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Stochastic Methods for Neutron Transport Equation
III: Generational many-to-one and keff

A. M. G. Cox∗, E. L. Horton∗, A. E. Kyprianou∗, D. Villemonais†

September 4, 2019

Abstract

The Neutron Transport Equation (NTE) describes the flux of neutrons over time
through an inhomogeneous fissile medium. In the recent articles [5, 10], a probabilistic
solution of the NTE is considered in order to demonstrate a Perron-Frobenius type
growth of the solution via its projection onto an associated leading eigenfunction. In
[9, 4], further analysis is performed to understand the implications of this growth both
in the stochastic sense, as well as from the perspective of Monte-Carlo simulation.

Such Monte-Carlo simulations are prevalent in industrial applications, in particular
where regulatory checks are needed in the process of reactor core design. In that setting,
however, it turns out that a different notion of growth takes centre stage, which is
otherwise characterised by another eigenvalue problem. In that setting, the eigenvalue,
sometimes called k-effective (written keff), has the physical interpretation as being the
ratio of neutrons produced (during fission events) to the number lost (due to absorption
in the reactor or leakage at the boundary) per typical fission event.

In this article, we aim to supplement [5, 10, 9, 4], by developing the stochastic
analysis of the NTE further to the setting where a rigorous probabilistic interpretation
of keff is given, both in terms of a Perron-Frobenius type analysis as well as via classical
operator analysis.

To our knowledge, despite the fact that an extensive engineering literature and
industrial Monte-Carlo software is concentrated around the estimation of keff and its
associated eigenfunction, we believe that our work is the first rigorous treatment in the
probabilistic sense (which underpins some of the aforesaid Monte-Carlo simulations).
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1 Introduction
As described in [10, 9, 5] the NTE is a balance equation for the flux of neutrons across a planar
cross-section in an inhomogeneous fissile medium. The backwards form of the equation can
be written as follows,

∂

∂t
ψt(r, υ) = υ · ∇ψt(r, υ)− σ(r, υ)ψt(r, υ)

+ σs(r, υ)

∫
V

ψt(r, υ
′)πs(r, υ, υ

′)dυ′ + σf(r, υ)

∫
V

ψt(r, υ
′)πf(r, υ, υ

′)dυ′, (1.1)

where the flux ψt(r, υ) is a function of time, t and the configuration variables (r, υ) ∈ D×V
where D ⊆ R3 is a non-empty, smooth, bounded convex domain such that ∂D has zero
Lebesgue measure, and V = {υ ∈ R3 : υmin ≤ |υ| ≤ υmax}. Furthermore, the other compo-
nents of (1.1) have the following interpretation:

σs(r, υ) : the rate at which scattering occurs from incoming velocity υ,
σf(r, υ) : the rate at which fission occurs from incoming velocity υ,
σ(r, υ) : the sum of the rates σf + σs and is known as the total cross section,

πs(r, υ, υ
′)dυ′ : the scattering yield at velocity υ′ from incoming velocity υ,

satisfying
∫
V
πs(r, υ, υ

′)dυ′ = 1, and
πf(r, υ, υ

′)dυ′ : the neutron yield at velocity υ′ from fission with incoming velocity υ,
satisfying

∫
V
πf(r, υ, υ

′)dυ′ <∞.
We also enforce the following initial and boundary conditions

ψ0(r, υ) = g(r, υ) for r ∈ D, υ ∈ V,

ψt(r, υ) = 0 for t ≥ 0 and r ∈ ∂D if υ · nr > 0,
(1.2)

where nr is the outward unit normal at r ∈ ∂D and g : D × V → [0,∞) is a bounded,
measurable function. Throughout we will rely on the following assumptions in some (but
not all) of our results:

(H1): Cross-sections σs, σf, πs and πf are uniformly bounded away from infinity.

(H2): We have σsπs + σfπf > 0 on D × V × V .

(H3): There is an open ball B compactly embedded in D such that σfπf > 0 on
B × V × V .

(H4): the fission offspring are bounded in number by the constant Nmax > 1.

Note, the assumption (H1) ensures that all activity occurs at a maximum rate. Assumption
(H2) ensures that at least some activity occurs, whether it be scattering or fission, together
with (H3), it ensures that there is at least some fission as well as scattering. Finally (H4)
is a physical constraint that is natural to nuclear fission, typically no more than 3 neutrons
are produced during an average fission event. Figure 1 illustrates the complex nature of the
in homogeneity in the domain one typically considers.
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Figure 1: The geometry of a nuclear reac-
tor core representing a physical domain D, on
to which the different cross-sectional values of
σs, σf, πs, πf are mapped, also as a function of
neutron velocity.

Due to the irregular nature of gradient op-
erator, (1.1) is meaningless in the point-
wise sense, so it is often stated in one of
two forms. The first is to treat (1.1) as a
weak linear partial integro-differential equa-
tion (PIDE) in an appropriate Banach space,
usually L2(D×V ), the space of functions f :
D×V 7→ [0,∞) which are finite with respect
to the norm ‖f‖2 = (

∫
D×V f(r, υ)drdυ)1/2);

see e.g. [6, 7, 15]. The second is to consider
the integral or mild form of (1.1). We re-
fer the reader to [10, 9, 5] and the references
therein for a discussion on the various for-
mulations of the NTE and its solution. We
will also elaborate on both in the forthcom-
ing discussion.

For both formats of (1.1), the papers [6,
7, 15, 10, 5] dealt with the time-eigenvalue
problem and an associated Perron-Frobenius
decomposition. More precisely, they give a
rigorous stochastic meaning to the asymp-
totic

ψt ∼ eλ∗tcgϕ+ o(eλ∗t), (1.3)

as t→∞, where λ∗ and ϕ are the leading eigenvalue and associated eigenfunction associated
to the NTE in the appropriate sense and cg is a constant that depends on the initial data g.

Such an understanding is important as it promotes a number of different Monte-Carlo al-
gorithms that can be used to estimate both the lead eigenvalue λ∗ and the associated non-
negative eigenfunction ϕ. The latter can be formulated as an eigenpair in L2(D×V ) satisfying

(T + S + F)ϕ = λ∗ϕ, (1.4)

on D × V , where 
T f(r, υ) := υ · ∇f(r, υ)− σ(r, υ)

Sf(r, υ) := σs(r, υ)
∫
V
f(r, υ′)πs(r, υ, υ

′)dυ′

Ff(r, υ) := σf(r, υ)
∫
V
f(r, υ′)πf(r, υ, υ

′)dυ′,

(1.5)

Here, we can think of λ∗ as characterising the rate of growth of flux in the system over time.

It turns out that, predominantly in industrial, engineering and (some) physics literature,
there is another eigenvalue problem that plays a fundamental role in the design and safety
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of nuclear reactors; see for example Section 1.5 of [13]. The aforesaid eigenvalue problem
involves finding (in any appropriate sense) an eigenpair k and φ such that

(T + S)φ+
1

k
Fφ = 0. (1.6)

The leading eigenvalue, which in the nuclear regulation industry is called k-effective, written
keff, has the physical interpretation as being the ratio of neutrons produced (during fission
events) to the number lost (due to absorption in the reactor or leakage at the boundary).
Another interpretation of k is that it represents the average number of neutrons produced per
fission event. It is this second interpretation which we exploit, since keff acts as a measure
of neutrons produced between fission generations.

It is worth noting that the two eigenproblems offer potentially different sets of solutions,
however, they agree in terms of criticality. More precisely, in (1.4), the triple (T ,S,F) is
called critical if the leading eigenvalue, λ∗, in (1.4) is zero, and otherwise called subcritical
(resp. supercritical) if λ∗ < 0 (resp. λ∗ > 0). In the setting of (1.6), the triple (T ,S,F) is
called critical if keff = 1 and subcritical (resp. supercritical) if keff < 1 (resp. keff > 1).
We note however that in [2], there is a relationship between the two eigenvalues, regardless
of the criticality of the system and at criticality, both (1.4) and (1.6) agree.

The main objective of this paper is to put into a rigorous setting the existence of the ‘leading’
solutions to (1.6) in the two main contexts that the NTE (1.1) is understood; that is, the
weak linear PIDE context and the probabilistic context. Moreover, in the mild setting, we
will build an expectation semigroup, say (Ψn, n ≥ 0), out of a stochastic process such that

Ψn[g] ∼ k−neffCgφ+ o(k−neff),

for g ∈ L+
∞(D × V ), as n → ∞, and an appropriate choice of Cg ≥ 0. (See Theorem

5.1 below.) This also provides a mathematically rigorous underpinning for many of the
Monte-Carlo algorithms that are used in industry for computing keff. We will offer further
discussion in this direction at the end of the paper.

The rest of this article is organised as follows. In the next section, we formally introduce
the description of (1.1) as a PIDE on a functional space, that is, we describe it as an
abstract Cauchy problem. Moreover, we introduce two underlying stochastic processes, both
of which can be used to describe the solution to the mild NTE. Also in this section, we
introduce a second mild equation, (2.13), whose eigen-solutions give us a sense in which we
can characterise solutions to (1.6).

In Section 3, we provide a solution to the newly introduced mild equation (2.13). In addition,
we state the main result of this paper (Theorem 3.1) which shows the existence of a lead
eigensolution to (2.13).

In Section 4, for comparison, we show how to construct and give meaning to the lead eigen-
solution to (1.6) in the setting of a functional space. In addition, we show how the two
notions of the lead eigensolution, in this and the previous section, agree.
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In Section 5, we give the proof of the main result of Section 3. Finally, we conclude in
Section 6 with some discussion concerning the relevance of such results to previous work and
Monte-Carlo methods.

2 Formulations of the NTE and associated eigenfunctions
As alluded to in the introduction, there are two principal ways in which the NTE is formu-
lated. In this section, we will elaborate on them in a little more mathematical detail for later
convenience and context of our main results.

2.1 Abstract Cauchy Problem (ACP)

Following e.g. [6, 7, 15], we want to formulate (1.1) in the function space L2(D × V ). The
so-called (initial-value) abstract Cauchy problem (ACP) takes the form

∂ut
∂t

= Aut and u0 = g, (2.1)

where A = T + S + F and ut belongs to the space L2(D × V ), for t ≥ 0 (in particular
g ∈ L2(D×V )). Specifically, (ut, t ≥ 0) is continuously differentiable in the space L2(D×V ),
meaning there exists a u̇t ∈ L2(D× V ), which is time-continuous in L2(D× V ) with respect
to ‖·‖2 and such that limh→0 h

−1(ut+h − ut) = u̇t for all t ≥ 0. Necessarily, the solution to
(2.1) forms a c0-semigroup1. Moreover, Dom(A) := {g ∈ L2(D × V ) : υ · ∇g ∈ L2(D ×
V ) and g|∂D+ = 0} is the domain of A and ut ∈ Dom(A) for all t ≥ 0.

Theorem 2.1. Suppose (H1) holds. For g ∈ L2(D×V ), the unique solution to (2.1) is given
by (Vt, t ≥ 0), the c0-semigroup generated by (A,Dom(A)), i.e. the orbit Vt[g] := exp(tA)g.

In the ACP setting, the notion of an eigenpair (λ, ϕ) is well formulated on L2(D × V ) via
(1.4). Equivalently, it means we are looking for ϕ ∈ L+

2 (D×V ) and λ such that Vt[ϕ] = eλtϕ
on L+

2 (D × V ), for all t ≥ 0. The sense in which we mean that λ is a ‘leading’ eigenvalue
roughly boils down it corresponding to the eigenvalue in the spectrum of the operator A on
L2(D × V ) with the largest real part (and, as usual, it is real valued itself), and moreover,
its associated eigenfunction ϕ is non-negative. As such, one expects the existence of a non-
negative left eigenfunction ϕ̃ (e.g. in the sense that 〈ϕ̃, Vt[g]〉 = eλt〈ϕ̃, g〉 for t ≥ 0) such
that

‖e−λtVt[g]− 〈ϕ̃, g〉ϕ‖2 = o(e−λt), (2.2)

as t→∞. Here, we use the notation 〈f, g〉 =
∫
D×V f(r, υ)g(r, υ)drdυ, so that ‖·‖2 = 〈·, ·〉1/2.

Precise results of this nature can be found in [7, 15, 5].
1Recall that a c0-semigroup (Vt, t ≥ 0) also goes by the name of a strongly continuous semigroup and,

in the present context, this means it has has the properties that (i) V0 = Id, (ii) Vt+s[g] = Vt[Vs[g]], for all
s, t ≥ 0, g ∈ L2(D × V ) and (iii) for all g ∈ L2(D × V ), limh→0‖Vh[g]− g‖2 = 0.
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2.2 Neutron branching process (NBP) and the mild NTE

We recall the neutron branching process (NBP) defined in [10], which at time t ≥ 0 is
represented by a configuration of particles which are specified via their physical location and
velocity in D×V , say {(ri(t), υi(t)) : i = 1, . . . , Nt}, where Nt is the number of particles alive
at time t ≥ 0. The NBP is then given by the empirical distribution of these configurations,

Xt(A) =
Nt∑
i=1

δ(ri(t),υi(t))(A), A ∈ B(D × V ), t ≥ 0, (2.3)

where δ is the Dirac measure, defined on B(D × V ), the Borel subsets of D × V .

The evolution of (Xt, t ≥ 0) is a stochastic process valued in the space of atomic measures
M(D × V ) := {

∑n
i=1δ(ri,υi) : n ∈ N, (ri, υi) ∈ D × V, i = 1, · · · , n} which evolves randomly

as follows.

A particle positioned at r with velocity υ will continue to move along the trajectory r + υt,
until one of the following things happens.

(i) The particle leaves the physical domain D, in which case it is instantaneously killed.

(ii) Independently of all other neutrons, a scattering event occurs when a neutron comes in
close proximity to an atomic nucleus and, accordingly, makes an instantaneous change
of velocity. For a neutron in the system with position and velocity (r, υ), if we write
Ts for the random time that scattering may occur, then independently of any other
physical event that may affect the neutron, Pr(Ts > t) = exp{−

∫ t
0
σs(r+ υs, υ)ds}, for

t ≥ 0.

When scattering occurs at space-velocity (r, υ), the new velocity υ′ ∈ V is selected
independently with probability πs(r, υ, υ′)dυ′.

(iii) Independently of all other neutrons, a fission event occurs when a neutron smashes into
an atomic nucleus. For a neutron in the system with initial position and velocity (r, υ),
if we write Tf for the random time that scattering may occur, then, independently of
any other physical event that may affect the neutron, Pr(Tf > t) = exp{−

∫ t
0
σf(r +

υs, υ)ds}, for t ≥ 0.

When fission occurs, the smashing of the atomic nucleus produces lower mass isotopes
and releases a random number of neutrons, say N ≥ 0, which are ejected from the
point of impact with randomly distributed, and possibly correlated, velocities, say
{υi : i = 1, · · · , N}. The outgoing velocities are described by the atomic random
measure

Z(A) :=
N∑
i=1

δυi(A), A ∈ B(V ). (2.4)

If such an event occurs at location r ∈ Rd from a particle with incoming velocity υ ∈ V ,
we denote by P(r,υ) the law of Z. The probabilities P(r,υ) are such that, for υ′ ∈ V , for
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bounded and measurable g : V → [0,∞),∫
V

g(υ′)πf(r, v, υ
′)dυ′ = E(r,υ)

[∫
V

g(υ′)Z(dυ′)
]

=: E(r,υ)[〈g,Z〉]. (2.5)

Note, the possibility that Pr(N = 0) > 0, which will be tantamount to neutron capture
(that is, where a neutron slams into a nucleus but no fission results and the neutron is
absorbed into the nucleus).

The NBP is thus parameterised by the quantities σs, πs, σf and the family of measures
P = (P(r,υ), r ∈ D, υ ∈ V ) and accordingly we refer to it as a (σs, πs, σf,P)-NBP. It is
associated to the NTE via the relation (2.5), and, although a (σs, πs, σf,P)-NBP is uniquely
defined, a NBP specified by (σs, πs, σf, πf) alone is not. Nonetheless, it is easy to show that
for a given πf, a (σs, πs, σf,P)-NBP always exists which satisfies (2.5). See the discussion in
Section 2 of [10].

Define
ψt[g](r, υ) := Eδ(r,υ) [〈g,Xt〉], t ≥ 0, r ∈ D̄, υ ∈ V, (2.6)

where Pδ(r,υ) is the law of X initiated from a single particle with configuration (r, υ), and
g ∈ L+

∞(D×V ), the space of non-negative uniformly bounded measurable functions onD×V .
Here we have made a slight abuse of notation (see 〈·, ·〉 as it appears in (2.5)) and written
〈g,Xt〉 to mean

∫
D×V g(r, υ)Xt(dr, dυ). The following result was shown in [5, 10, 7, 6].

Theorem 2.2. Suppose (H1) and (H2) hold. For g ∈ L+
∞(D×V ), the space of non-negative

and uniformly bounded measurable functions on D×V , there exist constants C1, C2 > 0 such
that ψt[g], as given in (2.6), is uniformly bounded by C1 exp(C2t), for all t ≥ 0. Moreover,
(ψt[g], t ≥ 0) is the unique solution, which is bounded in time, to the so-called mild equation

ψt[g] = Ut[g] +

∫ t

0

Us[(S + F)ψt−s[g]]ds, t ≥ 0, (2.7)

for which (1.2) holds, where the deterministic evolution Ut[g](r, υ) = g(r+ υt, υ)1{t<κDr,υ}, t ≥
0, with κDr,υ := inf{t > 0 : r + υt 6∈ D}, represents the advection semigroup associated with a
single neutron travelling at velocity υ from r at t = 0.

In [5] the below result was shown, which demonstrates the context in which the mild solution
to the NTE and the ACP can be seen to coincide.

Theorem 2.3. Suppose (H1) and (H2) hold. If g ∈ L+
∞(D × V ) and if (ψt[g], t ≥ 0)

is understood as the solution to the mild equation (2.7), then for t ≥ 0, Vt[g] = ψt[g] on
L+

2 (D × V ), i.e. ‖Vt[g]− ψt[g]‖2 = 0.

In the probabilistic setting, the meaning of (1.4) can be interpreted as looking for a pair
λ and ϕ such that, pointwise on D × V , ψt[ϕ] = eλtϕ, for t ≥ 0. As alluded to in (1.3),
we have a similar asymptotic to (2.2), which isolates the eigenpair (λ, ϕ) in its limit. The
notion of ‘leading’ in the probabilistic setting is less obvious, however, due to Theorem 2.3,
the eigenpairs that emerge from the mild setting and the weak linear PIDE setting should
in principle agree on L2(D × V ). This is discussed with greater precision in [5, 10].
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2.3 Neutron random walk (NRW)

There is a second stochastic representation of the unique solution to (2.7), which makes use
of the so-called neutron random walk (NRW). This process takes values in D × V and is
defined by its scatter rates, α(r, υ), r ∈ D, υ ∈ V , and scatter probability densities π(r, υ, υ′),
r ∈ D, υ, υ′ ∈ V . When issued with a velocity υ, the NRW will propagate linearly with that
velocity until either it exits the domain D, in which case it is killed, or at the random time
Ts a scattering occurs, where Pr(Ts > t) = exp{−

∫ t
0
α(r + υt, υ)ds}, for t ≥ 0. When the

scattering event occurs at position-velocity configuration (r, υ), a new velocity υ′ is selected
with probability π(r, υ, υ′)dυ′. If we denote by (R,Υ) = ((Rt,Υt), t ≥ 0), the position-
velocity of the resulting continuous-time random walk on D×V with an additional cemetery
state for when it leaves the domain D, it is easy to show that (R,Υ) is a Markov process.
We call the process (R,Υ) an απ-NRW.

Given a NBP defined by σs, σf, πs and P , set

α(r, υ)π(r, υ, υ′) = σs(r, υ)πs(r, υ, υ
′) + σf(r, υ)πf(r, υ, υ

′) r ∈ D, υ, υ′ ∈ V. (2.8)

and
β(r, υ) = σf(r, υ)

(∫
V

πf(r, υ, υ
′)dυ′ − 1

)
. (2.9)

The following result, given in [5], gives the so-called many-to-one representation of solution
to the NTE in the form (2.7).

Lemma 2.1. Suppose (H1) and (H2) hold, we have that

ψt[g](r, υ) = E(r,υ)

[
e
∫ t
0 β(Rs,Υs)dsg(Rt,Υt)1{t<τD}

]
, t ≥ 0, r ∈ D, υ ∈ V, (2.10)

is a second representation of the unique mild solution (in the sense of Theorem 2.2) of the
NTE (2.7), where τD = inf{t > 0 : Rt 6∈ D} and P(r,v) for the law of the απ-NRW starting
from a single neutron with configuration (r, υ).

2.4 Neutron generational process (NGP)

In order to solve the k-eigenvalue problem (1.6), it turns out that (ψt, t ≥ 0) and (φt, t ≥ 0)
are not the right objects to work with on account of their time-dependency. We now consider
a generational model of the NBP. We can think of each line of descent in the sequence of
neutron creation as genealogies. In place of (Xt, t ≥ 0), we consider the process (Xn, n ≥ 0),
where, for n ≥ 1, Xn isM(D × V )-valued and can be written Xn =

∑Nn
i=1 δ(r

(n)
i ,υ

(n)
i )

, where

{(r(n)
i , υ

(n)
i ), i = 1, · · · Nn} are the position-velocity configurations of the Nn particles that

are n-th in their genealogies to be the result of a fission event. X0 is consistent with X0 and is
the initial configuration of neutron positions and velocities. As such, for n ≥ 1 we can think
of Xn as the n-th generation of the system and we refer to them as the neutron generational
process (NGP). The reader who is more experienced with the theory of branching processes
will know Xn to be an example of what is called a stopping line; see [12].
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Appealing to the obvious meaning of 〈g,Xn〉, define the expectation semigroup (Ψn, n ≥ 0)
by

Ψn[g](r, υ) = Eδ(r,υ) [〈g,Xn〉] , n ≥ 0, r ∈ D, υ ∈ V, (2.11)

with Ψ0[g] := g ∈ L+
∞(D × V ). The main motivation for introducing the NGP is that,

just as we have seen that the meaning of (1.4) can be phrased in terms of a multiplicative
invariance with respect to the solution of an ACP (2.1) or of the mild equation (2.7), we
want to identify the eigen-problem (1.6) in terms of the semigroup above.

To this end, let us introduce the problem of finding a pair k > 0 and φ ∈ L+
∞(D × V ) such

that, pointwise,
Ψ1[φ](r, υ) = kφ(r, υ), r ∈ D, υ ∈ V. (2.12)

In the next section we will show the existence of a solution to (2.12) which also plays an
important role in the asymptotic behaviour of Ψn as n → ∞. Before getting there, let us
give a heuristic argument as to why (2.12) is another form of the eigenvalue problem (1.6).

By splitting on the first fission event, Ψn solves the following mild equation

Ψn[g](r, υ) =

∫ ∞
0

Qs [FΨn−1[g]] (r, υ)ds, r ∈ D, υ ∈ V, g ∈ L+
∞(D × V ), (2.13)

where (Qs, s ≥ 0) is the expectation semigroup associated with the operator T + S. More
precisely,

Qs[g](r, υ) = Eδ(r,υ)
[
e−

∫ s
0 σf(Ru,Υu)dug(Rs,Υs)1(s<τD)

]
, (2.14)

where (Rs,Υs)s≥0 is the σsπs-NRW. Then, if the pair (k, φ) solves (2.12), the strong Markov
property along with an iteration implies that

knφ(r, υ) = Ψn[φ](r, υ), r ∈ D, υ ∈ V.

Using it in (2.13) and dividing through by kn yields

φ(r, υ) =

∫ ∞
0

Qs

[
1

k
Fφ
]

(r, υ)ds. (2.15)

Now set

Vt :=

∫ t

0

Qs [g] (r, υ)ds.

Then, heuristically speaking, since Q is associated to the generator T +S, classical Feynman-
Kac theory suggests that Vt ‘solves’ the equation

∂Vt
∂t

= (T + S)Vt + g.

with V0 = 0. Note that ∂Vt/∂t = Qt[g], which tends to zero as t→∞ thanks to the transience
of (R,Υ). Hence, taking g = k−1Fφ, letting t → ∞ in the above equation, recalling that
(Qs, s ≥ 0) is the expectation semigroup associated with the operator T + S, and using the
identity (2.15) yields

0 = (T + S)φ+
1

k
Fφ.
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3 Probabilistic solution to (1.6)
In this section we state our main result regarding the existence of the eigenvalue and eigen-
function as specified by (2.12). We are once more motivated by the ideas presented in [3]
and will use some of the techniques that were further developed in [10].

We start by constructing the many-to-one formula that is associated to the semigroup
(Ψn, n ≥ 0) in the spirit of the two representations of (ψt, t ≥ 0) given in Sections 2.2
and 2.3. In this case it takes a slightly different form to the one in the time-dependent case.
For ease of notation, let

m(r, υ) :=

∫
V

πf(r, υ, υ
′)dυ′,

denote the mean number of offspring generated by a fission event at (r, υ), and let (Tn, n ≥ 1)
denote the time of the scatter event in the απ-NRW that corresponds to the n-th fission event
in the corresponding NBP, X.

More formally, referring to, (2.8), we can think of the απ-NRW at each scatter event as
follows. For k ≥ 1, when the NRW (R,Υ) scatters for the k-th time at (r, υ) (with rate
α(r, υ)), a coin is tossed and the random variable Ik(r, υ) takes the value 1 with probability
σf(r, υ)m(r, υ)/(σs(r, υ) + σf(r, υ)m(r, υ)) and its new velocity, is selected according to an
independent copy of the random variable Θf

k(r, υ), whose distribution has probability density
πf(r, υ, υ

′)/m(r, υ). On the other hand, with probability σs(r, υ)/(σs(r, υ) + σf(r, υ)m(r, υ))
the random variable Ik(r, υ) takes the value 0 and its new velocity, is selected according
to an independent copy of the random variable Θs

k(r, υ), whose distribution has probability
density πs(r, υ, υ′). As such, the velocity immediately after the n-th scatter of the NRW,
given that the position-velocity configuration immediately before is (r, υ), is coded by the
random variable

Ik(r, υ)Θf
k(r, υ) + (1− Ik(r, υ))Θs

k(r, υ).

We thus can identify sequentially, T0 = 0 and, for n ≥ 1,

Tn = inf{t > Tn−1 : Υt 6= Υt− and Ikt(Rt,Υt−) = 1},
where (kt, t ≥ 0) is the process counting the number of scattering events of the NRW up to
time t.

Note, for the above construction of indicators to make sense, we should at least have some
region of space for which fission can take place. As such the assumption (H3) becomes rele-
vant here. Analogously to Lemma 2.1, we have the following many-to-one formula associated
with the NBP.
Lemma 3.1. Suppose (H1), (H2) and (H3) hold. The solution to (2.13) among the class
of expectation semigroups is unique for g ∈ L+

∞(D × V ) and the semigroup (Ψn, n ≥ 0) may
alternatively be represented2 as

Ψn[g](r, υ) = E(r,υ)

[
n∏
i=1

m(RTi ,ΥTi−)g(RTn ,ΥTn)1(Tn<κD)

]
, r ∈ D, υ ∈ V, n ≥ 1, (3.1)

2Here, we define
∏0

i=1 · := 1.
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(with Ψ0[g] = g), where (Rt,Υt)t≥0 is the απ-NRW, and

κD := inf{t > 0 : Rt /∈ D}.

Proof. We first note that the sequence (Ψn, n ≥ 0) as defined in (3.1) is a semigroup since,
due to the strong Markov property, we have

Ψn+m[g](r, υ)

= E(r,υ)

[
E

[
n+m∏
i=1

m(RTi ,ΥTi−)g(RTn+m ,ΥTn+m)1(Tn+m<κD)

∣∣∣∣Fn
]]

= E(r,υ)

[
n∏
i=1

m(RTi ,ΥTi−)E(RTn ,ΥTn )

[
m∏
i=1

m(RTi ,ΥTi−)g(RTm ,ΥTm)1(Tm<κD)

]
1(Tn<κD)

]
= Ψn[Ψm[g]](r, υ), r ∈ D, υ ∈ V.

In order to show that Ψn as defined in (3.1) does indeed solve (2.13), we consider the process
at time T1. Before doing so, we first note that the απ-NRW is exactly the same as the
σsπs-NRW over the time interval [0, T1) and, at time T1, the velocity of the former is chosen
according to the expectation operator

F̃ [g](r, υ) :=

∫
V

g(r, υ′)
πf(r, υ, υ

′)

m(r, υ)
dυ′.

Then, applying the strong Markov property at time T1,

Ψn[g](r, υ) = E(r,υ)

[
n∏
i=1

m(RTi ,ΥTi−)g(RTn ,ΥTn)1(Tn<κD)

]
= E(r,υ)

[
m(RT1 ,ΥT1−)F̃ [Ψn−1[g]](RT1 ,ΥT1−)1(T1<κD)

]
=

∫ ∞
0

E(r,υ)

[
σf(Rs,Υs)e

−
∫ s
0 σf(Ru,Υu)dum(Rs,Υs−)F̃ [Ψn−1[g]](Rs,Υs−)1(s<κD)

]
ds

=

∫ ∞
0

Qs[FΨn−1[g]](r, υ)ds,

where the final equality follows from the fact that mσfF̃ = F .

It remains to show that (2.13) has a unique solution for g ∈ L+
∞(D × V ) among the class of

expectation semigroups, suppose that (Ψ′n, n ≥ 0) is another such solution with Ψ′0 = g ∈
L+
∞(D × V ). Define Φn = Ψn − Ψ′n, for n ≥ 0, and note by linearity that (Φn, n ≥ 0) is

another expectation semigroup with Φ0 = 0. Moreover, by linearity (Φn, n ≥ 0) also solves
(2.13). On account of this, it is straightforward to see by induction that if Φn = 0 then
Φn+1 = 0. The uniqueness of (2.13) in the class of expectation semigroups thus follows.

The next result will provide the existence of a solution to (2.12) by working directly with a
variant of the semigroup (Ψn, n ≥ 0). To this end, note that, under the assumption (H4),
for non-negative functions g that are bounded by one, say, we have

Eδ(r,υ) [〈g,X1〉] ≤ ‖g‖∞Eδ(r,υ) [〈1,X1〉] ≤ Nmax. (3.2)

11



Dividing both sides of the above inequality yields a sub-Markovian semigroup. Indeed,

Ψ†n[g](r, υ) := N−nmaxΨn[g](r, υ)

= E(r,υ)

[
n∏
i=1

m(RTi ,ΥTi−)

Nmax
g(RTn ,ΥTn)1(Tn<κD)

]
= E(r,υ)

[
g(RTn ,ΥTn)1(Tn<κD, n<Γ)

]
=: E†(r,υ) [g(RTn ,ΥTn)] , (3.3)

where Γ = min{n ≥ 0 : Kn(RTn ,ΥTn−) = 1} where, for n ≥ 0, r ∈ D and υ ∈ V , the
random variable Kn(r, υ) is an independent indicator random variable which is equal to
0 with probability m(r, υ)/Nmax (note, from the assumptions in Section 1, it follows that
supr∈D,υ∈V m(r, υ) ≤ Nmax).

We are now ready to state the main result of this section, and indeed the article. As its
proof is quite lengthy we will delay it until Section 5. We will need the following stronger
assumption of (H3):

(H3)∗: The fission cross section satisfies infr∈D,υ,υ′∈V σf(r, υ)πf(r, υ, υ
′) > 0.

Theorem 3.1. Under the assumptions (H1), (H3)∗ and (H4), for the semigroup (Ψn, n ≥ 0)
identified by (2.13), there exist k∗ ∈ R, a positive3 right eigenfunction ϕ ∈ L+

∞(D × V ) and
a left eigenmeasure, η, on D× V , both having associated eigenvalue kn∗ . Moreover, k∗ is the
leading eigenvalue in the sense that, for all g ∈ L+

∞(D × V ),

〈η,Ψn[g]〉 = kn∗ 〈η, g〉 (resp. Ψn[ϕ] = kn∗ϕ) n ≥ 0, (3.4)

and there exists γ > 1 such that, for all g ∈ L+
∞(D × V ),

sup
g∈L+

∞(D×V ):‖g‖∞≤1

∥∥k−n∗ ϕ−1Ψn[g]− 〈η, g〉
∥∥
∞ = O(γ−n) as n→ +∞. (3.5)

4 Classical existence of solution to (1.6)
Our objective here is to make rigorous the sense in which solving (2.12) is consistent with
solving the eigenvalue problem (1.6) in the classical sense.

We begin by considering the abstract Cauchy problem (ACP) on L2(D × V ),{
∂

∂t
ut = (T + S)ut

u0 = g.
(4.1)

3To be precise, by a positive eigenfunction, we mean a mapping from D × V → (0,∞). This does not
prevent it being valued zero on ∂D, as D is open.
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Then, just as in the spirit of Theorems 2.1 and 2.3, it is not difficult to show that the operator
(T + S,Dom(T + S)) generates a unique solution to (4.1) via the c0-semigroup (Vt, t ≥ 0)
given by

Vt[g] := exp(t(T + S))g,

on L2(D × V ) (and hence for g ∈ L2(D × V )). Moreover, we have that the expectation
semigroup (Qt, t ≥ 0) agrees with (Vt, t ≥ 0) on L2(D× V ), providing g ∈ L+

∞(D× V ). This
latter claim follows the same idea as the proof of Theorem 8.1 in [5].

The equivalence of the semigroups (Qt, t ≥ 0) and (Vt, t ≥ 0) is what we will use to identify
a classical (in the L2-sense) and probabilistic meaning to (1.6). We start by showing the
classical existence of a solution to (1.6) on L2(D × V ). We note that this problem has been
previously considered in [14, 15]. In [14], the author converted the criticality problem (1.6)
into a time-dependent problem in order to exploit the existing theory for time-dependent
problems, whereas the methods used in [15, Section 5.11] are similar to those presented in [5].
Another more restrictive version of assumption (H2) is needed, which also implies that (H3)
holds:

(H5): We have σs(r, υ)πs(r, υ, υ
′) > 0 and σf(r, υ)πf(r, υ, υ

′) > 0 on D × V × V .

Theorem 4.1. Suppose that the cross sections σfπf and σsπs are piecewise continuous4.
Further, assume that (H1) and (H5) hold. Then there exist a real eigenvalue k > 0 and
associated eigenfunction φ ∈ L+

2 (D × V ) such that (1.6) holds on L2(D × V ). Moreover, k
can be explicitly identified as

k = sup

{
|λ| : (T + S)φ+

1

λ
Fφ = 0 for some φ ∈ L2(D × V )

}
. (4.2)

Proof. We start by considering a related eigenvalue problem. First recall from [5] that, due
to the transience of T on D, there exist constants M1, ω > 0 such that ‖etT ‖ ≤ M1e−ωt for
each t ≥ 0. Further, since S is conservative, there exists M2 > 0 such that5 ‖etS‖ ≤ M2,
t ≥ 0. Hence ‖Vt‖ ≤Me−ωt, t ≥ 0, whereM = M1M2. Then, classical semigroup theory [18]
gives the existence of the resolvent operator (λI − (T +S))−1 for all λ such that Reλ > −ω,
where I is the identity operator on L2(D × V ). In particular, the resolvent is well-defined
for λ = 0. Hence, the eigenvalue problem (1.6) is equivalent to

− (T + S)−1Fφ = kφ. (4.3)

Due to the assumptions (H1) and (H5), almost identical arguments to those given in the proof
of [5, Proposition 9.1] show that −(T + S)−1F is a positive, compact, irreducible operator.
Concluding in the same way as the aforementioned proposition, de Pagter’s theorem [15,

4A function is piecewise continuous if its domain can be divided into an exhaustive finite partition (e.g.
polytopes) such that there is continuity in each element of the partition. This is precisely how cross sections
are stored in numerical libraries for modelling of nuclear reactor cores.

5We use the standard definition of operator norm, namely ‖A‖ = sup‖f‖2≤1‖Af‖2, where, as before, ‖·‖2
is the usual norm on L2(D × V ).
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Theorem 5.7] implies that its spectral radius, r(−(T +S)−1F), is strictly positive. It follows
from the Krein-Rutman Theorem [5, Theorem 9.1] that k := r(−(T + S)−1F) := sup{|λ| :
−(T + S)−1Fφ = λφ for some φ ∈ L2(D × V )} is the leading eigenvalue of the operator
−(T + S)−1F with corresponding positive eigenfunction φ.

In a similar manner to [5], we are able to provide more information about the structure of
the spectrum of the operator −(T + S)−1F .

Proposition 4.1. Under the assumptions of Theorem 4.1, the part of the spectrum given
by σ(−(T + S)−1F) ∩ {λ : Re(λ) > 0} consists of finitely many eigenvalues with finite
multiplicities. In particular, k is both algebraically and geometrically simple6.

Proof. We follow the idea of the proof of [15, Theorem 4.13] and consider the invertibility of
the operator λI + (T + S)−1F by considering the following problem,(

I +
1

λ
(T + S)−1F

)
f =

1

λ
g,

for λ ∈ σ(−(T +S)−1F)∩{λ : Re(λ) > 0}. Note that this latter set is non-empty on account
of the previous theorem.

As stated in the proof of Theorem 4.1, the operator −λ−1(T +S)−1F is compact in L2(D×V )
so that by Gohberg-Shmulyan’s Theorem [16], (I + λ−1(T + S)−1F)

−1 exists except for a
finite set of discrete degenerate poles. This implies that (λI + (T + S)−1F)

−1
, λ ∈ σ(−(T +

S)−1F)∩{λ : Re(λ) > 0} exists except for a finite set of eigenvalues with finite multiplicities.

We now prove that k is a simple eigenvalue of the operator −(T +S)−1F . In order to do so,
we need to consider the adjoint eigenvalue problem

F>(T > + S>)−1φ> = k>φ>, (4.4)

where T > denotes the adjoint of T , with similar definitions for F> and S>.

We first note that, since the operator T >+ S> enjoys similar properties to T + S, the same
methods as those given in the proof of Theorem 4.2 apply to give existence of a leading
eigenvalue k> and corresponding eigenfunction φ>. Now, due to [11, p.184], if λ is an
isolated eigenvalue of −(T +S)−1F , then its complex conjugate, λ̄, is an isolated eigenvalue
of the adjoint of −(T + S)−1F with the same multiplicity. Equivalently, for each isolated
λ solving (1.6) with eigenfunction φ, λ̄ solves (4.4) with a corresponding eigenfunction φ>

and has the same multiplicity as λ. In particular, since k is real, it follows that the leading
eigenvalue associated with (4.4) is also k. These observations along with similar arguments
to those presented in [7, Theorem 7(iii)] and [19] yield geometric simplicity of k. Then
straightforward adaptations of the arguments in [7, Remark 12] yield algebraic simplicity.

The next result shows that if we can find a solution to (1.6), then it must necessarily agree
with the eigensolution constructed in Theorem 3.1 on L2(D × V ).

6An eigenvalue λ associated with an operator A is geometrically simple if dim(ker(λI − A)) = 1 and
algebraically simple if supk≥1 dim(ker(λI −A)k) = 1
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Theorem 4.2. Suppose the assumptions of Theorem 4.1 are in force7, that (k∗, φ∗) solves
(2.12) and (k, φ) denotes the leading eigensolution to (1.6). Then k = k∗, and, up to a
positive constant multiple, φ agrees with φ∗ on L2(D × V ).

Proof. Recall the semigroup, (Vt)t≥0, generated by T +S and note that, due to boundedness
of the operator F , if g ∈ Lp(D × V ), then Fg ∈ Lp(D × V ), p ∈ [1,∞]. Thanks to [8,
Chapter II, Lemma 1.3], (Vt)t≥0 satisfies

Vt[Fg] = (T + S)

∫ t

0

Vs[Fg]ds+ Fg. (4.5)

Letting t→∞ in the above equation, we obtain

0 = (T + S)

∫ ∞
0

Vs[Fg]ds+ Fg, (4.6)

which follows from the fact that (T + S) is a transient operator so that limt→∞ Vt[g] = 0.
Setting g = φ∗ in (4.6) and using the fact that (Qs, s ≥ 0) and (Vs, s ≥ 0) agree on L2(D×V ),
providing g ∈ L+

∞(D × V ), yields

0 = (T + S)

∫ ∞
0

Qs[Fφ∗]ds+ Fφ∗. (4.7)

Now taking advantage of (2.12) for φ∗, noting in particular (2.13), we have∫ ∞
0

Qs[Fφ∗] = Ψ1[φ∗] = k∗φ∗. (4.8)

Substituting this into (4.7) shows that (k∗, φ∗) is a solution to (1.6) on L2(D × V ).

To conclude the proof, we first show that k∗ = k. Again, consider the adjoint problem (4.4)
and note that

0 = 〈(T + S)−1Fφ∗, φ>〉 − 〈F>(T > + S>)−1φ>, φ∗〉
= (k − k∗)〈φ>, φ∗〉.

Since φ∗ and φ> are positive, we must have k∗ = k. Due to simplicity of k from the previous
proposition, it follows that φ = φ∗ up to a multiplicative constant.

5 Proof of Theorem 3.1
As previously stated, our methods of proving Theorem 3.1 are motivated by those used
in [10, 3]. The main part of the proof comes from [3, Theorem 2.1], which we restate (in the
language of the desired application) here for convenience. To this end, recalling the notation
in (3.3), define

k = Γ ∧min{n ≥ 1 : Tn ≥ κD}.
7Note that these assumptions imply those required for Theorem 3.1.

15



Theorem 5.1. Suppose that (H1), (H3)∗ and (H4) are in force. Suppose that there exists a
probability measure ν on D × V such that

(A1) there exist n0, c1 > 0 such that for each (r, υ) ∈ D × V ,

P(r,υ)((RTn0
,ΥTn0

) ∈ · |n0 < k) ≥ c1ν(·);

(A2) there exists a constant c2 > 0 such that for each (r, υ) ∈ D × V and for every n ≥ 0,

Pν(n < k) ≥ c2P(r,υ)(n < k).

Then, there exists kc ∈ (0, 1) such that, there exist an eigenmeasure η on D × V and a
positive right eigenfunction ϕ of Ψ†n (defined in (3.3)) with eigenvalue knc , such that η is a
probability measure and ϕ ∈ L+

∞(D × V ), i.e. for all g ∈ L∞(D × V ),

η[Ψ†n[g]] = knc η[g] and Ψ†n[ϕ] = knc ϕ n ≥ 0. (5.1)

Moreover, there exist C, γ > 0 such that, for g ∈ L+
∞(D × V ) and n sufficiently large

(independently of g), ∥∥k−nc ϕ−1Ψ†n[g]− η[g]
∥∥
∞ ≤ Cγ−n‖g‖∞. (5.2)

In particular, setting g ≡ 1, as n→∞,∥∥k−nc ϕ−1P·(n < k)− 1
∥∥
∞ ≤ Cγ−n. (5.3)

It is then straightforward to conclude that η and ϕ are the left eigenmeasure and right
eigenfunction corresponding to the eigenvalue k∗ = kcNmax for the semigroup Ψn.

We now proceed to the proof of Theorem 5.1. We will use the notation Jk to denote the
kth scatter event of the random walk (R,Υ) under P† and recall that Tk denotes the scatter
event that corresponds to the kth fission event in the original NBP. The basis of our proof
relies on the fact that, for each k ≥ 1, Tk = Jk with positive probability.

A fundamental part of the proof of (A1) and (A2) is the following lemma. We refer the
reader to [10, Lemma 7.3] for its proof.

Lemma 5.1. Under the assumptions of Theorem 5.1, for all r ∈ D and υ ∈ V , we have

P†(r,υ)(J7 < k, RJ7 ∈ dz) ≤ C1(z∈D) dz, (5.4)

for some constant C > 0, and

P†ν(J1 < k, RJ1 ∈ dz) ≥ c1(z∈D) dz, (5.5)

for another constant c > 0, where ν is Lebesgue measure on D × V .
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Proof of (A1). In order to prove (A1), we use similar arguments to those presented in the
proof of (5.5). To this end, fix r0 ∈ D and suppose Υ0 is uniformly distributed on V . Then,
due to the assumptions (H1) and (H3)∗, the techniques used in [10] to prove (5.5) yield

E(r0,Υ0)

[
f(RJ1)1(T1=J1)

]
≥ C0

∫
D

dz1([r,z]⊂D)f(z). (5.6)

Recall the (deterministic) quantity κDr0,υ0 , for r0 ∈ D, υ0 ∈ V , defined in Theorem 2.7. Also
note that due to (H3)∗, π is bounded below by a constant (see discussion just before Lemma
7.2 of [10]). Using this, along with the strong Markov property, (H1) and (5.6), we have

E†(r0,υ0)[f(RT2 ,ΥT2)1(T2=J2)] ≥ C1

∫ κDr0,υ0

0

dse−ᾱsπ

∫
V

dυ1E
†
(r0+υ0s,υ1)[f(RJ1 ,ΥJ1)1(T1=J1)]

≥ C2κ
D
r0,υ0

∫
D

dr

∫
V

dυf(r, υ). (5.7)

Finally, we note that due to (H1) and (H3)∗,

P†(r0,υ0)(T2 < k) ≤ P†(J1 < k) ≤
∫ κDr0,υ0

0

dsᾱe−αs ≤ C3κ
D
r0,υ0

. (5.8)

Combining this with (5.7) yields (A1) with ν as Lebesgue measure on D×V and n0 = 2.

We now prove (A2). Again, we use a similar method to the one used in [10], however, we
state the proof in full to illustrate where the differences occur.

Proof of A2. Let n ≥ 7 and note that Tn − J7 ≥ Tn − T7. This and the strong Markov
property imply

P(r,υ)(n < k) ≤ E†(r,υ)

[
P(RJ7 ,ΥJ7 ) (n− 7 < k)

]
≤ C ′

∫
D

∫
V

P(z,w) (n− 7 < k) dzdw, (5.9)

where we have used Lemma 5.1 to obtain the final inequality.

Now suppose n ≥ 1. Recalling the measure ν from (A1), another application of Lemma 5.1
gives

Pν(n < k) = E†ν

[
1(J1<k)P(RJ1 ,ΥJ1 )(n < k)

]
≥ c′

∫
D

∫
V

P(z,w)(n < k)dzdw. (5.10)

Then, for n ≥ 8, combining (5.9) and (5.10) yields

P(r,υ)(n < k) ≤ C ′

c′
Pν (n− 7 < k) . (5.11)
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Now recalling n0 from (A1), it follows from (A1) that

P†ν((RTn0
,ΥTn0

) ∈ ·) ≥ c1Pν(n0 < k)ν(·). (5.12)

Again, due to assumptions (H1) and (H3)∗,

Pν(n0 < k) ≥
∫
D×V

P†(r,υ)(Tn0 = Jn0 , n0 < k)ν(dr, dυ) ≥ K, (5.13)

for some constant K > 0. Then, for n ≥ 8, due to (5.12) and (5.13),

Pν (n− 7 + n0 < k) = Eν

[
1(n0<k)P(RTn0

,ΥTn0
) (n− 7 < k)

]
≥ Kc1Pν (n− 7 < k) . (5.14)

Finally, noting that for n ≥ 1 we have n− 7 + 4n0 ≥ n, so that

Pν(n < k) ≥ Pν (n− 7 + 4n0 < k) ,

and applying (5.14) four times implies

Pν(n < k) ≥ (Kc1)4Pν (n− 7 < k) . (5.15)

Combining this with (5.11) yields the result.

6 Concluding remarks
We complete this paper with a number of remarks that reflect on the main theorem here
and previous work in [5, 10, 9, 4].

6.1 λ-, k- and c-eigenvalue problems

There is a third eigenvalue problem associated with the NTE: find (c, ϕc) such that

T ϕc +
1

c
(S + F)ϕc = 0.

The associated mild form of this eigenvalue problem is

St[ϕc](r, υ) +
1

c

∫ t

0

Ss[(S + F)ϕc](r, υ)ds = ϕc(r, υ), (6.1)

where
St[g](r, υ) = e−

∫ t
0 σ(r+υs,υ)dsg(r + υt, υ)1(t<κDr,υ).

By considering the semigroup Πn[g](r, υ) = Eδ(r,υ) [〈g,Xn〉], where Xn is the neutron popula-
tion at the nth collision (either a scatter or a fission), almost identical proofs to those given
in the previous sections yield the existence of the (c, ϕc), both in the classical sense and the
probabilistic one.

In this case, the eigenvalue c can be interpreted as the ratio between neutron production (from
both scattering and fission) and neutron loss (due to absorption and leakage). Alternatively,
it can be seen as the number of secondary neutrons per collision, rather than only collisions
due to fission events.
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6.2 Martingale convergence and strong law of large numbers

In a similar fashion to [10], Theorem 3.1 implies that

Wn := k−n
〈ϕ,Xn〉
〈ϕ, µ〉

,

is a non-negative mean one martingale under Pδ(r,υ) . One could then show that (Wn)n≥0

converges in L2(P) in the supercritical case, and otherwise has a degenerate limit.

One could also reconstruct the arguments presented in [9] to characterise the growth in the
supercritical regime to obtain a strong law of large numbers:

lim
n→∞

k−n
〈g,Xn〉
〈ϕ, µ〉

= 〈g, ϕ̃〉W∞,

where W∞ is the limit of the martingale (Wn)n≥0.

We leave these arguments as an exercise to the reader to avoid unnecessary repetition.

6.3 Monte-Carlo considerations

We end this paper with a discussion of the existing Monte Carlo methods for calculating keff
and the associated eigenfunctions, and how we may use the semigroup approach to propose
comparable algorithms, similar in style to those presented in [4].

Due to the interpretation of the eigenvalue keff, most of the existing methods in the numerical
analysis and engineering literature are based on iterative methods. For example, several
algorithms are given in [17] that demonstrate how to calculate keff and ϕ. The main idea is
to start with a set of N neutrons, distributed in D×V according to some function ϕ(0) that
serves as an initial guess8 at ϕ. The system of neutrons then evolves until the first generation
of fission events. Letting ϕ̂(1) be the distribution of these first generation neutrons, the first
approximation, ϕ(1), of the eigenfunction ϕ is then obtained by normalising9 ϕ̂(1). At the
same time, the eigenvalue keff is approximated by

k(1) =
〈1,Fϕ(1)〉

〈1, (T + S)ϕ(1)〉
,

which corresponds to the ratio of source neutrons for generation 2 to the number of paths
simulated in generation 1. The process is then repeated using ϕ(1) as the initial distribution
of neutrons, in order to obtain ϕ(2) and k(2), and so on.
However, some of the methods presented in the literature lead to bias and correlations
between the neutrons in successive fission generations. To overcome this problem, the notion
of superhistory powering was introduced in [1]. This idea is based on letting the initial set

8In practice, this is usually either the uniform distribution, or the solution to a diffusion approximation
of the eigenvalue problem.

9This is usually done by either setting ϕ(1) = ϕ̃(1)/‖ϕ̃(1)‖ or by sampling N neutrons according to ϕ̃(1)
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of neutrons evolve for some number, L, of generations until the estimates for keff and ϕ are
computed. It is usual in industry to set L = 10.

As we have shown in the previous sections, solving (1.6) is equivalent to look for the leading
eigentriple (k∗, ϕ, ϕ̃) of the semigroup Ψn. Heuristically, this pertains to finding functions ϕ
and ϕ̃ that describe where neutron production (due to fission events) is most prominent, and
a parameter k∗ that describes the average growth of the number of neutrons in the system.
We may use the asymptotics (3.5) to inform Monte Carlo methods for the calculation of k∗,
ϕ and ϕ̃. Indeed, we have

k∗ = lim
n→∞

1

n
log Ψn[1](r, υ),

where 1 is the constant function with value one. Here, as an expectation, Ψn[1] can be
approximated by Monte-Carlo simulation.
In order to calculate the eigenfunction, one can manipulate the following asymptotic.

〈ϕ̃, g〉ϕ(r, υ) = lim
n→∞

Eδ(r,υ)

[
1

n

n∑
m=1

k−m∗ 〈Xm, g〉

]
.

Varying the test function g, while keeping (r, υ) fixed allows us to obtain estimates for ϕ̃,
whereas varying the initial configuration (r, υ) and keeping the test function fixed allows us
to estimate ϕ.
Once again, the expectation can be replaced by a Monte-Carlo approximation.

We refer the reader to [4] for a more in-depth discussion of Monte Carlo algorithms based
on the above asymptotics, as well as a complexity analysis of their methods. Although
the algorithms and efficiency results given in [4] are for time-eigenvalues, cf. (1.4), it is
straightforward to see how they may be adapted to fit the current situation (as well as their
complexity). Of course, problems such as burn-in and inefficiencies that were encountered
in [4] will still be present in the stationary case. We hope to carry out more formal work on
this in the future.
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