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Abstract
Accurate prediction of the remaining useful life (RUL) in Lithium‐ion batteries (LiBs) is a
key aspect of managing its health, in order to promote reliable and secure systems, and to
reduce the need for unscheduled maintenance and costs. Recent work on RUL prediction
has largely focused on refining the accuracy and reliability of the RUL prediction. The
author introduces a new online RUL prediction for LiB using smooth particle filter
(SPF)‐ based likelihood approximation method. The proposed algorithm can accurately
estimate the unknown degradation model parameters and predict the degradation state by
solving the optimisation problem at each iteration, rather than only taking a gradient step,
that tends to lead to rapid convergence, avoids instability issues and improves predictive
accuracy. From the experimental datasets published by Prognostics Centre of Excellence
(PCoE) of NASA, a second order degradation model was created to explore the
degradation of LiB, utilising non‐linear characteristics and non‐Gaussian capacity
degradation. RUL prediction was tested with various predicted starting points to assess
whether the amount of data and parameters' uncertainty influenced the accuracy of the
prediction. Results show that the proposed prediction approach gives improved predic-
tion accuracy and improves the convergence rate in comparison with the particle filter
(PF) and other methods such as unscented particle filter (UPF). Since the maximum error
of the SPF predicting approach is relatively small, RUL prediction in the best case at the
prediction starting point consisting of 80 cycles is 127 cycles. The prediction relative error
was approximately 0.024, and the absolute error of the proposed algorithm is around 2
cycles, which is lower than the PF (around 16 cycles). RUL prediction is close to 108
cycles and relative error is around 0.136, while the absolute error prediction is
approximately 16.

1 | INTRODUCTION

Generally, electric storage devices, for example in electric ve-
hicles (EV) and grid balancing applications, are now heavily
reliant on Lithium‐ion Batteries (LiBs). The widespread use of
LiBs results from their being light, able to store large amounts
of energy in a compact space, and long lasting capacity [1].
However, their capacity decreases over time and with use, due
to degradation in material components; in turn, this leads to
decreased storage capacity and energy [2]. Therefore, moni-
toring battery degradation, forecasting battery status, and
improving maintenance have become important focal points in
LiB engineering research, to improve battery performance and

reliability. To do so, an accurate estimate of a battery's
remaining useful life (RUL) and state of health (SOH) is
required [3,4]. RUL is the term used for the quantity of cycle
left between the present cycle and the cycle at which battery's
End of Service (EoS) occurs, and can vary from 70% to 80%
of nominal capacity [5].

In general, predictive methods can be split into machine
learning (ML) and model‐based methods [6]. ML techniques
have recently been implemented to model battery deterioration
and forecast the RUL of LiBs. For instance, the auto‐regressive
(AR) model was proposed in [7] to predict the diminishing
capacity in LiB. The other example is the improved relevance
vector machine (RVM), which is a technique for improving
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certainty in RUL prediction, stability and accuracy [8]. In
addition, a feedforward neural network (FNN) was applied in
[9] to enhance RUL prediction. The authors in [10] proposed a
framework aimed at estimating battery capacity based on
multi‐channel ML methods using an FNN, convolutional
neural network (CNN) and long short‐term memory (LSTM),
to improve prediction accuracy based on the diversity of
possible data from current, voltage and temperature. In all
these techniques, however, the training needs to be extensive,
inclusive, unbiased, and good quality. Additionally, most ML
algorithms need off‐line training to accurately model the bat-
tery, and they also have a high computational load for online
RUL prediction [11].

With model‐based methods, mathematical ageing models
that capture long‐term battery degradation dependencies are
required. Because of the mathematical simplicity, wide validity
and high flexibility, RUL can be predicted [12]. Most studies in
the literature have utilised a model that is generally linear,
exponential and polynomial [13–15]. Model‐based approaches
are also associated with advanced Bayesian, Kalman and Par-
ticle filters (KF and PF, respectively) [16]. These can update the
parameters of the model as part of the diagnostic process, to
ensure accurate RUL prediction. The best candidate for solving
linear system problems with Gaussian noise is the KF [6]. A
linear model of capacity degradation linked with two filters has
also been proposed to estimate the remaining battery life [17];
however, the process of battery degradation is often non‐
linear, and this is where different KF algorithms, such as an
unscented KF or extended KF [18], may address the above‐
mentioned issue. According to [19], most errors in the process
of predicting RUL derive from several sources when obtaining
data, and, thus, total noise often does not show Gaussian
behaviour. In this context, therefore, the application of a KF
algorithm leads to divergence. However, the method of health
diagnosis includes solutions for non‐Gaussian non‐linear sys-
tem‐based problems. For this reason, studies have tended to
consider PF algorithms, which give solutions for both non‐
linear and non‐Gaussian issues [20]. Several papers have
employed PF to determine the failure points of LiBs. For
example, in [21,22], a method was proposed to predict failure
using the exponential model and classical PF. In addition,
although a second‐order polynomial was presented in [14],
which contains fewer parameters than the exponential model,
this model is less accurate than the exponential model.

In general, PFs suffer from two main problems: (1) particle
degeneracy and (2) particle impoverishments. The latter is due
to the fact that a PF has a resampling phase that can reduce
particle degeneracy, and this may also result in a loss of sample
particles [23]. Accordingly, other types of PFs used to solve
these problems have been considered. For example, an un-
scented PF (UPF) was presented in [24] to improve the sam-
pling and reshaping of PF. The authors in [25] presented a
scheme for battery capacity estimation based on the estimated
capacity using a Gauss‐Hermite PF algorithm to predict the
failure limit for the uncertainty in the RUL prediction. Markov
Chain Monte Carlo (MCMC) method has been applied in [26]
to solve sample problem impoverishment in a UPF algorithm.

Regularised particle filters have also been used in the re‐
sampling phase to enhance PF accuracy, as presented in [27].
A Rao‐Blackwellized PF (RBPF) was suggested in [28] to limit
the distribution of likelihood into a subspace of the state dis-
tribution of likelihood in the state space sample. The authors in
[29] have been integrated the neural networks radial basis with
a PF to the end‐of‐discharge prediction for a LiB. Similarly in
[30], NNmodel and new PF algorithm know as Bat‐PF has been
integrated to improve the accuracy of the residual life prediction
and to reduce PF impoverishment and degeneracy. Also, second‐
order central difference (SCD‐PF) algorithm was introduced in
[31] to improve the performance of the PF for RUL prediction
of Limbs. However, most previous improved algorithms have
extensively reduced the problems faced by the PF algorithm in
terms of particle decomposition and sample diversity deficiency
and obtained a strong result for LiB RUL prediction. Never-
theless, issues with particle degradation and particle diversity
deficiency remain difficult for RUL prediction.

The key contribution of this work is to improve the RUL
prediction of LiB battery by smoothing the PF using likelihood
approximations scheme [32], combined with a second order
degradation model. The proposed SPF algorithm improves the
accuracy of RUL prediction by choosing the proposal distri-
bution and the resampling weights, depending on certain
current parameter estimates, thus overcoming the problem of
particle impoverishment and uncertainty in the degradation
model parameters. This article is structured as follows. Theo-
retical background and the procedures of implementation for
the PF and the proposed SPF algorithms are set out in Sec-
tion 2. Capacity modelling for LiB based on the experimental
data collected by PCoE of NASA is demonstrated in Section 3.
Obtained results are presented and discussed in Section 4.
Finally, conclusions and discussion are summarised in
Section 5.

2 | THEORETICAL BACKGROUND‐
METHODOLOGY

2.1 | PF algorithm

The PF algorithm combines two techniques: recursive Bayesian
and sequential importance sampling (SIS) [30]. It also contains
two important elements, which are the initialization of pa-
rameters, and the state model equation. The state‐spatial dy-
namic model can be represented by the state transformation
model and the measuring model, using (1) and (2) [33].

xk ¼ f kðxk−1;ωk−1Þ ð1Þ

zk ¼ hðxk; vkÞ ð2Þ

where, xk represents the hidden state variables at kth time, zk
represent the measurement system at kth time, ωk is the noise
process and vk is the noise measurement. The PF algorithm is
comprised of the prediction and update stage. In the prediction
stage, the previous probability distribution of state xk is
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calculated in (3), without making use of information from the
measurement model zk [21].

pðxkjz1:k−1Þ ¼ ∫ pðxkjxk−1Þpðxk−1jz1:k−1Þdxk−1 ð3Þ

In the update stage, the previous probability distribution is
altered by the measurement model zk to achieve the end dis-
tribution of xk at time k.

pðxkjz1:kÞ ¼
pðzkjxkÞpðxkjz1:k−1Þ

∫ pðzkjxkÞpðxkjz1:k−1Þdxk
ð4Þ

The main stage of the PF algorithm is to estimate the end

probability distribution function (PDF) with particles fxðiÞk g
N

i¼1,

weighted with the associated −fwðiÞk g
N

i¼1. Thus, the PDF end in
(4) may be rewritten as follows [21]:

pðx0:kjz1:kÞ ≈ ∑
N

i¼1
wikδ

�
x0:k − xi0:k

�
ð5Þ

where N is the number of particles and δð⋅Þ represents the
Dirac delta function. The particles generated by the dis-
tribution pðxkjz1:kÞ represent the sample perfectly. However,
from the accurate PDF posterior density, it is still difficult to
take a precise sample, and so an alternative way of sampling
needs to be found to sample proposal distribution qðxkjz1:kÞ:

The weighting of the filter may be improved using the SIS and
taking another sample in the stages of the SMC algorithm. The
associate weight of a random particle drawn from qðxkjz1:kÞ is
represented as [33]:

wik ∝
p
�
xik
�
�z1:k

�

q
�
xik
�
�z1:k

� ð6Þ

Suppose the proposal distribution qðxkjz1:kÞ can be fac-
torised into:

qðx0:kjz1:kÞ ¼ qðx0:k−1jz1:k−1Þqðxkjx0:k−1; z1:kÞ ð7Þ

Then the recursive form of the posterior probability den-
sity function can be expressed as:

pðx0:kjz1:kÞ ¼
pðz1:kjx0:k; z1:k − 1Þp

�
x0:k
�
�z1;k − 1

�

pðz1:kjz1:k − 1Þ

¼
pðz1:kjx0:k; z1:k − 1Þpðxkjx0:k − 1; z1:k − 1Þpðx0:k − 1jz1:k − 1Þ

pðz1:kjz1:k − 1Þ

¼
pðz1:kjxkÞpðxkjxk − 1Þpðx0:k − 1jz1:k − 1Þ

pðz1:kjz1:k − 1Þ

∝ pðz1:kjxkÞpðxkjxk − 1Þpðx0:k − 1jz1:k − 1Þ

ð8Þ

By substituting (7) and (8) into (6), the particle weight
update equation can be expressed as:

wik∝
p
�
zk
�
�xik
�
p
�
xik
�
�xik−1

�
p
�
xi0:k

�
�z1:k−1

�

q
�
xik
�
�xi0:k−1; z1:k

�
q
�
xi0:k−1

�
�z1:k−1

�

¼wik−1

p
�
zk
�
�xik
�
p
�
xik
�
�xik−1

�

q
�
xik
�
�xi0:k−1; z1:k

�

ð9Þ

As long as the constraint qðxik
�
�xi0:k−1; z1:kÞ ¼ qðxik

�
�xik−1; zkÞ

is satisfied, the modified weight calculation (9) can be trans-
formed into:

wik ∝ wik−1
p
�
z1:k
�
�xik
�
p
�
xik
�
�xik−1

�

q
�
xik
�
�xik−1; z:k

� ð10Þ

The proposal distribution qðxik
�
�xik−1; z:kÞ was chosen as the

prior distribution pðxik
�
�xik−1Þ in the PF algorithm, to simplify

implementation. The summary of the PF procedure is presented
in Table 1 [21]. Step 1: at k= 0, the prior probability distribution
function p(x0) is used to produce an array of initial particles
fxi0g

N
i¼1 and corresponding particle weight is assigned as

w1:N
0 ¼ 1=N . Steps 2 and 3: particles are updated using Equa-

tions (1) and (2); proposal distribution function qðxik
�
�xik−1; zkÞ is

selected as pðxik
�
�xik−1Þ, then the weight of the particles can be

calculated at time k (see Table 1, step 3). Step 4: by copying large
weights, a new sample of particles fxi0g

N
i¼1 can be drawn, and the

corresponding weights are reassigned to 1/N. Step 5: the new
state can be updated based on the newly obtained particles
fxi0g

N
i¼1 and weights ewik.

2.2 | The proposed SPF algorithm

When using the PF algorithm to estimate maximum probability
(likelihood) parameters in the non‐linear state‐space model, the
PF removes the light weights and copies the heavy weights in a
resample phase, which results in a loss of diversity in the
particle distribution [26].

As presented in [32], the main challenge is that likelihood
distribution estimation and its derivatives are fundamentally
noisy; the main idea of the SPF method is to choose the
proposal distribution qðxik

�
�xik−1; zkÞand the resampling weights

wnk , such that it is entirely independent of parameters θ (in this
application, the parameters of the degradation model). Based
on this choice, it is noted that all the randomly extracted ele-
ments, such as particles xn0:T and ancestor indices an1:T
(furthermore are the an1:T drawn with respect to the wnk ) in the
PF algorithm, became independent of θ; this is critical in the
analysis and estimation of battery degradation as the true
values of the degradation model parameters are unknown, and
highly influenced by uncertainty [24]. Therefore, this article
combines the second‐order empirical degradation model with
the SPF algorithm [32] to improve the RUL prediction of LiB
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battery by smoothing the PF using likelihood approximations
scheme.

Now, if a certain condition is applied to the realisation of
fxn0:T ; a

n
1:Tg, the ẑθ estimation will convert into a deterministic

function within θ, and any standard optimisation routine can
then be implemented to solve (11) and find the maximum
likelihood estimate of θ [32].

pθðz1:T Þ ¼ ∫ pðx0Þ∏
T

t¼1
f θðxtjxt−1ÞhθðztjxtÞdx0:T ð11Þ

θ̂ ¼ arg maxθpθðz1:T Þ ð12Þ

where pθ(z1:T) refers to the likelihood function when consid-
ered a function of θ. This follows from (1) and the initial state
density p(x0). However, the strength of the PF method is the
ability to construct samples sequentially over high space di-
mensions XT+1, where the resampling phase provides valuable
feedback information to discover which parts of the state space
should be explored further. Based on the arbitrary decision, the
weights of θ‐independent resampling wnk will be lost, and thus
missing this feature may lead to a discrepancy in the estimate
obtained. The deterministic function can be ascertained in θ‐
independent re‐sampling by allowing the algorithm to let the
resampling weights wnk and qðxtjxk−1; zkÞ rely on certain cur-
rent parameter predictions, θk−1, as [32],

qðxtjxt−1; ztÞ ¼ f θk−1
ðxtjztÞ ð13Þ

wnk ¼ hθk−1

�
zt
�
�xnt
�

ð14Þ

The SPF choice was θk−1 instead of θ. If the θ value is
somewhat close to the value of θk−1, the variance of the esti-
mate of the maximum likelihood state of the particle distri-
bution, referred to as ẑθk−1ðθÞ, may not be prohibitively large.
On the other hand, if the current value of θk−1 is far from the
current value of bθ, then the estimate ẑθk−1ðθÞ will not be

particularly good at the bθ. For this reason, we must repeat the
parameter values over k until we roughly arrive at values close
to bθ . By inserting (13) and (14) into the particle filter algorithm
and combining with an external optimisation loop, an inno-
vative method is proposed and, presented in Table 2 [32]. The
steps of the method are: Step 1: the initial parameters are
extracted and initialised; Step 2: Run the Particle Filter method
to draw particles, calculated using fxi0g

N
i¼1from the initial dis-

tribution function in line one (as we assume it is independent
of θ), and the importance weight is set as wi

k ¼ 1: Moreover,
in step 2, line 4, an1:T is drawn concerning the reconfiguration
weights wj

t−1. For particle propagation, in step 2, line 5, the
new particles are generated from the proposal dis-

tribution qðxik
�
�xik−1; zkÞ; Step 3: a new sample of fxi0g

N
i¼1 par-

ticles can be obtained by copying large weights and assigning
corresponding weights 1

N ∑N
n¼1 logwn

t ; and Step 4: The new

state is thus reached based on new particles fxi0g
N
i¼1 and

weights ewik.
It can be observed in Table 2 (Step 1, line 4) that the

optimization step related to solving arg maxθẑθk−1ðθÞ has been
established. Importantly, this issue is now deterministic, and
any usual numerical optimisation tool can be implemented, and
the experiments will show this using the general‐purpose
optimisation tool fminunc in Matlab. The structure of ẑθk−1ðθÞ,
which is implicitly defined in the function likelihood of the
proposed algorithm, might still be utilised by a more suitable
optimisation scheme. Its structure can be shown as [32]:

ẑθk−1ðθÞ ¼
1
N

∏
T

k¼1
∑
N

n¼1
cnkw

n
kðθÞf θ

�
xk
�
�
�x
ank
k−1

�
hθ
�
zk
�
�xnk
�
ð15Þ

where cnk is a constant that is independent of θ, wnkðθÞ depends
on θ but always fulfils ∑N

n¼1w
n
kðθÞ ¼ 1, and f θ and hθ rely on

the degradation model.

TA B L E 1 Procedures of the PFStep 1 Initialisation: draw particles xi
0 ∼ pðx 0Þ; i ¼ 1; 2; 3; …; N :

Step 2 Time update: for k = 1:N generate new importance sample for xi
k ∼ qðxi

k

�
�xi

0:k−1; z0:k Þ:

Step 3 Normalise importance weights: Assign the weight of the particle according to:

wik ¼ w
i
k−1
pðzk

�
�xikÞpðx

i
k

�
�xik−1Þ

qðxik
�
�xik−1; zkÞ

#

wik ¼
�

1
ffiffiffiffiffiffi
2π
p

�

⋅ e−ðzk−ẑikÞ
2

=2

Normalise the weight:

wik ¼ w
i
k
�

∑N
i¼1w

i
k
#

Step 4 Particles re‐sampling: the effective sample size Neff is calculated as Neff ≈ 1=∑N
i¼1 ðw

i
k Þ

2. If
Neff < 2

3N , the posterior samples can be generated by resampling from the current particle set, the
corresponding weights are 1/N.

Step 5 Output: State estimation:

x̂k ¼ ∑
N

i−1
~wik~x

i
k#
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3 | CAPACITY DEGRADATION
MODELLING

Subsequently, three cells were selected (B05, B06 and B18) and
their experimental data were published by the Prognostics
Centre of Excellence (PCoE) at NASA Ames Research Centre,
to investigate the performance and accuracy of the proposed
algorithm [34]. As shown in Figure 1, the dataset consist of
four cells using commercial lithium cobalt oxide batteries. The
stated capacity of the cells is 2 Ah, and their nominal voltage is
3.3 V. The cells are iterated through the cycle until they fail, at a
room temperature of 24℃. The following steps provide a
description of the test procedure and data collection
conditions [34]:

1. In the charge step, Constant‐Current, Current‐Voltage
protocol (CC‐CV) is used. A CC of 1.5 Ah was applied
until the cell voltage reached the maximum limit (4.2 V)
and then the CV continued until the current dropped to
20 mAh.

2. In the discharge step, a CC 2 A level applied until the
voltage of battery dropped to 2.7 V, 2.5 V and 2.5 V for
batteries for batteries B05, B06 and B18, respectively.

3. Repeat the previous steps until the batteries reach the point of
failure, here it is 30% of the nominal capacity, and so the
battery's EoS is placed at a capacity threshold ofU = 1.4 Ah.

During the degradation process, a LiB continues to
decrease in capacity. As shown in Figure 1, battery capacity
decreases dramatically with an increase in the number of cycles

used. Thus, the degradation curves are well fitted using an
exponential growth model as presents in (16).

Q¼ a ⋅ expðb ⋅ kÞ þ c ⋅ expðd ⋅ kÞ ð16Þ

Here Q represents the capacity of the battery, a, b, c
and d are the model parameters, and k is the number of cycles.
Note that a curve fitting toolbox was used to obtain an ac-
curate exponential degradation model. Figure 2 show the
fitting results. The findings show that the degradation model is
effective and can be used to predict the RUL battery. The
modelled parameters of the four batteries in the study were
produced at the fitting stage, to attain the starting parameters
for the training data. These were used in the prediction step, as
shown in Table 2.

TA B L E 2 Procedures of the proposed
method

Step 1 1. Set θ0 (Initial parameter of degradation model)

2. for k = 1, ... do

3. Call fxn
0:T ; a

n
1:T g from particle filter ðθk−1Þ

4. Solve θk ← argmaxθ log likelhoodðθ; θk−1; fxn
0:T ; a

n
1:T g

N
n¼1Þ

Step 2 Function particle filter ðθk−1Þ

1. xn
0 particles are first taken from the initial distribution p(x0)

2. Set the importance weight ðwi
k ¼ 1Þ

3. for t = 1, to T do

4. Generate an
t from the Cðfwj

t−1g
N

j¼1Þ

5. Propagate xi
k ∼ f θk−1ðxk

�
�
�x

an
k

k−1; zk Þ

6. Set wn
k ← hθk−1ðzk

�
�xn

kÞ

Return fxn
0:T ; a

n
1:T g

N
n¼1

Step 3 Function log likelhoodðθ; θk−1; fxn
0:T ; a

n
1:T g

N
n¼1Þ

1. for t = 1, to T do

2. Set wi
t ←

w
ant
t−1=∑j w

at
j

t−1

hθk−1 ðx
ant
t−1

�
�yt−1Þ=∑j hθk−1 ðx

j
t−1jyt−1Þ

f θðxt

�
�x

ant
t−1Þ

f θk−1 ðxt

�
�x

ant
t−1Þ

hθðyt

�
�xn

t Þ

3. Set zt ← 1
N ∑N

n¼1 logwn
t

Return log ẑθk−1ðθÞ← ∑T
t¼1log zt

Step 4 State prediction: x̂k ¼ ∑
N

i−1
~wik~x

i
k#

F I G U R E 1 The capacity degradation curve
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4 | EXPERIMENTAL VALIDATION AND
DISCUSSION

Now, the SPF and PF algorithms in Tables 1 and 2 are
implemented to demonstration the effectiveness of the pro-
posed solution. Furthermore, in order to test the accuracy of
the prediction of the PF and proposed SPF algorithm, different
cycle ‘starting points’ were applied, such as 20, 50 and 80 cy-
cles. Again, the two algorithms were used here for online
estimation of the parameters in (16). A second order degra-
dation model has been developed based on the fitting results
explained earlier in Section 3. The performance of the pre-
diction has been evaluated using absolute error (AE) of the
RUL, the relative error (RE) of the RUL and the root‐bean
square error (RMSE) of the RUL. As given in (17), AE is
defined as the difference between the number of remaining
true (RULT) cycles and the number of predicted (RULP)

cycles. While the RE is defined as presented in (18) and RMSE
is defined as presented in (19).

AE ¼ jRULT − RULPj ð17Þ

RE ¼ AE=RULT
ð18Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
kp

∑C
k¼strt ðQk −Qk̂Þ

s

ð19Þ

where kp is the number of cycles that must be predict and Qk̂
represent the prediction result at cycle k.

4.1 | RUL prediction

According to the capacity degradation model, the state tran-
sition of the battery system can be defined as follows:

xk ¼ ½ak; bk; ck; dk� ð20Þ

where

8
><

>:

ak ¼ ak−1 þ ωa ωa ∼Nð0; σaÞ
bk ¼ bk−1 þ ωb ωc ∼Nð0; σbÞ
ck ¼ ck−1 þ ωc ωc ∼Nð0; σcÞ
dk ¼ dk−1 þ ωd ωd ∼Nð0; σdÞ

ð21Þ

Now Equation (16) can be written as

Qk ¼ ak expðbkkÞ þ ck expðdkkÞ þ vk vk ∼Nð0; σV Þ ð22Þ

Here,Qk is the measurement of capacity cell at cycle k, and
Nð0; σÞ is the Gaussian noise with zero mean and σ is the
standard deviation. Then, the measurement of capacity cell can
be estimated by:

Qk ¼ ∑
N

i¼1
Qi
k ¼ ∑

N

i¼1

h
aik : exp

�
bik ⋅ k

�
þ cik : exp

�
dik ⋅ k

�i
ð23Þ

At cycle k, the prediction step (p‐th) can be calculated by:

Qkþp ¼ ∑
N

i¼1

h
aik : exp

�
bik ⋅ ðkþ pÞ

�
þ cik : exp

�
dik ⋅ ðkþ pÞ

�i

ð24Þ

The posterior PDF can be estimated with weights on each
trajectory:

P
�
Qkþp

�
�
�QO:k

�
≈ ∑

N

i¼1
wikδ

�
Qkþp −Qi

kþp

�
ð25Þ

F I G U R E 2 Degradation data and fitted curve
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In this analysis, the value of the failure threshold is 70% of
the nominal capacity value. Then, at cycle k the RUL distri-
bution can be predicted by [35]:

0:7Qnominal ¼ a
i
k:exp

�
bik ⋅ Lik

�
þ cik:exp

�
dik ⋅ Lik

�
ð26Þ

PðLk
�
�Q0:kÞ ≈ ∑

N

i¼1
wik
�
Lk − Lik

�
ð27Þ

Here, Lki is the RUL at cycle k.

4.2 | RUL prediction using B05 cell

Note that the authors use the B05 battery cell for RUL pre-
diction. The initial values of the PF and proposed SPF pa-
rameters were selected as: number of particles N = 200, and
battery failure threshold 1.4 Ah. The initial parameters for the
degradation model for all battery cells are shown in Table 3.

Figure 3 shows the prediction result with PF, and the
proposed SPF algorithm for battery cell B05. It is important to
mention that the first 80 cycles from the data are used as
training data to update the prediction process. There are two
curves of prediction, and the respective PDFs of the RUL were
obtained to compare between the PF and the proposed SPF.
Here, PDF indicates the possibility of the lithium‐ion battery's
end life in each interval, as shown in Figure 3a,b, respectively.
As seen in Figure 3a, at Ts = 80 cycles, the final life cycle was
126 cycles, while the average predicted life cycle using the PF
was 108 cycles. Thus, the AE for the PF algorithm is around16,
the maximum RE was about 0.136 and error was approxi-
mately 0.1128. While for the proposed algorithm (see
Figure 3b), the average number of life cycles predicted was
around 127 cycles, and the prediction AE was approximately 1
cycles, the prediction RE was around 0.014 and the RMSE
error was roughly 0.0198. From the prediction results, it is
observed that the prediction curve obtained from the pro-
posed SPF method is closer to the actual capacity degradation
curve than the PF prediction curve, and its PDF of RUL, based
on the proposed SPF algorithm, is more concentrated.
Figure 3c shows the two prediction curves at the same time to
check the PF algorithm and the proposed SPF algorithm
performance results during the entire lifecycle, which clearly
reveal the effectiveness of the proposed algorithm. Figure 4
likewise shows the process of predicting the RUL by relying on
the above mentioned two methods. Here, the first 50 cycles
were used to update the prediction process. As shown in
Figure 4, an identical conclusion similar to the above can be
deduced from Figure 3, which shows the robustness and
strong accuracy of the proposed SPF algorithm.

Figure 5a,b show the prediction RE of the RUL using the
PF method and the proposed SPF method; in the prediction
update phase, the first 50 and 80 cycles are used, respectively.
The RE curve extracted from the PF method starts with quite
a small error rate but then diverges from the actual capacity
values, leading to an increase in the error rate. This

corresponds to how the previously mentioned particle filter
suffers from particle degeneration and impoverishment. In
contrast, the curve extracted from the proposed SPF method
with the cycle passage converges more than the actual capacity
values, indicating that the proposed method is more reliable.

Table 4 shows the error rates for the prediction RUL of
the battery B05 obtained by the PF and proposed SPF
methods with different starting points. The AE, RE and
RMSE of the proposed SPF algorithm are significantly

TA B L E 3 Initial model parameters

Cell ID a b c d

B05 1.974 −0.00027 −0.158 −0.06942

B06 1.562 −0.00557 0.4895 0.0009

B18 1.853 −0.00291 0.0002 0.0428

F I G U R E 3 Prediction RUL results at 80 cycles for B05. (a) PF, (b) SPF
and (c) comparison results
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smaller than of the PF algorithm. In addition, the findings
clearly show (Figures 3 and 4) that the start point is
continuously regressed, and so the prediction error becomes
nearer to zero; this is in line with real‐time application. The
findings also show that the algorithm converges with the
predicted start point, and thus much more training data can
be employed for learning, and better degradation knowledge
and characteristics can be revealed. It was also seen that the
prediction error is lower in the reverse direction, indicating
that the particles are more compacted as more capacity data
are accessible. To evaluate the prediction accuracy of the
proposed approach, it is necessary to compare the obtained
result with the latest state‐of‐the‐art approaches [25,30]
conducted for the same case study. Table 5 presents the
results of the proposed solutions. In addition, the perfor-
mance of each approach was further evaluated using AE,

RE and RMSE of the RUL. As shown in Table 5, the
proposed SPF approach and U‐LOCR‐PF enhanced the
prediction accuracy of the PF more than the proposed SCD‐
PF approach, which demonstrates the robustness of the
proposed approach.

In terms of applying the RUL prediction method [26],
this approach is complicated when compared to our pro-
posed method. This is because it adopts a unscented kalman
filter algorithm to obtain the proposal distribution as an

F I G U R E 4 Prediction RUL results at 50 cycles for B05. (a) PF, (b) SPF
and (c) comparison results

F I G U R E 5 The prediction relative error B05: (a) the RE at 50 cycles
and (b) the RE at 80 cycles

TA B L E 4 RUL prediction results of B05

Method TS RULTrue RULPred AE RA RMSE

PF 20 125 94 31 0.2480 0.1385

50 125 144 19 0.16 0.0570

80 125 108 16 0.1360 0.1128

SPF 20 125 134 9 0.072 0.0532

50 125 129 4 0.032 0.0209

80 125 126 1 0.014 0:0198

TA B L E 5 Comparative results

Method Cell ID AE RE RMSE

U‐LOCR‐PF [26] B05 1 0.01 0.0198

SCD‐PF [31] B05 8 ‐ ‐

Proposed SPF B05 1 0.014 0.0198

PF B05 16 0.136 0.1128
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essential function of the PF algorithm, and is then integrated
with the linear optimisation algorithm to overcome the par-
ticle deficiency problem. The linear optimisation algorithm
can be influenced by the step parameter K, and the fuzzy
inference method is used to evaluate the value of the K step
coefficient. As for the method proposed in reference [31],
this is also complicated in an implementation; its methodol-
ogy relies on presenting the second‐order central difference
Kalman filter (SCDKF) method to choose the proposal
distribution function. After this, SCDKF is integrated with
the PF technique to resolve particle impoverishment.

However, the proposed method aims to operate the SPF
based on the current parameters, and then uses the output
from this SPF to re‐evaluate the approximation of the likeli-
hood function. The calculation time of the proposed method is
higher than the conventional PF method due to the fact that
finding the maximum likelihood estimates of unknown pa-
rameters in nonlinear state‐space models is generally time

consuming. In addition, the degradation capacity model (16) is
monotonous, although part of a lithium‐ion battery's degra-
dation pattern is typically non‐monotonic and exhibits strong
fluctuation. Consequently, the degradation model (16) may
sometimes be insufficient to track the degradation trend.

4.3 | RUL prediction using (B06 and B18)
batteries

Further, to verify the result obtained previously, capacity
degradation data was used for B06 and B18 batteries to check
the accuracy of the proposed method for RUL prediction.
Figures 6 and 7 show the RUL result for the battery B06 and
B18 data using the PF and proposed SPF algorithms at
starting point 50 cycle. Similar to B05 dataset, the accuracy of
the estimation findings and the RUL PDF gained by the
suggested SPF approach is just greater than that provided by

F I G U R E 6 Prediction RUL results at 50 cycles for B06. (a) PF, (b) SPF
and (c) comparison results

F I G U R E 7 RUL prediction results at 50 cycles for B18. (a) PF, (b) SPF
and (c) comparison results
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the PF. That is, the prediction error of the suggested
approach is four cycles lower than the PF using 50 cycles,
and the value of the RE and AE are also reduced. As shown
in Table 6 both the prediction relative error and absolute
error under various prediction starting point (Ts) of the
proposed SPF algorithm for B06 and B18 are smaller than
that of the PF algorithm, which indicates that the stability of
the proposed SPF algorithm is higher than PF algorithm. For
example, at Ts = 50 cycles, the B06 battery's AE prediction
of SPF was approximately 2 cycles, the maximum RE was
about 0.0183 and that AE of PF algorithm was around 20
cycles, and the RE was approximately 0.1835, which can lead
to the same conclusions as discussed for B05.

5 | CONCLUSION

Here, the authors have presented an innovative online RUL
prediction of LiBs known as SPF algorithm. Experimental
datasets published by PCoE of NASA, were used and a
second‐order exponential degradation model to validate the
effectiveness and stability of the proposed method was
developed. The results obtained clearly indicated that the
proposed SPF algorithm can improve the prediction accuracy
compared with the classical PF algorithm. The average RUL
errors and PDF width of the SPF approach are less than in PF
methods, demonstrating that the suggested method is more
accurate and steadier. In addition, RUL prediction was tested
with various predicted starting points to assess whether the
amount of data influenced the accuracy of the prediction. The
findings clearly demonstrated that the amount of data affects
the accuracy of the prediction. It has also been shown that the
earlier the starting point of the prediction, the higher the
prediction error rate relative to the higher starting point. In
fact, the predicted curve further diverges from the actual
degradation curve. Future research is planned to focus on
designing robust degradation models such as Multiphysics

model with an emphasis on accurate and reliable RUL pre-
diction at a rapid convergence rate.
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