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Summary 

Transmission is the fundamental process whereby pathogens infect their hosts and spread through 

populations, and can be characterized using mathematical functions. The functional form of 

transmission for emerging pathogens can determine pathogen impacts on host populations and can 

inform the efficacy of disease management strategies. By directly measuring transmission between 

infected and susceptible adult eastern newts (Notophthalmus viridescens) in aquatic mesocosms, we 

identified the most plausible transmission function for the emerging amphibian fungal pathogen 

Batrachochytrium salamandrivorans (Bsal). Although we considered a range of possible transmission 

functions, we found that Bsal transmission was best explained by pure frequency-dependence. We 

observed that >90% of susceptible newts became infected within 17 days post-exposure to an infected A
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newt across a range of host densities and initial infection prevalence treatments. Under these 

conditions, we estimated R0 = 4.9 for Bsal in an eastern newt population. Our results suggest that Bsal 

has the capability of driving eastern newt populations to extinction, and that managing host density 

may not be an effective management strategy. Intervention strategies that prevent Bsal introduction or 

increase host resistance or tolerance to infection may be more effective. Our results add to the 

growing empirical evidence that transmission of wildlife pathogens can saturate and be functionally 

frequency-dependent. 

Keywords: amphibian, Batrachochytrium, disease, fungus, model, density-dependent transmission 

Introduction 

Emerging infectious diseases can have significant impacts on biodiversity, ecosystem processes, and 

human life (Buck & Ripple, 2017; Morens & Fauci, 2013; Scheele et al., 2019). Recent emergences 

of Batrachochytrium dendrobatidis (Bd), Pseudogymnoascus destructans, and SARS-CoV-2 are 

evidence that wildlife pathogens and zoonoses can have irreversible effects on susceptible host 

populations and cost global economies trillions of dollars to mitigate (Alves, Terribile, & Brito, 2014; 

Fauci, Lane, & Redfield, 2020; Frick et al., 2010; Heymann & Shindo, 2020; Lips, 2016; Scheele et 

al., 2019). A fundamental step to disease mitigation is understanding pathogen transmission, which 

typically includes host-contact and environment pathways (Begon et al., 2002; Lange, Kramer-

Schadt, & Thulke, 2016; Langwig et al., 2015; Loh et al., 2015). Epidemiological models can play an 

important role in elucidating dominant transmission pathways, which can inform disease management 

strategies (Lange et al., 2016; McCallum, 2016; Woodhams et al., 2011). Disease management can 

range from modifying host densities and contact rates to treating individuals with vaccines or 

therapeutics that increase resistance or tolerance to infection (Woodhams et al., 2011). Hence, 

identifying the functional form of pathogen transmission in novel disease systems is an important first 

step in disease management (Orlofske et al., 2018).

Density- and frequency-dependent transmission are functional forms common to various 

wildlife disease systems (Devenish-Nelson, Richards, Harris, Soulsbury, & Stephens, 2014; Orlofske 

et al., 2018). Density-dependent transmission describes a system in which the number of host contacts A
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increases linearly with population density (McCallum, Barlow, & Hone, 2001), whereas in a 

frequency-dependent system the host contact rate is constant irrespective of population density, hence 

infection depends only on the frequency of infected individuals (Begon et al., 2002; McCallum et al., 

2001). In many disease systems, these functions may not adequately capture transmission (Hopkins, 

Fleming-Davies, Belden, & Wojdak, 2020). Rather, a more appropriate functional form for 

transmission often transitions between these two extremes, such as density dependence occurring at 

low host densities and frequency dependence at high densities (i.e., Holling’s Type II; McCallum et 

al. 2001, 2017; Orlofske et al., 2018). Non-linear transmission has been described in several wildlife 

disease systems, such as cowpox virus in rodents and brucellosis in elk (Cross et al., 2013; Smith et 

al., 2009). Given the potential natural variation in pathogen transmission, testing and fitting various 

transmission functions for novel pathogens is a proactive strategy to elucidating influential 

transmission pathways and identifying successful disease management strategies.

The emerging chytrid fungus, Batrachochytrium salamandrivorans (Bsal), is an invasive 

amphibian pathogen believed to be from Asia that is currently spreading across Europe and causing 

mass mortality events of several Salamandridae species (Lötters, Veith, Wagner, Martel, & Pasmans, 

2020; Martel et al., 2014, 2020). Bsal creates necrotic ulcerations through the skin of amphibians 

(Van Rooij, Martel, Haesebrouck, & Pasmans, 2015), which likely affects osmoregulation and creates 

opportunities for secondary bacterial infection. Bsal is commonly found in the European amphibian 

pet trade (Nguyen, Van Nguyen, Ziegler, Pasmans, & Martel, 2017; Sabino-Pinto, Veith, Vences, & 

Steinfartz, 2018), where it has caused economic losses (Fitzpatrick, Pasmans, Martel, & Cunningham, 

2018), and is believed to be the pathway for spillover events to wild amphibian populations (Martel et 

al., 2014). Currently, Bsal has yet to be detected in North America (Klocke et al., 2017; Waddle et al., 

2020), but its projected impacts show that its introduction could be devastating to biodiversity (Yap, 

Koo, Ambrose, Wake, & Vredenburg, 2015). The introduction of Bsal to the United States, 

specifically the southeastern region, could decimate amphibian populations and cause the extinction 

of endemic and rare salamander species (Carter et al., 2020; Richgels, Russell, Adams, White, & 

Grant, 2016).

Some models of Bsal epidemiology have been developed using European fire salamanders 

(Salamandra salamandra) and eastern newts (Notophthalmus viridescens) as the host species A
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(Canessa et al., 2018; Islam, Gray, & Peace, 2021; Malagon et al., 2020; Schmidt, Bozzuto, Lötters, & 

Steinfartz, 2017).  However, these models did not explicitly measure transmission; they assumed 

functional forms a priori ranging from density- and frequency- dependent to nonlinear. No studies 

have yet measured Bsal transmission under experimental conditions and compared candidate models. 

Under experimental conditions, population attributes that impact transmission, such as density and 

initial infection prevalence, can be manipulated to compare transmission functions (Hopkins et al., 

2020). The aim of our study was to identify the functional response for Bsal transmission in a host 

species (N. viridescens) that is widely distributed in North America (Petranka, 2010). Given that 

contact rates of uninfected eastern newts appear to be non-linear (Malagon et al., 2020), we 

hypothesized that transmission would follow a Holling’s Type II functional response.

Methods

Model Organism

Adult eastern newts were collected in Tennessee, USA, from Knox County (35.846639, -83.872116), 

Anderson County (36.045596, -84.193765), and Catoosa Wildlife Management Area (36.050606, -

84.802038; 36.061868, -84.804617) in September 2019 under Tennessee Wildlife Resources Agency 

Science Collection Permit #1504. Newts were transported by vehicle to the Johnson Animal Research 

and Teaching Unit at the University of Tennessee in <3 hours and group-housed (ca. 15 newts per 6-L 

container) at room temperature (20 – 22oC) for approximately 20 days prior to heat treatment 

(discussed below). All research described herein was conducted in a biosecure animal research facility 

and was approved by University of Tennessee Institutional Animal Care and Use Committee protocol 

#2623. 

Experimental Design

Because co-infections with Bd can affect Bsal pathogenicity in eastern newts (Longo, Fleischer, & 

Lips, 2019), all newts (n = 290) were heat treated in an environmental chamber for 10 days at 30oC to 

eliminate possible Bd infections (Bletz, 2013). After 10 days, the temperature was lowered 2oC per 

day to 14oC before placing newts into the experimental tanks. Newts were uniquely marked via toe 

clipping and randomly assigned to 20 circular, 1-m2 tanks. Tanks were connected to a flow-through, A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

dechlorinating water system and heat-chilling unit that maintained depth at 30 cm and temperature at 

14oC – a temperature that previous research showed Bsal transmission was possible in eastern newts 

(Malagon et al., 2020). Water flow into tanks was approximately 20 L per hour, hence water in tanks 

turned over approximately 2 times per day. Every three days, newts were fed frozen bloodworms and 

tanks were scooped with nets to remove waste and other organic debris.

 We used eastern newt density treatments (2 – 8 newts per m2) that are typically found in the 

wild (Malagon et al., 2020). In addition, because previous work reported that newt contact rates 

followed a Holling’s Type II functional response (Malagon et al., 2020), we included several high 

newt densities (10 – 32 newts per m2, Table 1) in order to evaluate if overall transmission saturated 

with increasing density. We crossed each host density with 1 – 3 initial infection prevalence 

treatments (12.5%, 25%, 50%) to evaluate how the force of infection was impacted by change in 

prevalence (Greer, Briggs, & Collins, 2008). This range of initial infection prevalence treatments was 

typical for amphibian studies modeling pathogen transmission (Greer et al., 2008; Rachowicz & 

Briggs, 2007). This design sought to maximize the overall range of density and prevalence 

combinations for subsequent model fitting (see below), rather than to maximize replication at a more 

limited number of combinations.   

 Newts used to initiate the epidemic in each tank were randomly selected and exposed to a 

high dose of Bsal zoospores (2.56 x 106 zoospores/mL) in 9 mL of autoclaved dechlorinated water 

and 1 mL of inoculum for 24 hours (Malagon et al., 2020), which is approximately 6X the infectious 

dose (ID)-50 for eastern newts (MJG and EDC, unpubl. data). Bsal cultures were grown on TGhL 

agar plates and each plate was flooded with 6 mL of autoclaved dechlorinated water to harvest 

zoospores (Carter et al., 2020). Zoospores were filtered through a 20-um filter to remove sporangia 

and were enumerated using a hemocytometer (Carter et al., 2020) and verified by flow cytometry.  

After the 24-hour exposure, infected newts were placed into tanks with susceptible newts 

corresponding to their randomly assigned infection prevalence and density treatment. Every three 

days for up to 60 days, newts were removed from tanks using a clean net, identified, and swabbed 

using a standardized protocol to detect Bsal infection status and infection intensity (i.e. load) on the 

skin (Blooi et al., 2013; Boyle, Boyle, Olsen, Morgan, & Hyatt, 2004). A different clean net was 
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used for each newt, each individual was placed in a clean plastic bag, and gloves were changed 

between handling individuals to prevent cross-contamination (Gray et al., 2018).

Infection Status and Load

All swabs were placed in a microcentrifuge tube labeled with the individual’s identification number 

and swab date, and stored at -80oC until processed. To detect Bsal and estimate loads, genomic DNA 

was extracted from each swab using the QIAamp 96 DNA QIAcube HT kit (Qiagen, Hilden, 

Germany) and qPCR performed similar to Blooi et al. (2013) using the Applied Biosystems 

Quantstudio 6 Flex qPCR instrument (Thermo Fisher Scientific Inc). All samples were run in 

duplicate and declared positive if both replicates reached cycle threshold prior to 50 amplification 

cycles (Carter et al., 2020). 

To minimize the risk of false infection readings, the following decision rules were used to 

determine the infection status of newts for the purpose of modeling transmission: (1) two or more 

consecutive swabs of the same infection status were considered true readings and left unchanged, (2) 

a single negative swab straddled by two positive swabs was considered a false negative and counted 

as a positive reading, and (3), once false negatives were accounted for, a single positive swab 

straddled by two negative swabs was considered a false positive and counted as a negative reading. 

Thus, for example, a sequence of the form NNPNPP was treated as NNPPPP (i.e. false negatives 

took precedence over false positives in ambiguous sequences). Hence, following these criteria, a 

newt was considered to have cleared a Bsal infection if the individual met one of the positive criteria 

followed by at least two consecutive negative swabs. Using the second criterion, we estimated the 

sensitivity of our qPCR method, which was 96.5%. Re-infection was declared if a cleared individual 

became subsequently infected following the positive swabbing criteria. We also used qPCR to 

estimate pathogen load per treatment by averaging loads among individuals per experimental unit 

(i.e., mesocosm).

Statistical Analyses: Survival and Pathogen Load

We monitored survival twice daily for 62 days and removed infected individuals that died in <12 

hours. We used Kaplan-Meier survival analyses to test for differences in mortality rate among host A
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density and infection prevalence treatments.  We used weighted least squares regression to test 

whether mean Bsal load in a mesocosm differed with host density or infection prevalence treatments. 

We weighted each mean log Bsal load estimate by the number of initially infected newts, such that 

load estimates from mesocosms with more infected individuals received higher weights in the 

analysis.

Modeling Transmission 

 We used qPCR results from the first two swabs (days 2 and 5 post-exposure) to parameterize our 

transmission model. As no individuals died nor cleared infection by day 5 post-exposure, restricting 

our analysis to this time period allowed us to model transmission processes only; this corresponds to 

the assumption that death and recovery take place on a slower timescale than infection. Extending the 

methods of Greer et al. (2008), we directly calculated the probability distribution of susceptible 

individuals at each time step, rather than simply assuming a binomial distribution, and used a 

maximum likelihood approach to estimate the transmission parameters. 

We defined  to be the probability of susceptible individuals at time t in a population 𝑝𝑆|𝑁,𝑆0(𝑡) 𝑆 

of size , given that there were  susceptible and  infected individuals at . Note, S, 𝑆0 + 𝐼0 = 𝑁 𝑆0 𝐼0 𝑡 = 0

I and N were absolute numbers of individuals in the mesocosms. Neglecting death and recovery, the 

probability distribution of susceptible individuals was then determined by the system of  𝑆0 +1

differential equations,
d𝑝𝑆|𝑁,𝑆0

d𝑡 = 𝜙𝑆 + 1,𝑁𝑝𝑆 + 1|𝑁,𝑆0 ― 𝜙𝑆,𝑁𝑝𝑆|𝑁,𝑆0,          0 ≤ 𝑆 ≤ 𝑆0,

where,  was the transmission function that defines the infection rate in a population of size  with  𝜙𝑆,𝑁 𝑁

 susceptible individuals. Note that as we assumed a fixed population size, the number of infected 𝑆

individuals was simply . Following Begon et al. (2002), we assumed the infection rate took  𝐼 = 𝑁 ― 𝑆

the form

𝜙𝑆,𝑁 = 𝛼𝑆,𝑁
𝐼
𝑁𝑆,

where  is the product of per-capita contact rate and the probability that an infection is successful, 𝛼𝑆,𝑁

which was then multiplied by , the probability that a contact is infectious, to estimate the force of 
𝐼
𝑁A
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infection. Note that   is a function of  and , and specifies the form of the transmission function 𝛼𝑆,𝑁 𝑆 𝑁

, which could take one of several functional forms (see below). 𝜙𝑆,𝑁

We used the optim function in R to fit eight candidate functional forms of to the infection 𝜙𝑆,𝑁 

status data simultaneously across the 20 mesocosms (Table 1) over the first 5 days of the experiment, 

and ranked their suitability using Akaike’s information criterion (AIC). Note that this required 

calculating the probability distribution of susceptible individuals separately for each treatment, using 

the ode function in R; all treatments were then incorporated into one maximum likelihood function 

representing the entire experiment (see supplementary information for details). The simplest candidate 

  were density- and frequency-dependent transmission (i.e.  and , respectively, 𝜙𝑆,𝑁 𝛼𝑆,𝑁 = 𝛽𝑁 𝛼𝑆,𝑁 = 𝛽

for some constant ; Table 2). We extended these functions to include saturating transmission at high 𝛽

densities, including the possibility that saturation was dependent on the population structure in terms 

of numbers of susceptible and infected individuals. We also considered a power-law dependence, 

which was a flexible but purely phenomenological model that provided a benchmark against which to 

compare our mechanistic formulations. Finally, we replaced the densities  and  with the 𝑆 𝐼 = 𝑁 ― 𝑆

prevalences  and  as an alternative form of population-dependence (Table 2).  𝑥 =
𝑆
𝑁 𝑦 =

𝑁 ― 𝑆
𝑁

Model Validation

The above model fitting was carried out over the first five days of the experiment, thus permitting us 

to neglect deaths and recoveries. For 10 out of the 20 mesocosms, no deaths occurred at the next time 

point (day 8; Figures 1 and S1). We did not include these data in the optimization in order to prevent 

those treatments having undue influence on the result; however, they provide one means of testing our 

model predictions. To this end, we calculated the negative log-likelihood of the two best-fitting 

models over days 5 to 8 for those mesocosms in which no deaths or recoveries had yet occurred, and 

compared the accuracy of their predictions using AIC.

Basic Reproductive Ratio, R0 

Based on the best-fitting model, combined with estimates from the literature, we derived an estimate 

of the basic reproductive ratio (R0) as follows. Assuming an SIR (Susceptible –Infectious – 

Recovered) framework for Bsal, R0 was defined as:A
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𝑅0 =
𝛼𝑆,𝑁

(𝜇 + 𝜎)

where  was defined as above in terms of numbers of individuals and assuming S = N, µ was the 𝛼𝑆,𝑁

mortality rate, and σ was the recovery rate of infectious animals (Anderson & May, 1991). Malagon et 

al. (2020) reported an estimate of  for eastern newts exposed to Bsal via host contact. 𝜇 = 0.0223 𝑑 ―1

In addition, infected eastern newts that do not die take on average 40 days to recover (D. Malagon, 

Clemson University, pers. comm.), so .  We then combined these values with the 𝜎 =
1

40 = 0.025 𝑑 ―1

best-fit value of  from this study into the above equation to generate an estimate of R0.𝛼𝑆,𝑁

Results

Host Infection and Survival

Transmission occurred rapidly in mesocosms with >90% of susceptible individuals testing qPCR 

positive for Bsal within 17 days post-exposure to an infected individual. All individuals in the 

experiment tested qPCR positive by 59 days post-exposure. Total mortality among treatments at the 

end of the 62-day experiment was 45%. We detected no differences in mortality rate among host 

density and infection prevalence treatments (Figure S1). Bsal load on the skin of infected hosts 

differed among host densities (coefficient for density effect on load = 0.013; P = 0.03) with 

individuals in higher density treatments experiencing greater average loads (Figure S2).

Modeling Transmission

The results of our model fitting are summarized in Table 2. We found that the transmission function 

that minimized the AIC was pure frequency-dependent transmission, suggesting that per capita 

contact rates  did not vary with host density (Begon et al. 2002), at least at the densities used in 𝛼𝑆,𝑁

our experiment. Predictions of the best-fitting model to the data from each treatment are presented in 

Figure 1, and the behavior of this optimal  in relation to the density of susceptible individuals (S) 𝜙𝑆,𝑁

is plotted in Figure 2, demonstrating how the transmission function  increases with total 𝜙𝑆,𝑁

population size . The likelihood profile for  in this case can be seen in Figure 3, with maximum 𝑁 𝛽

likelihood at  and 95% of the profile area lying in the range . 𝛽 = 0.230 𝛽 ∈ [0.181,0.293]
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 The model with the next highest AIC corresponded to quadratic saturation (Table 2), meaning 

that the numerator in the contact function is a quadratic function of . Whereas frequency-𝛼𝑆,𝑁 𝑁

dependent transmission predicts a constant per-capita contact rate, quadratic saturation implies that 

contact rate initially increases, peaks, then decreases with increasing population density. The most 

meaningful mathematical difference between the two functions was that with quadratic saturation, the 

peak of the transmission function  was bounded above for large N, whereas the peak of 𝜙𝑆,𝑁

frequency-dependent transmission increased without bound in the same limit (Figures S3 and S4). It 

is worth noting that the negative log-likelihood was lower for quadratic saturation than for frequency-

dependence, indicating that although the fit was better, the model was penalized for containing two 

additional parameters. Similarly, incorporating population structure into the saturation terms (denoted 

structural saturation in Table 2) did not sufficiently improve the model fit to overcome the penalty to 

the AIC for including more parameters.

Model Validation

The AIC for days 5 to 8 was 65.9 for the frequency-dependent model, while for the quadratic 

saturation model it was 70.6, suggesting that frequency-dependent transmission continued to be a 

better fit. Furthermore, we plotted the likelihood profiles for both models in Figures 3 and 4. In the 

case of the multi-parameter quadratic saturation model, these were the trajectories through parameter 

space given by fixing one parameter at successive points along a given range and optimizing over the 

remaining two. These results suggest there was much greater uncertainty in the parameter values for 

the quadratic saturation model (Figure 4); in particular, all three parameter ranges began at zero. In 

contrast, the likelihood profile for the frequency-dependence model was narrowly peaked away from 

zero (Figure 3), thus providing further evidence for its selection as the best-fit model.

Basic Reproductive Ratio, R0 

Using our frequency-dependent transmission model ( = 0.230) and previous estimates for 𝛼𝑆,𝑁 = 𝛽 

host mortality and recovery rate (Malagon et al., 2020), we estimated R0 for Bsal to be 4.9 in an 

eastern newt population.
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Discussion

The best-fit model for Bsal transmission between adult eastern newts in aquatic mesocosms was pure 

frequency-dependent transmission. This is the first study that directly measured and modeled the 

transmission of Bsal in a host population. Previous studies either assumed density-dependent 

transmission (Canessa et al., 2018; Schmidt et al., 2017) or measured contacts between uninfected 

hosts to infer transmission (Malagon et al., 2020). Our results add to the growing empirical 

recognition that transmission of wildlife pathogens can saturate and be functionally frequency-

dependent for all but the smallest host densities (Brunner, Beaty, Guitard, & Russell, 2017; Brunner 

& Yarber, 2018; Hopkins et al., 2020). Several reasons might exist for frequency-dependent 

transmission in the Bsal-eastern newt system. First, the probability of transmission via contact of an 

infected eastern newt with an uninfected susceptible individual is >95% (Malagon et al., 2020). 

Second, at our lower density treatments (i.e., 2 – 8 newts per m2), which are indicative of the wild, 

eastern newts contact each other between 90 and 1000 times per day in aquatic mesocosms with and 

without habitat structure (Malagon et al., 2020). Hence, the likelihood of Bsal transmission is almost 

guaranteed regardless of host density, which is supported by our result that >90% of the susceptible 

newts tested positive for Bsal infection within 17 days post-exposure to an infected newt. That said, if 

host density was decreased below our lowest treatment density (i.e., <2 newts per m2), it is possible 

that density-dependent transmission could occur, and this relationship should be explored. Similarly, 

we found little evidence of an upper bound on transmission, as would be provided by, for example, a 

quadratically or structurally saturating transmission function. Although it is unlikely that the peak of 

the transmission function can actually increase without bound as population density increases, it may 

be that such a phenomenon only occurs at unfeasibly high host densities.

Interestingly, when the optimization process was applied to what is perhaps the simplest 

model, namely density-dependent transmission, it failed to converge to a minimum. This appears to 

be due to overly rapid transmission in simulated populations with larger densities, resulting in all 

simulated individuals becoming infected too quickly to be consistent with the data. Note that all other 

functional forms of the transmission function  incorporated a contact rate  that was either 𝜙𝑆,𝑁 𝛼𝑆,𝑁

constant or concave-down with increasing population density, a feature absent from density-

dependent transmission. This strongly suggests that, consistent with Malagon et al. (2020), contact A
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rates decrease with higher host densities, slowing infection rates compared to density-dependent 

transmission. 

In addition to host density, Wilber, Knapp, Toothman, and Briggs (2017) also reported that the 

zoospore pool played an important role in Bd transmission; however, transmission in our system was 

likely driven by host contacts because we used transmission data from the first five days of the 

experiment (i.e., prior to any host mortality), hence it is unlikely that substantial zoospore shedding 

occurred. Islam, Gray, & Peace (2021) simulated Bsal transmission and zoospore shedding in eastern 

newts, and it took several days for zoospores to accumulate beyond an infectious-dose concentration 

in stagnant systems. Further, our mesocosms were flow-through with water turning over ca. 2X per 

day, which would presumably reduce transmission by free swimming zoospores and support that host 

contacts were the primary driver of transmission in our system.    

We detected no differences in mortality rates among density treatments, but there was some 

evidence that Bsal load was positively related to host density. While this result was driven by hosts in 

the highest infection prevalence treatment, this provides some interesting evidence that at higher host 

density and infection prevalence the zoospore pool contributes more to transmission, facilitating 

increases in Bsal loads on the skin.  Alternatively, high density also could increase host stress and 

facilitate Bsal growth. In Bd-amphibian systems, it is often assumed that on-host infection processes, 

such pathogen growth, decouple from transmission processes (DiRenzo et al., 2018; Wilber et al., 

2017), but our results suggest that this assumption might require increased scrutiny in Bsal systems, 

with important implications for modeling Bsal-amphibian dynamics. 

We estimated R0 = 4.9, which is somewhat higher than previously estimated by Malagon et al. 

(2020), who estimated R0 = 1.9 – 3.2, suggesting invasion probability of Bsal into adult eastern newt 

populations is high. Canessa et al. (2018) estimated R0 = 5.8 – 14.3 for European fire salamanders 

where no management actions occurred, which might reflect greater susceptibility of this species to 

Bsal infection. However, considering that many of the parameter estimates in their models were based 

on expert opinion rather than based on experimental data designed to infer transmission rates, it is 

possible their R0 was overestimated. 

Theory predicts that pathogens that exhibit pure frequency-dependent transmission are able to 

persist at very low host densities, and so have the potential to drive their host population extinct A
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(McCallum et al., 2001). However, in reality, we would expect transmission to transition to density-

dependence for sufficiently small host densities (Antonovics, Iwasa, & Hassell, 1995). This would 

also be true if transmission occurred primarily through contact with zoospores in the environment at 

low host densities (Anderson & May, 1978), although robust populations of Bsal zoospores in the 

environment could effectively lead to frequency-dependent transmission even at low host densities 

(Stegen et al., 2017; Islam, Gray & Peace, 2021).  Although density-dependent transmission would 

render deterministic extinction impossible, at very low densities stochastic extinctions become 

increasingly likely (Lloyd-Smith, Schreiber, Kopp, & Getz, 2005). Hence, the epidemiological 

implications of frequency-dependent transmission coupled with R0 > 1 suggest that disease 

management actions will likely need to be extreme to control an outbreak of Bsal in eastern newt 

populations, similar to fire salamanders (Canessa et al., 2018). Typically, best management strategies 

for reducing the population-level effects of frequency-dependent transmission focus on increasing 

host resistance or tolerance to infection or decreasing environmental persistence of the pathogen 

(Almberg, Cross, Johnson, Heisey, & Richards, 2011; McCallum, 2008, 2012). Antifungal or 

microbiome treatments that help hosts clear or tolerate Bsal infections have promise for success (Bletz 

et al., 2018; Blooi et al., 2015); however, widespread application in large host populations or across 

multiple sites will be logistically difficult (Canessa et al., 2018). Environmental application of 

fungicides or anti-Bsal microbes might be one approach to large-scale management, although effects 

on other organisms need to be considered (Silva, Matz, Elmassry, & San Francisco, 2019; Woodhams 

et al., 2018). Canessa et al. (2018) suggested that reducing fire salamander density by 50 – 90% could 

reduce R0, which our results do not support for eastern newts, although reduction in host densities 

below our lowest treatment (<2 individuals per m2) might be effective and should be explored.  

Collectively, these results support the recommendations in European systems that 

management actions should focus on preventing the introduction of Bsal (Schmidt et al., 2017; 

Thomas et al., 2019). Currently, very few nations have regulations requiring pathogen-free trade of 

amphibians (Grant et al., 2017). Additionally, we now know that anurans are capable of becoming 

infected with Bsal (Nguyen et al., 2017; Stegen et al., 2017), which comprise 99% of amphibian trade 

(Can, D'Cruze, & Macdonald, 2019). Given global amphibian trade generates at least $6B USD 

annually (Can et al., 2019; Smith et al., 2009), we encourage nations to develop subsidy programs that A
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facilitate clean trade. This mitigation strategy is especially important for North American countries 

that comprise >50% of the global diversity of salamanders (Yap et al., 2015), which are at greatest 

threat to Bsal invasion (Gray et al., 2015). 
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The data that support the findings of this study are openly available at 
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Tables 

Table 1. Total density of adult eastern newts (Notophthalmus viridescens) and initial Bsal infection 

prevalence in 20 1-m2 aquatic mesocosms. 

Initial Infection Prevalence1 Total 

Density 12.5% 25% 50%

2 1

4 1 2

6 3

8 1 2 4

10 5

12 3 6

14 7

16 2 4 8

18 9

20 5 10

32 4 8 16
1Table interior shows the number of infected newts at the start of the experiment.
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Table 2. Maximum-likelihood parameter values for various forms of the transmission function , 𝜙𝑆,𝑁

listed in order by lowest AIC (i.e., best fit). Recall that  and . The lower limit in 𝑁 = 𝑆 + 𝐼 𝑥 =
𝑆
𝑁, 𝑦 =

𝐼
𝑁

the optimization process was chosen as  for all parameters, suggesting that any parameter  10 ―6

reaching this value should be zero. FTC = ‘failed to converge’, indicating that the optimization 

process failed to find a minimum.

Transmission type
Transmission function 

𝝓𝑺,𝑵
Parameters1

Negative log-

likelihood
AIC

Frequency-dependent
𝛽𝑆𝐼
𝑁 𝛽 =  0.230 63.2 128.3

Quadratic saturation
𝑆𝐼

𝜅0 + 𝜅1𝑁 + 𝜅2𝑁2

𝜅0 = 0.026, 𝜅1 = 2.79, 

𝜅2 = 0.085
62.2 130.3

Power law 𝛽𝑆𝑎𝐼𝑏
𝛽 = 0.176, 𝑎 = 0.362,

 𝑏 = 0.382
63.2 132.4

Structural saturation
𝑆𝐼

𝜅0 + 𝜅𝑆𝑆 + 𝜅𝐼𝐼 + 𝜅2𝑆𝐼
𝜅0 = 10 ―6, 𝜅𝑆 = 2.55, 

𝜅𝐼 = 3.36, 𝜅2 = 0.366
62.5 132.9

Simple prevalence 𝛽𝑥𝑦 𝛽 = 3.39 68.7 139.3

Power law (prevalence) 𝛽𝑥𝑎𝑦𝑏
𝛽 = 4.29, 𝑎 = 1.27, 

𝑏 = 1.04
68.4 142.8

Quadratic saturation 

(prevalence)

𝑥𝑦

𝜅0 + 𝜅1𝑥 + 𝜅2𝑥2

𝜅0 = 0.295, 𝜅1 = 10 ―6

𝜅2 = 10 ―6
68.7 143.3

Density-dependent 𝛽𝑆𝐼 FTC FTC FTC

1 The transmission function  has units time-1. As  are numbers and  are prevalences, 𝜙𝑆,𝑁 𝑆, 𝐼, 𝑁 𝑥, 𝑦

they are dimensionless quantities; thus  also has units time-1 throughout, and each of the  𝛽 𝜅
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parameters has units time.  and  are dimensionless.  is equivalent to , but is written in the 𝑎 𝑏 𝜅0 𝛽 ―1

denominator to allow the optimization algorithm to select .𝜅0 = 0

Figure Captions

Figure 1: Data used to estimate transmission (circles), compared to the mean (solid lines) of the 

probability distribution of susceptible individuals as predicted by the best fitting model, frequency 

dependent transmission (Table 2). The model was fitted to data from days 0 to 5, the period with no 

host deaths or recoveries from infection. Triangles represent data from day 8 in the 10 mesocosms 

that had no deaths or recoveries; these were not used for model optimization but instead compared 

with model predictions as a form of validation. Minimum 95% confidence intervals for the data are 

represented by shaded regions. The dashed lines indicate the total population size of each treatment.

Figure 2: Frequency-dependent transmission function ( ) at the maximum-likelihood fit𝜙𝑆,𝑁 =
𝛽𝑆𝐼
𝑁

, plotted as a function of the density of susceptible hosts (S) for various total population  𝛽 = 0.230

sizes (N).

Figure 3: Likelihood profile for the parameter  in frequency-dependent transmission. The location 𝛽

of the maximum likelihood is indicated by the dotted line, and corresponds to the value  𝛽 = 0.230

given in Table 2. The shaded area represents 95% of the area under the curve, yielding the confidence 

interval .𝛽 ∈ [0.181,0.293]

Figure 4: Likelihood profiles for the parameters in quadratically saturating transmission. The location 

of the maximum likelihood for each parameter is given by the dotted line, and correspond to the 

parameter values ,  and  given in Table 2. The shaded areas represent 𝜅0 = 0.026 𝜅1 = 2.79 𝜅2 = 0.085

95% of the area under each curve, yielding the confidence intervals ,  and 𝜅0 ∈ [0,34.2] 𝜅1 ∈ [0,4.59]

. 𝜅2 ∈ [0,0.238]A
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