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Abstract—Helmholtz Stereopsis (HS) is a powerful technique
for reconstruction of scenes with arbitrary reflectance prop-
erties. However, previous formulations have been limited to
static objects due to the requirement to sequentially capture
reciprocal image pairs (i.e. two images with the camera and
light source positions mutually interchanged). In this paper, we
propose colour HS - a novel variant of the technique based on
wavelength multiplexing. To address the new set of challenges
introduced by multispectral data acquisition, the proposed
novel pipeline for colour HS uniquely combines a tailored
photometric calibration for multiple camera/light source pairs,
a novel procedure for surface chromaticity calibration and the
state-of-the-art Bayesian HS suitable for reconstruction from
a minimal number of reciprocal pairs. Experimental results
including quantitative and qualitative evaluation demonstrate
that the method is suitable for flexible (single-shot) reconstruc-
tion of static scenes and reconstruction of dynamic scenes with
complex surface reflectance properties.

Keywords-Helmholtz Stereopsis; wavelength multiplexing;
3D geometry; dynamic scenes; complex reflectance;

I. INTRODUCTION

3D reconstruction has been an active research area in
computer vision in the past years due to the high de-
mand in numerous industrial applications. For example,
modern heritage preservation projects set high standards
for geometric accuracy on challenging data striving for
sub-millimetre resolution accuracy and impeccable global
shape. Reconstructed surfaces often have complex unknown
surface reflectance. There is also much interest in capturing
dynamic often non-rigid deformation. This paper tackles the
combined challenge of dynamic scene reconstruction with
complex arbitrary reflectance properties.

Shape-from-Silhouette [1] is a classical geometric tech-
nique that is independent of surface reflectance. However,
the resolution of structural concavities in the visual hulls
[2] is poor compared to intensity-based methods. The well-
established intensity-based methods for 3D geometry recon-
struction such as single [3] and multi-view [4] conventional
stereo as well as photometric stereo [5] have demonstrated
remarkable sub-millimetre geometric accuracies on tailored
data. The known limitation of both methods however is the
inherent inability to deal with unknown surface reflectance.
Conventional stereo requires Lambertian (purely diffuse)

Bi-directional Reflectance Distribution Function (BRDF)
being unable to establish feature matches where surface
specularities occur. Photometric stereo on the other hand
requires the a priori knowledge of the BRDF that must be
acquired as pre-processing by a cumbersome and often in-
sufficiently accurate method. To our knowledge, Helmholtz
Stereopsis (HS) is the only technique in existence capable of
accurately modelling surfaces with an arbitrary BRDF. The
technique’s novel acquisition set-up, proposed in the seed
paper by Zickler et al. [6], features reciprocal image pairs
characterised by the mutually interchanged camera and light
source. The reciprocity at acquisition allows to formulate a
depth constraint with the dependence on the BRDF factored
out and hence an expanded range of applicability.

Standard HS has been shown to achieve excellent results
for rigid scenes with complex a priori unknown reflectance.
However, standard HS is not scalable to dynamic scenes
since it does not permit simultaneous acquisition of the
minimum of 3 reciprocal pairs due the performed swap
of the camera and light source. In this paper, we propose
colour HS where wavelength multiplexing is used to enable
simultaneous capture of reciprocal pairs. Signal separation
is achieved by using 3 cameras and 3 coloured light sources
and treating each camera channel as a separate image (Fig-
ure 1). The novel approach permits instantaneous capture of
3 reciprocal pairs but it also introduces a new set of chal-
lenges. The challenges are the acute need for photometric
calibration, signal dependence on surface chromaticity and
the ambiguity introduced by the drastically reduced number
of reciprocal pairs per point. We address all these challenges
by developing a complete practical pipeline for colour HS.
The pipeline includes a generalisation of the white light
photometric calibration procedure from Janko et al. [7] to
accommodate for chromatic characteristics of the cameras
and multispectral light sources. As surface colour will affect
inter-channel compatibility we propose a novel method for
surface chromaticity calibration. Further, to cope with the
reduced number of reciprocal pairs, we incorporate the
state-of-the-art Bayesian HS formulation from [8] into the
pipeline. To the best of our knowledge, our colour HS
pipeline is the first approach capable of reconstructing dy-
namic scenes with arbitrary unknown reflectance properties.
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II. RELATED WORK

Amongst intensity-based methods Helmholtz Stereopsis
(HS) is the only completely BRDF independent technique.
The subsequent development of HS, after its introduction by
Zickler et al. [6], included work on extensions for wider
applicability and increased geometric accuracy. Guillemaut
et al. [9] propose modifications for accurate geometric
reconstruction of highly textured surfaces by HS. In [10],
a more physically meaningful HS constraint resulting in a
Maximum Likelihood (ML) surface is formulated. In the
recent work by Roubtsova and Guillemaut [8] Bayesian
formulation of HS with a tailored prior jointly optimising
depth and normal information is shown to produce superior
results to the original ML formulation in [6]. There has also
been some work [11], [12] on full 3D reconstruction by HS.

A major limitation of HS has always been its controlled
set-up and the slow acquisition speed. Some of the impracti-
calities preventing the reconstruction technique from gaining
wider popularity were addressed by the HS inventors in
the follow-up papers. Firstly, Zickler et al. [13] propose
a binocular variant of HS where geometry is reconstructed
from a single reciprocal pair by a differential approach. A
partial differential equation of depth as a function of sur-
face coordinates with prior initialisation produces a family
of solutions, the ambiguity of which is resolved through
cumbersome multi-pass optimisation. Although an excellent
example of applied optimisation, binocular HS simplifies
HS acquisition at the cost of vastly increased computa-
tional complexity and introduced reconstruction ambiguities.
Another paper by Zickler [14] addresses automatic online
geometric calibration of a HS set-up using stable regions of
interest: the texture-based and the inherent to HS specularity-
based features. The paper proposes a method to avoid pre-
calibration of the set-up but does not deal with the bottleneck
issue of tedious sequential image acquisition limiting the
scope of the technique to static scenes.

The same paper also touches upon automatic radiometric
calibration of HS set-up using the inherent specularity-based
features. In [14], the definition of radiometric calibration
is limited to measuring relative intensities of isotropic
light sources. Provided the assumptions of equal camera
responses and no spatial source intensity variation hold, the
resultant calibration is good considering that it is done from
HS data without calibration targets. A much more general
radiometric set-up calibration for HS was proposed by Jankó
et al. [7]. Using a sequence of localised calibration planes
Jankó et al. calibrate for a spatially varying joint parameter
describing sensitivity and radiance of a collocated camera
and light source pair.

Unlike Zickler et al. [13] who for HS simplification
modify the reconstruction algorithm only, we propose a
complete novel pipeline tailored for processing HS input
for the first time acquired using wavelength multiplexing.

Simultaneous multi-channel acquisition for dynamic scene
reconstruction is known from the well-established colour
photometric stereo. In [15] and its later extension [16],
colour photometric stereo is shown to produce impres-
sive reconstructions of dynamic scenes with untextured,
uniform albedo objects, specifically cloth deformation and
facial expression sequences. By enforcing spatio-temporal
smoothness, Jankó et al. in [17] extend the technique to
textured surfaces, hence allowing spatial albedo variations
via its chromaticity component. Neither work however
deals with albedo varying spatially as a result of a non-
uniform reflectance model. Moreover, the reflectance model
in both works is assumed to be known (Lambertian) and
is hardcoded into the reconstruction pipeline. In contrast,
our proposed colour HS is valid for arbitrary BRDF, thus
naturally permitting albedo variability via the reflectance
model. Our method also allows local surface colour variation
which we estimate by integrating novel chromatic calibration
procedures into the pipeline. We also generalise the previous
work in photometric calibration of Jankó et al. [7] to mul-
tiple multi-chromatic cameras and light sources. Our colour
HS is the first variant of HS to successfully reconstruct real
dynamic scenes as demonstrated in the evaluation.

III. METHODOLOGY

We propose a novel approach that generalises Helmholtz
Stereopsis (HS) to dynamic scenes. Traditionally, the HS
reconstruction pipeline was based on white light intensity
sampling. Hence, firstly, we introduce the theory of tradi-
tional white light HS together with its calibration procedure
from [7]. Subsequently, we present our novel pipeline for
coloured light HS (colour HS) complete with tailored cali-
bration procedures and data processing algorithms.

A. White light Helmholtz Stereopsis

To introduce Helmholtz Stereopsis (HS), let us define a
perspective camera C and a light source S centred at c1 and
c2 respectively. In standard HS reciprocal image pairs are
acquired with any C and S respectively first at location c1
and c2 and then at c2 and c1 i.e. with the camera and light
source mutually interchanged. As in Jankó et al. [7] we
define the concept of Helmholtz camera R as a collocated
camera and light source at some position c. Traditionally,
the collocation is simulated by either the camera/light source
swap or by using a turntable to move the scene relative to
the set-up. Let us define two physically collocated (C,S)
pairs, R1 = (C1,S1) and R2 = (C2,S2) located at c1
and c2 respectively (Figure 2). The arrangement facilitates
Helmholtz reciprocity as one image of the reciprocal pair is
obtained with C1 and S2 at c1 and c2 and the other with C2
and S1 at c2 and c1 respectively.

Helmholtz camera R is photometrically characterised by
its radiance and sensitivity functions, ρ and σ respectively.
Both ρ and σ vary as a function of ray v from R to the



surface point x (Figure 2). Hence, intensity i1 at surface
point x in the reciprocal pair image I1 acquired with R2 as
the light source and R1 as the camera can be expressed [7]
as:

i1 = ρ2(v2)σ1(v1)fr(v2,v1)
v2 · n
‖c2 − x‖2

(1)

where ρ2(v2) is the radiance of R2 along v2 and σ1(v1)
is the sensor sensitivity of R1 along v1. Intensity i2, which
is the projection of x in the other reciprocal pair image,
is obtained by interchanging the vector indices 1 and 2
in (1). Jankó et al. [7] propose a method for photometric
calibration of R in traditional white light HS. Specifically,
for R1 and R2 as in Figure 2 Jankó et al. calibrate for the
radiance to sensitivity ratios:

µk(vk) =
ρk(vk)

σk(vk)
, k = 1, 2 (2)

In HS, reciprocal intensity measurements i1 and i2 can be
combined into a single surface normal constraint eliminating
the dependence on the BRDF fr(v2,v1). The elimination
is based on Helmholtz reciprocity [18] - the invariance of
behaviour in medium of a light ray and its reverse. For
BRDF the implication first observed by Zickler et al. is that:
fr(v1,v2) = fr(v2,v1). Via this equality reciprocal inten-
sities i1 and i2 expressed as in (1) are linked, incorporating
photometric calibration µ, to give the normal constraint:(

µ1(v1)i1
‖c1 − x‖2

v1 −
µ2(v2)i2
‖c2 − x‖2

v2

)
· n = 0 (3)

Reconstruction is the process by which for every surface
point depth values are selected from a set of hypotheses.
As originally described in [6], in standard HS at least 3
constraints in the form w · n = 0 (3) are required in order
to solve Wn = 0 where W is the constraint matrix with
w as rows. Singular value decomposition of W gives a
normal estimate n and the confidence value for the estimate
(i.e. the likelihood of the hypothesis being a surface point).
Standard HS formulation is a maximum likelihood (ML)
method where depth for each surface location is optimised
independently by selecting the hypothesis with the highest
confidence value.

B. Colour Helmholtz Stereopsis

In this section, we expand the theory of white light HS to
formalise colour HS - the novel variant of HS we propose.
In colour HS, the light sources S1 and S2 are characterised
by different frequency spectra. For consistent frequency-
independent response, chromaticity of the reconstructed
surface must be factored into the intensity equation. The
BRDF function at x is also a function of the illumination
frequency ω: fr(v2,v1, ω). We propose to split fr into the
geometry-related part fr(v2,v1), dependent on v1 and v2

only, and the part related to the surface point chromaticity
p(ω). We define the local chromatic constant p1,2 as the

reflectance coefficient due to the inherent colour of a point
when seen by camera C1 and lit by light source S2. The
camera is of importance due to possible differences in
spectral sensor characteristics. For the coefficient to be 0,
the illumination spectrum must exactly match the point’s
chromatic absorption spectrum. This is unlikely to happen
exactly, although the signal quality will degrade for points
of purer (R,G,B) colours. Incorporating chromaticity p1,2,
we can re-write intensity equation (1) for colour HS as:

i1 = ρ2(v2)σ1(v1)p1,2fr(v2,v1)
v2 · n
‖c2 − x‖2

(4)

For colour HS the normal constraint from (3) becomes:(
p2,1µ1(v1)i1
‖c1 − x‖2

v1 −
p1,2µ2(v2)i2
‖c2 − x‖2

v2

)
· n = 0 (5)

Traditional HS set-ups feature just one camera-light
source pair where either the equipment moves relative to
the scene or the static scene is moved relative to the set-up
for reciprocal pair acquisition. Colour HS we propose is a
static configuration consisting of three pairs of collocated
cameras and light sources. The cameras are equipped with
an RGB sensor while the light sources all have different
RGB characteristics. The three light sources must have the
minimum frequency overlap to ensure signal separation.
Signal separation allows simultaneous acquisition of the 3
required reciprocal pairs for normal estimation and enables
generalisation to dynamic scenes.

Photometric calibration for colour HS with its physically
different cameras and multispectral light sources is partic-
ularly important. Note that Helmholtz cameras in colour
HS are essentially characterised as a sensor of one light
frequency spectrum and a transmitter of another in different
reciprocal pairs. Section III-C details how we generalise
the algorithm from Jankó et al. for photometric calibration
in colour HS and provide insights into its application in
practice. Section III-D introduces the procedure we devised
to calibrate surface chromaticity observed by each camera
for the spectrum of each light source to eliminate intensity
inconsistencies within the same reciprocal pair. Finally, we
give a detailed description of the experimental set-up and
the rest of the pipeline designed for reconstruction accuracy
under the constraint of 3 reciprocal pairs per frame.

C. Photometric calibration of Helmholtz camera

Jankó et al. [7] photometrically calibrate each Helmholtz
camera R1 using another Helmholtz camera R2 by linking
HS constraints, obtained by gradual displacement of a cali-
bration plane, via the ray of incident illumination v2 (Figure
2). In the original paper, the calibration was performed in
a highly controlled environment with the plane translated in
fixed vertical increments with a single camera and a light
source suspended overhead and manually centred over the
turntable with the plane. For photometric calibration in the
colour HS pipeline we went for a more freehand approach



Figure 1. Experimental set-up Figure 2. Geometry of the calibra-
tion procedure

featuring a hand-held calibration board which was randomly
moved within the reconstruction volume and had markers
(Figure 4) for 3D localisation. Our entire configuration
consisting of 3 Helmholtz cameras was thus calibrated
simultaneously.

As in Jankó et al. [7] for every position j of the calibra-
tion plane Πj we establish a ratio of parameters µ1 and
µ2 corresponding to the Helmholtz cameras R1 and R2

sampled at a surface point x where rays v1 and v2 intersect
(Figure 2). However, in colour HS, the resultant ratio κ is
not the same as for white light HS as it is derived from (5)
rather than (3) incorporating chromaticity:

κ(v1,v2 | Πj) =
p2,1
p1,2

µ1(v1)

µ2(v2)
=

n>v2

n>v1

‖c1 − x‖2

‖c2 − x‖2
i2
i1

(6)

For simplicity, our calibration object is uniformly coloured
(except the masked out markers): p2 1 and p1 2 are constant
for all surface points. Subsequently, point x on plane Πj

is transferred onto the plane in the new position Πj+1 by
finding the intersection x′ of ray v2 with Πj+1. Hence
for plane Πj+1 the ratio κ(v2

1,v2|Πj+1) =
p2,1µ1(v

2
1)

p1,2µ2(v2)
is

established sharing the denominator with the corresponding
relationship of plane Πj . The shared denominator, together
with chromaticity constancy, allows to obtain a relationship
between µ1(v2

1) and µ1(v1) (two pixel locations (u1, v1)
and (u21, v

2
1) corresponding to rays v1 and v2

1 in the photo-
metric map of C1 under S2):

r1(v1,v
2
1) =

κ(v1,v2 | Πj)

κ(v2
1,v2|Πj+1)

=
p2,1µ1(v1)

p2,1µ1(v2
1)

=
µ1(v1)

µ1(v2
1)

(7)
Equation (7) provides constraints on a set of control points
of the photometric map via bilinear interpolation. We chose
to use a simpler regularisation kernel than Jankó et al. who
perform bi-cubic interpolation between control points. A
single constraint is of the form (ai − bi)λ = δi where
λ = [ln(µ1(v1)), ln(µ1(v2)), ..., ln(µ1(vN))]> is the vector
of variables, ai and bi are the interpolation coefficients from
control points to sample points and δi = ln(r1(v1,v

2
1)). The

resultant linear system is:

(A−B)>(A−B)λ = (A−B)>∆ (8)

where A = [a0,a1, ...,aM]>, B = [b0,b1, ...,bM]> and
∆ = [δ0, δ1..., δM ]>.

It has perhaps not been made explicit in [7] that Helmholtz
cameras involved in a single reciprocal pair must be cal-
ibrated as a couple and not individually. Once the set of
photometric values λ1 of Helmholtz camera R1 has been
obtained from (8), the set of relative values λ1 2 for R2 is
computed by transfer via (6). Values λ1 2 are different from
λ2 computed by direct calibration of R2.

In contrast to Jankó et al. , we have found that for its
accurate calibration a Helmholtz camera must be observed
in at least two Helmholtz camera pairs as in Figure 2. Jankó
et al. mention ill-posedness of the calibration problem when
a single Helmholtz camera pair is used due to constraints
being sampled along the projection ray and the linked
samples being along the same epipolar line. Jankó et al. do
not deem multiple Helmholtz camera pairs essential using
a strong bi-cubic regulariser to address the ill-posedness.
In our case, we use the already available multiple pairs
per Helmholtz camera to make the problem better posed
allowing us to work with a weaker bi-linear regulariser and
avoiding potential artefacts due to over-regularisation.

D. Surface chromaticity calibration

In this section, we propose a procedure for pointwise
calibration of reconstructed surface chromaticity. The goal
is to compute (p1,R, p1,G, p1,B) per point x: the reflectance
coefficients viewed by camera C1 under the red, blue and
green frequency spectra. The calibration method is based
on sampling chromatic response of a reference white object
and the arbitrarily coloured reconstruction object to be
calibrated. The reference and calibrated objects are sequen-
tially exposed to red, green and blue illumination from the
same direction. The spectra are defined by the colour filters
subsequently intended for colour HS data acquisition. The
sum of the RGB spectra defines white illumination in this
context.

From (4) we can write intensity equations for the RGB
channels of C1 separately when under red (ρr), green (ρg)
and blue (ρb) spectrum illumination respectively:

ir = ρr(v2,v1)σr(v2,v1)p1,Rfr(v2,v1)
v2 · n
‖c2 − x‖2

ig = ρg(v2,v1)σg(v2,v1)p1,Gfr(v2,v1)
v2 · n
‖c2 − x‖2

ib = ρb(v2,v1)σb(v2,v1)p1,Bfr(v2,v1)
v2 · n
‖c2 − x‖2

(9)

By definition, the reference white object shows the same
chromatic response for red, green and blue light: pw1,R =
pw1,G = pw1,B . Hence, the RGB intensity equations
(iwr , i

w
g , i

w
b ), formulated as in (9) but for a white surface,

are chromaticity independent. As the camera-to-light source
geometry is also identical between channel measurements,
the ratio of two channels for a white point is determined by



the relative ρ-σ products. For example:

iwr
iwg

=
ρr(v2,v1)σr(v2,v1)

ρg(v2,v1)σg(v2,v1)
(10)

The equivalent ratio for the same point in space defined
by rays v1 and v2 but occupied by the arbitrarily coloured
object would be:

ir
ig

=
ρr(v2,v1)σr(v2,v1)p1,R
ρg(v2,v1)σg(v2,v1)p1,G

(11)

as only the geometry cancels out in this case. Observe that
ρ and σ at the point in space defined by rays v1 and v2

are independent of the surface occupying it. Substituting
(10) into (11) we obtain an expression for the ratio of two
components of the chromaticity characterising triplet:

p1,R
p1,G

=
ir
ig

iwg
iwr

(12)

Having three such ratios p1,R
p1,G

, p1,R
p1,B

and p1,G
p1,B

allows one to
formulate a system of linear equations solved for the triplet
(p1,R, p1,G, p1,B). The set of corresponding RGB values for
calibrated surface points visible to C1 constitutes a chro-
maticity map. Each RGB value is effectively the sampled
surface point colour under white light of our definition.

E. Implementation of Colour HS

In this section, we discuss the details of colour HS imple-
mentation at various stages of the pipeline from acquisition
to reconstruction. Figure 1 shows our acquisition set-up
consisting of three collocated cameras Ci and light sources
Si where i = {1, 2, 3}. Each collocated pair partakes in 2
Helmholtz cameras resulting in a 6 Helmholtz camera set-up:
(R1,r,R1,g,R2,b,R2,g,R3,r,R3,b). Sources Si are given
different frequency characteristics by using colour filters -
red, green and blue for maximal spectral separation. The
filters were chosen to match RGB channel spectra of the
cameras as much as possible and no ambient light is allowed.
With the set-up we simultaneously acquire three reciprocal
image pairs, each characterised by two Helmholtz cameras
and two RGB signal channels.

Using these reciprocal pairs, constraints as in (5) are for-
mulated. The constraints can be directly integrated into the
original reconstruction pipeline proposed by Zickler et al. in
the seed paper introducing HS [6]. However, standard ML
HS is known to be prone to noise due to the lack of
regional support in depth assignment. In our colour HS we
are inherently limited to just 3 reciprocal pairs leaving room
for reconstruction ambiguity. Additional intensity error may
occur through channel cross-talk which we do not explicitly
address in this work. Consequently, standard ML HS is
inadequate in this case. In this work, we adopt the Bayesian
HS formulation of Roubtsova and Guillemaut [8] who
perform depth assignment by minimising the sum of data
and prior costs of the entire configuration of reconstructed

surface points: αEdata + (1 − α)Eprior. We use their data
term definition and the idea of the depth-normal consistency
prior shown to produce the most accurate depth maps by
enforcing consistency between sampled depth and normal
characteristics. The optimisation process results in a point
cloud of oriented vertices which is subsequently integrated
into meshes by Poisson surface reconstruction [19].

IV. EVALUATION

The methodology of colour HS was validated using real
datasets. Our evaluation comprises both static and dynamic
scenes. The range of static objects was selected to demon-
strate accuracy of the algorithm and its ability to cope
with cases of different complexity. The objects are a white
plane for quantitative evaluation (“Plane”) defined by the
calibration board as in Figure 4, a white plaster statue
of a monster head (“Monster”) in Figure 3 and a multi-
coloured toy-dog (“Slinky”) in Figure 6 showing structural
and radiometric complexity due to texture, transparency,
specular reflectance and pure colours of its various materials.
Having shown correctness of geometric reconstruction for
the more controlled static scenery sets, we subsequently
validate our claim of suitability of colour HS for dynamic
scene reconstruction. We are particularly interested in recon-
struction of such scenes with complex reflectance properties
as these are inherently challenging for conventional and
photometric stereo methods. In the dynamic scene evaluation
we shall show temporal structural deformation of a white
specular sheet and of a glossy white blouse cloth (Figure 8).
For static scenery we are able to handle spatially varying
chromaticity, while for dynamic scenes we are currently
assuming spatially uniform (specifically white) chromaticity.

A. Static scenes

For static scene evaluation, each Helmholtz camera was
radiometrically calibrated as described in section III-C using
a calibration board with markers to define the position of the
plane in each calibration shot. Position triangulation of any
three of the four markers gives an anchor point and a normal
to the calibration plane defined by the board. Using 7 plane
positions we produced a photometric map of µ covering
the region framed for static object reconstruction for each
Helmholtz camera in (R1,r,R1,g,R2,b,R2,g,R3,r,R3,b).

Note that a uniformly white calibration surface is re-
quired for radiometric camera calibration in our case since
we are simultaneously calibrating light sources of various
colour spectra: light reflection may not be affected by
the chromatic properties of the calibration surface. So, the
black localisation markers are masked out together with the
background outside the calibration boards in the images.
Furthermore, data from more than just one pair of planes
Πj and Πj+1 is needed for continuous calibration coverage
of the reconstruction frame. Figure 3 shows the resultant
photometric maps in the region of interest for the monster



Figure 3. Photometric calibration for our six Helmholtz cameras in
the image window of interest.

Figure 4. Calibration boards as viewed by C1, C2 and C3.

Figure 5. Heat maps of local Hausdorff distance variation for: Plane
by BayesianHS w/oPhCalib and GT (left), Plane by BayesianHS wPhCalib
and GT (middle), Monster by Bayesian HS with and without PhCalib and
ChromCalib (right).

Figure 6. An intensity image of Slinky’s appearance (left) and its chromaticity
maps for cameras C1, C2 and C3 (remaining images).

dataset. The maps are represented as heat maps to illustrate
regional variation of µ within the scope of the reconstruction
frame. The photometric maps characterise our 6 Helmholtz
camera set-up and hence are invariant with the dataset.

Reconstruction of each shot is performed from 3 RGB
images (3 reciprocal pairs) instantaneously acquired by
cameras C1, C2 and C3 under concurrent multispectral (RGB)
illumination of S1, S2 and S3 as described in Section III-E.
Poisson surface reconstruction is used to generate surface
meshes from our point clouds of oriented vertices (i.e.
surface points with the corresponding normals). The method
works on watertight point clouds. We convert our one-sided
reconstructions into watertight point clouds by injecting
visual hull vertices and computing geometric normals based
on neighbouring vertices from shared facets.

1) Quantitative evaluation: The first static object consid-
ered is a plane defined by the calibration board. The plane
example was selected from the radiometric calibration data,
as the data contain markers to compute the ground truth
plane orientation. The test plane was not one of the 7 planes
used in the photometric calibration process (PhCalib). It was
not necessary to perform chromatic calibration in this case
as the surface is made of a similar material to the sheet used
to define the reference white. Figure 7 shows the following
4 reconstructions of the plane segment: 1. the visual hull
(VH) and Poisson meshes of 2. standard ML HS with pho-
tometric Helmholtz camera calibration (ML HS wPhCalib),
3. Bayesian HS without PhCalib (BayesianHS w/oPhCalib)
and 4. Bayesian HS with PhCalib (BayesianHS wPhCalib).
Despite full calibration, with just 3 reciprocal pairs standard
HS performs poorly due to the absence of regularisation.
Bayesian HS in contrast performs quite well. Quantita-

tively, the accuracy of performance is expressed using the
Hausdorff distance that measures the locational discrepancy
between corresponding vertices of the given reconstruction
and the overlaid ground truth (GT) mesh we obtain by
marker localisation. We measured the RMS Hausdorff dis-
tance of 2.5 mm for BayesianHS w/oPhCalib and 2 mm
for BayesianHS wPhCalib. The spatial error variation for
BayesianHS w/oPhCalib and BayesianHS wPhCalib is vi-
sualised as heat maps in Figure 5 with the red indicating the
closest correspondence and the blue the farthest. Both the
RMS and the heat maps indicate the positive effect PhCalib
has on reconstruction accuracy.

2) Qualitative evaluation: Let us first consider the
Monster. The object is not exactly uniformly white ex-
hibiting significant spatial chromaticity variations due to
dirt warranting chromatic surface calibration (ChromCalib).
In Figure 7 we consider the following reconstructions:
1. VH, 2. standard ML HS with both PhCalib and
ChromCalib (ML HS wPh&ChromCalib), 3. Bayesian HS
without PhCalib or ChromCalib (BayesianHS w/oCalib),
4. Bayesian HS with PhCalib but without ChromCalib
(BayesianHS wPhCalib) and 5. Bayesian HS with both
PhCalib and ChromCalib (BayesianHS wPh&ChromCalib).
As for Plane, Bayesian HS results are clearly superior to
standard HS since the depth-normal consistency prior allows
more accurate and robust surface localisation. The Bayesian
result shows both global geometric accuracy and structural
detail, which could be further improved on by increasing
spatial sampling resolution.

At the first glance there seems to be
little difference between the results of
BayesianHS w/oCalib, BayesianHS wPhCalib and



Figure 7. Reconstruction results for static object datasets in the order of increasing reconstruction algorithm complexity. For Monster and Slinky (left to
right): VH, ML HS wPh&ChromCalib, BayesianHS w/oCalib, BayesianHS wPhCalib and BayesianHS wPh&ChromCalib. For Plane (left to right): VH,
ML HS wPhCalib, BayesianHS w/oPhCalib and BayesianHS wPhCalib

BayesianHS wPh&ChromCalib. However, in reality,
their mutual global shape variation is quite substantial as
evidenced by the heat map of Hausdorff distance between
the no calibration result (BayesianHS w/oCalib) and the
full calibration result (BayesianHS wPh&ChromCalib).
For example, note the significant difference in the lip. Full
calibration clearly makes a difference to the result although
it is not possible to quantify the improvement due to the
absence of ground truth. The lack of more significant
visual differences between the three results is attributed to
the relatively mutually homogeneous characteristics of our
colour-balanced cameras and light sources as well as the
relatively uniform chromaticity of the test object overall.
Although the pipeline is clearly tolerant to some degree of
chromaticity variation, on close observation of the partial
calibration result (BayesianHS wPhCalib) a global shape
distortion can be noticed indicating ChromCalib is not
redundant even for this relatively uniformly white object.

The importance of calibration becomes more pronounced
for the larger local chromatic variations of Slinky. The
same 5 reconstruction methods as for the Monster are com-
pared for this dataset. ML HS wPh&ChromCalib performs
exceptionally poorly producing a fragmented surface. As
expected, chromaticity calibration is crucial in this case.
The insufficiency of PhCalib alone is clearly demonstrated
by the fact that BayesianHS wPhCalib performs as poorly
as BayesianHS w/oCalib. Figure 6 shows the surface chro-
maticity maps obtained for each camera individually. They
appear to be largely in agreement about the chromatic
properties of the corresponding regions apart from some

artefacts due to intensity sampling at grazing angles, sensor
saturations and in the circular mirror region of the hind leg
arguably having no inherent chromaticity. The chromaticity
coefficients, although mutually consistent for reconstruction
under the given illumination spectrum, may not exactly
correspond to the absolute objects colours since our full
frequency spectrum definition is the sum of RGB filter
responses rather than the absolute white spectrum. The re-
sult of BayesianHS wPh&ChromCalib obtained using these
chromatic maps is clearly superior to the rest showing a
plausible global shape and a substantial degree of structural
resolution on this highly challenging object. The dealt with
challenges of Slinky include its signal scattering texture of
the face, high frequency geometry in the spring-like torso
and the highly specular multi-coloured plastic of the rest
of the body. BayesianHS wPh&ChromCalib seems highly
promising for multi-chromatic object reconstruction coping
with substantial geometric and radiometric complexity.

B. Dynamic scenes

We have shown accurate geometric reconstruction of static
scenes obtained from instantaneously acquired data. Clearly,
colour HS demonstrates a great potential for dynamic scene
reconstruction. We reconstructed temporal mesh deforma-
tions of a white specular laminated sheet and a white
glossy blouse. The corresponding mesh deformation video
sequences of 201 frames each are provided as supplementary
material. Figure 8 shows a sample set of 5 reconstructions 25
frames apart from each video sequence. The algorithm being
based on the reflectance model invariant Helmholtz Stereop-
sis easily copes with the specularities of the laminated sheet



Figure 8. Example frames from the dynamic scene reconstruction
sequences for the white laminated sheet and the glossy blouse cloth datasets.

that would cause immense problems for conventional stereo.
The folds, creases and domes of the deformable objects
plausibly materialise in the reconstructed meshes.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed colour HS - a new
variant of HS suitable for reconstruction of dynamic scenes
with complex reflectance properties. We utilise wavelength
multiplexing for simultaneous acquisition of three reciprocal
image pairs via different RGB channels. To fully exploit this
novel multispectral acquisition set-up, we have addressed
problems with inter-channel signal consistency by multi-
spectral Helmholtz camera photometric calibration extended
to involve several reciprocal pairs and by proposing a novel
surface chromaticity calibration procedure. We have also
discussed Bayesian HS as the better alternative to standard
ML HS for colour HS data with its minimal configuration of
three reciprocal pairs per shot. The colour HS pipeline has
been validated quantitatively and qualitatively on both static
and dynamic real scenes of varying structural and reflectance
complexity. Quantitatively, we demonstrated that the method
is able to achieve the accuracy of 2 mm on the test plane
object. Qualitatively, we have obtained high quality results
on a range of static object with complex spatially varying
reflectance properties and demonstrated the positive effect
of the proposed calibration procedures in these cases. To
validate colour HS in practice as a reconstruction method
for dynamic scenes with complex reflectance, we have
presented two video sequences of detailed dynamic white
glossy material deformation reconstruction. Although able
to cope with arbitrary reflectance properties, dynamic scene

reconstruction by colour HS is currently limited to objects
with uniform surface chromaticity due to the static per-
pixel nature of our chromaticity calibration procedure. As
future work, we intend to remove this limitation by using
dense surface point tracking to transfer statically calibrated
chromaticity properties to points in their new positions
across the entire video sequence.
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