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A Biologically Interpretable Two-stage Deep Neural
Network (BIT-DNN) For Vegetation Recognition

From Hyperspectral Imagery
Yue Shi, Liangxiu Han, Wenjiang Huang, Sheng Chang, Yingying Dong, Darren Dancey, Lianghao Han

Abstract—Spectral-spatial based deep learning models have
recently proven to be effective in hyperspectral image (HSI)
classification for various earth monitoring applications such as
land cover classification and agricultural monitoring. However,
due to the nature of ”black-box” model representation, how to
explain and interpret the learning process and the model decision,
especially for vegetation classification, remains an open challenge.
This study proposes a novel interpretable deep learning model –
a biologically interpretable two-stage deep neural network (BIT-
DNN), by incorporating the prior-knowledge (i.e. biophysical and
biochemical attributes and their hierarchical structures of target
entities) based spectral-spatial feature transformation into the
proposed framework, capable of achieving both high accuracy
and interpretability on HSI based classification tasks. The pro-
posed model introduces a two-stage feature learning process: in
the first stage, an enhanced interpretable feature block extracts
the low-level spectral features associated with the biophysical
and biochemical attributes of target entities; and in the second
stage, an interpretable capsule block extracts and encapsulates
the high-level joint spectral-spatial features representing the
hierarchical structure of biophysical and biochemical attributes
of these target entities, which provides the model an improved
performance on classification and intrinsic interpretability with
reduced computational complexity. We have tested and evaluated
the model using four real HSI datasets for four separate tasks (i.e.
plant species classification, land cover classification, urban scene
recognition, and crop disease recognition tasks). The proposed
model has been compared with five state-of-the-art deep learning
models. The results demonstrate that the proposed model has
competitive advantages in terms of both classification accuracy
and model interpretability, especially for vegetation classification.

Index Terms—Interpretability, Deep learning, Hyperspectral
images, Classification

I. INTRODUCTION

DEEP learning models have recently been used for hyper-
spectral image (HSI)-based vegetation monitoring appli-

cations, such as the agricultural monitoring [1], [2], and eco-
logical management [3], [4]. However, most of existing deep
learning-based approaches have difficulty in explaining plant
biophysical and biochemical characteristics due to the black-
box representation of the features extracted from intermediate
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layers and the complex design of network architectures in a
deep learning model [5], [6]. Therefore, the interpretability of
deep models for HSI-based vegetation information recognition
has become one of the most active research topics in the
remote sensing community, which can enhance and improve
the robustness and accuracy of models in the vegetation
monitoring applications from the biological perspective of
target entities [7], [8].

Some efforts on interpretable deep learning-based models in
the remote sensing field have been made [9]. The visualisation
of feature representations is the most direct way to improve the
interpretability of a model [10]. This type of methods adds an
additional layer to visualize intermediate features or patterns,
either through maximizing the score of a given unit in a pre-
trained deep learning model or through inverting feature maps
of an intermediate layer back to the input image [11]–[13].
For example, Cai et al. [14] studied the spatial distribution
and significant of the output of each layer, and proposed a
multilayer visualisation approach to simultaneously visualize
the sample distribution, the details of the subpixel level, the
target units and labels hidden in the deep levels of airborne
AVIRIS data and spaceborne Hyperion data. Another way
to improve the interpretability of deep learning models is to
construct a network architecture which can bring the network
an explicit semantic meaning [10], [15]. For example, Lin et al.
[16] proposed an unsupervised model, named as multiple-layer
feature-matching generative adversarial networks (MARTA
GANs), to explore and extract the representation of unlabelled
data during the learning processes. In this model, a generative
model was used to integrate local and global features, and a
discriminative model was set to learn better spectral represen-
tations from HSI images.

Although existing researches are encouraging, plant-specific
biophysical and biochemical attributes and their hierarchi-
cal structures, which provide the most direct evidence in
indicating plant type and growth state, are still hard to be
explained in the learning process. Here, the biophysical and
biochemical attributes in HSI data refer respectively to foliar
components’ information (e.g. nutrient and pigment level) and
plant’s structural information (e.g. the leaf area and angle)
hidden in the spectral domain and the hierarchical structure.
They represent the biological phenotype of the biochemical
and biophysical components integrated in specific plant species
in the joint spectral-spatial domains. The model interpretability
on the hierarchical structure of these attributes is a key factor
to measure the intelligence degree of a deep learning model on
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understanding plant species and growth states in a biological
way. However, the complexity and diversity in the reflectance
radiation of plant canopies make the biological interpretability
of a deep learning model challenging. On one hand, unavoid-
able spectral-spatial perturbations and redundancies in HSI
data always cause difficulty in accurately representing the
features of intermediate layers [17]. On the other hand, it is
hard to capture a hierarchical biological relationship between
the high-level features produced by deeper layers [18].

Generally speaking, a well-designed interpretable model for
HSI-based vegetation information recognition needs to deal
with two issues: 1) how to extract the interpretable features
that are associated with biological attributes of target entities,
2) how to represent the hierarchical structure of biophysical
and biochemical attributes of target entities. To address these
issues, in this study, a novel biological interpretable two-
stage deep neural network (BIT-DNN) model is designed
to achieve accurate recognition on plant information from
HSI data. Emphasizing on the biophysical and biochemical
representation, this model is composed of two stages. The first
stage is designed for low-level spectral feature extraction with
enhanced biochemical and biophysical representations, based
on the prior-knowledge on multi-band spectral transformation
(i.e. vegetation indices approach) for boosting the representa-
tion of vegetation biochemical or biophysical properties in the
applications of vegetation properties retrieval and vegetation
classification. The second stage is designed for characterizing
the relationship and the hierarchical structure of high-level
joint spectral-spatial features by integrating the spatial texture
information with the spectral features extracted from the first
stage. The contribution of this study lies in two-fold: 1) a novel
two-stage deep learning model for accurate vegetation classi-
fication from HSI data; 2) Integration of the prior-knowledge
based spectral-spatial analysis into the deep learning process,
which can improve the performance of the proposed deep
learning model for extracting features associated with the
biological attributes of vegetation entities captured by HSI
data, and enable improved interpretability of decision making.

The rest of this paper is organised as follows: Section II pro-
vides an overview of related work on interpretable deep learn-
ing models for HSI image classification; Section III presents
our proposed interpretable deep neural network (BITS-DNN)
for HSI-based vegetation information recognition; Section IV
introduces the criteria of interpretability assessment; Section
V describes the experimental evaluation; Section VI discuses
the results and interpretability; VII concludes the work.

II. RELATED WORK ON INTERPRETABLE DEEP LEARNING
MODELS FOR HSI IMAGE CLASSIFICATION

The interpretability of a deep learning model should be
considered in the life cycle of data science: date collection,
pre-processing, data modelling, and post hoc analysis [19].
The intrinsic interpretability of deep learning models on
HSI data should address the representation of the reflection
and radiation characteristics of ground entities. Existing deep
learning models enhance their interpretability mainly from
three aspects including: 1) Pre-model interpretability, 2) In-

model interpretability, and 3) Post-model interpretability (post
hoc analysis).

More specifically, the pre-model interpretability enhance-
ment, which is prior to the main model construction stage,
mainly focuses on enhancing the biological attributes of
ground entities hidden in the HSI data. Two of the most
popular approaches are data description standardization and
explainable feature enhancement. For example, Gao et al. [20]
proposed a dimensionality reduction method to explore the
spectral and spatial characteristics of HSI data, this approach
improved the representation of hyperspectral patch alignments
in the main model, and performed well on the small sam-
ple learning. Ribeiro et al. [21] transformed original three
colour channels into an interpretable dataset with a tensor
representing the potential shapes or texture attributes of target
objectives.

The in-model interpretability enhancement refers to using
the causality or physical constraints on the main model to
extract interpretable features with explicit semantic meaning.
For instance, Paoletti et al. [22] developed a deep capsule
network (a convolutional neural network (CNN) based model)
for HSI classification tasks in order to better model the
hierarchical relationships of features. Through the exploitation
of the correlation of spectral-spatial features, this approach
added the so-called ”capsules” structures to a CNN net-
work. The capsules allowed efficient handling of the high
level complexity of entities, including their spatial positions
in the image, associated spectral signatures and potential
transformations. Although such approaches can improve the
interpretability, they could always make these neural networks
deeper. Thus, a large number of filters are added into the net-
work architecture, leading to the vanishing gradient problem
and the limited performance of activations and gradients in
the training progress [23], [24]. From this aspect, the prior
knowledge-based feature enhancement or encoding technology
is an efficient way to uncover the discriminate spectral-spatial
characteristics hidden in the raw hyperspectral images [25].
For instance, in order to formalize and exploit the knowledge
of automatic urban objects identification, Forestier et al.
[26] proposed a knowledge-based deep learning model for
urban object detection. In comparison with traditional CNN-
based approaches, this model provided a better performance
on the interpretation of HSR images through mapping the
territory automatically. Li et al. [27] proposed an LiDAR
(Light Detection and Ranging) technology based deep learning
model to classify forested landslides, in which the prior-
knowledge of object features was manually integrated into
feature extraction layers. As a result, the output features from
the intermediate layers provided interpretable information for
the geological characteristics of the target landslide, which
subsequently achieved a better performance for the forested
landslide classification in steep and rugged terrain.

The post-model interpretability enhancement, which is gen-
erally decoupled from the main model, refers to explaining
the representations of the intermediate outputs. Since Zhao
et al. [28] introduced a principle component analysis (PCA)
based activation function for optimizing deep spectral-spatial
features collected from the HSI classification framework,
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various CNN-based interpretable deep learning models have
been developed, focusing on the exploration and interpretation
of the spectral-spatial pattern of target entities using post-
interpretable approaches. For instance, Yang et al. [29] con-
catenated the pixelwise spectral-spatial features and visualized
the features of fully connected layers in order to extract and
explain the contributions and representations of intermediate
outputs for the final classification. Mou et al. [12] explored
the interpretation of the training process in an unsupervised
fashion, they proposed an encoder-decoder paradigm, in which
the significant information of the input HSI patches was
extracted and represented in a lower dimensional space via a
CNN encoder. Among these methods, the visualisation-based
approach and the interpretable activation optimization are two
most popular post-model interpretability approaches, while the
visualisation-based approach is the most direct way to explore
the high-level representations of the spectral information hid-
den in the deeper layers. Hu et al. [11] provided a detailed
comparison of these two different ways for extracting and
visualizing image features from different layers and encoding
dense features at multiple scales into global features.

However, most of the existing interpretable deep learning
approaches were designed based on the statistical properties
of the sample space [30], [31]. Thus, the learning process
was modelled as a set of joint probability density functions,
and a large number of high-quality labelled training data was
required. These methods neglect the biophysical and biochem-
ical attributes hidden in the redundancy information of the
HSI data, which makes the classification performance highly
depend on the scale and quality of labelled samples. Moreover,
the effect of mixed-pixels, which may degrade the intra-
class variability and exaggerate the inter-class similarity and
produce feature interferences during the learning process, were
often not fully considered [32], [33]. Therefore, most existing
deep learning approaches often have a poor interpretability for
high-level features of HSI data and the salt and pepper noises
on the final classifications [34].

III. THE PROPOSED METHOD: A BIOLOGICALLY
INTERPRETABLE TWO-STAGE DEEP NEURAL NETWORK

(BIT-DNN)
In this study, we consider HSI data as a data cube, X ∈

RH×W×B with a size of H×W ×B, where H, W, and B are
the height, width, and spectral bands of the original data cube,
respectively, and each pixel comprises an individual spectral
signal with B spectral bands. We propose a novel deep learning
framework, a biologically interpretable two-stage deep neural
network (BITS-DNN) to deal with the HSI-based vegetation
information recognition. In the model, we introduce a serial
two-stage feature learning architecture, as shown in Fig.1. This
design can provide great benefits on exploring the feature
transformation during the learning process, which will be
explained below. The proposed BITS-DNN model consists
of input, four core blocks (pre-processing block, enhanced
interpretable feature block named as stage 1, interpretable
capsule block named as stage 2 and activation block) and
output. The detailed design of each core block is described
below.

Fig. 1. The high-level system overview of the proposed biologically inter-
pretable two-stage spectral-spatial deep neural network.

A. The pre-processing block

Considering that the explicit biochemical and biophysical
properties of the vegetation classes are in different band ranges
[35], [36], we split HSI images into 7 slices: blue (< 515nm),
green (515nm − 600nm), red (600nm − 680nm), red-edge1
(680nm− 710nm), red-edge2 (710nm− 750nm), red-edge3
(750nm− 790nm), near infrared (> 790nm).

B. Stage 1 – An enhanced interpretable feature block

The enhanced interpretable feature block named as Stage
1, is the first stage of feature learning and developed to
extract and generate interpretable low-level features. Fig.2
illustrates the architecture of this block. It includes two one-
dimensional (1D) convolution layers, two fully connected
(FC) layers (FC1 and FC2) and a feature enhancement layer.
The two 1D convolution layers following with two fully
connected layers are used for extracting the pixel-wised low-
level features from the HSI slices, and the feature enhanced
layer is designed to enhance the feature representations on
vegetation biochemical and biophysical attributes and improve
the model’s interpretabilities.

As shown in Fig.2, the low-level features extracted from
the fully connected layers after concatenation are further pro-
cessed in the feature enhancement layer through mapping the
low-level features into the multi-variate features using the pre-
defined binary model and triangular index model, respectively.
The proposed multi-variate features, which is inspired by the
effectiveness of vegetation indices approaches [37]–[39] in
vegetation properties retrieval and vegetation classification,
is designed to facilitate inter-comparisons of the low-level
features and enhance the homogeneous terrestrial biochemical
activities and canopy biophysical variations between different
features. Introducing multi-variate feature transformations into
deep learning models will benefit the enhancement of the
feature representations on vegetation biochemical and biophys-
ical properties, thus improving the vegetation classification
performance and the interpretability of models.

The detailed information about the convolutional layer, the
fully connected layer and the feature enhancement layer in this
block is described as follows:

1) 1D-convolutional layer: In order to extract the radi-
ation magnitude of the central bands and spectral texture
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Fig. 2. The architecture of the enhanced interpretable feature block in the
two-stage learning process, Stage 1. This stage is to extract and generate
interpretable low-level spectral features.

between the central bands and their neighbour bands, two
1D-convolutional layers (i.e. conv1 and conv2 layer shown in
Fig.2) are introduced into the proposed network. The pixel-
wise features will be extracted through convolution operations
on HSI images using a series of filters with various reception
fields, formulated as follows:

Cj
p =

rm∑
l=1

W j
l I

p
l (1)

where rm is the size of the receptive field, Cj
p is the layer

output of the pth neuron with the jth filter, W j
l is the weight

of the lth unit of the jth filter, and Ipl is the value of the lth

pixel within the patch corresponding to the pth neuron.
2) The fully connected layer: Here, two fully connected

layers (FC1 and FC2) are used to non-linearly integrate
the 1D-convolutional features into the class-specific low-level
features. For an n-class classification task, the output size of
the second fully connected layer (FC2) for each band slice will
be n. After concatenation, the extracted low-level features for
each pixel of an HSI image, denoted as X1

out, has a size of
1 × (m · nclass), where m is the total number of band slices
(m = 7 in this study). For an HSI image with a spatial size
of H × W , the output of the second convolutional layer is
X1

out ∈ RH×W×(7·nclass).
3) Feature enhancement layer: In order to facilitate inter-

comparisons of the single low-level features and enhance
the homogeneous terrestrial biochemical activities and canopy
biophysical variations, the low-level features extracted from
the HSI data, X1

out, are further processed with two feature
transformation models, the pixel binary index model and
the triangular index model, borrowed from the concept of
vegetation indices [6].

The binary index model is designed to conduct normalized
differences between any two of the 7·nclass low-level features,
the transformed two-variate feature can be activated in the
learning process if its componential low-level features in X1

out

have homogeneous responses to a specific class. The binary
index model is calculated as follows:

X2,k
out =

X1,i
out −X

1,j
out

X1,i
out +X1,j

out

i 6= j ∈ [1, C2
7·nclass

], k ∈ [1, C2
7·nclass

]

(2)

where X2,k
out is the output of the kth feature combination based

on i and j features in in X1
out. For each pixel of an HSI

image, the output from the binary index model, X2
out, has a

dimension of 1 × C2
7·nclass

. For an HSI image with a spatial
size of H×W , the output from the binary combination model
is X2

out ∈ RH×W×C2
7·nclass .

The triangular index model is proposed to measure the
geometric area of the triangular composed by any three of the
7 · nclass low-level features in the feature space. The trans-
formed three-variate feature would be activated in our model
if its componential three low-level features have consistent
direction in the feature space. The triangular index model is
defined as follows:

X3,k
out =

|j − h| × (X1,i
out −X1,h

out)− |i− h| × (X1,j
out −X1,h

out)

2
i 6= j 6= h ∈ [1, C3

7·nclass
], k ∈ [1, C3

7·nclass
]

(3)

where, X3,k
out, is the output of the kth three-variate feature

combination based on i,j and h features in X1
out. The final

output from the triangular index model for each pixel of an
HSI image, denoted as X3

out, has a dimension of 1×C3
7·nclass

.
For an HSI image with a spatial size of H ×W , the output
from the triangular index model is X3

out ∈ RH×W×C3
7·nclass .

Finally, for each pixel of an HSI image, the output of the
enhanced interpretable feature block, denoted as Xout, is the
concatenation of X1

out, X
2
out, X

3
out. For an HSI image with a

spatial size of H×W , the output of the feature maps from the
first stage feature learning is X

(1)
out = [X1

out,X
2
out,X

3
out, ] ∈

RH×W×FN , where FN is the total number of features for
each pixel after feature concatenation, equals to 7× nclass +
C2

7·nclass
+ C3

7·nclass
.

C. Stage 2 – An interpretable capsule block
The interpretable capsule block is the second stage of

feature learning and designed to better model the hierarchi-
cal structure of the biophysical and biochemical attributes
of vegetation entities in order to achieve highly accurate
classification and high interpretability. It consists of a 2D-
convolutional layer, a capsule layer and a classification capsule
layer (see Fig.3). Specifically, the output from the spectral-
derived enhanced interpretable feature block (Stage 1) would
be firstly input into a 2D-convolutional layer, in which the
spatial texture information provided by the enhanced feature
maps are integrated with their spectral-derived information,
and then the jointly spectral-spatial features are outputted.
Subsequently, the spectral-spatial feature maps would be fed
into a capsule layer, where the spectral-spatial features would
be encapsulated into a series of featured tensor as high-level
features. Finally, in order to use these high-level features
for classification, a class capsule layer is designed to output
membership scores of certain feature vectors belonging to
specific labels (classes). The detailed information about the
layers in the block is described in the following subsections:

1) 2D-convolutional layer: Here, we introduce a 2D-
convolutional layer (named as Conv3) to extract the spatial
texture information. Since the convolution operation is applied
on the spectral feature maps extracted from the enhanced
interpretable feature block, it will generate joint spectral-
spatial features. In other words, the convolutional operation
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Fig. 3. The architecture of the interpretable capsule block in the two-stage
learning processing, Stage 2. This stage is designed to better model the
hierarchical structure of the biophysical and biochemical attributes of the
target ground entities in order to achieve high accuracy and interpretability.

can be regarded as a feature updating process to improve the
representation of vegetation information through integrating
spatial structural information and the pixel-wised spectral
features. In this layer, we choose a total of K(1) filters, each
of them has the same dimension of k × k × FN . The input
of this layer is the combined spectral feature sets from Stage
1, X

(1)
out, and its output is Oout ∈ RH(1)×W (1)×K(1)

, where
H(1) and W (1) are the height and weight of feature maps,
respectively.

2) Capsule layer: To learn higher-level features from the
lower-level spatial-spectral features, the convolution layers
are often followed by a pooling layer. However, the pooling
layer does not model the spatial hierarchical representation of
features, and may lead to a poor performance in characterizing
and detecting the pose relationship between target classes [40].
Therefore, we do not use the pooling layer in this study. A
previous study [22] has shown that the capsule layer can be
used for extracting and detecting the instantiation parameters
(such as pose and orientation) of spectral-spatial features.
Therefore we add a capsule layers after the 2D convolutional
layer to learn higher-level spatial-spectral features from the
lower-level features extracted from Conv3 and preserve the
hierarchical pose (translational and rotational) relationships
between objects. The capsule layer has multiple capsules, and
each capsule is a set of neurons that individually activate for
various properties (such as position, size, deformation, texture
etc.) of a type of objects. A capsule will output an activity
vector rather than scalar-values, and use the length of the
vector to represent the probability that an entity exists and
its orientation to represent the properties of the entity.

In this study, the capsule layer comprises Z convolutional
capsules, and each capsule contains K convolutional neurons
with a kernel of k× k×K(1). Its working mode is similar to
CNN kernels. It takes the low-level spectral-spatial features,
Oout, extracted from the Conv3 layer as input, and uses Z
capsules to detect the specific biophysical and biochemical
features and learn the pose relationship between features.
The mth capsule will apply its K convolutional neurons
over Oout to generate an output vector u(m) ∈ RK =

[u
(m)
1 , u

(m)
2 , · · · , u(m)

K ]. The orientation of the output vector
represents the spatial relationships of entities(or features),

while its length represents whether the specific entities (or
features) that a capsule is looking for exist. These encapsulated
output vectors represent various attributes of the same entity,
such as orientation, pose, size, biochemical or biophysical
components in the HSI data. In addition, these feature tensors
preserve much more information of biophysical and biochem-
ical correlation relationships between the extracted spectral-
spatial features and the target entities. To represent the length
of the output vector as a probability value, it is often scaled
down with a nonlinear squash function, formulated as follow:

ŭm =
||um||2

1 + ||um||2
· um
||um||

(4)

where ŭ(l)m is the scaled activity vector. This function can be
considered as a nonlinear activation function to make short
vectors get shrunk to almost zero and long vectors get shrunk
to a value slightly below 1.

The final output of the capsule layer, is denoted as X
(2)
out ∈

RH(2)×W (2)×Z×K , where H(2),W (2) are the height and the
width of feature maps, respectively.

3) Class-capsule layer: The class-capsule layer is designed
to connect the outputs of Z capsules, X(2)

out, as the encoder
units of target entities. In this work, the length of final
encoder units is the number of classes, and the width of
which is the number of the capsules (i.e. Z). For each input
patch, the activity vectors will be encoded as the probability
of belonging to corresponding entities. For this purpose, a
dynamic routing algorithm proposed by Sabour et al. [40]
is employed to connect the current layer with the previous
capsule layer in order to iteratively update the parameters
between these two layers. The aim of this step is to provide
a well-designed learning process that not only connects the
spectral information between capsules but also highlights the
part-whole spatial correlation through reinforcing the connec-
tion coefficients between the different layers, and subsequently
achieving accurate predictions. Mathematically, the encoder
unit û(l)n|m in layer l is formulated as:

û
(l)
n|m = W (l)

m,n · ŭ(l−1)m +B(l)
n (5)

where ŭ(l−1)m is the mth capsule outputs in layer l − 1, B(l)
n

is the biases of the nth capsule in layer l , and W
(l)
m,n is a

transformation matrix that connects the mth capsule output in
layer l−1 with the nth capsule output in layer l. This formula
allows the lower level capsules in layer l−1 to make prediction
for superior capsules in layer l, improving the representation
of the extracted features in biochemical-biophysical domain.
Subsequently, a dynamic routing coefficient c(l)m,n is introduced
to reinforce the prediction agreement during the process of
calculating the input s(l)n of capsule n in layer l:

s(l)n =

z(l−1)∑
m

c(l)m,n · û
(l)
n|m (6)

where c(l)m,n measures the contribution of the mth capsule in
layer l−1 to activate the nth capsule in layer l, the sum of all
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the routing coefficient c(l)m,n must be 1, and c
(l)
m,n is obtained

by:

c(l)m,n =
ebm,n∑z(l)

i ebm,i

(7)

where bm,n is the log prior which indicates the correlation
relationship between the mth capsule in layer l − 1 and the
nth capsule in layer l, it is initialized as 0 and is iteratively
refined as follow:

blm,n = bl−1m,n + vl−1n · û(l−1)n|m (8)

where vln is the activity vector of the capsule layer l, which
can be calculated based on the function as follows:

vln =
||s(l)n ||2

1 + ||s(l)n ||2
· s

(l)
n

||s(l)n ||
(9)

Conceptually, through the dynamic routing algorithm, the
similar prediction from the capsule layer will be grouped,
and subsequently capturing the robust prediction with clearer
biochemical and biophysical meaning. Finally, the prediction
performance can be calculated by the loss function (L) as
follows:

Lmargin =

nclass∑
i

Ti max (0, edge+ − ||vln||2)+

µ(1− Ti)(max(0, ||vln|| − edge−)2)

(10)

where Ti is 1 when class i is present in the data, otherwise is
0. The edge+ and edge− works as the edge which forces the
length of the vln into a set of small interval values to minimize
the loss. Here the edge+ is set to 0.9 and edge−is set to 0.1,
µ is a regularization parameter, which is set to 0.5 in order to
avoid over-fitting and reduce the effect of the negative activity
vectors.

D. The activation block
The activation block consists of two fully connected layers

which use the output activity vectors of the spectral-spatial
feature from the capsule block as input to reconstruct the
classification map, represented as Ỹ ∈ RH×W . The proposed
model mininizes the difference between the desired classi-
fication map from labelled data, Ȳ, and the reconstructed
classification map, represented as Ỹ. Meanwhile the model
also encourages the capsule block to encode the most relevant
instantiation parameters of the input data by mininizing the
loss function defined in Eq.(10). The final loss function with
Adam optimizer is defined as follow:

Lend = Lmargin + θ · Lreconstruction (11)

where, Lreconstruction = ‖Ỹ − Ȳ‖ is the mean square error
(MSE) loss between the desired outputs and the network’s
reconstructed (predicted) outputs, and θ is the learning rate
which is set to 0.0005 to balance the weights between Lmargin

and Lreconstruction during the reconstruction of loss.

IV. INTERPRETABILITY ASSESSMENT METHODS

We assess the interpretability of the proposed model from
three aspects: pre-model, in-model, and post-model inter-
pretability.

A. Pre-model interpretability

In order to evaluate the pre-model interpretability of the
proposed pre-processing block, two standard metrics, Shannon
entropy and Dunn index, are used to measure and visualize
the quality of labelled clusters. Shannon entropy measures the
uncertainty and disorder within the information represented
by the intermediate features; and the entropy for a class C is
defined as:

E(C) = −
M∑
i=1

p(xi) · log(p(xi)) (12)

where p(x) is the contribution (or probability) of the feature
xi to the class C. A low-entropy implies a high-concentration
of the feature set within the same class. Dunn index is defined
as the ratio of the minimum inter-class distance and the
maximum intra-class distance, thus,

Dindex = min
1≤i≤m

min
1≤j≤m,i6=j

σ(Ci, Cj)

max
1≤k≤m

∆k
(13)

where σ(Ci, Cj) is the inter-class distance defined by the
L2-norm distance between the class center (mean feature
sequence) of class Ci and Cj , and ∆k = max

x,y∈Ci

d(x, y) is the

intra-class distance defined by the L2-norm distance between
any two samples x and y with the same label. A larger Dunn
index suggests a better clustering because it indicates a smaller
intra-class distance or inter-class distance.

B. In-model interpretability

In our proposed model, the feature enhanced layers de-
scribed in Section 3.2 and the capsule layers described in
Section 3.3 are the intrinsically interpretable blocks, which
consider the physical mechanism of the spectral combinations
and the biological hierarchical interactions among the ex-
tracted spectral-spatial features, respectively. In this study, the
results during the learning process will be stepwise outputted
in order to evaluate the in-model interpretability.

C. Post-model (Post Hoc) interpretability

To evaluate the post model interpretability, auxiliary data
are used to explain the biophysical or biochemical meanings of
the intermediate features generated in the hidden layers of the
model. This is decoupled from the main model. Thus, it is only
used to evaluate the interpretability of the intermediate layers
without affecting the performance of the main model. In this
study, considering the difference of two typical applications,
landcover classification and crop disease detection, we have
selected two different types of auxiliary data for the post hoc
analysis.

1) Vegetation indices data
For land cover classification tasks, we have used vege-

tation indices data which are biochemical- and biophysical-
associated. Vegetation indices designed to highlight a partic-
ular property of vegetation have proven to be sensitive to
certain biological attributes (e.g. indices listed in Table I).
They are calculated by combinations of surface reflectance
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TABLE I
THE BIOPHYSICAL- AND BIOCHEMICAL-ASSOCIATED VEGETATION

INDICES USED IN THIS STUDY

Vegetation index Relate to Formula Ref

Normalized Difference
Vegetation Index (NDVI) Vegetation coverage R760−R560

R760+R560
[41]

Photochemical Reflectance
Index (PRI) Photosynthetic efficiency R570−R531

R270+R531
[37]

Red-edge Chlorophyll
Index (CIred-edge) Chlorophyll content R760

R560
− 1 [39]

Normalized Difference
Water Index (NDWI) Water R860−R1240

R860+R1240
[42]

Triangular Vegetation
Index (TVI) Green LAI 0.5[120(R750−R550)− 200(R670−R550)] [38]

Structural Independent
Pigment Index (SIPI) Pigment content R800−R445

R800+R680
[43]

Plant Senescence
Reflectance Index (PSRI) Nutrient R678−R550

R750
[44]

Normalized Pigment Chlorophyll
ratio index (NPCI) Chlorophyll density R680−R430

R680+R430
[45]

Optimized Soil Adjusted
Vegetation Index (OSAVI) soil background R760−R560

R760+R560+0.16
[46]

at two or more wavelengths. Here we chose 10 popular
vegetation indices. In order to quantify the biological attributes
of the intermediate features extracted in the deep layers, the
coefficients of determination (R2) between these features and
the vegetation indices were calculated based on univariate
correlation analyses.

2) Biological parameters data
For the crop disease detection, we employed measured

biological parameters, including leaf area index (LAI), leaf
chlorophyll content (CHL), leaf anthocyanin content (ANTH),
nitrogen balance index (NBI), and percentile dry matters
(PDM). They were synchronously measured at the same place
where the HSI measurements were collected. In order to
ensure the sample scale and spatial resolution of HIS data are
consistent, a total of 72 sampling sites with 0.05m × 0.05m
subplots were set. The CHL, ANTH, and NBI were measured
with Dualex Scientific sensor (FORCE-A, Inc. Orsay, France),
a hand-held leaf-clip sensor designed to non-destructively
evaluate the content of pigments and epidermal flavonol. For
the LAI acquisition, LAI-2200 Plant canopy analyzer (Li-
Cor Biosciences Inc., Lincoln, NE, USA) was used. For the
PDM measurement, 10-12 leaves for each sampling subplot
were weighed with an electronic balance (Haozhuang, Inc,
Shanghai, China) and dried in an electric blowing drying oven
(DGG-9240A, Senxin, Inc, Shanghai, China) over 10 hours.
After drying, the percentile dry matter (PDM) of the leaves
was calculated by the ratio of dry and fresh weight.

In order to find the linear correlation between model learned
spectral features and these biological parameters, a correlation
analysis is used. The coefficient of determination (R2) is used
to assess the interpretability of such features in the learning
process.

V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of the proposed model, we
have applied it to four real datasets (see Table II) and have
compared it with five state-of-the-art deep learning models
for HSI classification and crop disease detection tasks. These
models include 1) deep fully convolutional neural network
(DFCNN) [47], 2) vectorized convolution neural networks
(VCNNs) [48], 3) spectral-spatial convolutional neural net-
work (SSCNN) [49], 4) spectral-spatial residual network

(SSRN) [50] and 5) the capsule network (CapsNet) [22].
The detailed information of experimental configurations and
evaluation is described below.

A. HSI data description

Four HSI datasets including three public available datasets,
Indian Pines (IP) dataset, Pavia centre (PC) dataset, University
of Houston (UH) dataset and an experimentally measured
Wheat Yellow Rust (WYR) dataset, are used for the evaluation
and validation of the proposed model. Specifically, the IP
dataset is used for testing our model on vegetation species
classification, the PC dataset is used for the task of landcover
types classification, the UH dataset is used for the task of
urban scene recognition, and the WYR data is used for the
task of crop diseases diagnosis. The detailed descriptions of
these two datasets are presented as follows:

1) IP dataset
The IP dataset was collected by the Airborne Visible and

Infrared Imaging Spectrometer (AVIRIS) sensor in 1992,
which covers different plant species in north-western Indiana,
USA, and contains a total of 16 ground truth classes. This
dataset involves 224 hyperspectral bands in the range of
400 nm ∼ 2500 nm with a size of 145 × 145 pixels. The
detailed information about the IP data set can be found in
[51].

2) PC dataset
The PC dataset was collected by the ROSIS sensor, and

covers a total of 9 landcover types in at Pavia, Northern Italy.
This dataset involves 102 hyperspectral bands with a size of
1096× 715 pixels.

3) UH dataset
The UH dataset was collected by the Compact Airborne

Spectrographic Imager (CASI) over the urban areas with 15
labelled urban scene, Houston, USA. This dataset involves 144
hyperspectral bands in the range of 346 nm to 1046 nm with
a size of 1905× 349 pixels.

4) WYR dataset
The WYR dataset was collected by the DJI S1000 UAV

system (SZ DJI Technology Co Ltd., Gungdong, China) based
on the UHD-185 Imaging spectrometer (Cubert GmbH, Ulm,
Baden-Warttemberg, Germany) in 2018. This dataset involves
the 125 bands from visible to near-infrared bands between
450nm and 950nm with a size of 16279× 14762 pixels. All
the images were obtained at a flight height of 30 m, with a
spatial resolution close to 2cm per pixel. Hyperspectral images
were manually labelled based on the ground synchronization
survey of the occurrence conditions of yellow rust.

B. Evaluation metrics

To measure the effectiveness of the proposed model, we
have used the following metrics: the overall accuracy (OA)
and average accuracy (AA) [52], sensitivity and specificity
[53], kappa coefficient [54] and execution time. In addition,
McNemar’s chi-squared (χ2) test [55] was used to evaluate the
statistical significance of the accuracy differences between the
proposed method and the state-of-art deep learning models.
The McNemar’s statistic test is described as
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TABLE II
THE NUMBER OF AVAILABLE SAMPLES IN THE IP, PC, UH, AND WYR

DATASETS

IP dataset PC dataset UH dataset WYR data set
No. Plant species Samples Landcover types Samples Urban scence Samples Crop status Samples
1 Alfalfa 46 Water 824 Healthy grass 921 Health 10842
2 Corn-notill 1428 Trees 820 Stressed grass 746 Yellow rust 7682
3 Corn-min 930 Asphalt 816 Synthetic grass 423 Others 3613
4 Corn 237 Self-Blocking Bricks 808 Trees 514
5 Grass/Pasture 483 Bitumen 808 Soil 285
6 Grass/Trees 730 Tiles 1260 Water 468
7 Grass/Pasture-mowed 28 Shadows 476 Residential 682
8 Hay-windrowed 478 Meadows 824 Commercial 589
9 Oats 20 Bare Soil 820 Road 574

10 Soybeans-notill 972 Highway 216
11 Soybeans-min 2455 Railway 546
12 Soybeans-clean 593 Parking Lot 1 318
13 Wheat 205 Parking Lot 2 257
14 Woods 1265 Tennis Court 108
15 Bldg-Grass-Tree-Drives 386 Running Track 45
16 Stone-steel towers 93
17 Background 10776

χ2 =
(|f12 − f21| − 1)

2

f12 + f21
(14)

where f12 stands for the number of pixels classified cor-
rectly by the first classifier and wrongly by the second classi-
fier and f21 stands for the number of pixels classified correctly
by the second classifier and wrongly by the first classifier.

C. Model evaluation

To evaluate the proposed model, we set up four experiments
on four widely used datasets: (1) Plant species classification
using the IP dataset, (2) Land cover classification using the
PC dataset, (3) Urban scene recognition using the UH dataset
and (4) Crop stress detection using the WYR dataset. We test
our model on both large samples and small samples. For the
large sample testing, two-thirds of all labelled pixels from the
whole dataset were randomly selected as the training dataset,
and the remaining pixels were used as the testing dataset. For
the small sample testing, 10% to 80% of all labelled pixels
were randomly chosen as the training set, respectively, and
20% of the pixels in the dataset are chosen as the test set. The
small sample testing was used to asses the effect of sample
size on the model performance, while the size effect of input
patches was investigated through choosing four different size
configurations, 5 × 5 pixels, 7 × 7 pixels, 9 × 9 pixels and
11× 11 pixels.

We compared the proposed model with five state-of-the-art
deep learning models, DFCNN [47], VCNNs [48], SSCNN
[49], SSRN [50] and CapsNet [22] in these experiments.

1) Experiment One: Plant species classification using In-
dian Pines (IP) dataset.

In this experiment, we evaluate the performance of the
proposed method on the plant species classification using the
IP dataset.

Firstly, we test the proposed model on large samples with
2/3 of all labelled pixels as its training set. Table III lists
the results of overall accuracy (OA) and standard deviation
(STD) of the proposed approach and its five competitors with
four different size configurations for input patches. It can be
found that the proposed approach consistently outperforms
its competitors in terms of average classification accuracy.
Compared with the best model among the five competitors,
the proposed approach achieves an improvement up to 5.92%
for 5 × 5, 3.84% for 7 × 7, 4.86% for 9 × 9 and 5.75% for

TABLE III
THE OVERALL ACCURACY (OA) AND STANDARD DEVIATION (STD) OF

PLANT SPECIES CLASSIFICATION ON THE IP DATASET FROM OUR
PROPOSED MODEL AND ITS FIVE COMPETITORS WITH FOUR DIFFERENT

SIZE CONFIGURATIONS FOR INPUT PATCHES.(NOTE: THE BEST SIZE
CONFIGURATION FOR EACH MODEL IS HIGHLIGHTED IN BOLD.)

5 × 5 7 × 7 9 × 9 11 × 11
Class OA(%) Std(%) OA(%) Std(%) OA(%) Std(%) OA(%) Std(%)

Proposed 96.57 3.41 98.05 2.45 97.24 3.42 97.14 3.57
DFCNN 39.31 7.92 46.32 5.13 44.38 8.48 42.75 7.35
VCNNs 69.61 5.56 70.28 5.45 72.03 6.43 70.19 7.03
SSCNN 82.15 5.28 88.80 4.89 85.86 4.80 81.97 4.60
SSRN 90.13 5.40 92.69 5.95 92.38 4.41 91.39 4.30

CapsNet 90.02 3.56 94.21 4.52 91.00 2.05 90.27 3.76

TABLE IV
EXECUTION TIME AND THE NUMBER OF MODEL PARAMETERS OF THE

PROPOSED MODEL AND ITS COMPETITORS BASED ON THE OPTIMAL PATCH
SIZE CONFIGURATION FOR IP DATA

Proposed DFCNN VCNNs SSCNN SSRN CapsNet
Parameters 91057 102052 41862 113548 74956 83761

Time(s) 355.6 310.8 217.4 345.8 371.6 289.2

TABLE V
PLANT SPECIES CLASSIFICATION OF THE IP DATASET FROM SIX MODELS

WITH THE OPTIMAL PATCH SIZE CONFIGURATION FOR EACH MODEL.

class Proposed DFCNN VCNNs SSCNN SSRN CapsNet
Alfalfa 98.21 62.54 80.17 75.24 98.11 95.41

Corn-notill 98.43 56.25 75.28 92.27 95.25 95.85
Corn-min 98.75 41.25 82.17 88.12 96.71 96.5

Corn 97.28 82.55 69.24 84.55 93.65 96.11
Grass/Pasture 98.81 92.17 88.32 86.54 95.00 98.31
Grass/Trees 96.65 31.54 67.21 72.51 92.95 94.25

Grass/Pasture-mowed 99.18 88.45 92.81 89.25 94.41 98.46
Hay-windrowed 99.54 13.98 67.10 56.58 96.24 99.43

Oats 98.13 55.91 68.25 97.21 96.25 97.47
Soybeans-notill 99.44 88.28 66.11 95.18 96.21 95.35
Soybeans-min 98.78 55.42 81.25 93.51 95.55 96.81

Soybeans-clean 99.42 91.24 72.15 96.66 93.88 93.65
Wheat 99.11 97.41 91.24 92.45 94.51 97.48
Woods 97.25 49.28 92.31 96.24 95.25 95.51

Bldg-Grass-Tree-Drives 97.68 88.44 82.28 90.38 93.21 96.58
Stone-steel towers 97.24 82.38 93.35 92.12 95.35 95.46

Background 97.67 33.45 65.71 88.14 90.37 92.41
OA(%) 98.05 46.32 72.03 88.8 92.69 94.21
AA(%) 98.33 65.28 78.48 87.61 94.84 96.11
Kappa 0.853 0.498 0.781 0.825 0.834 0.811

11×11 patch size configurations, respectively. Meanwhile the
standard deviations produced by the proposed approach are
substantially lower than those produced by the competitors
for most of cases. Therefore, the proposed model has a lower
uncertainty in the learning process. It can also be found that
all the models are not very sensitive to these four patch sizes
in terms of OA. The optimal patch size is 7 × 7 for the
proposed model, DFCNN, SSCNN, SSRN and CapsNet, 9×9
for VCNNs. In terms of execution time, the proposed model
does not show advantages over its competitors. As shown in
Table IV, the proposed model is only faster than SSRN, this
may be due to a large number of model parameters and the
relevant complexity of the network architecture.

Secondly, we analysed the classification performance of
the proposed model on each plant type in details. Table V
provides a detailed comparison on the accuracy of each of 17
classes between the proposed model and five competitors with
their own optimal patch size configuration. Compared with its
competitors, the proposed model achieves the best classifica-
tion performance on all classes. In terms of the classification
accuracy, the proposed model ranks in first place, reaching
the OA of 98.05% and AA of 98.33%, with a Kappa value of
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TABLE VI
MCNEMAR’S CHI-SQUARED (χ2) TEST WITH ASSOCIATED PROBABILITY

VALUES (P ) FOR EVALUATING THE STATISTIC SIGNIFICANCE OF
ACCURACY DIFFERENCES IN CLASS-WISE PREDICTIONS BETWEEN PAIRED

MODELS ON THE IP DATASET. ∗ ∗ ∗ = P ≤ 0.01, ∗∗ = P ≤ 0.05, ∗ =
P ≤ 0.1.

Class Proposed
vs. DFCNN

Proposed
vs. VCNNs

Proposed
vs. SSCNN

Proposed
vs. SSRN

Proposed
vs. CapsNet

Alfalfa 30.75*** 25.56** 24.72** 22.19** 17.40**
Corn-notill 41.98*** 37.58*** 29.88*** 25.10*** 19.09**
Corn-min 36.83*** 27.66*** 27.50*** 20.61** 17.21**

Corn 22.21** 21.17** 15.21** 12.50** 12.46**
Grass/Pasture 33.23*** 27.66*** 20.91** 18.22** 17.10**
Grass/Trees 33.58*** 26.11*** 23.59*** 18.75** 14.93**

Grass/Pasture-mowed 40.20*** 30.53*** 27.24*** 20.40** 15.76**
Hay-windrowed 43.17*** 33.97*** 26.64*** 24.02*** 17.13**

Oats 40.02*** 34.34*** 28.11*** 21.76** 20.38***
Soybeans-notill 36.99** 27.50*** 27.45*** 22.03** 20.18***
Soybeans-min 26.02** 25.25** 22.35** 21.43** 15.81**

Soybeans-clean 36.53*** 28.37*** 27.10*** 20.86** 20.18***
Wheat 27.99** 23.45** 19.19*** 19.38** 18.51**
Woods 26.72** 19.35** 16.81** 18.48** 17.86**

Bldg-Grass-Tree-Drives 28.85*** 25.81*** 19.41*** 16.21** 11.83**
Stone-steel towers 12.46** 10.32* 9.95* 8.63* 6.91*

Background 11.18* 11.76* 16.94* 15.97* 10.24*
Overall 39.56*** 24.46*** 23.19*** 14.21** 14.32**

0.85. The CapsNet has the second best classification perfor-
mance (OA=94.21%, AA=96.11%, Kappa=0.81). Following
the CapsNet, the SSRN achieves an OA of 92.69% and an AA
of 94.84% with a Kappa value of 0.83. In contrast, the DFCNN
and VCNNs which do not consider the joint spectral-spatial
information, perform much worse, especially on identifying
the categories of Hay-windrowed and Grass/Trees.

To evaluate the statistic significance of the accuracy differ-
ences between two-paired models, we have also conducted
McNemar’s chi-squared (χ2) test, as shown in Table VI.
The results show that the improvement of our proposed
model in overall accuracy against the best model of its
five competitors, CapsNet, is statistically significant, with
χ2 = 14.32(p ≤ 0.05) (see the last column and last row
of Table VI). The differences in overall accuracy between
the proposed model and all other competitors are statistically
significant, with χ2 = 39.56(p ≤ 0.01) for the proposed
vs. DFCNN, χ2 = 24.46(p ≤ 0.01) for the proposed vs.
VCNNs, χ2 = 23.19(p ≤ 0.01), χ2 = 14.21(p ≤ 0.05)
for the proposed vs. SSRN. This further confirms that the
classification accuracy improvement of the proposed model
on IP dataset over its competitors is statistically significant.

Fig. 4 illustrates a detailed comparison of the sensitivity
and specificity of each class between six models on the IP
dataset. It can be observed that the proposed approach achieves
the highest sensitivity and specificity on identifying all of
the vegetation categories except the soybeans-clean, which
indicates that the proposed approach outperforms all the com-
petitors in reducing the leakage and misclassification. Overall,
the proposed approach outperforms the competitors with a
considerable improvement in the plant species classifications.

Fig. 5 demonstrates the classification maps of the proposed
model and five competitors which are corresponding to optimal
patch size configurations listed in Table V. Because only the
spectral signature of each pixel is used, there are noticeable
“salt and pepper” noises found in the classification maps
produced by the DFCNN and VCNNs (Fig. 5c and 5d). As
a conventional neural network model, the SSCNN produces
some misclassification in class boundaries (Fig. 5e). The
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Fig. 4. A comparison of the sensitivity and specificity of each of 17 classes
in the multi-class classification of the IP dataset from the models based on
the optimal patch size configuration for each model (a) the sensitivity of each
vegetation class, (b) the specificity of each vegetation class.
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Fig. 5. A comparison of the classification maps of IP data from six models: (a)
the false colour composition map of the raw data, (b) Ground-truth data used
in the training and evaluation of the models, (c-h) the classification results
of DFCNN, VCNNs, SSCNN, SSRN, CapsNet, and the proposed model,
respectively.

main reason is due to the typical defect of the convolutional
operation, which makes the classification more sensitive to the
spatial scale of the kernel size. The results from the SSRN,
CapsNet and the proposed models do not show such noises
and have the greater consistency with the ground truth data.
Although similar classification maps are illustrated in Fig. 5f-h
for these three models, the classification map produced by our
proposed model shows fewer misclassified pixels and clearer
class edge and delineation. In addition, if we compare the
labelled and unlabelled (not covered in Fig. 5b) areas, there
are less potential outliers in the resultant map of the proposed
model. This indicates that the proposed model provides more
consistent results on the task of ground surface classification
than its competitors.

Finally, we test the performance of the proposed model
on small samples. Fig 6 displays the relationship between
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Fig. 6. The relationships of sample size and overall accuracy for the proposed
model and its five competitors on IP data with four different configurations
of patch size (a) 5 × 5 (b) 7 × 7, (c) 9 × 9, (d) 11 × 11. The sample size
varies from 10% to 80% of the total number of all labelled pixels

the size of training sets and the overall accuracy for the
proposed model and its competitors. The size of training
sets varies from 10% to 80% of the number of all labelled
pixels. In general, the classification accuracy improves with
the increased sample size for all the models and for the four
different sized input patches. The proposed model achieves the
highest classification performance for all the four patch size
configurations, and is less affected by the sample size.

2) Experiment Two: Land cover classification using the PC
dataset.

In this experiment, we evaluate the performance of the
proposed method on the land cover classification using the
PC dataset.

Firstly, we test the performance of the proposed model on
large samples. Table VII lists the overall accuracy (OA) and
standard deviation (STD) of the proposed approach and the
competitors using different sized input patches. The results
show that the proposed model achieves the best accuracy.
Compared with the best model among five competitor for
each patch size configuration, the proposed model achieves an
improvement up to 4.24% for 5×5 input patch, 2.95% for 7×7
input patch, 1.69% for 9×9 input patch, and 2.52% for 11×11
input patch, respectively. Meanwhile, the standard deviations
produced by the proposed approach are substantially lower
than those produced by its competitors. The spatial size effect
of input patches on classification performance varies between
different models. The optimal size is 7 × 7 for the proposed
model,SSCNN and CapsNet, and 9 × 9 for the DFCNN,
VCNNs and SSRN. In general, all the models are not too
sensitive to the spatial size of input patches. We also compared
the storage and time costs between the proposed models and its
five competitor. As shown in Table VIII, the proposed model
has the second best performance in running speed.

Secondly, we further analysed the classification performance

of the proposed model on each class in details. Table IX pro-
vides detailed classification accuracy of each land cover type
for the proposed approach and its five competitors. Compared
with its competitors, the proposed model achieves the best
classification accuracy on the classes with biological properties
(such as trees, meadows, and bare soil), and a comparative per-
formance on non-biological land cover types (such as Bricks,
Asphalts, Bitumen, Times, Shadows, Waters). The potential
reason behind is that the biological information hidden in
the HSI data is enhanced in Stage 1 of the proposed model.
The OA and AA of the proposed model reaches 90.09% and
90.3%, which outperforms all other five competitors. This is
further confirmed by the results of McNemar’s chi-squared
(χ2) test, as shown in Table X. The improvement of the pro-
posed model in overall accuracy against all other competitators
is statistically significant, with χ2 = 32.49(p ≤ 0.01) for the
proposed vs. DFCNN, χ2 = 22.41(p ≤ 0.05) for the proposed
vs. VCNNs, with χ2 = 20.58(p ≤ 0.05) for the proposed
vs. SSCNN, with χ2 = 12.01(p ≤ 0.1) for the proposed vs.
SSRN, and with χ2 = 10.96(p ≤ 0.1) for the proposed vs.
CapsNet respectively.

Fig. 7 illustrates a detailed comparison of the sensitivity
and specificity of each land cover type in the classification
of the PC data from six models. Similar to the average
accuracy, the proposed approach achieves the highest sensi-
tivity and specificity on the classes with biological properties
among 9 land cover types. This indicates that the proposed
approach outperforms its competitors in reducing the leakage
and misclassification of the biological information extraction
and classification.

Fig. 8 displays the classification maps of all six models
based on the optimal size configuration of input patches for
each model (see Table IX). We can find that the DFCNN, VC-
NNs and SSCNN produce some noises and misclassification
near class boundaries (see Fig. 8e). This may be due to the
spatial convolutional operation, which makes the classification
more sensitive to the kernel size. The classification maps from
the SSRN, CapsNet and the proposed model (see Fig. 8f-h)
show greater consistency with the ground truth data. If we only
observe the three classes, trees, meadows and bear soil, we can
find that the classification map from the proposed model has
less outliers.

Finally, we test the performance of the proposed model
on small samples. Fig 9 presents the relationships of training
set size and overall accuracy for the proposed model and its
competitors with four different size configurations of input
patches. In general, the classification accuracy increases with
the increase of sample size for all the models. For all four
patch size configurations, the proposed model again outper-
forms all the competitors in terms of overall accuracy on land
cover classification. It can also be observed that the proposed
model can achieve more than 90% overall accuracy after the
size of training set increases to more than 40% of the number
of all labelled samples except for the patch size configuration
of 5× 5.

3) Experiment Three: Urban scene recognition using the
UH dataset.

In this experiment, we evaluate the performance of the
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TABLE VII
OVERALL ACCURACY (OA) AND STANDARD DEVIATION (STD) OF LAND
COVER CLASSIFICATION OF THE PC DATASET USING SIX MODELS WITH

FOUR DIFFERENT SPATIAL SIZE CONFIGURATIONS FOR INPUT PATCHES (*
THE BEST SIZE CONFIGURATION FOR EACH MODEL IS HIGHLIGHTED IN

BOLD.)

5 × 5 7 × 7 9 × 9 11 × 11
Class OA(%) Std(%) OA(%) Std(%) OA(%) Std(%) OA(%) Std(%)

Proposed 88.44 4.28 90.30 3.74 89.31 5.58 89.10 5.81
DFCNN 71.11 8.21 73.87 6.77 76.69 6.23 76.82 6.92
VCNNs 69.61 9.75 73.31 8.11 76.58 6.79 75.08 6.37
SSCNN 80.15 6.60 82.04 5.28 81.44 5.92 80.28 5.67
SSRN 82.93 6.18 84.96 5.42 87.62 4.71 86.58 5.02

CapsNet 84.20 4.97 87.35 5.83 85.87 4.88 85.61 4.49

TABLE VIII
EXECUTION TIME AND THE NUMBER OF MODEL PARAMETERS OF SIX

MODELS FOR PC DATA BASED ON THE OPTIMAL PATCH SIZE
CONFIGURATION FOR EACH MODEL

Proposed DFCNN VCNNs SSCNN SSRN CapsNet
Parameters 411057 583845 309224 470769 610057 451862

Time(s) 517.6 601.8 457.4 513.8 671.6 583.2

TABLE IX
LAND COVER CLASSIFICATION OF THE PC DATASET FROM SIX MODELS

BASED ON THE OPTIMAL PATCH SIZE CONFIGURATION FOR EACH MODEL

Class Proposed DFCNN VCNNs SSCNN SSRN CapsNet
Water 95.54 82.52 87.27 85.51 89.97 90.21
Trees 99.22 80.41 77.80 81.25 94.44 92.45

Asphalt 84.40 63.19 67.01 79.45 89.52 86.47
Self-Blocking Bricks 86.24 75.98 68.25 87.25 86.24 84.40

Bitumen 89.35 80.24 86.14 82.14 86.28 85.32
Tiles 84.28 65.47 61.28 73.50 82.55 84.82

Shadows 87.37 81.22 85.17 82.65 88.84 84.61
Meadows 90.44 81.41 82.28 83.44 84.50 87.45
Bare Soil 96.27 87.27 86.15 88.21 90.14 90.88
OA(%) 90.09 76.69 76.58 82.04 87.62 87.35
AA(%) 90.30 77.57 77.88 82.58 87.98 87.37
Kappa 0.831 0.482 0.716 0.855 0.841 0.811

Urban scene recognition using the UH dataset.
Firstly, we test the performance of the proposed model on

large samples. Table XI lists the OA and STD of the proposed
approach and its five competitors with four different size
configurations for input patches. It can be found that the pro-
posed model outperforms all the competitors for all the patch
size configurations. Compared with the best model among the
five competitors, CapsNet, the proposed approach achieves an
improvement up to 4.59% for 5× 5, 3.14% for 7× 7, 4.71%
for 9 × 9 and 5.98% for 11 × 11 patch size configurations,
respectively. Meanwhile, the standard deviations produced by
the proposed approach are lower than those produced by the

TABLE X
MCNEMAR’S CHI-SQUARED (χ2) TEST WITH ASSOCIATED PROBABILITY
VALUES FOR EVALUATING THE STATISTIC SIGNIFICANCE OF ACCURACY
DIFFERENCES IN CLASS-WISE PREDICTIONS BETWEEN PAIRED MODELS
ON PC DATASET. ∗ ∗ ∗ = P ≤ 0.01, ∗∗ = P ≤ 0.05, ∗ = P ≤ 0.1, NS =

NOT SIGNIFICANT.

Class Proposed
vs. DFCNN

Proposed
vs. VCNNs

Proposed
vs. SSCNN

Proposed
vs. SSRN

Proposed
vs. CapsNet

Water 28.44*** 22.49** 17.31** 13.01* 12.59*
Trees 34.13*** 27.44** 25.62** 22.52** 21.64**

Asphalt 24.37*** 21.18** 13.03* 17.95** 12.84*
Self-Blocking Bricks 21.43** 18.87** 12.16* 12.54* 4.31*

Bitumen 17.77** 12.88* 11.53* 5.74* 5.41*
Tiles 15.29** 13.77* 6.78* 4.17* 4.05*

Shadows 19.13** 13.32* 12.24* 4.05* 5.54*
Meadows 24.82** 22.31** 17.00** 11.12* 10.34*
Bare Soil 28.61** 20.83** 12.86* 5.61* 4.10*
Overall 32.49*** 22.41** 20.58** 12.01* 10.96*
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Fig. 7. A comparison of the sensitivity and specificity of each of 9 classes in
the multi-class plant species classification of the PC dataset from six models
based on the optimal patch size configuration for each model (a) the sensitivity
of each class, (b) the specificity of each class.
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Fig. 8. A comparison of the classification maps for PC data from six models
(a) the false colour composition map of the raw data, (b) Ground-truth data
used in the training and evaluation of the models. (c-h) the classification
results of DFCNN, VCNNs, SSCNN, SSRN, CapsNet, and the proposed
model, respectively.

competitors. The optimal size of input patches is 7×7 for the
proposed model, DFCNN, SSRN and CapsNet, and 9× 9 for
VCNNS and SSCNN. In terms of execution time and storage
cost, the proposed model has the second best performance for
the storage cost and the third best performance for the time
cost, as shown in Table XII.

Secondly, we further analysed the classification performance
of the proposed model on each class. As shown in Table
XIII, the proposed model achieves the best classification on
vegetation associated classes, such as healthy grass, stressed
grass, synthetic grass and trees, but does not perform the
best on manual scence, particularly worse on road. However,
the OA and AA of the proposed model reaches 92.73%
and 91.43% the best among all of the competitors. This is
further confirmed by the results of McNemar’s chi-squared(χ2)
test shown in Table XIV, which is to evaluate the statistic
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Fig. 9. The relationships of sample size and overall accuracy for the proposed
model and its five competitors on PC data with four sized patches: (a) 5 ×
5, (b) 7 × 7, (c) 9 × 9, (d) 11 × 11. The sample size varies from 10% to
80% of the total number of all labelled pixels.

TABLE XI
OVERALL ACCURACY (OA) AND STANDARD DEVIATION (STD) OF THE

URBAN SCENE RECOGNITION OF THE UH DATA FROM SIX MODELS WITH
FOUR DIFFERENT SPATIAL SIZE CONFIGURATIONS AS THE INPUT PATCHES

(NOTE: THE BEST SIZE CONFIGURATION FOR EACH MODEL IS
HIGHLIGHTED IN BOLD.)

5 × 5 7 × 7 9 × 9 11 × 11
Class OA(%) Std(%) OA(%) Std(%) OA(%) Std(%) OA(%) Std(%)

Proposed 90.52 5.21 92.73 4.48 90.89 5.95 90.91 5.75
DFCNN 72.31 8.60 73.08 8.62 72.14 7.27 71.48 6.09
VCNNs 79.61 6.84 79.61 6.40 81.06 3.21 78.74 7.64
SSCNN 82.15 6.08 83.58 5.81 83.94 4.27 82.04 4.83
SSRN 85.93 7.88 88.75 6.73 86.18 5.82 84.43 5.66

CapsNet 85.20 7.73 89.59 5.17 85.89 4.19 84.93 5.02

significance of the accuracy differences between two-paired
models. The results show that the improvement of our pro-
posed model in overall accuracy against all other competitors,
is statistically significant with χ2 = 30.99(p ≤ 0.01) for
the proposed vs. DFCNN, χ2 = 29.98(p ≤ 0.01) for the
proposed vs. VCNNs, χ2 = 23.45(p ≤ 0.05) the proposed
vs. SSCNN, χ2 = 17.32(p ≤ 0.05) for the proposed vs.
SSRN, and χ2 = 11.02(p ≤ 0.1) for the proposed vs. CapsNet
respectively.

Fig. 10 illustrates the detailed comparison of the sensitivity
and specificity of each land cover type in the urban scene
recognition of the UH dataset from the proposed model and
the competitors. Similar to the classification accuracy, the
proposed model achieves the highest sensitivity and specificity
on the classes with biological properties, which further demon-
strates that the proposed approach outperforms its competitors
in reducing the leakage and misclassification of the biological
information extraction and classification.

Fig. 11 demonstrates the classification maps of six models
based on the optimal size configuration of input patches for
each model (see Table XIII). We can find some misclassifi-
cation pixels located on the class boundaries produced by the
DFCNN, VCNNs, and SSCNN (see Fig. 11c-e). The main

TABLE XII
EXECUTION TIME AND THE NUMBER OF MODEL PARAMETERS OF SIX

MODELS ON UH DATA BASED ON THE OPTIMAL PATCH SIZE
CONFIGURATION FOR EACH MODEL

Proposed DFCNN VCNNs SSCNN SSRN CapsNet
Parameters 711057 1034845 608612 910769 1110057 859224

Time(s) 865.6 1011.6 746.6 813.8 971.6 983.2

TABLE XIII
URBAN SCENE CLASSIFICATION OF THE UH DATASET FROM SIX MODELS
BASED ON THE OPTIMAL PATCH SIZE CONFIGURATION FOR EACH MODEL.

Class Proposed DFCNN VCNNs SSCNN SSRN CapsNet
Healthy grass 99.62 62.55 80.12 75.21 92.15 91.47
Stressed grass 98.81 56.32 75.24 92.24 90.24 95.81
Synthetic grass 98.32 41.22 82.12 88.17 92.71 92.02

Trees 99.14 82.75 69.25 84.51 93.62 96.11
Soil 95.21 87.25 86.15 88.25 90.17 90.82

Water 93.53 82.55 87.24 85.54 89.94 90.21
Residential 90.14 81.64 82.22 83.41 84.55 87.43
Commercial 87.63 81.82 85.14 82.65 88.82 84.62

Road 84.38 80.24 86.12 82.11 86.24 85.34
Highway 86.44 81.28 76.18 88.17 86.23 84.35
Railway 87.73 75.41 81.21 83.54 85.54 86.87

Parking Lot 1 86.44 81.25 82.18 84.65 83.81 86.61
Parking Lot 2 88.12 78.54 84.24 82.44 84.55 87.41
Tennis Court 87.32 69.42 82.35 76.24 85.21 85.52

Running Track 88.68 83.41 82.21 90.36 93.23 89.51
OA(%) 92.73 73.08 81.06 83.94 88.75 89.59
AA(%) 91.43 75.04 81.46 84.5 88.47 88.94
Kappa 0.841 0.582 0.716 0.811 0.81 0.813

TABLE XIV
MCNEMAR’S CHI-SQUARED (χ2) WITH ASSOCIATED PROBABILITY

VALUES AND P-TEST FOR THE CLASSIFICATION ACCURACY DIFFERENCES
OF THE UH DATASET. ∗ ∗ ∗ MEANS P ≤ 0.01, ∗∗ MEANS P ≤ 0.05, ∗

MEANS P ≤ 0.1.

Class Proposed
vs. DFCNN

Proposed
vs. VCNNs

Proposed
vs. SSCNN

Proposed
vs. SSRN

Proposed
v. CapsNet

Healthy grass 32.64*** 24.13*** 22.21** 18.89** 17.16**
Stressed grass 30.36*** 24.23*** 21.52** 17.17** 19.59**
Synthetic grass 29.1*** 20.89** 22.38** 12.57* 18.2**

Trees 38.05*** 35.39*** 28.21*** 25.35*** 20.04**
Soil 33.05*** 24.87** 17.85** 11.91* 11.41*

Water 15.92** 15.81** 18.07** 12.21* 12.69*
Residential 16.14** 17.05** 9.34* 7.67* 4.62*
Commercial 18.49** 18.39** 13.69* 10.81* 6.56*

Road 26.29*** 24.01*** 23.01** 16.59** 11.5*
Highway 14.65** 11.03* 8.51* 6.81* 6.15*
Railway 21.81** 24.41** 18.84** 13.02* 4.49*

Parking Lot 1 16.94** 5.88* 7.44* 4.84* 15.87*
Parking Lot 2 22.93** 24.69** 17.32** 11.93* 3.94*
Tennis Court 21.64** 21.17** 20.71** 12.7* 6.95*

Running Track 28.38** 22.23** 20.51** 11.86* 11.84*
Overall 30.99*** 29.98*** 23.45** 17.32** 11.02*

reason behind may lie in the spatial convolutional operation
which makes the classification more sensitive to the kernel
size. The classification maps of the SSRN, CapsNet, and the
proposed model (Fig. 11f-h) show greater consistency with the
ground truth data.

Finally, we test the performance of the propose model on
small samples. Fig. 12 displays the relationships of training
set size with overall accuracy for all of the models with
four different size configurations of input patches. Again, the
proposed model outperforms all the competitors in terms of
overall accuracy for all the four patch size configurations. It
can also be observed that the proposed model can achieve
more than 95% overall accuracy after the size of training set
increases above 30% of the number of all labelled samples
except for the size configuration of 5×5. In general, the overall
accuracy increases with the increase of training set size for all
six models.
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Fig. 10. A comparison of the sensitivity and specificity of each of 15 types
in the urban scene recognition of the UH dataset from six models (a) the
sensitivity of each type, (b) the specificity of each type.

4) Experiment Four: Crop stress detection using the WYR
dataset.

In this experiment, we evaluate the performance of the
proposed method on crop disease diagnose using the WYR
dataset.

Firstly, we compare the OA of the proposed with its five
competitors. As shown in Table XV, the proposed model con-
sistently outperforms its five competitors in terms of average
accuracy for all the configurations of input patch size. The
standard deviations produced by the proposed approach are
lower than those produced by the competitors. In terms of
execution time and storage cost, the proposed model have the
second best performance for the storage cost and the third
best performance for the time cost, as shown in Table XVI.
The proposed model is not very sensitive to the path size, the
size configurations 5 × 5, 7 × 7 and 9 × 9 provide almost
the same accuracy. Compared with the best model among the
five competitors, SSRN, the proposed approach achieves an
improvement up to 4.1% for 5 × 5, 3.34% for 7 × 7, 6.34%
for 9 × 9 and 4.29% for 11 × 11 patch size configurations,
respectively.

Secondly, we further analysed the classification performance
of the proposed model on each class in details. Table XVII
provides a detailed comparison of average accuracy of each
of three types (i.e. healthy wheat, yellow rust and soil) in the
crop disease detection of the WYR dataset from six models.
The proposed model outperforms its five competitors in terms
of average accuracy of each type and overall accuracy of all the
three types. The OA and AA of the proposed model reaches
99.12% and 98.89% with a Kappa value of 0.84. This is further
confirmed by the results of McNemar’s chi-squared(χ2) test,
as shown in Table XVIII, which is to evaluate the statistic
significance of the accuracy differences between two-paired
models. The results show that the improvement of our pro-
posed model in overall accuracy against all other competitors,
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Fig. 11. The comparison of the classification maps of six models on the UH
dataset: (a) the false colour composition map of the raw data, (b) Ground-truth
data used in the training and evaluation of the models, (c-h) the classification
result of DFCNN, VCNNs, SSCNN, SSRN, CapsNet, and the proposed model,
respectively.

TABLE XV
OVERALL ACCURACY (OA) AND STANDARD DEVIATION (STD) OF EACH

CLASS IN THE CROP STRESS DETECTION ON THE WYR DATASET FROM SIX
MODELS BASED ON THE OPTIMAL PATCH SIZE CONFIGURATION FOR EACH

MODEL. (NOTE: THE BEST SIZE CONFIGURATION FOR EACH MODEL IS
HIGHLIGHTED IN BOLD.)

5 × 5 7 × 7 9 × 9 11 × 11
Class OA(%) Std(%) OA(%) Std(%) OA(%) Std(%) OA(%) Std(%)

Proposed 96.52 3.54 96.88 2.42 99.12 3.13 95.52 3.41
DFCNN 81.11 5.03 81.73 2.94 81.20 7.09 80.39 4.48
VCNNs 77.45 5.88 78.80 5.32 78.91 5.76 76.81 3.73
SSCNN 85.25 7.17 86.85 5.28 85.80 5.03 84.38 5.88
SSRN 92.42 6.21 93.54 5.51 92.02 4.33 91.23 4.49

CapsNet 91.25 4.75 91.45 4.86 92.79 3.77 90.99 3.63

is statistically significant with χ2 = 34.99(p ≤ 0.01) for
the proposed vs. DFCNN, χ2 = 32.78(p ≤ 0.01) for the
proposed vs. VCNNs, χ2 = 21.28(p ≤ 0.01) the proposed vs.
SSCNN, χ2 = 20.22(p ≤ 0.01) for the proposed vs. SSRN,
and χ2 = 18.72(p ≤ 0.01) for the proposed vs. CapsNet
respectively.

Fig. 13 illustrates a detailed comparison of the sensitivity
and specificity of each class from the optimal results of the
proposed model and the competitors for the crop disease detec-
tion of the WYR dataset. Similar to the accuracy assessment
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Fig. 12. The relationships of sample size and overall accuracy for the proposed
model and its five competitors with four sized patches on the urban scene
recognition of the UH dataset : (a) 5 × 5, (b) 7 × 7, (c) 9 × 9, (d) 11 × 11.
The sample size varies from 10% to 80% of the total number of all labelled
pixels.

TABLE XVI
EXECUTION TIME AND THE NUMBER OF MODEL PARAMETERS OF SIX

MODELS ON WYR DATA BASED ON THE OPTIMAL PATCH SIZE
CONFIGURATION FOR EACH MODEL

Proposed DFCNN VCNNs SSCNN SSRN CapsNet

Parameters 565075 985451 380214 767902 885407 792544
Time(s) 865.6 1011.6 746.6 813.8 971.6 983.2

TABLE XVII
CROP DISEASE CLASSIFICATION OF THE WYR DATASET FROM SIX

MODELS

Class Proposed DFCNN VCNNs SSCNN SSRN CapsNet

healthy wheat 99.61 89.55 84.17 92.24 96.15 95.48
Yellow rust 98.85 66.21 65.27 76.26 89.28 88.85

Soil 98.21 91.25 92.14 93.17 94.74 93.10
OA(%) 99.12 81.73 78.91 86.85 93.54 92.79
AA(%) 98.89 82.34 80.53 87.22 93.39 92.48
Kappa 0.841 0.582 0.716 0.811 0.810 0.813

TABLE XVIII
MCNEMAR’S CHI-SQUARED (χ2) WITH ASSOCIATED PROBABILITY

VALUES AND P-TEST FOR THE CLASSIFICATION ACCURACY DIFFERENCES
OF THE WYR DATASET. ∗ ∗ ∗ = P ≤ 0.01, ∗∗ = P ≤ 0.05, ∗ = P ≤ 0.1.

Class Proposed
vs. DFCNN

Proposed
vs. VCNNs

Proposed
vs. SSCNN

Proposed
vs. SSRN

Proposed
vs. CapsNet

Healthy wheat 31.97*** 26.74*** 31.08*** 26.24*** 28.45***
Yellow rust 35.92*** 31.21*** 26.98*** 25.87*** 24.61***

Soil 33.6*** 25.11*** 18.09** 15.81** 15.36**
Overall 34.99*** 32.78*** 21.28*** 20.22*** 18.72***

results, the proposed model achieves the highest sensitivity and
specificity on all three detection types, Healthy wheat, Yellow
wheat and soil.

Fig. 14 shows the classification maps of yellow rust from a
winter wheat field plot produced by the proposed approach and
its five competitors with an optimal patch size for each model.
The comparison of these four classification maps illustrates
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Fig. 13. A comparison of the sensitivity and specificity of each detection
type in the crop disease detection of the WYR dataset from six models: (a)
The sensitivity of each class, (b) the specificity of each class.
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Fig. 14. A comparison of the classification maps of WYR dataset: (a) the
false colour composition map of the raw data, (b) Ground-truth data used in
the training and evaluation of the models. (c − h) the classification results
of the FDCNN, VCNNs, SSCNN, SSRN, CapsNet, and the proposed model,
respectively.

that the proposed approach outperforms the competitors in the
class delineation and the distribution detection of yellow rust.
More specifically, the class boundaries of pixels representing
yellow rust obtained by the proposed approach are much
clearer and more precise, such boundary characterizations
are identical with the typical yellow rust pathogen features
observed at the canopy scale. In addition, the yellow rust class
contains stripe features, which have been better delineated in
the maps obtained from the proposed approach. Moreover,
if we look at the classification results over unlabelled areas,
there is a noticeable consistency in classification with patho-
logical distribution features, which suggests that the proposed
approach provides a better generalization on the detection of
wheat yellow rust than its competitors.

For the purpose of demonstration, we present the con-
vergence performance of the proposed model in this exper-
iment. Fig. 15 shows the variations of the convergence of
the proposed network architecture and its three competitors
(SSCNN,SRNN and CapsNet) which have the same optimal
patch size of 7 × 7. The epoch number is set to be 700.
The results demonstrate that the proposed approach provides
a more stable accuracy evolution in both training and testing
processes. However, the accuracy decline can be observed
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Fig. 15. Evolution of (a) training accuracy and (b) testing accuracy (in %)
of the SSCNN, SRNN, CapsNet and the proposed approach with a window
size of 7× 7 based on the WYR dataset.

in the training and testing processes of the competitors. For
instance, the training OA of the SSCNN reaches 86.85%, but
its testing accuracy only reaches 83.24%. The possible reason
for such an accuracy decline phenomenon is due to the black-
box learning process in the intermediate layers, which always
leads the traditional network architecture to a local optimum.
This occurs when the scale of sampling is not big enough to
cover all of the possible states of the target classes. In this case,
benefiting from the physical mechanism and interpretability as
being discussed in previous sections, the learning process of
the proposed method is able to represent the biophysical and
biochemical variations and the spatial structure characteristics
between the healthy wheat and the wheat infected with yellow
rust. This explains why the proposed approached provides a
greater performance in classification accuracy and robustness
than the other models.

Regarding the convergence, it is noteworthy that the training
OA of the proposed approach (the blue line in Fig. 15a)
reveals an S-shape curve, and we can separate this progress
into four parts. At the beginning, the rate of convergence is
slow during the first 50th epochs. And then, this rate increases
dramatically from 51th to 120th epochs. After that, the training
accuracy reveals a fluctuation between 95.2% and 97.5% from
the 121th to 330th epochs. Finally, the accuracy is stabilized at
around 99.12%. This tendency may be associated to the two-
stage network architecture of the proposed model, the training
and extraction of sensitive spectral features in the first stage
would produce a chain reaction for the learning process of
the second stage and the final accuracy. Similarly, although
the convergence rate of the proposed approach in the testing
process is faster than that in the training process, it is still
slower than the other three methods.

Finally, we test the performance of the proposed model on
small samples. Fig 16 presents the relationships of training
set size and overall accuracy for the proposed model and
its five competitors with four different size configurations
for input patches on the crop stress detection of the WRY
dataset. In general, the classification accuracy increases with
the increase of sample size for all the models. The proposed
model outperforms all the five competitors for all the four
different sized input patches in terms of overall accuracy.

In summary, the proposed model outperforms all the
five state-of-the-art deep learning models on five real-world
datasets for vegetation information recognition in terms of
average accuracy, overall accuracy, sensitivity and specificity,
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Fig. 16. The relationships of sample size and overall accuracy of the proposed
model and its five competitors with four different sized patches: (a) 5 × 5
(b) 7 × 7, (c) 9 × 9 and (d) 11 × 11. The sample size varies from 10% to
80% of the total number of all labelled pixels.

although it does not show big advantages in training speed
for all the tasks. The proposed model also outperforms its
competitors in reducing the leakage and misclassification
during the biological information extraction and classification.
Compared with its competitors, the proposed model is more
robust to small samples. In general, the proposed model is not
sensitive to the spatial size of input patches within the four
chosen patch sizes, and has an optimal size of 7 × 7 for the
four tasks in this study.

VI. DISCUSSION

A. The ablation analysis of the improved layers

In this study, two types of featured layers were used to
improve the biological representations and classifications of
deep learning models in the vegetation information recognition
from HSI data: 1) spectral segmentation layer and 2) feature
enhancement layer. To evaluate their effects on the model
performance, we have conducted an ablation analysis that
gradually introduced the two featured layers one by one into
the base model, a DCNN-CapsNet joint network. Thus, there
existed three different models (Fig. 17), depending on how
many different types of featured layers were included. We have
evaluated their performance based on the Shannon entropy
(a measure of uncertainty and disorder within the high level
feature representations) [56], overall accuracy, and computing
time on four datasets.

The base model without the featured layers is denoted as
Model 1, in which HSI data with abundant spectral bands is di-
rectly input for feature extraction and classification. Differing
from Model 1, Model 2 includs a spectral segmentation layers
to split HSI input data into seven slices. This splitting opera-
tion makes the model pay more attention on the information
clusters within the specific spectral slices rather than randomly
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Model 1 Model 2 Model 3

Spectral segmentation layer No Yes Yes

Feature enhancement layer No No Yes

IP dataset

PC dataset

UH dataset

WYR dataset

0

0.5

1

1.5

2

2.5

1
0

0.5

1

1.5

2

2.5

1
0

0.5

1

1.5

2

2.5

1
80

85

90

95

100

1
400

450

500

550

600

650

700

1SE OA(%) CT(s)
80

85

90

95

100

1
400

450

500

550

600

650

700

1
400

450

500

550

600

650

700

1SE OA(%) CT(s) SE OA(%) CT(s)

0

0.5

1

1.5

2

2.5

1
0

0.5

1

1.5

2

2.5

1
400

450

500

550

600

650

700

1SE OA(%) CT(s)
400

450

500

550

600

650

700

1
400

450

500

550

600

650

700

1SE OA(%) CT(s) SE OA(%) CT(s)
0

0.5

1

1.5

2

2.5

1
80

85

90

95

100

1
80

85

90

95

100

1
80

85

90

95

100

1

80

85

90

95

100

1

0

0.5

1

1.5

2

2.5

1

0

0.5

1

1.5

2

2.5

1
0

0.5

1

1.5

2

2.5

1
80

85

90

95

100

1

80

85

90

95

100

1
80

85

90

95

100

1
400

450

500

550

600

650

700

750

1

400

450

500

550

600

650

700

1
400

450

500

550

600

650

700

1

SE OA(%) CT(s) SE OA(%) CT(s) SE OA(%) CT(s)

0

0.5

1

1.5

2

2.5

1
0

0.5

1

1.5

2

2.5

1
0

0.5

1

1.5

2

2.5

1

80

85

90

95

100

1
80

85

90

95

100

1
80

85

90

95

100

1

400

450

500

550

600

650

1
400

450

500

550

600

650

700

1
400

450

500

550

600

650

700

1

SE OA(%) CT(s) SE OA(%) CT(s) SE OA(%) CT(s)

Fig. 17. The results of an ablation analysis for evaluating the effects of the
featured layers on vegetation information recognition from HSI data with four
datasets. SE = Shannon entropy, OA = overall accuracy, and CT = computing
time.

perceived the class associated features across the redundant
bands. Compared with Model 1, Model 2 achieves the similar
Shannon entropy bound (1.7-2.4) and overall accuracy(86%-
89%), but less computing time (28.6% reduction on average)
on four datasets (Fig. 17). This suggests that although the
spectral segmentation process may not directly improve the
feature representations for the classification, it improves the
computing efficiency of the model.

As shown in the last column of Fig.17, Model 3 includes
both segmentation and feature enhancement layers. The feature
enhancement layer is introduced to enhance the homogeneous
vegetation features between different spectral slices by al-
lowing reliable feature inter-comparisons of photosynthetic
activity and canopy characteristics. It can be found that the
computing cost increases due to introducing the enhancement
layer, but is still less than Model 1. In addition, compared
to Model 1 and Model 2, Model 3 achieves lower Shannon
entropy (36.28% lower on average) and higher overall ac-
curacy (12.18% higher on average) on vegetation dominated
datasets, IP and WYR. Although it is the same case on PC and
UH datasets containing a number of non-vegetation classes,
the improvement is less. The possible reason about this is
due to the limited feature enhancement for the non-vegetation
classes in these datasets from the enhancement layer. These
results show that introducing the feature enhancement layer
significantly suppresses the uncertainty and disorder of the
feature space, and improves class representations for the
classification decisions, especially for the vegetation classes.

B. Interpretability analysis

The interpretability of the model is one of the most im-
portant contributions in our work. We evaluate it from three
perspectives: 1) pre-model interpretability, 2) post hoc analy-
sis, 3) in-model interpretability with the proposed methods.
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Fig. 18. The Shannon entropy and Dunn index for all the classes in
experiments 1 − 4 . The values entropy is calculated for each class, then
averaged all of them. The error bars represent the standard deviation across
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1) Pre-model interpretability: The Shannon entropy and
Dunn index are used to evaluate the effect of the spectral
segmentation layer (SSL) on uncertainty and cluster of the
features in the main model (see Fig. 18). The Shannon entropy
of each class is calculated by averaging all intermediate
features within it, and the entropy values presented in Fig.
18 are the average of all classes in the Experiment one to
four.

The results indicate that, in comparison with the com-
petitors, our proposed approach achieves a lower Shannon
entropy (i.e. intra-class disorder) and a higher Dunn index
(i.e. inter-class clustering). In addition, when we remove the
spectral segmentation layer from the proposed model, the
model performance has an observable decline. The rationale
behind lies in that the spectral segmentation layer provides a
physical constraint on the raw HSI data, which makes the
learning process of the main model conduct in the band
ranges with explicit spectral-biological attributes. Therefore,
the intermediate features produced by the proposed approach
may provide greater representations of the intrinsic inter-class
differences and lower statistical-derived learning error than the
other models.

2) Post-model (post hoc) analysis: In this work, the post
hoc analysis mainly focuses on the enhanced interpretable
feature block (i.e. stage 1) of the proposed network, the aim
of the post hoc analysis is to explore the biological correlation
between the intermediate spectral features with the auxiliary
ground datasets. Considering the classes in PC dataset (Ex-
periment Two) and UH dataset (Experiment Three) are non-
biological entities, here, we just use the IP data (Experiment
One) and WYR data (Experiment Four) as the study cases.
For Experiment One, Fig. 19a shows a correlation between
the low-level features produced by the feature enhancement
layers and the pre-selected vegetation indices, which reveals
the potential spectral-derived biological properties of the en-
hanced spectral features. For instance, the red-edge and near-
infrared slice derived features reveal the highest coefficient of
determination (R2) with the canopy structure associated SVIs,
such as NDVI, PRI, and CIred-edge. Such correlations not
only indicate the statistical representations of the generated
spectral features, but also represent the subtle reflectance
differences between the different plant categories in the Indian
Pines dataset. Similarly, Fig. 19b shows the correlation graph
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Fig. 19. The visualisation of the correlation between the ground measured
parameters and the extracted features from feature enhancement layer for (a)
IP dataset and (b) WYR dataset

between the low-level features and the ground measured aux-
iliary parameters for the WYR dataset based disease detection
task, which reveals the potential biophysical and biochemical
properties hidden in the enhanced features. For instance, the
red and red-edge slice derived features reveal the highest
coefficient of determination (R2) with the ground measured
LAI, the green and red associated features exhibit a higher
sensitivity with ground measured CHL. These findings from
the two case studies based on the IP and WRY datasets have
proven that the intermediate features can characterize not only
the statistical properties for the corresponding classes, but also
their biophysical and biochemical attributes, which provides
the interpretability of the biological differences between the
target classes.

3) In-model interpretability: The main model splits the
learning process into two stages: the spectral significance
enhancement and spectral-spatial hierarchical construction rep-
resentation. This logic explores the biophysical and bio-
chemical hierarchical structure of the vegetation classes by
encapsulating the extracted spectral-spatial information into
capsule features. Besides, such an architecture improves the
observation and explanation of the evolution of the features in
different layers. Here, we analyse the biological interpretability
of the high-level capsule features based on the IP dataset
(Experiment One) and WYR dataset (Experiment Four). Fig.
20 illustrates the visualisation of the weights of the 3×3 con-
volutional kernels in conv3 layer, the output feature maps and
feature capsules from the capsule layers for both IP and WYR
datasets. This provides a direct way to understand the evolution
progress of the intermediate features. Fig. 20a visualises the
3 × 3 weight examples of the covn3 layer for IP data. It is
noteworthy that the weights of the convolutional kernels for
red, red-edge, and near-infrared associated features are higher
than other features, which means the spectral features from
red, red-edge, and near-infrared slices are more sensitive to
the vegetation classes (e.g. the canopy structure characteristics
in the IP dataset). These findings are also in agreement with
previous studies [45], [57]. The final feature maps and the
capsulized feature vectors from the capsule layers are shown
in Fig. 20b. where the well-designed capsule layer is able
to manage the intermediate scalar features throughout the
network, and also calculates the corresponding instantiation
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Fig. 20. The visualisation of the weights of 3 × 3 convolutional kernels in
conv3 layer and the output feature maps and feature capsules of the capsule
layers for Case Study 1: vegetation classification of IP datasets, (a-b) and
Case Study 2: disease detection of WYR dataset, (c-d).

parameters to represent the hierarchical structure and potential
transformations of the target classes. This will help better
characterising the rotation invariance of spectral and spatial
features of each class. The lengths of each feature vector are
used to estimate the probability that a specific spectral-spatial
feature occurred in each of the classes, and final classification
would be determined by the maximum length.

For WYR data (i.e. Experiment Four), the visualisation of
3 × 3 weights of the covn3 layer (see Fig. 20c) shows the
weights of the neighbour pixels for the features sensitive to
the biophysical parameters (e.g. LAI, PDM) are generally
higher than the features sensitive to biochemical parameters
(e.g. CHL, ANTH). This indicates that, comparing with the
biochemical parameters, the texture information and spatial
pattern provide more representations of the physical param-
eters in the detection and classification of yellow rust. In
other words, the proposed approach provides better capability
in characterizing the appearance symptom (e.g. leaf rolling,
wither) when the wheat is infected by yellow rust. The feature
maps from the class-capsules layer are shown in Fig. 20d,
the spectral-spatial features are integrated into three feature
vectors, the length of each are used to estimate the probability
that a specific biophysical and biochemical feature occurred
in each of the classes, and final classification would be
determined by the maximum length.

VII. CONCLUSION

In this study, a novel deep learning architecture based on
two-stage spectral-spatial feature learning is presented for veg-
etation information recognition from HSI data with enhanced
biological interpretability. The proposed model explores the
potential biological and structural patterns of target entities
from the inherent spectral-spatial information of the HSI
data through feature mapping and transformation, and extracts
the potential instantiation parameters (e.g. transformation and
rotation) of these entities by means of a capsule network
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architecture, which enhances performance and interpretability
of the proposed model. Specifically, the proposed network
firstly splits the input HSI data into 7 spectral slices, and
the most sensitive spectral features in each spectral slice are
extracted. Subsequently, a set of enhanced features with the
explicit biophysical and biochemical properties are generated
based on the feature transformation rules (i.e. the binary index
model and the triangular index model). Finally, a series of
spectral-spatial capsule unites are employed to output the
feature vectors that represent enhanced feature sets serving as a
collection of canonical spectral-spatial patterns and the specific
instantiation parameters at a higher level. Through this net-
work, the intermediate features is capable of representing more
biological and structural patterns of ground vegetation entities,
which subsequently leads to increased model interpretability
and a reduction of the computing complexity, and therefore,
a more accurate model. An ablation analysis confirms these
advantages. The comparison with five state-of-the-art models
for HSI data classification reveals that the proposed BIT-
DNN exhibits a very competitive performance in classification
accuracy.
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