising feedstock for the next generation of biorefineries as it does 

not compete with food crops, has a higher rate of carbon dioxide fixation than land crops 

(1), has no freshwater requirement and is simple to process (2). In addition, its cultivation 

can help to alleviate the eutrophication in seas and oceans and aid in carbon capture 

and sequestration (3). There are over 30.1 million tonnes currently cultivated worldwide 

(4,5), predominantly in China and India. The UK has one of the most extensive coastlines 

in Europe (approximately 12,500 km) and the ideal water temperature for seaweed 

production. These conditions and the underdeveloped market present a large 

opportunity for further development (6). There are a wide range of seaweed species 

growing around the UK, that inevitably, have different properties and components 

depending on the type, habitat, cultivation method and harvest time (7,8). However, the 

predominant feature across almost all species are the elevated carbohydrate levels (65-

75%) (9).  

Several authors have demonstrated that macroalgae can be used in the hydrothermal 

liquefaction process (10). Raikova et al presented a comprehensive study on a broad 

range of macroalgae species from the UK and the ideal hydrothermal liquefaction 

conditions to convert these into bio-crude and nutrient partition into the aqueous phase 

(11). In a further study the authors also combined plastics present in the ocean with the 

macroalgae demonstrating that this led to a higher biocrude heating value (12).  

However, the use of macroalgae in an HTL-based industry presents two key issues. The 

first is the relatively low production of crude from the majority of species when compared 

to microalgae (13). This is primarily because of the elevated carbohydrates levels 

(relative to the more proteinaceous microalgae), that predominantly breakdown into 

insoluble biochar, a lower quality fuel than the biocrude (14–16).  

Indeed, the majority of research on macroalgal valorisation has focussed on the 

conversion of the carbohydrate fraction, mainly through fermentation to ethanol (17) and 

alternative cellular products (18). However, the saccharides must first be extracted and 

processed into fermentable sugars, there are a high number of competing pathways for 

carbon in any fermentation and the breadth of sugars that any one organism would need 

to metabolise make these routes challenging. A simpler, more targeted approach, is the 

acid catalysed breakdown of the macroalgal saccharides to produce 5-hydroxymethyl 

furfural (HMF). HMF is a highly promising chemical building block, with a forecasted 

market of 61 million USD by 2024 (19,20). Its production from carbohydrates and the 

potential to be converted into high value biofuels make this molecule an important 
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intermediate between the carbohydrate and petroleum-based industry (21).  HMF has 

the potential to be converted into dimethylfuran (DMF), a biofuel with high energy density; 

and 2,5-furandicarboxylic acid (FDCA) a building block used in the production of 

polyethylene 2,5-furandicarboxylate (PEF), an emerging biobased polymer proposed to 

replace polyethylene terephthalate (PET) (22,23). The production of HMF from 

macroalgae has been demonstrated including from isolated agar (24) and the red 

macroalga Kappaphycus alvarezeii (25).  

Another key issue is the seasonal growth of macroalgae, which does not lend itself to an 

effective all year supply, thereby limiting the size or scope of a potential biorefinery (26–

29). Recent studies have shown that blending with alternative biomass sources can be 

used to even out supply, and produce products all year round. For example, Jin et al 

showed that co-liquefaction of microalgae and macroalgae was possible, and even 

increased the bio-crude energy heating value compared to when the feedstocks were 

processed separately (30). Similarly, we recently demonstrated that microalgal 

seasonality can be effectively addressed by blending this feedstock with spent coffee 

grounds (SCG) in periods where the microalgae production is lower during the colder 

parts of the year (31). In this biorefinery set-up the saccharides were extracted and 

fermented before the resulting stillage was processed through HTL. Spent coffee 

grounds are a promising material for bioprocessing, which are available all year round, 

relatively stable to store, with the worldwide production of SCG being approximately 10 

million tonnes in 2019 (32). The composition of SCG varies but, similarly to macroalgae, 

they contain high carbohydrates (42-55 w/w %) with a similar C6 composition (33). We 

recently demonstrated the suitability of producing HMF from spent coffee grounds in an 

integrated biorefinery design using an organosolv fractionation to isolate cellulose (34).  

In this investigation therefore, we aimed to combine these approaches and address two 

fundamental issues impeding the development of macroalgal biorefineries. To this end, 

an integrated approach to increase the atom efficiency and produce both HMF and HTL 

products was demonstrated, co-processing the biomass with SCG to even out 

seasonality issues and allow steady production all year round.  
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4.2.4 Methods 

4.2.4.1 Materials 

Spent coffee grounds were acquired from a local café at the University of Bath. A sample 

was weighed and placed in the oven at 60 °C. After two days the sample was weighed, 

and moisture content determined.  

Ulva lactuca and Chorda filum were sampled from Broadsands Beach, Paignton, UK. 

Ulva lactuca and Chorda filum were sampled on the 30/07/2019 and 05/08/2019, 

respectively. Both macroalgae were washed in freshwater, and freeze dried prior to 

storage. 

In addition to the ‘pure’ feedstocks of U. lactuca, C. filum and spent coffee grounds, two 

blends were prepared for each macroalgae. The blend with 40% macroalga and 60% 

SCG simulates a season when there is less production of macroalgae (possibly winter – 

depending on the strain) and the blend with 60% macroalgae and 40% SCG simulate an 

intermediate season between maximum and minimum macroalgae production (possibly 

spring or autumn). Therefore, the seven feedstocks studied are as follows: 

• pure Ulva lactuca – UL  

• Blend 1 – 60% UL + 40% SCG – UL0.6 + SCG0.4 

• Blend 2 – 40% UL + 60% SCG – UL0.4 + SCG0.6 

• pure spent coffee grounds - SCG 

• Blend 3 – 40% CF + 60% SCG – CF0.4 + SCG0.6 

• Blend 4 – 60% CF + 40% SCG – CF0.6 + SCG0.4 

• pure Chorda filum – CF  

 

4.2.4.2 Acid dehydration 

20 g (dry weight) of feedstock were added to a 300 mL Parr reactor (Parr Company 

Moline, IL, USA, 4560 mini reactors), followed by the addition of a mixture of 2% sulphuric 

acid (provided by Sigma-Aldrich) in deionised water to perform a total of 100 g. The 

reactor was weighed before the reaction. Agitation was initiated and the reactor heated 

to 155 °C, at which point the temperature was held for 15 minutes. The reactor was then 

cooled down with the help of an in-built cooling tube system supplied with cooling liquid 

at -4 °C and an ice bath in contact with the outside walls of the reactor. On average, 

cooling from 155 °C to 30 °C took around 20 minutes. The reactor and its contents were 

weighed to determine gas losses.  
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4.2.4.3 HMF extraction 

The contents of the reactor were poured into a filter paper in a funnel, which was on top 

of a separatory funnel. This filtration step was performed as it improves the accuracy of 

extraction yields – the presence of solids in solution prevents a good distinction between 

the organic and aqueous phases. The filtrate flows into a 500 mL separatory funnel, 

whereupon 100 mL of a mixture of dicholoromethane (DCM) and 2-butanol (50:50 w/w 

%) were added to the filtrate. The separatory funnel was closed, shaken and left to rest 

until the two phases were clearly separated. Organic phase (containing the extraction 

solvent and HMF) and aqueous fraction were collected in separate measuring cylinders 

for volume measure and an aliquot of each was collected for sugar, furfural and HMF 

quantification in HPLC analysis.  

The recovery ratio of HMF in the extraction is calculated as follows:  

 

 
𝑅𝐻𝑀𝐹 =

𝐶𝐻𝑀𝐹,𝑜𝑟𝑔 × 𝑉𝑜𝑟𝑔

𝐶𝐻𝑀𝐹,𝑜𝑟𝑔 × 𝑉𝑜𝑟𝑔 + 𝐶𝐻𝑀𝐹,𝑎𝑞 × 𝑉𝑎𝑞
 Eq. 4.1 

 

Where 𝐶𝐻𝑀𝐹,𝑜𝑟𝑔 and 𝐶𝐻𝑀𝐹,𝑎𝑞 are the concentration of HMF in the organic and aqueous 

fraction, respectively, in g/L. 𝑉𝑜𝑟𝑔 and 𝑉𝑎𝑞 are the volume of the organic and aqueous 

fraction, respectively. 

4.2.4.4 Second acid dehydration 

The aqueous phase collected from the HMF extraction was combined with the solids 

obtained from filtration upstream from HMF extraction. This slurry was then added to the 

same reactor used in the first acid dehydration and the same reaction procedure was 

used (temperature, agitation, heating ramp, reaction time and cooling).  

4.2.4.5 HMF second extraction 

The initial procedure performed in the first HMF extraction was followed with the only 

difference that the solids were dried overnight in an oven at 40 °C to reduce moisture 

content to residual quantities and to improve processing via hydrothermal liquefaction. 

The solids could have been fed to HTL as they were, if the moisture content was known, 

however this approach would imply a reduction in the amount of added water to HTL 

based on the moisture present in the solids.  

4.2.4.6 Hydrothermal liquefaction (HTL) 

HTL reactions were performed in a 50 mL stainless steel batch reactor, equipped with a 

pressure gauge, pressure relief valve and a needle valve. 3 g of dried solids were 
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weighed, loaded and mixed with 15 g of deionised water into an HTL reactor. The reactor 

was tightly sealed (due to high pressures) and placed in a furnace at 800 °C. 

Temperature was closely monitored using a thermocouple until it reached 350 °C 

(approximately between 150 and 180 bar). At this temperature the reactor was removed 

from the furnace and left to cool at and to room temperature. Gas phase was measured 

and collected from the needle valve (using water displacement technique). Reactor was 

opened and its contents were poured onto a pre-weighed filter paper for separation of 

the aqueous phase from the insoluble biocrude and biochar. The filtrate (aqueous phase) 

was poured through the funnel into a pre-weighed vial. The vial and the filtrate obtained 

were weighed for total aqueous fraction weight determination. An aliquot of the aqueous 

fraction was oven-dried at 60 °C to determine the aqueous fraction residue yield. The 

reactor and the filtered solids were then thoroughly washed (using the same filter paper) 

with chloroform into a pre-weighed round bottom flask until the filtrate was clean. A rotary 

evaporator was used for chloroform removal at 40 °C. Once the solvent was evaporated, 

the flask was weighed and the biocrude fraction gravimetric yield was obtained. Solids 

were dried in an oven at 60 °C. Filtered solids were weighed for biochar gravimetric yield 

determination.  

4.2.4.7 Analysis 

Carbohydrates and levulinic acid analysis  

Aqueous and organic fractions obtained after the first and second extractions were 

filtered and analysed for carbohydrate content using an high performance liquid 

chromatography (HPLC), from Agilent Technologies, equipped with an Aminex HPX-87H 

organic acids column (300 mm x 7.88 mm, Bio-Rad Laboratories) and a refractive index 

detector (RID) was used to quantify the carbohydrates in this study.  5mM H2SO4 solution 

was used as mobile phase at a flow rate of 0.6 mL/min. Column was heated up to 65 °C. 

Mobile phase was prepared using sulphuric acid provided from Sigma-Aldrich. 

HMF and furfural analysis 

An HPLC (Agilent Technologies) equipped with a diode-array detector (DAD) and an 

Aminex HPX-87H column (300 mm x 7.88 mm, Bio-Rad Laboratories) was used in the 

HMF and furfural analysis on the aqueous and organic samples obtained after both 

extractions. The mobile phase (5mM H2SO4 solution prepared in house using sulphuric 

acid provided from Sigma-Aldrich) was flowing at 0.6 mL/min. Column was heated up to 

65 °C. DAD signal set at 280 nm. 
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Lipid analysis  

Lipid composition was determined using 1H nuclear magnetic resonance (NMR). The use 

of NMR techniques to study olive oil is well established and reasonable methods exist 

based on integration of the signals for distinct components of the triglyceride (Figure 4-1) 

(35,36). The composition can be calculated by combining the various signal intensities, 

such as the glyceryl proton at 5.25 ppm, the unsaturated protons between 5.3 and 5.45 

ppm, and the bis-allylic protons (linoleic and linolenic) at 2.76 and 2.80 ppm. Notably 

several different approaches to these calculations have been reported, but all are in good 

agreement with data obtained via GC methods. The method used herein was derived 

from that of Seijas et al, however rather than use a 750 MHz spectrometer to reduce the 

overlap of the bis-allylic protons, a simple homo-decoupling step was used to reduce the 

overlapped triplets to singlets, allowing for a direct determination of the ratio of linoleic 

and linolenic components (Figure 4-2) (37–39).  

A further complication is the high presence of free fatty acids in the samples under study. 

This was corrected for by comparison of the glyceryl peak and that for the β-CH2 signal. 

For a triglyceride this is 1:6. Where free fatty acids are present the ratio will increase and 

the amounts can be determined. The overall composition of the alkyl chains can be 

determined, as the chemical shifts of the relevant protons virtually identical for free fatty 

acid and triglyceride. 

Some of the samples contained an unexpected peak in the bis-allylic region, notably CF 

samples. After homo-decoupling, there are three peaks present between 2.75 and 2.85 

ppm, rather than the expected two (for linoleic and linolenic, Figure 4-3). Although not 

fully confirmed, it is likely that this peak arises from stearidonic acid (Figure 4-4), based 

on the chemical shift. 

 

Figure 4-1 – Structure of triglycerides, where the alkyl chain may be mono-, di-, tri-unsaturated or saturated. 

1H NMR signals for the tertiary hydrogen of the glycerine head unit, the alkene protons and the vinyl protons 

can be used to calculate the relative composition of the fatty acids.  



145 
 

 

 

 
 

(a) (b) 

Figure 4-2 – (a) Bis-allylic protons of linoleic (right) and linolenic (left) as overlapping broad triplets. (b) Fully 

resolved singlets following homo-decoupling of the unsaturated protons, allowing for direct integration. 

 

 

Figure 4-3 – Bis-allylic protons for C. filum. Peak labelled (a) for linoleic acid, (b) is for linolenic, (c) an 

undefined peak, which may be stearidonic acid. 

 

 

Figure 4-4 – Stearidonic acid  

  

(c) 

(b) 

(a) 
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4.2.5 Results and discussion 

The biorefinery approach was designed to produce HMF from the C6 sugar fraction in an 

acid dehydration. By using H2SO4, both the depolymerisation of polysaccharides into 

oligo and monosaccharides and the subsequent dehydration into HMF should be 

possible. This process was followed by an extraction of the produced HMF, where the 

solvent (dichloromethane: 2-butanol (50:50 w/w %) was recycled. The extracted stillage 

from this extraction was then fed into a second acid dehydration to produce further HMF 

from the unused carbohydrates of the first reaction. The reactor effluent was subject to 

a second HMF extraction with the solvent being recycled. The resulting waste stream 

from the entire process was then submitted to hydrothermal liquefaction to produce 

biocrude and biochar (Figure 4-5).  

 

 

Figure 4-5 – Proposed process configuration of biorefinery for HMF production 

 

SCG and U. lactuca had a total carbohydrate content of 51.5 % and 34.7 %, respectively. 

All of the found carbohydrates in these feedstocks were C6 sugars (Table 4-1). Such 

results suggest that these feedstocks can have a high potential for their conversion into 

HMF.  

 

Table 4-1 – Total carbohydrate content in the pure feedstocks in the literature (40,41) 

 SCG U. Lactuca C. filum 

Total carbohydrates (%) 51.5 ± 1.7 34.7 ± 1.0 29.2 ± 3.3 
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4.2.5.1 Acid dehydration for HMF production 

The initial sulphuric acid treatment depolymerised a portion of the saccharide feedstock, 

and some HMF production was observed. The SCG produced the most, 2.69 g/L 

produced, a yield of 2.6% from the saccharide portion of the coffee. U. lactuca produced 

1.76 g/L (2.5%) whereas C. filum produced 0.24 g/L (0.4%) (Figure 1-1 (a)). Assuming 

that the concentration of total carbohydrates is proportional to the percentages of each 

feedstock in the blend, the yields of HMF were calculated. Yields of 7.7% and 7.3% were 

achieved for UL0.6 + SCG0.4 and UL0.4 + SCG0.6, respectively, while 6.0% and 3.5% were 

obtained for the blends of SCG with CF (CF0.4 + SCG0.6 and CF0.6 + SCG0.4, respectively) 

(Table 4-2). 

Interestingly, the blends of Ulva and SCG produced far more HMF than either of the raw 

materials when processed separately. This was also observed for blends of SCG and 

CF. This is potentially due to the macroalgal species having more glucose, which is more 

readily released than in SCG, while the far higher content of lipids in SCG forms an 

organic layer (9,42–44). It has been previously observed, that a biphasic system can 

increase stability and yields by partitioning HMF as it is formed away from the aqueous 

phase (45). This notion is supported by a reduction of approximately 50% on the HMF 

produced from the blend when defatted SCG were used in the same series of 

experiments (Figure 4-6 (c)).  

All the systems examined have low C5 sugar content, and accordingly lower furfural 

production. The reactor effluent was analysed for carbohydrates (Figure 4-6 (b)), and still 

showed a relatively high content in carbohydrates (approximately 14-23 g/L depending 

on feedstock). The analysis also showed that mannose is the monosaccharide most 

abundant in the SCG-rich feedstocks, while higher concentrations of glucose are 

observed in UL-rich feedstocks and mannitol/arabinose and fucose in CF. Levulinic acid 

was also present in these slurries, mostly in the feedstocks containing SCG, suggesting 

that there is significant levels of HMF to dehydrate with the systems containing lipids, 

with far less observed for the two macroalgae species on their own. The presence of 

such high concentrations of monosaccharides in this stream indicates that these can be 

further processed in a second acid dehydration in the production of HMF.  
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(a) (b) 

 

(c) 

Figure 4-6 – (a) HMF and furfural production in 1st reaction; (b) monosaccharides concentration after 1st 

reaction; (c) comparison of the HMF produced when using the raw feedstocks and when using a defatted 

feedstock 

 

Table 4-2 – HMF recovery yields of the various feedstocks and blends. Values obtained considering the 

theoretical carbohydrate content from literature and the HMF concentration obtained on the first acid 

dehydration 
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Prior to the second dehydration the organic fraction, containing HMF, was removed. This 

was to prevent further dehydration of the HMF product while also allowing for more HMF 

to be migrate to the organic layer formed by the lipids. The extraction system used was 

a mixture of DCM and 2-butanol in a ratio of 1:1, which showed relatively high recovery 

ratios for the HMF – approximately 80 to 90% of the HMF was recovered into the 

extraction solvent, while the rest remained in the aqueous fraction (Table 4-3).  

 

Table 4-3 – HMF recovery yield after first extraction. These percentages were calculated considering the 
total HMF produced after the acid dehydration and the HMF recovered in the organic fraction. 

 
UL  

UL0.6+SCG0.

4 
UL0.4+SCG0.

6 
SC
G 

CF0.4+SCG0.

6 
CF0.6+SCG0.

4 
CF 

HMF  
recovery 
(%) 

86.
7 80.5 83.1 83.1 82.3 90.4 

78.
3 

 

4.2.5.2 Subsequent acid dehydration to HMF 

A second acid dehydration was undertaken on the combined solid and aqueous phase 

once the HMF had been removed. This led to higher production of HMF for the aqueous 

phase produced from the pure feedstocks of UL (6.1 g/L) and SCG (5.1 g/L), though the 

HMF from the CF (0.2 g/L) and blends of the macroalgae with SCG were greatly reduced 

(Figure 4-7 (a)). This is presumably that there is a large pool of glucose and mannose 

that can be dehydrated in the SCG and UL and far less in the CF. In addition, the lack of 

lipids in CF does not allow for a large production of HMF, similarly to what happened in 

the first dehydration (Figure 4-7 (a)). However, the HMF produced in the blends of CF is 

considerably lower than what was achieved in the first dehydration. This might be due to 

the low amounts of C6 sugars left in solution after the first dehydration (Figure 4-6 (b)). 

And when compared to the sugars present in solution after the second dehydration 

(Figure 4-7 (b)), sugars such as mannitol and fucose were barely consumed. 
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(a) (b) 

Figure 4-7 – (a) HMF and furfural concentration in the slurry after the second acid dehydration; (b) sugar 

concentration in the slurry after the second acid dehydration. 

 

The sugar analysis demonstrates that most of the glucose and mannose are consumed 

in the dehydration into HMF, while fucose and mannitol are somewhat more stable.  

4.2.5.3 Lipid analysis 

The streams of HMF (both after first and second dehydrations) and the stream of stillage 

after the second dehydration were analysed for lipid content. Lipids were only found in 

the stream of stillage after the second dehydration. This demonstrated that no lipids were 

extracted with the HMF, which confirms the lipids form an organic phase in both acid 

dehydrations. This double layer allows for the HMF to move into the organic phase, once 

produced in the aqueous phase. Even though this was not part of this study, the presence 

of lipids in the stillage after the second dehydration would also potentially allow for a lipid 

extraction prior to the HTL reaction. The extraction of the lipids as a product in a separate 

stream could add further value to this biorefinery approach. Lipids have been widely used 

in the literature towards the production of biodiesel by a transesterification (46–49). The 

analysis on the lipids present in the stillage after the second dehydration show a high 

content of saturated fatty acids as well as linoleic and linolenic acids (Table 4-4).  
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Table 4-4 – Type of fatty acids found in the lipids in the extracted stillage after the second acid dehydration. 

MUFA stands for mono-unsaturated fatty acids. Analysis and quantification of fatty acids in UL and CF was 

difficult due to the low content of fatty acids in these samples. However, in addition to the fatty acids shown 

below, CF revealed the presence of an unusual component, most probably stearidonic acid. 

 Saturated FA MUFA Linoleic acid Linolenic acid 

UL - - - - 

UL0.6 + SCG0.4 58.60 4.10 30.92 6.38 

UL0.4 + SCG0.6 54.35 16.40 27.27 1.98 

SCG 56.45 10.18 32.35 1.02 

CF0.4 + SCG0.6 63.67 0.10 30.75 5.48 

CF0.6 + SCG0.4 66.57 0.00 27.67 10.87 

CF - - - - 

 

4.2.5.4 HTL 

On extraction of the HMF, the resulting solid was converted into further products through 

hydrothermal liquefaction. The U. lactuca, SCG and respective blends yielded relatively 

similar bio-crude and biochar yields, with a slight increase in biocrude with higher 

percentage of SCG in the blends. This is due to the higher content of lipids in SCG, which 

is converted to biocrude in this process. These results prove that blends of U. lactuca 

with SCG can be used in an effective HTL process without substantial reduction in main 

product yields (biocrude and biochar). 

The same trend was observed with SCG and C. filum, where a higher percentage of 

SCG in the blend associated with a higher biocrude yield. This is presumably due to the 

higher lipid content in SCG (converted into biocrude in HTL). On the other hand, the 

biochar yield increases with higher percentages of C. filum. Such result is attributed to 

the fact that most of the sugars were not used in any of the dehydration processes and 

were broken down into biochar in HTL. In contrast to U. lactuca, C. filum blends with 

SCG led to considerable differences in the biocrude and biochar yields. Therefore, if 

SCG were to be blended with C. filum in a C. filum based biorefinery, the processes 

downstream to HTL would need to be prepared to handle different volumes of biocrude 

and biochar, depending on the season, thus on the percentages of the blends used.  
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Figure 4-8 – Mass balance of the extracted stillage used in HTL reaction. Gravimetric yields calculated based 

on the dry weight of the extracted stillage fed into the reaction. Gas phase calculated assuming a 100% 

content in CO2, while the aqueous gravimetric yield was calculated considering the solids in this phase. 

 

4.2.5.5 Overall yields 

The overall product yields were compared across the different blends and feedstocks 

(Table 4-5). The total HMF presented is the sum of the HMF extracted after the first and 

second dehydrations. Yields were extrapolated to 1 tonne of dry biomass fed into the 

process. The biocrude and biochar amounts were calculated based on the amount of 

solids obtained after 2nd dehydration and on the HTL yields presented in Figure 4-8. These 

were also extrapolated to 1 tonne of dry biomass supplied to the entire system. 

A higher amount of HMF was produced from UL0.6 + SCG0.4 (46.6 kg/tonnebiomass) and 

UL0.4 + SCG0.6 (35.3 kg/tonnebiomass). These are the blends intended to replace U. lactuca 

in periods of intermediate and lower supply of this seaweed. However, when processed 

separately, U. lactuca and SCG only produce 31.2 and 30.2 kg/tonnebiomass, respectively, 

demonstrating that the blending of U. lactuca and SCG creates improved conditions for 

HMF production. A higher level of bio-crude was produced for the SCG (89.5 

kg/tonnebiomass) presumably due to the higher content of lipids in this feedstock, though a 

similar conversion was observed for all biomass blends. However, the higher the 

percentages of U. lactuca in the blends, the higher the production of biochar. This is 

mainly due to the higher content of ash in the macroalgae. Overall, both UL0.6 + SCG0.4 

and UL0.4 + SCG0.6 demonstrate to be a good replacement of U. lactuca in periods of 

lower seaweed supply. 

Unlike the U. lactuca blends, when taking both extractions into account, the highest level 

of HMF was produced from the SCG and the lowest from the C. filum. The blends of 
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SCG and C. filum were proportional to this. Such low production of HMF from the 

macroalgae is due to the low content of C6 sugars and lipids in this feedstock. This result 

has a high impact on the HTL results as the carbohydrates that were not dehydrated into 

HMF were then broken down into char, resulting in a high production of char of 757.2 

kg/tonnebiomass. In addition to this, the low content of lipids in this feedstock led to a lower 

biocrude production (14.6 kg/tonnebiomass) when compared to SCG (89.5 kg/tonnebiomass). 

 

Table 4-5 – Overall yield of the fuel products and precursors including total produced HMF, lipid production, 

biocrude and biochar from the proposed biorefinery, all values are given as kg/tonne and calculated on a 

dry ash free basis.  

  UL 
UL0.6 + 
SCG0.4 

UL0.4 + 
SCG0.6 SCG 

CF0.4 + 
SCG0.6 

CF0.6 + 
SCG0.4 CF 

Total HMF extracted 
[kg/tonnebiomass] 

31.2 46.6 35.3 30.2 28.3 13.1 3.7 

HTL 

Biocrude 
[kg/tonnebiomass] 

83.5 78.2 67.6 89.5 109.7 77.5 14.6 

Biochar 
[kg/tonnebiomass] 

489.8 390.2 314.2 264.2 355.5 230.5 757.2 

Mass all fuel products 60.5% 51.5% 41.7% 38.4% 49.4% 32.1% 77.5% 

Mass all fuel produts (DAF) 72.0% 57.3% 45.0% 39.0% 51.9%a 34.4%a 86.1%a 

a ash content obtained from literature as there was not enough macroalgae to run ash content analysis (50) 
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4.2.6 Conclusion 

In this study a biorefinery producing 5-(hydroxymethyl)furfural (HMF), biocrude and 

biochar from macroalgae and spent coffee grounds blends was developed. U. lactuca 

was found to be a suitable species, containing elevated C6 sugars that could be 

converted into HMF. Interestingly, the addition of spent coffee grounds increased the 

production substantially, in comparison to the macroalgae or coffee grounds alone. This 

was presumably due to the formation of a lipid layer in the aqueous phase that reduced 

the decomposition of HMF to levulinic acid. The stillage from the reaction was also further 

converted into fuel products through HTL, yielding 46.6 g kg-1 HMF, 78.2 g kg-1 biocrude, 

390 g kg-1 biochar in the optimised system. The same system with C. filum was less 

productive, presumably due to lower lipid and C6 sugars in the macroalgae. This work 

demonstrates an integrate HMF biorefinery is possible using U. lactuca, and that the 

addition of spent coffee grounds not only would allow all year round production, but could 

increase the yield of specific target products. Indeed, blending with spent coffee grounds 

has potential to improve process versatility making biomasses considered unsuitable 

alone (such as Chorda filum) into viable feedstocks.  
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5.1 Conclusions 

The aim of this thesis was to demonstrate that spent coffee grounds (SCG) could be 

effectively used as a feedstock in an integrated biorefinery towards the production of 

biofuels and value chemicals. While SCG was shown to be suitable for the production of 

HMF, the best use of the material was found not as the sole feedstock in a biorefinery, 

but blended with other sources of biomass and integrated in a biorefinery context to 

mitigate the lower availability of the primary feedstock during certain seasons. 

SCG are a rich source of carbohydrates, protein, lignin and lipids as it has been widely 

demonstrated across the literature. Such composition allows for a wide range of products 

to be obtained. An organosolv fractionation on SCG was effectively used, yielding three 

separate streams: a cellulose-enriched fraction, a hemicellulose-enriched fraction and a 

lignin-enriched fraction. These streams were then used in separate applications.  

Lignin-enriched fraction was characterised and assessed as a potential fuel in the 

biorefinery to recover energy. When analysed for its content, this stream demonstrated 

high content in depolymerised lignin and fatty acids. Lignin has the potential to be used 

in applications such as binders and adhesives, additives, emulsifiers, dispersants, and 

other polymers and chemicals while the main application of lipids across the literature is 

its conversion to biodiesel through transesterification.  

The hemicellulose-enriched fraction showed a relatively high concentration of 

depolymerised sugars such as galactose and mannose. Such composition has the 

potential to be used as a substrate in the growth of a Metschnikowia pulcherrima yeast. 

However, this was only possible when using a relatively simple solvent system in the 

fractionation process – only made of methyl isobutyl ketone (MIBK) and water. When 

solvent systems using MIBK, water and ethanol or acetone were used, the growth of this 

yeast was not possible. This is presumably due to the inhibitory behaviour of ethanol and 

acetone in the aqueous phase towards the microorganisms activity. Therefore, a 

separation of these components is suggested so that this fraction can be used as a 

growth media for fermentation.  

Finally, the cellulose-enriched fraction was used in the production of 5-

hydroxymethylfurfural (HMF). However, the direct conversion of this fraction to HMF 

demonstrated low yields. Therefore, an enzymatic hydrolysis of this cellulose into 

glucose was necessary to improve these yields. An enzymatic isomerisation of this 

glucose into fructose helped to further improve the HMF yields. HMF is considered a 

valuable renewable building block in modern biorefineries. This is because of its potential 

to be further upgraded in downstream industries to dimethylfuran (DMF) and 2,5-
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furandicarboxylic acid (FDCA). The higher energy density of DMF when compared to 

bioethanol, and comparable to the one in gasoline, makes DMF a potential replacement 

for gasoline in the transport sector. FDCA is a monomer used in the production of 

polyethylene furanoate (PEF) which is a potential replacement for polyethylene 

terephthalate with lower greenhouse gas emissions. The first research chapter has 

therefore demonstrated that SCG can be used in the production of HMF and a solid 

heating fuel in an integrated biorefinery.  

Having demonstrated that SCG can be effectively used as a pure feedstock in an 

integrated biorefinery towards the production of biofuel precursors, SCG were also 

assessed as a potential blending agent with other biomass sources in integrated 

biorefinery designs. The second research chapter investigated the blending of SCG with 

the microalgae Scenedesmus acutus in a biorefinery designed to produce bioethanol, 

lipids, biocrude and biochar. Such an approach intended to demonstrate that the 

blending of this microalgae with SCG can tackle the low productivity and therefore 

availability of microalgae for biorefineries in colder seasons, namely autumn and winter 

in the USA, where the research took place. Two different blends were studied, one 

representing the lower availability of microalgae during winter, and other simulating the 

intermediate supply of this feedstock during seasons such as autumn and early spring. 

The blends were processed separately and compared with the pure feedstocks which 

were processed in parallel.  

In this biorefinery configuration, the feedstock was initially submitted to an acid hydrolysis 

to depolymerise the biomass macromolecules, namely the depolymerisation of 

carbohydrates into fermentable sugars, though this would have also released amino 

acids suitable as a growth media. These sugars were then used in a fermentation with a 

strain of Saccharomyces cerevisiae to produce bioethanol. The fermented broth was 

then submitted to a combined extraction and distillation with hexane to extract the lipids. 

The produced bioethanol present in solution helped in the lipid extraction process. In 

fact, its presence demonstrated increased lipid extraction yields compared to when this 

process was performed without the presence of bioethanol. This bioethanol was both 

collected in this distillation and in a subsequent distillation of the resulting solids for 

further bioethanol recovery. Finally, the resulting extracted stillage was further processed 

in a hydrothermal liquefaction to yield biocrude and a biochar as the main products.  

This study demonstrated that the studied blends can efficiently mitigate the lower 

availability of microalgae during autumn and winter seasons by maintaining the operating 

levels of the biorefinery. Additionally, the blends of microalgae with SCG have also 

demonstrated higher production of bioethanol when compared to the bioethanol obtained 
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when processing the microalgae as a pure feedstock. If an approach like this is to be 

used, the biorefinery operating units need to be prepared for the variable quantities of 

products obtained depending on the type of feedstock/blends used. 

Microalgae has a relatively straightforward production that can be carried out on non-

arable lands and therefore do not compete with food crops for land. Additionally, 

microalgae fast growth when compared to terrestrial biomass crops represents another 

advantage towards microalgae cultivation. Nonetheless, a reasonable large area of land 

is still required to install the microalgae production farms. At a global scale, there are 

vast areas of non-arable land that can be used to install such facilities. However, such 

areas are not equally distributed across the different countries. A solution to this problem 

is the production of macroalgae in countries with an extensive coastline. This can be 

done both in freshwater and saltwater, depending on the macroalgae species. The 

natural growth of wild species of macroalgae in the various aquatic ecosystems, also 

allows for their harvest and use. Additionally, the growth of macroalgae is a relatively 

cheap process as these ecosystems provide all the requirements this type of biomass 

require, namely water, sunlight and nutrients. These features have contributed to the 

increased interest on the use of macroalgae as feedstock in biorefineries to produce 

biofuels.  

The use of macroalgae in a biorefinery presents the same problem as the one previously 

discussed on microalgae-based biorefineries, the feedstock seasonality. To this end, the 

third research chapter assessed the use of blends of macroalgae with spent coffee 

grounds. Two macroalgae species from two different families were used, Ulva lactuca 

from the family of Chlorophyta (green algae) and Chorda filum from the family of 

Heterokontophyta or Ochrophyta (brown algae). For each of these macroalgae, two 

blends were studied, one simulating the season with lower availability of this feedstock 

and other simulating intermediate seasons. Pure feedstocks, both macroalgae and spent 

coffee grounds, were also processed in the biorefinery configuration to be used as 

controls.  

This integrated biorefinery was designed for the production of HMF and other value 

products such as lipids, biocrude and biochar. The feedstock was initially processed in 

an acid dehydration. This conversion unit is used both as a pretreatment to depolymerise 

the macromolecular biomass structures, and as a dehydration process to convert the 

depolymerised carbohydrate units into HMF. This product is considerably unstable and 

requires an organic layer to where it can migrate upon its production. This is provided by 

the lipids present in the feedstock. This was corroborated by a series of experiments 

where a lipid extraction was performed on the feedstock previous to its processing in the 
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acid dehydration, which led to considerably lower amounts of HMF produced. After the 

acid dehydration, an extraction of the HMF was performed from the reactor effluent. This 

extraction would allow further production of HMF in a second acid dehydration and its 

migration to the lipid layer. A second extraction of the produced HMF was performed. 

The resulting solid stream obtained after the extraction was further valorised in a 

hydrothermal liquefaction to produce biocrude and biochar.  

This study demonstrated that SCG can be blended with macroalgae in this biorefinery 

design to produce HMF. In fact, the blends of SCG and the two strains of macroalgae 

yielded higher amounts of HMF than when the macroalgae were processed separately. 

This is probably due to the higher amount of lipids in the SCG when compared to both 

strains of macroalgae. The blends of U. lactuca yielded much higher concentrations of 

HMF than the blends of C. filum. This occurs presumably due to higher concentrations 

of C6 sugars in U. lactuca, while C. filum presents higher concentrations of C5 sugars. 

The work described in this thesis has demonstrated that a municipal waste such as SCG 

can be effectively used in integrated biorefineries towards the production of higher value 

products. Also, SCG biomolecular composition allows for them to be co-processed with 

other biomass sources in various biorefinery designs. This intends to tackle the 

seasonality problem associated to certain types of biomass such as micro and 

macroalgae.  
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5.2 Future work  

The work presented above has demonstrated that SCG, commonly seen as a low value 

waste, is a suitable feedstock for an integrated biorefinery  

In the first research chapter HMF was produced from a cellulose-enriched fraction 

obtained through an organosolv fractionation. Such fraction was then submitted to two 

enzymatic treatments to yield fructose, which demonstrated to be a better substrate 

towards the production of HMF when compared to both cellulose and glucose. Even 

though the production of HMF has been validated from this feedstock, an optimisation of 

the conditions in the various reactions performed can improve the yields obtained in each 

reaction and therefore the quantities of HMF produced.  

The hemicellulose-enriched fraction obtained in the organosolv fractionation was a 

combination of the liquid phase obtained in the fractionation with two washes of the 

solids. One of the washes was done with the same solvent system used in the 

fractionation while the other wash was performed with water. Instead of combining the 

liquid phase with the two washes, these could be collected separately. Such approach 

will probably yield a more concentrated liquid phase in carbohydrates which could then 

be further employed in the production of high-value products. Considering that this 

fraction is mainly rich in C6 sugars such as mannose and galactose, a possible 

application of this fraction could be in the production of HMF, increasing the overall yield 

of the biorefinery 

Further improvements in this fraction could include the removal of the inhibitors such as 

ethanol and acetone. This would allow for the use of this fraction as a substrate in the 

growth of yeast and/or microalgae. On one hand, the growth of certain yeast species 

such as Saccharomyces cerevisiae can yield bioethanol as the main product. On the 

other hand, the use of this fraction towards the growth of oleaginous yeasts strains like 

Metschnikowia pulcherrima presents the potential to be a source of lipids. Additionally, 

such substrate can also be used in the growth of microalgae species that can then serve 

as a feedstock in a biorefinery. Such approach would fit in the framework of integrated 

biorefineries. 

In the second research chapter, SCG was blended and co-processed with microalgae. 

The results obtained with these blends were satisfactory in the biorefinery configuration 

used. In fact, the blends demonstrated higher production bioethanol than the microalgae 

when processed alone. However, the lipids extracted from microalgae were higher than 

the ones obtained with the blends. Even though, this can be explained by the higher 

content of lipids in microalgae than in SCG, which consequently leads to lower lipid 
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content in the blends. Therefore, an improvement to this study could include the 

optimisation of the lipid extraction yields in SCG. In fact, the lipid extraction yields on 

SCG were considerably lower than the ones observed in microalgae and the blends. This 

is caused by the formation of an emulsion between the SCG fermented broth and the 

extraction solvent, hexane. This emulsion can be broken by increasing the extraction 

agitation or increasing the extraction temperature. Alternatively, the yields obtained can 

be increased by adding further extraction steps.  

The third research chapter evaluated the use of blends of macroalgae and SCG in an 

integrated biorefinery approach towards the production of HMF. These blends 

demonstrated higher production of HMF than the microalgae when processed alone 

proving that the combination of these feedstocks provide ideal conditions towards the 

production of HMF. The same experiment was performed with defatted feedstock. This 

yielded considerably lower concentrations of HMF, which suggests that the lipid layer 

has an important role towards the production of HMF. An alternative use of these 

feedstock could be in the production of bioethanol through fermentation due to their large 

content in carbohydrates. However, the HMF content after the acid dehydration acts as 

an inhibitor to the microorganisms. Therefore, a lipid extraction is suggested previous to 

the acid dehydration process. This would reduce the production of HMF in the acid 

dehydration, allowing for the use of microorganisms to produce products such as ethanol 

or butanol. 

The experimental studies in this thesis have considered the feasibility of using SCG as 

a feedstock or as a blending agent in integrated biorefineries. However, to make SCG a 

feasible feedstock in this context, further assessment is required. The seasonality of 

SCG, collection points, quantities available for collection and costs of transportation are 

some of the aspects to take into consideration when planning an upstream supply chain. 

 The seasonality does not seem to be an issue as the coffee is consumed all year round 

and the production of SCG follows this trend, making this feedstock available through 

the entire year.  Such seasonal behaviour has led to an increasing number of coffee 

shops worldwide, mainly in large metropolitan areas. Therefore, a transportation and 

collection supply chain is required. Trucks seem to be the most reasonable transportation 

method to be used in such supply chain. This is due to the very scattered locations of 

coffee shops in city centres. However, no studies have been done in this area and there 

is no data on how this supply chain would look like and how much these transportation 

costs would be.  
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Other important decision is on centralised SCG-based biorefinery or several and smaller 

processing units scattered across the countries. Previous studies have demonstrated 

that to make the biorefinery profitable, a 42 000 tonne/y biorefinery would be necessary. 

Considering such number, centralised processing must be considered the most valid 

option, as this would lead to a suitable economy of scale. It has also been demonstrated 

that the production/recovery of maximum number of products would influence on the 

profitability of the facility. This not only includes the production of bioethanol and 

biodiesel, but other SCG components such as chlorogenic acid and/or lignin and its 

monomers. Therefore, further research is needed around SCG-based biorefineries to 

extract further value-added products from SCG.  

In this thesis the lab scale co-production of microalgae, macroalgae and spent coffee 

grounds has been established. The next stage would therefore be to model the potential 

process performing a techno-economic analysis of the biorefinery designs presented in 

this thesis. This would help to understand if these biorefineries can be profitable and a 

reliable source of biofuels in the near future. Further process integration could also be 

developed including energy integration and PINCH analysis. 

If this is successful, then following on the concept developed on this work that blends of 

different types of biomass can be used in biorefineries to mitigate seasonality problems, 

further experimental work is proposed on this field. Additionally to blending of SCG with 

microalgae and macroalgae, SCG can also be tested with other types of biomass. This 

could lead to improved conditions towards the production of certain products as it 

happened in the case of HMF.  

Additional work can also be done on studying the seasonality of the numerous 

macroalgae species and combining those with higher production/availability in summer, 

for example, with the species with lower production/availability in the same season. This 

way, when one of the species has a lower availability, the other can make up for such 

low availability and vice-versa. With such an approach, a reliable biorefinery can be build 

based on this feedstock. 

Finally, further municipal wastes should be tested and blended with seasonal biomass 

sources. This could include wastes such as the wastes produced in gardening or food 

wastes like fruit and vegetable peels. 
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