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Electron transfer at interfaces lies at the heart of electrochemistry and methods with increasing 

sensitively have been evolved in waves over the last 100 years. Mercury electrodes and 

polarography were hugely important in providing well defined platforms for studying electron 

transfer and in the development of many areas of electrochemistry, including its hugely important 

role as an analytical technique. For example, mercury electrodes enabled well defined studies of 

inner and outer sphere electron transfer processes and helped relationships between molecular 

structure and rates of heterogeneous electron transfer to be established. Advances in modern 

interfacial electrochemistry have been defined by developments in electrodes. For example, 

microelectrodes have been so important in the evolution of modern electrochemistry,1-2  including 

fundamental studies of interfacial electron transfer. Well defined single crystal surfaces emerged in 

the 1970s and 1980s as a new cornerstone for physical electrochemistry.3 As well as providing highly 

defined electrodes for electron transfer studies they enabled the study of structure and dynamics of 

the electrode-electrolyte interface with unprecedented detail. Important here was the combination 

with spectroscopic and modern imaging techniques such as STM. A more recent innovation has been 

the growing interest and development of “single entity electrochemistry”.4-5 Single entities have now 

been studied in many diverse ways and there have even been conferences devoted to such. 4-6 Such 

studies have been very diverse, ranging from the electrochemistry of cells to small molecules,4 and 

from microelectrodes used in scanning electrochemical microscopy (SECM) to STM tips contacting 

just a single molecule. Key methods for achieving such feats have relied on ultra-sensitive ways of 

measuring current and controlling electrode positioning.  An example here is scanning 

ultramicroelectrodes of an scanning electrochemical microscope (SECM) being used to repeatedly 

oxidise and reduce single molecules shuttling between the SECM ultra-micro tip and a very close 

adjacent surface.7 A quite different example is the use of STM to form single molecular bridges 

between two electrodes and to study the resulting current flow across this junction in electrolyte 

solution.8-19 This latter example of is the topic of this opinion piece. 

Molecular electronics is concerned with the study and application of electrical properties of 

molecules. At its limit molecular electronics can probe the electrical properties of single molecules 
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wired between two contacts or in some cases in 3-terminal (gated) configurations. Since many 

interesting properties arise from the redox and electrochemical properties of the target molecules 

there is a strong affiliation with electrochemistry.  This connection has been strengthened by the 

capabilities to make defined electrical measurements on redox active single molecules within an 

electrochemical environment.8, 20-21 This can be achieved by use of an STM 8-9 or a mechanically 

controlled break junction22-23 within electrochemical environments, although the electrochemical 

STM (EC-STM) has been much more commonly deployed. The EC-STM has a bipotentiostat, so the 

electrode potential of both contacts is controlled. In brief, the STM is used as the tool to form single 

molecule junctions with molecules chemically bound at one of their ends to the surface and the 

other end of the tip. So, in effect single molecules are wired between two contacts and the minute 

current flow across this junction is measured. This is different to electrochemical scanning tunnelling 

spectroscopy (EC-STS) in which the molecular target is adsorbed on the electrode surface but not 

attached to the STM tip to form a “wired junction”. 24-29 This is a very brief synopsis of the method 

and further details such as variations in the mode of junction formation and data analysis are given 

elsewhere.30 Importantly, these techniques share the commonality of having to repeatedly make 

and break the single molecule junctions many times. The resulting data is then viewed in 1-D 

conductance histograms and/or 2-D conductance- junction elongation histograms to enable reliable 

statistical determination of junction electrical properties. 

Four contemporary examples, all published in recent years, of studies of molecular electronics at 

electrode-electrolyte interfaces are described in this opinion article. The first illustrative example 

involves the switching of the redox active molecular wire between redox states, with concomitant 

changes in molecular conductance. This example illustrates how molecular electronics at electrode-

electrolyte interfaces can be used to analyse mechanisms of electron transfer, to distinguish 

electrolyte effects and to provide details not readily available from large ensemble measurements. 

The second example shows that the fluctuations of molecular conductance of a redox active 

molecular wire can be followed as a function of electrode potential. This shows how the stochastic 

kinetics of individual reaction events at an electrode-electrolyte interface can be followed. The third 

example demonstrate how electrochemistry can be used to control quantum interference in single 

molecular wires. The fourth example shows a single molecule electrochemical transistor concept for 

well-defined metal cluster containing molecular wires. 

The first example involves viologen molecular bridges spanning between gold electrode contacts.8, 31-

37 Figure 1A shows a “wired” viologen molecular junction in an EC-STM setup, with Figure 1B 

showing the viologen moiety surrounded by electrolyte ions. The viologen molecular bridge is 

connected to the gold electrodes by gold-thiol bonds, which provide the molecular crocodile clips for 
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wiring the single molecule junction. The 4-electrode setup of the EC-STM can be seen, enabling the 

electrode potentials of both gold contacts to be individually controlled and the viologen to be 

electrochemically switched (gated) between different redox states. Surrounding the redox group by 

the controllable electrolyte medium has been referred to as “electrolyte gating” in a single molecule 

electrochemical transistor configuration. Note that the central viologen (bipyridinium) is 

electronically decoupled from the metal electrodes by the (CH2)6 chains. This decoupling encourages 

electron transfer to be by a two-step type mechanism through the central redox moiety. This is the 

so called Kuznetsov-Ulstrup (KU) 2-step mechanism (see 25 and references therein). Charge flow 

across the molecular bridge is achieved by the central viologen group first reorganising through 

environmental and internal fluctuations. As molecular orbitals approach the Fermi level of one of the 

metal contacts charge transfers onto one of the redox centres thereby reducing it. Following partial 

(adiabatic limit) or full (diabatic limit) relaxation the electron then transfer across to the other 

contact, in a sequential process.25 In the adiabatic limit the second electron transfer occurs when 

only partial relaxation of the molecule and its environment has occurred; this is much more efficient 

than the non-adiabatic (or diabatic) limit. This conclusion about the electron transfer mechanism is 

reached from the single molecule data described in the next paragraph. 

Single molecule conductance versus electrode potential data for a viologen molecular bridge with 

(CH2)6 linking chains and thiol contacting groups is shown in Figure 1C for ionic liquid electrolytes.32 A 

central part of this study was to analyse how different electrolytes influence the charge transfer, 

with a comparison between water electrolytes and ionic liquids.32 Ionic liquids had been previously 

demonstrated as effective media for EC-STM and electrochemical tunnelling spectroscopy26 and 

have also been shown as effective media for molecular electronics studies.38 The influence of the 

electrolyte medium can be clearly seen in conductance versus overvoltage plots for this viologen 

system in Figure 1C (ionic liquid electrolytes) and Figure 1D (water electrolytes).  Zero overvoltage 

on these plots refers to the reversible potential for the reduction of viologen dication (V2+) to its 

corresponding radical cation (V+.). Note that when moving from positive overpotentials in the 

negative direction the conductance increases towards the reversible potential and then falls. This is 

a consequence of the KU mechanism with maximum current flow through the molecule close to the 

equilibrium potential where both the oxidized and reduced forms contribute comparably to the 

current flow across the junction. The solid curves in these plots are fitting to the KU model.32 One 

parameter obtained here is the proportion of the applied potential felt by the redox centre in the 

double layer, which can be termed the “electrolyte gate coupling”.  The ionic liquid shows strong 

electrolyte gate coupling (~1) compared with the aqueous electrolytes (~0.2).32 These data show 
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how molecular electronics can give insights into the potential dropped across double layers and 

electrostatic interactions between the double layer and surface attached redox moieties.32 

 

Figure 1  (A) Illustrates single molecule gating using an electrochemical STM. The electrode potential 

of the substrate and STM tip are controlled with a  bipotentiostat control. The single molecule bridge 

contains a central redox active viologen moiety. (B) Illustrates the electrolyte gating concept with 

the electrolyte ions surrounding the viologen group. (C) & (D) Single molecule conductance data 

(blue circles) and fitting with the KU model (solid blue lines) for the viologen junction in ionic liquid 

(C) and for comparison in aqueous electrolyte (D). Adapted from ref. 32. Copyright 2015 American 

Chemical Society. 

The second example shows how fluctuations in the conductance of single redox molecules can be 

followed and how this can be used to track the stochastic kinetics of individual redox events as a 

function of electrode potential.39 This example employs ferrocene molecular bridges with different 

lengths of linking chains, with the 3C-Fc and 5C-Fc exemplars shown in Figure 2.39 The EC-STM is 

used to form molecular junctions and conductance is studied as a function of electrode potential (E). 

Many individual conductance- potential sweeps are plotted into heat maps, shown for 3C-Fc and 5C-

Fc in Figure 2A. As the electrode potential is swept from negative to positive overpotentials the 

conductance increases in a sigmoidal fashion with no peak as in the previous example. By contrast in 

this case rather than a 2-step mechanism electron transport is by superexchange tunnelling 

mediated by a low-lying intermediate state at the redox centre.39 Here tunnelling is through either 

the reduced or oxidised state of the molecules which have different conductance values and an 

average conductance can be simply seen as related to the probability of whether the molecule is in 

the reduced or oxidised state. This balance between reduced and oxidised states is clearly shifted by 

changing the electrode potential and in figure 2A the ferrocene molecule is nearly fully in it reduced 
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(neutral) form at the negative overpotential side of the scale and fully oxidised at the most positive 

overpotentials. The sigmoidal rise of the conductance traced by the dashed black average 

conductance curve then simply follows the Nernstian distribution between the reduced and oxidised 

states, with the latter state having the higher tunnelling conductance.39 

 

Figure 2 (A) Single molecule conductance versus electrode potential for the molecular bridges 3C-Fc 

and 10C-Fc (Structures shown on the left). Data statistically represented in 2D heat-maps by 

overlaying 150 individually measured conductance–potential curves. The vertical dashed red lines 

mark the equilibrium potentials of the ferrocene groups. The white ovals mark the conductance 

bands of the reduced (Fc) and oxidized (Fc+) ferrocene states. (B) 50 theoretically simulated 

conductance–potential curves overlaid in 2D conductance–potential histograms for two standard 

rate constants (5000 versus 49 s-1). The 5000 s-1 simulation best matches the 3C-Fc data, while the 49 

s-1 simulation is matched with the 10C-Fc system. Adapted from reference 39. 

 

The previous paragraph highlights the behaviour averaged from the many conductance-potential 

sweeps collected together on these heatmaps in Figure 2A. However, the wide distribution of 

colours in the heatmap and “spikiness” of the traces, which is best seen in individual scans, is related 

to large conductance fluctuations in the single molecule data. 39 At the sufficiently negative 

overpotentials the conductance is that of the reduced state giving a band highlighted into Figure 2A 

by one of the white line ovals. A band is also highlighted at positive overpotential and attributed to 

the oxidised state. The conductance stochastically fluctuates between these states and this is most 

apparent for the longer analogue (10C-Fc) where these high and low conductance bands overlap 

around zero overpotential, giving the appearance of two-state switching. The dynamics of this 
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switching is modelled in the framework of first-order kinetics with the interfacial electrochemical 

rate constant described by the Butler–Volmer relation with a standard rate constant of k0. Simulated 

conductance-potential histograms are then produced with different values of k0, two of which are 

shown in Figure 2B. 39 It is apparent that the high k0 (k0 = 5000 s-1) simulation most resembles the 

experimental data for 3C-Fc, with the sigmoidal conductance increase and superimposed larger 

stochastic conductance fluctuations around the equilibrium potential. The low k0 (k0 = 49 s-1) 

simulation on the other hand resembles the 10C-Fc data with the long low and high conductance 

bands and clearly apparent two-state switching. The overall importance of this work is to show that 

the stochastic kinetics of single molecule electron transfer reactions can be followed and the 

transition of this single molecule behaviour can be mapped to ensemble average behaviour as 

manifested by the Nernstian behaviour of the aggregated traces.39  

Example three concerns the phenomenon of quantum interference (QI). QI has been an actively 

pursued contemporary topic in molecular electronics since molecular devices offer new 

opportunities arising from their quantum mechanical properties. Molecules cannot be viewed as 

molecular conductors following classical behaviour, for example Kirchoff’s circuit rules. On the 

contrary, charge flow through molecules and “molecular circuits” will be governed by quantum 

mechanical phenomena, with the wave-like interference of electrons playing centre stage. QI arises 

from destructive or constructive interferences of the transmission of electron waves through 

molecules. This is probably most straightforwardly explained with the conceptual example of a 

benzene ring which is hypothetically electrically wired through either para connectivity (X-Y in figure 

3A) or meta connectivity (X-Z in figure 3A). Although X-Y involves a longer through-bond pathway, 

higher current can flow through this route compared to the shorter X-Z connectivity. This is because 

the X-Z (meta) displays QI. This is a rather simple example and “quantum circuits” rules have been 

devised to rationalise interference effects in single-molecule electrical junctions,40 and 

determination of local currents41 has given clear insight into interference effects and current flow in 

molecular junctions.  

There are now several examples of QI being tuned using electrochemistry.13, 42-47 A recent illustration 

is from Bai et al. who used an electrochemistry to tune the electronic behaviour of thiophene based 

molecular junctions, for structures see Figure 3B.42  The electrode potential is used here to tune the 

relative position of the metal Fermi energies and molecular orbitals (or transmission resonance). 

Figure 3C shows a gradual shift of the conductance histogram peak to lower values as the electrode 

potential is stepped negative. Figure 3D shows a comparison of conductance versus electrode 

potential for 2,5-TP-Ac (top curve, purple) versus 2,4-TP-SAc (lower curve, orange-red); the latter 

shows a pronounced decrease of conductance as the electrode potential is taken negative and the 
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system is shifted to an anti-resonance arising from destructive QI. The relatively small differences in 

structure between the two compounds in Figure 3B leads to rather pronounced differences in the QI 

tuning of their conductance. Furthermore, a sharp anti-resonance feature is shown in the computed 

transmission coefficients of 2,4-TP-SAc (see ref. 42), which can be tuned with the charge added to the 

molecule, underpinning that QI is being tuned by the electrochemistry. This study thereby 

demonstrates novel ways in which electrochemistry can be used to control and understand charge 

flow through molecules. 

 

 

Figure 3 (A) A benzene ring with para (X-Y) or meta (X-Z) electrical connectivity. Even though the 

through bond distance is less for the meta connectivity, quantum interference ensures that this is 

less conductive. (B) 2,4-TP-SAc and 2,5-TP-SAc used by Bai et al. in a study of electrochemically 

controlled destructive quantum interference. (C) 1D conductance histograms of single molecule 

thiophene junctions (2,4-TP-SAc) at four different applied electrode potentials as marked (of the 

coated Au STM tip relative to Ag/AgCl). (D) Comparison of conductance versus electrode potential 

for 2,5-TP-Ac (top curve, purple) and 2,4-TP-SAc (lower curve, orange-red); the latter shows a 
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pronounced decrease of conductance as the electrode potential is taken negative and the system is 

shifted to an anti-resonance arising from destructive QI. The inset shows a zoom-in around the curve 

minimum. Adapted from reference 42 copyright 2019, Springer Nature. 

The final example shows how electrochemical single molecule gating (“electrochemical transistor”) 

studies have been recently extended to cluster-containing molecular wires.48 Although metal 

nanoparticles featured in much earlier molecular electronics studies, which exploited Coulomb 

blockading of current flow through a metal nanoparticle,49 this new example featured well defined 

metal cluster containing molecular wires which showed pronounced multiple electrochemical 

switching features. Figure 4 shows a single polyoxometalate (POM) molecular wire with 4‐pyridyl 

termini caught between gold electrode contacts in an ionic liquid electrolyte. This metal cluster 

molecular wire contained 1 Mn atom and six Mo atoms. As shown in Figure 4 the charge of the 

polyoxomolybdate is electrochemically switched between the 2- , 3- and 4- states. This 3-state 

conductance switching gates current flow across the junction by over one order of magnitude.48 This 

offers new perspectives for coupling electrochemistry and molecular device function, which could 

also deploy electrochemistry to control the tuneable optical and electrical properties of the clusters 

within the molecular wires.  

 

Figure 4 This shows how a polyoxometalate (POM) molecular wire with 4‐pyridyl termini has been 

used to fabricate single molecule junctions in an electrochemical environment. The fabricated device 

shows a single molecule electrochemical transistor behaviour with conductance being electrolyte 

gated by more than one order of magnitude. Reprinted from reference 48. 

In summary, techniques such as the electrochemical STM can be used to “wire” and study current 

flow through single molecules in an electrochemical environment with electrode potential control. 

This has enabled detailed studies of mechanisms of charge transport through molecules in 

electrolyte environments ranging from aqueous to ionic liquids. Mechanisms have been seen to vary 
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from 2-step ones to superexchange tunnelling. Quantitative properties such as reorganisation 

energies or double layer potential drops at the redox centre have been obtained from the single 

molecule data by applying theoretical models. Although not covered here, electrochemistry has also 

promoted the use of other less inert metal contacts, including Cu, Fe, Pd50 and Ni and Co 17, 51-52. 

Recently the methodology has moved into the time domain with fluctuations of molecular 

conductance of a redox active molecular being followed as a function of electrode potential. Single 

molecule methodology has also been used to study and control phenomena such as quantum 

interference and electrochemically gated single molecule transistor behaviour. 

Declaration of interest: none. 
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