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1 | INTRODUCTION
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| Ma'd El-Dalahmeh | Michael Short

Abstract

Accurate prediction of the remaining useful life (RUL) in Lithium-ion batteries (LiBs) is a
key aspect of managing its health, in order to promote reliable and secure systems, and to
reduce the need for unscheduled maintenance and costs. Recent work on RUL prediction
has largely focused on refining the accuracy and reliability of the RUL prediction. The
author introduces a new online RUL prediction for LiB using smooth particle filter
(SPF)- based likelihood approximation method. The proposed algorithm can accurately
estimate the unknown degradation model parameters and predict the degradation state by
solving the optimisation problem at each iteration, rather than only taking a gradient step,
that tends to lead to rapid convergence, avoids instability issues and improves predictive
accuracy. From the experimental datasets published by Prognostics Centre of Excellence
(PCoE) of NASA, a second order degradation model was created to explore the
degradation of LiB, utilising non-linear characteristics and non-Gaussian capacity
degradation. RUL prediction was tested with various predicted starting points to assess
whether the amount of data and parameters' uncertainty influenced the accuracy of the
prediction. Results show that the proposed prediction approach gives improved predic-
tion accuracy and improves the convergence rate in comparison with the particle filter
(PF) and other methods such as unscented particle filter (UPF). Since the maximum error
of the SPF predicting approach is relatively small, RUL prediction in the best case at the
prediction starting point consisting of 80 cycles is 127 cycles. The prediction relative error
was approximately 0.024, and the absolute error of the proposed algorithm is around 2
cycles, which is lower than the PF (around 16 cycles). RUL prediction is close to 108
cycles and relative error is around 0.136, while the absolute error prediction is
approximately 16.

reliability. To do so, an accurate estimate of a battery's
remaining useful life (RUL) and state of health (SOH) is

Generally, electric storage devices, for example in electric ve-
hicles (EV) and grid balancing applications, are now heavily
reliant on Lithium-ion Batteries (LiBs). The widespread use of
LiBs results from their being light, able to store large amounts
of energy in a compact space, and long lasting capacity [1].
However, their capacity decreases over time and with use, due
to degradation in material components; in turn, this leads to
decreased storage capacity and energy [2]. Therefore, moni-
toring battery degradation, forecasting battery status, and
improving maintenance have become important focal points in
LiB engineering research, to improve battery performance and

required [3,4]. RUL is the term used for the quantity of cycle
left between the present cycle and the cycle at which battery's
End of Service (EoS) occurs, and can vary from 70% to 80%
of nominal capacity [5].

In general, predictive methods can be split into machine
learning (ML) and model-based methods [6]. ML techniques
have recently been implemented to model battery deterioration
and forecast the RUL of LiBs. For instance, the auto-regressive
(AR) model was proposed in [7] to predict the diminishing
capacity in LiB. The other example is the improved relevance
vector machine (RVM), which is a technique for improving
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certainty in RUL prediction, stability and accuracy [8]. In
addition, a feedforward neural network (FNN) was applied in
[9] to enhance RUL prediction. The authors in [10] proposed a
framework aimed at estimating battery capacity based on
multi-channel ML methods using an FNN, convolutional
neural network (CNN) and long short-term memory (LSTM),
to improve prediction accuracy based on the diversity of
possible data from current, voltage and temperature. In all
these techniques, however, the training needs to be extensive,
inclusive, unbiased, and good quality. Additionally, most ML
algorithms need off-line training to accurately model the bat-
tery, and they also have a high computational load for online
RUL prediction [11].

With model-based methods, mathematical ageing models
that capture long-term battery degradation dependencies are
required. Because of the mathematical simplicity, wide validity
and high flexibility, RUL can be predicted [12]. Most studies in
the literature have utilised a model that is generally linear,
exponential and polynomial [13—15]. Model-based approaches
are also associated with advanced Bayesian, Kalman and Par-
ticle filters (KF and PF, respectively) [16]. These can update the
parameters of the model as part of the diagnostic process, to
ensure accurate RUL prediction. The best candidate for solving
linear system problems with Gaussian noise is the KF [6]. A
linear model of capacity degradation linked with two filters has
also been proposed to estimate the remaining battery life [17];
however, the process of battery degradation is often non-
linear, and this is where different KF algorithms, such as an
unscented KF or extended KF [18], may address the above-
mentioned issue. According to [19], most errors in the process
of predicting RUL derive from several sources when obtaining
data, and, thus, total noise often does not show Gaussian
behaviour. In this context, therefore, the application of a KF
algorithm leads to divergence. However, the method of health
diagnosis includes solutions for non-Gaussian non-linear sys-
tem-based problems. For this reason, studies have tended to
consider PF algorithms, which give solutions for both non-
linear and non-Gaussian issues [20]. Several papers have
employed PF to determine the failure points of LiBs. For
example, in [21,22], a method was proposed to predict failure
using the exponential model and classical PE In addition,
although a second-order polynomial was presented in [14],
which contains fewer parameters than the exponential model,
this model is less accurate than the exponential model.

In general, PFs suffer from two main problems: (1) particle
degeneracy and (2) particle impoverishments. The latter is due
to the fact that a PF has a resampling phase that can reduce
particle degeneracy, and this may also result in a loss of sample
particles [23]. Accordingly, other types of PFs used to solve
these problems have been considered. For example, an un-
scented PF (UPF) was presented in [24] to improve the sam-
pling and reshaping of PE. The authors in [25] presented a
scheme for battery capacity estimation based on the estimated
capacity using a Gauss-Hermite PF algorithm to predict the
failure limit for the uncertainty in the RUL prediction. Markov
Chain Monte Carlo MCMC) method has been applied in [26]
to solve sample problem impoverishment in a UPF algorithm.

Regularised particle filters have also been used in the re-
sampling phase to enhance PF accuracy, as presented in [27].
A Rao-Blackwellized PF (RBPF) was suggested in [28] to limit
the distribution of likelihood into a subspace of the state dis-
tribution of likelihood in the state space sample. The authors in
[29] have been integrated the neural networks radial basis with
a PF to the end-of-discharge prediction for a LiB. Similarly in
[30], NN model and new PF algorithm know as Bat-PF has been
integrated to improve the accuracy of the residual life prediction
and to reduce PFF impoverishment and degeneracy. Also, second-
order central difference (SCD-PF) algorithm was introduced in
[31] to improve the performance of the PF for RUL prediction
of Limbs. However, most previous improved algorithms have
extensively reduced the problems faced by the PF algorithm in
terms of particle decomposition and sample diversity deficiency
and obtained a strong result for LiB RUL prediction. Never-
theless, issues with particle degradation and particle diversity
deficiency remain difficult for RUL prediction.

The key contribution of this work is to improve the RUL
prediction of LiB battery by smoothing the PF using likelihood
approximations scheme [32], combined with a second order
degradation model. The proposed SPF algorithm improves the
accuracy of RUL prediction by choosing the proposal distri-
bution and the resampling weights, depending on certain
current parameter estimates, thus overcoming the problem of
particle impoverishment and uncertainty in the degradation
model parameters. This article is structured as follows. Theo-
retical background and the procedures of implementation for
the PF and the proposed SPF algorithms are set out in Sec-
tion 2. Capacity modelling for LiB based on the experimental
data collected by PCoE of NASA is demonstrated in Section 3.
Obtained results are presented and discussed in Section 4.
Finally,
Section 5.

conclusions and discussion are summarised in

2 | THEORETICAL BACKGROUND-
METHODOLOGY

2.1 | PF algorithm

The PF algorithm combines two techniques: recursive Bayesian
and sequential importance sampling (SIS) [30]. It also contains
two important elements, which are the initialization of pa-
rameters, and the state model equation. The state-spatial dy-

namic model can be represented by the state transformation
model and the measuring model, using (1) and (2) [33].

Xk :f/e<xk—1aw/e—1) (1)
zp = h(xp, vp) (2)

where, x;, represents the hidden state variables at k? time, Zg
represent the measurement system at k” time, @y is the noise
process and v, is the noise measurement. The PF algorithm is
comprised of the prediction and update stage. In the prediction
stage, the previous probability distribution of state x is
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calculated in (3), without making use of information from the
measurement model z; [21].

Pkl Z14e—1) = fp(xk|xk_1)p(xk_1 |Z1:k—1 ) A 3)

In the update stage, the previous probability distribution is
altered by the measurement model z; to achieve the end dis-
tribution of x; at time k.

 p(zelxe)p(xe|zip—1)
PlEes) = e pCralzre e ®

The main stage of the PF algorithm is to estimate the end
NN
probability distribution function (PDF) with particles {x{}._,
NN
weighted with the associated —{w,(;)} _,- Thus, the PDF end in

i
(4) may be rewritten as follows [21]:

N .
plxorlzie) ® X i (xos — () (5)
=1

where N is the number of particles and 8(-) represents the
Dirac delta function. The particles generated by the dis-
tribution p(xg|z1.,) represent the sample perfectly. However,
from the accurate PDF posterior density, it is still difficult to
take a precise sample, and so an alternative way of sampling
needs to be found to sample proposal distribution g(xz|21.4)-
The weighting of the filter may be improved using the SIS and
taking another sample in the stages of the SMC algorithm. The
associate weight of a random particle drawn from g(x|z.z) is
represented as [33]:

o Ocp(x;e}zl:k)
rcion “

Suppose the proposal distribution g(xg|z1.,) can be fac-
torised into:

q(xﬁ;/e ‘lek) = Q(X():Ie—1 |Zl:/e—1 )Q(Xk |xo:k—1 \Z1k) (7)

Then the recursive form of the posterior probability den-
sity function can be expressed as:

(21 |Xoks 21k - 1)P(x0:/e |Zl,/e - 1)
P(21:k|21:/e - 1)

:P(Z]:k‘xO:/m Zyg — )P Xk |Xok — 1521k — 1)Kok — 11218 - 1)
p(zl:k|zlzk - 1)

:P(lek‘xk)]’(xﬂxk —0)p(Xok — 11216 1)
P(Z1:k|21:k - 1)

& P21 |8 )P (k%% = 1 )P (X0 — 1|21 1)

P(xo:k |Z1:k) =

By substituting (7) and (8) into (0), the particle weight
update equation can be expressed as:

i Plzelx)p (el )P (xlz12-1)
W — i ;
q(xk }xo:k—l ) Zl:k)q(xozk—l }Zl 1)

L plaliple)
1 gy zie)
As long as the constraint q(x}e |Xf):k_1 VZik) = q(X};|X};_1 ,21)

is satisfied, the modified weight calculation (9) can be trans-
formed into:

7 1 7
” o(wz_lp(zlik|?k)f7(xk|xk—l) (10)
VALY

The proposal distribution q(x‘k ’%—1 ,Z.;) was chosen as the
ptiot distribution p(xuxfe_l) in the PF algorithm, to simplify
implementation. The summary of the PF procedure is presented
in Table 1 [21]. Step 1: at & = 0, the prior probability distribution
function p(xy) is used to produce an array of initial particles
{325]}[1-:1 and corresponding paf:ticle weight is agsigned as
wy" =1/N. Steps 2 and 3: patticles are updated using Equa-
tions (1) and (2); proposal distribution function q(x}, ‘x;e_l ,2p) is
selected as p(x;e’x}e_l), then the weight of the particles can be
calculated at time £ (see Table 1, step 3). Step 4: by copying large
weights, a new sample of particles {x/ },_, can be drawn, and the
cotresponding weights are reassigned to 1/N. Step 5: the new
state_can be updated based on the newly obtained particles
{xé }f\il and weights Azbz

2.2 | 'The proposed SPF algorithm

When using the PF algorithm to estimate maximum probability
(likelihood) parameters in the non-linear state-space model, the
PF removes the light weights and copies the heavy weights in a
resample phase, which results in a loss of diversity in the
particle distribution [26].

As presented in [32], the main challenge is that likelihood
distribution estimation and its derivatives are fundamentally
noisy; the main idea of the SPF method is to choose the
proposal distribution c](x;e ’xz_l ,zp)and the resampling weights
wy, such that it is entirely independent of parameters @ (in this
application, the parameters of the degradation model). Based
on this choice, it is noted that all the randomly extracted ele-
ments, such as particles x, and ancestor indices a7
(furthermore are the 47, drawn with respect to the wy}) in the
PF algorithm, became independent of 8; this is critical in the
analysis and estimation of battery degradation as the true
values of the degradation model parameters are unknown, and
highly influenced by uncertainty [24]. Therefore, this article
combines the second-order empirical degradation model with
the SPF algorithm [32] to improve the RUL prediction of LiB
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Step 1 Initialisation: draw particles x/ ~ p(xy), i=1,2,3, ..., N.

TABLE 1 Procedures of the PF

Step 2 Time update: for k = 1:N generate new importance sample for xi ~ q(x&|x3, |, zo.x).

Step 3 Normalise importance weights: Assign the weight of the particle according to:

R (CEA)CA )
=W, ——
(6 |x_y 1)

. 1 A2
i—(—— ). @)
w, e
<v27r> /

Normalise the weight:

#

‘U)i = ‘U)i N ;
E= /TN o #

Step 4 Particles re-sampling; the effective sample size Negris calculated as Negr 1/ XN, (W;{)z. 1If

Neg < %N, the posterior samples can be generated by resampling from the current particle set, the

corresponding weights are 1/N.
Step 5 Output: State estimation:

N
X = Y U H#
-1

battery by smoothing the PF using likelihood approximations
scheme.

Now, if a certain condition is applied to the realisation of
{xg:T, ﬂ’iT}, the 20 estimation will convert into a deterministic
function within 6, and any standard optimisation routine can
then be implemented to solve (11) and find the maximum
likelihood estimate of 8 [32].

pterr) = [0 TLf ot ol (1)

0 = arg maxop,(z1.7) (12)

where pg(z1.7) refers to the likelihood function when consid-
ered a function of 6. This follows from (1) and the initial state
density p(xo). However, the strength of the PF method is the
ability to construct samples sequentially over high space di-
mensions X7 ™!, where the resampling phase provides valuable
feedback information to discover which parts of the state space
should be explored further. Based on the arbitrary decision, the
weights of f-independent resampling @/, will be lost, and thus
missing this feature may lead to a discrepancy in the estimate
obtained. The deterministic function can be ascertained in 6-
independent re-sampling by allowing the algorithm to let the
resampling weights @} and q(x;|xg_1,2;) rely on certain cur-
rent parameter predictions, 61, as [32],

q(xe[xi-1, ;) :fa,e,l(xt|zt) (13)
wi = b, , (z|x7) (14)

The SPF choice was 0,_; instead of 6. If the 0 value is
somewhat close to the value of 0,_1, the variance of the esti-
mate of the maximum likelihood state of the particle distri-
bution, referred to as Zg,  (6), may not be prohibitively large.
On the other hand, if the current value of @;_; is far from the

current value of €, then the estimate 2y, (0) will not be

patticularly good at the 6. For this reason, we must repeat the
parameter values over k until we roughly arrive at values close

to 0. By inserting (13) and (14) into the particle filter algorithm
and combining with an external optimisation loop, an inno-
vative method is proposed and, presented in Table 2 [32]. The
steps of the method are: Step 1: the initial parameters are
extracted and initialised; Step 2: Run the Particle Filter method

to draw particles, calculated using {xé}?ilfrom the initial dis-
tribution function in line one (as we assume it is independent
of ), and the importance weight is set as wk = 1. Moreover,
in step 2, line 4, 4., is drawn concerning the reconfiguration
weights W{_l. For particle propagation, in step 2, line 5, the

new particles are generated from the proposal dis-

tribution g(x} [x_,,zx); Step 3: a new sample of {xf)}fil par-
ticles can be obtained by copying large weights and assigning
corresponding weights + Zle logw?} ; and Step 4: The new
state is thus reached based on new particles {xg}i\il and
weights .

It can be observed in Table 2 (Step 1, line 4) that the
optimization step related to solving arg maxezg,  (0) has been
established. Importantly, this issue is now deterministic, and
any usual numerical optimisation tool can be implemented, and
the experiments will show this using the general-purpose
optimisation tool fminunc in Matlab. The structure of Zg,_ (6),
which is implicitly defined in the function likelihood of the
proposed algorithm, might still be utilised by a more suitable
optimisation scheme. Its structure can be shown as [32]:

1 N P
0.,0) = 11 GO (sl Yo(zils) - (19)

k=1 n=1

where ¢}, is a constant that is independent of 6, @] (6) depends
on 6 but always fulfils Y.\ | w?(6) =1, and f, and by rely on
the degradation model.



EL-DALAHMEH ET AL.

TABLE 2 Procedutes of the proposed Step 1
method
Step 2
Step 3
Step 4

1. Set 0 (Initial parameter of degradation model)
2.fork =1, ..do

3. Call {x7,,al';} from particle filter (k)
4. Solve @y < argmax log_likelhood(0, 041, {x7,, 2, } V)
Function particle filter (@x—)

1. x{} particles are first taken from the initial distribution p(xp)

2. Set the importance weight (wi =1)

3. fort=1,to Tdo

4. Generate af from the C({W{_l }j\;)

5. Propagate xi ~ fak,,(Xk‘Xz"",p Zk)

6. Set wi < hy, (Zk{xﬁ)

Return {xfr, afl} 71

Function log_likelhood(0, 04—, {x% ., a7, } N )
1.fort=1,to T do

e el

bog (555, [y ) Bibo (K |yis) Fop, (x|

3.Set z, « LYY logw?

2. Set wi «

Return log 2y, ,(8) < Y~ log z

N
State prediction: %, = Y, WX, #

i—1

3 | CAPACITY DEGRADATION
MODELLING

Subsequently, three cells were selected (BO5, BO6 and B18) and
their experimental data were published by the Prognostics
Centre of Excellence (PCoE) at NASA Ames Research Centre,
to investigate the performance and accuracy of the proposed
algorithm [34]. As shown in Figure 1, the dataset consist of
four cells using commercial lithium cobalt oxide batteries. The
stated capacity of the cells is 2 Ah, and their nominal voltage is
3.3 V. The cells are iterated through the cycle until they fail, at a
room temperature of 24°C. The following steps provide a
description of the test procedure and data collection
conditions [34]:

1. In the charge step, Constant-Current, Current-Voltage
protocol (CC-CV) is used. A CC of 1.5 Ah was applied
until the cell voltage reached the maximum limit (4.2 V)
and then the CV continued until the current dropped to
20 mAh.

2. In the discharge step, a CC 2 A level applied until the
voltage of battery dropped to 2.7 V, 2.5 V and 2.5 V for
batteries for batteries BO5, BO6 and B18, respectively.

3. Repeat the previous steps until the batteries reach the point of
failure, here it is 30% of the nominal capacity, and so the
battery's EoS is placed at a capacity threshold of U = 1.4 Ah.

During the degradation process, a LiB continues to
decrease in capacity. As shown in Figure 1, battery capacity
decreases dramatically with an increase in the number of cycles

2 L
——B05
B06
1.8 B18

Failure Threshold

Capacity (Ah)
>

=
~

1.21 I [ i
50 100 150
Cycle
FIGURE 1 The capacity degradation curve

used. Thus, the degradation curves are well fitted using an
exponential growth model as presents in (106).

Q=a-exp(b-k)+c-exp(d-k) (16)

Here Q represents the capacity of the battery, a, b, c
and d are the model parameters, and & is the number of cycles.
Note that a curve fitting toolbox was used to obtain an ac-
curate exponential degradation model. Figure 2 show the
fitting results. The findings show that the degradation model is
effective and can be used to predict the RUL battery. The
modelled parameters of the four batteries in the study were
produced at the fitting stage, to attain the starting parameters
for the training data. These were used in the prediction step, as
shown in Table 2.
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B18 Actual Data
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FIGURE 2 Degradation data and fitted curve

4 | EXPERIMENTAL VALIDATION AND
DISCUSSION

Now, the SPF and PF algorithms in Tables 1 and 2 are
implemented to demonstration the effectiveness of the pro-
posed solution. Furthermore, in order to test the accuracy of
the prediction of the PF and proposed SPF algorithm, different
cycle ‘starting points’ were applied, such as 20, 50 and 80 cy-
cles. Again, the two algorithms were used here for online
estimation of the parameters in (16). A second order degra-
dation model has been developed based on the fitting results
explained earlier in Section 3. The performance of the pre-
diction has been evaluated using absolute error (AE) of the
RUL, the relative error (RE) of the RUL and the root-bean
squate error (RMSE) of the RUL. As given in (17), AE is
defined as the difference between the number of remaining

true (RUL7) cycles and the number of predicted (RULp)

cycles. While the RE is defined as presented in (18) and RMSE
is defined as presented in (19).

AE = |RULT—RULP| (17)
RE:AE/RULT (18)

1 R
RMSE = \/k_p E/S:sm (Qk - Q/e) (19)

where k, is the number of cycles that must be predict and Qj
represent the prediction result at cycle k.

4.1 | RUL prediction

According to the capacity degradation model, the state tran-
sition of the battery system can be defined as follows:

X = ag; by; ci; di] (20)

where

ap=ap1 t+ 0, NN(O70a)
by="b,_, +w, a)CNN(O,O'b) (21)
Ck = Cp—1 + @ e~ N(O, Gc)
dp=dp1 +045 w5~N(0,04)

Now Equation (16) can be written as

Qu = a exp(bik) + ci exp(dik) + v, v ~ N(0,0v) (22)

Here, Qp is the measurement of capacity cell at cycle k, and
N(0,0) is the Gaussian noise with zero mean and o is the
standard deviation. Then, the measurement of capacity cell can
be estimated by:

Q= £ Q= X [eh-cwp(b-#) +h-exp(di-#)] (29

At cycle k, the prediction step (p-th) can be calculated by:

Quip= % {ﬂz.exp(bz . (/e-l—p)) +C§€.exp<d2 . (/e-l—p))}

) (24)

The posterior PDF can be estimated with weights on each
trajectory:

P (Qk+p’QO:/€) ~ g w}6 (Qk+p - QZJFP) (25)
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In this analysis, the value of the failure threshold is 70% of ~ TABLE 3  Initial model parameters
the.nomlnal capacity value. Then, at cycle £ the RUL distri- Cell ID . b c d
bution can be predicted by [35]:
B05 1.974 —0.00027 —0.158 —0.06942
0 7Q ; (bl L‘) n ; (dl Ll> (26) BO6 1.562 —0.00557 0.4895 0.0009
. gl = Ap-€X . Cp-€X .
pominal = H SPATE" F ) T PR Er B18 1.853 ~0.00291 0.0002 0.0428
N . .
P(L|Que) ~ 3wl (Le - L) (27)
=1

Here, L} is the RUL at cycle k.

4.2 | RUL prediction using B05 cell
Note that the authors use the B05 battety cell for RUL pre-
diction. The initial values of the PF and proposed SPF pa-
rameters were selected as: number of particles N = 200, and
battery failure threshold 1.4 Ah. The initial parameters for the
degradation model for all battery cells are shown in Table 3.

Figure 3 shows the prediction result with PF, and the
proposed SPF algorithm for battery cell BO5. It is impottant to
mention that the first 80 cycles from the data are used as
training data to update the prediction process. There are two
curves of prediction, and the respective PDFs of the RUL were
obtained to compare between the PF and the proposed SPE
Here, PDF indicates the possibility of the lithium-ion battery's
end life in each interval, as shown in Figure 3a,b, respectively.
As seen in Figure 3a, at T, = 80 cycles, the final life cycle was
126 cycles, while the average predicted life cycle using the PF
was 108 cycles. Thus, the AE for the PF algorithm is around16,
the maximum RE was about 0.136 and etror was approxi-
mately 0.1128. While for the proposed algorithm (see
Figure 3b), the average number of life cycles predicted was
around 127 cycles, and the prediction AE was approximately 1
cycles, the prediction RE was around 0.014 and the RMSE
error was roughly 0.0198. From the prediction results, it is
observed that the prediction curve obtained from the pro-
posed SPF method is closer to the actual capacity degradation
curve than the PF prediction curve, and its PDF of RUL, based
on the proposed SPF algorithm, is more concentrated.
Figure 3¢ shows the two prediction curves at the same time to
check the PF algorithm and the proposed SPF algorithm
performance results during the entire lifecycle, which clearly
reveal the effectiveness of the proposed algorithm. Figure 4
likewise shows the process of predicting the RUL by relying on
the above mentioned two methods. Here, the first 50 cycles
were used to update the prediction process. As shown in
Figure 4, an identical conclusion similar to the above can be
deduced from Figure 3, which shows the robustness and
strong accuracy of the proposed SPF algorithm.

Figure 5a,b show the prediction RE of the RUL using the
PF method and the proposed SPF method; in the prediction
update phase, the first 50 and 80 cycles are used, respectively.
The RE curve extracted from the PF method starts with quite
a small error rate but then diverges from the actual capacity
values, leading to an increase in the error rate. This

—
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mem  wes= PF prediction 1 N

s
———————— RUL PDF ] VN

Capacity (Ah)
> 5

-

N

~
-

50 100 150
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1.4 f "
L < L
50 100 150
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corresponds to how the previously mentioned particle filter
suffers from particle degeneration and impoverishment. In
contrast, the curve extracted from the proposed SPF method
with the cycle passage converges more than the actual capacity
values, indicating that the proposed method is more reliable.
Table 4 shows the error rates for the prediction RUL of
the battery BO5 obtained by the PF and proposed SPF
methods with different starting points. The AE, RE and
RMSE of the proposed SPF algorithm are significantly
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smaller than of the PF algorithm. In addition, the findings
clearly show (Figures 3 and 4) that the start point is
continuously regressed, and so the prediction error becomes
nearer to zero; this is in line with real-time application. The
findings also show that the algorithm converges with the
predicted start point, and thus much more training data can
be employed for learning, and better degradation knowledge
and characteristics can be revealed. It was also seen that the
prediction error is lower in the reverse direction, indicating
that the particles are more compacted as more capacity data
are accessible. To evaluate the prediction accuracy of the
proposed approach, it is necessary to compate the obtained
result with the latest state-of-the-art approaches [25,30]
conducted for the same case study. Table 5 presents the
results of the proposed solutions. In addition, the perfor-
mance of each approach was further evaluated using AE,
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FIGURE 5 The prediction relative error B05: (a) the RE at 50 cycles
and (b) the RE at 80 cycles

TABLE 4 RUL prediction results of B05

Method Tg

RULr RULpd AE RA RMSE
PF 20 125 94 31 0.2480 0.1385
50 125 144 19 0.16 0.0570
80 125 108 16 0.1360 0.1128
SPF 20 125 134 9 0.072 0.0532
50 125 129 4 0.032 0.0209
80 125 126 1 0.014 0.0198
TABLE 5 Comparative results
Method Cell ID AE RE RMSE
U-LOCR-PF [26] B05 1 0.01 0.0198
SCD-PF [31] B05 8 - -
Proposed SPF BO5 1 0.014 0.0198
PF BO5 16 0.136 0.1128

RE and RMSE of the RUL. As shown in Table 5, the
proposed SPF approach and U-LOCR-PF enhanced the
prediction accuracy of the PF more than the proposed SCD-
PF approach, which demonstrates the robustness of the
proposed approach.

In terms of applying the RUL prediction method [20],
this approach is complicated when compared to our pro-
posed method. This is because it adopts a unscented kalman
filter algorithm to obtain the proposal distribution as an
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FIGURE 6 Prediction RUL results at 50 cycles for BOG. (a) PF, (b) SPF
and (c) comparison results

essential function of the PF algorithm, and is then integrated
with the linear optimisation algorithm to overcome the par-
ticle deficiency problem. The linear optimisation algorithm
can be influenced by the step parameter K, and the fuzzy
inference method is used to evaluate the value of the K step
coefficient. As for the method proposed in reference [31],
this is also complicated in an implementation; its methodol-
ogy relies on presenting the second-order central difference
Kalman filter (SCDKF) method to choose the proposal
distribution function. After this, SCDKF is integrated with
the PF technique to resolve patticle impoverishment.
However, the proposed method aims to operate the SPF
based on the current parameters, and then uses the output
from this SPF to re-evaluate the approximation of the likeli-
hood function. The calculation time of the proposed method is
higher than the conventional PF method due to the fact that
finding the maximum likelihood estimates of unknown pa-
rameters in nonlinear state-space models is generally time
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FIGURE 7 RUL prediction results at 50 cycles for B18. (a) PF, (b) SPF
and (c) comparison results

consuming. In addition, the degradation capacity model (16) is
monotonous, although part of a lithium-ion battery's degra-
dation pattern is typically non-monotonic and exhibits strong
fluctuation. Consequently, the degradation model (16) may
sometimes be insufficient to track the degradation trend.

4.3 | RUL prediction using (B06 and BI18)
batteries

Further, to verify the result obtained previously, capacity
degradation data was used for B06 and B18 batteties to check
the accuracy of the proposed method for RUL prediction.
Figutes 6 and 7 show the RUL tesult for the battery B06 and
B18 data using the PF and proposed SPF algotithms at
starting point 50 cycle. Similar to B05 dataset, the accuracy of
the estimation findings and the RUL PDF gained by the
suggested SPF approach is just greater than that provided by
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TABLE 6 RUL prediction results of BO6 and B18

Cell ID Method Ts RULy RUL, AE RA RMSE
BO6 PF 20 109 133 24 0.2202  0.0958
50 109 89 20 0.1835  0.1905

80 109 98 11 0.1009  0.0708

SPF 20 109 113 4 0.0367  0.0454

50 109 111 2 0.0183  0.0446

80 109 108 1 0.014 0.0414

B18 PF 20 98 74 24 0.2474  0.1455
50 98 81 17 0.1694  0.1727

80 98 89 8 0.0825  0.1502

SPF 20 98 106 9 0.0928  0.0414

50 98 93 5 0.0309  0.0610

80 98 100 2 0.0206  0.0594

the PE That is, the prediction error of the suggested
approach is four cycles lower than the PF using 50 cycles,
and the value of the RE and AE are also reduced. As shown
in Table 6 both the prediction relative error and absolute
error under various prediction starting point (79 of the
proposed SPF algorithm for B06 and B18 are smaller than
that of the PF algorithm, which indicates that the stability of
the proposed SPF algorithm is higher than PF algorithm. For
example, at T, = 50 cycles, the BOG6 battery's AE prediction
of SPF was approximately 2 cycles, the maximum RE was
about 0.0183 and that AE of PF algorithm was around 20
cycles, and the RE was approximately 0.1835, which can lead
to the same conclusions as discussed for BO5.

5 | CONCLUSION

Here, the authors have presented an innovative online RUL
prediction of LiBs known as SPF algorithm. Experimental
datasets published by PCoE of NASA, were used and a
second-order exponential degradation model to validate the
effectiveness and stability of the proposed method was
developed. The results obtained clearly indicated that the
proposed SPF algorithm can improve the prediction accutracy
compared with the classical PF algorithm. The average RUL
errors and PDF width of the SPF approach are less than in PF
methods, demonstrating that the suggested method is more
accurate and steadier. In addition, RUL prediction was tested
with various predicted starting points to assess whether the
amount of data influenced the accuracy of the prediction. The
findings clearly demonstrated that the amount of data affects
the accuracy of the prediction. It has also been shown that the
carlier the starting point of the prediction, the higher the
prediction error rate relative to the higher starting point. In
fact, the predicted curve further diverges from the actual
degradation curve. Future research is planned to focus on
designing robust degradation models such as Multiphysics

model with an emphasis on accurate and reliable RUL pre-
diction at a rapid convergence rate.
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