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Abstract

Background: Inertial measurement units (IMUs) with high-resolution sensors such as accelerometers are now used
extensively to study fine-scale behavior in a wide range of marine and terrestrial animals. Robust and practical
methods are required for the computationally-demanding analysis of the resulting large datasets, particularly for
automating classification routines that construct behavioral time series and time-activity budgets. Magnetometers
are used increasingly to study behavior, but it is not clear how these sensors contribute to the accuracy of
behavioral classification methods. Development of effective classification methodology is key to understanding
energetic and life-history implications of foraging and other behaviors.

Methods: We deployed accelerometers and magnetometers on four species of free-ranging albatrosses and
evaluated the ability of unsupervised hidden Markov models (HMMs) to identify three major modalities in their
behavior: ‘flapping flight’, ‘soaring flight’, and ‘on-water’. The relative contribution of each sensor to classification
accuracy was measured by comparing HMM-inferred states with expert classifications identified from stereotypic
patterns observed in sensor data.

Results: HMMs provided a flexible and easily interpretable means of classifying behavior from sensor data. Model
accuracy was high overall (92%), but varied across behavioral states (87.6, 93.1 and 91.7% for ‘flapping flight’,
‘soaring flight’ and ‘on-water’, respectively). Models built on accelerometer data alone were as accurate as those
that also included magnetometer data; however, the latter were useful for investigating slow and periodic
behaviors such as dynamic soaring at a fine scale.

Conclusions: The use of IMUs in behavioral studies produces large data sets, necessitating the development of
computationally-efficient methods to automate behavioral classification in order to synthesize and interpret
underlying patterns. HMMs provide an accessible and robust framework for analyzing complex IMU datasets and
comparing behavioral variation among taxa across habitats, time and space.
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models, Inertial measurement unit, Magnetometer
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Background
The rapid development of animal-borne sensors, cam-
eras, and tracking devices has ushered in the current
“golden age of bio-logging” [1]. Advancements in biolog-
ging technology accelerated our understanding of animal
ecology, behavior, and physiology [1–3], with promising
applications for conservation management [4]. As bio-
logging devices have become cheaper, smaller and with
greater functionality, resulting datasets have become
ever-larger and more complex, and there is a critical
need for methods that can effectively handle these “big-
data” [5, 6]. Indeed, given the proliferation of animal
tracking studies, arguably it is the development and im-
plementation of robust, objective methods for data stor-
age, visualization and analysis that limits scientific
progress more than data availability per se for many spe-
cies and systems.
Inertial measurement units (IMUs) with sensors such

as triaxial accelerometers, magnetometers, and gyro-
scopes, are increasingly used in biological studies [7].
Accelerometers are particularly popular tools in studies
of animal movement, as they are small, affordable, and
battery-efficient [8]. They record instantaneous move-
ment and orientation of the animal body at a high reso-
lution, and are a powerful means of decoding real-time
behaviors and their functions in free-ranging animals [9,
10]. The miniaturization of GPS devices greatly im-
proved the resolution of broad-scale movement patterns
of animals [11, 12], and concurrent deployments of ac-
celerometers have revealed nuances of fine-scale behav-
ior, such as prey capture events [13, 14], activity-specific
energetic costs [15, 16], and even the internal state of
animals [17]. Further, the instantaneous nature of accel-
erometer data can be exploited by behavioral classifica-
tion methods to derive automated and objective
behavioral time series [18]; these can then be modeled
with covariates to assess the drivers of movement and
population processes [19].
Tri-axial magnetometers record movement data that

are analogous and complementary to that of accelerome-
ters and are being deployed with increasing frequency
[20–22]. These sensors record magnetic field orientation
and intensity, from which animal heading and angular
velocity about the yaw-axis can be derived. Magnetome-
ters are useful for resolving low-acceleration behaviors
such as thermal soaring in raptors [23] as well as dy-
namic behaviors such as running in meerkats (Suricata
suricatta) [21]. However, despite the purported benefits,
behavioral classification routines that incorporate data
from both accelerometer and magnetometer sensors are
rare, and applied primarily in agricultural and animal
welfare studies [24]. Analyzing these data can be challen-
ging because of their complexity and size, the high pro-
cessing power required, and the frequent lack of in-situ

behavioral observations for ground-truthing the patterns
observed. Sampling frequencies typically range from 1 to
40 Hz [8], which can quickly lead to extremely high data
volumes, particularly when sampling occurs on three
axes. Thus, there is a pressing need for more user-
friendly methods for analyses of these data.
Hidden Markov models (HMMs) are state-switching

time series models [25] and are used increasingly for dis-
tinguishing encamped versus directed movement from
animal tracking behavior [26]. Used almost exclusively
with GPS data, their application to accelerometer data
was highlighted recently with promising results [27–29].
Patterson et al. [28] compared the performance of six
behavioral classification methods, including HMMs,
using taxa-specific metrics such as wingbeat frequency
and dive depth derived from accelerometer and pressure
data. While they found that all methods performed simi-
larly, they concluded that HMMs provide advantages
over other methods given their ability to test the effect
of predictor variables on state transition probabilities
and because HMMs explicitly model serial autocorrel-
ation [26, 30, 31]. Further, HMMs can incorporate mul-
tiple types of data [32, 33], a feature that is highly
relevant to biologging studies since IMU devices typic-
ally record simultaneous data streams from multiple sen-
sors (e.g. accelerometers, magnetometers, gyroscopes).
However, the effectiveness of HMMs for inferring be-
havior from long time series of multiple high-resolution
sensors has not been thoroughly explored in free-
ranging animals.
Across taxa and environments, most animal species

have evolved locomotory repertoires with multiple
movement modes, such as flapping, gliding or soaring in
birds; walking, trotting or galloping in terrestrial quadru-
peds; and stroking or gliding in marine mammals. Kine-
matic differences associated with locomotory modes will
be reflected in discrete signal patterns recorded by IMU
devices, and the larger these differences, the more likely
the modes will be captured accurately by behavioral clas-
sification methods.
We evaluated the utility of HMMs to classify major

movement modes from magnetometer and accelerom-
eter data collected from flying birds using four species of
albatross as a case study. Albatrosses are known for their
ability to travel vast distances with low energetic costs
using a specialized form of flight – dynamic soaring –
by exploiting energy from wind and waves [34]. Despite
this specialization, albatrosses also use powered flight in
the form of flapping when necessary, such as in light
wind conditions [35]. Given the large differences in body
kinematics associated with flapping and soaring flight,
we hypothesized that HMMs would be able to effectively
distinguish between these two flight modes as well as
identify when birds were sitting on water or land. Our
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specific objectives were to: 1) classify albatross behavior
at sea into three major movement modes: ‘flapping
flight’, ‘soaring flight’, and ‘on-water’; 2) determine if the
addition of magnetometer data improved classification
accuracy; and 3) outline key considerations for using
high-resolution sensor data and HMMs to classify major
movement modes in animals.

Methods
Study species
We deployed devices on four albatross species: black-
footed (Phoebastria nigripes), Laysan (P. immutabilis),
black-browed (Thalassarche melanophris), and grey-
headed (T. chrysostoma) albatrosses (Fig. 1). All four
species are morphologically similar, medium-sized al-
batrosses that forage in sub-topical to polar waters.
Black-footed and black-browed albatrosses are slightly
larger-bodied and prefer to forage along shelf-break
and shelf-slope waters, whereas Laysan and grey-
headed albatrosses tend to forage at oceanic frontal
zones [36–38].

IMU data
We deployed IMU devices on black-footed and Laysan
albatrosses at Midway Atoll National Wildlife Refuge in
the North Pacific (28.21 °N, 177.37 °W) during the 2018/
19 breeding period, and on black-browed and grey-
headed albatrosses during the 2019/20 breeding period
on Bird Island, South Georgia in the Southern Ocean
(54.00 °S, 38.03 °W) (Table 1). Each bird was equipped
with one of two types of device combinations (Table 1):
a) Midway Atoll; a GPS tag (Cat-Logger, Perthold Engin-
eering LLC, USA) was paired with a high-resolution
IMU (AGM, Technosmart, Italy) containing a 3D accel-
erometer and 3D magnetometer recording at 25 Hz; or,
b) Bird Island; a custom-designed multi-sensor device
(Neurologger 2A, Evolocus, New York USA), equipped
with an integrated GPS (Cat-Logger), a miniaturized
electrocardiogram, and a high-resolution IMU (3D accel-
erometer, 3D magnetometer) recording at 75 Hz. Tags
were attached to central dorsal contour feathers using
Tesa tape (#4651, Tesa, Germany) following standard
device attachment procedures. IMUs were placed where
the x, y, and z axes of the device (the “tag frame”)

Fig. 1 An overview of albatross deployments at the two study sites.a Photographs of birds in flight with wing loadings (N/m2) for the four study
species. GPS tracks of albatrosses simultaneously deployed with IMU devices are displayed from b Midway Atoll (Hawaiian Islands) or c Bird Island
(South Georgia) in the 2018/19 and 2019/20 breeding seasons, respectively
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aligned with the anterior-posterior (surge), medio-lateral
(sway), and dorsal-ventral (heave) axes of the birds (the
“bird frame”) (Fig. 2e). Tags were deployed for a single
foraging trip and removed after a few days to a few
weeks depending on foraging trip duration. Total mass
of devices was, on average, 1.6, 1.6, 2.1, and 2.0% of the
body mass of black-footed, Laysan, black-browed, and
grey-headed albatrosses, respectively, and, for all individ-
uals, fell below the 3% recommended percent weight
threshold for large-bodied flying seabirds [39].

Accelerometer and magnetometer data processing and
calibration
All sensor data were pre-processed in MATLAB (2019a)
using functions from the Animal Tag Tools Wiki
(http://www.animaltags.org), the MATLAB signal pro-
cessing toolbox, and with customized scripts. Acceler-
ometer and magnetometer data from the Neurologger
2A devices were reduced from 75 Hz to 25 Hz using a
decimation function to standardize sampling frequency
across tag types. We transformed the sensor frames of

Table 1 Summary of tag deployments on four albatross species at Midway Atoll and Bird Island (South Georgia) in the 2018/19 and
2019/20 breeding seasons, respectively

Albatross Species IMU Device Type Range (Acc, Mag) Resolution (Acc, Mag) n
incubation

n
brood-guard

Hours recorded

Black-footed AGM 8G, 4800 μT 10, 14 bit 0 2 108.2

Laysan AGM 8G, 4800 μT 10, 14 bit 0 2 140.6

Black-browed Neurologger 2A 16G, 4900 μT 16, 16 bit 2 12 1363.9

Grey-headed Neurologger 2A 16G, 4900 μT 16, 16 bit 4 7 1057.2

Total 6 23 2670

Fig. 2 Sensor data representing flapping flight, soaring flight, and ‘on-water’ behavior from a Laysan albatross. Distinct patterns for each behavior
are observed in a triaxial accelerometer data, b triaxial magnetometer data, and c heading. d A closer look at two isolated bouts of flapping
flight. e Magnetometer and accelerometer devices were taped centrally onto albatross backs and measured surge acceleration in the anterior-
posterior axis, sway acceleration in the medio-lateral axis, and heave acceleration in the dorso-ventral axis
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the individual accelerometers and magnetometers to
align both with each other and with the device frame
([forward, right, up]). Additionally, a frequent, slight
tilt in the roll axis of the Neurologger 2A tag frame
relative to the bird frame was corrected using a rota-
tion matrix of Euler angles. Roll offsets were identi-
fied from accelerometer data when birds were resting
on the water where average heave acceleration was
assumed to be ~ 1, and average sway and surge accel-
eration to approximate 0.
Magnetometer datasets were trimmed to remove data at

the beginning and end of the deployment where large
spikes in the magnetometer data occurred, likely due to
the presence of strong local magnetic interference from
other tags and field gear. A median filter removed
remaining outliers that occurred throughout the time
series. Magnetometers are sensitive to hard and soft iron
distortions that interfere with detection of the earth’s true
magnetic field and require correction. Thus, magnetom-
eter data were calibrated using a data-driven approach
(described in Additional File 1). As a second step, each
magnetometer channel was rotated according to pitch and
roll in a tilt correcting procedure to account for postural
offsets [40]. Heading was then calculated as the arctangent
of the frame-adjusted x- and y- magnetometer channels
[40]. Heading was converted from radians to degrees in
the range of [0–360°] for analysis. Before HMM analyses,
we trimmed 2 h from the beginning of sensor datasets to
exclude any abnormal behavior related to handling effects.

Selecting and quantifying movement features from
sensor data
Prior to movement feature extraction, we calculated
summary time-series metrics from the accelerometer
and magnetometer data. A fast Fourier transform (FFT)
on total heave acceleration identified dominant frequen-
cies in the signal. Static and dynamic heave, from each
axis, were isolated from total acceleration to distinguish
postural changes from dynamic movements [10]. Static
acceleration was obtained from total acceleration using a
2-s running mean, while dynamic acceleration was cal-
culated by subtracting static acceleration from total ac-
celeration [10, 15]. Overall dynamic body acceleration
(ODBA), a commonly used proxy of energy expenditure,
was calculated by summing the absolute value of dy-
namic acceleration across the three axes [15].
Movement features derived from accelerometer and

magnetometer data were summarized along the 25 Hz
sensor timeseries within 30-s fixed time windows, which
was then used as the input for the HMM. We selected
30-s as this was the minimum duration required to cap-
ture variability in dynamic soaring arcs captured in
heading data. There is no ideal number or set of features
across systems and classification methods, and features

for HMMs should be selected by careful consideration
of those that most effectively distinguish the states of
interest [27, 28, 41]. We first summarized the acceler-
ometer and magnetometer data into eight candidate fea-
tures, based on common techniques (see Fig. 2 in [42])
and a-priori knowledge of flight behavior (see Add-
itional File 2). The eight candidate features are as fol-
lows: 1) ‘df’: the dominant frequency (Hz) identified in
the FFT on total heave acceleration, 2) ‘hf’: the highest
frequency of all dominant frequencies identified in the
FFT, 3) ‘ms’: mean static heave acceleration, 4) ‘ss’:
standard deviation of static heave acceleration, 5) ‘p5’:
the top fifth percentile of static heave acceleration, 6)
‘sh’: circular standard deviation of heading, 7) ‘iqr’: the
inter-quantile range of dynamic heave acceleration, and
8) ‘mo’: mean ODBA. To select the final set of features,
we first evaluated the degree of correlation among can-
didate features and identified a smaller set of four fea-
tures that were minimally correlated to each other: ‘hf’,
‘p5’, ‘mo’, and ‘sh’ (Additional File 2).

Model selection
A series of 3-state HMMs were fitted to the final set of
features using the momentuHMM package in R [43]. An
initial 3-state model including all four features did not
converge on biologically meaningful state distributions,
so we ran multiple iterations of HMMs on a subset of
data using different combinations of the other three fea-
tures until state distributions looked appropriate (i.e.,
until they reflected the patterns one would expect from
albatross flight dynamics) (Fig. 3). This resulted in our
final set of three features used in all subsequent and final
HMM iterations: ‘hf’, ‘p5’, and ‘sh’.
We then ran the model with and without species as a

covariate to evaluate its influence on model fit, measured
by Aikake information criterion (AIC). Species was in-
cluded as a fixed effect on transition probabilities only,
and not on state distributions since there was high over-
lap among species in the shape and scale of feature dis-
tributions (Additional File 3).

State classification using hidden Markov models
Since we were interested in understanding the contribu-
tion of magnetometer data to the accuracy of behavioral
classification, we constructed two final models: 1)
Model-1 incorporated all three features, including the
magnetometer-derived ‘sh’, and 2) Model-2 excluded ‘sh’
and only used the two accelerometer-derived features
‘hf’ and ‘p5’. Both final models (i.e., Model-1 and Model-
2) included species as a fixed effect on transition
probabilities.
HMMs were fitted in momentuHMM by numerical

maximization of the likelihood, which requires starting
values that best estimate the state distributions for each
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feature [25]. An optimization routine identified the best-
fitting model from 25 runs, where each iteration used a
randomly generated set of starting values to fit each fea-
ture distribution. The best-fitted model from the 25 runs
was identified by finding the model with the largest
maximum likelihood. We also evaluated the numerical
stability of each model as stable models should converge
to the same maximum likelihood value in the majority
of iterations. Feature distributions were modeled using
Weibull probability distributions, specified by single
shape and scale parameters. For each feature, a range of
starting values were chosen based on the shape and scale
of Weibull distributions anticipated for each state. The
shape, position, and spread of data distributions of the
three features were similar across individuals and we
treated datasets from individuals as independent realiza-
tions from a common model. Once the models were fit-
ted, we used the Viterbi algorithm to estimate the most
likely sequence of states from the fitted model [44]. The
30-s feature dataset contained three short runs of miss-
ing data (< 0.02% of the full dataset) but this is not a
problem in the HMM framework as parameters are esti-
mated based on the non-missing observations only [26].

Evaluation of behavioral classification accuracy
To evaluate classification accuracy of Model-1 and
Model-2, an expert-driven approach identified our best
estimation of “true” states from the sensor data, as we
did not have independent observations of bird behavior
from video cameras or other methods. While the ab-
sence of direct observation precludes the verification of
true behavior, previous research has described patterns
in sensor data that reflect flapping flight [8, 23, 45], soar-
ing flight [20, 23], and on-water behavior [46] in free-
ranging birds, including albatrosses. These patterns are
similar across species, are highly distinct from one an-
other (Fig. 2), and were used to manually classify pat-
terns in the sensor data in a validation dataset. While we
cannot guarantee that all expert-classified states did in-
deed capture true behaviors, we are confident in our ap-
proach given that we focused on three broad-scale
movement patterns that match large differences in signal
patterns which are easily discernible by the human eye
after familiarization with the data.
The validation dataset used to evaluate classification

accuracy was derived from five randomly selected black-
browed and grey-headed albatrosses, and each of the

Fig. 3 State-dependent density histograms for each input feature (‘hf’, ‘p5’, and ‘sh’). *Circular standard deviation of heading (‘sh’) was only included
in Model-1
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two black-footed and Laysan albatrosses. From the sen-
sor data of each validation bird, we selected, randomly,
50 of the 30-s windows used to summarize features for
HMM input. These were then assigned, by visually
evaluating patterns in the sensor data, into one of three
“true” states, giving us a total validation dataset of 700
observations (50 per bird) for comparison with the
HMM-inferred states. Observations from periods when
the birds were at the colony were removed (n = 8). For
observations where the sensor data reflected multiple
behaviors, we selected the dominant behavior as the
“true” state. A confusion matrix was built using the
‘caret’ package in R on the resulting 692 observations.
Model accuracy was defined as the percentage of obser-
vations where HMM-inferred states matched the “true”
(expert-classified) states [47, 48].

Albatross activity budgets
We identified flapping, soaring, and on-water “bouts” as
those portions of the HMM-inferred state time series with
contiguous observations of each behavioral state. Activity
budgets (% time in each state) were constructed from the
time series of HMM-inferred states only for at-sea por-
tions of foraging trips in which data were available for all
devices (n = 18 from the brood-guard) in order to make
comparisons across individuals and species.

Results
IMU devices recorded 2670 h of 3D accelerometer and
magnetometer data from 29 individual albatrosses across
all species. The trimmed standardized dataset (see IMU
data) provided a total of 239,564,250 data points sum-
marized into a final dataset of 319,409 observations of
each feature as HMM input (Table 1). Devices recorded,
on average, for 6.4 ± 2.6 days (mean ± sd) during incuba-
tion trips and 3.2 ± 1.6 days during brood-guard, with
maxima of just over 8 days before the device memory
filled to capacity. On average, incubation trips lasted 9.2
and 7.9 days in duration (measured from co-deployed
GPS units) for black-browed and grey-headed alba-
trosses, respectively. One IMU device recorded the full
seven-day duration of an incubation trip, whereas 76%
of devices recorded the entire foraging trip during
brood-guard (which averaged 4.8, 3.0, 2.4 and 3.0 days
for Laysan, black-footed, black-browed and grey-headed
albatrosses, respectively).

Model selection and comparison of behavioral
classification accuracy among models
Including a covariate of species as a fixed effect on tran-
sition probabilities slightly improved model fit as
reflected in a marginally lower AIC (2,600,123 vs 2,601,
474). All final model iterations converged on state-
dependent parameters (Fig. 3, Additional File 4) and

displayed numerical stability by settling on the same
likelihood for the majority of the iterations.
Both Model-1 and Model-2 showed high and nearly

equal classification accuracy (91.9 and 91.5%, respect-
ively, Table 2). Both models also performed well across
species with all species having accuracies > 90%, with the
exception of black-footed albatrosses which were

Table 2 Transition probability matrices for HMMs showing the
probability of transitioning from each state at time t to time t +
1. Transition probabilities are displayed as estimates with 95%
confidence intervals in parentheses

Model-1: Accelerometer and Magnetometer

STATE AT TIME t + 1

STATE AT TIME
t

Flapping Flight Soaring Flight On-Water

Flapping Flight 0.778 (0.772,
0.783)

0.204 (0.199,
0.209)

0.019 (0.017,
0.020)

Soaring Flight 0.083 (0.080,
0.085)

0.900 (0.898,
0.903)

0.017 (0.016,
0.018)

On-Water 0.010 (0.009,
0.011)

0.016 (0.015,
0.018)

0.974 (0.017,
0.020)

Model-2: Accelerometer only

STATE AT TIME t + 1

STATE AT TIME
t

Flapping Flight Soaring Flight On-Water

Flapping Flight 0.781 (0.776,
0.786)

0.194 (0.189,
0.199)

0.025 (0.023,
0.027)

Soaring Flight 0.080 (0.078,
0.082)

0.911 (0.908,
0.913)

0.009 (0.008,
0.010)

On-Water 0.011 (0.010,
0.012)

0.008 (0.007,
0.009)

0.980 (0.979,
0.981)

Table 3 Confusion matrices depicting model classification
accuracy as the percentage of correct behavioral assignments
for each behavior. Overall classification accuracies are displayed
as estimates with 95% confidence intervals in parentheses

Model-1: Accelerometer and Magnetometer

Visually-assigned

HMM-assigned Flapping Flight Soaring Flight On-Water

Flapping Flight 87.6 6.9 0.9

Soaring Flight 12.4 93.1 7.4

On-Water 0 0 91.7

Overall accuracy: 91.9% (89.6, 93.8)

Model-2: Accelerometer only

Visually-assigned

HMM-assigned Flapping Flight Soaring Flight On-Water

Flapping Flight 86.6 7.1 0.5

Soaring Flight 10.3 92.6 7.9

On-Water 3.1 0.3 91.7

Overall accuracy: 91.5% (89.1, 93.5)
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modeled with slightly lower accuracies of 84 and 86% in
Model-1 and Model-2, respectively (Table 3). State-
specific accuracy was highest for soaring flight (93% in
both models) and lowest for flapping flight (87%). Ac-
curacy for flapping flight was comparatively low in both
Laysan and grey-headed albatrosses (71.4 and 76.7%, re-
spectively). Low classification accuracy for flapping flight
in these two species reduced the global-level accuracy
for that behavioral state, as classification accuracy for
flapping flight was much higher for the two other spe-
cies. Misclassifications of flapping flight were primarily
soaring flight, though in Model-2, there was an increase
in flapping flight being misclassified as ‘on-water’ behav-
ior relative to Model-1 (Fig. 4a). ‘On-water’ misclassifica-
tions were uniformly confused as soaring flight by both
models (Table 3). State-transition probabilities indicated
that the most persistent state was the ‘on-water’ behav-
ior followed by ‘soaring flight’ (Table 4).

Albatross activity budgets
Albatrosses foraging in the brood-guard phase typically
spent the least amount of their trip (17.0% on average)
in energetically costly flapping flight, though this varied
among individuals from 8.7% (in a grey-headed alba-
tross) to 31.5% in a (black-browed albatross; Fig. 5).
When in flight, birds spent on average 26.2% of flight
time flapping, though this varied greatly among individ-
uals (from 13.3% of flight time in a grey-headed alba-
tross to 46.7% of flight time in a black-browed
albatross). Time spent ‘on-water’ ranged from 11.1% in a
black-footed albatross to 63.9% in a black-browed alba-
tross. Contiguous flapping flight bouts had the shortest
durations of all states, lasting on average for 1.9 min, al-
though one black-browed albatross engaged in a flapping
bout for 101min. Soaring bouts lasted on average for
5.5 min, though one grey-headed albatross had a soaring
bout that persisted for 5.3 h. ‘On-water’ bouts were the

Fig. 4 Comparison of classification accuracy between model-1 and model-2. a An 8-min segment of triaxial accelerometer data from a grey-
headed albatross demonstrates a state misclassification common in Model-2, where ‘on-water’ behavior (green) was misclassified as soaring flight
(blue). b Across species, differences in behavioral budgets derived from HMM-inferred states between Model-1 and Model-2 were negligible
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most persistent behavioral bouts, on average lasting for
24.4 min, though one black-browed albatross spent nearly
9 h continuously on the water.
The slight decrease in accuracy of state classification

from Model-1 to Model-2 had a negligible impact on
species-level activity budgets (Fig. 4b), though changes
in activity budgets were more apparent in some individ-
uals compared to others. For example, the percent time
spent soaring and on the water for most individuals
changed ≤2% when comparing activity budgets con-
structed from Model-1 versus Model-2; however, for
one individual, time spent ‘on-water ‘increased by 7.5%
while time spent soaring decreased by 7.0%. Time spent
in flapping flight changed < 1% for all individuals be-
tween models.

Discussion
HMMs effectively distinguish major movement modes in
albatross
Using data from four species of albatrosses, we demon-
strated that HMMs can provide a robust and objective
means for classifying major movement modes in free-
ranging animals using multi-sensor data from high reso-
lution IMUs. An HMM built on features derived from tri-
axial accelerometer and magnetometer data streams
successfully identified flight mode or ‘on-water’ behavior
with high accuracy (92%). High classification accuracy
across species highlights the flexibility of a single HMM to
distinguish movement modes across functionally and
morphologically similar species. The efficacy of a single
model reflects that the large differences seen in signal
characteristics of the three major movement modes were
likely larger than the variation among and within species.

Opportunities and limitations in interpreting state
assignments from HMMs
Inferring states with HMMs resulted in a fine-scale be-
havioral time series for free-ranging albatrosses. Our
modelling framework targeted three major movement
modes – flapping flight, soaring flight, and ‘on-water’ –
the proportions of which are adjusted by foraging birds
according to environmental conditions and energetic
trade-offs [49, 50]. Albatrosses recognizably have larger
behavioral repertoires than the three states targeted in
our study [51], with increasingly fine-scale behaviors
nested in a hierarchical fashion. There are multiple ap-
proaches for increasing the resolution of behaviors using
an HMM framework: a more complicated 4-, 5-, or even
6-state model could fit increasingly nuanced behaviors,
for example distinguishing resting from sit-and-wait for-
aging, which is used frequently by black-footed and
grey-headed albatrosses [12, 52] and accounts for 35% of
prey consumed by grey-headed albatrosses [52]. Alterna-
tively, one could apply a hierarchical HMMs to clas-
sify behavioral states occurring at different time scales
[32, 33].
However, HMMs can become increasingly complex,

computationally demanding, and difficult to interpret as
states, features, and hierarchical levels are added, par-
ticularly in an unsupervised modeling framework [53].
Alternative analyses that occur after state classification
may facilitate the identification of additional, biologically
relevant states without requiring a more complex (and
computationally time-consuming) modelling framework.
Supplementary layers of data could be used with the
time-series of HMM-inferred states in a decision-tree
analysis to further categorize broad behavioral classes
into increasingly nuanced subclasses. For example, an
ODBA-based activity-level threshold could further clas-
sify the HMM-inferred ‘on-water’ state as active or

Table 4 Species-specific confusion matrices depicting
classification accuracy from Model-1 as the percentage of
correct behavioral assignments for each behavior. Overall
classification accuracies are displayed as estimates with 95%
confidence intervals in parentheses

Black-footed albatross (n = 100)

Visually-assigned

HMM-assigned Flapping Flight Soaring Flight On-Water

Flapping Flight 92.0 18.7 0

Soaring Flight 8.0 81.3 18.2

On-Water 0 0 81.8

Overall accuracy: 84.0 (75.3, 90.6)

Laysan albatross (n = 100)

Visually-assigned

HMM-assigned Flapping Flight Soaring Flight On-Water

Flapping Flight 71.4 1.7 0

Soaring Flight 28.6 98.3 6.1

On-Water 0 0 93.9

Overall accuracy: 95.0 (88.7, 98.4)

Black-browed albatross (n = 242)

Visually-assigned

HMM-assigned Flapping Flight Soaring Flight On-Water

Flapping Flight 94.9 3.6 2.1

Soaring Flight 5.1 96.4 6.5

On-Water 0 0 91.4

Overall accuracy: 94.2% (90.5, 96.8)

Grey-headed albatross (n = 250)

Visually-assigned

HMM-assigned Flapping Flight Soaring Flight On-Water

Flapping Flight 76.9 6.2 0

Soaring Flight 23.1 93.8 7.6

On-Water 0 0 92.4

Overall accuracy: 91.6 (87.5, 94.7)
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passive (i.e. resting) depending on whether ODBA is
above or below a threshold value. Similarly, a time series
of pitch from accelerometer data could be used to iden-
tify diving behavior within ‘on-water’ bouts to better
identify this type of active foraging, which is important
for multiple albatross species [12, 52, 54]. Diving in alba-
trosses is otherwise very hard to distinguish even with
concurrent data on pressure from time-depth recorders
(TDRs) and immersion loggers [55].

Using magnetometers to decode animal behavior: some
practical recommendations
We evaluated the contribution of triaxial magnetometer
data, in addition to triaxial accelerometer data, for classify-
ing major movement modes of albatrosses. Including the
magnetometer-derived feature in the HMM did not
meaningfully improve classification accuracy (Table 3).
While classification accuracy was similar, Model-2 (the ac-
celerometer only model) more frequently misclassified ac-
tual ‘on-water’ behavior as flight behavior, though these
misclassifications occurred at low rates (Table 3, Fig. 4a).
Despite these slight differences in state assignment, behav-
ioral time budgets derived from the two models were
nearly identical (Fig. 4b). This demonstrates that acceler-
ometer data alone can be sufficient for behavioral

classification routines focusing on broad movement clas-
ses, even in species that predominantly soar.
Though we did not find magnetometers improved

classification of major movement modes in albatrosses,
these sensors and others deployed in addition to acceler-
ometers have improved classification accuracy in other
systems [24]. Further, compared to accelerometers, mag-
netometers are much more effective at characterizing
behaviors that involve rotation around the yaw axis (i.e.
heading changes) or that manifest primarily as slow,
periodic changes in orientation [20]. For example, pat-
terns of heading or angular velocity derived from mag-
netometers could be used to describe how albatrosses
adjust soaring flight within their trip (Fig. 6). The fre-
quency and amplitude of cycles that characterize dy-
namic soaring [56] could reveal how birds adjust soaring
when responding to environmental cues, such as wind
variability. Novel metrics derived from magnetometer
data, such as the recently described AVeY (angular rota-
tion about the yaw axis) may prove to be equivalent, or
better, proxies of energy expenditure for soaring birds
than traditional accelerometer-derived metrics such as
ODBA [22], given the energetic cost associated with
body rotations [57].
The benefits of including a magnetometer must be

balanced against both the increased load on the study

Fig. 5 Individual activity budgets during foraging trips of four species of albatrosses tracked during the brood-guard period, constructed from
HMM-inferred states (Model-1)
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animal (larger power demand, requiring a bigger battery)
and the analytical cost (larger data volume, increased
pre-processing time, need for calibration). For species
that can only carry small loads, our results suggest that
accelerometers alone may be sufficient for classifying
broad movement modes using HMMs. Other classifica-
tion studies have also highlighted the utility of acceler-
ometer data over that from other sensors [58].
Nonetheless, for larger species, and particularly for those
with behaviors that occur in a slow, periodic fashion, it
may be beneficial to co-deploy magnetometers with ac-
celerometers on an initial subset of animals to explore
their unique contribution in terms of behavioral infor-
mation. It is worth noting, too, that heading can be ob-
tained from GPS devices sampling at high frequency
(e.g., 1 Hz, 1 s), and indeed these have been deployed on
albatrosses to describe dynamic soaring [59, 60]. How-
ever, the battery consumption of GPS devices is much
greater than that of magnetometers, limiting recording
duration at very high temporal resolution, particularly
given the maximum mass of devices that could be de-
ployed on smaller species without deleterious effects.

Ecological insights
We demonstrated the efficacy of the HMM modeling
framework for classifying major movement modes in

albatrosses from high-resolution sensor data. While our
study was limited to four closely related seabird species,
the basic framework should apply across taxa and envir-
onmental contexts as long as the targeted behaviors in-
volve major differences in body kinematics. Generalized
patterns in movement and locomotion exist across di-
verse taxa, shaped by common principles such as opti-
mal foraging theory and physiological principles that
increase energetic efficiency [61, 62]. Similar kinematics
of locomotion across species and taxa support the po-
tential for behavioral classification models that are built
in one system to be applied in others, with minor adjust-
ments. For example, wandering albatrosses (Diomedea
exulans) are 2-3x the mass and have wing-loadings that
are 1.6–1.8x greater than the species in our study [63]
but their frequency of flapping flight (measured in heave
acceleration) is, on average, 2.5–2.7 Hz [64] – the
same as in the present study (‘hf’ in Fig. 3) and in an
additional study of black-browed albatrosses [45].
Similarly, two studies found that humans, despite
large variability in height and leg lengths, had a pre-
ferred walking frequency of ~ 1.77 Hz [65, 66]. Fur-
ther, Gleiss et al. [62] highlighted similar acceleration
patterns of propulsive movements in species as dis-
parate as southern elephant seals (Mirounga leonina),
whale sharks (Rhincodon typus), and European

Fig. 6 Heading derived from triaxial accelerometer and magnetometer data streams used to characterize dynamic soaring. a Two segments of
heading (in degrees) from different times along a black-browed albatross trip demonstrate varying patterns in soaring flight. b A schematic from
Richardson et al., 2018 demonstrates the periodic nature of dynamic soaring. c A polar histogram of the heading data used in panel (a)
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starlings (Sturnus vulgaris). Applying this concept,
machine-learning methods developed with accelerom-
eter data from domestic dogs Canis lupis familiarus
have been successfully used to predict behavior in
morphologically-similar wild species such as wolves C.
lupus [67] and cheetahs Acinonyx jubatus [68].
That a single HMM in our study effectively captured

broad movement patterns from IMU data across similar
species highlights the potential of this method to disen-
tangle high-resolution behavioral data from free-ranging
animals that are difficult to observe. For many free-
ranging species, and particularly for those that are wide-
ranging like many marine species, classifying behavior
will require an unsupervised approach since obtaining
simultaneous direct observations under a range of envir-
onmental conditions is difficult if not impossible. That
animals adhere, then, to movement patterns conserved
across taxa bodes well for the construction and inter-
pretation of unsupervised movement models from high
resolution sensor data without access to the same level
of direct observations that are seen in HMMs applied to
IMU data from other fields, such as in agricultural re-
search. Indeed, the majority of studies applying HMMs
to high-resolution IMU sensor data involve models built
in a supervised fashion for domesticated animals in
which behavior can be readily and simultaneously ob-
served (e.g., [69, 70]). While there is some opportunity
for collecting direct behavioral observations from free-
ranging animals using animal-borne cameras, this is pri-
marily limited to larger species and recordings will be
limited in duration due to the high-power demand of
video recordings.
Thus, the vast majority of IMU sensor data will come

from free-ranging animals without direct observations.
This, however, does not prohibit all forms of validation,
since behavior can also be inferred without direct obser-
vation. In our study it was possible to identify general
patterns in the sensor data (e.g., Fig. 2) to deduce the
most likely broad-scale behavior that those patterns rep-
resent, based on extensive knowledge of the flight styles
of our study species, an understanding of how activity
and orientation is reflected in patterns from IMU sen-
sors, and previous research on sensor patterns associated
with movement modes in similar species. While this is
not equivalent to direct observations that can ground
truth classification validations, it will likely have to suf-
fice for most studies until cameras decrease in size and
increase in recording duration. The ability to interpret
behavior from sensor data in wild animals without
matching direct observations will in most cases be lim-
ited to broad movement classes that are more easily
interpreted from sensor data, as in our study. Con-
versely, nuanced behaviors or those that are highly vari-
able among individuals and species (e.g., prey capture,

bathing, socializing) will require extensive ground-
truthing with direct observations (e.g. video [71]) or add-
itional sensors (e.g., acoustic recorders [72]).

Key considerations when using HMMs to classify major
movement modes in animals
HMMs have rapidly gained traction in ecology as a mod-
eling framework because they can effectively handle time
series with complex structures and because of the grow-
ing availability of user-friendly and open-source software
and tutorials for their implementation [31, 43, 73]. Fast
algorithms have been developed for fitting HMMs and
estimating hidden states, making them ideally suited to
analyze large data sets obtained from IMU sensors [73].
Further, HMMs are equipped to deal with missing data
on an otherwise regular grid [25, 26], which can be com-
mon in animal movement studies, although the extent of
missing data should be negligible [25]. If gaps in data are
large enough, one would want to either interpolate the
data (if that is appropriate for the type and size of the
missing data), or, treat the contiguous data segments as
separate time series (e.g. [74]).
Using HMMs to classify behavior from high-resolution

sensor data requires considerable knowledge of the study
system to inform the specification of an effective model-
ling structure [53, 73]. Fortunately, many thorough and
comprehensive reviews exist in the literature on best
practices for implementing HMMs in ecology and ani-
mal movement in general [53, 73] and on HMMs in
ecology using accelerometer data [27]. Below, we briefly
outline some targeted considerations and recommenda-
tions informed by our specific experience inferring be-
havioral states from high-resolution data on albatrosses
using the HMM framework:

Unsupervised or supervised
HMMs can be constructed in one of two frameworks:
unsupervised or supervised (or semi-supervised), and the
applications of each for classifying accelerometer data
are described in full in Leos-Barajas et al. [27]. In brief,
unsupervised models are fundamentally data-driven for
determining state-dependent distributions, while super-
vised (or semi-supervised) are informed by labeled data.
The inclusion of pre-classified data can greatly help with
the identification and interpretation of the hidden states,
but it requires obtaining direct observations of the
tagged animals, or manually assigning states to observa-
tions based on prior knowledge. This procedure is often
prohibitively costly, and most animal movement studies
follow the unsupervised approach.
Our approach was to use an unsupervised modeling

framework as no paired data from direct observations
were available. However, even in unsupervised frame-
works, the HMM modeling framework requires some a
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priori information on the targeted behavioral states. For
example, HMMs require the user to define state-
dependent distribution classes (i.e. gamma, von Mises,
Weibull) as well as to provide starting values, informed
by anticipated characteristics of state-dependent distri-
butions, that, if selected well, will reduce the chance the
model will converge on local, rather than global, maxima
[73]. In principle the choice of these initial parameters
shouldn’t have any effect on the estimated state-
dependent distributions; however, in practice they often
do, because the estimation can easily run into numerical
problems if the initial parameters are chosen in an unin-
formed manner. This underscores how critical it is to
have sound kinematic knowledge about the species that
is being modeled in the HMM framework, not only for
model interpretation, but also for model construction
even in an unsupervised fashion.

Defining model performance
There are several approaches for describing the perform-
ance of an HMM to capture features of the data, includ-
ing (1) goodness-of-fit, which reflects how well the
mixture of observation distributions fits the data, and is
often quantified using pseudo-residuals (described in Ch.
6 of Zucchini et al. [25]), and (2) evaluating classification
accuracy by comparing HMM-inferred states with a sub-
set of data manually labelled into “true” behavioral
categories. Typically, checking the normality and auto-
correlation of pseudo-residuals is the primary means of
evaluating model performance for unsupervised HMMs
since there is no data to ground-truth the classification.
These goodness-of-fit measures do not assess how well
the estimated states match the expected behaviors, how-
ever, and classification accuracy may be a better metric
of performance for studies focusing on state classifica-
tion and interpretation [53]. In addition, standard model
selection criteria (such as AIC) tend to favor models
with many states, which describe the data well at the ex-
pense of interpretability [53]. Inspecting the pseudo-
residuals to ensure a reasonable fit is recommended
[73], but when the primary objective is to classify a tar-
geted set of behaviors, the focus of model checking and
model selection should be to identify the model with
state-dependent distributions that are most biologically
interpretable [53, 73].

Using HMMs in multi-species studies
For classification studies involving multiple species, a
single HMM may suffice if the targeted movement pat-
terns are kinematically distinct and the inter-specific dif-
ferences in signal patterns are small. Incorporating
individuals from multiple species in a single model has
many benefits, including the simplicity of running one
model versus many, the buffering of small sample sizes

for individual species by pooling data (e.g., black-footed
and Laysan albatrosses in this study), and potentially in-
creasing the capability to enhance model complexity and
improve state inference [75, 76]. The degree of similarity
in movement patterns among species should be explored
early in analysis by visualizing and comparing histo-
grams of the derived features (e.g., Additional File 3).
However, while histograms may be informative in many
situations, they might not always be sufficient for deter-
mining the best approach; as such, fitting multiple pre-
liminarily models on a subset of data will likely be
helpful. The HMM framework is equipped to include
covariates, and species can be included as a fixed effect
on both state transition probabilities (as in this study)
and state-dependent distribution parameters. Given
the high overlap in feature histograms among species,
we did not include species as a fixed effect on state-
dependent distribution parameters, though given the
lower accuracy of Laysan and grey-headed albatrosses in
the single model, adjusting the HMM in this manner
may improve classification accuracy across species. Ul-
timately, if classification accuracy from a single model is
low or highly variable across species, even after the in-
clusion of a species covariate, individual HMMs fitted to
each species may be worth exploring if sample size
permits.

Feature selection
The selection of a small number of appropriate features
as input to the HMM is critical for maximizing classifi-
cation accuracy [77]. Studies using accelerometer data to
classify animal behavior often use a large number of in-
put features (often > 10, and up to 152, reviewed in Pat-
terson et al. [28]). However, additional features added to
the unsupervised HMM modeling framework rapidly in-
creases model complexity and computational demands
[73]. As described above, each additional feature requires
some a priori knowledge about the anticipated state-
dependent distributions in order to provide sensible
starting values and selecting appropriate starting values
for many features can quickly become prohibitively com-
plex. Futher, recent studies have demonstrated little to
no gain in accuracy from additional features beyond two
to four [28, 58, 78]. Identification of candidate features
from those that are commonly used [42] should be in-
formed by knowledge of animal behavior (e.g., it would
make biological sense to target metrics derived from
heave acceleration for a fluking dolphin versus sway ac-
celeration for a swimming fish) and from tag position on
the animal which affects signal patterns. An initial larger
set of candidate features can then be narrowed down to
an optimal set (the smallest set that most effectively dis-
tinguishes behaviors) by either a manual inspection of
histograms and correlation matrices, as in this study, or
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through a formal forward selection procedure, (e.g. [78]).
If there is minimal knowledge of the behavior of the tar-
geted species to help narrow down candidate features,
alternative classification methods, such as ensemble clas-
sifiers like random forest models that effectively handle
large sets of features, may be a better approach.
The time window chosen to summarize features from

raw sensor data will also have a major influence on clas-
sification accuracy. Since behaviors often operate on dif-
ferent time scales, it can be difficult if not impossible to
identify a single window that effectively captures all tar-
geted behaviors. In order to properly quantify signal pat-
terns in distinct behaviors, time windows should not be
smaller than the typical time for a “unit” of behavior to
occur (e.g., one arc in a dynamic soaring cycle, or one
‘flap’ for flapping behavior), Further, fixed time windows
will inevitably be problematic if behavioral transitions
can occur therein. Sliding windows and overlapping win-
dows can resolve some of these issues [79]; however, for
high-resolution sensor data, this approach results in fea-
ture datasets of a similar size to the raw sensor data. For
datasets like ours that contain hundreds of millions of
rows, this would be prohibitively large to run in an
HMM context. Thus, finding the optimal time window
may require some experimentation in an initial set of
preliminary HMMs run on a subset of data.

Selecting the number of states
A primary consideration in using an HMM as a behavioral
classification procedure is to avoid overfitting a model
with states that are not biologically meaningful. As de-
scribed earlier, model selection criteria tend to favor
HMMs with superfluous states that reflect unaccounted-
for structure in the data, rather than true biological states,
and should be used with care, particularly when the ob-
jective of the HMM is to classify states with certain behav-
iors in mind [53]. Pohle et al. [53] recommend running a
few initial HMMs with varying numbers of states (< 4) to
develop an understanding of how the models identify key
patterns, and then evaluate these, using pseudo-residuals
and biological intuition.

Conclusion
Overall, we demonstrate that accelerometer and magnet-
ometer sensors, paired with HMMs, offer a promising
set of tools that can be applied to a wide range of species
and questions for an improved understanding of animal
behavior and energetics. We constructed a framework
that used a single HMM to predict with 92% accuracy,
the major movement modes of four albatross species.
Magnetometer did not meaningfully improve HMM
classification accuracy but is potentially of much greater
value for quantifying fine-scale details of other behaviors,

such as dynamic soaring and associated energetic
proxies.
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