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Abstract

This thesis is concerned with the voter model and the contact process, two interacting

particle systems in the sense of [Liggett, 1985]. For both systems, we are interested in

the termination time of the process, called either consensus or extinction, and to bound

this time in each case we shift our attention from the original process which is irreversible

to a related reversible process. A reversible Markov chain is a simple random walk on

a weighted graph with site-dependent stepping rates, and so there are many standard

techniques for their analysis which we will apply.

The voter model is a classical interacting particle system modelling how global con-

sensus is formed across a network, by local imitation. We analyse the time to consensus

for the voter model when the underlying structure is a subcritical scale-free inhomoge-

neous random graph (in the sense of [Bollobás et al., 2007]). The reason that we focus

on subcritical random graphs is that, as we will see below, the behaviour observed here

cannot be captured by mean-field methods. Moreover, we generalise the model to include

a ‘temperature’ parameter. The interplay between the temperature and the structure

of the random graph leads to a very rich phase diagram, where in the different phases

different parts of the underlying geometry dominate the time to consensus. We also con-

sider a discursive voter model, where voters discuss their opinions with their neighbours.

We find a different phase diagram for this discursive model in the subcritical case, and

then begin to explore discursive voter model consensus and mixing on the supercritical

network. Our proofs rely on the well-known duality to coalescing random walks and a

detailed understanding of the structure of the random graphs.

Finally, we prove a phase transition for the contact process (a simple model for

infection without immunity) on a homogeneous random graph that is initially Erdős-

Rényi, but reacts dynamically to the infection to try to prevent an epidemic via updating

in only the infected neighbourhoods, at constant rate. Under this graph dynamic, the

presence of infection can help to prevent the spread and so many monotonicity-based

techniques fail but analysis is made possible nonetheless via a forest construction.

i



Contents

Abstract i

1 Introduction 1

2 Summary 4

2.1 Voter Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Contact Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Networks 21

3.1 Coupling with a Branching Process . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Structural Results for Subcritical Random Graphs . . . . . . . . . . . . . 28

3.3 Diameter in the Supercritical Case . . . . . . . . . . . . . . . . . . . . . . 48

4 Interacting Particle Systems 55

4.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Bounds on hitting times . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Bounds on meeting times . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 Metastability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Voter Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ii



4.3 Contact Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Exploring with the infection . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 The subtree contact process . . . . . . . . . . . . . . . . . . . . . . 79

5 Voter Model Consensus on a Subcritical Scale-Free Network 86

5.1 Consensus Time for the Classical Voter Model . . . . . . . . . . . . . . . . 88

5.2 Consensus Time for the Discursive Voter Model . . . . . . . . . . . . . . . 96
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Notation

We introduce a set of order notation for orders both in probability and with polylogarith-

mic corrections. For sequences of positive random variables (XN )N≥1 and (YN )N≥1, we

write XN = OlogN
P (YN ) if

∃K ∈ R : P
(
XN ≤ YN (logN)K

)
→ 1

as N → ∞. Similarly, we write XN = ΩlogN
P (YN ) if YN = OlogN

P (XN ). If both bounds

hold we write XN = ΘlogN
P (YN ). We write XN = ologN

P (YN ) if

∀K ∈ R : P
(
XN ≤ YN (logN)K

)
→ 1

as N →∞. Then, XN = ωlogN
P (YN ) if and only if YN = ologN

P (XN ).

We omit the logN , writing XN = ΘP(YN ) etc., for the version of this definition with

K = 0 and so disallowing polylogarithmic corrections.

Throughout we write [N ] = {1, . . . , N}. For any graph G, we write V (G) for its

vertex set (which is typically [N ]) and E(G) for its edge set. The graph size |G| is

identified as the size of the vertex set |V (G)|.
Moreover, if v, w ∈ V (G), we write v ∼ w if v and w are neighbours, i.e. if {v, w} ∈

E(G). Then the degree of a vertex v ∈ V (G) is d(v) := |{w ∈ V (G) : v ∼ w}|.
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Abbreviations

ER Erdős-Renyi

CL Chung-Lu

NR Norros-Reittu

MNR Multigraph Norros-Reittu

SNR Simple Norros-Reittu

SCP Subtree Contact Process

SRW Simple Random Walk

CSRW Constant speed Simple Random Walk

VSRW Variable speed Simple Random Walk

SIR Susceptible-Infectious-Removed

SIS Susceptible-Infectious-Susceptible (or contact process)

CPEF Contact Process on an Evolving Forest

i.i.d. Independent and Identically Distributed

a.s. Almost Surely

w.h.p. With High Probability (or asymptotically almost surely)

w.l.o.g. Without loss of generality
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Chapter 1

Introduction

The mathematical investigation of random graphs began in [Erdős and Rényi, 1959]

which described the transition to connectedness for the uniform random graph with

a fixed number of edges. Subsequently this partnership produced a great deal more,

revealing this random object: in [Erdős and Rényi, 1960] the appearance of finite sub-

graphs is found quite generally to depend on a threshold order of edges; furthermore

they find the size of the giant component when the asymptotic ratio of edges to vertices

is at least 1
2 . Then, in [Erdős and Rényi, 1961], the first result was extended to see

when this connectedness was robust to deletion of a finite number of vertices. Today

we credit to Erdős and Rényi the related binomial model with independent edges which

shows all these same features, although the precise definition of this model would be

more properly attributed to [Gilbert, 1959].

Also in the 1950s, the graph theory language saw an explosion of application in

an increasingly data-driven sociology and so “mathematicians began to think of graphs

as the medium through which various modes of influence – information and disease in

particular – could propagate” [Barabási et al., 2006].

We will investigate information and disease together within the framework of inter-

acting particle systems [Liggett, 1985] which can simplistically model social interactions.

The setting for these interactions is then a social network: nodes represent people and

edges acquaintanceships. Of course, we cannot precisely prescribe every edge in a model

of an extremely large and complex social network, and so we should think of these mod-

els by their random neighbourhoods in the “local weak limit”. Global properties of the

network can be discovered by fixing local properties in this way.

Locally and globally, power law degree distributions are “a common pattern seen in

quite a few different networks” [Newman, 2010] and the network is in this case said to be
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scale-free, a term coined in [Barabási and Albert, 1995] where they list an actor collabo-

ration graph, the World Wide Web and the neural network of the worm Caenorhabditis

elegans as examples. Social networks are prominently seen in this scale-free category

and, therefore, we should take a network setting which is also scale free if we hope to

prove properties which match phenomenologically (if not numerically) to the real systems

with those degree distributions.

For information propagation, or more precisely opinion dynamics, the voter model

is very popular and well-known. A significant factor in its popularity is that the voter

model has a moment duality by time reversal to a system of coalescing random walkers,

which we will exploit through much of this work.

In a sense the voter model has been considered since [Moran, 1958], as the Moran

model can be seen as a voter model on a complete graph. It was introduced properly to

a graph context when [Clifford and Sudbury, 1973] put it on a lattice, for the purposes

of modelling territorial competition between species, but has since drawn considerable

attention as a simple model for social dynamics. Shortly it was seen in the mathematics

literature in [Holley and Liggett, 1975], in which they contrast discrete and continuous

time versions. In the discrete time version on a finite graph we must rule out period-

icity to guarantee consensus, which is less natural for modelling and so we restrict our

attention to the continuous version.

The contact process, or susceptible-infectious-susceptible (SIS) infection, was intro-

duced in [Harris, 1974] without application, for the sake of analysing its survival prop-

erties in Zd. Nonetheless, it is a very natural model for infection propagation in graphs

which better fit that modelling problem. These social network models are often locally

treelike (though the realism of this feature is disputed) and are always of course finite.

Hence, we always see infection extinction but the transition between fast and slow ex-

tinction is frequently seen to match the transition between survival and extinction on

the infinite random tree corresponding to the weak local limit [Bhamidi et al., 2019].

Further, we can access the fascinating double transition of [Pemantle, 1992], as seen in

finite graphs by the work of [Mourrat and Valesin, 2016] on the d-regular network.

Initially, just as the Moran model can be thought of as an early version of the voter

model which is either well mixed or on a large complete graph, infection models of this

type were seen in their well mixed formulation in [Kermack and McKendrick, 1927].

They look at the susceptible-infectious-removed (SIR) version of the infection, in which

new infections are made at rate proportional to the product of the number of infectious

and susceptible vertices and permanent recoveries are made at rate proportional to

the number of infectious vertices. The SIS infection which we analyse is the simplest

2



possible model, after SI in which vertices are permanently infected. There are many

ways to add other stages in the family of compartmentalised models: for example SEIR

inserts an “exposed” stage in which vertices are infected but not yet infectious. These

are appropriate to modelling different infections, as discussed in [Bailey, 1975].

Applications of a certain type of mean-field technique, replacing the random network

with a deterministic weighted complete graph, to analyse the contact process give the

epidemic threshold of the inverse of the expected degree of a random neighbour [Pastor-

Satorras and Vespignani, 2002, (4)]. That is, when the power law of the degree distri-

bution is sufficiently large so as to make this expectation converge as the network size

tends to infinity, for small enough infection rates we should find it impossible to see an

epidemic. However this was found in [Chatterjee et al., 2009] to be incorrect, largely due

to long survival around vertices of high degree. It is found in e.g. [Huang and Durrett,

2018, Lemma 2.4] that a star graph, with central degree k and k adjacent leaves, will on

its own sustain a linear infection level for exponential time (in k), with high probability.

Thus we are in a sense not seeing the fast mixing required for the efficacy of mean-field

techniques and must be careful in analysis of the contact process. This is especially true

in the presence of scale-free degree distributions, which produce on a network degrees

polynomially large in the network size.

The voter model has no such issues with vertices of large degree in application of the

same type of mean-field technique as carried out in [Sood et al., 2008], in the case when

the edge density is sufficiently high to produce a giant component. However when the

largest component is smaller order than the graph size, communication is very restricted

and so this is when the technique loses validity. Hence, in the literature, the order of

consensus time in this regime has so far not been established.

3



Chapter 2

Summary

This chapter contains all of the main results of this thesis, which will be proven through

the other chapters. We also introduce and explain the definitions which are required to

state the main results, before each of the two results sections.

Given a large set of people with labels [N ] := {1, . . . , N}, and parameter γ ∈ (0, 1),

we can put a power law on these people

f : i 7→
(
N

i

)γ

and we see by counting that the weak limit 1
N

∑N
i=1 δf(i)

(d)→ X has

P (X > x) = Θ
(
x
−1− 1

γ

)
as x → ∞. Thus we deduce that τ := 1 + 1

γ ∈ (2,∞) is the tail exponent of the power

law with these quantiles.

A random graph model is much more than simply a degree distribution, and there

exists a wide variety of models for a scale-free network. Occam’s razor has led more

interest towards the simplest to define which is perhaps the Chung-Lu model [Chung and

Lu, 2006]. This model on the set [N ] gives each node a weight setting that node’s mean

degree and then, for each pair of nodes i 6= j, generates the edge (i, j) independently

with probability proportional to the product of the weights of i and j. This process

discretises each real number weight in f(i) to an integer degree, which converges weakly

as N →∞ to a Poisson random variable.

If we further introduce a scaling constant β > 0 to control the global mean degree,

4



we obtain the inhomogenous random graph model with edge probabilities

pij :=
βN2γ−1

iγjγ
∧ 1 (2.1)

which is exactly the factor kernel (x, y) 7→ βx−γy−γ inhomogenous random graph seen

in [Jacob et al., 2019]. We define here the relationship between a kernel and its inho-

mogenous random graph model.

Definition 2.0.1 (Inhomogenous Random Graph). An Inhomogenous Random Graph

(IRG), as in [Bollobás et al., 2007], will always here have ground space (0, 1] with the

Lebesgue measure, and vertex space [N ]/N ⊂ (0, 1]. Then for any symmetric non-

negative measurable kernel κ : (0, 1]2 → [0,∞), the IRG is the graph that independently

features an edge between each distinct pair x, y ∈ [N ]/N with probability

κ(x, y)

N
∧ 1.

IRG models describe the sparse family of graph models, which are of interest for

modelling social dynamics where the average person has a number of acquaintances

which does not grow with the total number of people (given
∫ 1

0 κ(·, dx) < ∞). In the

case γ < 1
2 , we have asymptotic equivalence between a great deal of IRG models.

Definition 2.0.2 (Asymptotic Equivalence). Random graph sequences (XN )N and

(YN )N on [N ] are asymptotically equivalent if every valid sequence of graph sets (EN )N

has

lim
N→∞

(P(XN ∈ EN )− P(YN ∈ EN )) = 0.

This is a very strong sense of equivalence, which as far as we seek to prove high

probability behaviours (dependent on sequences of events with probability tending to 1)

will allow arbitrary change between asymptotically equivalent definitions. In particular,

the combination of [van der Hofstad, 2016, Theorem 6.19] and [van der Hofstad, 2016,

Exercise 6.39] tell us that the Chung-Lu graph is equivalent to a certain parametrisation

of the Norros-Reittu graph (which we define shortly) in this case.

Definition 2.0.3 (General Multigraph Norros-Reittu). We parametrise Multigraph

Norros-Reittu (MNR) by its vertex weights

Λ : [N ]→ (0,∞),

5



as in [Norros and Reittu, 2006]. The multigraph then has independently

Pois

(
Λ(i)Λ(j)∑N
k=1 Λ(k)

)

edges between each pair i, j ∈ [N ], including pairs with i = j.

The Simplified Norros-Reittu (SNR) model is obtained from the multigraph model

by flattening, i.e. removing loops (edges only incident to one vertex) and reducing all

edge counts to 1 if they are greater. After this process, the one that agrees with the

Chung-Lu parametrisation above is that with

Λ(i) = w(i) :=
N∑
j=1

βN2γ−1i−γj−γ → β

1− γ

(
N

i

)γ
so we will use Λ = w henceforth. Note, as well as the weight convergence we see above

as N → ∞, we see weak convergence of the degree d(i) to a Poisson distribution with

mean of the limit weight. The limit mean degree over the whole graph, then, is β
(1−γ)2

.

By flattening precisely this model, we arrive at the following model of a simple graph.

Definition 2.0.4 (Simplified Norros-Reittu). The Simplified Norros-Reittu (SNR) graph,

denoted GN and with parameters β > 0, γ ∈ [0, 1), is the simple graph with each edge

{i, j} independently present with probability

pij = 1− exp
(
−βN2γ−1i−γj−γ

)
.

This is the graph model which we settle on, for being particularly easy to work

with via its unflattened multigraph version, while still asymptotically equivalent to the

Chung-Lu definition when γ < 1
2 . In fact, still when γ < 1

2 , this model is equivalent to

a class of graphs which it is important to highlight.

Definition 2.0.5. Fix β > 0 and γ ∈
[
0, 1

2

)
. We say that a sequence of (simple) random

graphs (HN )N≥1, where V (HN ) = [N ], is in the class Gβ,γ if for any N there exists a

symmetric array (qij)i,j∈[N ] of numbers in (0, 1
2) such that each edge {i, j}, i 6= j, is

present in HN independently of all others with probability qij . Moreover, for (pij)i,j∈[N ]

as in (2.1), we require that

lim
N→∞

∑
i 6=j

(pij − qij)2

pij
= 0. (2.2)
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Every graph in the class Gβ,γ in asymptotically equivalent to every other [van der

Hofstad, 2016, Theorem 6.18], and it includes various well-known models of inhomoge-

neous random graphs additionally to the CL and SNR models defined above. These are

“rank one” models as the matrix of CL probabilities (2.1) is a matrix of rank one.

In particular, it includes the Generalised Random Graph (GRG) with qij =
pij

1+pij
,

which has the distribution of a particular configuration model conditioned to be simple

[van der Hofstad, 2016, Theorem 7.18]. It follows therefore that this GRG model is

precisely uniformly distributed on the set of random graphs with its degree distribution

[van der Hofstad, 2016, Theorem 6.15] and so by the asymptotic equivalence we can see

the whole class as uniform-type graphs. It is also possible, therefore, to justify these

models by the “Principle of Indifference” [Keynes, 1921] in the absence of understanding

of a complex network’s detailed structure beyond its degree distribution.

Finally we comment that even in the case γ > 1/2 we can check the condition 2.2 on

a subgraph using [van der Hofstad, 2016, Theorem 6.19] combined with the observation

[van der Hofstad, 2016, Equation 6.8.13]. Thus we see that the SNR and CL networks

do in fact have asymptotically equivalent induced subgraphs on
{
i ∈ [N ] : i > N3/4

}
–

in the bulk of the network, these models are still identical.

2.1 Voter Models

In what is now the standard model, voters can have one of two opinions and every vertex

independently at rate 1 changes its opinion, forgetting its past opinion and copying that

of one of its neighbours. More generally, we define the voter model as follows.

Definition 2.1.1 (Q-voter model). Let O be the set of possible opinions and Q =

(Q(i, j))i,j∈[N ] be the generator of a continuous-time Markov chain on [N ]. Given η ∈
ON , define for i 6= j ∈ V ,

ηi←j(k) =

{
η(j) if k = i ∈ V,
η(k) if k ∈ V \ {i}.

The Q-voter model (ηt)t≥0 is then the Markov process with state space ON and generator

Lf(η) =
N∑
i=1

N∑
j 6=i

Q(i, j)
(
f
(
ηi←j

)
− f (η)

)
.

In other words, at rate Q(i, j) the voter i copies the opinion of voter j. If we
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want to see this as a process on the graph G = ([N ], E), we will likely impose that

Q(i, j) > 0 iff {i, j} ∈ E. Note that we could fill the off-diagonal elements of Q with

any non-negative numbers and still obtain a Markov generator, so that there is no a

priori reason to consider the Markov chain defined by Q. However it is natural to make

further assumptions on the process defined by Q – we will always at least have that it is

irreducible on the connected components of G so that this is a consensus-forming model.

We will also look only at voter models defined by a Q which is reversible. While this is

necessary for tractability of the model, it is also natural for looking at local interactions

on a locally treelike model: because an irreversible chain, by Kolmogorov’s criterion,

would need to have some nonzero flow of opinion around a cycle and cycles are typically

large in the network, nonzero flow around such a cycle would require voters to see more

than their finite neighbourhood.

One particular example of a valid Q is the standard model mentioned, where Q is the

generator of the constant speed simple random walk onG. This has been studied in depth

on Zd, see e.g. [Liggett, 1985], and typical questions study the structure and existence of

invariant measures. When considered on a finite graph, the invariant measures become

trivial and the main question is how long it takes to reach consensus. Inhomogenous

random graphs are disconnected, so communication between components is impossible

and we take the following definition.

Definition 2.1.2 (Consensus time). Let C1, . . . , Ck be the components of a graph G on

the vertex set [N ]. The consensus time is the first time that there is consensus on each

component, i.e.

τcons := inf{t ≥ 0 : ηt|Ci is constant for each i ∈ [k]} = max
i∈[k]

τcons (Ci)

where τcons (Ci) will be occasionally used to denote consensus for the subgraph.

If the random walk with generator Q is irreducible on the connected components

of G (which is automatic if it is reversible and has positive rates on every edge in G,

and zero rates elsewhere), it can be seen that the consensus time for the voter model is

also the first hitting time of any absorbing state. So, this is the only good definition for

consensus when the process defined by Q is reducible.

Even the standard voter model has had no systematic treatment on a rank one scale-

free network of the class Gβ,γ from Definition 2.0.5. In the nonrigorous literature and

so via a mean-field approach, [Sood et al., 2008] found consensus time of order N when

τ > 3 and of order N
2τ−4
τ−1 when τ ∈ (2, 3). This model is very amenable to the mean-field
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approach on a well-connected network so we largely believe these exponents are correct,

but we will explore the cases of lower edge density in which their result does not hold.

Therefore we will analyse the standard voter model, also introducing a “temperature”

parameter θ ∈ R for which the standard model corresponds to θ = 0.

Definition 2.1.3 (Classical voter model). The classical voter model on G = ([N ], E)

with temperature θ ∈ R is the Q-voter model where for each distinct i, j ∈ V

Q(i, j) = d(i)θ−1
1i∼j .

Compared to the standard voter model, this is an acceleration of the interaction based

on the vertex degree: rather than resampling opinion at rate 1, the vertex v resamples

its opinion at rate d(v)θ. This extra parameter leads to interesting phase transitions in

θ, where in the different phases different structural elements of the underlying random

graphs dominate the consensus time.

The family of voter models described in Definition 2.1.3 can be called the “pull”

family because agents pull opinions from their neighbours. There has been considerable

research also into “push” families as in the original paper [Clifford and Sudbury, 1973]

but we will not prove anything for these models. Instead, we look at the “push-pull”

family also considered by [Moinet et al., 2018] and similar to the “oblivious” model

of [Cooper et al., 2016].

Definition 2.1.4 (Discursive voter model). The discursive voter model on G = ([N ], E)

with temperature θ ∈ R is the Q-voter model where for each distinct i, j ∈ V

Q(i, j) =
1

2

(
d(i)θ−1 + d(j)θ−1

)
1i∼j .

In the pull models opinions were imitated and in the push models opinions were

imposed. Hence in this model, the vertex v interacts at rate d(v)θ, but then they

“discuss” with a randomly chosen neighbour and agree on one opinion chosen at random

between their two respective opinions. It is therefore a very natural model for social

dynamics, more than simply a generator sum of the push and pull models.

2.1.1 Main results

All results in this section are stated on the Simplified Norros-Reittu network GN of

Definition 2.0.4, though they apply to other graph models in the class Gβ,γ of Definition

2.0.5. Our first main theorem is on the expected consensus time whenever the parameters

β, γ forbid the giant component.
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Theorem 2.1.5. Take β > 0, γ ∈
[
0, 1

2

)
satisfying β + 2γ < 1 and initial conditions

distributed as µu such that each initial opinion is an independent Bernoulli(u) random

variable, for some u ∈ (0, 1). Then, for the classical voter model on GN with parameter

θ ∈ R, we have

Eθµu(τcons|GN ) = ΘlogN
P (N c) (2.3)

where the exponent c = c(γ, θ) is given as

c =



γ θ ≥ 1,

γθ 1
2−2γ < θ < 1,

γ
2−2γ 0 ≤ θ ≤ 1

2−2γ ,

γ(1−θ)
2−2γ θ < 0.

The θ = 0 classical dynamics on an averaged version of the graph are studied in [Sood

et al., 2008] and they find Θ(N) expected time to hit global consensus whenever γ <

1/2. On the random graph, however, the consensus is componentwise (and note the

largest component has ΘP (Nγ) vertices) and hence we find a faster polynomial order of

consensus time N
γ

2−2γ = N
1

2τ−4 = o(
√
N). Note that we take an expectation just over

the voter model dynamics, so that the expectation in (2.3) is still random (but depends

only on the realization of the particular random graph).

We remark that the theorem shows that dominating contributions to the consensus

time come from different parts of the random graph in the different regimes. On C (1), the

component of vertex 1, which demonstrates the order ΘP (Nγ) of the largest component

(and could be shown via [Janson, 2008, Remark 1.4] to in fact be with high probability

the largest component) we have the following asymptotics.

Proposition 2.1.6. In the same setting as Theorem 2.1.5, the subgraph consensus time

on the largest component has

Eθµu(τcons(C (1))|GN ) = ΘlogN
P (N c) , where c =



γ θ ≥ 1,

γθ γ
1−γ < θ < 1,

γ2

1−γ 0 ≤ θ ≤ γ
1−γ ,

γ2(1−θ)
1−γ θ < 0.

Therefore, by comparison with Theorem 2.1.5, in the regime θ < 1/(2 − 2γ) we

find C (1) is not the component that takes longest to reach consensus. Instead in the

consensus time of Theorem 2.1.5, the dominating contribution comes from the consensus
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time on a double star component, i.e. a tree component with two connected vertices of

maximal lower degree, which exists with high probability.

We further comment that after restricting our attention to the largest component

we still find an exponent diagram which is not monotonic, and so evidently the non-

monotonicity is not created by different components with monotone individual diagrams

as we might expect. Rather, the monotonicity is created by a competition between

mixing and space for the coalescing dual model. For example, very negative θ values

will slow the average speed of a walker (working against coalescence) but also tend the

stationary distribution weakly towards the point measure on the highest degree vertex

of a component (working towards coalescence).

In fact, we can slow the entire voter model by a factor to produce a constant average

speed of leaving a vertex
∑

v∈C (1) q(v)π(v) = 1, and then find C (1) exponents

γ θ ≥ 1,

γθ γ
1−γ < θ < 1,

γ2

1−γ + γθ 0 ≤ θ ≤ γ
1−γ ,

γ2(1−θ)
1−γ + γθ θ < 0.

which (after in this sense removing the difference in average speed) are monotone.

Next we consider the discursive model, where we have the following phase diagram.

Theorem 2.1.7. Take β > 0, γ ∈
[
0, 1

2

)
satisfying β + 2γ < 1 and initial conditions

distributed as µu such that each initial opinion is an independent Bernoulli(u) random

variable, for some u ∈ (0, 1). Then, for the discursive voter model on GN with parameter

θ ∈ R, we have

Eθµu(τcons|GN ) = ΘlogN
P (N c)

where the exponent c = c(γ, θ) is given as

c =



γ
2−2γ θ ≥ 3−4γ

2−2γ ,

γ(2− θ) 1 < θ < 3−4γ
2−2γ ,

γ 2γ ≤ θ ≤ 1,

γ(2−θ)
2−2γ θ < 2γ.

Unlike for the classical model, where large positive θ slowed down consensus when

compared to the standard model θ = 0, for the discursive model we see that large θ
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Figure 2.1: This figure shows the typical shapes of the exponents c in Theorems 2.1.5 and 2.1.7, by
setting γ = 1/3. Somewhat surprisingly, for any subcritical (β, γ) parameters the function c(γ, θ) is
not monotonic in θ for the classical model. On the left we see that the standard model θ = 0 is part
of the fastest interval θ ∈ [0, 1/(2− 2γ)]. Conversely, essentially because the stationary distribution
of the dual chain does not change with θ, the discursive model shows monotonicity in the exponent.

accelerates consensus by accelerating mixing: for each γ, c(γ, θ) is non-increasing in θ.

See also Figure 2.1 for an illustration. Again to understand in which regimes the large

components dominate, we give the consensus order of C (1) with the discursive dynamic.

Proposition 2.1.8. In the same setting as Theorem 2.1.7, the subgraph consensus time

on the largest component has

Eθµu(τcons(C (1))|GN ) = ΘlogN
P (N c) , where c =



γ2

1−γ θ ≥ 2−3γ
1−γ ,

γ(2− θ) 1 < θ < 2−3γ
1−γ ,

γ 3− 1
γ ≤ θ ≤ 1,

γ2(2−θ)
1−γ θ < 3− 1

γ .

The most obvious difference here is that C (1) makes a dominating contribution to

the consensus order on GN , as seen in Theorem 2.1.7, only for parameters θ in a an

intermediate range θ ∈ [2γ, 3−4γ
2−2γ ] as opposed to in Proposition 2.1.6 where this was true

for θ sufficiently large. We will see in the proofs that the consensus time in all regimes is

dominated either by C (1) or a component of double star type, exhibiting slow mixing.

Remark 2.1.9 (Transitions in the power law). For illustration, we rephrase the main
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theorems by fixing θ and varying the tail exponent τ = 1+1/γ. For the classical dynamics

on GN we obtain for θ ∈
(

1
2 , 1
)
,

Eθµu(τcons|GN ) = ΘlogN
P

N
1

2τ−4 τ ≤ 3 + 2
(

1−θ
2θ−1

)
,

N
θ

τ−1 otherwise,

and for the discursive dynamics with θ ∈
(
1, 3

2

)
, this translates to

Eθµu(τcons|GN ) = ΘlogN
P

N
1

2τ−4 τ ≤ 3 + 2
(
θ−1
3−2θ

)
,

N
2−θ
τ−1 otherwise.

In both these cases the consensus time on the largest component is dominant only for

small τ . If θ ∈ (0, 1) then for the discursive dynamics we have that

Eθµu(τcons|GN ) = ΘlogN
P

N
1

τ−1 τ ≤ 3 + 2
(

1−θ
θ

)
,

N
2−θ
2τ−4 otherwise.

In this case, one can see from the proofs that the asymptotics for the largest component

dominate for large τ values.

For the discursive model in the context of a giant component, which exists if and

only if β + 2γ > 1, we can prove a consensus time when θ ≤ 1
γ . This at least covers all

reasonable social modelling parameters: θ > 1 would mean we expect agents with more

contacts to also interact with a higher proportion of their contacts.

Theorem 2.1.10. Take β > 0, γ ∈ [0, 1) satisfying β + 2γ > 1 and initial conditions

distributed as µu such that each initial opinion is an independent Bernoulli(u) random

variable, for some u ∈ (0, 1). Then, for the discursive voter model on GN with parameter

θ ≤ 1
γ , we have

Eθµu(τcons|GN ) = ΘlogN
P (N) .

With θ = 1, this model is a timechange of the “link dynamics” of [Sood et al., 2008].

While they do not make a prediction for heterogeneous networks, because∑
v∈[N ]

q(v) =
∑
v∈[N ]

d(v) = ΘP(N)

we have shown that consensus is expected in ΘlogN
P

(
N2
)

link interactions.
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When θγ > 1, then, we do not find polynomially tight bounds to establish the

polynomial order; we discuss conjectures for the consensus time in this region in the

introduction of Chapter 6. However, we do prove a statement for the time correlation

of the voter model in this parameter regime. This follows from the following result for

the mixing time which we state for its independent interest.

Definition 2.1.11 (VSRW). The variable speed simple random walk on a graph is the

Markov chain with, for every i 6= j, rate

Q(i, j) = 1i∼j .

We define the mixing time in Definition 4.1.2 by hitting of total variation distance 1
4

from worst-case initial condition. We bound the mixing time for this walk on the SNR

graph GN , including the case γ = 0 though it would be straightforward to prove a faster

order of mixing for γ = 0 using [Benjamini et al., 2014].

Theorem 2.1.12. On the giant component of GN with γ ∈ [0, 1) and β sufficiently

large, the VSRW has mixing time

tmix = OP
(
log17N

)
.

The VSRW has the same jump chain as the constant speed simple random walk

(CSRW), which leaves every vertex at rate 1, but to our knowledge this chain also has

no known mixing bounds on these graphs. Even in the γ < 1
2 region of configuration

model equivalence the existing results require further conditions on the minimum or

maximum degree [Berestycki et al., 2018,Abdullah et al., 2012].

This theorem allows us to fairly easily deduce that the correlation decay in either

voter model definition is seen over a polylogarithmic timeframe
[
0, OlogN (1)

]
for θ = 1.

In fact, there are monotonicities which allow this to be extended to θ ≥ 1.

Corollary 2.1.13. Take γ ∈ (0, 1), β sufficiently large and initial conditions distributed

as µu such that each initial opinion is an independent Bernoulli(u) random variable, for

some u ∈ (0, 1). Define also the measure of time correlation

C(t, v) =
Cov (η0(v), ηt(v))

u(1− u)

recording correlation for the random process on a fixed graph.

Then for the discursive voter model on GN with parameter θ ≥ 1, we have for any
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v ∈ [N ] that C(·, v) decreases monotonically from C(0, v) = 1 to

C (T, v) =

ΘP
(

1
N

)
v ∈ C (1)

ΩP

(
1

logN

)
v /∈ C (1)

for any T = ωlogN (1).

2.2 Contact Process

The contact process is an extremely simple Markovian model of an infection spreading

on a graph: we record the state of the infection as (ξt)t, where

ξt(·) : [N ]→ {0, 1},

and ξt(v) = 1 indicates that v is infected at time t, whereas ξt(v) = 0 indicates that v is

healthy. For this to behave like an infection, we must account for both transmission and

recovery and to obtain a Markov model each must happen at constant rate. By moving

to a unitless relative measure of time, we can assume as is conventional that recoveries

for each vertex occur independently at rate 1 and that transmissions of the infection

occur for each edge independently at relative rate λ > 0.

Thus we can define the process by Markovian flipping at each vertex, where always

{ξt(v) = 1} 7→ {ξt(v) = 0}

at rate 1, and the converse transition

{ξt(v) = 0} 7→ {ξt(v) = 1}

is observed at rate λ
∑

w∼v ξt(w) – the number of infected neighbours of v at time t,

multiplied by the relative infection rate. After every infection we return to susceptibility,

and so the contact process will best model fast-mutating infections with low mortality.

The contact process is popular in part due to its self-duality [Liggett, 1999] which

helps in many proof techniques. Here we write, for a set A, ξt(A) :=
∑

a∈A ξt(a).

Proposition 2.2.1. On a static graph G = (V,E) and A,B ⊂ V the contact process

has, for any fixed time t ≥ 0,

P
(
ξt(A) > 0

∣∣ξ0 ≡ 1B

)
= P

(
ξt(B) > 0

∣∣ξ0 ≡ 1A

)
.
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In particular, this allows easy transferral of results for the infection density of the

process from full initial infection ξ0 ≡ 1 to results about the survival probability of an

infection spreading from a single vertex v ∈ [N ], with ξ0 ≡ 1v.

Just as for the voter model, this is a duality by time reversal and so it does in

fact extend from static graphs to the non-adaptive dynamic we will consider, as this

dynamic has the same distribution run backwards in time. Unfortunately, however, for

the adaptive dynamic time reversal is not feasible and so we are forced to pick either full

initial infection or single vertex. Hence we opt for the more practical case and consider

the process from a generic initial infected vertex, say ξ0 = 11, and we are interested in

the size of the set of historically infected vertices or, more precisely, the occurrence of

epidemic events where this set grows to linear scale.

Definition 2.2.2 (Epidemic events). For the contact process ξ : [0,∞)→ {0, 1}N define

historical infection sets

It := {v ∈ [N ] : ∃s ∈ [0, t] : ξs(v) = 1}

and the limit set It ↑ I∞. Then, for any ε ∈ (0, 1) we can define the epidemic event

ENε := {|I∞| > εN} = {∃t > 0 : |It| > εN}.

This is not all that we introduce to our contact process analysis. We analyse the

contact process on an adaptive random graph: because the distribution of the graph (as

a process in time) is made dependent on the infection we find the problem is complex

enough on a homogenous graph and so drop the scale-free assumption.

If we shift focus to homogenous graphs by setting γ = 0, then the Simplified Norros-

Reittu graph is asymptotically equivalent to the better-known Erdős-Rényi graph.

Definition 2.2.3 (Erdős-Rényi). The Erdős-Rényi (ER) graph with parameter β > 0 is

the simple graph with each edge {i, j} independently present with probability pij = β
N .

Therefore, for clarity, we pick these edge probabilities β/N rather than the γ = 0

SNR probabilities 1− e−β/N . It is hard to imagine that this will affect either the results

or the proofs, though this will not be investigated.

For the sake of comparison, we will also look at the non-adaptive version of the

dynamic. This can be described as in [Jacob et al., 2019] in the following construction.

Definition 2.2.4 (Non-adaptive dynamic Erdős-Rényi). Take N ∈ N. For each x ∈ [N ]

let Ux = (Uxn )n≥1 be an independent Poisson process of rate κ > 0 describing the update
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times of x. Further for each distinct pair x, y ∈ [N ] let Cx,y = (Cx,yn )n≥0 be an i.i.d.

sequence of Ber
(
β
N

)
random variables. The dynamic graph Gt = ([N ], Et) has edge

{x, y} ∈ Et if and only if Cx,yFx,y(t) = 1, where

F x,y : t 7→ |{s ∈ Ux ∪ Uy : s ≤ t}| .

What this definition describes is vertex updating : independently and at constant

rate, each vertex decides to update by completely moving its location on the network to

an i.i.d. new location. This is done by simply deleting all incident edges and generating

a number of new ones distributed as Bin
(
N − 1, βN

)
, with a uniformly chosen new set

of neighbours. Note that because the vertex update events occur independently of the

graph, the dynamic graph is Erdős-Rényi in distribution for all time.

Now we would like to build on this simple dynamic to create the adaptive dynamic.

In this we would like to model people moving out of infected areas and so they will only

move out of their current neighbourhood on the event that it contains the infection.

Definition 2.2.5 (Dynamic neighbourhood). Given a dynamic graph history (Gt)t≥0 =

(([N ], Et))t≥0 we can define the dynamic neighbourhood

Γt(v) = {w ∈ [N ] : {v, w} ∈ Et}

as the set of neighbours of v at time t.

We can use this definition to introduce the adaptive graph dynamic, in which the

edge {x, y} is only refreshed by an update at incident vertex x only when x also happens

to be adjacent to some infected vertex.

Definition 2.2.6 (Adaptive dynamic Erdős-Rényi). The adaptive dynamic is con-

structed as in Definition 2.2.4, except that each F x,y is reduced to its adaptive version

F x,yA which is

F x,yA : t 7→ |{s ∈ Ux : s ≤ t, ξs (Γs (x)) > 0}|+ |{s ∈ Uy : s ≤ t, ξs (Γs (y)) > 0}| .

It is clear that F x,yA is only a function of the graph history and hence this is a process

we can define going forwards in time. It is not obvious from the above definition that

the graph dynamic is Markovian – the clearer description for this property is that we

thin from the previous updates Ux those times at which x had no infected neighbours.

With this adaptive definition, the dynamic graph becomes dependent with the infec-

tion and so despite the name “dynamic Erdős-Rényi”, the adaptive graph (Gt)t≥0 is not
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Erdős-Rényi in distribution for any t > 0.

2.2.1 Main results

The first theorem describes a (λ, β) parameter region of small outbreaks for the infection

with the nonstationary graph dynamic.

Definition 2.2.7 (Subcriticality). Recalling the epidemic events of Definition 2.2.2

which looked at historically infected vertices, we say that a coupled infection process

and dynamic graph is subcritical if for every ε > 0

lim
N→∞

P1

(
ENε
)

= 0.

The subscript denotes that the initial infection set is {1}, so by exchangeability we

are considering infection breaking out from an arbitrary single infected vertex.

We seek to prove a region of subcriticality using a stochastic upper bound, the

subtree contact process of Definition 4.3.8, for which we can only forbid divergence

when λβ < e−1. This is a limit therefore on the size of the region that can be found.

Theorem 2.2.8. For the contact process on an adaptive dynamic Erdős-Rényi graph we

find if β, λ, κ ≥ 0 satisfy

λβ < 0.21 (2.4)

then the sampled infection sets (|I∞|)N∈N+ are tight in N+ and in particular the infection

is subcritical.

We remark that if the dynamic is modified so that an update requires b infected

neighbours and b ≥ 1 is a fixed parameter, it is not hard to extend the above result to

also apply in this case.

Definition 2.2.9 (Supercriticality). Recalling the epidemic events of Definition 2.2.2

which looked at historically infected vertices, we say that a coupled infection process

and dynamic graph is supercritical if there exists ε ∈ (0, 1) such that

lim inf
N→∞

P1

(
ENε
)
> 0.

Also, we prove a theorem concerning survival of the infection to epidemic levels.

We use the SIR model, in which recoveries are permanent, and by coupling to infection

process and graph this bound is considerably easier to prove.
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Theorem 2.2.10. For the contact process on an adaptive dynamic Erdős-Rényi graph

we find if β, λ, κ ≥ 0 satisfy
λβ

1 + 2κ+ λ
> 1,

then the infection is supercritical.

Not as a showcase result, but for comparison, we also look at the non-adaptive

dynamic where every vertex updates at rate κ regardless of the infection level of its

neighbourhood. With the stationary dynamic, introducing the SCP is not necessary

and so we can extend all the way up to the mean-field limit {λβ < 1}.

Theorem 2.2.11. For the contact process on a non-adaptive dynamic Erdős-Rényi

graph we find if β, λ, κ ≥ 0 satisfy:

(a) λβ < 1 and κ sufficiently large, then the sampled infection sets (|I∞|)N∈N+ are

tight in N+ and in particular the infection process is subcritical;

(b) λβ > 1 and κ sufficiently large, then the infection process is supercritical.

Here the more tractable mean-field model can be identified as κ = ∞ and so the

appearance of a large κ condition was predictable. We can simulate an answer for

the epidemic regions of each model using the contact process on an evolving forest

(CPEF) that we will later define in Definition 4.3.5 (with natural modifications in the

non-adaptive case), and we see then that perhaps this large κ condition is in fact only

technical for the region of supercriticality, but still the critical line does curve towards

a value less than 1 for the κ = 0 model. This is the critical value of [Nam et al.,

2019, Corollary 3], a result which tells us that the κ = 0 critical value is asymptotic to
1
β as β →∞ and so suggests this critical line will straighten in that limit.

Each simulation of Figure 2.3 generates a version of the local tree environment seen

by the infection; when averaging over the random graph in this way it seems that the

non-adaptive influence of κ is mean-field for κ sufficiently large. There is undoubtedly

some curve in the transition to the static case κ = 0 which is more mysterious.

Predictably, for the adaptive dynamic, we see in Figure 2.2 that the region where

we can show survival by a contained SIR infection is not the whole survival region. The

complete condition appears similar to that of Theorem 2.2.10 in that it has a linear

boundary and requires λβ > 1, but the slope of the boundary is of course quite different.
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Figure 2.2: For the adaptive dynamic with mean degree β = 10, after 105 samples in the yellow
parameter regions we have two standard deviations of confidence for supercriticality, which we

approximately identify as 98% confidence. In the blue regions we have the same for subcriticality.
Above the superimposed black line is the epidemic region proved in Theorem 2.2.10, whereas to the

left of the white line is the region of Theorem 2.2.8
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Figure 2.3: For the non-adaptive dynamic with mean degree β = 10, after 106 samples in the yellow
regions we have two standard deviations (roughly 98%) of confidence for supercriticality and in the

blue for subcriticality. Here we see in contrast to Figure 2.2 that the κ plays almost no role.
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Chapter 3

Networks

To prove results for the behaviour of interacting particle systems on the SNR network

we must understand its structure, which in many instances means that we must prove

a statement about the network which has no explicit reference to the process that we

are ultimately analysing. This chapter goes through all of the necessary structural

properties, which often cannot be found in the literature even if similar properties are

proven for similar graphs.

For example, while [Bollobás et al., 2007] gives general upper bounds for the diameter

of IRGs with finitely many vertex types or a bounded kernel, the SNR graph fits neither

of these conditions. Hence in section 3.3 we use their result to extend a subgraph

IRG with finitely many types and obtain the diameter bounds we require for our main

theorems, which include the construction of paths through vertices of low degree.

Section 3.1 is of particular importance for the construction of components and com-

ponent subgraphs through many of the proofs. The elegance of this local construction

is the large part of the appeal of working with Norros-Reittu graphs, and while our

version of the construction is similar to that of [Norros and Reittu, 2006] we also retain

the thinned edges which would create a cycle in the network. The original construction

builds a spanning tree while ours builds the full graph, and thus we are able to continue

the local construction past the initial window where the local graph is a tree up to the

generation of complete components.

We first observe that the network models we have chosen show a stark phase transi-

tion in the emergence of a giant component, which is very relevant for the behaviour of

interacting systems on the networks.

Definition 3.0.1 (Giant component). Let (HN )N be a sequence of random graphs on
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[N ] and for each

Cmax (HN )

denotes the largest connected component subgraph (or the joint largest having smallest

minimum element in the event of a tie). We say that the network model (HN )N has a

giant component if

|Cmax (HN )| = ΘP(N)

and otherwise that it does not have a giant component.

Using the IRG framework of Definition 2.0.1, there is a technical condition to check.

Definition 3.0.2 (Graphical kernel). The sequence of kernels (κN )N on (0, 1]2 with the

Lebesgue measure ν is graphical iff

1. ν-a.e. for (x, y) ∈ (0, 1]2, (xN , yN )→ (x, y) =⇒ κn(xN , yN )→ κ(x, y).

2. κ is continuous ν-almost everywhere on (0, 1]2.

3. κ ∈ L1 ((0, 1]× (0, 1], ν × ν)

4. If HN denotes the random graph model defined by κN in Definition 2.0.1, this

model has expected edge count (half the total degree)

1

N
E (|E (HN )|)→ 1

2

∫ 1

0

∫ 1

0
κ(x, y)dxdy.

We will identify these theorems heuristically as corresponding to the situations when

the offspring mean for the local weak Galton-Watson limit has offspring mean larger or

greater than 1, but before this explanation we can state the clear form.

Theorem 3.0.3 ( [Bollobás et al., 2007] Theorem 3.1(i)). If we define the operator

Tκf(x) =

∫ 1

0
κ(x, y)f(y)dy

for some graphical kernel κ, with norm

‖Tκ‖ = sup {‖Tκf‖2 : f ≥ 0, ‖f‖2 ≤ 1}

and HN denotes the IRG with kernel κ, then we find

1. ‖Tκ‖ ≤ 1 =⇒ |Cmax (HN )| = oP(N),
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2. ‖Tκ‖ > 1 =⇒ |Cmax (HN )| = ΘP(N).

Thus this theorem has precisely separated the regimes where the giant component

exists and where it doesn’t. In fact further, this theorem partitions the parameter values

entirely into those where the linear component is w.h.p. present and those where all the

components are sublinear w.h.p..

Corollary 3.0.4. When γ < 1/2, the SNR model GN of Definition 2.0.4 has a giant

component iff β + 2γ > 1.

Proof. Existence of a giant component is only a claim with high probability, and so we

can in this case use another model in the class 2.0.5 that we have already discussed: the

Chung-Lu model. This is the IRG with kernel

κ(x, y) = βx−γy−γ =: ψ(x)ψ(y)

so as in [Bollobás et al., 2007, Section 16.4] because Tκf =
(∫ 1

0 f(x)ψ(x)dx
)
ψ we have

‖Tκ‖ = ‖ψ‖22 =

∫ 1

0
βx−2γdx =

β

1− 2γ

which exceeds 1 if and only if β + 2γ > 1.

Corollary 3.0.5. When γ ≥ 1/2 and β > 0, the SNR model GN of Definition 2.0.4 has

a giant component.

Proof. The function x 7→ e−x − x changes sign over (0, 1), so by the Intermediate Value

Theorem we can take ε ∈ (0, 1) such that ε = e−ε.

We also have the bound for any x > 0

1− e−x > x(1− x)

so that for i, j ∈ [N ] such that βN2γ−1i−γj−γ < ε we can infer for the SNR edge

probabilities

pij = 1− exp
(
−βN2γ−1i−γj−γ

)
> (1− ε)βN2γ−1i−γj−γ .

Otherwise, if βN2γ−1i−γj−γ ≥ ε, we have instead

pij = 1− exp
(
−βN2γ−1i−γj−γ

)
≥ 1− exp (−ε) ≥ (1− ε)

(
1 ∧ βN2γ−1i−γj−γ

)
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where the last inequality follows from recalling ε = e−ε. Combining both bounds, we

have shown that the SNR model dominates the Chung-Lu model after edge percolation

of the latter with retention probability 1 − ε. Because γ ≥ 1
2 , the Chung-Lu model has

operator norm

‖Tκ‖ =

∫ 1

0
βx−2γdx =∞

and by [Bollobás et al., 2007, Corollary 3.3] this model has a giant component for any

positive edge retention probability.

Then we have that we can build the SNR model by adding edges to a percolated

model which already has a giant component, and so we conclude that the SNR model

too has a giant component.

3.1 Coupling with a Branching Process

We adopt a useful concept as stated in [van der Hofstad, 2020]. Write G∗ for the

space of graphs modulo graph isomorphisms rooted at some vertex o, i.e. the space of

equivalence classes of rooted graphs. Then put a metric on this space: for two rooted

graph isomorphism classes G1, G2 ∈ G∗ we can define each’s (isomorphism class of a)

ball around the root of radius r as B(G1)(o, r) and B(G2)(o, r) respectively, and then

R := sup
r

{
B(G1)(o, r) = B(G2)(o, r)

}
induces the distance

dG∗ (G1, G2) =
1

1 +R
.

Definition 3.1.1 (Local weak convergence in probability). Let HN be a random graph

on [N ] and oN ∼ U [N ] an independently uniform root. We say (HN ,oN ) converges

locally weakly in probability to the random rooted graph (H,o) ∈ G∗ if for every bounded

and continuous function h : G∗ → R we have

E
(
h(HN ,oN )

∣∣HN

) P→ E (h(H,o)) .

We will not require this concept in the proofs until Chapter 7 but we state it here

because this section is a construction of the local weak picture (G,o) for our network

model GN .

The reason for preferring the SNR model is the close relation with the standard multi-

graph Norros-Reittu (MNR) model. Recall that the SNR model with edge probability
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Figure 3.1: If we take γ < 1
2 and β > 1− 2γ, on the event that our root vertex is in the giant

component, the underlying thinned Galton-Watson trees grows exponentially from the root, shown
here as black edges. As it grows, after discovering ΩP(

√
N) vertices, we encounter cycle edges,

shown here in cyan, which give the giant component its nonzero surplus.

as in Definition 2.0.4 is then obtained from MNR by constructing it with weights

w(i) :=
N∑
j=1

βN2γ−1i−γj−γ ∼ β

1− γ

(
N

i

)γ
, (3.1)

and then collapsing all multi-edges to simple edges and deleting the loops.

The MNR model is particularly nice because it allows for an exact coupling with a

two-stage Galton-Watson process, with thinning and cycle creation. Our construction

here extends the coupling introduced in [Norros and Reittu, 2006] (see also [van der

Hofstad, 2016]) by also keeping track of the number of edges, so that we can also control

when we create cycles.

Define the mark distribution to be the random variable M on [N ] which chooses a

vertex biased proportional to its weight

P(M = m) ∝ w(m)1m∈[N ] ∝ m−γ1m∈[N ]

so that if WN is the empirical weight distribution in the network, the weight of a typical
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neighbour in our local picture will be simply the size-biased version of WN , denoted W ∗N

w(M)
(d)
= W ∗N .

Fix k ∈ [N ], we now describe the (marked) branching process that describes the

cluster exploration when started from a vertex k. To describe the branching process,

we label the tree vertices using the standard Ulam-Harris notation, in particular we

denote by ∅ the root of the tree, by 1 the first offspring of the root, by 11 the first

offspring of tree vertex 1 etc. We will write v < w if v comes first in the breadth-first

ordering of the tree, i.e. vertices are first sorted according to length and then according

to lexicographical ordering if the lengths are the same.

For the root of the branching process, we define

M∅ = k, X∅ ∼ Pois (w(k)) .

Next, we define independent random variables (Xv)v 6=∅ in two stages: we first choose

marks (Mv)v 6=∅ which are i.i.d. with the same distribution as M . Then, conditionally

on Mv, let Xv ∼ Pois (w(Mv)). where we write Pois(Y ) for the mixed Poisson law with

random mixing parameter Y .

Moreover, if we take Xv to be the number of children of vertex v (if it exists in the

tree), this construction can be used to define a (marked) Galton-Watson tree T k (where

only the root has a different offspring distribution).

To obtain the cluster at k in GN from T k, we introduce a thinning procedure. We set

∅ to be unthinned and then explore the tree in the breadth-first order described above

and thin a tree vertex w if either one of the tree vertices in the unique path between ∅
and w has been thinned or if there exists an unthinned v < w with Mv = Mw.

Now, denote for i ∈ [N ], Xv(i) to be the number of children of v with mark i. If v

and w are unthinned tree vertices, then we define

E(Mv,Mw) =

{
Xv(Mw) if v < w,

Xw(Mv) if w ≤ v,
(3.2)

so that edges between Mv and Mw are only generated at the exploration of the earlier

of the two, in the breadth first ordering.

We can define the multigraph T kthin by specifying that the vertex set is {Mv :

v unthinned} and the number of edges are given by (E(Mv,Mw) : v, w unthinned).

Similarly, we can define a forest (T 1, T 2, . . . , T n) of independent trees constructed
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Figure 3.2: On the left a realisation of the labelled Galton-Watson tree T 1 and on the right the
resulting random graph. Note that the number of edges between 2 and 5 are determined by the

number of children of type 5 of the first child of the root.

as above, where the root of the kth tree has mark k. Then, we can define the same

thinning operation as above, starting in the tree T 1 and going to the next when the

algorithm terminates, where now also the roots of the trees may be thinned if their

label has appeared in a previous tree. If we define the edges as in (3.2), then we obtain

a multigraph (T 1, T 2, . . . , T n)thin with vertex set {Mv : v unthinned} = [N ] and the

number of edges between i and j given as E(Mv,Mw), where v and w are the unique

unthinned vertices v, w with Mv = i and Mw = j.

With this construction, we have the following proposition.

Proposition 3.1.2. Let GMNR
N be a realization of a Norros-Reittu mulitgraph. For any

fixed vertex k ∈ [N ], we have for the component C (k) in GMNR
N containing k,

C (k)
d
= T kthin.

Moreover,

GMNR
N

d
= (T 1, T 2, . . . , T n)thin.

This proposition can be proved in the same way as Prop. 3.1 in [Norros and Reittu,

2006]. The only difference is that we explicitly keep track of the number of edges.

Remark 3.1.3. Thinning and creation of cycles. Note that by construction, we only

create edges that lead to cycles if there are tree vertices v, v′, w such that v′ is a child

of v, but in the breadth-first order v < w < v′, v and w are unthinned and such that

Mw = Mv′, see Figure 3.2 for an example. The reason for this is that the number of

edges between Mw and Mv is determined by looking at the types of children of the first

vertex in breadth-first order. As a consequence, by this procedure we do not create edges
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between different components of T i. Moreover, if an unthinned tree vertex v has children

v′1, . . . , v
′
` with Mv = Mv′i

, then this leads to ` self-loops.

Remark 3.1.4. Note that for the second construction, if the root of the kth tree T k is not

thinned, then any vertex in the tree with root k that receives mark j ≤ k will be thinned.

So to get a stochastic upper bound on the number of vertices and their degrees in the

component C (k), we can replace T k by T kk , where the marks are chosen independently

with distribution

Mk
(d)
=

{
M if M > k,

† otherwise.

Then, the offspring distribution is Pois(W ∗N,k) with W ∗N,k
(d)
= w(Mk), where we set

w(†) = 0. The error in this upper bound comes from thinning within T k and also that

thinned vertices are included as leaves of zero weight rather than simply being removed.

This local weak picture of the branching process combined with results in [Kesten and

Stigum, 1966, Bingham and Doney, 1974] shows that the finite radius neighbourhoods

|B(o, r)| grow exponentially in r when γ < 1
2 . In the case γ > 1

2 , we can apply [Davies,

1978] to see that then log |B(o, r)| grows exponentially in r, i.e. growth is doubly expo-

nential.

3.2 Structural Results for Subcritical Random Graphs

In this section, we collect some of the structural results on subcritical inhomogeneous

random graphs that we will need later on in Chapter 5. Some of these results are known,

but as the literature on subcritical inhomogeneous random graphs is less developed than

for supercritical random graphs, we have to prove the more specialised ones.

Let GN be the SNR network of Definition 2.0.4 with parameters β and γ. Denote

by Comp(GN ) the set of (connected) components of GN . For any C ∈ Comp(GN ) we

write the graph as (V (C ), E(C )) and denote by |C | := |V (C )| the number of vertices in

C . Moreover, we let C (i) denote the component containing vertex i. Throughout this

section, we will use the notation

Kγ := N
1−2γ
2−2γ logN,

and call a component C ∈ Comp(GN ) big if C = C (i) for some i ≤ Kγ . Otherwise, the

component is called small. Moreover, we define the collection of all vertices lying in big
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components as

Vbig :=
⋃
i≤Kγ

V (C (i)).

The first proposition is a standard result on the (componentwise) diameter.

Proposition 3.2.1. For GN with β + 2γ < 1, we have that

diam(GN ) := sup
C∈Comp(GN )

diam(C ) = OP(logN).

As we will see later on, for the classical voter model, the invariant measure of the

associated random walk is normalized by
∑

z∈C (k) d(z)1−θ, so that in the following we

collect various bounds on
∑

z∈C (k) d(z).

Proposition 3.2.2. For GN with β + 2γ < 1, with high probability,

(a) “Big” components have size of comparable order to the degree of the vertex for

which we call them big

max
k≤Kγ

∑
z∈C (k) d(z)

(N/k)γ
≤ logN.

(b) “Small” components have a maximal polynomial size

max
i/∈Vbig

∑
v∈C (i)

d(v) = OlogN
P

(
N

γ
2−2γ

)
.

For the largest component this result is not optimal as we lose a log factor, see

also [Janson, 2008, Theorem 1.1], but this result does not cover the other components.

As a next result, we need that the large degrees d(i) are well approximated by their

means. Also, we need to know that for each of the vertices with large degree, a positive

proportion of its neighbours has degree 1. One of the challenges in the proof is that we

need these bounds uniformly over all big components.

Proposition 3.2.3. For GN with β + 2γ < 1 the following statements hold:

(a)

min
k≤Kγ

d(k)

(N/k)γ
= ΩP(1), max

k≤Kγ

d(k)

(N/k)γ
= OP(1).
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(b) For any k ∈ [N ], let Lk be the number of neighbours of k of degree 1, then we have

min
k≤Kγ

|Lk|
d(k)

= ΩP(1).

Definition 3.2.4. For GN and any component C ∈ Comp(GN ), we define the set of

branches B(C ) of C as the components created by deleting the vertex of minimal index,

that is the set of connected components of the subgraph of C induced by the vertex set

V (C ) \ {i}, where i = minV (C ).

We will use this definition specifically in the context when C is a tree, so that this

terminology makes sense. The next lemma states that big components are trees and have

branches that are small (at least when compared to the largest components of order Nγ).

Lemma 3.2.5. For GN with β + 2γ < 1, with high probability every big component is

a tree. On this event we have that

max
k≤Kγ

max
B∈B(C (k))

∑
v∈B

d(v) = max
k≤Kγ

max
B∈B(C (k))

(2|B| − 1) = OlogN
P

(
N

γ
2−2γ

)
.

The following claim for the empirical moment of the degree distribution of C (1) will

allow us to demonstrate a lower bound on this component for certain parameters of both

the classical and discursive models.

Lemma 3.2.6. For GN with β + 2γ < 1, then for any η ≥ 1∑
v∈C (1)

d(v)η = ΘlogN
P (Nγη) .

Two of our lower bounds require the existence of a ‘double star’ component together

with a suitable bound on the empirical moment.

Proposition 3.2.7. For GN with β + 2γ < 1 there exists with high probability a tree

component containing two adjacent vertices x, y ∈ Kγ such that

d(x) and d(y) are ΘlogN
P

(
N

γ
2−2γ

)
and further for any η ≥ 1 ∑

v∈C (x)

d(v)η = ΘlogN
P

(
N

γη
2−2γ

)
.
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The final proposition of this section states that we can always find a “long double

star” in GN , i.e. two vertices with degree of order at least Nγ/(2−2γ) that are connected

via a short path with two intermediate vertices of degree 2 each. The path having length

at least 3 is important for the discursive voter model dynamic.

Proposition 3.2.8. With high probability any GN with β + 2γ < 1 contains a path

P = (v1, v2, v3, v4) such that:

(a) d(v2) = d(v3) = 2.

(b) {v1, v4} ⊂ [Kγ ] (and hence the component is a tree)

(c) d(v1),d(v4) = ΘlogN
P

(
N

γ
2−2γ

)
.

In the remaining part of this section, we will prove these results. An essential tool

will be a coupling with a branching process that we set up in Section 3.1. Then in

Section 3.2 we will prove the structural results stated above.

Proofs for the simple Norros-Reittu network

In this section we will prove the statements made at the beginning of Section 3.2 using

the coupling with a branching process as outlined in Section 3.1. A standard strategy

will be to use that the SNR model can obtained from the MNR model by collapsing

multi edges and then an upper bound on the degrees in the MNR model can be shown

in terms of the Galton-Watson trees as described in Proposition 3.1.2.

Proof of Proposition 3.2.1. By the construction of Proposition 3.1.2, for an upper bound

it suffices to bound the diameter in each component of T 1, . . . , T n as extra edges are

only created within components and so only make the diameters shorter, see also Re-

mark 3.1.3.

Recall that in T i the root has a Pois(w(i))-distributed number of offspring, while the

offspring distribution for any other vertex has the same distribution as D ∼ Pois (W ∗N ),

where the offspring mean satisfies

lim
N→∞

E (D) =
β

1− 2γ
< 1. (3.3)

Let (Zk)k≥0 be a Galton-Watson tree with offspring distribution D and Z0 = 1.

Then, for any ρ ∈
(

β
1−2γ , 1

)
and N large enough we have, by Markov’s inequality,

P(Zk 6= 0) ≤ E(Zk) ≤ ρk.
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By construction, it order to show the required bound on the diameter it suffices

to bound the maximal depth of Y independent Galton-Watson trees T ∗i , i = 1, . . . , Y ,

with offspring distribution D and where Y is Poisson-distributed random variable with

parameter

w([N ]) =
∑

i,j∈[N ]

βN2γ−1i−γj−γ ∼ βN

(1− γ)2
, (3.4)

where here and in the following, we write w(A) =
∑

i∈[A]w(i) for any A ⊂ [N ].

Since with high probability Y ≤ 2w([N ]) ≤ KN for a suitable constant K ∈ N, we

can get the required bound by noting that for any C > 0,

P
(

max
i=1,...,KN

diam(T ∗i ) ≥ C logN
)
≤

KN∑
i=1

P(diam(T ∗1 ) ≥ C logN)

≤ KN P(ZbC logNc 6= 0) ≤ KNρC logN−1,

which converges to 0 if we choose C large enough such that C log ρ < 1.

In the following, we will develop a stochastic upper bound on the sizes of the trees

T i in Proposition 3.1.2 that no longer depends on N . Throughout we will write X � Y
if the random variable Y stochastically dominates the random variable X.

Lemma 3.2.9. For any α > 1, γ < 1
2 and N sufficiently large, we have

W ∗N � αW ∗,

where W ∗ is the weak limit of (W ∗N )N with density

P(W ∗ ∈ dx)

dx
= 1

x> β
1−γ

1− γ
γ

(
β

1− γ

) 1
γ
−1

x
− 1
γ . (3.5)

Proof. Note that the MNR weights satisfy for each i ∈ [N ],

w(i) = βN2γ−1i−γ
N∑
j=1

j−γ ≤ β

1− γ

(
N

i

)γ
=: λ(i). (3.6)

Moreover, by the definition of the distribution of the marks, we have that

P(M ≤ k) =

k∑
`=1

`−γ∑N
i=1 i

−γ
≤ 1

1− γ
k1−γ∑N
i=1 i

−γ
.
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Now we can consider the tail of distribution function of W ∗N
d
= w(M) and estimate

for any x ≥ 0,

P (W ∗N ≥ x) = P (w(M) ≤ x) ≤ P(λ(M) ≤ x) = P
(
M ≤ λ−1(x)

)
≤

(
λ−1(x)

)1−γ
(1− γ)

∑N
i=1 i

−γ
,

where we write λ(x) := β
1−γN

γx−γ . Furthermore, we can compare this expression to

P(αW ∗ ≥ x) =

(
1− γ
β

x

α

)1−1/γ

= α1/γ−1

(
λ−1(x)

N

)1−γ

Therefore we can conclude that

inf
x≥0

P(αW ∗ ≥ x)

P
(
W ∗N ≥ x

) ≥ α1/γ−1 (1− γ)
∑N

i=1 i
−γ

N1−γ → α1/γ−1 > 1,

which gives the claimed stochastic domination.

Proposition 3.2.10. If α ∈ (1, 1−2γ
β ), then Dα ∼ Pois (αW ∗) satisfies

pk := P(Dα = k) = Θ(k−1/γ).

In particular, if T is a Galton-Watson tree with offspring distribution (pk)k≥0, then

the total size |T | satisfies

P(|T | = k) = Θ
(
k−1/γ

)
.

Proof. The second statement follows from the first one by [Jonsson and Stefánsson,

2011, Thm. 4.1]. Note that the slightly weaker claim P(|T | ≥ k) = Θ
(
k1−1/γ

)
follows

from [Bagley, 1982, Theorem 2] with more general assumption on the degree, but we

refer to [Jonsson and Stefánsson, 2011] here because we are really interested in the exact

power law distribution.

To prove the first statement, we use that by (3.5) we know that αW ∗ has density

f where f(x) = Cx
− 1
γ 1

x> αβ
1−γ

, for some C > 0 that makes this a probability measure.

Therefore,

pk−1 =
C

(k − 1)!

∫ ∞
αβ/(1−γ)

xk−1−1/γe−xdx = C
Γ(k − 1/γ)− Ek

Γ(k)
,
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where the error term Ek is defined as

Ek =

∫ αβ/(1−γ)

0
xk−1−1/γe−xdx ≤

(
αβ

1− γ

)k−1/γ

≤ 1,

and where the bound holds for k ≥ 1
γ + 1, using the assumption that α is small – hence

Ek = Θ(1). Now we use Γ(k) = Θ
(
kk−1/2e−k

)
to rearrange

pk−1 = Θ

(
(k − 1/γ)k−1/γ−1/2e1/γ−k

kk−1/2e−k

)
= Θ

((
k − 1

γ

)−1/γ
)

by using the classical limit
(

1− 1
kγ

)k−1/2
→ e−1/γ .

The statement of Proposition 3.2.2 (a) follows immediately from the following lemma,

but we will also need the upper bound on the unthinned Galton-Watson forest.

Lemma 3.2.11. For the Galton-Watson forest (T 1, . . . , T N ) as defined in the paragraph

before Proposition 3.1.2, we have that with high probability

max
k≤Kγ

∑
z∈T k d(z)

(N/k)γ
≤ logN.

Proof of Lemma 3.2.11. First, we consider the degrees of the roots, where we write ok

for the root of the tree T k. Then, since d(ok) ∼ Pois(w(k)), standard large deviation

estimates for Poisson distributions give a C1 > 0 such that the event

E1 :=
{

max
k≤Kγ

d(ok)

(N/k)γ
≤ C1

}
,

satisfies limN→∞ P(E1) = 1. Then, in distribution, each T k consists of the root ok with

d(oK) edges to which we attach independent Galton-Watson trees, where the number

of offspring has the same distribution as Pois(W ∗N ). In particular, by Lemma 3.2.9,

we can dominate the size of T k by the size of T k,α, a tree where the root ok has d(ok)

children, which are each connected to an independent Galton-Watson tree with offspring

distribution Dα ∼ Pois(αW ∗), for some α ∈ (1, 1−2γ
β ).

Now, if T1, . . . , Tn denote independent copies of Dα-Galton-Watson trees, then by

Proposition 3.2.10 the total sizes |Ti| of these trees satisfy P(|Ti| = k) = Θ(k
− 1
γ ), so that
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they are subexponential, see [Embrechts et al., 2013], in the sense that

lim
n→∞

sup
x≥γn

∣∣∣∣1− P (
∑n

k=1 (|Tk| − E(|Tk|)) > x)

nP (|T1| > x)

∣∣∣∣ = 0.

In particular, we have that for any ε > 0, for all d sufficiently large and for x ≥
(γ + E(|T1|))d

P
( d∑
k=1

|Tk| > x
)
≤ (1 + ε)dP(|T1| > x− dE(|T1|)). (3.7)

Since E(Dα) = αβ
1−2γ , we have that

E(|T1|) =

∞∑
k=0

( αβ

1− 2γ

)k
=

1

1− αβ
1−2γ

.

Therefore, if we define C2 = 1 + C1
αβ

1−2γ , we have for any k ≤ Kγ ,

P
(
|T k| >

(N
k

)γ
logN ;E1

)
≤ P

(
|T k,α| >

(N
k

)γ
logN ;E1

)
≤ P

1 +

bC1(N
k

)γc∑
i=1

|Ti| >
(
N

k

)γ
logN


≤ (1 + ε)C1

(
N

k

)γ
P
(
|T1| >

(
N

k

)γ
logN − C2

(
N

k

)γ)
≤ (1 + 2ε)C1

(
N

k

)γ
P
(
|T1| >

(
N

k

)γ
logN

)
,

where the last inequality holds for N sufficiently large because we know |T1| has a power

law tail. Hence, by a union bound

P
(
∃k ≤ Kγ :|T k| >

(
N

k

)γ
logN

)
≤ (1 + 2ε)C1N

γ
∑
k≤Kγ

k−γ P
(
|T1| >

(
N

k

)γ
logN

)
,

35



which for N large enough we can bound for some suitable constant C3 > 0 by

(1 + 2ε)C3N
γ
∑
k≤Kγ

k−γ
((

N

k

)γ
logN

) γ−1
γ

= (1 + 2ε)C3N
2γ−1 log

γ−1
γ N

∑
k≤Kγ

k1−2γ

≤ (1 + 2ε)C3

2− 2γ
log

3− 1
γ
−2γ

N = o(1),

where we used Kγ = N
1−2γ
2−2γ logN . From this bound on the number of vertices, we can

immediately deduce the claimed bound for the sum of the degrees, since∑
v∈T k

d(v) = 2
∣∣T k∣∣− 2,

as each T k is a tree.

Proposition 3.2.12. On GN with β + 2γ < 1 we have the following uniform bound on

the degrees of vertices with larger index

max
k>Kγ

d(k) = OP

(
N

γ
2−2γ

)
.

Proof. As before we can use that the degrees are stochastically dominated by the degrees

for the MNR model, where each d(k) ∼ Pois(w(k)). The Chernoff bound then gives that

logP
(
d(k) ≥ N

γ
2−2γ

)
≤ logP

(
Pois(w(k)) ≥ N

γ
2−2γ

)
≤ logE

(
ePois(w(k))

)
−N

γ
2−2γ

= w(k)(e− 1)−N
γ

2−2γ .

where by a slight abuse of notation we also write Pois(w(k)) for a Poisson random variable

with parameter w(k). Hence, by a union bound and using that w(k) is decreasing, we
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obtain

P
(
∃k > Kγ : d(k) > N

γ
2−2γ

)
≤ e−N

γ
2−2γ

N∑
k=Kγ+1

ew(k)(e−1)

≤ (N −Kγ + 1)ew(Kγ)(e−1)−N
γ

2−2γ

≤ N exp

(
N

γ
2−2γ

(
−1 +

β(e− 1)

1− γ
1

logγ N

))
= o(1),

where in the last step we used that w(k) ≤ β
1−γ

(
N
k

)γ
, see also (3.6).

Proof of Proposition 3.2.2 (b). As before it suffices to bound the degrees in the MNR

graph. By Remark 3.1.4, the tree construction yields the stochastic upper bound

max
k/∈Vbig

∑
v∈C (k)

d(v) � max
k=Kγ+1,...,N

∑
v∈T kk

d(v) ≤ max
k=Kγ+1,...,N

2|T kk |,

where T kk are independent Galton-Watson trees with the following law: the root of T kk
has a Pois(w(k)) number of offspring and all other offspring are independent and have

a Pois(W ∗N,k) distribution.

For any thinning level z ∈ [N ], we recall that W ∗N,z is defined as

W ∗N,z
(d)
= w(M)1M>z, (3.8)

where M is the usual mark distribution (which chooses i ∈ [N ] with probability propor-

tional to i−γ).

The same argument as in the proof of Proposition 3.2.12 also shows that there exists

a constant C1 > 0 such that if ok denotes the root of T kk , then we have that the event

E1 :=
{

max
k=Kγ+1,...,N

d(ok) ≤ C1N
γ

2−2γ

}
(3.9)

satisfies P(E1)→ 1 as N →∞.

To bound the size of the trees T kk , we use the standard connection to random walks,

see e.g. [van der Hofstad, 2016, Section 3.3], where we consecutively record the number

of offspring of each individual in the branching process.

Define

R :=
⌊
C1N

γ
2−2γ

⌋
,

for the same constant C1 as in (3.9).
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Then, define a random walk (Sn)n≥0, where we set S0 = 0, S1 = R and for i ≥ 1

suppose that the increments Si+1 − Si are independent and with the same distribution

as D− 1, where D ∼ Pois(W ∗N,z). The random walk connection then yields that for any

z ∈ {Kγ + 1, . . . , N} and any L ≥ 0

P(|T zz | > L;E1) ≤ P(SL+1 ≥ 0).

Now for large N we define

L :=
2R

1− E(W ∗N )
,

which is well-defined as E(W ∗N ) → E(W ∗) < 1. Moreover, we define (X
(z)
i )i≥1 as a

sequence of i.i.d. random variables with the same distribution as D − E(W ∗N,z), where

D ∼ Pois(W ∗N,z). Then we can estimate using E(W ∗N,z) ≤ E(WN,z) that

P (|T zz | > L;E1) ≤ P
(
R+

L∑
i=1

(Si+1 − Si) > L

)

≤ P
( L∑
i=1

X
(z)
i ≥ L

(
1− E(W ∗N,z)

)
−R

)

≤ P
( L∑
i=1

X
(z)
i ≥ R

)
.

Then, by Markov’s inequality for any r > 2 ∨
(

1
γ − 1

)
and N sufficiently large, we

can deduce that

P (|T zz | > L;E1) ≤
E|
∑L

i=1X
(z)
i |r

Rr
≤ C2

L
r
2w(z)

r
2

(
3− 1

γ

)+
+ Lw(z)

r+1− 1
γ

Rr
, (3.10)

where C2 > 0 is a suitable constant, coming out of the estimate on the fractional moment,

which we defer to Lemma 3.2.13.

For the remainder of the proof, we will need to fix an even larger r and assume that

r >
4− 4γ

γ ∧ (1− 2γ)
.

By a union bound combined with the bound in (3.10) and the definitions of L and
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R, we find that there exists a C3 > 0 such that

P
(

max
z∈{Kγ+1,...,N}

|T zz | > L;E1

)
≤

N∑
z=Kγ+1

P (|T zz | > L;E1)

≤ C3

N∑
z=Kγ+1

N
r
2

(3γ−1)+− r
2

γ
2−2γ

z
r
2

(
3− 1

γ

)+
log

r
2 N

+
N
γr+γ−1+(1−r) γ

2−2γ

zγr+γ−1 logr−1N

(3.11)

and we require that this sum tends to 0. For the first term, observe

N
r
2

(3γ−1)+− r
2

γ
2−2γ

z
r
2

(
3− 1

γ

)+ ≤ N
r
2

(3γ−1)+− r
2

γ
2−2γ

N
1−2γ
2−2γ

r
2

(
3− 1

γ

)+ =

(
N

(3γ−1)+−γ
2−2γ

) r
2

,

and we note that the exponent of N in this expression is less than −1 by our choice of

r and since

(3γ − 1)+ − γ =

2γ − 1, if γ > 1
3 ,

−γ, if γ ≤ 1
3 .

In particular, the first term in (3.11) converges to 0.

For the second term, again by our choice of r, we have that r > 2−γ
γ so that we can

deduce that
N∑

z=Kγ+1

1

zγr+γ−1
= O

(
N

1−2γ
2−2γ

(2−γr−γ)
)
.

In particular, we have that

N
γr+γ−1+(1−r) γ

2−2γ

logr−1N

∑
z>Kγ

1

zγr+γ−1
= O

(
N
γr+γ−1+(1−r) γ

2−2γ

logr−1N
N

1−2γ
2−2γ

(2−γr−γ)

)
= O

(
log1−rN

)
= o(1),

which shows that also the second term in (3.11) tends to 0.

Thus, we can conclude from (3.11) that with high probability on the event E1 every

tree has size at most L. Recalling that E1 occurs also with high probability and the

asymptotics of L then gives the required bound.

The following lemma provides the moment estimate that was required in the proof

of Proposition 3.2.2 (b) above.

Lemma 3.2.13. For L ∈ N, z ∈ [N ], suppose X
(z)
i , i ≤ L are independent random

variables with the same distribution as D − E(W ∗N,z), where D ∼ Pois(W ∗N,z) and where
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W ∗N,z is defined in (3.8). Then, for any L,N ∈ N, r > 2 ∨
(

1
γ − 1

)
and z > 1 we have

E

(∣∣∣ L∑
i=1

X
(z)
i

∣∣∣r) ≤ C(L r
2w(z)

r
2

(
3− 1

γ

)+
+ Lw(z)

r+1− 1
γ

)
,

where C > 0 is a constant depending only on r and γ and w(z) is defined in (3.1).

Proof. These calculations use a similar strategy to the proof of [Janson, 2008, Theorem

1.1]. We write X(z) for a random variable with the same distribution as X
(z)
i . We start

by estimating the second and the rth moment of X(z). First, note that as

E
(
W ∗N,z

)
≤ E (W ∗N )→ β

1− 2γ
,

we deduce for N sufficiently large

E
(
(X(z))2

)
= Var

(
Pois

(
X(z)

))
= Var

(
E
(
X(z)|W ∗N,z

))
+ E

(
Var

(
X(z)|W ∗N,z

))
= Var

(
W ∗N,z

)
+ E

(
W ∗N,z

)
≤ E

((
W ∗N,z

)2)
+

β

1− 2γ
.

Using Lemma 3.2.9, we find a constant C1 > 0 independent of N for any α > 1 such

that

E
(
(W ∗N,z)

2
)

=

∫ ∞
0

2xP(W ∗N,z > x) dx =

(
β

1− γ

)2

+

∫ w(z)

β
1−γ

2xP(W ∗N > x) dx

≤
(

β

1− γ

)2

+

∫ w(z)

β
1−γ

2xP(αW ∗ > x) dx ≤ C1

∫ w(z)

β
1−γ

x
2− 1

γ dx

≤ C1w(z)

(
3− 1

γ

)+
,

for N sufficiently large, where we used the explicit density of W ∗ identified in (3.5). We

now have to estimate E
(
(X(z))r

)
for r as above. We claim that

sup
λ≥ β

1−γ

E(Pois(λ)r)

λr
<∞. (3.12)

Indeed, since the Poisson distribution has an exponential moment, we know λ 7→
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E(Pois(λ)r)/λr is finite and continuous on
[

β
1−γ ,∞

)
. Further

∥∥∥∥Pois(λ)

λ

∥∥∥∥
r

≤
λ+ ‖Pois(λ)− λ‖r

λ
= 1 +

∥∥∥Pois(λ)−λ√
λ

∥∥∥
r√

λ
→ 1

as λ → ∞, by the central limit theorem. This proves the claim (3.12). Hence we can

say because X(z) � Pois
(
W ∗N,z

)
we have some C2 > 0 such that

E
((
X(z)

)r)
≤ C2E((W ∗N,z)

r)

for N sufficiently large. We have, given r > 1
γ − 1,

E((W ∗N,z)
r)

zP(M = z)w(z)r
=

∑N
j=z P(M = j)w(j)r

zP(M = z)w(z)r
=

N∑
j=z

1

z

j−γj−γr

z−γz−γr

≤ zγ+γr−1

∫ ∞
z−1

j−γ−γrdj =
1

γ + γr − 1

(
1− 1

z

)1−γ−γr

≤ 1

γ + γr − 1

(
1− 1

N

)1−γ−γr
= O(1),

as N → ∞, noting that this bound holds uniformly over all z > 1. Thus there is some

constant C3 such that, for every z > 1,

E
((
X(z)

)r)
< C3zP(M = z)w(z)r.

Therefore by Rosenthal’s inequality [Gut, 2013, Chapter 3, Theorem 9.1] we obtain

for r > 2 ∨ ( 1
γ − 1)

E
(∣∣∣ L∑

i=1

(
X

(z)
i

) ∣∣∣r) ≤ C3L
r/2
(
E(
(
(X(z))2

))r/2
+ C4LE

(
(X(z))r

)
≤ C5L

r/2

(
1 + w(z)

(
3− 1

γ

)+)r/2
+ C6LzP(M = z)w(z)r

≤ C7L
r/2w(z)

(
3− 1

γ

)+
r
2 + C8L

z1−γw(z)r

N1−γ ,

as claimed.

Proof of Proposition 3.2.3. (a) Again we construct the SNR network GN via the MNR

network and use the tree construction of Proposition 3.1.2 for an upper bound. Recall
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by a standard concentration argument, there is some universal constant C > 0 such that

for λ large enough

P
(
|Pois (λ)− λ| ≤ λ

2

)
≤ e−Cλ, (3.13)

so that for the unthinned degrees in T k we can immediately compare d(k) to (N/k)γ .

The upper bound d(k) in the MNR network then follows immediately, because thinning

can only decrease the degree.

For a lower bound, it suffices to show that overall not too many vertices are being

thinned in the big components. More precisely, define

Zthin :=

Kγ∑
k=1

∑
v∈T k

1{v thinned}.

We will show in the following Zthin ≤ (logN)3 with high probability, which imme-

diately implies the lower bound on the degres (as these are polynomially large) by the

same concentration argument for the Poisson degrees as before.

From Lemma 3.2.11 we have with high probability

max
k≤Kγ

|T k|
(N/k)γ

≤ max
k≤Kγ

∑
z∈T k d(z)

(N/k)γ
≤ logN.

Therefore, by summation and the definition of Kγ we have that the event

E1 =
{∣∣∣ ⋃

i≤Kγ

V (C (i))
∣∣∣ = |VBig| ≤

1

1− γ
√
N logN

}
,

satisfies P(E1)→ 1 as N →∞.

We can bound Zthin by the double sum over vertices that have the same mark.

Thus, if we write M,M ′ for two independent copies of the mark distribution, then by

distinguishing the cases of root vertices and remaining vertices, we obtain

E(Zthin
1E1) ≤ 1

1− γ
√
N(logN)P (M ≤ Kγ) +

1

(1− γ)2
N(logN)2P

(
M = M ′

)
= O

(
log2−γ N + log2N

)
,

where we used that

P(M = M ′) =
N∑
i=1

(
i−γ∑N
j=1 j

−γ

)2

= Θ

(
N1−2γ

N2−2γ

)
= Θ

(
1

N

)
. (3.14)
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Hence, by Markov’s inequality, we have that

P(Zthin ≥ (logN)3) ≤ E(Zthin
1E1)

(logN)3
+ P(Ec1),

and the right hand side tends to zero as N →∞.

(b) Now each of the neighbours of the root vertices {ok} which was not thinned has

offspring D ∼ Pois(W ∗N ) and independently no children with probability

p0 = P(D = 0) = E(e−W
∗
N ) ≥ e−E(W ∗N ) → e

− β
1−2γ > 0

by using Jensen’s inequality. This gives the bound on |Lk| by a binomial concentration

argument.

Proof of Lemma 3.2.5. By Lemma 3.2.11 we know that the event

E1 :=

{
|C (k)| ≤

(
N

k

)γ
logN for all k ≤ Kγ

}
, (3.15)

satisfies P(E1)→ 1 as N →∞.

As observed in Remark 3.1.3, the thinning operation does not create cycles between

components, nor does it create extra edges between the root vertex and one of its chil-

dren.

We now bound the surplus of each component, which is defined as the number of

edges more than edges of a tree on the same vertex set. Writing M and M ′ for two

independent copies of the mark distribution, we get

E(surplus(C (k));E1) ≤ P(M = M ′)

(
N

k

)2γ

log2N. (3.16)

Hence, we obtain for the total surplus in the big components, using (3.14)

bKγc∑
i=1

E(surplus(C (i));E1) ≤ P(M = M ′)N2γ log2N

∫ Kγ

0
i−2γdi

= OlogN

(
N2γ−1N

(1−2γ)2

2−2γ

)
= OlogN

(
N

2γ−1
2−2γ

)
= o(1).

Combining this with the fact that P(E1)→ 1, we obtain by Markov’s inequality that

the big components form a forest with high probability.
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Now that we know each component is a tree, it makes sense to talk about branches of

the root vertices. Again, we can stochastically upper bound the sizes of these branches in

SNR by the ones in MNR, which are bounded by the (unthinned) branches in the forest

T 1, . . . , T bKγc. In the latter, each of the branches is an independent Pois(W ∗N )-GW tree.

Note that the total number of these trees is bounded by
∑bKγc

k=1 d(ok), where ok is the

root of T k. By the same argument as in the proof of Lemma 3.2.11, we therefore have

that there exists a constant C2 > 0 such that the event

E2 =

{ bKγc∑
k=1

d(ok) ≤ C2

√
N log1−γ N

}
,

satisfies P(E2) → 1, since
∑bKγc

i=1

(
N
i

)γ
= O(

√
N log1−γ N). Let (Ti)i≥1 be a sequence

of i.i.d. Pois(αW ∗)-GW trees, where α ∈
(

1, 1−2γ
β

)
. Further, let J =

⌊
C2

√
N logN

⌋
.

Then, by the above argument and Lemma 3.2.9, we have that

P
(

max
k≤Kγ

max
B∈B(C (k))

∑
v∈B

d(v) ≥ N
γ

2−2γ logN ;E2

)
≤ P

(
J

max
i=1
|Ti| > N

γ
2−2γ logN

)
≤

J∑
i=1

P(|T1| > N
γ

2−2γ logN)

= O
(
J
(
N

γ
2−2γ logN

)−( 1
γ
−1)
)

= O
(

log(N)
2− 1

γ

)
= o(1),

where we used Proposition 3.2.10 in the final line. Since P(Ec2)→ 0, this completes the

proof of the lemma.

Proof of Lemma 3.2.6. Note that d(o1), the degree of the root of T 1, satisfies d(o1) ∼
Pois(w(1)) and w(1) = Θ(Nγ). Hence, we can immediately deduce by standard Poisson

concentration that there are constants c1, C1 > 0 such that the event

E1 := {c1N
γ ≤ d(o1) ≤ C1N

γ},

holds with high probability.

For a lower bound, we note that for the SNR model∑
v∈C (1)

d(v)η ≥ d(1)η.
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However, on the event E1 for T1 the expected number of repeated labels among the

children of the root o1 is of order

OlogN
(
NγP(M = 1) +N2γP(M = M ′)

)
= OlogN

(
N2γ−1

)
= o(1),

where as before we write M,M ′ for independent copies of the mark distribution. So

with high probability we have that d(1) = d(o1) ≥ c1N
γ , which gives the required lower

bound.

For the upper bound, by the same arguments used before we only have to bound

the degrees in T 1. Note that with the exception of the degree of the root, all other

degrees have the same distribution as D, where D ∼ 1 + Pois (W ∗N ). Note also that by

Lemma 3.2.11 there exists a constant C2 such that the event E2 = {|T 1| ≤ C2N
γ logN}

occurs with high probability. Therefore, if we let (Di)i≥1 be i.i.d. random variables with

the same distribution as D and set J := bC2N
γ logNc, then for any η > 1.

P
( ∑
v∈T 1,v 6=o1

d(v)η ≥ (logN)3N2γ ;E2

)
≤ P

( J∑
i=1

Dγ
i ≥ (logN)3Nηγ

)
.

We estimate the probability on the right by a first moment bound. Notice that

E((W ∗N )η) =
N∑
i=1

w(i)η+1∑N
j=1w(j)

= Θ


Nγ(η+1)−1 η > 1

γ − 1,

logN η = 1
γ − 1,

1 η < 1
γ − 1.

Moreover, there exists a constant C3 > 0 such that

E ((1 + Pois (W ∗N ))η) ≤ 2ηE (1 ∨ Pois (W ∗N )η) ≤ C3E ((W ∗N )η) ,

and in particular we have that

E

(
J∑
i=1

Dη
i

)
= O

(
(logN)2N (γ(η+1)−1)++γ

)
≤ O

(
(logN)2Nηγ

)
,

where we used that γ < 1
2 in the last step. Hence, by Markov’s inequality,

P
( ∑
v∈T 1,v 6=o1

d(v)η ≥ (logN)3Nηγ ;E2

)
≤ O((logN)−1).
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Since the event E2 occurs with high probability and since we have by the first part

that d(o1)η ≤ Cη1Nηγ on the high probability event E1, the upper bound in the statement

of the lemma follows immediately.

Proof of Proposition 3.2.7. Consider the index set

I :=
[
N

1−2γ
2−2γ , N

1−2γ
2−2γ logN

]
∩ N ⊂ [Kγ ].

We calculate the MNR weight as

w(I) ∼
∑
k∈I

β

1− γ

(
N

k

)γ
= Θ

(√
N log1−γ N

)
and so in for the MNR model the expected number of edges on the subgraph induced

on I is
w(I)2

w([N ])
= Θ

(
log2−2γ N

)
,

and so diverges to∞. Since this number is Poisson distributed, it must then be nonzero

with high probability. After collapsing any multi-edges to arrive at the SNR model it

must still be nonzero with high probability.

We can take any such adjacent pair (x, y) ∈ I2 to create a double star, which by

Lemma 3.2.5 is a tree and by Proposition 3.2.3 (a) has

d(x) and d(y) = ΘlogN
P

(
N

γ
2−2γ

)
.

For the final claim of the Proposition we consider the empirical moment. The esti-

mate on the moment can be proved in the same way as in the previous proof of Lemma

3.2.6, but instead we now have to control the ηth empirical moment of an i.i.d. sequence

Di, i = 1, . . . , bN
γ

2−2γ logNc where Di ∼ 1 + Pois (W ∗N ) . Then, the result follows by

analogous argument, combined with the fact that with high probability we do not see

any thinning on this double star.

Proof of Proposition 3.2.8. We first prove the statement for the multigraph MNR. Let

V be the set of vertices with weight w (as defined in (3.1)) less than 1,

V := {v ∈ [N ] : w(v) < 1} .

As in the previous proof, we consider I :=
[
N

1−2γ
2−2γ , N

1−2γ
2−2γ logN

]
∩ N ⊂ [Kγ ]. We
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split both vertex sets into even and odd vertices as

V even := V ∩ (2N) ; V odd := V ∩ (2N + 1) ;

Ieven := I ∩ (2N) ; Iodd := I ∩ (2N + 1) .

Recall that w(v) ≤ β
1−γ

(
N
v

)γ
by (3.6), so any vertex v with v > N

(
β

1−γ

)1/γ
is

in V . Since we also that have by assumption β
1−γ < 1−2γ

1−γ < 1, we can conclude that

|V | = Θ(N). Thus as N →∞,

w(V even)

N
∼ w(V odd)

N
→ ρ > 0,

where as before we write w(A) =
∑

i∈Aw(i) for any A ⊂ [N ]. We also recall from (3.4)

that w([N ]) ∼ βN
(1−γ)2

= Θ(N) and finally for the large degree sets, we get

w(Ieven) ∼ w(Iodd) ∼ 1

2

∑
k∈I

β

1− γ

(
N

k

)γ
∼ β

2(1− γ)2
NγK1−γ

γ .

The number of edges from V even to Ieven in the MNR model is Poisson distributed

with mean

w(V even)w(Ieven)

w([N ])
= Θ

(
N ·NγK1−γ

γ

N

)
= Θ

(√
N log1−γ N

)

and similarly for V odd to Iodd, so by Poisson concentration we have ΘP

(√
N log1−γ N

)
edges between each. However for any particular v ∈ V and par ∈ {odd, even} we see a

number of edges with mean

w(v)w(Ipar)

w([N ])
≤

1 · β
2(1−γ)2

NγK1−γ
γ

β
(1−γ)2

N
=

log1−γ N

2
√
N

so the probability that this v received more than one edge from Ipar is bounded by

O

(
log2−2γ N

N

)
and hence by a union bound we will see only OlogN

P (1) such instances. Further, any
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vertex v ∈ V has d(v) � Pois(1) and so by the union bound

max
v∈V

d(v) = OP (logN) .

So because from ΘP

(√
N log1−γ N

)
total edges, only OlogN

P (1) vertices in V par

have received more than 1, and at most OlogN
P (1) edges at each, we conclude that

ΘP

(√
N log1−γ N

)
vertices in V par received a unique edge. Denote the sets which are

connected by a unique edge E ⊂ V even and O ⊂ V odd.

For the final stage of the construction, each vertex o ∈ O has conditionally

e(o, E) � Bin

(
ΘP

(√
N log1−γ N

)
,
β

N

)

so we find a single edge into E with probability ωP

(
1/
√
N
)

, and each vertex incident

to this edge has no further edges with probability at least 1/e. So, both have no further

edges with probability at least 1/e2. Hence amongst the |O| = ωP

(√
N
)

trials we will

find an adjacent pair each of degree 2, with high probability.

We found a path P connecting Iodd ↔ V odd ↔ V even ↔ Ieven in the MNR model.

Since each of these sets is disjoint, we know that after collapsing multi-edges to obtain

the SNR model the path will still exist, and will then satisfy the criteria for our “double

star”.

3.3 Diameter in the Supercritical Case

We will analyse any rank one Norros-Reittu graph, defined by a nonincreasing weight

function

f : (0, 1]→ (0,∞)

and vertex set [N ]/N in the interval. In this section, because we are interested in the

existence of paths, there is no difference between the flattened (SNR) and unflattened

(MNR) versions of this network.

We can assume that f is nonincreasing function without loss of generality because

the purpose of the function f is to define a weight measure on (0,∞) and so can obtain

a nonincreasing equivalent to any continuous function by “reordering”, potentially with

f(0+) =∞. Implicitly in this definition we also have ellipticity

min f > 0.
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Then in the multigraph version, the number of edges between i and j is independently

distributed as

Pois

(
1

N
f

(
i

N

)
f

(
j

N

))
.

For example, the kernel defining our main network of interest in Definition 2.0.4 is

f(x) :=
√
βx−γ .

Proposition 3.3.1. The rank one SNR model has a giant component if∫ 1

0
f2(x)dx ∈ (1,∞].

Proof. If
∫
f2 = ∞ then we can argue exactly as in Corollary 3.0.5, taking ε ∈ (0, 1)

such that ε = e−ε and then containing in our rank one SNR a CL version percolated

with retention probability 1 − ε. This percolated model has a giant component, which

completes the argument.

If instead 1 <
∫
f2 < ∞ we apply [van der Hofstad, 2016, (6.8.13)] to say that this

graph contains the GRG version with edge probabilities

pi,j =
f
(
i
N

)
f
(
j
N

)
N + f

(
i
N

)
f
(
j
N

) .
By [van der Hofstad, 2016, Theorem 6.10] the empirical degree distribution of this

graph converges in L1 to the mixed Poisson law D ∼ Pois(W ) where

W
(d)
= f

(
U[0,1]

) ∫ 1

0
f

and U[0,1] denotes a random variable uniformly distributed on [0, 1]. By [van der Hofs-

tad, 2016, Theorem 6.15] this graph is exactly uniformly distributed, conditional on its

degrees, among simple graphs with these degrees.

Then [Bollobás and Riordan, 2015, Theorem 1] tells us that the uniform simple graph

has a giant component when the size-biased limit law of its degree distribution has mean

larger than 2. Recalling the Pois(λ) second moment is λ+ λ2, this is when

2 <
E
(
D2
)

E (D)
=

E
(
f
(
U[0,1]

))
+ E

(
f
(
U[0,1]

)2) ∫ 1
0 f

E
(
f
(
U[0,1]

)) = 1 +

∫ 1

0
f2
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which is the given condition. Then, because we have found a subgraph with a giant

component, we conclude that the SNR model must also have a giant.

Lemma 3.3.2. Fix p ∈ (0, 1). On a sequence of graphs on [N ], mark each vertex with

independent probability p. Then for any vertex define D(v) as the minimum distance to

a marked vertex. We have

max
v

(D(v) ∧ diam C (v)) = OP(logN).

Proof. We now construct the sets in which to observe arrivals. Any vertex v has a path

from it of length at least diam C (v)/2, and so if we set

Vx := {v ∈ [N ] : diam C (v) ≥ 2x}

and give each vertex v ∈ Vx a simple path P (v) 3 v with |P (v)| = x

1P (v) := 1{marked vertex seen in P (v)}

P(D(v) < x) ≥ E
(
1P (v)

)
= 1− (1− p)x

then if we set x =
⌈

2 logN
− log(1−p)

⌉
= Θ(logN) and apply the Harris inequality [Harris, 1960]

P (∀v ∈ Vx : D(v) < x) ≥ E

(∏
v∈Vx

1P (v)

)
≥
∏
v∈Vx

E
(
1P (v)

)
= (1− (1− p)x)N ≥

(
1− 1

N2

)N
→ 1.

Remark 3.3.3. A corollary of this lemma, and the idea behind the diameter proof to

come, is that if we identify every marked vertex in this construction then the resultant

multigraph has componentwise diameter OP(logN).

To our knowledge, the following diameter result does not exist in the literature.

When γ < 1
2 we can couple to a uniform random graph and use results in [Fernholz and

Ramachandran, 2007], but we require a bound for γ ≥ 1
2 .

Rather than redevelop the theory, we will obtain this bound quicker by repeatedly

applying the super- and sub-critical diameter theorems in [Bollobás et al., 2007].
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Theorem 3.3.4. The rank one NR network with any weight function which is super-

critical ∫ 1

0
f2 ∈ (1,∞]

has componentwise diameter OP(logN).

Proof. The core of the argument is that we will lower bound the network model with a

supercritical network that has finitely many types. Define for M ∈ N+

fM (x) := f

(
dMxe
M

)
so that we have stochastic domination of the edges in the rank one networks written

N fM � N f , where N g denotes the NR rank one network with weight function g deter-

mining the edge means before flattening.

As M →∞ ∫ 1

M−1

f2
M =

1

M

M∑
k=2

f

(
k

M

)2

→
∫ 1

0
f2 > 1

so that for M large enough the truncated model is also a supercritical rank one network,

with bounded expected degree and finitely many types. In fact, if we take

0 < ε < 1− 1∫ 1
0 f

2

then (1− ε)fM is still asymptotically supercritical. Colour the mass of the measure with

density fM such that a measure with density (1−ε)fM is blue and the difference measure

is red:

fM = (1− ε)fM + εfM .

The convenience of labelling mass by primary colours is that we can colour edges

blue if they go from blue mass to blue mass and then magenta if they go from blue mass

to red mass, et cetera. The idea behind such a picture is of a Norros-Reittu network

where edges of differing colours arrive independently, and so we work with multigraph

NR in the proof - before flattening, they are indeed independent.

Note however that because fM has a bounded kernel, from [van der Hofstad, 2016]

we know that the simplified Norros-Reittu and Chung-Lu graphs are asymptotically

equivalent.

Further all rank one kernels are trivially quasi-irreducible, or irreducible when re-

stricted to the support of their weight function. We apply several theorems in [Bollobás
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Figure 3.3: We divide the degree mass and label by red or blue, for a typical rank one scale-free
network with the step count M = 10. Note there is some uncoloured mass.

et al., 2007] (which are stated for the equivalent Chung-Lu version) to the network of

only blue edges:

� By [Bollobás et al., 2007, Theorem 3.1], because the kernel is supercritical it has

a giant component.

� Because the network model has finitely many vertex types, by [Bollobás et al.,

2007, Theorem 3.16], the componentwise diameter on this structure is ΘP(logN).

So this subgraph of blue edges has a giant component whp, and it must be nested

whp in the giant component of the edges of all colours.

After realising just the blue edges, we colour vertices in black if they are in the largest

component of the blue edge subgraph. We now put aside the dark magenta edge mass,

i.e. Poisson mass for magenta edges which would feature at least one black vertex.

Realise all the other Poisson edges in N fM from mass that is not blue or dark

magenta. These edges are either red or light magenta. Thinking of this as the NR

multigraph, these are all independent - and questions of the diameter are the same on

the multigraph or flattened version.

We finally realise the dark magenta edges, i.e. those magenta edges coming from a

black vertex. Any vertex in [N ] and a particular black vertex are connected by a dark
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magenta edge with probability at least

pM := 1− exp

(
− 1

N
ε(1− ε)f(1)2

)
= Θ

(
1

N

)
and so thus, after realising the number of black vertices at size ΘP(N), we can see

vertices are incident to dark magenta edges with probability ΘP(1), and their incidence

is entirely independent by the independence of edges for the multigraph NR network.

Applying Lemma 3.3.2, we can say that any vertex on the graph is either on a

component of small diameter or within distance OP(logN) of a vertex of distance 1

from the blue giant. The blue giant had logarithmic diameter and so any two connected

vertices in N f are of distance at most

OP(logN) + 1 +OP(logN) + 1 +OP(logN) = OP(logN)

by communicating through N fM , and we have the result.

Lemma 3.3.5. For the network GN of Definition 2.0.4 with high probability, when

β > (1− 2γ)+, every pair of two vertices in the set

S :=
[⌊
N log−αN

⌋]
,

where α > 1
γ , is simultaneously connected by a path of OP(logN) bounded weight vertices,

in

Hε := [N ] \ [εN ],

for some ε ∈ (0, 1) sufficiently small.

Proof. The network GN has a Poisson number of edges between i and j, with mean

βN2γ−1i−γj−γ =
1

N

(√
β

(
i

N

)−γ)(√
β

(
j

N

)−γ)

so, in the language of this section, we can take weight function

f : x 7→
√
βx−γ

to define precisely this model.

The subnetwork induced by Hε has rank one weight function

f1(ε,1]
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and norm ∫ 1

ε
f2 > 1

for ε ∈ (0, 1) sufficiently small.

Having fixed ε thus, Proposition 3.3.1 shows the induced rank one subnetwork on Hε

has a giant component C ′ which has C ′ ⊆ Cmax whp. Because |C ′| = ΘP(N) we have

some δ > 0 such that the event

Eδ = {|C ′| ≥ δN}

occurs with high probability.

Now take some s ∈ S. In the MNR version of the network conditionally on Eδ we

have Pois(µs) edges between s and C ′, where this mean has

µs ≥
1

N
f(1)f

(
log−αN

)
· δN = βδ logαγ N.

Hence the probability that there is no such edge is bounded by

e−βδ logαγ N = o

(
1

N

)
given αγ > 1. Then using |S| ≤ N we can connect every s ∈ S via the union bound.

The result then follows from Theorem 3.3.4.
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Chapter 4

Interacting Particle Systems

In the previous chapter we proved results about graphs, with no reference to the oc-

cupying process. We must prove results about the processes in a general state space,

which will be done in this chapter. These will combine with the previous results in later

chapters.

After proving a selection of results on finite state space Markov chains which are all

necessary for proofs elsewhere, we continue with a more general exposition of the voter

model and contact process. The latter involves several results not absolutely required

for later proofs but important for understanding the processes’ behaviours.

For both models we introduce their form of duality, each being obtained by reversing

time in the graphical construction (the construction from Poisson processes), and in

the case of the voter model this is very useful for results on the consensus time via the

coalescence time in the dual system of coalescing random walkers. When discussing the

contact process, we will quickly move to a tree perspective of network exploration via

local infection and then what we call the subtree contact process, which will later help

to bound infection size from this local perspective.

4.1 Markov Chains

Interacting particle systems considered in this thesis are Markov chains on a finite state

space, and so too are the random walkers dual to the voter model or our contact process

upper bound of choice. Hence we have a few crucial results for general Markov chains

which we will prove in this section.
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4.1.1 Bounds on hitting times

Throughout the following two sections X = (Xt)t≥0 will be a reversible, irreducible

Markov chain with state space [N ] = {1, . . . , N} and transition rates given by a generator

matrix Q. Moreover, we denote by π = (π(i))i∈[N ] the invariant measure of X.

Because the chain is irreducible, the hitting time is defined as

thit = max
k,j∈[N ]

Ek(Tj)

where Ty := inf{t ≥ 0 : Xt = y}.
For our bound on the hitting time, we will make use of the well-known correspondence

between Markov chains and electric networks, see e.g. [Aldous and Fill, 2002,Levin et al.,

2009]. In this context, we associate toQ a graphGQ with vertex set [N ] and connect i and

j by an edge, written i ∼ j, if the conductance c(ij) is nonzero, where the conductance

is defined as

c(ij) := π(i)Q(i, j) = π(j)Q(j, i). (4.1)

This is also known as the ergodic flow of the edge. Moreover, the interpretation as

an electric network lets us define the effective resistance between two vertices i, j ∈ [N ],

denoted R(i↔ j), as in [Levin et al., 2009, Chapter 9].

To state the following proposition, we also define diam(Q) to be the diameter in

the graph theoretic sense for the graph obtained from Q as above. The proof uses the

representation of the effective resistances in terms of the Markov chains, combined with

Thomson’s principle.

Proposition 4.1.1 (Conductance bounds). Let (Xt)t≥0 be a reversible, irreducible Markov

chain on [N ] with associated conductances c. Let Pi,j be a path from i to j in GQ and

denote by E(Pi,j) the set of edges in Pi,j. Then

Ei (Tj) + Ej (Ti) ≤
∑

e∈E(Pi,j)

1

c(e)
.

In particular, we have

thit ≤ diam(Q) max
i∼j∈[N ]

1

c(ij)
.

Proof. Let T+
i = inf{t > 0 : Xt = i, lims↑tXs 6= i} be the return time to state i.
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From [Levin et al., 2009, Proposition 9.5],

R(i↔ j) =
1

c(i)Pi(Tj < T+
i )
,

where c(i) =
∑

j∼i c(ij) is the conductance around a vertex. We further have from

[Aldous and Fill, 2002, Corollary 2.8 (continuous time version)]

Ei (Tj) + Ej (Ti) =
1

π(i)q(i)Pi(Tj < T+
i )
,

where q(i) = −Q(i, i) is the walker speed at i, and by the choice of c these expressions

are equal. Finally by Thompson’s Theorem (which describes monotonicity of effective

resistances with respect to edge resistances)

Ei (Tj) + Ej (Ti) = R(i↔ j) ≤ R(i↔ j through Pi,j)

=
∑

{u,v}∈E(Pi,j)

1

c(uv)
,

which gives the required bound.

4.1.2 Bounds on meeting times

In this section, we continue to use the notation from the beginning of Section 4.1.1. In

particular, (Xt)t≥0 is a reversible, irreducible Markov chain on [N ] with transition rates

given by Q and invariant measure π. If (Yt)t≥0 is an independent copy of the chain with

arbitrary initial condition, then the random meeting time for the two processes is

τmeet := inf
t≥0
{t : Xt = Yt}

and the expected meeting time is defined by the worst case initial conditions

tmeet := max
x,y∈[N ]

E
(
τmeet

∣∣X0 = x, Y0 = y
)
.

It will often be easier to work with the (expected) meeting time when both chains

are started in the invariant measure, i.e. we define

tπmeet :=
∑

i,j∈[N ]

π(i)π(j)Ei,j(τmeet).
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In order to make the connection to tmeet, we will need the time it takes to reach

stationarity. There are competing definitions of the distance from stationarity, both of

which are required to apply the literature results.

Definition 4.1.2. For a Markov chain on [N ]

d(t) :=
1

2
max
x∈[N ]

‖p(t)
x,· − π(·)‖1,

d̄(t) :=
1

2
max
x,y∈[N ]

‖p(t)
x,· − p(t)

y,·‖1.

The mixing time tmix is then defined as

tmix := min
{
t ≥ 0 : d(t) ≤ 1

4

}
,

and the mixing time from a point i ∈ [N ] as

tmix(i) := min
{
t ≥ 0 :

∥∥p(t)
i,· − π

∥∥
1
≤ 1

2

}
.

Closely related to the mixing time is the relaxation time

trel := max

{
1

λ
: λ a positive eigenvalue of −Q

}
and we describe the relationship in the following lemma, as standard references are either

in discrete time or using different definitions.

Lemma 4.1.3. Write π∗ := minπ, then

trel ≤ tmix ≤ 5trel

(
1 +

1

2
log

1

π∗

)
.

Proof. We have a similar result in [Aldous and Fill, 2002, Lemma 4.23] for the mixing

time T of total variation distance d(T ) = 1
e

trel ≤ T ≤ trel

(
1 +

1

2
log

1

π∗

)
.

First, because d(tmix) = 1
4 ≤

1
e , tmix ≥ T ≥ trel which proves the first inequality.

By the previous definitions of the mixing time and stationarity distances, we have

that if d(T ) = 1
e , then d̄(T ) ≤ 2

e . Therefore, by the submultiplicativity of d̄ shown
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in [Aldous and Fill, 2002] for any integer C ≥ 1 we have

d̄(CT ) ≤
(

2

e

)C
which is less than 1

4 when C = 5, so tmix ≤ 5T .

Proposition 4.1.4. (a)

tπmeet ≥
(1−

∑
i∈[N ] π(i)2)2

4
∑

i∈[N ] q(i)π(i)2
,

where q(i) = −Q(i, i).

(b) There exists an absolute constant ccond > 0 such that

tmeet ≥ ccond

(
max
A⊂[N ]

π(A)π(Ac)∑
x∈A

∑
y∈Ac c(xy)

)
.

Proof. For Part (a) see Remark 3.5 in [Chen et al., 2016].

(b) From the standard coupling bound for mixing times seen in [Aldous and Fill,

2002, Theorem 9.2] and with τ i,jmeet as in (4.11) denoting the meeting time of walkers

initially at i and j,

d(t) ≤ max
i,j

P
(
τ i,jmeet > t

)
≤ exp

(
−
⌊

t

etmeet

⌋)
≤ exp

(
1− t

etmeet

)
where the second inequality is from [Aldous and Fill, 2002, Equation (2.20)]. So by

integrating
1

4
tmix ≤

∫ ∞
0

d(t)dt ≤ e2tmeet. (4.2)

Because c(xy) = π(x)Q(x, y), by [Aldous and Fill, 2002, Corollary 4.37],

max
A⊂[N ]

π(A)π(Ac)∑
x∈A

∑
y∈Ac c(xy)

≤ trel.

Combining this with Equation (4.2) and Lemma 4.1.3 proves the claim.

In discrete time, [Peres et al., 2017, Corollary 1.2] has the consequence that, for some

universal C > 0, tmix ≤ C mini thit(i), the maximal expected hitting time of the vertex

i. We present a simple proof of this fact for the convenience of the reader and to give

an explicit constant factor.
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Lemma 4.1.5. For any i ∈ [N ],

tmix(i) ≤ 2Eπ (Ti) .

Proof. Let i ∈ [N ], then by Cauchy-Schwarz we have that

∥∥∥p(t)
i· − π

∥∥∥2

1
=
∑
j∈[N ]

∣∣∣ p(t)
ij

π(j)
− 1
∣∣∣π(j) ≤

( ∑
i∈[N ]

∣∣∣ p(t)
ij

π(j)
− 1
∣∣∣2π(j)

)2

=
∥∥∥p(t)

i·
π
− 1
∥∥∥2

π
.

To simplify the right hand side, we use reversibility to obtain

∥∥∥p(t)
i·
π
− 1
∥∥∥2

π
= −1 +

∑
j

(
p

(t)
ij

)2

π(j)
= −1 +

1

π(i)

∑
j

p
(t)
ij p

(t)
ji = −1 +

p
(2t)
ii

π(i)
.

Now, by [Aldous and Fill, 2002, Lemma 2.11], we have that for any t ≥ 0,

Eπ (Ti) =

∫ ∞
0

(
−1 +

p
(s)
ii

π(i)

)
ds ≥ 2t

(
−1 +

p
(2t)
ii

π(i)

)
,

because the integrand is non-increasing [Aldous and Fill, 2002, Equation 3.40]. Com-

bining these inequalities, we have for t > 0,

∥∥∥p(t)
i· − π

∥∥∥
1
≤
∥∥∥p(t)

i·
π
− 1
∥∥∥
π
≤
√

Eπ (Ti)

2t
. (4.3)

Hence, if t is such that
Eπ (Ti)

2t
≤ 1

4
,

then we can deduce that tmix(i) ≤ t, which completes the proof.

Proposition 4.1.6. For two independent copies (Xt)t and (Yt)t of a Markov Chain on

[N ], and any state s ∈ [N ], we find

tmix ≤ 16 thit(s)

and further we can construct a time for the product chain with

Ex,y(S) ≤ 188 thit(s)

which is a strong stationary time in the sense that for any t ≥ 0 we have L(Xt+S , Yt+S) =
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π ⊗ π and, further, (Xt+S , Yt+S)t≥0 and S are independent.

Proof. Define the time M1 = 8thit(s). Then, by Markov’s inequality

max
x

Px(Ts ≥M1) ≤ max
x

Ex(Ts)

M1
=
thit(s)

M1
=

1

8

so we will hit s in the timeframe [0,M1] with probability at least 7
8 . Define also the time

M2 by
Eπ (Ts)

2M2
=

1

16

then by recalling equation (4.3) we have that

1

2
‖p(M2)
s,· − π(·)‖1 ≤

1

8
.

Hence, by distinguishing the cases of hitting s by M1, or not, we obtain that d(M1 +

M2) ≤ 1
4 . Thus,

tmix ≤M1 +M2 = 8 thit(s) + 8Eπ (Ts) ≤ 16 thit(s).

It remains to prove the second claim. By Theorem 1.1 in [Fill, 1991] we can construct

a strong stationary time with

Ps (SX > t) = seps(t) =: 1− min
j∈[N ]

p
(t)
s,j

π(j)
.

Then we recover several definitions and results from [Aldous and Fill, 2002] given in

Definition 4.1.2. These various definitions of distance from stationarity satisfy

seps(2t) ≤ max
v∈[N ]

sepv(2t) < 2 d̄(t) ≤ 4 d(t).

Therefore, we have that

τ1 := min

{
t : d̄(t) ≤ 1

2

}
≤ min

{
t : d(t) ≤ 1

4

}
= tmix.

Then we use that d̄ is submultiplicative to obtain

d̄(t) ≤ 2−bt/τ1c ≤ 2−bt/tmixc.
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Thus, we can bound the expectation of the time to stationarity

Es (SX) = 2

∫ ∞
0

seps(2t)dt ≤ 4

∫ ∞
0

21−t/tmixdt =
8 tmix

log 2
≤ 64 thit(s)

log 2
.

This becomes a strong stationary time for (Xt)t with X0 = x by constructing another

time S̃X which simply waits for the event when the walker hits s, and then waits for SX .

Thus

Ex
(
S̃X
)
≤ thit(s) +

64 thit(s)

log 2
< 94 thit(s).

We construct the symmetric time S̃Y for (Yt)t and then finally our object is the time

S := S̃X ∨ S̃Y

so that

Ex,y(S) ≤ Ex
(
S̃X
)

+ Ey
(
S̃Y
)
≤ 188 thit(s),

as claimed.

Proposition 4.1.7. For any state s ∈ [N ]

tmeet ≤
189 thit(s)

π(s)
.

Proof. From any configuration of two walkers, we can apply Proposition 4.1.6 to con-

struct a strong stationary time S with E(S) ≤ 188 thit(s). Then, wait for (Xt)t to hit s,

which in expectation takes an additional time period of length thit(s).

On (Xt)t hitting s, (Yt)t is still in independent stationarity, and so we have exactly

probability π(s) to meet at that instant. Otherwise, we restart the argument with mixing

and hitting periods to get another chance to meet at s.

Thus we have to repeat the attempt no more than Geom(1/π(s)) times, and each

attempt conditionally expects to take no longer than 188 thit(s) + thit(s).

In this proof we used this slightly over-powerful machinery of the constructed strong

stationary time to avoid having to introduce a mixing time of total variation distance

less than 1
4 . We comment, however, that the independence given by this time was not

really necessary for the proof.

Remark 4.1.8. We find the following illustrative discrete-time bound in [Kanade et al.,

2016]
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tπmeet = O

(
tmix

||π||22

)
which, while appearing a better bound, is commonly not so for Markov chains on

trees. The mixing time for a Markov chain on a tree (which must always be a reversible

chain) is always the hitting time of a central vertex, i.e. one with

EπTc = minv∈[N ]EπTv.

Then,

tmix = Θ (thit(c))

and so because ‖π‖22 ≤ ‖π‖∞, Proposition 4.1.7 will often give a tighter bound.

In the following, we will need the following large deviations result given in [Saloff-

Coste, 1997].

Theorem 4.1.9. For any finite, irreducible continuous-time Markov chain (Xt)t with

initial stationary distribution π, and any function on the state space f with

〈f, π〉 = 0, ||f ||∞ ≤ 1,

we have for x > 0

Pµ
(

1

t

∫ t

0
f(Xs)ds > x

)
≤ ||µ/π||2 exp

(
− x2t

10 trel

)
,

where µ is an arbitrary distribution on the state space.

We now use the concept of the chain (Xt)t≥0 observed on a subset V ⊂ N described

in Section 2.7.1 in [Aldous and Fill, 2002]: define a clock process

U(t) :=

∫ t

0
1V (Xs) ds,

with generalised right-continuous inverse U−1. Then the partially observed chain (Pt)t≥0

is defined for any t ≥ 0 via

Pt := XU−1(t).

This corresponds to the deletion of states in V c from the history of (Xt)t≥0, and so
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it can be shown that (Pt)t≥0 is Markovian and has the natural stationary distribution

π(·)1V (·)
π(V )

.

Then, we can define the random subset meeting time τπmeet(A) analogously to τπmeet

except for the partially observed product chain on A × A rather than the full chain.

Similarly, tπmeet(A) = E(τπmeet(A)).

Theorem 4.1.10. For any A ⊂ [N ],

tmeet ≤ 188thit(s) +
2 tπmeet(A)

π(A)2
+

640 thit(s)

π(A)4
.

Proof. We first prove the claim

tπmeet ≤
2 tπmeet(A)

π(A)2
+

40 tmix

π(A)4
. (4.4)

Consider two independent copies (Xt, Yt)t of the stationary chain, such that in par-

ticular, for any t ≥ 0 we have that L(Xt, Yt) = π ⊗ π. Define the time-change

U(t) :=

∫ t

0
1A×A (Xs, Ys) ds.

Then, the product chain (X̃t, Ỹt)t≥0 observed onA×A satisfies (X̃t, Ỹt) = (XU−1(t), YU−1(t))

for any t ≥ 0. Therefore, we have that for any t ≥ 0,

P(U(τπmeet) ≥ t) ≤ P(τπmeet(A) ≥ t),

since a meeting might also happen outside A. In particular, we can deduce that

E(τπmeet) =

∫ ∞
0

P(τπmeet > t) dt

≤
∫ ∞

0
P
(
U(τπmeet) > U(t);U(t) ≥ π(A)2

2
t
)

dt+

∫ ∞
0

P
(
U(t) ≤ π(A)2

2
t
)

dt

≤
∫ ∞

0
P
(
τπmeet(A) ≥ π(A)2

2
t
)

dt+

∫ ∞
0

P
(
U(t) ≤ π(A)2

2
t
)

dt

≤ 2

π(A)2
tπmeet(A) +

∫ ∞
0

P
(
U(t) ≤ π(A)2

2
t
)

dt. (4.5)

It remains to estimate the second integral on the right hand side.
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For this purpose, we apply Theorem 4.1.9 with f := 1A×A − π(A)2 to obtain

Pπ
(

1

t

∫ t

0
1A×A (Xs, Ys) ds− π(A)2 < −x

)
≤ exp

(
− x2t

10 trel

)
and hence

P
(
U(t) ≤ π(A)2

2
t

)
= P

(
U(t)

t
− π(A)2 ≤ −π(A)2

2

)
≤ exp

(
− tπ(A)4

40 trel

)
.

We deduce that ∫ t

0
P
(
U(t) ≤ π(A)2

2
t

)
≤ 40 trel

π(A)4
.

Moreover, Lemma 4.1.3 gives trel ≤ tmix which combined with (4.5) gives the claim (4.4).

To obtain the statement of the theorem, recall from Proposition 4.1.6 that there

exists a strong stationary time S such that

tmix ≤ 16 thit(s) and Ex,y(S) ≤ 188 thit(s).

Using the stationary time constructed in this corollary gives the bound

tmeet ≤ max
x,y∈[N ]

Ex,y(S) + tπmeet,

which together with (4.4) proves the theorem.

4.1.3 Metastability

The metastable version of a chain on V with generator matrix Q = [qij ], called qua-

sistationary in [Aldous and Fill, 2002, Section 3.6.5], is obtained by conditioning the

dynamics so that the chain does not hit some set A ⊂ V . If this conditional dynamic

has a unique stationary distribution, it is the metastable distribution α and satisfies the

equations

α(j) = 0 if j ∈ A∑
i∈Ac

α(i)qij = −ρα(j) if j ∈ Ac∑
j∈Ac

α(j) = 1

(4.6)
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for some exit rate parameter ρ > 0. If we write QA for the generator Q restricted to Ac

then [Aldous and Fill, 2002] tells us that these equations are always uniquely solvable

if the generator QA defines an irreducible Markov chain, and in fact ρ is the spectral

radius of QA.

In balancing the exit rates at every state, we have found a distribution α from

which, with the unconditional Markov chain defined by Q, the hitting time of the set

A is precisely exponentially distributed with rate parameter ρ (see [Aldous and Fill,

2002, Section 3.6.5]).

We have one relatively intuitive proposition about ergodic flow travelling towards

higher escape rates, which will help in later applications of this theory.

Proposition 4.1.11. Consider a continuous time Markov chain on state space V =

S ∪ {†} with rate matrix Q such that Q† is irreducible on S. For each s ∈ S, write

r(s) := Q(s, †) for the escape rate. Then if S can be partitioned into S = A ∪B with

sup
a∈A

r(a) ≤ inf
b∈B

r(b)

then we find the metastable distribution α, obtained by conditioning to not hit †, satisfies∑
a∈A

α(a)Q(a,B) ≥
∑
b∈B

α(b)Q(b, A).

Proof. α denotes the solution to the metastable problem as stated in the proposition.

We can interpret α, using the equations (4.6), as stationary with respect to the dynamic

which places walkers at a random location distributed according to α after their escape

to †. To be clear, this is the rate matrix Q̃ on S with

Q̃(i, j) = Q(i, j) + r(i)α(j)

for any i, j ∈ S. Then we can collapse this Markov chain as in [Aldous and Fill, 2002,

Section 2.7.3] to the two state chain on {A,B} with exponential rates

q̃AB =
∑
a∈A

α(a)

α(A)
Q(a,B) +

∑
a∈A

α(a)

α(A)
r(a)α(B)

q̃BA =
∑
b∈B

α(b)

α(B)
Q(b, A) +

∑
b∈B

α(b)

α(B)
r(b)α(A)

which has stationary distribution α(A), α(B) because it is the collapsed version of a
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chain with stationary distribution α. Checking detailed balance for this two-state chain,∑
a∈A

α(a) (Q(a,B) + r(a)α(B)) =
∑
b∈B

α(b) (Q(b, A) + r(b)α(A))

and hence∑
a∈A

α(a)Q(a,B) + α(A)α(B) sup
a∈A

r(a) ≥
∑
b∈B

α(b)Q(b, A) + α(A)α(B) inf
b∈B

r(b).

Recalling from the claim that supa∈A r(a) ≤ infb∈B r(b), we conclude∑
a∈A

α(a)Q(a,B) ≥
∑
b∈B

α(b)Q(b, A).

4.2 Voter Models

It was used in the original paper [Clifford and Sudbury, 1973], and has been well-known

since [Liggett, 1985], that voter models are dual to coalescing random walks which trace

back where opinions came from. In particular on an arbitrary finite state space, if we

consider the final coalescence time at which a set of random walks started at each vertex

in the underlying graph have coalesced into a single walker, then this upper bounds

the consensus time and thus any result that bounds the expectation of this coalescence

time [Oliveira, 2013, Kanade et al., 2016] also bounds the expected consensus time in

the voter model. In this section we will describe this duality in more detail, which is the

main tool for analysis of the voter model, and also give the useful consequences.

The duality can be described via a graphical construction. We start with the graph

{(j, t) : j ∈ [N ], t ≥ 0} and independent Poisson point processes (Vi,j(t))t∈R, i 6= j (with

rates Q(i, j) respectively). If tk denotes a jump of Vi,j we draw an arrow from (tk, j)

to (tk, i). Given any initial condition η0 ∈ O[N ], we then let the opinions flow upwards

starting at time 0 and if they encounter an arrow following the direction of the arrow

and replacing the opinion of the voter found at the tip of the arrow. Now, we fix a

time horizon T > 0 and we start with N random walkers located at each of the points

(j, T ), j ∈ [N ], then the trajectories follow the graph downwards, following each arrow

and if two walkers meet they coalesce. Denote by ξTt ⊆ [N ] = {ξTt (j) , j ∈ [N ]} the set

of positions of these walkers at time t ≥ 0, where thus ξT0 = [N ]. From this construction,

67



it follows that each walker follows the dynamics of the Markov chain X, so we obtain

a system of coalescing Markov chains/random walks. Moreover, one can immediately

see that the voter model at time T can be obtained, by tracing the random walk paths

backwards, i.e. for any j ∈ [N ],

ηT (j) = η0(ξTT (j)). (4.7)

The “tracing” in this construction gives an explicit coupling at every point in time

which means that we are actually describing a strong pathwise dual in the sense of [Jansen

et al., 2014].

We are interested in general reversible Markov chains, so we do not necessarily assume

that the Markov chain is irreducible. However, since X = (Xt)t≥0 is reversible, we can

decompose the state space into its irreducible components, which we will denote by

C1, . . . , Ck, so that X restricted to Cj is irreducible. In this case, for any j ∈ [k], we

denote the consensus time on the jth component by

τcons(Cj) := inf{t ≥ 0 : ηt|Cj is constant}.

Then, as in Definition 2.1.2 we define the consensus time

τcons := max
j∈[k]

τcons(Cj).

Our main interest in this thesis is in the case when O = {0, 1} and the initial

conditions η0 are distributed according to µu, the product of Bernoulli(u) measures for

some u ∈ [0, 1]. Then, we set

t(u)
cons := Eµu(τcons).

For the duality, it will be easier to consider the voter model where each voter starts

with a different opinion, i.e. η0 = [N ]. Here, we define

t∗cons := E[N ](τcons).

For the system of coalescing random walks, we define for each irreducible component

Cj , j ∈ [k],

τcoal(Cj) := inf{t ≥ 0 : |ξTt | = 1},

i.e. the first time all walkers in this component have coalesced into a single walker. This

coalescence may occur after the time horizon T , but that does not cause issues with our
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construction as the Poisson processes Vi,j were generated on R, and so we can continue

the duality into jumps that were in negative time for the original voter model. Moreover,

we then define

tcoal := E[N ](τcoal), where τcoal := sup
j∈[k]

τcoal(Cj).

By duality, we have that if the voter model starts in η0 = [N ], then

P[N ](τcoal ≤ T ) = P[N ](τcons ≤ T ),

so τcoal and τcons agree in distribution and in particular tcoal = t∗cons. For opinion sets

with fewer than N distinct opinions, we can map the distinct opinions model to the

reduced set to see that this consensus time upper bounds one with η0 ∈ {0, 1}[N ].

The first basic property of the voter model is that the opinion proportions have a

martingale property, as proven in e.g. [Cooper and Rivera, 2016, Lemma 6].

Proposition 4.2.1. Suppose a voter model (ηt)t in {0, 1}N on the graph G = ([N ], E)

has a dual Markov chain with an invariant distribution π. Then

Mt :=
N∑
v=1

ηt(v)π(t), t ≥ 0,

defines a martingale in [0, 1].

In [Chen et al., 2016] they discuss convergence of a wide class of well-mixed voter

models, which all have convergence of this martingale to the Wright-Fisher diffusion

[Etheridge, 2011] as the graph size diverges N →∞.

Definition 4.2.2 (Wright-Fisher diffusion). The Wright-Fisher diffusion (Y,Pu) is the

continuous martingale in [0, 1] with

Y0 = u

d〈Y 〉t = Yt(1− Yt)dt

}
a.s.

This means that the limiting distribution shape distribution of these well-mixed voter

models is universal. The following proposition identifies the “coalescent” shape of this

distribution, and explains why this shape distribution is natural for consensus from the

independent Bernoulli initial condition µu.

Proposition 4.2.3. Construct a Wright-Fisher diffusion (Yt)t with Y0 = u. If (Zm)m is

an independent sequence of Exp(1) random variables, and G is independently distributed
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on {k ≥ 1} with

P(G = k) = uk(1− u) + (1− u)ku

then we identify an equality in distribution of τYexit, the first hitting time of 0 or 1 for the

Wright-Fisher diffusion,

τYexit
(d)
=
∑
m>G

2

m(m− 1)
Zm.

Proof. Consider the standard voter model η on the complete graph on [N ]. From [Chen

et al., 2016, Proposition 2.6] it follows that ∀u ∈ (0, 1)(
τ

(N)
cons

tπmeet

,P(n)
µu

)
(d)→
(
τYexit,Pu

)
where here µu is the independent Bernoulli initial condition on the complete graph.

From [Etheridge, 2011, Example 3.21] we have

Eu
(
τYexit

)
= 2u log

1

u
+ 2(1− u) log

1

1− u
, (4.8)

and by identifying the geometric distribution for the meeting time of two stationary

walkers we claim

tπmeet =
N − 1

2
.

Now consider the natural coupling of the voter model η with the pathwise dual, the

coalescent CSRW walkers ζ which step i → j whenever i adopts the opinion of j in η.

It follows from the duality described in this section that

P
(
τ (N)

cons < t
∣∣η0 = 1A

)
= P(ζ

[N ]
t ⊆ A) + P(ζ

[N ]
t ⊆ Ac) (4.9)

and further, we can couple (ζ
[N ]
t )t pathwise with (ζAt )t for A ⊆ [N ] such that they are

both still coupled to η. Due to the symmetry of the complete graph we can replace

terminal positions with initial positions

P(ζ
[N ]
t ⊆ A) = P(ζ

[N ]
t = ζAt ). (4.10)

By combining Equations 4.9 and 4.10 we see that

P(τ (N)
cons < t) = P({ζ [N ]

t = ζAt } or {ζ [N ]
t = ζA

c

t })

and so in fact the distribution of the voter model consensus time is precisely the distri-
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bution of the time at which all remaining particles in the coalescent process ζ had the

same initial opinion in η. Also, opinions of their initial positions in η are completely

independent according to µu. Thus the number of particles still remaining when we hit

τ
(N)
cons is independent of ζ, with distribution G ∧N .

We observe finally that any two particles on the complete graph will coalesce at

rate 2/N , and so m ≤ N particles will coalesce at rate 2
N

(
m
2

)
. Writing (Zm)∞m=2 for

independent exponential random variables with rate 1:

τ
(N)
cons

tπmeet

(d)
=

N

N − 1

N∑
m=G∧N+1

2

m(m− 1)
Zm

(L2)→
∞∑

m=G+1

2

m(m− 1)
Zm

as n→∞. Thus we have identified

τYexit
(d)
=
∑
m>G

2

m(m− 1)
Zm.

We can now use that this implies the exit time is dominated by the coalescent with

G = 1, taking t < 1, to find

E
(
etτ

Y
exit

)
≤
∞∏
m=2

(
1

1− 2t
m(m−1)

)
= −2πt sec

(
1

2
π
√

8t+ 1

)

which is finite in an interval around 0. Apply Markov’s Inequality to see

P
(
τYexit > x

)
≤ 7 · 2−x

so we have subexponential tails for this consensus time shape, after rescaling by the mean

t
(u)
cons. As the following lemma shows, we can also get bounds for this scale t

(u)
cons which is

the main object of interest in this thesis.

Lemma 4.2.4 (Duality). In the setting above we have, for any u ∈ (0, 1),

t(u)
cons ≤ tcoal.

Suppose additionally that the dual Markov chain is irreducible, then for all u ∈ (0, 1),

t(u)
cons ≥ 2u(1− u) tcoal.

Proof. By recolouring we can see that we reach consensus from the product Bernoulli
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measure µu before we do from unique colours, and hence

t(u)
cons ≤ t∗cons = tcoal.

For the other direction, suppose that the dual Markov chain is irreducible. Then,

observe from the duality relation (4.7) that

Pµu (ηT constant) = P
(
µu constant on ξTT

)
= E

(
u|ξTT | + (1− u)|ξTT |

)
which we can crudely upper bound by considering the event {

∣∣ξTT ∣∣ = 1}

E
(
u|ξTT | + (1− u)|ξTT |

)
≤ P

(∣∣ξTT ∣∣ = 1
)

+
(
u2 + (1− u)2

)
P
(∣∣ξTT ∣∣ ≥ 2

)
= 1− 2u(1− u)P

(∣∣ξTT ∣∣ ≥ 2
)
.

Therefore we have

t(u)
cons =

∫ ∞
0

Pµu(τcons ≥ t) dt

=

∫ ∞
0

1− E
(
u|ξTT | + (1− u)|ξTT |

)
dT

≥ 2u(1− u)

∫ ∞
0

P
(∣∣ξTT ∣∣ ≥ 2

)
dT = 2u(1− u)tcoal,

where we used irreducibility in the last step.

We will control the time tcoal until all random walkers have coalesced using the

following two bounds in terms of two auxiliary quantities that we define next. First of

all, let X = (Xt)t≥0 and Y = (Yt)t≥0 be two independent reversible Markov chains with

generator Q. Then, define the meeting time for the component numbered j ∈ [k] as

tmeet(Cj) = max
x,y∈C(j)

Ex,y(τmeet), where τmeet = inf{t ≥ 0 : Xt = Yt}.

Moreover, an important role will be played by the hitting time defined for the com-

ponent numbered j ∈ [k] as

thit(Cj) = max
x,y∈Cj

Ex(Ty) , where Ty = inf{t ≥ 0 : Xt = y}.

Both quantities give bounds on the coalescence time and thus on the consensus time.
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Proposition 4.2.5. With the notation as above, we have that

sup
j∈[k]

tmeet(Cj) ≤ tcoal ≤ e(2 + logN) sup
j∈[k]

tmeet(Cj).

Moreover, for any j ∈ [k],

tmeet(Cj) ≤ thit(Cj).

Remark 4.2.6. Recall that tcoal is defined as

tcoal = E[N ]

(
sup
j∈[k]

τcoal(Cj)

)

so the non-standard part of the statement is that we can take the supremum out of the

expectation. For irreducible chains, the statement is Proposition 14.11 in [Aldous and

Fill, 2002]. However, their proof does not really need this extra assumption. For the

convenience of the reader, we repeat the proof below. Furthermore, we note that for

reducible chains the first bound is shown in [Oliveira, 2012] without the logN factor.

The stronger bound does not hold without the assumption of irreducibility. Indeed, by

looking at a Markov chain with N components of size 2 each (e.g. with transition rates

1 within these components), it becomes obvious that the factor logN in the proposition

is sharp.

Proof. The reversible Markov chain decomposes into irreducible recurrence classes - write

C (i) for the class containing the state i. As in the proof of [Aldous and Fill, 2002,

Proposition 14.11], consider a walker W (i) independently started in i. We have N(N +

1)/2 meeting times

τ i,jmeet := inf
{
t ≥ 0 : W

(i)
t = W

(j)
t

}
(4.11)

for the walkers 1 ≤ i ≤ j ≤ N , where we define inf ∅ := ∞ and τ i,i := 0. Define a

function f which maps all elements in a recurrence class C (i) to a label min C (i) which

is of lowest index in that component.

f : i 7→ min C (i)

Then we can construct the coalescing walker from independent walkers by killing the

walker of larger initial position at any meeting event, which we think of as making it

follow the vertex of smaller initial position. Thus we can say, for the non-independent
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walker meeting times obtained in this construction,

τcoal :=
N

max
i=1

τcoal(C (i)) ≤ N
max
i=1

τ
i,f(i)
meet .

We then apply a result for the general exponential tails of hitting times of finite

Markov chains [Aldous and Fill, 2002, Equation 2.20]: from arbitrary initial distribution

µ and for a continuous time reversible chain, for any subset A ⊂ V

Pµ(TA > t) ≤ exp

(
−
⌊

t

emaxv EvTA

⌋)
.

For the meeting time variables, which are hitting times for the product chain, this

leads to

P(τ i,jmeet > t) ≤ exp

(
−
⌊

t

etmeet

⌋)
.

We can deduce by the union bound that

P(τcoal > t) ≤
N∑
i=1

P
(
τ
f(i),i
meet > t

)
≤ N exp

(
−
⌊

t

etmeet

⌋)
.

Finally, we integrate as in [Aldous and Fill, 2002, Proposition 14.11] to get

tcoal ≤
∫ ∞

0
1 ∧

(
Ne exp

(
− t

etmeet

))
dt = e (2 + logN) tmeet,

which proves the first claim.

The second claim of the proposition is [Aldous and Fill, 2002, Proposition 14.5].

In particular, Proposition 4.2.5 allows us to to bound the consensus time by bounding

either hitting times or meeting times for an irreducible chain.

4.3 Contact Process

The contact process (or SIS infection), which we first defined in Section 2.2, can also be

defined by a graphical construction. In the graphical construction of the contact process

on a finite simple graph G = ([N ], E), we construct 2|E| independent Poisson processes

of rate λ which contain the infection times for each directed edge. Then, i infects j

at time t iff the Poisson process attached to (i, j) rings at t and also i is infected at t.

Further we generate N independent Poisson processes of rate 1, corresponding to the

recovery times of each vertex.
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With this conception of the model, we can explicitly construct couplings between the

contact process and another version with extra infection added or recovery taken away.

Thus, as in [Liggett, 1999, Page 32], we can deduce various monotonicities of the contact

process.

Lemma 4.3.1. On two graphs G(1) = (V (1), E(1)), G(2) = (V (2), E(2)) with two contact

processes ξ(1), ξ(2) with respective initial conditions µ(1), µ(2) and infection parameters

λ(1), λ(2), if

1. V (1) ⊆ V (2)

2. E(1) ⊆ E(2)

3. µ(1) ≤ µ(2)

4. λ(1) ≤ λ(2)

then we can couple the two random processes such that

P
(
∀t ≥ 0,∀v ∈ V (1), ξ(1)(v) ≤ ξ(2)(v)

)
= 1

i.e. we have the stochastic domination of processes ξ(1) � ξ(2).

Recall again that the contact process (ζt)t has self-duality in the following form,

where ξt(A) :=
∑

a∈A ξt(a).

Proposition 4.3.2 (Contact Process Self-Duality). On a static graph G = (V,E) and

A,B ⊂ V the contact process satisfies, for any fixed time t ≥ 0,

P
(
ξt(A) > 0

∣∣ξ0 ≡ 1B

)
= P

(
ξt(B) > 0

∣∣ξ0 ≡ 1A

)
.

When considering the recovery time of a point infection, this immediately leads to a

useful equivalence between two problems. To avoid notational confusion, we adopt the

following definition.

Definition 4.3.3 (Recovery time). For an infection model we write R := T+
∅ for the

hitting time of the empty infection (or the everywhere 0 infection), or the return time

to this state in the case of an infection intialised at ∅ (which would not make sense for

the contact process, but will for another model).
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Corollary 4.3.4. On a finite graph G = ([N ], E) let U be uniformly distributed in [N ].

Write

Dt :=
ξt([N ])

N

for the infection density at time t. Then we find the following relationship between

contact processes initialised at 1U and 1[N ]:

EU (R) = E[N ]

(∫ ∞
0

Dtdt

)
.

Thus if we’re interested in infection density as in [Mountford et al., 2013], this can in

the static graph context be related back to the recovery time problem that we investigate.

Proof. By self-duality for any v ∈ [N ] we have

Pv (ξt([N ]) > 0) = P[N ] (ξt(v) > 0) = E[N ] (ξt(v))

which we can sum over v to obtain

PU (ξt([N ]) > 0) = E[N ]

(
1

N
ξt

)
= E[N ] (Dt)

and by integration, applying Fubini’s theorem

EU (R) = E[N ]

(∫ ∞
0

Dtdt

)
.

We will apply this duality relation on the non-adaptive network in Section 7.1. Note

that for the frequently considered problem of recovery time from full infection [Nam

et al., 2019, Bhamidi et al., 2019], they have A = B and so there is no alternative dual

version of that problem.

4.3.1 Exploring with the infection

We now look at the contact process not on a static graph, but on the adaptive dynamic

network model defined precisely in Definition 2.2.6. We can redefine the infection and

graph dynamic from a local perspective to better understand how spreading happens.

The algorithm we describe for exploring the adaptive Erdős-Rényi graph with the

contact process generalises naturally to Chung-Lu IRGs [van der Hofstad, 2016]. This
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is an algorithm in the sense that each distribution identity with “∼” is generated at the

point of reference, independently from the past. In this algorithm we think of edges as

directed from the parent to its child for the purposes of describing the local picture, but

we are still actually describing an undirected graph.

At any time we have the set Rt of vertices revealed at time t. At time 0 we have

I0 = R0 = {1}, ξ0 = 11

so we “reveal” the vertex 1 by generating its neighbourhood i.e. giving it an outdegree

d+
0 (1) ∼ Bin

(
N − 1,

β

N

)
where each binomial trial is leading to each other unrevealed vertex with the Erdős-Rényi

edge probability β/N . This is enough local information to run the contact process and

the reactive graph process on this graph because a vertex cannot update without being

adjacent to an infected vertex.

We reveal a vertex v only at the time t when it becomes infected. Its indegree is the

total number of revealed vertices with an edge leading to it

d−t (v) ≥ 1.

What exactly we are revealing for this vertex is its outdegree

d+
t (v) ∼ Bin

(
N − |Rt|,

β

N

)
with again one trial for each remaining unrevealed vertex; note v ∈ Rt.

Furthermore at an update of an infected vertex v at time t (which is necessarily

revealed) we delete every edge pointing into it, every edge pointing out to a revealed

vertex and every “half-edge” pointing out (to an unrevealed vertex). Then we generate

a new outdegree

d+
t (v) ∼ Bin

(
N − |Rt|,

β

N

)
,

a new indegree

d−t (v) ∼ Bin

(
|Rt| − 1,

β

N

)
,

and if d−t (v) > 0 we identify a revealed vertex as a “parent” for each binomial trial.
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Conveniently, if a vertex updates while uninfected it simply returns to being unre-

vealed and |Rt| = |Rt−| − 1; we do not generate a degree as, effectively, we have deleted

it from the local picture. This vertex could further be made to update without being

revealed but still there is no need to keep track of its degree.

Thus we have in a sense contained the nonstationarity – for any time t > 0 the

edges adjacent to a vertex in Rt have a probability of presence dependent on the contact

process, but other edges are independently present with probability β/N .

This means that we can use It ⊆ Rt to say that before the epidemic event ENε of

Definition 2.2.2 each vertex when it was newly discovered had d− ≥ 1 leading to the

vertex that infected it, and edges of number

d+ � Bin

(
d(1− ε)Ne , β

N

)
leading to unique unrevealed vertices that have never been infected.

By considering this description of the model, we come to a very natural approximat-

ing model which focuses on the initial phase of small |Rt|.
Within the first O(1) vertices, a neighbourhood update will typically put the updat-

ing vertex at distance Θ(logN) from any vertex we have as yet encountered with the

infection. Therefore the approximating model that we use within the initial phase of

the infection is of disjoint neighbourhoods, each being an infinite Galton-Watson tree of

potentially explorable vertices.

Definition 4.3.5 (Contact Process on Evolving Forest). Generate a countably infinite

set of i.i.d. Galton Watson trees with offspring distribution Pois(β), labelled T u for each

label u in the Ulam-Harris tree.

The Contact Process on Evolving Forest (CPEF) has an initial tree T ∅, with root

v∅∅ ∈ T
∅

and at time 0 this is the only infected vertex. Its children are denoted v∅1, v∅2 and so on

in the Ulam-Harris convention. On this structure, we put the contact process dynamic:

that infected vertices infect each of their neighbours independently at rate λ, while

recovering at rate 1.

Further, as in the network model, each vertex “updates” at rate κ if and only if it

has an infected neighbour. We number the vertex v∅∅ with 1 and continue numbering

the other vertices in the lexicographical (breadth first) ordering. Thus when a vertex at

lexicographical order k updates in T ∅, it is deleted in that graph and identified with the
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root of T k, so that it will infect the root of T k at that point in time if it is currently

infected. Then, vertices in T k are also numbered by the lexicographical ordering so that

if some vertex in position m in that tree does update, it is deleted and identified with

the root of T k,m.

Thus any “tree” set T u may in fact span a disconnected graph in the course of the

process, but it will never contain a cycle. We write Iu∞ for the vertices in T u which ever

become infected.

We can think of this CPEF version of the dynamics as being obtained from the

dynamics on the network by taking N →∞ in the local weak limit.

4.3.2 The subtree contact process

Despite how simple the contact process is to describe, it is hard to analyse directly – and

the self-duality cannot help us move to a more tractable model. Hence, we analyse is

by constructing stochastic bounds: for example we see the following upper bound model

in [Liggett, 1999].

Definition 4.3.6 (Branching random walk infection). The branching random walk infec-

tion on a graph G = (V,E) is obtained from the contact process by neglecting exclusion.

This means that in the branching random walk infection ζt ∈ NV , each infected agent

can infect every one of its neighbours, and in the event that they are already infected

they will be multiply infected. ζt(v) = k reflects that k infections occupying v will all

independently infect Γ(v) – or equivalently, each neighbour is infected at rate λk.

By the graphical construction we described, it is clear that this process has strictly

more infected particles and so ζt is indeed a stochastic upper bound on the contact

process. Analysis is done in this case by constructing supermartingales. On the d-

regular tree Td take an arbitrary root o ∈ V (Td) and let l(v) := d(o, v) record the

distance from the root. For some ρ > 0, these supermartingales then have the simple

form

Mt =
∑

v∈V (Td)

ζt(v)ρl(v)

so that by finding conditions where the ρ = 1 process is supermartingale we can prove

global extinction, or by the same but setting ρ < 1 we can show local extinction in the

neighbourhood of o. In fact in the case ρ = 1, Mt is simply a continuous time Galton-

Watson process. We can then observe that each action of a particle is independently
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either an infection or recovery, and is an infection with probability

λd

1 + λd

and so by comparison to the biased random walk the following result is straightforward.

Theorem 4.3.7. Consider the branching random walk infection (ζt)t on Td 3 o. The

expected recovery time of a branching random walk infection from o satisfies

E
(
inf {t : ζt ≡ 0}

∣∣ζ0 = 1o

)<∞ λ < 1
d ,

=∞ λ ≥ 1
d .

We know from [Pemantle, 1992, Theorem 2.2] that the real contact process cannot

survive on Td unless λ ≥ 1
d−1 , so naturally the branching random walk infection did miss

a region of subcritical parameters. We will construct a different upper bound which

is tractable not by any associated supermartingale but by being a positive recurrent,

reversible Markov chain. However, to achieve such a nice stochastic bound model, we will

see by comparison to the above theorem that we sacrifice even more viable λ parameters

than we did in using the branching random walk infection, with a process which is similar

to the Root-Added Contact Process of [Bhamidi et al., 2019].

Definition 4.3.8 (Subtree Contact Process). Construct the Subtree Contact Process

(SCP) on a rooted tree (T,o) by adding an additional vertex adjacent to the root o.

This additional vertex is infected and cannot recover and thus the contact process has

no absorbing state. We further modify the contact process so that no other vertex can

recover unless all of its children are healthy.

This defines the dynamic, on the set T of finite subtrees of T which are rooted at o

(the extra permanently infected vertex is not considered part of the infection set).

Further, if Zλ :=
∑

T∈T λ|T | <∞, write for T ∈ T

πλ(T ) :=
λ|T |

Zλ
(4.12)

for the SCP stationary distribution. Note that the SCP defined thus is irreducible and

reversible on this set of subtrees, and we can check the stationary distribution (4.12) in

the detailed balance equations.

Because we made both simplifications by adding infection or preventing recovery, the

SCP infection stochastically dominates the usual contact process. We will therefore use
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the SCP to contain the infection sets.

Because we have constucted an upper bound which is a reversible Markov chain,

we can get a good understanding, for example, of the hitting probabilities. Define for a

rooted subtree t

p(t) := Pλ∅
(
Tt < T+

∅
)

then given |t| = k we can give fairly good a.s. bounds on p(t) via the electrical network

techniques.

Proposition 4.3.9. If the SCP lives on a tree such that Zλ <∞, we find

(1− λ)λk−1 ≤ p(t) ≤ kλk−1

for a rooted tree t with |t| = k vertices.

Proof. Let E be the set of “edges” corresponding to a recovery at t. We calculate the

total conductance of this set (see (4.1)) from the number `(t) of leaves

c(E) = `(t)
λ|t|

Zλ
≤ kλk

Zλ

so that by the Nash-Williams inequality [Levin et al., 2009, Proposition 9.15] we deduce

R(∅ ↔ t) ≥ 1

c(E)
≥ Zλ
kλk

.

Further, by Thompson’s Principle [Levin et al., 2009, Theorem 9.10] applied to an

arbitrary simple path from ∅ to t of minimal length k, we find

R(∅ ↔ t) ≤
k∑
s=1

Zλ
λs

=
λ−k − 1

1− λ
Zλ ≤

λ−k

1− λ
Zλ.

These two bounds can be combined with the relation

p(t) =
1

c(∅)R(∅ ↔ t)
=

Zλ
λR(∅ ↔ t)

to deduce

1− λ ≤ p(t)

λk−1
≤ k.

As warned, the use of this upper bound does require smaller λ parameters than the
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branching random walk infection. We see this by a comparison on the d-regular tree.

Theorem 4.3.10. Let (ζt)t denote the SCP on Td with arbitrary root o, from initial

distribution ζ0 = {o} =: r. For this model we find threshold

λc =
(d− 2)d−2

(d− 1)d−1

which has recovery time (of Definition 4.3.3)

E
(
R
∣∣ζ0 = r

)<∞ λ < λc

=∞ λ > λc.

To make the comparison, we further observe that λc ∼ 1
ed as d→∞.

Proof. See Proposition A.0.1 for a proof that, in T the set of rooted subtrees of the

rooted d-regular tree Td, we have

d

k − 1

(
k(d− 1)

k − 2

)
=: Ck

rooted subtrees of size k. By Stirling’s approximation as k →∞ we observe

logCk = (d−1)k log((d−1)k)−(d−1)k−k log k+k−(d−2)k log(d−2)k+(d−2)k+o(k)

and so after cancellation we can deduce the limit

logCk
k
→ (d− 1) log(d− 1)− (d− 2) log(d− 2).

Hence if we define

λc :=
(d− 2)d−2

(d− 1)d−1

the putative normalising constant Zλ has

Zλ =
∑
T∈T

λ|T | = 1 +

∞∑
k=1

Ckλ
k

<∞ if λ < λc

=∞ if λ > λc.

so that we have a stationary distribution πλ(T ) ∝ λ|T | if λ < λc. By considering a return
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time from ∅, which must first feature an infection of the root tree r, we deduce

Er(R) =
1

λπλ(∅)
− 1

λ
=
Zλ − 1

λ
<∞.

In the other case, nonexistence of a stationary distribution and irreducibility of the

chain implies by [Norris, 1998, Theorem 3.5.3] that the expected return times are infinite.

Now

d · λc ∼
(
d− 2

d− 1

)d−1

=

(
1− 1

d− 1

)d−1

→ 1

e

which proves the final claim.

We will reguire two monotonicities of the SCP for its analysis. With the graphical

construction these are reasonably intuitive but for the sake of completeness we will prove

them here.

Proposition 4.3.11. Let ζ(1) be the SCP with infection rate λ > 0 on the tree T (1) with

root o, and ζ(2) be the SCP with infection rate λ on the tree T (2) which contains T (1)

and has the same root o. Then the two processes started from ζ
(1)
0 = ζ

(2)
0 = {o} have

the process domination ζ(1) � ζ(2).

Proof. Note that ζ
(1)
0 ⊆ ζ(2)

0 which will be the base case for the induction.

Construct ζ(2) by the graphical construction, attaching a Poisson process of rate λ

to each directed edge containing the possible infection times and a Poisson process of

rate 1 to each vertex containing the possible recovery times. Then we have immediately

a coupled construction for ζ(1) by using the same Poisson processes whenever they are

attached to a vertex or directed edge in T (1).

Now we check that ζ
(1)
t ⊆ ζ

(2)
t is preserved by the dynamics. If ζ(2) has a successful

recovery event in v ∈ V (T (1)) at time t then ζ(1) must also attempt to recover there at

that time. Hence either v /∈ ζ(1)
t− or ζ(1) also has a successful recovery event in v at time

t, which in either case preserves the inclusion.

We must also consider the event that v ∈ ζ(1)
t− infects w ∈ V (T (1)) at time t. By our

inductive hypothesis, v ∈ ζ(2)
t− . Hence either w ∈ ζ(2)

t− or we see the same infection in ζ(2),

because the modifications to the contact process to define the SCP in Definition 4.3.8

did not affect the infection events.

We do not need to consider the vertices in V (T (2)) \ V (T (1)) because ζ(1) can never

include these vertices, and so this concludes the induction.
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Proposition 4.3.12. Let ζ(1) be the SCP with infection rate λ1 > 0 on the tree T with

root o, and ζ(2) be the SCP with infection rate λ2 > λ1 on the same rooted tree T . Then

the two processes with ζ
(1)
0 = ζ

(2)
0 = {o} have the process domination ζ(1) � ζ(2).

Proof. This is proved in much the same way and the argument in checking the recovery

events for ζ(2) is identical.

The coupling for the infection events is constructed by first giving ζ(1) a graphical

construction with infection rates λ1. Then to each of these processes we add an indepen-

dent Poisson process of rate λ2−λ1 which creates a graphical construction with infection

rates λ2. Thus any infection attempt in ζ(1) also exists for ζ(2) and the inclusion is also

preserved here.

Recent work of [Nam et al., 2019] managed to find an extinction-survival threshold

in the more difficult context of a Poisson(β)-Galton-Watson tree by taking the limit

β →∞. This was established in the sense that the random survival threshold

λ1(β) := inf {λ > 0 : positive probability to survive from full infection}

decays like λ1(β) ∼ 1
β as β →∞. We can quickly prove a similar claim for the SCP by

looking at when the Poisson-Galton-Watson tree contains the regular tree.

Theorem 4.3.13 ( [Pakes and Dekking, 1991] ). There exist β such that the rooted

Pois(β)-Galton-Watson tree has positive probability of a (rooted) Td subtree that shares

its root. This occurs in fact for all β > βd where the minimal such value βd has

βd+1 ∼ d

as d→∞.

We also state a result that will be proved in Chapter 7 but is useful for this discussion.

Lemma 4.3.14. On the random (finite or infinite) Pois(β)-Galton-Watson tree we have

E(Zλ) <∞ whenever λ < 1
βe .

Recall, for this corollary, that r := {o} is the subtree containing only the root.

Corollary 4.3.15. Fix a constant C > 0 and consider infection rate

λβ :=
C

β
.
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We find for the SCP on a rooted Pois(β)-Galton-Watson tree that

Er(R)

<∞ if C < 1
e

=∞ if C > 1
e

for β sufficiently large.

Proof. First if C < 1
e we find

λ = λβ =
C

β
<

1

βe

and conclude immediately from Lemma 4.3.14.

If instead C > 1
e , consider the maximal value kβ such that the regular tree Tkβ

has positive probability to be contained in the rooted Pois(β)-Galton-Watson tree and

include the root of the Galton-Watson tree. By Theorem 4.3.13 we have kβ ∼ β as

β →∞.

Then recall from Theorem 4.3.10 that the SCP with parameter λ = λβ will have

infinite expected recovery time on Tkβ if

C

β
>

1

ekβ
(4.13)

and kβ is sufficiently large. But observe that (4.13) holds for β sufficiently large by the

assumption C > 1
e . Hence by the subtree monotonicity of Proposition 4.3.11 we infer

that on the event that Tkβ is a subtree, recovery happens strictly later. Because recovery

time on Tkβ has infinite expectation, we conclude the same for the Galton-Watson tree.

Interestingly, this positive recurrence region λβ < 1
e is the same as for the MRACP

of [Bhamidi et al., 2019]. The MRACP only disallows recovery at the root while its

children are infected rather than at every vertex as for the SCP – while this sounds like

a bigger modification, it seems we have not lost ground to any combination effects.
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Chapter 5

Voter Model Consensus on a

Subcritical Scale-Free Network

In this chapter we will prove the two main theorems about the asymptotics of the con-

sensus time on a subcritical network in the class Gβ,γ of Definition 2.0.5. In Section 5.1,

we will consider the classical voter model and prove Theorem 2.1.5 on the change in

the polynomial order of the expected consensus time with θ ∈ R. Then, in Section 5.2

we will prove the corresponding result Theorem 2.1.7 for the discursive voter model.

Throughout, we will use the duality of the voter model to a system of coalescing random

walks as described in Section 4.2. Appropriate tools to bound the expected coalescence

times are combined with a fine analysis of the structure of subcritical inhomogeneous

random graph models, which have the fractal-like structure seen in Figure 5.1, that is

not readily available in the literature.

A type of mean-field approximation has also been used to analyse the voter model

in [Sood et al., 2008] where we believe it was very successful. However, they do not get the

right polynomial order of consensus time in the case of subcritical network parameters,

because the lack of a giant component means that treating the graph as connected no

longer works. Therefore we will focus on the subcritical case in this chapter and in doing

so we find a complete picture of new polynomial orders.

Proving these two theorems boils down to sixteen bounds: a two sided bound for

each of the four regimes in each theorem. Of these bounds the more illustrative are the

lower bounds as these point to a component which is creating the slow consensus time

over the network. Technically, these lower bounds are either by the mixing lower bound
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of Proposition 4.1.4 (b)

max
A⊂[N ]

π(A)π(Ac)∑
x∈A

∑
y∈Ac c(xy)

or by the other lower bound of Proposition 4.1.4 (a), always on the order

1∑
i∈[N ] q(i)π(i)2

.

This second bound we think of as summing up all the effects apart from mixing: the

fastest mixing approximation of the chain should be that with a jump chain distribution

that is simply a sequence of stationary draws. If we consider this chain while preserving

the jump rates q(·), we would find a consensus time of order 1∑
qπ2 . So we can say that

if this is the true consensus time for the model then it would not be accelerated by

moving to the fastest mixing version of the consensus dynamic and so, in this sense, is

not bottlenecked by mixing.

The exponents that we see in the classical voter model on GN , which we recall are

c =



γ θ ≥ 1,

γθ 1
2−2γ < θ < 1,

γ
2−2γ 0 ≤ θ ≤ 1

2−2γ ,

γ(1−θ)
2−2γ θ < 0,

can be divided into two regimes. If θ < 1
2−2γ the bottleneck is by slow mixing, on a

component of polynomial order N
γ

2−2γ . In the other case θ > 1
2−2γ we have sufficiently

fast mixing and the slowest consensus is instead seen on the largest components.

For the discursive voter model we instead found

c =



γ
2−2γ θ ≥ 3−4γ

2−2γ ,

γ(2− θ) 1 < θ < 3−4γ
2−2γ ,

γ 2γ ≤ θ ≤ 1,

γ(2−θ)
2−2γ θ < 2γ.

and the mixing bottlenecks on components of order N
γ

2−2γ are seen in the edge regions

θ ∈ (−∞, 2γ) ∪
(

3−4γ
2−2γ ,∞

)
. One difference here is that we cannot demonstrate these

two mixing lower bounds on the same components – it will be necessary to construct a

double star and also an elongated version of the double star.
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Classical Discursive
Upper bound Lower bound Upper bound Lower bound

Very high θ
Hitting time

4.2.5
Mixed meeting

4.1.4 (a)
Meeting in leaves

4.1.10
Mixing

4.1.4 (b)

High θ
Meeting in leaves

4.1.10
Mixed meeting

4.1.4 (a)
Meeting in leaves

4.1.10
Mixed meeting

4.1.4 (a)

Low θ
Meeting in leaves

4.1.10
Mixing

4.1.4 (b)
Meeting in leaves

4.1.10
Mixed meeting

4.1.4 (a)

Very low θ
Meeting at centre

4.1.7
Mixing

4.1.4 (b)
Meeting in leaves

4.1.10
Mixing

4.1.4 (b)

Table 5.1: A summary of the methods by which we obtain each of the 16 required bounds in the
proofs of Theorems 2.1.5 and 2.1.7. With each named method we refer to the proposition or

theorem which formalises the bounding concept, and note also that the “leaves” referred to are only
the leaves adjacent to the central vertex as in Proposition 3.2.3 (b).

5.1 Consensus Time for the Classical Voter Model

In this section, we will consider the classical voter model as defined in Definition 2.1.3.

Throughout, let the SNR model GN of Definition 2.0.4 with for β + 2γ < 1 be the

underlying graph, but recall that results apply across the family of subcritical rank-one

networks related to GN by condition (2.2). We note that this version of the voter model

fits into the general setting of a Q-voter model of Section 2.1 if for θ ∈ R we consider

Q = Qθ defined as

Qθ(i, j) = d(i)θ−1 if i ∼ j in GN . (5.1)

As before, we write Pθ for the law of (and Eθ for the expectation with respect to)

the coalescing random walks with generator Qθ.

If we denote by C1, . . . ,Ck the connected components of GN , then these also corre-

spond to the irreducible components of the Markov chain with generator Qθ. So if we

let π = (π(z), z ∈ V (GN )) be defined via

π(z) =
d(z)1−θ∑
y∈Cj

d(y)1−θ , for z ∈ Cj ,

for j ∈ [k] (or naturally π(z) = 1 if d(z) = 0), then π|Cj is the invariant measure of the

Qθ Markov chain restricted to Cj .

Before the main proof, we show an elementary bound on the meeting time of two

independent random walks, when the component contains a star, i.e. if there exists a

vertex k with a set of neighbours Lk, each of degree 1 (compare Proposition 3.2.3).
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Figure 5.1: The component containing the vertex 1, for a graph in the class Gβ,γ with subcritical
network parameters (β, γ) = (0.05, 0.45). On these 4429 vertices we can already see the emerging

fractal structure.

Lemma 5.1.1. Let k ∈ [N ] be such that Lk, the set of its neighbours of degree 1, is non

empty. Let (Xt)t≥0 and (Yt)t≥0 be independent Markov chains on C (k) with generator

Qθ. Then, for the product chain observed on {k}∪Lk (as defined before Theorem 4.1.10),

we have

tπmeet({k} ∪ Lk) ≤
3 + d(k)θ

2
.

Proof. Let St count how many of the two walkers are currently in the leaf set Lk. Then
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(St)t≥0 is a Markov chain on {0, 1, 2} with transition rates (sij), where in particular

s21 = 2, s10 ≥ 1, s12 = |Lk|d(k)θ−1 ≤ d(k)θ,

using that |Lk| ≤ d(k).

Now, note that St = 0 implies that τmeet ≤ t. In particular, if Ti = inf{t ≥ 0 : St = i}
for i ∈ {0, 1, 2}, then we have that T0 ≥ τmeet.

From the explicit transition rates, we can see that E2(T1) = 1
2 and if we write

s(1) = s10 + s12, then

E1(T0) =
1

s(1)
+

s12

s(1)

(
1

2
+ E1(T0)

)
so that

E1(T0) =
1 + s12/2

s10
≤ 1 +

s12

2
.

We conclude that

sup
v,w∈V (Sk)

E(v,w)(τmeet) ≤ max{E1(T0),E2(T0)} ≤ 1

2
+ 1 +

s12

2
≤ 3 + d(k)θ

2
,

as claimed.

Proof of Theorem 2.1.5. We will start by showing the upper bounds. For the cases

θ ≥ 1, we use that by Lemma 4.2.4 and Proposition 4.2.5 we can bound

Eµu(τcons |GN ) ≤ e(2 + logN)thit(GN ),

where thit(GN ) = supj∈[k] thit(Ci) for C1, . . . ,Ck the components of GN . Note in partic-

ular that the right hand side is still random and the expectation is only over the random

walks.

We recall that the random walk associated to the classical voter model has transition

rates Qθ(x, y) = d(x)θ−1
1x∼y and π(x) ∝ d(x)1−θ. In particular, for any component

C ∈ Comp(GN ) the conductances as defined in (4.1) are

c(xy) = π(x)Qθ(x, y) =
1∑

z∈C d(z)1−θ1{x∼y}, for any x, y ∈ C .
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Hence, by Proposition 4.1.1, we have for any component C ,

thit(C ) ≤ diam(C )
∑
z∈C

d(z)1−θ. (5.2)

Because θ ≥ 1, we have that
∑

z∈C d(z)1−θ ≤ |C |. Therefore, by Proposition 3.2.2 (a)

and Proposition 3.2.1, we get that

sup
C∈Comp(GN )

thit(C ) ≤ max
C∈Comp(GN )

diam(C )× max
C∈Comp(GN )

|C | = OlogN
P (Nγ),

which completes the upper bound for θ ≥ 1.

For θ ≤ 0, we first deal with the small components, where we recall that the vertex

set of the ‘small’ components is defined as

Vsmall := [N ] \ Vbig, where Vbig :=
⋃
k≤Kγ

V (C (k))

and Kγ = N
1−2γ
2−2γ logN . By Proposition 3.2.2 (b), we know that

max
k∈Vsmall

∑
x∈C (k)

d(x) = OlogN
P

(
N

γ
2−2γ

)

In particular, we get from (5.2) using
∑

i x
p
i ≤ (

∑
i xi)

p for any p ≥ 1 and xi ≥ 0

that

max
k∈Vsmall

thit(C (k)) ≤ diam(GN ) max
k∈Vsmall

∑
x∈C (k)

d(x)1−θ

≤ diam(GN ) max
k∈Vsmall

( ∑
x∈C (k)

d(x)
)1−θ

= OlogN
P

(
N

γ(1−θ)
2−2γ

)
,

(5.3)

where we also used Proposition 3.2.1 to bound the diameter.

To bound the consensus time on large components, we use that by Proposition 4.1.7

for any k ≤ Kγ ,

tmeet(C (k)) ≤ 189
thit(k)

π(k)
,

and find a suitable upper bound on the right hand side, which in turn gives us by

Lemma 4.2.4 and Proposition 4.2.5 an upper bound on Eµu(τcons(C(k)) |GN ). In order

to bound the invariant measure, we note that since θ ≤ 0, we have from Proposition
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3.2.2 (a) and 3.2.3 (a) that

min
k≤Kγ

π(k) = min
k≤Kγ

d(k)1−θ∑
z∈C (k) d(v)1−θ ≥ min

k≤Kγ

( d(k)∑
z∈C (k) d(z)

)1−θ
= ΩlogN

P (1).

In order to bound the hitting time thit(k) we apply the same argument as for the

small component, but for the random walk restricted to each branch of C (k) (see also

Definition 3.2.4 above for the formal definition of a branch). The bound on the sum of

degrees comes from Lemma 3.2.5. Together, we obtain that

sup
k≤Kγ

tmeet(C (k)) = OlogN
P

(
N

γ(1−θ)
2−2γ

)
.

Combined with the bound on the small components, this completes the upper bound

in the case θ ≤ 0.

We complete the upper bounds by showing for θ ∈ (0, 1) that

max
k∈[N ]

tmeet (C (k)) = OlogN
P

(
Nγθ +N

γ
2−2γ

)
. (5.4)

The upper bound on the consensus time then follows by Proposition 4.2.5 and by

noting that in each of the two different regimes one of the summands dominates.

For k ∈ Vsmall, we use similar strategy as above and obtain by (5.2) that

thit(C (k)) ≤ diam(C (k))
∑

z∈C (k)

d(z)1−θ ≤ diam(C (k))
∑

z∈C (k)

d(z),

which if we combine Proposition 3.2.2 (b) and Proposition 3.2.1 is seen to beOlogN
P

(
N

γ
2−2γ

)
uniformly in k ∈ Vsmall.

For the bound on the large components, define for k ≤ Kγ the set Lk as the neigh-

bours of k that have degree 1. By Proposition 3.2.3 (b) we have that

min
k≤Kγ

|Lk|
d(k)

= ΩP(1). (5.5)

Hence, since all vertices in Lk have degree 1, we obtain

π(Lk ∪ {k}) ≥
∑

x∈Lk d(x)1−θ∑
x∈C (k) d(x)1−θ ≥

|Lk|∑
x∈C (k) d(x)

.
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Thus by (5.5) and Proposition 3.2.2 (a) we have

min
k≤Kγ

π(Lk ∪ {k}) = Ω

(
min
k≤Kγ

d(k)∑
x∈C (k) d(x)

)
= ΩP

(
1

logN

)
. (5.6)

Because we have a large stationary mass in Lk ∪ {k}, Theorem 4.1.10 gives us that

tmeet(C (k)) = OlogN
P (tπmeet(Lk ∪ {k}) + thit (k)) , (5.7)

where we recall that tπmeet(Lk ∪ {k}) is the meeting time for the Markov chain observed

on {k} ∪ Lk (see also the definition just before Theorem 4.1.10). We obtain from by

Lemma 5.1.1 that

max
k≤Kγ

tπmeet ({k} ∪ Lk) ≤ max
k≤Kγ

3 + d(k)θ

2
= OP(Nγθ).

Moreover, by Lemma 3.2.5

max
k≤Kγ

thit(k) ≤ max
k≤Kγ

max
B∈B(C (k))

diam(B)
∑
v∈B

d(v)1−θ

≤ max
k≤Kγ

diam(GN ) max
B∈B(C (k))

∑
v∈B

d(v) = OlogN
P

(
N

γ
2−2γ

)
.

(5.8)

Substituting both bounds into (5.7), we obtain

max
k≤Kγ

tmeet(C (k)) = OlogN
P

(
Nγθ +N

γ
2−2γ

)
.

By combining this with the bound on the small components, we have completed the

proofs for the upper bounds in all cases.

We continue with the lower bounds.

For the first part, we suppose that θ > 0 and consider the consensus time on C (1).

By Lemma 4.2.4 and Proposition 4.2.5

Eθµu(τcons(C (1)) |GN ) ≥ 2u(1− u)tmeet(C (1)) ≥ 2u(1− u)tπmeet(C (1)),

where the last inequality follows from the definitions. To bound the right hand side, we

recall from Proposition 4.1.4 (a) that

tπmeet(C (1)) ≥
(1−

∑
x∈C (1) π(x)2)2

4
∑

x∈C (1) q(x)π(x)2
. (5.9)
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In order to find a lower bound on the right hand side, we first bound the maximum

of the invariant distribution. If θ ∈ (0, 1), then we have by Proposition 3.2.3 (a)

max
v∈C (1)

π(v) =
maxv∈C (1) d(v)1−θ∑

z∈C (1) d(z)1−θ ≤
|C (1)|1−θ

|C (1)|
≤ d(1)−θ = OP(N−γθ).

Similarly, if θ ≥ 1 we recall the leaf neighbours of Proposition 3.2.3 (b),

max
v∈C (1)

π(v) ≤ 1∑
z∈C (1) d(z)1−θ ≤

1

|L1|
= OP(N−γ).

In particular, in both cases we have∑
x∈C (1)

π(x)2 ≤ max
x∈C (1)

π(x)
∑

v∈C (1)

π(v) = oP(1).

To estimate the denominator in (5.9), we note that for θ ≥ 1,

∑
v∈C (1)

q(v)π(v)2 =

∑
v∈C (1) d(v)θ d(v)2−2θ(∑

v∈C (1) d(v)1−θ
)2 ≤

∑
v∈C (1) d(v)

|L1|2

= OlogN
P

( Nγ

N2γ

)
= OlogN

P (N−γ),

where we used Proposition 3.2.3 (b) for the denominator and Proposition 3.2.2 (a) for

the numerator. By the same results and Lemma 3.2.6, we have for θ ∈ (0, 1),

∑
v∈C (1)

q(v)π(v)2 ≤
∑

v∈C (1) d(v)2−θ(∑
v∈C (1) d(v)1−θ

)2 = OlogN
P

(
N (2−θ)γ

N2γ

)
= OlogN

P (N−θγ).

Hence, we obtain from (5.9) for θ > 0

tπmeet(C (1)) =

{
ΩlogN
P (Nγ) if θ ≥ 1,

ΩlogN
P (Nγθ) if θ ∈ (0, 1).

(5.10)

For the second of the part of the lower bound, we use a component that contains a

sufficiently large “double star” structure and consider parameters θ < 1. More precisely,

by Proposition 3.2.7, with high probability, there exists a tree component that contains
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two adjacent vertices x and y such that

d(x),d(y) and
∑

v∈C (x)

d(v) are ΘlogN
P

(
N

γ
2−2γ

)
. (5.11)

Now, let Ax be the set of vertices in C (x) that are closer to x than to y, and Ay the

complement. Then, we will use that by Proposition 4.1.4 (b)

Eµu(τcons |GN ) = Ω

(
π(Ax)π(Ay)∑

v∈Ax
∑

w∈Ay c(vw)

)
. (5.12)

We start by estimating the term π(Ax)π(Ay). Note that for θ ∈ (0, 1), we have that

d(x) ≤ |Ax| ≤
∑
v∈Ax

d(v)1−θ ≤
∑

v∈C (x)

d(v)1−θ ≤
∑

v∈C (x)

d(v),

and the same bounds hold when replacing x by y. Therefore, for θ ∈ (0, 1), we obtain

d(x)∑
v∈C (x) d(v)

≤
∑

v∈Ax d(v)1−θ∑
v∈Ay d(v)1−θ ≤

∑
v∈C (x) d(v)

d(y)
,

so that we can deduce from (5.11) that

π(Ax)π(Ay) =

√∑v∈Ax d(v)1−θ∑
v∈Ay d(v)1−θ +

√∑
v∈Ay d(v)1−θ∑
v∈Ax d(v)1−θ

−2

= ΩlogN
P (1).

Furthermore, since C (x) is a tree the denominator in (5.12) reduces to

c(xy) =
1∑

v∈C (x) d(v)1−θ ≤
1

|C (x)|
= OlogN

P

(
N
− γ

2−2γ

)
.

We finally consider the case θ ≤ 0 on this double star. Again, we start by estimating

π(Ax)π(Ay). By Proposition 3.2.7 we have

∑
v∈Ax

d(v)1−θ = OP

(
N

γ(1−θ)
2−2γ

)
.

Since further d(x) = ΘP(N
γ

2−2γ ) by (5.11), we also have that

∑
v∈Ax

d(v)1−θ ≥ d(x)1−θ = ΩP

(
N

γ(1−θ)
2−2γ

)
.

95



The same bounds hold for y and so by the same argument as above, we have that

π(Ax)π(Ay) = ΩP(1). Moreover,

c(xy) =
1∑

v∈C (x) d(v)1−θ ≤
1

d(x)1−θ = OlogN
P

(
N
−γ(1−θ)
2−2γ

)
.

Combining the estimates on the stationary distribution and the conductance c(xy),

we conclude from (5.12) that

Eµu(τcons |GN ) =

{
ΩlogN
P (N

γ
2−2γ ) if θ ∈ (0, 1),

ΩlogN
P (N

γ(1−θ)
2−2γ ) if θ ∈ (−∞, 1].

(5.13)

Combining Equations (5.13) and (5.10) completes the proof of Theorem 2.1.5 by

giving all the required lower bounds.

5.2 Consensus Time for the Discursive Voter Model

In this section, we will consider the discursive voter model as defined in Definition 2.1.3.

This version of the voter model fits into the general setting of a Q-voter model of Sec-

tion 4.2 if for θ ∈ R we consider Q = Qθ defined as

Qθ(i, j) =
d(i)θ−1 + d(j)θ−1

2
if i ∼ j in GN . (5.14)

As before, we write Pθ for the law of (and Eθ for the expectation with respect to)

the coalescing random walks with generator Qθ.

If we denote by C1, . . . ,Ck the connected components of GN , then define π =

(π(z), z ∈ V (GN )) via

π(z) =
1

|Cj |
, for z ∈ Cj ,

for j ∈ [k]. Then π|Cj , i.e. the uniform measure on Cj , is the invariant measure of the

Qθ Markov chain restricted to Cj .

First we require another application of Theorem 4.1.10, which is simpler than for the

classical voter model, but covers a wider range of cases.
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Lemma 5.2.1. For GN with β + 2γ < 1, we have that

tmeet(GN ) = sup
j∈[k]

tmeet(Ci) =



OlogN
P

(
N

γ
2−2γ

)
θ > 3−4γ

2−2γ

OlogN
P

(
Nγ(2−θ)) 1 < θ ≤ 3−4γ

2−2γ

OlogN
P (Nγ) 2γ ≤ θ ≤ 1

OlogN
P

(
N

γ(2−θ)
2−2γ

)
θ < 2γ

Proof. By Proposition 3.2.5, we can work on the high probability set where all big

components are trees. Recall that Kγ := N
1−2γ
2−2γ logN and denote for any k ≤ Kγ by

Lk the set of degree 1 vertices adjacent to k. By Proposition 3.2.3 (b) and since the

stationary distribution is uniform

min
k≤Kγ

π(Lk) = min
k≤Kγ

|Lk|
|C (k)|

= ΩlogN
P (1).

Then by exchangeability, coalescence observed in Lk is just complete graph (Wright-

Fisher) coalescence. This is because a simultaneous move by both walkers gives the

same probability to coalesce as a single move. Thus, coalescence occurs for the partially

observed process at rate
1 + d(k)θ−1

|Lk|

and we conclude by Proposition 3.2.3 (b)

max
k≤Kγ

tπmeet(Lk) ≤ max
k≤Kγ

|Lk|
1 + d(k)θ−1

=

O
logN
P (Nγ(2−θ)) θ > 1,

OlogN
P (Nγ) θ ≤ 1.

(5.15)

Now, we let S be the collection of small components and branches in large com-

ponents. If we denote by Px,y the set of paths between any vertices x and y, then by
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Proposition 4.1.1 we obtain

max
S∈S

thit(S) ≤ max
S∈S

max
x,y∈V (S)

min
Px,y

∑
{u,v}∈E(Px,y)

2|S|
d(u)θ−1 + d(v)θ−1

≤ max
S∈S
|S| diam(S) max

v∈S

(
d(v)1−θ

)
≤ max

S∈S
|S|diam(Gβ,γ) max

v>Kγ

(
d(v)1−θ

)

=


OlogN

P

(
N

(2−θ)γ
2−2γ

)
θ < 1,

OlogN
P

(
N

γ
2−2γ

)
θ ≥ 1,

(5.16)

where we used Lemma 3.2.5 and Propositions 3.2.2 (b) and 3.2.1 in the last step.

If we combine this last bound with (5.15) and apply Theorem 4.1.10, then we obtain

max
k≤Kγ

tmeet(C (k)) =


OlogN

P

(
Nγ(2−θ) +N

γ
2−2γ

)
θ > 1,

OlogN
P

(
Nγ +N

γ(2−θ)
2−2γ

)
θ ≤ 1,

=



OlogN
P

(
N

γ
2−2γ

)
θ > 3−4γ

2−2γ ,

OlogN
P

(
Nγ(2−θ)) 1 < θ ≤ 3−4γ

2−2γ ,

OlogN
P (Nγ) 2γ ≤ θ ≤ 1,

OlogN
P

(
N

γ(2−θ)
2−2γ

)
θ < 2γ,

which completes the proof of the lemma.

Proof of Theorem 2.1.7. The upper bound for all four cases follows immediately from

Lemma 4.2.4, Propositon 4.2.5 and Lemma 5.2.1, so it only remains to prove the lower

bounds. For these, it will be very useful that the stationary distribution π on each

component is always uniform.

The first lower bound is for the case θ ≥ 3−4γ
2−2γ for which we must consider the long

double star component, whose existence is proved Proposition 3.2.8. First, we note that

the ‘separating edge’ {v2, v3} on the the long double star has conductance

c(v2v3) = OlogN
P

(
N
− γ

2−2γ

)
.
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Moreover, by Propositions 3.2.2 (a) and 3.2.3 (a)

d(v1), d(v4) and |C (v1)| are ΘlogN
P

(
N

γ
2−2γ

)
which implies that we have ΘlogN

P (1) stationary mass on each side (by a similar argument

as before). Hence by Proposition 4.1.4 (b) we have consensus time ΩlogN
P

(
N

γ
2−2γ

)
.

For the lower bound when 2γ < θ < 3−4γ
2−2γ , we apply Corollary 4.1.4 (a) to C (1) to

see that

tπmeet(C (1)) ≥
(1−

∑
v∈C (1) π(v)2)2

4
∑

v∈C (1) q(v)π(v)2
= ΘP

(
|C (1)|2∑
v∈C (1) q(v)

)
= ΘP

(
|C (1)|2∑
v∈C (1) d(v)θ

)
.

Recall the moment calculation in Lemma 3.2.6 to see that when θ ≥ 1∑
v∈C (1)

d(v)θ = ΘlogN
P

(
Nγθ

)
,

whereas for θ ∈ (2γ, 1) we instead have by Proposition 3.2.2 (a)∑
v∈C (1)

d(v)θ ≤
∑

v∈C (1)

d(v) = OlogN
P (Nγ).

Combining the statements yields

|C (1)|2∑
v∈C (1) d(v)θ

= ΩlogN
P

(
N (2−θ)γ ∨Nγ

)
. (5.17)

By Lemma 4.2.4 and Proposition 4.2.5 this expression gives a lower bound for the

consensus time.

For the final case, when θ < 2γ, we require another double star component, but this

one must be that without a path, whose existence is stated in Proposition 3.2.7. This

double star is a tree structure with two adjacent “star” vertices x, y, where

d(x), d(y) and |C (x)| are ΘlogN
P

(
N

γ
2−2γ

)
.

Therefore we have stationary mass of ΘlogN
P (1) in the vertices closest to x and in

those closest to y. We note that

Qθ(x, y) = OlogN
P

(
N

γ(θ−1)
2−2γ

)
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and since the stationary distribution is uniform

π(x) = OlogN
P

(
N
− γ

2−2γ

)
.

Thus, by the definition of the conductance (4.1)

c(xy) = π(x)Qθ(x, y) = OlogN
P

(
N

γ(θ−1)
2−2γ N

− γ
2−2γ

)
.

Combining the estimate on the stationary mass and the conductance, we have by

Proposition 4.1.4 (b),

tmeet(C (1)) = ΩlogN
P

(
N

γ(2−θ)
2−2γ

)
,

which gives the last remaining lower bound.

5.3 Extending to the Erdős-Rényi Case

We would like to see the main consensus theorems as valid for γ ∈ [0, 1). So, in this

section we extend the previous proofs to the γ = 0 case, the Erdős-Rényi network G (n, p)

with homogenous edge probabilities

pij =
β

N

for the subcritical parameter β < 1. We use this usual definition rather than the 1 −
e−β/N of Definition 2.0.4 because it’s simpler, and the two definitions are asymptotically

equivalent (they are both in the class of Definition 2.0.5).

Proposition 5.3.1. For GN with β > 0, γ = 0 and any C > 2 we have

max
v∈[N ]

d(v) ≤ C logN

with high probability as N →∞.

Proof. Any v ∈ [N ] has

d(v)
d
= Bin

(
N − 1,

β

N

)
� Bin

(
N,

β

N

)
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so we can use a standard Chernoff bound with p > 0 to obtain

P
(

1

N
d(v) ≥ β

N
+ p

)
≤ exp

(
− Np2

2β/N + 2p

)
.

Therefore if we take p = C logN
N we find this probability is o

(
1
N

)
whenever C > 2

and so we can claim the bound jointly for every v ∈ [N ] with high probability, by the

union bound. Finally we move to the claim of the proposition by noting that we can

take any C ′ ∈ (2, C) and find

P
(

1

N
d(v) ≥ C logN

N

)
≤ P

(
1

N
d(v) ≥ β

N
+ C ′

logN

N

)
= o

(
1

N

)
where the first inequality holds by taking N sufficiently large.

We also bound the component size with the following proposition which follows

immediately from [Bollobás et al., 2007, Theorem 3.12(i)].

Proposition 5.3.2. For GN with β ∈ (0, 1) and γ = 0 we find

|Cmax| = OP (logN)

Corollary 5.3.3. For Discursive or Classical dynamic dual walkers with any parameter

θ ∈ R on GN with γ = 0 and β ∈ (0, 1) we can lower bound the minimum ergodic flow

min
i∼j

c(i, j) = ΩlogN
P (1)

where as usual c(i, j) := π(i)Q(i, j) refers to the stationary distribution for the chain

restricted to C (i).

Proof. Write D := maxv∈[N ] d(v), C := |Cmax| – both quantities are OlogN
P (1) by the

previous propositions. For the Classical dynamic when i ∼ j

c(i, j) = π(i) d(i)θ−1 =
1∑

v∈C (i) d(v)1−θ

which we can loosely bound at∑
v∈C (i)

d(v)1−θ ≤ C ·
(

1 ∧D1−θ
)

= OlogN
P (1).
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Instead for the Discursive dynamic when i ∼ j

c(i, j) = π(i)

(
d(i)θ−1 + d(j)θ−1

2

)
≥ 1

C
·
(

1 ∨Dθ−1
)

= ΩlogN
P (1)

by recalling that the stationary distribution is uniform on components for this model.

Theorem 5.3.4. Take β ∈ (0, 1) and γ = 0 with initial conditions distributed as µu

such that each initial opinion is an independent Bernoulli(u) random variable, for some

u ∈ (0, 1). Then, for the classical voter model on GN with parameter θ ∈ R, we have

Eθµu(τcons|GN ) = OlogN
P (1) . (5.18)

Proof. Proposition 5.3.2 trivially bounds the componentwise diameter diam (GN ) =

OP (logN) and Corollary 5.3.3 bounds the conductance. Hence by Proposition 4.1.1

we find

thit = OlogN
P (1)

which gives the same upper bound on the expected consensus time via Proposition

4.2.5.

5.4 Comparison to the Largest Component

Returning to the scale-free context, we have two complementary results for the consensus

time on the largest component (see Definition 2.1.2) in Propositions 2.1.6 and 2.1.8.

These results do not require substantially new ideas to prove, but still their proof is

not contained in the proofs of the main theorems so we will prove them instead in this

section.

Proposition 5.4.1. When γ ∈
(
0, 1

2

)
and β > 0 have β + 2γ < 1, the largest branch

(see Definition 3.2.4) of C (1) has OlogN
P

(
N

γ2

1−γ

)
vertices.

Proof. C (1) is a tree with high probability by Lemma 3.2.5, and as in Section 3.2 we

will contain this tree in the unthinned Galton-Watson process. By Proposition 3.2.3 (a)

d(1) = ΘP (Nγ)

from which point we have ΘP (Nγ) iid subcritical Galton-Watson trees (Ti)
d(1)
i=1 . We can
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bound the tail of the distribution of these trees using Proposition 3.2.10

P
(
|Ti| > N

γ2

1−γ logN

)
= O

((
N

γ2

1−γ logN

)1− 1
γ

)
= o

(
N−γ

)
and so by the union bound conditionally on d(1) = ΘP (Nγ), with high probability none

of these branches will exceed the limit N
γ2

1−γ logN .

We can provide the corresponding lower bound on the branch size by finding an

appropriate neighbour of 1.

Proposition 5.4.2. When γ ∈
(
0, 1

2

)
and β > 0 have β + 2γ < 1, with high probability

there is some i ∈ [N ] such that i ∼ 1 in GN and d(i) = ΘlogN
P

(
N

γ2

1−γ

)
. Further, i has

ΘlogN
P

(
N

γ2

1−γ

)
neighbours of degree 1.

Proof. Define L :=
⌊
N

1−2γ
1−γ logN

⌋
. The MNR Poisson weight between 1 and [L] \ {1} is

bLc∑
j=2

βN2γ−1j−γ ∼ β

1− γ
N2γ−1L1−γ →∞

as N → ∞. Hence, because a Pois(µ) distribution puts e−µ mass at 0, the probability

that there is no such edge tends to 0 with N . We further calculate as in Equation (3.16)

that C (1) expects no more shared indices than

P(M = M ′)N2γ log2N = ΘlogN
P

(
N2γ−1

)
→ 0

and so with high probability we will not have to thin the Galton-Watson exploration at

all in constructing C (1). Hence, the degree of this neighbour will on this high probability

assumption have

d(i)
d
= 1 + Pois(w(i)) = ΘlogN

P

(
N

γ2

1−γ

)
and in the next generation of the Galton-Watson exploration we will have a Binomial

number of individuals with no offspring, which proves the final claim.
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Proof of Proposition 2.1.6. First we recall the claimed exponents

Eθµu(τcons(C (1))|GN ) = ΘlogN
P (N c) , where c =



γ θ ≥ 1,

γθ γ
1−γ < θ < 1,

γ2

1−γ 0 ≤ θ ≤ γ
1−γ ,

γ2(1−θ)
1−γ θ < 0.

The lower bounds for the first two cases are already stated in Equation (5.10) as

they also provide lower bounds for the whole network’s consensus time.

For the second two cases, the lower bounds are from slow mixing with the conductance

result of Proposition 4.1.4 (b). Consider the vertex i which we found in Proposition 5.4.2.

If we cut the component at the edge {1, i} and write A1, Ai for the two halves then we

find

Eµu(τcons (C (1)) |GN ) = ΩP

(
π(Ai)π(A1)

c(1i)

)
.

Because π(A1) = ΘP(1) we can discard this factor. Now

π(Ai)

c(1i)
=

∑
v∈Ai d(v)1−θ∑
v∈C (1) d(v)1−θ ·

∑
v∈C (1)

d(v)1−θ =
∑
v∈Ai

d(v)1−θ = ΩP

(
N

γ2

1−γ +N
γ2(1−θ)

1−γ

)

where the final claim is from considering the sum of the degree at i and of its degree 1

neighbours mentioned in Proposition 5.4.2. This completes the lower bounds.

In the first case θ ≥ 1, the upper bound can simply be from the GN consensus time

of Theorem 2.1.5 which is also ΘlogN
P (Nγ).

For the middle two cases, the upper bounds follow from Equation (5.7) together with

inserting our new branch exponent (from Proposition 5.4.1) into the calculation in (5.8).

This obtains

tmeet(C (1)) = OlogN
P

(
Nγθ +N

γ2

1−γ

)
for these parameters θ ∈ (0, 1).

For the final upper bound, in the case θ ≤ 0, we use Proposition 4.1.7 to bound the

meeting time by thit(1). Take some v ∈ C (1) in some branch B. Then we calculate in

the same way as in (5.3) to see

Ev (T1) ≤ diam(B)
∑
w∈B

d(w)1−θ ≤ diam(B)

(∑
w∈B

d(w)

)1−θ

= OP

(
N

γ2(1−θ)
1−γ

)

104



which concludes the upper bounds.

To prove the Lemma for C (1) consensus times with the discursive dynamic, we must

first describe a different branch of C (1) which also exists with high probability in the

structure.

Proposition 5.4.3. When γ ∈
(
0, 1

2

)
and β > 0 have β + 2γ < 1, with high probability

there is some j ∈ [N ] such that d(1, j) = 3 in GN , d(j) = ΘlogN
P

(
N

γ2

1−γ

)
and the unique

path connecting 1 to j features just two vertices of degree 2.

Proof. Construct C (1) using the Galton-Watson tree as in Proposition 5.4.2, and recall

again that this tree will with high probability not require any thinning. Our offspring

distribution from Section 3.1 has probability p1 > 0 of having a single offspring because

it is mixed Poisson, and so if we explore the ball of radius 2 around 1 we will find the

number of branches which appear as a simple path of length 3 is concentrated around

p2
1 d(1) = ΘlogN

P (Nγ) .

Continuing this exploration to the third generation of offspring, at least one of these

edges will find [L]\{1} with L :=
⌊
N

1−2γ
1−γ logN

⌋
and we conclude just as in the previous

construction of Proposition 5.4.2.

Proof of Proposition 2.1.8 . First we recall the claimed exponents

Eθµu(τcons(C (1))|GN ) = ΘlogN
P (N c) , where c =



γ2

1−γ θ ≥ 2−3γ
1−γ ,

γ(2− θ) 1 < θ < 2−3γ
1−γ ,

γ 3− 1
γ ≤ θ ≤ 1,

γ2(2−θ)
1−γ θ < 3− 1

γ .

Here we already proved a lower bound for the middle two cases which we see in

Equation (5.17). For the final case θ < 3 − 1
γ we consider the large vertex i ∼ 1 of

Proposition 5.4.2 just as in the proof for the classical dynamic, cutting the component

at the edge {1, i} and writing A1, Ai for the two halves. Then by Proposition 4.1.4 (b)

Eµu(τcons (C (1)) |GN ) = ΩP

(
π(Ai)π(A1)

c(1i)

)
.
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and the uniform stationary distribution makes calculation easy

π(Ai) · π(A1) · 1

c(1i)
=
|Ai|
|C (1)|

· |A1|
|C (1)|

· |C (1)|
Q(1, i)

=
2|Ai|
d(i)θ−1

·ΘP(1) = ΘP

(
N

γ2(2−θ)
1−γ

)
.

We’ve used here that θ − 1 < 2− 1
γ < 0 to say

Q(1, i) =
d(1)θ−1 + d(i)θ−1

2

P∼ d(i)θ−1

2
.

We still have to prove the first lower bound in the case θ ≥ 2−3γ
1−γ , and for that we

require the new branch of C (1) given by Proposition 5.4.3. Here, let the path from 1 to

j be labelled

1↔ u↔ v ↔ j

and remove the edge u, v between 2 vertices of degree 2. Then

Eµu(τcons (C (1)) |GN ) = ΩP

(
π(Au)π(Av)

c(uv)

)
and we find in this expression the final lower bound

π(Au)π(Av)

c(uv)
=
|Au||Av|
|C (1)|2

|C (1)|
2θ−1

= ΘP

(
N

γ2

1−γ

)
.

We now consider the upper bounds using the partial meeting result Theorem 4.1.10

by looking at the partially observed chain on the set L1 of leaves adjacent to 1. The

upper bound for tπmeet(L1) is already done in Equation (5.15) so it remains to bound

thit(1), for which we can repeat Equation (5.16) but only looking at the branches of

C (1). Recalling the maximal size of these branches from Proposition 5.4.1, we find

thit(1) =


OlogN

P

(
N

(2−θ)γ
2−2γ

)
θ < 1,

OlogN
P

(
N

γ
2−2γ

)
θ ≥ 1,

which combines with Equation (5.15) in Theorem 4.1.10 to obtain

tmeet(C (1)) =


OlogN

P

(
Nγ +N

(2−θ)γ
2−2γ

)
θ < 1,

OlogN
P

(
N (2−θ)γ +N

γ
2−2γ

)
θ ≥ 1,

completing the proof.
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Chapter 6

Voter Model Mixing on a

Supercritical Scale-Free Network

In the previous chapter we carried out a complete analysis of these voter models in

the case of the subcritical network, and so it is natural to next ask what we can say

about the supercritical case. Hence in this chapter we consider the regime β + 2γ > 1

where the giant component exists, with our attention restricted to the discursive family

of voter models which turn out to be more tractable in this case. Primarily, they are

more tractable because the symmetry of the generator means that relaxation times are

monotonically decreasing with θ and so bounding the mixing time of one voter model

has consequences for all larger θ parameters. Note that now, as γ ≥ 1
2 parameters are

included in this set, the choice of SNR network definition becomes relevant as for those

parameters it is no longer equivalent to the CL definition.

The discursive voter model has a uniform stationary distribution on the giant compo-

nent for any parameter θ ∈ R, and so by applying the hitting time bound using Lemma

3.3.5 (which gives paths through low degree vertices) we quickly see that consensus is

OlogN
P (N) for any θ. We can only match this with a lower bound, and conclude that

consensus time is ΘlogN
P (N), when θγ ≤ 1. The proof for consensus time order in this

case is at the end of this chapter.

In investigating the parameters θ > 1
γ we managed to prove a polylogarithmic mixing

time bound that applies to the dual chain of discursive models with θ ≥ 1, on the

condition that β is sufficiently large. However, results [Chen et al., 2016, (3.21)] and

[Aldous and Fill, 2002, Lemma 3.17], with discrete-time analogues in [Kanade et al.,
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2016], only give the consensus bounds

ΩlogN
P

(
1∑

v q(v)π(v)2

)
, OlogN

P

(
tmix∑
v π(v)2

)
,

which are not polylogarithmically tight in this second case θγ > 1.

Instead from this mixing result we derive Corollary 2.1.13 by duality, which tells us

that the voter model has at the slowest particular vertex a time correlation decaying on

a polylogarithmic time frame. Therefore in this voter model problem, initial opinions are

forgotten very quickly relative to the total lifetime of the process and replaced instead

with something closer to a uniform opinion drawn from the whole initial condition.

Transitions in the edge density β, excluding those caused by the appearance of the

giant component, are rare for interacting particle systems on networks and so the large

β condition should not be thought of as the important omission. Regardless, while

the proof could be adapted to allow for smaller β, the techniques require the artificial

condition β > 1. This is because the mixing time is bounded by finding an Erdős-

Rényi giant component as a subgraph and growing it to a subgraph spanning the giant

component of GN .

This approach is inspired by the structural theorems in [Fountoulakis and Reed, 2008]

and [Benjamini et al., 2014] which led to mixing time bounds for the Erdős-Rényi giant

component. It is also similar in some ways to the approach of Theorem 3.3.4 in using

the wealth of research on the Erdős-Rényi giant component applied to the subgraph of

this type in the SNR model for which less research has been done.

A monotonicity in θ of these models will allow all mixing results to follow from a

bound on the mixing time of the variable speed random walk on the SNR graph, and

hence most of the chapter will be dedicated to proving that bound. Of course the variable

speed random walk is a natural model and so this bound has some independent interest.

Future Work

There are many plausible heuristic arguments that could apply to the θγ > 1 case.

The interacting system on the giant component is not invariant to permutations of the

agents and so we cannot properly take the mean-field limit as in [Mach et al., 2020].

However, due to the uniform stationary distribution, permutations do not affect the

total opinion martingale (Mt) of Proposition 4.2.1 so we might still think taking the

mean field approximation, by treating site opinions as independent, would give a good
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prediction. This leads to

d
(
M2
t

)
dt

= Mt(1−Mt)
∑
v

π2(v)q(v)

so we identify the Wright-Fisher diffusion of Definition 4.2.2 on the timescale of the lower

bound of Proposition 4.1.4 (a). The order of this timescale is

1∑
v∈Cmax

π(v)2q(v)
=

|Cmax|2∑
v∈Cmax

d(v)θ
∼

N θ ≤ 1
γ

N2−θγ θ > 1
γ

(6.1)

which would be our conjecture for the consensus time if we believe the mean-field ap-

proximation is working well. Of course, it cannot therefore be working well in this sense

if θγ > 2.

In the classical dynamic when θ = 0, [Durrett, 2010] conjectures via Aldous’ “Poisson

Clumping Heuristic” [Aldous, 1989] that the order of the mean consensus time is really

the exact polynomial without logarithmic corrections as was also found non-rigorously

in [Sood et al., 2008]. This heuristic uses Kac’s formula [Aldous and Fill, 2002, (2.24)]

for the return time to the “diagonal” set {(i, i) : i ∈ C (1)}. Applied to any voter model

with dual chain having stationary distribution π and vertex rates q, it tells us that for

the distribution ρ ∝ q and some point P ∼ ρ

E(P,P ) (tmeet) =
1−

∑
v π

2(v)

2
∑

v π
2(v)q(v)

which is the same expression as [Chen et al., 2016, (3.17)] and the Proposition 4.1.4 (a)

order again. So, if we have an asymptotically positive probability to escape from (P, P )

(in the sense of having a strong stationary time before returning to the diagonal), then we

might argue that E(P,P ) (tmeet) has the same order as Eπ⊗π (tmeet), which is what [Chen

et al., 2016, Theorem 2.2] identify as the voter model consensus time.

In the case θγ > 1, however, vertices of large degree have high rates in both directions

on their incident edges and so it’s quite plausible that the probability to meet in O(1)

time from (P, P ) is 1 − ologN
P (1). We simulate this meeting probability in 6.1 and it

appears that in fact the answer might depend on more than just θγ: based on these

simulations we conjecture that the mean-field approximation is best suited to the case

γ > 1
2 and so it would be only in {θγ ≥ 1} ∩ {γ ≥ 1

2} that we see the exponent 2− θγ.

However, we’ve learnt from [Pastor-Satorras and Vespignani, 2002] that effects of large

vertices could well appear later in the limit.
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Figure 6.1: On the giant component of an SNR network with θγ = 3
2 , we show the probability of

two particles initially at (P, P ) meeting before they are separated by distance 3, as it depends on
the graph size N . These box plots show just the random effect of the graph (for each realisation,

meeting probability calculation is done to precision 0.01).

As well as settling the remainder of the discursive picture, in the future we might

also like to settle the consensus time for the family of classical models. A very general

rigorous analysis for voter model consensus time is made in [Chen et al., 2016], under

assumption on the mixing and meeting times for the dual chain. However, mixing times

in particular are very sensitive to work with and therefore highly model-dependent. In

particular, they are open for this class Gβ,γ of rank-one network models even for the

SRW/CSRW and so the conjectures of [Durrett, 2010] are all we have.

Of course Gβ,γ contains configuration models and on configuration models we have

some mixing results. However, existing results assume subpolynomial maximum degree

as in [Berestycki et al., 2018], or a degree lower bound as in [Abdullah et al., 2012].

The conjecture then is that these results do extend to general configuration models with

power-law degree sequence and so tmix = ΘP
(
log2N

)
. A structural result comparable

to [Ding et al., 2014] but for the rank one scale-free network would solve the open question

of mixing time, but also potentially give a direct handle on meeting time without the

logarithmic factors.
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6.1 Mixing Time for the Variable Speed Random Walk

We denote by the variable speed random walk (VSRW) the second most popular defini-

tion of the “simple random walk” on a graph. This is the Markov chain with

Q(i, j) = 1i∼j

for every pair i 6= j in the vertex space. The VSRW is the dual Markov chain for

both discursive and classical voter models when θ = 1 – the two voting dynamics are

identical at this parameter. The jump chain for the VSRW is the discrete time SRW.

However, we cannot call it the “continuous time simple random walk” as this is reserved

for the version with rates at each vertex i scaled by 1
d(i) , called the constant speed simple

random walk (CSRW), which has equivalent mixing times to the discrete time SRW.

Despite the fact that the VSRW is a timechange of the CSRW which strictly accel-

erates, in the literature there does not seem to be a general mixing time relationship

between the two and it’s not immediately clear if such a relation should exist.

The voter model correlation result Theorem 2.1.13 proved in this chapter relies pri-

marily on proving polylogarithmic mixing times for the VSRW on the simple Norros-

Reittu network, claimed in Theorem 2.1.12 which we prove in this section.

As well as the relaxation and mixing times defined in Section 4.1.2, we introduce the

Cheeger constant which is useful for understanding mixing of the simple random walk

on a simple graph, as it controls over every subset the proportion of the ergodic flow not

leading out of that subset.

Definition 6.1.1 (Cheeger constant). For any connected graph G on [N ] we define the

(VSRW) Cheeger constant

Φ(G) := inf
S⊂[N ]

|S|≤N/2

e
(
S : SC

)
|S|

where e (A : B) denotes the number of edges incident to a vertex in both A and B, i.e.

the number of edges between sets A and B.

The theory for Cheeger constants was originally written out in discrete time in [Sin-

clair, 1992]. In [Aldous and Fill, 2002] these are translated to continuous time so again

we use that for reference.
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Theorem 6.1.2. The VSRW relaxation time for a connected graph G on [N ] has

1

2Φ(G)
≤ trel ≤

8

Φ(G)2
max
v∈[N ]

d(v)

Proof. Cheeger’s inequality [Aldous and Fill, 2002, Theorem 4.40] gives

trel ≤ 8τ2
c max
v∈[N ]

d(v)

for the different parameter τc which has

τc := sup
A⊂[N ]

|A|
e(A : Ac)

· N − |A|
N

≤ sup
A⊂[N ]

|A|≤ 1
2

|A|
e(A : Ac)

=
1

Φ(G)
.

For the other direction, this τc definition is symmetric so we can assume w.l.o.g. that

|A| ≤ N − |A|. Then [Aldous and Fill, 2002, Corollary 4.37] completes the proof:

trel ≥ τc ≥
1

2
sup
A⊂[N ]

|A|
e(A : Ac)

=
1

2Φ(G)
.

Lemma 6.1.3. If G is the giant component of an Erdős-Rényi graph on [N ] with pa-

rameter β > 1 (see Definition 2.2.3) then

Φ(G) = ΩP

(
1

log2N

)
Proof. From [Benjamini et al., 2014] we have for the CSRW

tmix (G) = OP
(
log2N

)
and Lemma 4.1.3 translates this to the same bound on trel (G). Then [Aldous and Fill,

2002, Corollary 4.37] applies to τc for the CSRW which has form

τc := sup
A⊂[N ]

π(A)π(Ac)∑
x∈A,y/∈A π(x)Q(x, y)

=
1

d([N ])
sup
A⊂[N ]

d(A) d(Ac)

e(A : Ac)

and so we can deduce

trel ≥ τc ≥
1

2
sup
A⊂[N ]

d(A)

e(A : Ac)
≥ 1

2
sup
A⊂[N ]

|A|
e(A : Ac)

=
1

2Φ(G)
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which after inversion is the desired bound.

We also require the following simple degree bound.

Lemma 6.1.4. For the SNR network GN with any parameters β > 0, γ ∈ (0, 1) we find,

for any ε > 0,

max
v≥εN log

− 1
γ N

d(v) = OP (logN) .

Proof. Recall that the Norros-Reittu weights w(v) satisfy

w(v) := βv−γ
N∑
x=1

x−γ < βv−γ
∫ N

0
x−γdx =

β

1− γ

(
N

v

)γ
so that

max
v≥εN log

− 1
γ N

w(v) <
βε−γ

1− γ
logN.

Recall also that in the MNR version we have exactly degrees with Poisson distribution

according to their MNR weights. Hence, because the SNR version is constructed from

the MNR version by flattening, we have the stochastic order

d(v) � Pois

(
βε−γ

1− γ
logN

)
.

If we fix a constant C with eC − 1 = 1−γ
βε−γ then we conclude

E
(
eC d(v)

)
< N,

and so by the Chernoff bound we deduce for any a > 2 that C d(v) < a logN with

probability 1− o
(

1
N

)
. The result follows by the union bound.

We can now prove the main result of this section bounding the VSRW mixing time

on an SNR network.

Proof of Theorem 2.1.12. Recall that the MNR network is constructed via the kernel

f : (x, y) 7→ βx−γy−γ

in that there are Pois
(

1
N f
(
v
N ,

w
N

))
edges between each pair v, w ∈ [N ]. Thinking of f as

the density of a measure on (0, 1]2, we can decompose its mass into a sum of constituent

parts which we will realise independently to construct a subgraph of the MNR network.
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For some ε > 0, we distinguish the vertex set of high weight vertices

Hε =
[⌊
εN log

− 1
γ N

⌋]
and assume that β > 1 so that we can use the constant part (x, y) 7→ β to construct

an Erdős-Rényi graph with probabilities β/N on the set [N ] \ Hε. In fact, this part

generates the graph with edge probabilities

pij =

1− e−β/N i, j /∈ Hε

0 otherwise,

but by asymptotic equivalence there is whp no difference between this definition and the

definition β/N [van der Hofstad, 2016, Theorem 6.18].

In this Erdős-Rényi graph, realise the largest component G1 on a vertex set de-

noted C1. By constructing the largest component, we have conditioned that the other

components are smaller. We note further (see e.g. [Bollobás et al., 2007], using that

|Hε| = o(N)) that
|C1|
N

P→ ρ

where ρ ∈ (0, 1) is the unique solution to ρ+e−βρ = 1. Hence this is the giant component,

and we find for any small δ ∈
(
0, 1

2

)
that |C1| ≥ (1− δ)ρN with high probability.

By using that

1− ρ = e−βρ <
1

1 + βρ
=⇒ β(1− ρ) < 1,

we can take δ sufficiently small such that β(1−(1−δ)ρ) < 1 which leads to, on the event

|C1| ≥ (1− δ)ρN , exploration of the other components in [N ] \Hε being dominated by

subcritical Poisson-Galton-Watson trees which have maximal size OP(logN). Therefore,

on this first conditioning |C1| ≥ (1 − δ)ρN , the further conditioning that they do not

form a larger component than |C1| is asymptotically the whole probability space and

has no effect. Thus we can work with independent edges outside C1 in the remainder of

the proof (and more, by another appeal to asymptotic equivalence, return to generating

these edges with the Poisson probabilities 1− exp(−β/N)).

The next extension to the subgraph is to attach the set Hε. Note between any v ∈ C1

and h ∈ Hε we have at least mass β (ε−γ logN).

H is attached to C1 vertex by vertex: construct a function n : H → C1 iteratively

by giving the lowest unpaired index h ∈ Hε its lowest neighbour in C1 \ n ([h− 1] ∩Hε)

which we set as n(h), and connect h to C1 by this single edge. Because |Hε| < δρN
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deterministically and |C1| > (1 − δ)ρN with high probability, we have (whp) at least

(1 − 2δ)ρN available vertices in C1 to pair to. The mean number of edges to available

vertices that each h ∈ H will see is thus at least

(1− 2δ)ρN · 1

N
βε−γ logN > β logN

by taking ε small enough such that (1− 2δ)ρε−γ > 1.

We observe P (Pois(β logN) = 0) = N−β = o
(

1
N

)
and conclude by the union bound

that with high probability we are successful in constructing this injective function n :

H → C1. The graph G2 is G1 with every vertex in Hε attached as a leaf in this way, on

the vertex set C2 = C1 ∪Hε.

Then on this same vertex set C2 we realise the remaining Poisson kernel to make

this the induced subgraph on that set. Concretely, this means that between any pairs of

either the form v, w ∈ C1 or the form v ∈ Hε,

w ∈ n ([v − 1] ∩Hε) ∪ (C1 \ [n(v)]) ∪Hε,

we have a number of edges with Poisson mean

β

N

(
N2γv−γw−γ − 1

)
.

Flatten multiple edges to simplify the graph and call the resultant simple graph G3.

At this point we should begin to discuss the mixing times. We start with Lemma

6.1.3 which lower bounds the Cheeger constant of G1.

Note that a set of minimal Cheeger constant for G2 is simply a connected subset of

C1 with or without pendant leaves included. Including a pendant edges will not increase

e
(
S : SC

)
but will increase |S| by 1, and so in fact it should include all its pendant

edges. Because each vertex in H is attached to a distinct vertex in C1, the worst case is

that every one gets a pendant edge and hence Φ(G2) ≥ Φ(G1)/2.

By Theorem 6.1.2 we deduce

trel (G2) ≤ 8

Φ2 (G2)
max
v∈C2

dG2(v) ≤ 32

Φ2 (G1)
max
v∈C1

(1 + dG1(v)) = OlogN
P

(
log5N

)
.

For the third graph G3 we claim by [Aldous and Fill, 2002, Corollary 3.28] that

adding the internal edges did not increase the relaxation time, and so we have the same

bound trel(G3) ≤ trel(G2). By applying Lemma 4.1.3 we can turn this into a bound on
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the mixing time

tmix(G3) ≤ 5trel(G3)

(
1 +

1

2
log |C3|

)
= OlogN

P
(
log6N

)
.

Remember this mixing bound for the later supergraphs of G3. First we build G4 by

adding in a select number of the neighbours of C1 ∩ [bN/2c] which are not yet in the

graph. Precisely, each vertex pair Nx ∈ C1 ∩ [bN/2c] and Ny /∈ C3 has remaining kernel

β
(
x−γy−γ − 1

)
≥ β

(
2γy−γ − 1

)
≥ β (2γ − 1) y−γ (6.2)

so we can generate this kernel by attaching Pois (β (2γ − 1)) edges to each vertex in

C1 ∩ [bN/2c] and then sequentially giving each edge an i.i.d. target label from the mark

distribution, or thinning it if that label is already in the graph. At the end of this process

we have the graph G4 and its vertex set C4.

In the continuing construction, G5, we still want to not create any additional cycles

– we want to span the rest of the giant component only by growing trees. Therefore

we will thin any label in C4 in making this exploration, and any labels previously seen

according to the breadth-first ordering from the initial root that found the giant (any

ordering would work).

First, we complete the neighbourhoods of vertices in C1 as these have different re-

maining kernels seen in (6.2). Then the exploration is completed by the standard al-

gorithm of Section 3.1. This is possible as revealed, unexplored vertices (with label,

without degree) at this point, which are neighbours of C1 (including all of H), can only

have had incident edges checked that lead to a revealed vertex (label seen in the con-

struction). Hence we can explore as with the unmodified kernel βx−γy−γ while thinning

revealed vertices.

In revealing a vertex label v we forbid it from the future exploration and reduce the

offspring mean of the exploration by a certain amount W (v). This has the expression

W (v) = P(M = v)w(v) =
v−γ∑N
k=1 k

−γ

N∑
k=1

βN2γ−1v−γk−γ =
β

N

(
N

v

)2γ

and so
∑

v/∈C4
W (v) is the number of unrevealed vertices that we expect to find in

revealing (labelling) and then exploring (generating a degree) at a given unrevealed

vertex. Technically this single type Galton-Watson formulation of the graph is giving

thinned vertices zero weight rather than actually pruning them but thus it can bound

the exploration, with some erroneous leaves attached.
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We will describe the distribution of this upper bound for clarity. Generate a random

label M ∈ [N ] with P(M = k) ∝ k−γ , the effective weight is then only positive if M /∈ C4

and so is the following function of M

W (M) =

βN2γ−1M−γ
∑N

k=1 k
−γ M /∈ C4

0 M ∈ C4.

Offspring have the mixed Poisson distribution D ∼ Pois (W ).

For every branch we explore for G5 (ignoring the inclusion of the ball around C1 of

radius 1, which will add an extra edge to those trees) we can contain the real exploration

of each branch, by stochastic domination, by an i.i.d. mixed Poisson Galton-Watson

tree (Ti)i with offspring distribution defined by the available weight set C c
4 . If we can

argue that E(D|C4) = E(W (M)|C4) =
∑

v/∈C4
W (v) < 1, then all the exploration in the

construction of G5 will be contained in subcritical Galton-Watson trees.

In Lemma 6.1.6 after this proof we find m < 1 such that with high probability

E(D|C4) < m when β is sufficiently large, which will make this analysis possible. To each

pendant tree Ti we associate an exploration walk Xi : N+ → N as in [Alon and Spencer,

2016] which represents the number of unexplored half-edges in the tree if we explore in

the breadth-first ordering. Thus X1 = 1, increments have the i.i.d. distribution

∀t ≥ 1, Xi(t+ 1)−Xi(t)
(d)
= D − 1

and the first hitting time of 0 is the size of the tree, Xi(|Ti|) = 0. Therefore if we fix

some large constant C > 0 and L =
⌈
C log3N

⌉
, and write Wi

i.i.d.∼ W

P (|Ti| ≥ L) ≤ P (Xi (L) ≥ 0)

= P

(
L∑
i=1

Pois (Wi) ≥ L

)
= P

(
Pois

(
L∑
i=1

Wi

)
≥ L

)

≤ P

(
1

L

L∑
i=1

Wi ≥
1 +m

2

)
+ P

(
Pois

((
1 +m

2

)
L

)
≥ L

)
.

Note that the second term is a Poisson large deviation and so has exponential decay

in L. For the first, we observe that W is a bounded random variable

W ∈
[
0,

β

1− γ
logN

]
a.s.
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which will allow us to use Hoeffding’s inequality [Hoeffding, 1963].

P

(
1

L

L∑
i=1

Wi ≥
1 +m

2

)
= P

(
1

L

L∑
i=1

Wi −m ≥
1−m

2

)

≤ exp

− 2L2
(

1−m
2

)2
L
(

β
1−γ logN

)2

 ≤ exp

−2C
(

1−m
2

)2(
β

1−γ

)2 logN


So if we set C large enough so that

2C
(

1−m
2

)2(
β

1−γ

)2 > 1

then no exploration will see L vertices with high probability, by the union bound.

For the VSRW on this graph G5 the maximal expected time to escape a pendant

tree, which is maximally of size OP
(
log3N

)
, is OP

(
log6N

)
by Proposition 4.1.1.

By Lemma 6.1.4 for the small weights, and from an easy argument with Poisson

large deviations and the union bound for the others (which we partially did already in

Proposition 3.2.3 (a)),

max
v∈[N ]

d(v)(
N
v

)γ = OP(logN) (6.3)

which we combine with the observation dG5(v) ≤ d(v), the small ε assumption βρε−γ >

32 and Lemma 6.1.7 after this proof to deduce that vertices in H have a bounded

proportion of neighbours in C1

min
v∈Hε

r(v)

dG5(v)
= ΩP

(
1

log2N

)
so that by taking geometrically many attempts to escape vertices in Hε we conclude the

maximal expected time to hit the set C1 is OP
(
log8N

)
.

The partially observed (see the definition before Theorem 4.1.10), on C3, version of

this Markov chain is the same as the restricted to C3 version which we recall had mixing

time OP
(
log6N

)
. By [Fill, 1991] we can construct a strong stationary time T for the

partially observed chain on this order, on the partially observed clock which only runs

when the walker is in C3. We expect to hit C1 in maximal time OP
(
log8N

)
, and by

(6.3) we expect to stay in that vertex for at least time ΩP
(
log−2N

)
. A time T with

expected required occupancy time OP
(
log6N

)
expects to need at most OP

(
log8N

)
such
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exponential waiting times. So, by inserting between every waiting time in C1 a hitting

time to bring the walker back to C1 we conclude E(T ) = OP
(
log16N

)
.

After this random time T we consider the flow of probability mass. The mass pt(v)

is constant on v ∈ C3 for all future times, so we must have d
dtpt(v) also constant on

v ∈ C3. However because with high probability some vertices v ∈ C3 gained no edges in

G5 we can deduce with with probability that in fact d
dtpt(v) = 0 for v ∈ C3 and so T was

a hitting time of the proper stationary distribution of the walk on G5, for the set C3.

This formulation doesn’t technically rule out that the pendant trees at a vertex are

in disequilibrium. For a central vertex with pendant trees the maximum central hitting

time is OP
(
log6N

)
= oP

(
log16N

)
by Proposition 4.1.1 and this bounds the mixing time

on the vertex with trees by Proposition 4.1.6. The product of all of these disconnected

pendant tree systems at each vertex then also has mixing time OP
(
log6N

)
, and so by

waiting for time t = OP
(
log16N

)
such that P(T > t) = 1

8 plus the time for the trees to

mix to total variation distance 1
8 which is oP

(
log16N

)
we can bound the mixing time of

the VSRW on G5 on this order.

Finally, we complete the remaining edges internal to C5 which is the vertex set of

the full giant component. Thus the resultant graph G6 is simply the SNR giant and by

another application of [Aldous and Fill, 2002, Corollary 3.28] these extra edges cannot

slow relaxation time, and so by Lemma 4.1.3 the final mixing time bound is on the order

OP
(
log17N

)
.

This construction G5 is similar in many ways to the “decorated expander” construc-

tions of [Ding et al., 2014], although they work in discrete time.

Remark 6.1.5. In Figure 6.2 we sketch the layers of the spanning subgraph that we

construct in this proof. The first layer, G1, was necessary to have a fast-mixing core to

build from; we aim to reach the point where the unexplored mass outside of the subgraph

G has
∑

v/∈G
β
N

(
N
v

)2γ
< 1 so that the final growths will be subcritical. Further to keep

these trees small, we must have bounded weights (in the sense of a ΘlogN (1) bound)

outside G which we achieve in the construction G2. G3 is a minor step to keep track

of mixing, and then in G4 we use the large β assumption to check that we have defi-

nitely reached subcritical unexplored mass. The graph G5 adds the promised subcritical

trees and, afterwards, G6 completes the internal edges and is simply the full SNR giant

component.

Lemma 6.1.6. In the above construction (given β sufficiently large) we have some
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(a) G1 (b) G2

(c) G3 (d) G4

(e) G5

Figure 6.2: A sketch of the first 5 subgraphs that we construct in this proof.
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m > 0 such that whp ∑
v/∈C4

W (v) < m < 1.

Proof. Think of the network exploration in continuous time such that each vertex i ∈ [N ]

is revealed to be the next unrevealed vertex (in the breadth-first order) as a Poisson pro-

cess of rate (N/i)γ . Thus all times after the first for each Poisson process will represent

thinned vertices in the tree construction. Note also that the total exploration rate is

N∑
i=1

(
N

i

)γ
∼ N

1− γ

By symmetry (all vertices in [N ]\Hε are the same in the construction of C1) we have

1

N
|C1 ∩ [bN/2c]| P→ ρ

2

and recall that each vertex in C1 ∩ [bN/2c] explored Pois (β (2γ − 1)) neighbours i.i.d.

from the mark distribution to construct G4.

So we claim by the weak law concentration of a sum of i.i.d. Pois (β (2γ − 1)) random

variables, and also the concentration of a Poisson process of rate N
1−γ , that if

T :=
ρ

2
(2γ − 1)(1− γ)

then if we fix any ε ∈ (0, T ) the continuous time exploration will have seen fewer labels

than the the G4 exploration at time βε, with high probability.

We can therefore whp upper bound the remaining mass by thinning from the full

set [N ] in continuous time for time βε, and in the event that the continuous exploration

takes more than time βε this is an upper bound by stochastic domination. The mass in

this upper bound is the random variable

M =

N∑
v=1

β

N

(
N

v

)2γ

1Ev>1

where each Ev is an independent exponential of rate βε (N/v)γ . We can bound this
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variable with the second moment method, and so we calculate

Var (M) =
N∑
v=1

β2

N2

(
N

v

)4γ (
1− e−βε(

N
v )

γ)
e−βε(

N
v )

γ

≤
N∑
v=1

β2

N2

(
N

v

)4γ

e−βε(
N
v )

γ

∼ 1

N

∫ 1

0
β2x−4γe−βεx

−γ
dx→ 0

as N → ∞ because the integrand is bounded. Hence, the mean M converges in proba-

bility as N →∞. Furthermore

E(M) =
N∑
v=1

β

N

(
N

v

)2γ

e−βε(
N
v )

γ

→ β

∫ 1

0
x−2γe−βx

−γ
dx

so it remains to check when this limit is less that 1. The integrand is non-negative, con-

tinuously differentiable and tends to 0 at 0+ and e−βε → 0 at 1−, so we can differentiate

to find a unique turning point at x−γ = 2/βε. By inserting this into the integral we find

the upper bound

β · 1 · 4

β2ε2
e−2 → 0

as β →∞. Thus for any γ ∈ (0, 1) and ε > 0 we have

lim
β→∞

β

∫ 1

0
x−2γe−βεx

−γ
dx = 0

and so by identifying this as the limit of M we conclude

M
P→ β

∫ 1

0
x−2γe−βεx

−γ
dx < 1

for β sufficiently large.

Lemma 6.1.7. Let r(v) denote the number of C1 neighbours

r(v) = |{w ∈ C1 : w ∼ v}| .

Then if we take ε small enough such that βρε−γ > 32, in the above construction we

have

min
v∈Hε

r(v)(
N
v

)γ = ΩP

(
1

logN

)
.

Proof. Any v ∈ Hε, i.e. v ≤ εN log
− 1
γ N , and any w ∈ C1 have MNR mean number of
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edges at least
β

N

( v
N

)−γ
≤ βNγ−1.

Working on the high probability assumption that |C1| ≥ (1− δ)ρN ≥ ρ
2N and using

that the SNR graph dominates the GRG graph (i.e. that 1− e−p ≥ p
1+p) we claim

r(v) � Bin

(
ρ

2
N,

β
N

(
v
N

)−γ
1 + βNγ−1

)
� Bin

(
ρ

2
N,

β
N

(
v
N

)−γ
2

)
.

Hence by the usual multiplicative Chernoff bound these edges number less than
βρ
8

(
N
v

)γ
with probability asymptotically bounded by

exp

(
−1

8
· βρ

4

(
N

v

)γ)
≤ exp

(
−βρ

32
ε−γ logN

)
= o

(
1

N

)
,

by the assumption βρε−γ > 32. The conclusion follows from the union bound over every

vertex in Hε.

6.2 Consequences for the Discursive Voter Model

The VSRW Markov chain is the dual of the discursive voter model with θ = 1. Fortu-

nately this induces a bound over every θ ≥ 1 version.

Proposition 6.2.1. On any connected graph the discursive dual relaxation time θ 7→ t
(θ)
rel

is non-increasing.

Proof. Recall the transition rates are

Q(i, j) =
d(i)θ−1 + d(j)θ−1

2
1i∼j

for every i 6= j. So, the matrix Q is symmetric, i.e. this Markov chain is a “fluid model”

in the sense of [Aldous and Fill, 2002]. The claim then follows immediately from [Aldous

and Fill, 2002, Corollary 3.28].

Proof of Theorem 2.1.13. Theorem 2.1.12 bounds the mixing time on the orderOlogN
P (1),

and Lemma 4.1.3 gives trel ≤ tmix so we have the same bound on the relaxation time.

Then, Proposition 6.2.1 above makes this a uniform bound over every θ ≥ 1 and another

application of Lemma 4.1.3 for the reverse direction (using that every discursive model
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has uniform stationary distribution)

tmix ≤ 5trel

(
1 +

1

2
logN

)
translates this to a bound of the mixing time for any θ ≥ 1 model.

We can relate the mixing time to the probability of being at the initial state via

[Aldous and Fill, 2002, (3.61)]. Writing π for the unique stationary distribution on each

component, the symmetric generator for this model gives

π(v) =
1

|C (v)|

and hence, writing p
(t)
v,· for the kernel of the discursive dual, we have

p(2t)
v,v −

1

|C (i)|
=

∥∥∥∥p(t)
v,· −

1

|C (i)|

∥∥∥∥2

2

≤
∥∥∥∥p(t)

v,· −
1

|C (i)|

∥∥∥∥
1

max
k

∣∣∣∣p(t)
k,· −

1

|C (k)|

∣∣∣∣ ≤ 2d(t)

by recalling that the total variation distance is half the L1 distance. Then by [Levin

et al., 2009, Lemma 4.11] we have d̄(t) ≤ 2d(t) and so d̄(tmix) ≤ 2
e . Because d̄ is

submultiplicative, we say further

d̄ (tmix dC logNe) ≤ N−C log( e2) =
1

N

by setting C = 1
1−log 2 . The reverse bound of [Levin et al., 2009, Lemma 4.11], d(t) ≤ d̄(t),

makes this a bound on total variation distance. Then, the covariance is straightforward

by recalling E (η0(v)) = E (ηt(v)) = u and

E (η0(v)ηt(v)) = P (η0(v) = ηt(v) = 1) = up(t)
v,v + u2

(
1− p(t)

v,v

)
so that

Cov (η0(v), ηt(v)) = p(t)
v,vu(1− u)

and we do not need to avoid the extra logarithmic factor in proving the claim for times

ωlogN (1).

For the other components we have a similar argument using that by [Bollobás et al.,

2007, Theorem 3.12(ii)] they can be uniformly bounded at size OP(logN) and so by

Proposition 4.1.1 the hitting time of the chain on the maximal small component is

OP(log2N). By Lemma 4.1.5 we see the mixing time must also be OP(log2N).
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For the consensus time in this regime we have a partial result Theorem 2.1.10, though

as claimed in the discussion of this result the region θ ≤ 1
γ covers the likely modelling

parameters.

Proof of Theorem 2.1.10. With high probability, Lemma 3.3.5 gives a set of paths con-

necting every pair in S :=
[⌊
N log−2/γ N

⌋]
by paths in [N ] \ S, of maximal length

OP(logN).

The diameter result in Theorem 3.3.4 gives a set of paths between every pair of

vertices in C (1), of maximal length OP(logN).

Therefore we can alter paths in the second set which have more than 2 vertices in S,

by taking the first and last vertex in S, deleting the path between them and replacing

it by their low degree path from the first set.

We use that

max
v>N log−2/γ N

d(v) = OlogN
P (1)

to say that the conductance of any edge {v, w} incident to a vertex v /∈ S has

c(v, w) ≥ 1

|C (1)|
d(v)θ

2
≥ 1

N

d(v)θ

2

to uniformly bound the expected hitting of each pair on the order OlogN
P (N) via the

electrical network bound 4.1.1. This induces a bound on the expected consensus time

by Proposition 4.2.5.

Further we have an upper bound on the small components, which by [Bollobás et al.,

2007, Theorem 3.12(ii)] have maximal size OP(logN), by the same hitting time argument

– using that the maximum degree is bounded by the maximum component size.

The lower bound follows by an application of Proposition 4.1.4 (a) to C (1). This

simplifies, because the stationary distribution is uniform on C (1), to ΩP(N2/
∑

v q(v)).

Whenever

∑
v∈C (1)

q(v) =
∑

v∈C (1)

d(v)θ = OlogN
P

(
N∑
v=1

(
N

v

)γ)
= OlogN

P (N)

we have a lower bound which is polylogarithmically tight to the upper bound, and this

happens when θ ≤ 1
γ .
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Chapter 7

The Contact Process on a

Network Adapting to Infection

Density

In this chapter we prove Theorem 2.2.8 on when the epidemic event breaking out from a

single source has asymptotic probability zero, and 2.2.10 on when it has asymptotically

positive probability. In both cases we look to find an explicit region in our three pa-

rameters (λ, κ, β) controlling the relative rate of infection, relative rate of the dynamic

and (initial) mean degree. Results for the large graph limit N →∞ might then help us

understand behaviour on the finite but large networks that real epidemics occupy.

Not as a main result but for context, we first consider the non-adaptive version

of the graph dynamic where every vertex updates its neighbourhood at constant rate

regardless of its neighbourhoods infection level. With this dynamic, the random graph

is independent of the infection and hence we are able to apply some existing techniques,

imitating [Jacob and Mörters, 2017], to prove the results of Theorem 2.2.11.

In the second part of the chapter we modify the dynamic such that the neighbourhood

update of a vertex is only carried out if there is an adjacent infected vertex. This

graph dynamic for an infection model is one of the most natural from a social dynamics

perspective, and is superficially similar to the non-adaptive version.

However, the modification has broken many useful mathematical features that were

previously present. As well as losing self-duality for the contact process on this adaptive

dynamic graph, we lose all types of monotonicity: an extra edge on the graph could

cause an update and thus hinder the spread of infection; and an extra infected vertex

could in the same way lead to a reduction in the resultant size of the infection set
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Figure 7.1: Recalling the simulations previously shown in Figures 2.2 and 2.3 but now on common
axes. Each is with µ = 10, and requiring two standard deviations of confidence after 105 samples to

colour a pixel yellow (for epidemic probability zero) or blue (for positive epidemic probability).

I∞. Furthermore, the graph distribution is no longer stationary, firstly because the

empty graph is an absorbing state for the dynamic. More significantly, while vertices

are updated with the same (approximately) Pois(β) distribution, over time we will see

the process spend more time in lower degree states because lower degree vertices are less

likely to see an infected neighbour.

Recently [Ball et al., 2019] have considered a similarly dependent graph model but

with only edge removal and no replacement. Also, they consider the SIR dynamic where

recovery is permanent, which allows them to eliminate some dependence in the local

picture of the spreading infection. We keep the full complication of the SIS model but in

exchange we drop the heterogeneity that was dealt with for the voter model, effectively

fixing γ = 0. In the homogenous context we will not encounter the issues of [Pastor-

Satorras and Vespignani, 2002] with polynomially large degrees, but we still cannot use

the mean-field approximation because the infection has become significantly dependent

with the network.

We show that the contact process on this adaptive dynamic graph cannot grow to

epidemic levels by constructing a stochastic upper bound which is more tractable and

also cannot grow to epidemic levels. Because the model is substantially difficult to work

with, we must make substantial modifications and so we arrive at a loose upper bound

model. This model we call the subtree contact process (SCP), and it bounds the contact

process on a rooted tree by disallowing all recoveries that would disconnect the infection
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set, thus constructing a reversible Markov process.

For the expected size of the infection set in this bounding model to not itself diverge,

which would make the model useless for obtaining the theorem, λβ < e−1 is required.

From the local perspective of a vertex in the network, the original dynamic of changing

neighbourhood whenever you see infection sounds like it should work to avoid epidemics,

making epidemics asymptotically impossible for a larger parameter set than with non-

adaptive updating. Indeed in Figure 7.1 we see this supported and that very likely the

whole region λβ < 1 is included. Unfortunately, without any tighter upper bound we

cannot hope to prove this claim.

We apply this bound to every local neighbourhood reached by the infection, using

the intuition that local neighbourhoods are treelike. Further because the typical distance

for the Erdős-Rényi giant component is ΘP(logN), updates even if they keep a vertex

connected to the same component are expected to connect it far away. Thus we imagine

the initial phase of the epidemic as occupying a dynamic forest model which we formalise

as the “contact process on an evolving forest” (CPEF), which could be thought of as the

N = ∞ version of the infection model. By working with the SCP bound in the CPEF

picture, we show that epidemics are asymptotically impossible whenever λβ < 0.21.

In the section on infection supercriticality we will instead find a stochastic lower

bound which grows to epidemic levels. For this we use an SIR coupling which shows

survival of the infection just on the root tree of the CPEF. This might be called tree

supercriticality, and it requires considerable higher λ parameter than for the real object

of interest which is forest supercriticality : possible survival on the whole CPEF regardless

of possible survival on a single tree. In Figure 2.2 we can see two lines of very different

slopes which bound these two regions, but we have no conjecture for where the line falls

between forest supercriticality and subcriticality. We do, however, conjecture that this

is the same line that bounds the maximal region of asymptotic epidemic possibility on

the finite network, and visibly it contains the region proved by this SIR lower bound.

7.1 The Non-adaptive Dynamic

First, as in [Jacob and Mörters, 2017, Jacob et al., 2019] we consider an independent

network dynamic which is invariant to time reversal. So, this context is amenable to

existing techniques which we will apply in this section.

Proof of Theorem 2.2.11 (a). We use the mean-field upper bound of [Jacob and Mörters,

2017] (Yt)t which has for each vertex v three states Yt(v) ∈ {0, 1, 2}. Of these, 0 means
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healthy, 2 means infected and the intermediate state 1 means ready to recover. In this

model we do not keep track of a dynamic graph (because it is instead mean-field) but

have the following dynamic: every infected vertex “updates” at rate κ and becomes ready

to recover, and every ready to recover vertex recovers at rate 1 and becomes healthy.

Both infected and ready to recover vertices infect every other vertex at rate λβ/N ,

after which (if only ready to recover) the infecter also becomes infected. Thus after an

infection event both involved vertices become fully infected at value 2. They show that

this model can be coupled to the contact process ξ and the non-adaptive dynamic graph

such that ξ ≤ Y .

This mean-field upper bound is designed for a supermartingale analysis which is sim-

pler in the homogeneous case. However because we are not looking to take λ arbitrarily

small we should optimise the relative value of Y = 2 and Y = 1 which in the following

martingale,

M(t) := #{v : Yt(v) = 1}+ C#{v : Yt(v) = 2},

is controlled by C ≥ 1. Recall the dynamic of Y to bound

1

dt
E
(
M(t+ dt)−M(t)

∣∣Ft

)
≤ (λβ(2C − 1)− 1) #{v : Yt(v) = 1}

+ (λβC + κ(1− C)) #{v : Yt(v) = 2}

and we can minimise the maximum of the two bracketed coefficients over C by setting

λβ(2C − 1)− 1 =
λβC + κ(1− C)

C

which happens at

C =
1− κ+ 2λβ +

√
(1− κ)2 + 4λβ(1 + κ+ λβ)

4λβ
.

This leads to a bound of the form

1

dt
E
(
M(t+ dt)−M(t)

∣∣Ft

)
≤ −εM(t)

with ε > 0 possible if and only if λβ < 1 and

κ >
λβ(1 + λβ)

1− λβ
.

Given parameters satisfying these requirements, we can apply optional stopping to
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the supermartingale
(
M(t)eεt

)
t

to deduce

E[N ]

(
N∑
v=1

ξt(v)

)
≤ E (M(t)) ≤M(0)e−εt = Ne−εt

by setting M(0) ≡ 1 so everywhere is initially in the ready to recover state.

There is no immediate link to the main quantity of interest E1(|I∞|) but we can

observe that for the recovery time R

E1

(
R
∣∣|I∞|) ≥ |I∞|∑

k=1

1

k
≥ log |I∞|

and hence from the duality result in Corollary 4.3.4

E1 (log |I∞|) ≤ E1 (R) = E[N ]

(∫ ∞
0

1

N

N∑
v=1

ξt(v)dt

)
≤
∫ ∞

0
e−εtdt = O(1)

which proves tightness of (|I∞|)N , implying that for any ε > 0 the epidemic event ENε

does not occur, with high probability.

To show survival with the non-adaptive dynamic as in Theorem 2.2.11 (b) we will

lower bound the growth by a Pólya urn.

Definition 7.1.1 (Hazard rate). A random variable X on [0,∞) which is absolutely

continuous with respect to the Lebesgue measure has hazard rate function

q(x) := lim
δ↓0

1

δ
P
(
X ∈ [x, x+ δ]

∣∣X ≥ x) .
In the calculations for bounding this rate we use the well known result that for a

random variable X on N we have E(X) =
∑∞

x=1 P(X ≥ x). Further, we need the

following simple result.

Proposition 7.1.2. For a random variable X on N we have

∞∑
x=1

xP(X ≥ x) =
E(X) + E(X2)

2
.
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Proof.

∞∑
x=1

xP(X ≥ x) =
∞∑
x=1

x
∞∑
y=x

P(X = y) =
∞∑
y=1

P(X = y)

y∑
x=1

x =
∞∑
y=1

P(X = y)

(
y(y + 1)

2

)
.

Lemma 7.1.3. Consider a dynamic star structure with one permanently infected vertex

having outdegree (d+(t))t and a healthy neighbourhood. Set

d+(0) ∼ Pois(β)

and the dynamic

d+ → d+−1 at rate κd+

d+ → d+ +1 at rate κβ

d+ ∼ Pois(β) at rate κ

(7.1)

then we find as κ → ∞ the hazard rate q for the first infection time, which arrives

throughout at rate λ d+(t), satisfies

inf
x≥0

q(x)→ λβ.

Proof. The full Markov chain under consideration is on N∪{†}, with the degree dynamic

described above together with a “death” rate λ d+ from each state d+ ∈ N, leading to the

absorbing state † which represents the first infection time. The definition of q conditions

on this transition not being made and so we are considering a metastable version of the

chain, which has some stationary distribution α different to the stationary distribution

π of the degree dynamic, α 6= π = Pois(β), as discussed in Section 4.1.3. Recall from

that section the defining equation for each j ∈ N

κ
∞∑
i=0

αiqij − λjαj = −ραj . (7.2)

where Q = [qi,j ] is the κ = 1 degree dynamic. Consider some x ∈ N+ and define

a = [0, x− 1] ∩ Z, b = [x,∞) ∩ Z.

The infection rate at any state in b is at least λx, whereas in a it is at most λ(x− 1).
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So we can apply Proposition 4.1.11 to these two sets and obtain

κ
x−1∑
i=1

∞∑
j=x

α(i)qij ≥ κ
x−1∑
i=1

∞∑
j=x

α(j)qji.

Insert the degree dynamic of (7.1) to obtain a bound independent of κ

α(a)π(b) + βα(x− 1) ≥ α(b)π(a) + xα(x)

and subsequently the inequality that we will use repeatedly

π(b) + βα(x− 1) ≥ α(b) + xα(x). (7.3)

Let A,Π be random variables with probability mass α, π and sum (7.3) to find

∞∑
x=1

(π(b) + βα(x− 1)) = E(Π) + β ≥
∞∑
x=1

(α(b) + xα(x)) = 2E(A)

and so by recalling π = Pois(β) we have E(A) ≤ β. Using Proposition 7.1.2 we can also

bound the second moment from (7.3):

∞∑
x=1

x (π(b) + βα(x− 1)) =
E(Π) + E(Π2)

2
+ β(1 + E(A)) = 2β +

β2

2
+ βE(A)

≥
∞∑
x=1

x (α(b) + xα(x)) =
E(A) + E(A2)

2
+ E(A2) =

1

2
E(A) +

3

2
E(A2)

so that we conclude E(A2) ≤ 4
3β + β2

3 + 2
3βE(A) ≤ 4

3β + β2.

The third and final application of (7.3) is to check that (α)κ>0 is uniformly integrable,

which follows shortly. Take L ∈ N; we first observe for a random variable X on N that

E(X;X ≥ L) = LP(X ≥ L) + E
(
(X − L)+

)
= LP(X ≥ L) +

∞∑
x=L+1

P(X ≥ x)
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then by (7.3)

E(Π; Π ≥ L)− Lπ([L,∞)) + βα([L,∞))

=

∞∑
x=L+1

(π(b) + βα(x− 1))

≥
∞∑

x=L+1

(α(b) + xα(x))

= E(A;A ≥ L)− Lα([L,∞)) + E(A;A ≥ L+ 1)

= 2E(A;A ≥ L)− Lα(L)− Lα([L,∞))

which on rearrangement gives the bound

E(A;A ≥ L) ≤ Lα(L) + Lα([L,∞)) + E(Π; Π ≥ L)− Lπ([L,∞)) + βα([L,∞))

2
.

By Markov’s inequality applied to A2 we have

sup
κ>0

Lα([L,∞)) ≤ E(A2)

L
≤

4
3β + β2

L
→ 0

and so because Π is also integrable we see that every term tends to zero uniformly and

sup
κ>0

E(A;A ≥ L)→ 0;

we will use all three bounds in the remaining proof.

By summing over j in (7.2) we obtain β ≥ E(A) = ρ/λ and therefore, again using

(7.2), we can bound the 2 norm

‖αQ‖22 =

∞∑
j=0

(
λj − ρ
κ

)2

α2
j ≤

λ2

κ2

∞∑
j=0

j2α2
j +

ρ2

κ2

∞∑
j=0

α2
j

≤ λ2

κ2
E(A2) +

ρ2

κ2
≤ λ2

κ2

(
4

3
β + 2β2

)
.

Further, we have an easy bound on the mixing time of the degree dynamic Q via

the regeneration times which arrive as a Poisson process of rate 1. At time log 4 we

have seen such a time with probability 1
4 and hence tmix ≤ log 4. Recalling Lemma

4.1.3 it follows that trel ≤ log 4 and so every eigenvalue of Q apart from the single zero

eigenvalue is less than − 1
log 4 . It follows that as κ → ∞ we have α

L2

→ π. Then by
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applying [Kallenberg, 2006, Proposition 4.12] we deduce first that α
P→ π, and applying

[Kallenberg, 2006, Proposition 4.12] again recalling the uniform integrability checked

above we finally deduce α
L1

→ π.

That is to say, for any ε > 0 by taking κ sufficiently large we guarantee total variation

distance dTV(d+(0), α) ≤ ε and so we can couple the initial and metastable stationary

distributions in an event C with P(C) = 1− ε. Then, initiated at the metastable distri-

bution, we have a precisely exponentially distributed infection time with rate ρ. Thus

for x, δ > 0 the first infection time T has

P
(
T ∈ [x, x+ δ]

∣∣T ≥ x) ≥ P
(
T ∈ [x, x+ δ]

∣∣T ≥ x,C)P(C) =
(

1− e−ρδ
)

(1− ε)

and so, recalling Definition 7.1.1, q the hazard rate of T satisfies

q(x) = lim
δ↓0

1

δ
P
(
T ∈ [x, x+ δ]

∣∣T ≥ x) ≥ (1− ε)ρ

and the L1 convergence also tells us that, as κ → ∞, ρ = λE(A) → λβ so we have the

result, by taking ε ↓ 0.

This result on the infection rate of an updating star is the main part of proving

Theorem 2.2.11 (b), it essentially just remains to find these stars on the finite network.

Proof of Theorem 2.2.11 (b). By the monotonicity properties of the contact process on a

non-adaptive dynamic network, as described in [Jacob and Mörters, 2017], we can show

survival on the full model by showing it on a model with stochastically fewer edges.

Define some maximal outdegree L, P ∼ Pois(β(1− ε)) and

PL
d
= P

∣∣{P ≤ L}.
While the infection set (ξt)t has size

(1 + L) |ξt| ≤
εN

2

we can use the stochastic domination (for N sufficiently large)

PL � Bin

(⌊(
1− ε

2

)
N
⌋
,
β

N

)
to give each infective vertex a PL-distributed outdegree and have every such neighbour

unique to a member of ξt.
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We construct the following lower bound to the infection set: vertices in ξt are either

active or dormant. Active vertices have the star dynamics of Lemma 7.1.3 but restricted

to [L], when looking at their healthy neighbours. As κ→∞, we lower bound the hazard

rate for the restricted process by some limit rate λβL where βL := E(PL)→ β as L→∞.

Hence for any δ > 0, for κ sufficiently large, we can lower bound this rate by λβL(1− δ)
by using Lemma 7.1.3, with the slight modification of the upper bound L.

If an active vertex infects one of its healthy neighbours, the neighbour becomes active

infected and the infector is labelled dormant. We ignore inactive dormant vertices until

the time of their next vertex update when they again become active. So given this

decomposition

|ξt| = At +Dt

we can see this as a Pólya urn contained within the process, with mean matrix (see

[Janson, 2004])

A =

(
−1 κ

λβL(1− δ) −1− κ

)
which has a positive eigenvalue for large κ if λβL(1− δ) > 1 which is possible for large

L and small δ whenever λβ > 1. We conclude that survival of the process is possible,

by standard multitype Galton-Watson results first shown in [Harris, 1963].

7.2 The Adaptive Dynamic

7.2.1 Subcriticality

The only tool we have to control the spread of the infection is the “Subtree Contact

Process” that we introduced in Definition 4.3.8. Fortunately, analysis of this process on

the Poisson-Galton-Watson tree is very feasible when we look at the annealed context,

averaging over this Poisson-Galton-Watson tree random environment.

Lemma 7.2.1. On the random (finite or infinite) Pois(β)-Galton-Watson tree we have,

for the normalising constant Zλ defined in (4.12),

E(Zλ) ≤ 1 + λ+ βλ2 +
e3

3
√

6π
· λ3β2

1− λβe

whenever λβe < 1.

Proof. For some positive integer k, let sk denote the expected number of subtrees of

size k containing the root o in a Pois(β)-Galton-Watson tree and let s
(N)
k denote the
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expected number of subtrees of size k containing the vertex 1 in the Erdős-Rényi Graph

with parameter β/N .

First we remark that s
(N)
1 = 1 and s

(N)
2 = E(d(1)) = β

(
1− 1

N

)
≤ β. We define

sN0 = 1 as the SCP should have only one empty state.

For k ≥ 3, in [Chin et al., 2018] we see (from Cayley’s formula) that the complete

graph has
(
N
k

)
kk−2 subtrees of size k and so similarly it has

(
N
k−1

)
kk−2 subtrees of size k

containing the vertex 1. Each such tree is seen as a subgraph of the Erdős-Rényi Graph

with probability (β/N)k−1, and hence by linearity of the expectation

s
(N)
k =

(
β

N

)k−1( N

k − 1

)
kk−2

→ βk−1kk−2

(k − 1)!
=
βk−1kk−1

k!
as N →∞

≤ βk−1kk−1

√
2πkkke−k

=
1

β
√

2πk3/2
(βe)k

≤ 1

3β
√

6π
(βe)k because k ≥ 3.

Any subtree of size k is contained in the ball B(1, k) and by [van der Hofstad,

2020, Theorem 2.11] we have local weak convergence in probability, which implies local

weak convergence in distribution. The number of rooted subtrees of size k is not a

bounded function, but the well-known “Portmanteau Lemma” still gives us

lim
N→∞

s
(N)
k ≥ sk.

Hence

E(Zλ) =
∞∑
k=0

λksk ≤ 1 + λ+ βλ2 +
1

3β
√

6π

∞∑
k=3

(λβe)k

= 1 + λ+ βλ2 +
e3

3
√

6π
· λ3β2

1− λβe
.

Controlling the mean of Zλ allows us to control the mean expected recovery time

for the SCP. We want to convert this information about the recovery time to something

about the total spread of the infection, so to this end we introduce a size-slowed version
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for which bounds on the recovery time will suggest small infection set sizes.

Definition 7.2.2 (Slowed Subtree Contact Process). Let the Slowed Subtree Contact

Process (Slowed SCP), for some constant ρ > 1, be the SCP dynamic but leaving each

tree state T proportionally ρ−|T | slower. Hence each valid recovery occurs at rate ρ−|T |,

each infection at rate λρ−|T | and the stationary distribution of this process is πλρ, in the

same family of distributions as for the SCP.

To keep finite SCP expected recovery time with the addition of this slowing param-

eter ρ, because the stationary measure is the same as for the infection with λ 7→ λρ,

we must have λβρe < 1. Allowing larger ρ values gives better control over the infection

size, but while maintaining λβρe < 1 it can limit the maximal permitted value of λβ.

By some numerical computations that we will not show, we calculate that the follow-

ing assumption is very close to optimal for maximising the subcriticality region in the

resultant main theorem: Theorem 2.2.8.

Lemma 7.2.3. If λβe ≤ 3
4 then the root tree infection set I∅∞, of vertices that ever saw

the infection as in Definition 2.2.2, has

E(|I∅∞|) ≤ 1 +
27βλ

16

(
1 +

√
2

3π
· 2e3βλ

9− 12βλe

)
.

In fact, we prove the same bound for the κ = 0 model: the contact process on a

static Galton-Watson tree.

Proof. It is sufficient to completely neglect updating on each local tree set. Of course,

locally, updating is simply deletion of a vertex and prevention of infection via its incident

edges – therefore the infection with no updating dominates that with updating.

To analyse the spread of an infection without updating, we can look at the Slowed

SCP as an upper bound. For some

ρ ∈
(

1,
1

βλe

)
⊃
(

1,
4

3

)
we verify from the detailed balance equations that the distribution πλρ(T ) = (λρ)|T |/Zλρ

of Equation (4.12) is the stationary distribution, which will allow us to bound recovery

times via Lemma 7.2.1.

Write T for the random tree, r for the singleton subtree containing the root of T
(recall that the extra permanently infected vertex is not considered part of the infection

set) and Eλ,slow for the measure of the slowed SCP with infection rate λ. By Kac’s
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formula [Norris, 1998, Theorem 3.5.3] applied to the slowed SCP we have for the recovery

time R

Eλ,slow
r

(
R
∣∣T ) = Eλ,slow

∅
(
R
∣∣T )− 1

λ
=

1

λπλρ (∅)
− 1

λ
=
Zλρ − 1

λ
,

because there is no slowing in the empty tree state. We recall Lemma 7.2.1 and average

over T to see

Eλ,slow
r (R) ≤ ρ+ βλρ2 +

e3

3
√

6π
· λ

2ρ3β2

1− λρβe
.

For this slowed process, if we are at some infection set size |T | = k ≥ 2, we only

return to k − 1 total infective vertices at rate bounded by (k − 1)ρ−k because the root

cannot recover while it has an infected child.

Further, if ρ ∈
(

5
4 ,

4
3

)
this recovery rate has

max
k≥2

(k − 1)ρ−k =
4

ρ5

and any sites we infect must recover one-by-one at rate bounded by this maximal rate.

Hence

Eλ,slow
r

(
R
∣∣∣|I∅∞|) ≥ ρ+

ρ5

4

(
|I∅∞| − 1

)
(7.4)

so by taking expectations

ρ+
ρ5

4

(
Eλ,slow
r

(
|I∅∞|

)
− 1
)
≤ Eλ,slow

r (R) ≤ ρ+ βλρ2 +
e3

3
√

6π
· λ

2ρ3β2

1− λρβe

which we rearrange to obtain

ρ5

4

(
Eλ,slow
r

(
|I∅∞|

)
− 1
)
≤ ρ2

(
βλ+

e3

3
√

6π
· λ2ρβ2

1− λρβe

)
=⇒ Eλ,slow

r

(
|I∅∞|

)
≤ 1 +

4βλ

ρ3

(
1 +

e2

3
√

6π
· λρβe

1− λρβe

)
.

Finally we take ρ ↑ 4
3 which obtains the claimed result, because we can couple the

slowed and unslowed rate-λ SCPs such that they follow the same paths to recovery and

so have the same infection set.

From this bound on the infection spread within a tree, we must bound the number

of these infected vertices which update while infected and thus spread the infection to

another tree. If the expectation of the number of these vertices is less than 1, by seeing

the process of tree sets as its own Galton-Watson process we can argue that the infection
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process dies out on the evolving forest.

Lemma 7.2.4. If κ > 0 and βλ < 0.21 then the CPEF has

E

 ∞∑
n=1

∑
u∈(N+)n

1|Iu∞|6=0

 <∞

i.e. we expect to infect only finitely many other local trees.

Proof. No vertex can leave the root tree and start a new infected tree unless it was a

member of I∅∞. Further, if |I∅∞| − 1 vertices have updated then the last cannot update,

as it would not have any infected neighbours remaining.

Hence we can conclude that this Galton-Watson process of trees is subcritical when-

ever

E
(
|I∅∞| − 1

)
< 1.

By Lemma 7.2.3, we know this is satisfied whenever βλ < 3
4e > 0.27 and

27βλ

16

(
1 +

√
2

3π
· 2e3βλ

9− 12βλe

)
< 1

which is a quadratic inequality in βλ

243

16
βλ− 81e

4
β2λ2 +

√
2

3π
· 27e3

8
β2λ2 < 9− 12βλe

⇐⇒

(
81e

4
−
√

2

3π
· 27e3

8

)
β2λ2 −

(
12e+

243

16

)
βλ+ 9 > 0.

We solve the quadratic to find a region {βλ < L}, where the limit L is

L =
81 + 64e−

√
1152e3

√
6
π + 4096e2 − 10368e+ 6561

12e
(

18− e2
√

6
π

) > 0.21

and hence {βλ < 0.21} is sufficient for subcriticality.

Having found a region of subcriticality on the CPEF, it remains to check that we

can couple this back to the original network problem. The first ingredient is controlling

how closely we can approximate the degrees as Poisson.
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Lemma 7.2.5 ( Theorem 1 of [Barbour and Hall, 1984] ).

dTV

(
Bin

(
N,

β

N

)
,Pois(β)

)
≤
β
(
1− e−β

)
N

≤ β

N

and hence we can couple the two distributions so that they are identical with probability

1− β/N .

Proof of Theorem 2.2.8. First fix some large constant B ∈ N+ and observe that because

the meta-Galton-Watson process in the CPEF is subcritical we expect to see only finitely

many tree sets T u. Hence by Markov’s inequality it will see fewer than B tree sets with

high probability in B.

Now from Lemma 7.2.3 the first B simulated local trees have an expected total

infection size bounded by(
1 +

27βλ

16

(
1 +

√
2

3π
· 2e3βλ

9− 12βλe

))
B < 2B

and so with high probability the total number of vertices that are ever infected is bounded

by B2, say, with high probability in B.

It remains to couple the CPEF to the process on the network. In the CPEF trees we

have offspring distribution Pois(β) but in the real network these are binomial. Using the

bound in Lemma 7.2.5, with high probability in N we can generate B2 offspring counts

from one of these distributions without losing a coupling to the other.

To obtain the precise local distribution of the Erdős-Rényi network we have to give

each vertex a uniform label from [N ] and thin the tree as it is explored by the infection

(as in Section 4.3.1, using the order in which the vertices were infected as a hierarchy).

We expect in a set of size bounded by B2 to see a number of label clashes bounded by(
B2

2

)
1

N
= Θ

(
1

N

)
and so by Markov’s inequality again we see only unique labels, with high probability in

N . Hence we have coupled the two infection sets and we know |I∞| ≤ B2 with high

probability in B. Thus for any ε > 0 we can find an M ∈ N+ such that

sup
N≥M

P
(
|I∞| ≥ B2

)
≤ ε

and so the set [1, B2] can contain 1− ε mass for a tail of the sequence (|I∞|)N∈N+ .
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7.2.2 Supercriticality

For the survival of the epidemic we have more flexibility in choosing a lower bound.

In this section we outline two basic SIR couplings that show linear epidemics for large

enough infection rate parameter λ. On the network, [Janson et al., 2014] give a complete

SIR analysis; here we consider the SIR on a tree and so can simply check the expected

number of infected children exceeds 1 and conclude with a more primitive Galton-Watson

understanding.

Lemma 7.2.6. If

λβ > 1 + 2κ+ λ

then the CPEF defined in Definition 4.3.5 has

P(|I∅∞| =∞) > 0.

Proof. We will contain an SIR infection within the SIS on the dynamic graph, in which

every vertex is treated as permanently recovered on its first update attempt or nontrivial

recovery attempt (i.e. its first recovery attempt after becoming infected). Thus the

infection is spread down an edge at rate λ and each infected vertex permanently recovers

at rate 1 + κ.

Furthermore, each child at the top of an edge in the tree T ∅ has independently

probability
κ

κ+ λ

to detach itself before it can be infected by its parent. This is true even over multiple

infectious periods of the parent: whenever this edge is ready to receive the infection, the

child is also ready to update away so the situation is precisely that of competing expo-

nential clocks. We can thus percolate the tree so that the effective offspring distribution

is Pois
(
βλ
κ+λ

)
.

Conditionally on the edge not being “dropped” in this way, the target is infected at

rate λ+ κ. This SIR model with infection rate λ+ κ and recovery rate 1 + κ on a tree

then infects each child before permanent recovery with probability

λ+ κ

1 + κ+ λ+ κ
=

λ+ κ

1 + λ+ 2κ

by again considering two competing exponential clocks. On the Pois
(
βλ
κ+λ

)
-Galton-
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Watson tree, then, an infected vertex expects to infect at least 1 child if

λ+ κ

1 + λ+ 2κ
· βλ

λ+ κ
=

βλ

1 + 2κ+ λ
> 1

which is true by assumption. Thus we contain a supercritical Galton-Watson process of

infected vertices within successive generations of the underlying Galton-Watson tree, and

so there is positive probability that the process will infect infinitely many vertices.

This survival on the root tree of the CPEF is the heart of the proof, but again we

must translate it back to a claim about the finite network to prove Theorem 2.2.10.

Proof of Theorem 2.2.10. As in Section 4.3.1, we explore the network with the infection,

keeping a set of revealed vertices Rt ⊂ [N ] such that each vertex is revealed on infection

and unrevealed on updating while healthy.

Because the SIR lower bound (as in the previous lemma) only considers infected

vertices before they check their neighbourhood for infected vertices, we can consider it

on a subtree of the full revealed graph – survival on this subtree will force an epidemic

in the more complicated infection that contains it.

Recall that the distribution of offspring in the exploration of Section 4.3.1 was

Bin

(
N − |Rt|,

β

N

)
and thus while |Rt| < εN we expect at least β(1 − ε) unrevealed offspring from every

vertex exploration.

To further incorporate the dropping of unrevealed offspring as in the previous lemma,

we must keep children unique. Keep a claimed set Ct ⊆ [N ] of vertices which were ever

adjacent to infected vertices, note that Rt ⊆ Ct. While |Ct| < εN , we expect at least

β(1− ε) unrevealed offspring that won’t be claimed by another vertex from every vertex

exploration.

Hence if we define

τ := inf
t>0
{Ct ≥ εN},

we can contain an SIR infection in our graph up to the time τ , and if further

βλ(1− ε)
1 + 2κ+ λ

> 1

then this infection has an asymptotically positive probability to survive, which we make

true by setting ε sufficiently small. Clearly, the SIR infection cannot survive to infect
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infinitely many distinct vertices in [N ] and so we conclude

lim inf
N→∞

P1 (τ <∞) > 0.

If we do find τ < ∞ then we have some set |Cτ | ≥ εN where every v ∈ Cτ was

exposed at time tv ≤ τ to some wv ∈ Itv . Every such exposure has an event E(v) with

probability λ
1+λ+2κ to infect v before the next recovery time of wv or a possible update

time of either vertex.

Because an unclaimed vertex cannot update, v can only become claimed by either

an infection or an update at wv. Hence for v1, v2 ∈ Cτ we either have E(v1), E(v2)

independent, or they were claimed by the same vertex at the same time. Because we

claim at most

Bin

(
N,

β

N

)
� Pois(β + ε)

at a time (see e.g. [Klenke and Mattner, 2010, Theorem 1.1(f)]) we can conclude that

with high probability there are at least

εN

β + 2ε

vertices v ∈ Cτ with mutually independent exposure events E(v), because otherwise

this bound of the Poisson sum would be displaying a large deviation. By binomial

concentration, increasing the constant 2ε to 3ε, with high probability at least

εN

β + 3ε
· λ

1 + λ+ 2κ

of these events will then occur and thus on the event {τ < ∞} we find the epidemic

event E ε
β+3ε

λ
1+λ+2κ

with high probability in N . Thus we have found positive probability

of an epidemic event, whether by the previous SIR lower bound or otherwise simply by

observing a large level of exposure that the lower bound did not control.
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Appendix A

Counting Rooted Subtrees

The following result is proven by analytic combinatorial methods on Mathematics Stack

Exchange [Riedel, ]. We reproduce the proof here for permanence and to provide extra

explanation.

Proposition A.0.1. Take d ≥ 3. In U the set of rooted subtrees of the rooted d-regular

tree Td, we have
d

k − 1

(
k(d− 1)

k − 2

)
=: Ck

rooted subtrees of size k.

Proof. We consider two combinatorial classes: T containing the rooted subtrees of the

infinite rooted (d− 1)-ary tree, in which every vertex has d− 1 children and so the root

has degree d−1; and U containing the the rooted subtrees of the infinite rooted d-regular

tree in which the root has d children.

We describe the class T via the recursive equation

T = E + Z × T d−1

where E represents the empty tree, and Z denotes a vertex in the root, which could then

have any d − 1 other trees from T attached to the d − 1 child branches. Then U has a

similar description reflecting that only at the root were we permitted an extra choice

U = E + Z × T d.

These recursive equations have associated functional equations for the generating
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functions T (z), U(z) of the respective classes [Flajolet and Sedgewick, 2009]

T (z) = 1 + zT (z)d−1, U(z) = 1 + zT (z)d,

from which by substitution we find

U(z) = T (z)2 − T (z) + 1.

We are interested, for k ≥ 1, in the coefficient Ck of zk in U(z) which we extract by

Cauchy’s integral formula as in [Flajolet and Sedgewick, 2009, Appendix B2] for a small

simple positive loop Γ encircling 0

[zk]U(z) =
1

k
[zk−1]U ′(z) =

1

k
[zk−1]T ′(z)(2T (z)− 1)

=
1

2πki

∮
Γ

2T (z)− 1

zk
T ′(z)dz

=
1

2πki

∮
1+Γ

wk(d−1)(2w − 1)

(w − 1)k
dw

by substituting w = T (z) and using (because there is one empty tree and one of size 1)

that T (z) = 1 + z + O
(
z2
)

to deform a sufficiently small loop. Translate this integral

back to the origin to see

Ck =
1

2πki

∮
Γ

(w + 1)k(d−1)(2w + 1)

wk
dw =

1

k
[wk−1](w + 1)k(d−1)(2w + 1)

=
1

k

(
2

(
k(d− 1)

k − 2

)
+

(
k(d− 1)

k − 1

))
=

1

k

(
2

(
k(d− 1)

k − 2

)
+

(
k(d− 1)

k − 2

)
k(d− 1)− (k − 2)

k − 1

)
=

d

k − 1

(
k(d− 1)

k − 2

)
which is the claimed expression.
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