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ABSTRACT Synchronous reference frame proportional-integral (PI) current controller (CC) is considered the 

most well-established solution for the current regulation in electrical drives. However, the gain selection of the 

PI CC is still regarded to be poorly reported, particularly in relation to the effect of the inevitable execution time 

taken by the controller and inverter. Mostly, tuning process of PI CC is done by trial and error or using simple 

rules based on pole zero cancelation and pole placement methods which ignore time delays through the 

controller and inverter. Hence, PI CC delivers significantly different performance compared to the expected one 

during the digital implementation, especially if high bandwidth or low ratio between the switching and 

operational frequency are required. Therefore, this paper firstly addresses and analyses the common tuning rules 

of PI CC which ignore the existence of time delays followed by a rigorous analysis for PI CCs’ robustness to 

the influence of computational and modulation delays. Based on this analysis, generic recommendations have 

been proposed to select the PI CCs’ gains as a function of the electrical drive switching frequency considering 

the delay effect. A set of simple, generic, and fast tuning rules were derived that guarantee fast dynamic 

performance with reasonable stability margins. Moreover, the effects of model uncertainties on these developed 

rules have been analyzed and reported.  Comprehensive experimental results are provided to prove the key 

analytical results of this study and to validate the proposed design recommendations. 

INDEX TERMS Current Control, Delay effect, Synchronous reference frame, AC drive system 

I. INTRODUCTION 
 

AC synchronous machines have been widely used in many 

industrial applications, particularly the automotive 

applications which require high steady-state and dynamic 

performance. So, developing a control system for the 

synchronous machines in such applications has a great interest 

in the last few decades. Field oriented control (FOC) is 

considered as the most established strategy in the electric drive 

systems. It consists of cascaded control loops, typically with 

an inner loop for current regulation and outer loop for speed 

control. It can be argued that the current control loop has a 

major effect on the overall system performance [1]. Therefore, 

many studies that investigate various current control schemes 

are reported in [2-5]. The hysteresis controller, for instance, 

can achieve instantaneous tracking of the reference. However, 

the wide variation of the switching frequency during the 

fundamental period in the hysteresis  control may lead to 

irregular inverter operation [2]. Model Predictive current 

controllers also provide a very fast dynamic response, but they 

are very sensitive to the model parameter variations [4].  In 

general, it can be said that the field of current controller (CC) 

is dominated by synchronous reference frame (SRF) 

proportional-integral (PI) CCs. Their success is mainly due to 

the inherent simplicity in their design and implementation [6-

8]. Besides, the fundamental excitation signal in SRF is 

transformed into dc quantity which easy to be regulated and to 

achieve zero steady state error using PI controller. However, 
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transformation of the electrical signals to the SRF creates cross 

-coupling between the orthogonal current components that is 

proportional to the fundamental operating frequency. So, the 

performance of the current controller is degraded during the 

increase of operating speed. So that, great efforts have been 

applied to enhance further their performance hence generating 

various configurations of this CC technique. Some researchers 

introduce the added feedforward terms to compensate the 

cross-coupling components and mitigate operating frequency 

effects [8]. Others propose the complex vector SRF PI CC to 

provide better cross-coupling compensation [7, 9, 10]. The 

design of the CC has also been presented in [11, 12] as a multi-

input multi output controller which known by dynamic 

decoupling CC to improve the cross-coupling compensation. 

The advanced angle delay has been introduced in [13] to 

improve the control performance by compensating the delay 

in the angle due to the rotating d-q frame. 

However, despite the widespread usage and development of 

SRF PI CCs, the  gains’ selection are  mostly based on trial 

and error or common methods, which set rules for the PI gains 

in order to achieve a targeted performance, such as pole-

placement [14, 15] , pole/zero cancelation [10, 12, 16] 

,Ziegler-Nichols and Cohen-Coon methods [17, 18]. These 

rules are based on assumption of no time delay through the 

current control loop. This time delay refers to the inevitable 

execution time taken by controller and inverter [13].  

In current control loop, the control action is generated based 

on the difference between reference and measured current 

(error signal). The generated control signal is responsible for 

generating the PWM signals to generate ac voltage applied to 

the machine such that the machine's currents follow the 

reference values. Ideally, this process should be instant (i.e., 

synchronized), but in practice the existence of time delays in 

controller (discrete-time implementation using DSP) and the 

inverter prevents this synchronization as illustrated by Fig.1. 

It shows that the control signal is updated at instant k which 

corresponds to the measured current at previous instant k-1. 

This phenomenon degrades the system performance, 

including stable operation regions [13, 19]. For many practical 

applications time delays can be ignored, however in some 

cases, for example when high bandwidth response or lower 

switching to operational frequency are required, the 

performance of digitally implemented CC can be significantly 

different compared to the expected one due to ignoring the 

existing time delays [20]. Moreover, high bandwidth 

operation with negligible overshoot for current controller is 

desirable for high dynamic performance. Since there are cases 

where the delay must be taken into account during the CC 

design, these tuning methods need to be thoroughly analyzed 

and evaluated. Therefore, this paper presents 

1- Comprehensive analysis for various possible structures 

of PI controllers and their common tuning methods 

which ignore the time delay in their rules.  

2- Comparative stability analysis for their robustness to the 

influence of computational and modulation delays. 

3- Proposed simple tuning rules of PI CCs that guarantee 

fast and robust dynamics with reasonable stability 

margins considering effects of the time delay. 

4- Experimental results to validate the proposed tuning 

rules and to prove the analytical outcome in this paper. 

 
II. SRF PI Current Controller Design Schemes 

 

The general structure of the current control system of AC 

machine with SRF PI CC overall can be shown in Fig. 2 where 

the machine model is represented by the complex vector 

notation in SRF as shown by (1), where r and L are the 

machine resistance and inductance respectively, and ωe is the 

electrical angular velocity [21].  

The complex vector notation represents the machine as 

asymmetric three phase R-L load. The imaginary term in the 

denominator jωeL refers to the cross-coupling terms between 

orthogonal components of the currents. Their effect can be 

mitigated by introducing the decoupling current elements ( 

jωeL’) as shown in Fig. 2. 

 

𝐺𝑝(𝑠) =
𝐼𝑑𝑞

𝑈𝑑𝑞
=

1

𝐿𝑠 + 𝑟 + 𝑗𝜔𝑒𝐿
 (1) 
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FIGURE 1.  Schematic for current measurement sampling compared 
with the PWM and control signal updates  
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FIGURE 2.  Overall block diagram of current control loop in ac machine 
represented by the complex vector notation.  
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The execution time delay through the inverter and the 

controller is shown by the block Gd(s) which can be 

represented in the control system [21] as given in (2), where 

Td represents the time delay which is typically evaluated in AC 

drive systems as 1.5 times of the sampling time Ts [9, 22] and 

considering the one step advanced angle [13]. Note that Ts 

coincides with the period of the pulse width modulation 

(PWM) carrier (Tsw) in case of single update mode. 

𝐺𝑑(𝑠) = 𝑒
− 𝑠 𝑇𝑑  (2) 

The back EMF of the ac machine edq and its compensation 

term e’dq are also shown in the block diagram. The difference 

between them is considered as a disturbance. The PI controller 

in Fig. 2 can be structured by one or two degree of freedom PI 

controller which has been discussed in the following 

subsections. During the CC tuning, operating speed is 

assumed to be zero as a rule of thumb [23]. Hence, the cross 

coupling and their compensation elements have been removed 

during the study of controller’s gains selection. The analysis 

cases in this paper assume controlling the permanent magnet 

machine with the parameters given in Table 1. 

A. Conventional PI CC with Pole/Zero Cancelation 
Method (1st Design ) 

The classical PI controller in the current control loop has been 

considered in this approach as seen in Fig. 3. The open loop 

transfer function of Fig. 3 can be shown as follows:  

   𝐺𝑜.𝑙(𝑠) = 
𝐾𝑝𝑠+𝐾𝑖

𝑠

𝐺𝑑(𝑠)

𝐿𝑠+𝑟
                 (3) 

The controller gains in (3) are tuned based on the pole zero 

cancelation method where they are selected according to (4) 

and (5) [7, 8], where L’ and r’ represent the machine nominal 

parameters in Table 1. Note that their values might be different 

from the actual machine parameters L and r.  

𝐾𝑖 = 𝐾𝑜𝑟
′ (4) 

𝐾𝑝 = 𝐾𝑜𝐿
′ (5) 

 If it is assumed that the machine parameters used in the tuning 

process match the actual values, the corresponding open loop 

and closed loop transfer functions of Fig. 3 can be expressed 

by (6) and (7) respectively. 

𝐺𝑜.𝑙1𝑑(𝑠) =
𝐾𝑜
𝑠
𝐺𝑑(𝑠) (6) 

𝐺𝑐.𝑙1𝑑(𝑠)  =
𝐾𝑜 𝐺𝑑(𝑠)

𝑠+𝐾𝑜 𝐺𝑑(𝑠)
  (7) 

 

When the time delay is ignored, the closed loop transfer 

function can be deduced as given by equation (8) where the 

current control loop is simplified to a first order system and Ko 

refers to the closed loop system bandwidth.  

𝐺𝑐.𝑙1(𝑠) =
𝐺𝑜.𝑙(𝑠)

1 + 𝐺𝑜.𝑙(𝑠)
=

𝐾𝑜
𝑠 + 𝐾𝑜

 (8) 

Consequently, the controller gains can be designed easily 

based on the targeted bandwidth Ko. 

B. Conventional PI CC with Pole Placement Method (2nd 
Design ) 

The classical PI controller shown in Fig. 3 can also be tuned 

using pole placement method which has been addressed in this 

section. Based on (3), a general closed loop transfer from Fig. 

3 can be expressed by (9). 

  𝐺𝑐.𝑙2𝑑(𝑠) =
(𝐾𝑖 +𝐾𝑝𝑠) 𝐺𝑑(𝑠)

𝐿𝑠2 + 𝑟 𝑠 + 𝐾𝑝 𝐺𝑑(𝑠) 𝑠 + 𝐺𝑑(𝑠) 𝐾𝑖
 (9) 

 

When the time delay and also the machine parameters errors 

are ignored, equation (9) can be simplified to a second order 

system shown by (10).  
 

𝐺𝑐.𝑙2(𝑠)  =
𝐾𝑖+𝐾𝑝 𝑠

𝐿 𝑠2+(𝑟+𝐾𝑝) 𝑠+𝐾𝑖
 (10) 

For pole placement method, the PI gains are set to allocate the 

closed loop system poles according to desired location to 

achieve targeted dynamic performance. In this tuning criteria, 

the PI gains are determined by comparing the denominator of 

equation (10) and the general form of characteristics 

polynomial of the second order system (s2+2ղωns+ωn=0) 

where ωn and ղ are the natural frequency and the damping 

ratio respectively [24]. Finally, the controller gains can be 

derived as follows:  

𝐾𝑝 = (2ɳ𝜔𝑛 𝐿
′) − 𝑟′

𝐾𝑖 = 𝜔𝑛
2 𝐿′

} (11) 

As shown from (11), the PI gains can be determined based on 

damping ratio, which is always assumed by 0.707 [23, 25], and 

natural frequency which can be determined from the targeted 

bandwidth (BW) as follows [18]: 
 

𝜔𝑛 =
𝐵𝑊

√1 − 2ɳ2 +√4ɳ4 − 4ɳ2 + 2

 
(12) 

TABLE 1.  MACHINE PARAMETERS 

Parameter Symbol Value 

Phase Resistance r 1.058 mΩ 

Phase Inductance Ld=Lq=L 99 μH 

Poles pairs p 3 

Magnet flux linkage Փm 0.03644 wb 

Rated Power Prated 45 kw 
 

s

1

K p

i
dqref i

dq

G
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FIGURE 3.  Block diagram of the Current control loop using the 
conventional PI CC. 
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Despite the simplicity of this method, it has a drawback due to 

the zero in the closed loop transfer function. This can deprive 

the controller of obtaining the design requirements in full, 

even before considering the time delays. Although, this 

drawback is not related to the delay effect, its impact on the 

dynamic performance has been analyzed in this section in 

order to cover the overall change of its dynamic performance 

during the digital implementation.   

This effect can be explained from the analysis of equation (10) 

as follows: 

𝐺𝑐.𝑙2(𝑠) = 𝑇(𝑠) =

𝐾𝑖
𝐿
(
𝐾𝑝

𝐾𝑖
𝑠+1)

 𝑠2+
𝑟+𝐾𝑝

𝐿
 𝑠+

𝐾𝑖
𝐿

 =
𝐾𝑝

𝐾𝑖
 𝑠 𝑇𝑑𝑒𝑠(𝑠)⏟        

+ 𝑇𝑑𝑒𝑠(𝑠)⏟    
𝑇2(𝑠)

𝑇1(𝑠)

        

(13) 

where 

  
𝑇𝑑𝑒𝑠(𝑠)=

𝐾𝑖
𝐿

 𝑠2+
𝑟+𝐾𝑝
𝐿

 𝑠+
𝐾𝑖
𝐿

  
 

 

In (13), it can be observed that the system response has two 

components, T2(s) which represents the desired response, and 

T1(s) that refers to the component added by the zero which 

degrade the performance.  

To illustrate the effect of this zero on the loop performance, 

the step response of T1(s) , T2(s) and T(s) are simulated as 

shown in Fig. 4, using PI gains calculated from (11) to achieve 

bandwidth BW =1 kHz and damping ratio = 0.707.  It shows 

that the additional component T1(s) rises the system overshoot 

(MP) by 5 times from the desired value which should be 

around 4% for 0.707 damping ratio. It can also be observed 

that the system has a faster response than expected. This refers 

to higher bandwidth which can be determined from the 

magnitude of the frequency response of equation (10) as 

shown in Fig. 5a. It shows that the system bandwidth equals 

2.05 kHz which is larger than the desired value (1 kHz) by 105 

%. The deviation between the desired and actual performance 

is considered a drawback because it refers to lower stability 

margins.  

To avoid this drawback, a modification for this PI structure 

with the pole placement is presented in the following section  

[26]. 

C. Modified Conventional PI CC with Pole Placement 
Method ( 3rd Design ) 

To achieve the desired performance, whilst considering the 

issue described in Section II-B above, the resultant closed loop 

transfer function should be as given in (14). 

𝐺𝑐.𝑙3(𝑠) = 𝑇𝑑𝑒𝑠(𝑠) =

𝐾𝑖
𝐿

 𝑠2 +
𝑟 + 𝐾𝑝
𝐿

 𝑠 +
𝐾𝑖
𝐿

 (14) 

where                         𝜔𝑛
2 =  

𝐾𝑖

𝐿
  ,   2ɳ𝜔𝑛 = 

𝑟+𝐾𝑝

𝐿
 

As described in [26], the conventional PI CC scheme can be 

rearranged to that shown in Fig. 6 where the open loop transfer 

function (when the delay block is neglected) is expressed by 

(15).   

∴ 𝐺𝑜.𝑙3(𝑠) =
𝑇𝑑𝑒𝑠(𝑠)

1 − 𝑇𝑑𝑒𝑠(𝑠)
=

𝐾𝑖
𝑠

𝐿𝑠 + 𝑟 + 𝐾𝑝
 (15) 

 

It can be observed from Fig. 6 that the modified conventional 

PI CC is structured by using an integral part as the main 

controller and the proportional gain Kp is set as an additional 

element in the feedback of the current. The additional element 

can be considered as a virtual resistance added to the machine 

resistance as shown from (15). So, it represents a damping 

element that enhances the disturbance rejection capability of 

the current control loop. 

The modified PI scheme achieves the targeted performance as 

seen from Fig. 5b. It shows the magnitude of frequency 

response of equation (14) when the PI gains are tuned to 

achieve 1 kHz bandwidth and 0.707 damping ratio. 

Considering the delay block in Fig.6, the open and closed loop 

transfer functions for the current control loop can be expressed 

 
FIGURE 4.  Step response of T1(s), T2(s) and T(s)  

 
(a) equation (10)                       (b) equation(14) 

 
FIGURE 5.  Frequency response of closed loop transfer function  

s

1
i
dqref i

dq

Ls+r

1
K i

+

-

K  p

+

-

G(s)
P

G(s)
d

 
FIGURE 6.  Block diagram of the Current control loop using the 
modified conventional PI CC 
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by (16) and (17) respectively. They have been used in Section 

III to analyze the delay effect on this CC scheme. 

𝐺𝑜.𝑙3𝑑(𝑠) =
𝐾𝑖  𝐺𝑑(𝑠)

𝐿𝑠2 + (𝑟 + 𝐾𝑝𝐺𝑑(𝑠)) 𝑠
 (16) 

 

𝐺𝑐.𝑙3𝑑(𝑠) =
𝐾𝑖𝐺𝑑(𝑠)

𝐿𝑠2 + (𝑟 + 𝐾𝑝𝐺𝑑(𝑠)) 𝑠 + 𝐾𝑖𝐺𝑑(𝑠)
      (17) 

 

D. Two Degree of Freedom PI CC with Pole/Zero 
Cancelation Method (4th Design ) 

Another method, known as the two degree of freedom (2DOF) 

control is proposed to optimize the setpoint response and the 

disturbance response independently [27]. It provides fast 

disturbance rejection without a significant increase of 

overshoot in the step point tracking. So, it can be considered 

as a good option for the current control loop [14]. The 2DOF 

PI CC can be shown in Fig. 7. It consists of a main 

compensator (integral part) and two parameters (K1 and K2) to 

represent feedforward and feedback terms, respectively. The 

control law for 2DOF PI current controller can be represented 

using the complex vector notation as shown by (18). 

𝑢𝑑𝑞𝑟𝑒𝑓 = 𝐾1𝑖𝑑𝑞𝑟𝑒𝑓 +
𝐾𝑖
𝑠
[𝑖𝑑𝑞𝑟𝑒𝑓 − 𝑖𝑑𝑞] − 𝐾2𝑖𝑑𝑞 (18) 

Based on (18), the closed loop transfer function of the system 

in Fig. 7 can be expressed by (19). 

 

𝐺𝑐.𝑙4𝑑(𝑠) =
(𝐾1𝑠 + 𝐾𝑖)𝐺𝑑(𝑠)

𝐿𝑠2 + (𝑟 + 𝐾2 𝐺𝑑(𝑠))𝑠 + 𝐾𝑖𝐺𝑑(𝑠)
 (19) 

 

For the open loop transfer function, due to existence of 

feedforward term (K1), it cannot be derived directly from Fig. 

7. So, it is assumed that the open loop transfer function 

considering an augmented plant with feedback terms can be 

expressed as shown by (20). 

𝐺𝑜.𝑙4𝑑 =
𝐺𝑐.𝑙4𝑑(𝑠)

1 − 𝐺𝑐.𝑙4𝑑(𝑠)
 (20) 

To tune this CC scheme when the delay is ignored, the 

corresponding closed loop transfer function should be derived 

firstly that can be shown by (21). 

 

𝐺𝑐.𝑙4(𝑠) = 

𝐾1
𝐿
𝑠+

𝐾𝑖
𝐿

𝑠2+
𝑟+𝐾2
𝐿

 𝑠+
𝐾𝑖
𝐿

  =
𝑎𝑠+𝑏

𝑠2+𝑐𝑠+𝑏
 (21) 

 

A common approach to tune 2DOF PI CC is by pole-

placement to achieve pole/zero cancelation by selecting the 

coefficients of (21) as follows, where 𝛼 refers to the closed 

loop system bandwidth (targeted bandwidth). 

 

a= 𝛼  , 𝑏 = 𝛼2, 𝑐 = 2𝛼 (22) 

Accordingly, the closed loop transfer function is simplified to 

be a first order system as shown by (23). 

𝑇(𝑠) = 
𝛼

 𝑠+𝛼
 (23) 

Based on (21) and (22), the controller gains can be derived as 

seen in (24). 

III. Robustness of SRF PI CC Schemes to Modulation 
and Computational Delay 

 

Different schemes of PI CC have been presented in Section II 

showing that their tuning criteria are based on one parameter, 

which is the targeted bandwidth (BW). Hence, for same drive 

system and same setting of these schemes, the current 

response should be the same in the ideal system when the time 

delay is ignored. 

As explained in section I, ignorance of the time delay during 

the PI CC design deteriorates its dynamic performance during 

the digital implementation. Therefore, the delay effect on the 

dynamic performance of the addressed PI CC schemes in 

Section II is studied and evaluated in this section. The 

robustness of each one with respect to the delay effects is 

analyzed to determine which CC type can achieve bandwidth 

close to the targeted value with less deviation in its stability 

margins. These margins are evaluated in frequency domain by 

using two performance factors, namely - phase margin (PM), 

gain margin (GM). They measure the stability degree of the 

stable system. For this analysis, the delay function is 

approximated by a second order pade expansion as shown by 

(25) to achieve good accuracy [28]. 

 

𝐺𝑑(𝑠) = 
1− 

𝑇𝑑
2
 𝑠+ 

𝑇𝑑
2

12
 𝑠2

1+ 
𝑇𝑑
2
 𝑠+ 

𝑇𝑑
2

12
 𝑠2

 (25) 

 

The analysis of the current control system is conducted in 

frequency domain based on the transfer functions derived in 

section II. The procedure of calculating the performance 

factors is explained using an example of the conventional PI 

CC with pole zero cancelation method (1st Design).  

For the 1st design, open and closed loop transfer functions 

represented in frequency domain including the delay are given 

by (26) and (27), respectively. 

𝐾1 = 𝛼 𝐿
′ 

𝐾𝑖 = 𝛼
2𝐿′ 

𝐾2 = 2𝛼 𝐿
′  − 𝑟′

} 
(24) 
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FIGURE 7.  Block diagram of the Current control loop using two degree 
of freedom PI CC 
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𝐺𝑜.𝑙1𝑑(𝑗𝜔) =
𝐾0

𝜔
∠ − 90 − 2𝑡𝑎𝑛−1 

0.5 𝑇𝑑 𝜔

1−0.0833 𝑇𝑑
2𝜔2

 (26) 

 

 
| 𝐺𝑐.𝑙1𝑑(𝑗𝜔)|=

√(1−0.0833 𝑇𝑑
2𝜔2)

2
+(0.5 𝑇𝑑 𝜔)

2

√(−0.5𝑇𝑑𝜔
2+𝐾𝑜−0.0833 𝑇𝑑

2𝜔2𝐾𝑜)
2
+𝜔(1−0.0833𝑇𝑑

2𝜔2−0.5𝑇𝑑𝐾𝑜)
2

                                                                                                   () 
 
Equations (26) and (27) are used to determine the performance 

factors. The phase margin is the difference between system 

phase angle and the verge of instability -180 at crossover 

frequency ωc which can be found from the following 

condition: 

 
|𝐺𝑜.𝑙1𝑑(𝑗𝜔𝑐)| = 1 

𝜔𝑐 = 𝐾𝑜 (28) 

From the resultant ωc, the corresponding open loop phase 

angle 𝜙c1 can be calculated as (29): 

𝜙𝑐1 = ∠ − 90 − 2𝑡𝑎𝑛
−1 

0.5 𝑇𝑑 𝜔𝑐

1−0.0833 𝑇𝑑
2𝜔𝑐2

 (29) 

Then, actual phase margin of the current control loop can be 

found as follows: 

 

                           𝑃.𝑀1 = 180 + 𝜙𝑐1 

                       = ∠90 − 2𝑡𝑎𝑛−1 
0.5 𝑇𝑑 𝜔𝑐

1−0.0833 𝑇𝑑
2𝜔𝑐2

 (30) 

It can be observed that the phase angle shown in (29) is a 

function of the delay angle which enlarges with the frequency 

of the input signal. Subsequently, the phase angle of the whole 

system increases until hits the stability limit (-180̊) and sets a 

value of the gain margin which is defined by the open loop 

gain at frequency ωg, at which the system phase angle hits -

180̊. Hence, this factor can be calculated from (29) as follows: 

 

−180 = −90 − 2𝑡𝑎𝑛−1
0.5 𝑇𝑑 𝜔𝑔

1 − 0.0833 𝑇𝑑
2𝜔𝑔

2
 

∴ 𝜔𝑔 =
1.58

𝑇𝑑
 (31) 

The frequency ωg can also be evaluated using the exact delay 

model represented by (2) as follows: 

 
−180 = −90 − 𝜔𝑇𝑑 

 

∴ 𝜔𝑔 =
1.571

𝑇𝑑
 (32) 

From (31) and (32), it can be concluded that the second order 

pade expansion (25) provides good approximation for the 

exact delay model (2) . 

From (31), the gain margin can be calculated using the 

equation for magnitude (27) as follows: 

 

𝐺.𝑀 = −20 log (
𝐾𝑜
𝜔𝑔
) (33) 

The actual system bandwidth ωb1 can be calculated from 

equation (27) as the point at which the absolute value of the 

closed loop transfer function equals 0.707. 

In case of the delay ignorance, it can be seen from (29) that the 

system’s phase angle at Td = 0 has fixed value -90̊. So, the open 

loop angle does not hit the stability limit -180̊. Consequently, 

it can be deduced that the system has infinite gain margin.  

The aforementioned factors can be explained from Fig. 8 that 

shows the frequency response obtained by using MATLAB 

software for open and closed loop functions of 1st design at 

targeted bandwidth equals 500 Hz and switching frequency 

equals 15 kHz. 

Similar to the analysis above, the performance factors have 

been calculated for other CCs (2nd, 3rd,and 4th designs). 

Subsequently, the effect of delay on the system bandwidth is 

determined using equations (34), where BW refers to the 

targeted bandwidth and BW1= ωb1 for the actual bandwidth 

(expected after the practical implementation). 

∆𝐵𝑊 = 𝐵𝑊1 − 𝐵𝑊 (34) 

The changes in control loop bandwidth and performance 

factors (PM and GM) are calculated at different values of the 

targeted bandwidth. The results are shown in Fig. 9 at two 

different switching frequencies 10 and 20 kHz (refers to two 

different delay levels). It can be shown from Fig. 9 that the 

change of bandwidth has a positive sign and corresponding to 

(34), it can be deduced that the delay enlarges the system 

bandwidth. Moreover, it can be observed that phase and gain 

margins decrease at higher sets of the targeted bandwidth. 

These effects show the negative impact of the delay on system 

dynamics especially when high bandwidth is required. 

Consequently, the desired bandwidth should be chosen in 

order to achieve reasonable values of the stability margins 
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FIGURE 8.  Frequency response of the current loop transfer functions  
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after considering the delay effect, phase margin 40-55ᴼ and 

gain margin 5-6 dB [19, 29]. 

These margins can be checked by the transfer functions 

derived in Section II. However, it should be mentioned that, in 

the current control system of ac machines, there are additional 

factors that degrade system performance during the operation 

such as the operating frequency, parameters variation [8, 30, 

31]. These factors degrade the system stability during the 

operation. So, it would be better to tune the CCs to achieve 

higher stability margins, phase margin 55-65ᶱ and gain 

margins 7-10 dB, to achieve reasonable performance during 

the machine operation. 

For robustness of the CC schemes to the delay effects, from 

Fig. 9, it can be observed that the minimum change in the 

current loop system bandwidth happens with the 1st and 3rd 

designs. For 2nd and 4th designs, the actual system bandwidth 

is significantly different than its desired value especially for 

higher bandwidth sets. Consequently, it can be stated that the 

1st and 3rd designs have the highest robustness to the delay 

effect compare to other PI CC schemes. 

It can also be noticed that the 1st design has the lowest 

sensitivity to the targeted bandwidth in terms of the stability 

effects. It provides better stability margins which refer to 

better dynamic performance when the bandwidth is set at 

higher values. On the other hand, the 2nd design is very 

sensitive to higher bandwidth sets where its stability margins 

are significantly affected.  

As further investigation to differentiate between the dynamic 

performances of the addressed PI CCs for same electric drive 

system (same switching frequency which refers to the time 

delay) and same targeted bandwidth, the concept of delay 

margin is used to define the maximum time delay that the 

system can tolerate before going unstable. The formulae to 

define the delay margin can be derived from Routh stability 

criterion. The time delay in this derivation is approximated by 

1st order Pade approximation (35). 

 

𝐺𝑑(𝑠) =
1 −  0.5𝑇𝑑 𝑠 

1 + 0.5 𝑇𝑑 𝑠 
 (35) 

 

It should be noted that the 1st order model for the delay does 

not provide the same approximation accuracy as 2nd order one 

which has been used in the previous section. However, the aim 

of this section to define which CC design can provide a higher 

delay margin but not to derive an exact delay margin value, 

i.e., it just represents as an indication factor for the 

performance comparison, which justifies the acceptance of 

using simpler 1st order model. The delay margin formula for 

each CC is derived and summarized in Table 2 where 2nd and 

3rd schemes have the same delay margin as they have similar 

characteristic equations.  

The changes of delay margin at different values of the targeted 

bandwidth BW are shown in Fig. 10. It shows that the 1st 

design has largest delay margin at same targeted bandwidth. 

Accordingly, for the same targeted bandwidth and same 

switching frequency, 1st design can provide better stability 

margins than other CCs. For the other CC schemes, the delay 

margin of the 3rd design is slightly better than 4th design. These 

observations from the delay margin study show that the chosen 

targeted bandwidth for tuning 2nd ,3rd and 4th schemes should 

 

 

 
 

(a) At fsw=10 kHz                 (b) At fsw =20 kHz 
 
FIGURE 9.  Performance Parameters of current control loop using the 
frequency response analysis at different switching frequencies 

 

 
TABLE 2.  Delay Margins Formulas 

CC SCHEME Delay Margin (Td_margin) 

1st Design  𝑇𝑑_𝑚𝑎𝑟𝑔𝑖𝑛 =
2

𝐾𝑜
 

2nd Design  

and  

3rd Design 

𝑇𝑑_𝑚𝑎𝑟𝑔𝑖𝑛 =
−𝑦 +√𝑦2 + 4𝑥𝑧

2𝑥
 

𝑥 = 0.25𝐾𝑖(𝑟 − 𝐾𝑝)  , 𝑦 = 𝐾𝑖𝐿 − 0.5(𝑟
2 −𝐾𝑝

2) 

𝑧 = −(𝑟+𝐾𝑝)𝐿 

4th Design 
𝑇𝑑_𝑚𝑎𝑟𝑔𝑖𝑛 =

−𝑦 +√𝑦2 + 4𝑥𝑧

2𝑥
 

𝑥 = 0.25𝐾𝑖(𝑟 − 𝐾2) ,  𝑦 = 𝐾𝑖𝐿 − 0.5(𝑟
2 −𝐾2

2) 
𝑧 = −(𝑟+𝐾2)𝐿 
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be lower than the value used for the 1st design if same stability 

margins need to be achieved. Moreover, the targeted 

bandwidth used for 4th design should be slightly lower than its 

value for the 3rd design to have same stability margins. These 

results provide good understanding for tuning these schemes 

and they have been used to develop a generic recommendation 

for tuning the PI CCs as presented in Section IV.  
 
IV. Proposed Design Recommendations 
 

The results on Section III show the delay effect on the 

addressed PI CC schemes and their sensitivity to the targeted 

bandwidth value used in the tuning process. Accordingly, 

targeted bandwidth should be carefully chosen to achieve 

reasonable dynamic performance. To simplify this process, 

generic formulas have been presented in this section taking the 

delay effects into account.  

For the 1st  design, the controller gain Ko ( refers to the targeted 

bandwidth (BW) ) in the conventional PI CC with pole zero 

cancellation can be tuned considering the delay effect based 

on the root locus of the open loop transfer function represented 

by (36), where the delay model is represented by (25) in (6) as 

follows: 

𝐺𝑜.𝑙1𝑑(𝑠) = 𝐾𝑜
1− 

𝑇𝑑
2
 𝑠+ 

𝑇𝑑
2

12
 𝑠2

s+ 
𝑇𝑑
2
 𝑠2+ 

𝑇𝑑
2

12
 𝑠3

                     (36) 

 
The root locus of (37) can be shown in Fig. 11 at 20 kHz 

switching frequency. It can be observed that the current 

control system has three closed loop poles where pcl1 and pcl2 

are considered the dominant poles as the stability margins are 

determined from their real parts when the value of Ko 

increases. Subsequently, the controller gain can be tuned using 

the location of pcl1 and  pcl2  to achieve a certain performance.  

In order to achieve the strongest disturbance rejection possible 

with negligible overshoot, the controller should be tuned in 

order to have an optimal damping ratio (ղ =0.707) [23]. The 

proposed setting (Kod) can be derived analytically from the 

symbolic solution for the roots of the characteristic equation 

(37). 

𝑇𝑑
2𝑠3 + (6𝑇𝑑 + 𝐾𝑜𝑇𝑑

2  )𝑠2 + (12 − 6𝐾𝑜𝑇𝑑)s + 12𝐾𝑜 = 0      

(37) 

The general expressions for the closed loop poles are shown 

by (38) and (39) [9] as a solution of (37), where fsw is the 

switching frequency ( fsw =1/ Tsw). 

 

 𝑝𝑐𝑙1,2 ≅
1

6
{
𝛽[−𝛽 − 2(𝐾𝑜 + 4𝑓𝑠𝑤) − 𝛽

2(𝐾𝑜
2 − 20𝑓𝑠𝑤𝐾𝑜)] ∓

𝑗 [√3𝛽2 − 𝛽3(𝐾𝑜
2 − 20𝑓𝑠𝑤𝐾𝑜)]

}   

(38)                                                                     

  𝑝𝑐𝑙3 =
1

3
[𝛽2 − 𝛽(𝐾𝑜 + 4𝑓𝑠𝑤) + 𝛽

3(𝐾𝑜
2 + 20𝑓𝑠𝑤𝐾𝑝)]  (39) 

where 

  𝛽 = 2𝑓𝑠𝑤√𝜎 − 𝐾𝑜
3 − 30𝑓𝑠𝑤𝐾𝑜

2 − 168𝑓𝑠𝑤
2 𝐾𝑜 + 32𝑓𝑠𝑤

3  

𝜎 = 9𝐾𝑜
4 + 504𝑓𝑠𝑤𝐾𝑜

3 + 6576𝑓𝑠𝑤
2  𝐾𝑜

2 − 2688𝑓𝑠𝑤
3  𝐾𝑜 + 256 𝑓𝑠𝑤

4   

At 0.707 damping ratio, the real and imaginary parts of pcl1 and 

pcl2 are equal. Therefore, a generic formula for the controller 

gain Ko can be expressed by (40) from equalizing the real and 

imaginary parts of (38). 

𝐾𝑜𝑑 ≅ 0.33 𝑓𝑠𝑤                                  (40) 

Considering that fsw=1.5/Td, the gain and phase margin 

corresponding to the proposed setting (40) can be evaluated 

using (30) and (33) from Section II. Accordingly, it can be 

found that gain and phase margins are 10.1 dB and 61.64ᴼ, 

respectively. These values guarantee to have acceptable 

dynamic performance as shown from the step response in 

Fig.12 at different values of ko which has been selected as a 

ratio of the switching frequency. 

 
 
FIGURE 11.   Root locus of (36) at 20 kHz switching frequency. 

 
 

FIGURE 10. Delay Margin change with the desired bandwidth for different 
types of the CCs 
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For the other PI CCs (2nd, 3rd and 4th), their targeted 

bandwidth should be lower than 33% of the switching 

frequency to provide reasonable performance according to 

study of their stability margins and delay margins compared 

to 1st design shown in Section III.  

From Fig. 9, the stability margins (GM = 10.1 dB and PM = 

61.64ᴼ) can be achieved with the 3rd design when its targeted 

bandwidth set at around 75-85% of the targeted bandwidth 

of the 1st design. Consequently, the targeted bandwidth of 3rd 

design can be set at 22-30% of the drive switching frequency 

to achieve reasonable dynamic performance. For the 2nd 

design, the chosen targeted bandwidth should be lower than 

the used in the 3rd design due to the zero effect.  

For the 4th design, it can be shown from Fig. 9 that it has a 

lower gain margin than the 1st and 3rd designs. Moreover, the 

delay margin of the 4th design is slightly lower than the 3rd 

design as discussed in Section III. Accordingly, its targeted 

bandwidth can be around 67% of the proposed ratio for the 

1st design. Hence, it can be stated that the 4th design can be 

tuned for targeted bandwidth (α in rad/s) equals 20-24 % of 

the drive switching frequency. The step response of the 

current control loop at 16 kHz switching frequency with 3rd 

and 4th designs is shown in Fig.13 using the recommended 

tuning ratios . 

The performance factors (overshoot and settling time) for the 

addressed controllers have been also determined and 

reported in Fig. 14 at different bandwidth settings. The  

results show the ability of the 1st design to provide faster 

dynamics with lower overshoot compared to the other 

designs. Moreover, it can be noticed that minimum settling 

time with the 3rd and 4th design occurs within the 
 

TABLE 3.  DESIGN GUIDELINES OF SRF PI CC SCHEMES 

CC 

Configuration 
PI Controller Structure 

Tuning 

Method 
CC Gains 

Targeted 

Bandwidth 

(BW) 

Conventional 

SRF PI CC  

(1st Design) 

s

1

Kp

idqref udq

+

+

K i
+

-
dqi

 

pole/zero 

cancelation 

𝐾𝑖 = 𝐾𝑜𝑟
′  ,   𝐾𝑝 = 𝐾𝑜 𝐿

′ 

 

𝐾𝑜 = 𝐵𝑊 

0.33 fsw 

Conventional 

SRF PI CC 

 (2nd Design) 

Pole-

placement 

𝐾𝑝 = (2ɳ 𝜔𝑛 𝐿
′ ) − 𝑟′   , 𝐾𝑖 = ωn

2   𝐿′  

 

𝜔𝑛 ≅ 𝐵𝑊 (𝑎𝑡 ɳ = 0.707) 
 

(0.17- 0.19) fsw 

Modified 

Conventional 

SRF PI CC 

 (3rd Design) 

s

1i
dqref

i
dq

Ki
+

-

K  p

+

-

u
dq

i
dq

 

Pole-

placement 

𝐾𝑝 = (2ɳ 𝜔𝑛 𝐿
′ ) − 𝑟′   , 𝐾𝑖 = ωn

2   𝐿′  

 

𝜔𝑛 ≅ 𝐵𝑊 (𝑎𝑡 ɳ = 0.707) 
 

(0.22- 0.3) fsw 

2DOF SRF PI 

CC (4th Design) 

 s

1i
dqref

i
dq

+

  

K i

K  2

+
- -

K1

+

i
dq

u
dq

 

pole/zero 

cancelation 

based on 

Pole-

placement 

𝐾𝑖 = 𝛼
2 𝐿′  , 𝐾1 = 𝛼 𝐿

′ , 

 

𝐾2 = (𝛼 ∗ 2𝐿
′) − 𝑟′ 

 

𝛼 = 𝐵𝑊 

(0.2- 0.24) fsw 

 

  
 

(a) 3rd design                          (b) 4th design 
 

FIGURE 13.   Step response at 16 kHz switching frequency with different 
controller settings for 3rd and 4th design using (17) and (19) respectively. 

 
 

FIGURE 12.  Step response using (7) at 16 kHz switching frequency 
with different controller settings for 1st  design CC. 
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recommended setting which validates the analysis in Section 

III. To conclude the addressed PI CC schemes and their 

design recommendations for the gains’ selection, they have 

been summarized in Table 3. 

 
V. Robustness to Model Uncertainties  

 

Tuning guidelines shown in Table 3 depend on the system 

parameters namely, resistance and inductance values which 

might be slightly different than their actual values. 

Therefore, the effects of these uncertainties on the system 

stability are studied in this section through the analysis of the 

systems’ eigenvalues. 

Effects of inductance uncertainties can be shown in Fig. 15. 

It shows the current control system’s eigenvalues when the 

inductance value used in the controller design has ±25% 

error. It can be observed from the eigenvalues migration that 

the proposed design recommendations guarantee system 

stability even with wide errors in the inductance value . It can 

also be shown from Fig. 15 that the eigenvalues move away 

from the real axis at higher inductance sets. Hence, the 

system bandwidth increases to achieve faster step response. 

For the resistance uncertainties, normally the machine 

resistance increases due to the system heating. As the 

machine resistance represents a damping element, the system 

stability margins improve, and the system response becomes 

slower with lower overshoot. This phenomenon  is similar to 

setting the resistance in the controller to be lower than its 

actual value [32].  

 
VI. Experimental Results 
 

The proposed design recommendations and the analytical 

studies in this paper have been validated using experimental 

test rig shown in Fig.16. A three phase R-L load ( r= 5ohm, 

L =1 mH) has been used to simulate the three-phase rotating 

machine and to void the unwanted torque effects [16]. The 

R-L load is supplied from three level neutral point clamped 

converter (NPC) at 16 kHz switching frequency. The PI CCs 

shown in Table 3 have been digitally implemented in a 

digital signal processor (DSP) (Texas Instrument, 

TMS320C6713 DSP Starter Kit shown in Fig. 17 using code 

composer software (CCS). For the digital implementation, 

discretization of the continuous CCs is required. Various 

methods can be used to convert the continuous system into an 

 

3Level-

NPC 

Converter

PC 

DC Power 

Supply 

3 Phase R-L 

load 

 
 

FIGURE 16.  Experimental set up 
 

  
 

FIGURE 14.   Overshoot and settling Time versus the ratio between the 
desired bandwidth and switching frequency. 
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FIGURE 15.  Dominant Eigenvalues migration of current control loop with 
different inductance sets in the controller’s parameters  
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equivalent discrete-time system. However, it should be noted, 

that the continuous system can only be approximated, and the 

discrete system can never be exactly equivalent. Different 

methods can result different controller performances. The 

most important methods are summarized in Table 4 [28, 33]. 

Among these methods, Tustin transformation is considered 

the most commonly used method as it allows to maintain 

same stability properties in both s- and z-domain [28, 34, 35]. 

Consequently, it has been used to discretize the continuous 

PI CCs for digital implementation. The dynamic performance 

of the CCs has been tested by a step response of a 10A as a 

reference q-current component. 

A. Robustness to Delay Effects 

The performance dynamics of PI CCs shown in Table 3 have 

been tested at 350 Hz fundamental frequency as shown in 

Fig. 18. The desired bandwidth (BW) for all PI CCs is 

selected as a ratio of the drive switching frequency to verify 

the proposed design recommendations in Section IV and to 

evaluate the robustness of the PI CC schemes to the time 

delay effects. 

Firstly, it can be seen from Fig. 18 that the 3rd design 

provides more stable response ( less oscillations and lower 

overshoot) than the 2nd design at same settings which verify 

the preference of the modified PI structure (3rd design) as 

discussed in Section II.  

It can also be observed that, at high BW values, the 

degradation of the transient response is high with the 2nd and 

4th design compared to 1st and 3rd designs. These results refer 

to higher deterioration in the stability margins of the  2nd  and 

4th designs compared to the 1st and 3rd designs. The findings 

from these test results are matching with the analytical 

results in section III for the frequency response analysis  

which show the higher robustness of  the 1st and 3rd designs 

for delay effect. Moreover, it can also be observed that the 
 

          

           
 

FIGURE 18.  Experimental current responses at different controller’s settings  

 
 
FIGURE 17.  Inverter and Control platform (Texas Instrument, 
TMS320C6713 DSP Starter Kit) 

 

TABLE 4.  Discretization Methods 

Backword Difference Method 𝑠 =
1

𝑇𝑠
(1 − 𝑧−1) 

Forward Difference Method 𝑠 =
1

𝑇𝑠
(
1 − 𝑧−1

𝑧−1
) 

Tustin  (Trapazoidal) Method 𝑠 =
2

𝑇𝑠
(
1 − 𝑧−1

1 + 𝑧−1
) 
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1st design provides faster dynamics with better stability 

margins compared to other CCs at higher bandwidth settings 

which validates the delay margin study in Section III. 

The results also show that the CCs provides reasonable 

dynamics in terms of negligible overshoot with fast response 

when the proposed design recommendations in Table 3 are 

used. These results validate the proposed setting in Section 

IV which can be used as a fast and simple tuning tool in the 

industry. The results also show that higher setting for the 

desired bandwidth degrades the system stability and affects  

the system performance. 

B.  Robustness to Model Uncertainties 

The  robustness of PI CCs to the model uncertainties has 

been tested when the proposed design recommendations are 

used. It is assumed that there are errors in the system 

     

     
 

FIGURE 20.  Experimental current responses at different inductance values in controller setting 

      
  

    
 

FIGURE 19.  Experimental current responses at different resistance values in controller setting  
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parameters (resistance and inductance) used in the 

controller’s setting. The effects of resistance and inductance 

uncertainties on the system dynamics are tested as shown in 

Fig. 19 and Fig. 20, respectively.  For the resistance effects, 

it is assumed that there are ±20%  error in the resistance value 

used in the controller setting. The experimental results show 

that the design recommendations provide reasonable 

dynamics with large errors in the system resistance. The 

results also show that lower resistance setting  enlarge the 

damping ratio as it is similar to the case of heating the 

machine.  

For the inductance errors, it is assumed that there are  ±25% 

errors for the inductance value used in the controller setting. 

The results in Fig. 20 show that the design recommendations 

guarantee higher stability margins for the addressed CCs 

during the tuning process with wide errors in the inductance 

value. It can be also be observed that higher inductance 

settings provides faster step response which validates the 

eigenvalues study in Section V. The results also show that 

the 1st design provides high robustness to the model 

uncertainties compared to other schemes which can be 

interpreted by its high stability margins shown in Section III 

and V.  

 
VII. Conclusion 
 

This paper investigated different tuning configurations of the 

SRF PI CCs which have not consider the delay effect on their 

tuning rules. The paper also analyzed and evaluated the 

effect of computational and modulation delays on their 

dynamic performance. Generic recommendations for tuning 

these PI CCs, which are summarized in Table 3, have been 

proposed as a function of the drive system’s switching 

frequency. 

It can be concluded that the classical PI controller tuned by 

pole zero cancelation method (1st design) provides the 

highest robustness to the delay effects in terms of achieving 

the targeted bandwidth with higher stability margins. It is 

advised to set its gain (targeted bandwidth (BW)) at 33% of 

the drive system's switching frequency. The proposed setting 

achieves gain and phase margins equal 10.1 dB and 61.64ᴼ 

respectively which provides fast dynamic response with 

negligible overshoot corresponding to 0.707 damping ratio. 

For the modified PI controller tuned by pole placement (3rd 

design), it is advised to set its targeted bandwidth at 22- 30 

% of the drive switching frequency whereas this ratio is 20-

24 % for the 2DOF PI controller with pole placement method 

(4th design). These settings guarantee reasonable dynamic 

performance for the addressed CCs and represent fast and 

simple tuning rules for the electric drives in the industry. 

These claims have been validated through experiments.  
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