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Abstract

Background: HIV-associated chronic lung disease (CLD) is common among children living with HIV (CLWH) in sub-
Saharan Africa, including those on antiretroviral therapy (ART). However, the pathogenesis of CLD and its possible
association with microbial determinants remain poorly understood. We investigated the prevalence, and antibiotic
susceptibility of Streptococcus pneumoniae (SP), Staphylococcus aureus (SA), Haemophilus influenzae (HI), and
Moraxella catarrhalis (MC) among CLWH (established on ART) who had CLD (CLD+), or not (CLD-) in Zimbabwe and
Malawi.

Methods: Nasopharyngeal swabs (NP) and sputa were collected from CLD+ CLWH (defined as forced-expiratory
volume per second z-score < − 1 without reversibility post-bronchodilation with salbutamol), at enrolment as part of
a randomised, placebo-controlled trial of azithromycin (BREATHE trial - NCT02426112), and from age- and sex-
matched CLD- CLWH. Samples were cultured, and antibiotic susceptibility testing was conducted using disk
diffusion. Risk factors for bacterial carriage were identified using questionnaires and analysed using multivariate
logistic regression.

Results: A total of 410 participants (336 CLD+, 74 CLD-) were enrolled (median age, 15 years [IQR = 13–18]). SP and
MC carriage in NP were higher in CLD+ than in CLD- children: 46% (154/336) vs. 26% (19/74), p = 0.008; and 14%
(49/336) vs. 3% (2/74), p = 0.012, respectively. SP isolates from the NP of CLD+ children were more likely to be non-
susceptible to penicillin than those from CLD- children (36% [53/144] vs 11% [2/18], p = 0.036). Methicillin-resistant
SA was uncommon [4% (7/195)]. In multivariate analysis, key factors associated with NP bacterial carriage included
having CLD (SP: adjusted odds ratio (aOR) 2 [95% CI 1.1–3.9]), younger age (SP: aOR 3.2 [1.8–5.8]), viral load
suppression (SP: aOR 0.6 [0.4–1.0], SA: 0.5 [0.3–0.9]), stunting (SP: aOR 1.6 [1.1–2.6]) and male sex (SA: aOR 1.7 [1.0–
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2.9]). Sputum bacterial carriage was similar in both groups (50%) and was associated with Zimbabwean site (SP:
aOR 3.1 [1.4–7.3], SA: 2.1 [1.1–4.2]), being on ART for a longer period (SP: aOR 0.3 [0.1–0.8]), and hot compared to
rainy season (SP: aOR 2.3 [1.2–4.4]).

Conclusions: CLD+ CLWH were more likely to be colonised by MC and SP, including penicillin-non-susceptible SP
strains, than CLD- CLWH. The role of these bacteria in CLD pathogenesis, including the risk of acute exacerbations,
should be further studied.

Keywords: Streptococcus pneumoniae, Staphylococcus aureus, Moraxella catarrhalis, Haemophilus influenzae,
Antibiotic resistance, Children, HIV, Chronic lung disease

Background
More than 85% of the 3.8 million children living with HIV
(CLWH) worldwide reside in Sub-Saharan Africa [1]. Sub-
stantial scale-up of antiretroviral therapy (ART) pro-
grammes and increased access to cotrimoxazole
prophylaxis have remarkably improved the survival of peri-
natally HIV-infected children, many of whom would have
died in infancy in the absence of these interventions [2]. As
these children grow older, complications of long-standing
HIV infection are becoming increasingly evident including
delayed growth and cardiorespiratory diseases [3].
Respiratory diseases, in particular, are responsible for

more than 50% of all HIV-related mortality in sub-
Saharan Africa [4]. Recent studies in Malawi [5],
Zimbabwe [6–8] and South Africa [9] have estimated a
30% prevalence of chronic lung disease (CLD) among
CLWH. The typical clinical picture is that of hypoxia,
tachypnoea, chronic cough, reduced exercise tolerance
and impaired lung function [6, 10]; high resolution com-
puted tomography findings are consistent with constrict-
ive obliterative bronchiolitis [11].
Although the pathogenesis of HIV-associated CLD is in-

completely understood, we and others have postulated that
it may be a sequela of recurrent respiratory tract infections
and dysregulated inflammation associated with HIV infec-
tion [12, 13]. Bacteria previously implicated in forms of
HIV-associated CLDs such as bronchiectasis in individuals
living with HIV include Streptococcus pneumoniae (SP),
Staphylococcus aureus (SA), Haemophilus influenzae (HI)
and Moraxella catarrhalis (MC) [14, 15]; however, their
role in HIV-associated CLD pathogenesis is unclear.
We investigated the prevalence, bacterial load and

antibiotic susceptibility of SP, SA, HI, MC and other
Gram-negative bacilli (GNB) recovered from the naso-
pharyngeal (NP) swabs and sputa of CLWH (established
on ART) who had CLD (CLD+) or not (CLD-). We also
investigated risk factors for carriage of these bacteria.

Methods
Study characteristics
This is a case-control study nested within the BREATHe
study; a multi-site, double-blind, placebo-controlled,

individually-randomised trial that investigated the effi-
cacy of azithromycin therapy in CLD (ClinicalTrials.gov,
NCT02426112) [12]. The study setting, population and
procedures of the trial are described elsewhere [10, 16].
Briefly, perinatally HIV-infected children aged 6–19
years with CLD (CLD+) who had been receiving ART
for a minimum of six months were enrolled from out-
patient HIV clinics in Blantyre, Malawi, and Harare,
Zimbabwe, from June 2016 through August 2018. CLD
was defined as forced expiratory volume in 1 s (FEV1) z-
score less than − 1.0 with no reversibility (< 12% im-
provement in FEV1 after 200 μg of inhaled salbutamol).
The justification for this definition is provided elsewhere
[10]. A comparison group (CLD-) of perinatally HIV-
infected children without CLD (FEV1 z-score > 0) was
recruited at the same time as enrolment of trial partici-
pants using frequency matching for site, age (6–12 and
13–19 years) and duration of ART use (6 months to < 2
years and two or more years). These children had no
heart or apparent lung disease and reported no respira-
tory symptoms. Socio-demographic data and clinical his-
tory were obtained through an interviewer-administered
questionnaire.

Sample collection, transportation and processing
NP swabs were obtained at enrolment using nylon
flocked swabs (Copan Italia, Brescia, Italy) by study staff.
Sputum was subsequently obtained (expectorated or in-
duced where necessary). Samples were immediately
stored in 1 ml of skim milk, tryptone, glucose, and gly-
cerine (STGG) medium, placed on ice for a maximum of
1 h and then frozen down to at -80 °C. The samples were
transported on dry ice to Cape Town, South Africa, for
batch processing.

Bacterial culture, identification and antimicrobial
susceptibility testing (AST)
NP and sputum samples were thawed to 22 °C and
vortexed for 30 s. A 10 μl volume of each sample was
inoculated onto Bacitracin-heated blood agar (BHB),
Columbia with Gentamicin agar (Colgent), Mannitol salt
agar (MSA) and 2% sheep blood agar (BA)(NHLS
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Greenpoint Media, Cape Town, South Africa). The BHB,
Colgent and BA were incubated in 5% carbon dioxide at
37 °C for 48 h whilst the MSA was incubated in ambient
air at 37 °C for 48 h. Alpha haemolytic colonies on
Colgent which were susceptible to optochin were pre-
sumptively identified as SP. Colourless, medium-sized
colonies on BHB with a strict requirement for factor X
(Hemin) and/or V (NAD+) were presumed to be HI or
Haemophilus parainfluenzae, respectively. Non-
haemolytic grey to white colonies on BA that tested
positive for the push test were identified as MC. DNase-
positive colonies from MSA were identified as SA. Col-
onies, other than MC and HI, from BA and BHB that
grew on MacConkey agar were presumptively identified
as ‘other’ gram-negative bacilli (GNB) by colony morph-
ology and Gram staining. The species identities of these
GNBs were confirmed using Matrix-Assisted Laser De-
sorption/Ionization-Time-of-Flight mass spectrometry
(MALDI-TOF MS). Bacterial load was semi-
quantitatively assessed as follows: an aliquot of each
sample was streaked for single colonies. Growth in one,
two, three or all quadrants of a culture plate was
assigned the labels 1, 2, 3 and 4, respectively.
AST was conducted using the Kirby-Bauer disk diffu-

sion method. The antibiotics tested for each pathogen
were as follows: SP (oxacillin, cotrimoxazole, azithromy-
cin and tetracycline), SA (cotrimoxazole, azithromycin,
tetracycline, clindamycin, penicillin, and cefoxitin), HI
(cotrimoxazole, azithromycin, tetracycline, ampicillin,
amoxicillin-clavulanate, and cefuroxime) and MC
(amoxicillin-clavulanate, cotrimoxazole, azithromycin
and tetracycline). SA susceptibility to cefoxitin was
tested as a surrogate for methicillin-resistance. AST was
conducted and interpreted according to the 2018 Clin-
ical and Laboratory Standards Institute guidelines and
breakpoints, respectively [17].

Statistical analysis
R version 3.6.0 was used to conduct statistical analyses.
The 1990 British growth reference curves [18] were used
to generate height-for-age and weight-for-age z-scores.
The lung function z-score were calculated using global
lung function initiative GLI/ERS reference equations and
the African American module [19]. Our team validated
this among children in Zimbabwe and findings are
published elsewhere [20]. Comparison of categorical data
including semi-quantitative bacterial load distribution
was performed by Fisher’s exact test or Chi-square test
where appropriate. Univariate and multivariate analyses
of association with carriage of each individual bacterial
species were performed using logistic regression and
presented as odds ratios (OR) and adjusted ORs with a
95% confidence interval (CI), respectively. The following
variables were selected a priori to investigate the risk

factors for carriage of each bacterium: CLD, sex, age cat-
egory, study site (Zimbabwe or Malawi), the season of
sample collection (Rainy season: December to April,
Cool season: May to August, Hot season: September to
November), HIV viral load, previous TB treatment and
ART regimen and duration. Any other variables identi-
fied as independent predictors of carriage in univariate
analysis (p < 0.25) were also included in the adjusted
model for that species. The following were excluded
from the multivariate model because of co-linearity: En-
rolment BMI-for-age z-score and weight-for-age (colin-
ear with height-for-age), and CD4 count (colinear with
viral load suppression).

Results
Participant clinical and socio-demographic characteristics
The study included 336 CLD+ and 74 CLD- participants,
median (IQR) age 15 (13–18) years (Table 1). The me-
dian FEV1 z-score for CLD+ and CLD- children was −
1.96 (IQR -2.46, − 1.47) and 0.52 (IQR 0.23, 0.79), p <
0.001, respectively. The CLD+ group were more stunted
(50% vs 30% [p < 0.001]) and underweight (52% vs 19%
[p < 0.001]) compared to CLD- group, and a higher pro-
portion of CLD+ had been previously treated for tuber-
culosis (29% vs 12% [p = 0.003]). Overall, 90% were
taking cotrimoxazole prophylaxis. Both groups had been
on ART for a median of 6.5 years but more CLD+ par-
ticipants were on a protease inhibitor-based (second
line) ART regimen than CLD- participants (26% vs 11%
[p < 0.05]). Virologic suppression was similar between
groups (CLD+: 56% vs CLD-: 66% [p = 0.12]). None of
the participants reported smoking.

Prevalence of bacterial carriage
In the CLD+ group, 67% (226/336) of the NP swabs had
at least one of the four bacterial species (SP, SA, HI and
MC) compared to 39% (29/74) of swabs from the CLD-
group (p < 0.001). Both SP (46% vs 26% [adjusted p =
0.008]), and MC (14% vs 3% [adjusted p = 0.012]) were
more prevalent in the CLD+ group (Table 2).
In total, 400 sputa from 326 CLD+ and 74 CLD- par-

ticipants were collected. At least one bacterial species
was isolated from the sputa of half of the participants in
each group, with no difference by CLD status (Table 2).
There was no difference in semi-quantitative loads of
any bacteria from either NP swabs or sputum between
the two groups (Supplementary table: T1).
Thirteen different GNBs from NP and sputa were

identified by MALDI-TOF MS platform. More GNBs
were recovered from the CLD+ than in CLD- group
(Supplementary table: T2). Among bacteria isolated from
NP swabs and sputa, there were statistically significant
co-carriage relationships between SP, HI, and MC
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Table 1 Characteristics of study participants

Variable CLD+ CLD- P

Site Zimbabwe 72% (241/336) 74% (55/74) 0.770

Sex Female 49% (166/336) 62% (46/74) 0.054

Age Median (IQR) 15 (13–18) 16 (12–18) 0.939

Anthropometric

BMI-for-age z -score2 Median (IQR) −1.114 (− 1.85, −0.28) − 0.32 (− 0.83, − 0.58) < 0.001

Height-for-age z-score a <− 2 (Stunted) 50% (168/336) 30% (22/74) 0.002

Weight-for-age z-score a <−2 (Underweight) 52% (176/336) 19% (14/74) < 0.001

Current drug use

Cotrimoxazole (CTX) 91% (304/334) 86% (60/70) 0.188

Antiretroviral regimen λNNRTI-based regimen -1st line 74% (247/335) 89% (65/73) 0.006
§PI-based regimen-2nd line 26% (88/335) 11% (8/73)

HIV clinical parameters

CD4 count categories > 500 cells/mm 62% (208/336) 67% (49/73) 0.770

200–500 cells/mm 28% (94/336) 25% (18/73)

< 200 cells/mm 10% (34/336) 8% (6/73)

Viral load (VL) suppression VL < 1000 copies/mL 56% (187/336) 66% (49/74) 0.119

Age at ART initiation Median (IQR) 8 (6–12) 9 (5–11) 0.667

Years spent on ART Median (IQR) 6 (4–9) 7 (4–9) 0.571

Respiratory status

Previously treated for TB, % (N) 29% (97/335) 12% (9/73) 0.003

FEV1 z-score Median (IQR) −1.96 (−2.46, −1.47) 0.52 (0.23, 0.79) < 0.001

Admitted for chest problems in last 12 months 2% (6/336) 1% (1/74) 1

Asthma 3% (11/336) 0% (0/74) 0.227

MRC dyspnoea Score 1 55% (185/336) 78% (59/73) 0.001

2 35% (120/336) 16% (12/73)

3 6% (19/336) 3% (2/73)

4 3% (10/336) 0% (0/73)

5 1% (2/336) 0% (0/73)

Participants with missing responses are excluded from that variable. Only one participant (from the CLD group) uses an inhaler. λ Nonnucleoside Reverse
Transcriptase Inhibitor, § Protease inhibitor

Table 2 Prevalence of bacterial isolates among study participants

Bacterial species Nasopharyngeal swabs Sputum samples

CLD+ (n = 336) CLD- (n = 74) p CLD+ (n = 326) CLD- (n = 74) p

No. of isolates (%) No. of isolates (%)

S. pneumoniae 154 (46%) 19 (26%) 0.008 83 (25%) 17 (23%) 1

S. aureus 77 (23%) 9 (12%) 0.164 93 (29%) 21 (28%) 1

H. influenzae 40 (12%) 4 (5%) 0.576 12 (4%) 2 (3%) 1

M. catarrhalis 49 (15%) 2 (3%) 0.012 30 (9%) 4 (5%) 1

≥ 1 bacterial species 226 (67%) 29 (39%) < 0.001 161 (49%) 37 (50%) 1

Fisher’s exact test used for comparison. Statistical significance: p-value<0.05. p-values adjusted using the Bonferroni method.
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carriage (Supplementary table: T3). These co-carriage
relationships were independent of age or site.

Risk factors associated with carriage of bacteria
In multivariate analysis, participants on ART for two or
more years were less likely to carry SP in both NP and
sputum (Tables 3 and 4). Risk factors associated with SP
carriage in the NP were having CLD (adjusted OR: 2.0
[1.06–3.89], p = 0.036), younger age (e.g., being 6 to 12
years old at the time of sampling compared to 17 to 19
years (adjusted OR: 3.2 [1.76–5.85], p > 0.001), and
stunting (height-for-age-z score < − 2) (adjusted OR: 1.6
[1.05–2.58], p = 0.03). Participants with suppressed viral
load (< 1000 copies/mL) (adjusted OR: 0.6 [0.38–0.95],
p = 0.032), were less likely to carry SP in their NP
(Table 3). Participants in Zimbabwe (adjusted OR: 3.1
[1.43–7.34], p = 0.006), sample collected in hot season
(adjusted OR: 2.3 [1.22–4.4], p = 0.036) and previous
tuberculosis treatment (adjusted OR: 1.8 [1.02–3.17],
p = 0.043) were associated with sputum carriage of SP
[Table 4].
Male participants had increased odds of carrying SA in

their NP (adjusted OR: 1.7 [1.01–2.92], p = 0.048) whilst
participants with suppressed viral loads (< 1000 copies/
ml) were less likely to carry SA in their NP (adjusted
OR: 0.5 [0.32–0.91], p = 0.021) (Table 3). For sputa, par-
ticipants from Zimbabwe had higher odds of carrying
SA (adjusted OR: 2.1 [1.05–4.2], p = 0.038) than those
from Malawi (Table 4).
With regards to HI (Tables 5 and 6), participants from

Zimbabwe (adjusted OR: 3.9 [1.47–11.74], p = 0.009),
those aged 13 to 16 years at sampling (adjusted OR: 3.6
[1.46–10.22], p = 0.031), and those that had MRC dys-
pnoea score > 1 (adjusted OR: 2.6 [1.16–5.75], p = 0.02)
were more likely to carry HI in their NP swabs (Table 5).
No other variable tested was associated with sputum HI
carriage (Table 6).
Sampling in the hot and cool seasons (May to Novem-

ber) compared to the rainy season (adjusted OR: 3.1
[1.25–8.08], p = 0.036), participants whose ages were less
than 17 to 19 years (adjusted OR: 4 [1.39–13.22], p =
0.039), and participants who had MRC dyspnoea score >
1 (adjusted OR: 2.4 [1.06–5.43], p = 0.036), were more
likely to carry MC in their NP. In contrast, participants
who had used ART for two or more years (adjusted OR:
0.3 [0.07–0.93] p = 0.008) were less likely to carry MC in
their NP (Table 5). No other variable tested was associ-
ated with sputum MC carriage (Table 6).

Antibiotic and multidrug resistance of isolates
Some SP isolates failed to grow after initial isolation and
therefore antibiotic susceptibility was conducted on 147/
154 and 18/19 isolates from NP, and 75/83 and 15/17
isolates from sputa of CLD+ and CLD- participants,

respectively. The proportion of NP isolates non-
susceptible to penicillin was 32% (55/173) and that for
sputa was 22% (20/90). A total of 29% (75/263) of all SP
isolates regardless of sample type were penicillin non-
susceptible. Penicillin non-susceptibility among SP was
more common in the CLD+ participants (36% [53/147]
vs 10% [2/19] p = 0.036). There were no other statisti-
cally significant differences in the antibiotic resistance
profiles of SP, SA, HI and MC isolated from any sample
type of the CLD+ vs CLD- participants. For all isolates
recovered from both NP and sputa, there were generally
low levels of resistance to azithromycin (SP = 16% [27/
166]; SA = 8% [17/195]) and tetracycline (SP = 18% [45/
253]; SA = 20% [39/195]; HI = 10% [6/58] and MC = 15%
[12/81]) and moderate to very high cotrimoxazole resist-
ance (SP = 95% [240/255]; SA = 67% [130/195], HI = 95%
[55/58] and MC = 48% [38/81]) (Fig. 1). Methicillin-
resistant SA was uncommon (4%, 7/195). β-lactamase
production by MC was widespread (93%, 76/82) but not
different between the two groups. Antibiotic susceptibil-
ity profiles did not differ between sputum or NP isolates
for any bacterial species (Fig. 1).

Discussion
The main finding of our study was that CLD+ CLWH
were more likely to carry SP and MC in their NP than
their CLD- counterparts whereas, participants with high
MRC dyspnoea score (reflecting respiratory disability)
were more likely to carry MC and HI. In addition, age,
HIV viral load, duration of ART, the season of sample
collection, site and nutritional status were associated
with bacterial carriage among study participants. Longer
period on ART or suppressed viral load were associated
with reduced carriage for several bacterial species. The
observed differences between the CLD+ and CLD-
groups were more striking in NP compared to sputa.
Antimicrobial susceptibility patterns were similar
between the CLD+ and CLD- groups, apart from SP
penicillin non-susceptibility, which was higher in the
CLD+ group.
Studies of bacterial carriage among CLWH with

CLD, but without acute infection, are limited.
Masekela et al., [14] observed that among CLWH
aged 6–14 years (mean 6.9 years), diagnosed with
HIV-related bronchiectasis in South Africa, the most
prevalent bacteria, from cumulative induced sputum
samples collected over one year, were HI (30%) and
H. parainfluenzae (21%) followed by Pseudomonas
aeruginosa (2%) and SA (1%) [14]. Similarly, Verwey
et al., [21] also found HI to be the most frequent
bacterial species (38%) in respiratory samples (mainly
sputum) of 52 CLWH with non-CF bronchiectasis
[median age, 11.4 years (interquartile range 7.7–12.5)].
Samples were collected over a 2-year period and the
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Table 3 Univariate and multivariate analysis of factors associated with nasopharyngeal S. pneumoniae and S. aureus colonisation

Variable No.
observations
(n = 410) §

Streptococcus pneumoniae Staphylococcus aureus

No. isolates
(n = 173)φ

OR [95%
CI]

p Adjusted
OR [95% CI]

p No. isolates
(n = 86)λ

OR [95%
CI]

p Adjusted
OR [95% CI]

p

Group

CLD- 18% (74) 11% (19) Reference Reference 10% (9) Reference Reference

CLD+ 82% (336) 89% (154) 2.5 [1.4–
4.4]

0.002 2.0[1.1–3.9] 0.04 90% (77) 2.2 [1.1–
4.8]

0.04 1.8 [0.8–4.5] 0.17

Study site

Malawi 28% (114) 32% (56) Reference Reference 31% (27) Reference Reference

Zimbabwe 72% (296) 68% (117) 0.7 [0.4–
1.1]

0.08 1.3 [0.7–2.4] 0.42 69% (59) 0.8 [0.5–
1.4]

0.40 0.7 [0.4–1.5] 0.39

Sex

Female 52% (212) 54% (94) Reference Reference 41% (35) Reference Reference

Male 48% (198) 46% (79) 0.8 [0.6–
1.2]

0.36 0.7 [0.4–1.0] 0.07 59% (51) 1.8 [1.1–
2.9]

0.02 1.7 [1.0–2.9] 0.05

Season of sample collection

Dec - Apr -
Rainy season

36% (149) 32% (56) Reference Reference 36% (31) Reference Reference

May–Aug -
Cool season

39% (160) 43% (74) 1.4 [0.9–
2.3]

0.30 1.7 [1.0–2.9] 0.13 29% (25) 0.7 [0.4–
1.3]

0.03 0.9 [0.5–1.6] 0.11

Sep - Nov - Hot
season

25% (101) 25% (43) 1.2 [0.7–
2.1]

1.3 [0.7–2.3] 35% (30) 1.6 [0.9–
2.9]

1.7 [0.9–3.2]

Enrolment age category

17-19y 32% (131) 20% (35) Reference Reference 28% (24) Reference Reference

13-16y 41% (168) 47% (81) 2.6 [1.6–
4.2]

<0.001 2.2 [1.3–3.8] <0.001 43% (37) 1.3 [0.7–
2.3]

0.66 1.1 [0.6–2.1] 0.83

6-12y 27% (111) 33% (57) 2.9 [1.7–
5.0]

3.2 [1.8–5.8] 29% (25) 1.3 [0.7–
2.4]

1.2 [0.6–2.5]

Number of years on ART

6 m- < 2y 9% (35) 14% (23) Reference Reference 7% (6) Reference Reference

2- < 4y 18% (72) 18% (30) 0.4 [0.2–
0.9]

0.02 0.4 [0.2–1.0] 0.04 18% (15) 1.3 [0.5–
3.9]

0.94 1.2 [0.4–3.9] 0.78

4y- < 6y 20% (81) 22% (36) 0.4 [0.2–
0.9]

0.4 [0.2–1.0] 22% (18) 1.4 [0.5–
4.1]

1.4 [0.5–4.4]

6y+ 53% (214) 47% (78) 0.3 [0.1–
0.6]

0.3 [0.1–0.7] 53% (44) 1.3 [0.5–
3.5]

1.0 [0.4–3.0]

CD4 count

> 500 63% (257) 62% (108) Reference 63% (54) Reference

200–500 27% (112) 24% (42) 0.8 [0.5–
1.3]

0.09 30% (26) 1.1 [0.7–
1.9]

0.55

< 200 10% (40) 13% (23) 1.9 [1.0–
3.7]

7% (6) 0.7 [0.2–
1.6]

Enrolment viral load

Unsuppressed 42% (174) 46% (80) Reference Reference 55% (47) Reference Reference

Suppressed 58% (236) 54% (93) 0.8[0.5–
1.1]

0.18 0.6 [0.4–1.0] 0.03 45% (39) 0.5 [0.3–
0.9]

0.01 0.5 [0.3–0.9] 0.02

ART regimen

PI-based
regimen - 2nd
line

24% (98) 25% (44) Reference Reference 33% (28) Reference Reference
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prevalence of the other relevant bacterial species were
SP (12%), MC (13%) and SA (11%) [21]. Ferrand
et al., [6], also found HI (n = 6) to be the most fre-
quent bacteria recovered from 18 expectorated sputa
from Zimbabwean CLWH (mean age, 14 ± 2.6 years)
with CLD and without acute respiratory infection [6].
Although, the most prevalent bacterial species that we

identified were similar to those detected in previous
studies using sputum samples, the prevalences differed
substantially. SA (29%) followed by SP (25%) then MC
(9%) were the most common bacteria isolated from our
CLD+ subjects. HI was infrequently detected (4%). These
differences in study results may be explained by a num-
ber of factors including sample type (lower respiratory
tract samples vs NP swabs), clinical state of participants
(acute exacerbation vs. stable) and age. The studies by
Masekela [14] and Verwey [21] both included samples

collected during acute exacerbations as well as interven-
ing periods.
Differences in age between the studies may also explain

the differences in bacterial carriage; participants in the
studies by Masekela [14] and Verwey [21] were younger
than those included in our study (Masekela: mean 6.9
years (range 6–14 years) [14], Verwey: median 9.1 years
(IQR 7.2–12.1) [21], Ferrand: mean 14 (SD ± 2.6) years
[6]) and 15(IQR: 13–18) in our study). Moreover, Mase-
kela [14] investigated induced sputum while Verwey [21]
included expectorated and induced sputum, bronchoalve-
olar lavage and tracheal samples. In Ferrand’s [6] study
and ours, the samples collected were expectorated sputum
for CLD+ subjects. Finally, both Masekela [14] and Ver-
wey [21] studies also included multiple samples from the
same participants – analysis did not adjust for multiple
sampling from the same participant.

Table 3 Univariate and multivariate analysis of factors associated with nasopharyngeal S. pneumoniae and S. aureus colonisation
(Continued)

Variable No.
observations
(n = 410) §

Streptococcus pneumoniae Staphylococcus aureus

No. isolates
(n = 173)φ

OR [95%
CI]

p Adjusted
OR [95% CI]

p No. isolates
(n = 86)λ

OR [95%
CI]

p Adjusted
OR [95% CI]

p

NNRTI-based
regimen -1st
line

76% (312) 75% (129) 0.9 [0.6–
1.4]

0.55 0.8 [0.5–1.4] 0.44 67% (58) 0.6 [0.3–
1.0]

0.03 0.6 [0.3–1.1] 0.07

Ever treated for TB

No 74% (302) 70% (120) Reference Reference 71% (61) Reference Reference

Yes 26% (106) 30% (52) 1.5 [0.9–
2.3]

0.10 1.5 [0.9–2.5] 0.12 29% (25) 1.2 [0.7–
2.1]

0.46 0.9 [0.5–1.7] 0.83

Enrolment weight- for-age- z-score

Not
underweight

54% (220) 49% (85) Reference 49% (42) Reference

Underweight 46% (190) 51% (88) 1.4 [0.9–
2.0]

0.12 51% (44) 1.3 [0.8–
2.1]

0.31

Enrolment height-for-age- z-score -

Not stunted 54% (220) 45% (78) Reference Reference 52% (45) Reference Reference

Stunted 46% (190) 55% (95) 1.8 [1.2–
2.7]

0.003 1.6 [1.1–2.6] 0.03 48% (41) 1.1 [0.7–
1.7]

0.78 0.8 [0.5–1.3] 0.39

Ever repeated a grade

No 46% (183) 41% (69) Reference 42% (36) Reference

Yes 54% (218) 59% (100) 1.4 [0.9–
2.1]

0.10 58% (49) 1.2 [0.7–
1.9]

0.49

MRC dyspnoea score

1 or 0 60% (244) 53% (91) Reference Reference 56% (48) Reference Reference

> 1 40% (165) 47% (81) 1.6 [1.1–
2.4]

0.02 1.3 [0.7–2.2] 0.36 44% (37) 1.2 [0.7–
1.9]

0.50 1.0 [0.5–1.8] 0.94

§ Missing values: Number of years on ART (8), CD4 count (1), Ever treated for TB (2), Ever repeated a grade (9) and MRC dyspnoea score (1). φ Number of years on
ART (n = 167), ART regimen(n = 172), Ever treated for TB (n = 172), Ever repeated a grade (n = 169), MRC dyspnoea score (n = 172). λn = 83, 85 and 85 for the
number of years on ART, ever repeated a grade and MRC dyspnoea score. Variables with two levels where a level is less than 10% of total observations are not
tested for associations. These included current school attendance and taking cotrimoxazole. Variables that have values in the adjusted odd ratios column were
included in the multivariate model for that bacteria. Variables with p values <0.25 were included in the multivariate model except where they are colinear with
another variable within the model. Weight-for-age was colinear with height-for-age and hence excluded from the model. Ever repeated a grade was excluded
because of co-linearity with MRC score. CD4 count is colinear with viral load suppression. Clinically relevant variables (a priori-defined) that were included in the
multivariate model regardless of significance were group, age, sex, site, season of sample collection, number of years on ART, enrolment viral load, ART regimen,
ever treated for TB, enrolment height-for-age z-score and MRC dyspnoea score
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Table 4 Univariate and multivariate analysis of factors associated with sputum S. pneumoniae and S. aureus colonisation

Variable No.
observations
(n = 400) §

Streptococcus pneumoniae Staphylococcus aureus

No. isolates
(n = 100)φ

OR [95%
CI]

p Adjusted OR
[95% CI]

p No. isolates
(n = 114)λ

OR [95%
CI]

p Adjusted OR
[95% CI]

p

Group

CLD- 18% (74) 17% (17) Reference Reference 18% (21) Reference Reference

CLD+ 82% (326) 83% (83) 1.2 [0.6–
2.1]

0.66 1.3 [0.6–2.6] 0.52 82% (93) 1.0 [0.6–
1.8]

0.98 1.0 [0.5–1.8] 0.92

Study site

Malawi 27% (108) 13% (13) Reference Reference 18% (21) Reference Reference

Zimbabwe 73% (292) 87% (87) 3.1 [1.7–
6.1]

<0.001 3.1 [1.4–7.3] 0.01 82% (93) 1.9 [1.2–
3.4]

0.02 2.1 [1.1–4.2] 0.04

Sex

Female 52% (207) 52% (52) Reference Reference 50% (57) Reference Reference

Male 48% (193) 48% (48) 1 [0.6–
1.6]

0.95 0.9 [0.6–1.5] 0.73 50% (57) 1.1 [0.7–
1.7]

0.66 1.1 [0.7–1.8] 0.57

Season of sample collection

Dec–Apr - Rainy 36% (143) 26% (26) Reference Reference 32% (37) Reference Reference

May–Aug - Cool 39% (157) 41% (41) 1.6 [0.9–
2.8]

0.03 1.6 [0.9–3.0] 0.04 37% (42) 1.1 [0.6–
1.8]

0.25 1.1 [0.6–1.8] 0.27

Sep–Nov - Hot 25% (100) 33% (33) 2.2 [1.2–
4.1]

2.3 [1.2–4.4] 31% (35) 1.5 [0.9–
2.7]

1.6 [0.9–2.8]

Enrolment age category

17-19y 33% (130) 38% (38) Reference Reference 39% (45) Reference Reference

13-16y 40% (161) 39% (39) 0.8 [0.5–
1.3]

0.34 0.8 [0.5–1.4] 0.38 38% (43) 0.7 [0.4–
1.1]

0.15 0.7 [0.4–1.2] 0.25

6-12y 27% (109) 23% (23) 0.7 [0.4–
1.2]

0.6 [0.3–1.2] 23% (26) 0.6 [0.3–
1.0]

0.6 [0.3–1.1]

Number of years on ART

6 m- < 2y 9% (35) 12% (12) Reference Reference 9% (10) Reference Reference

2- < 4y 18% (71) 21% (21) 0.8 [0.3–
1.9]

0.39 0.6 [0.2–1.5] 0.04 17% (19) 0.9 [0.4–
2.3]

0.83 0.7 [0.3–1.8] 0.57

4y- < 6y 20% (79) 19% (19) 0.6 [0.3–
1.5]

0.4 [0.2–1.0] 23% (26) 1.2 [0.5–
3.0]

0.9 [0.4–2.4]

6y+ 53% (208) 47% (47) 0.6 [0.3–
1.2]

0.3 [0.1–0.8] 51% (58) 1 [0.5–
2.2]

0.6 [0.3–1.6]

CD4 count

> 500 63% (251) 63% (63) Reference 59% (67) Reference

200–500 28% (110) 26% (26) 0.9 [0.5–
1.6]

0.81 32% (36) 1.3 [0.8–
2.2]

0.51

< 200 10% (38) 11% (11) 1.2 [0.6–
2.5]

10% (11) 1.1 [0.5–
2.3]

Enrolment viral load

Unsuppressed 42% (169) 35% (35) Reference 47% (54) Reference Reference

Suppressed 58% (231) 65% (65) 1.5 [0.9–
2.4]

0.09 1.4 [0.8–2.3] 0.22 53% (60) 0.8 [0.5–
1.2]

0.19 0.7 [0.4–1.1] 0.09

ART regimen

PI-based
regimen - 2nd
line

24% (98) 27% (27) Reference Reference 25% (28) Reference Reference

NNRTI-based 76% (302) 73% (73) 0.9 [0.5– 0.57 1.1 [0.6–2.1] 0.75 75% (86) 1 [0.6– 0.947 1.2 [0.7–2.2] 0.54

Abotsi et al. BMC Infectious Diseases          (2021) 21:216 Page 8 of 17



In our study, CLD+ participants were more stunted and
underweight compared to their CLD- counterparts (Table
1). A meta-analysis showed that the prevalence of SP car-
riage is higher in malnourished children compared to their
counterparts who were not malnourished [22]. This study
also found that stunted and underweight children were
also more likely to carry SP than children with normal
weight and height, a finding which is consistent with our
results. Malnutrition causes immune changes such as at-
rophy of the thymus, impairment of complement activity
and immunoglobulin responses to encapsulated bacteria
and a reduction in immunoglobulin A secretion [22].
The prevalence of SP in NP of CLD- CLWH (26%) is

comparable to similar studies of CLWH in Ghana
[27.1%, mean age was 5.8 ± 3.3 years with 59.3% falling
within 9 to 15 years old range] [23] and India [27.8%,
median age: 6 years, IQR:4,9 with 57% falling within 12
to 17 years old range] [24]. However, this prevalence is
higher than that observed in CLWH from Cambodia
[17.6%, median age: 7 years, IQR = 5–9 years] [25] and
Ethiopia [10.3%, median age: 11 years (range was 6–16

years)] [26], and lower than CLWH from Zambia [51%,
median age: 5.1 years (IQR = 2.8 to 8.7 years)] [27] and
Tanzania [81%, mean age is 6.39, SD = 3.18] [28] . The
participants in these other studies were not reported to
have CLD. These differences in bacterial prevalence be-
tween studies may be related to sampling site
(pharyngeal vs NP) [26], age of participants (younger
children have higher carriage prevalence) [27–29], and
method of detection; PCR is associated with increased
detection of SP strains compared to culture [28].
While we did not record vaccination history, the ma-

jority of our study participants would not have been pre-
viously vaccinated against pneumococcal disease as these
vaccines were introduced in both countries around 2012
[30, 31] when our study participants would have been
too old to be eligible for immunisation. Pneumococcal
vaccines have been shown to reduce both carriage and
disease through individual protection of the vaccinated
which in turn disrupts transmission [32]. Hence, the
high SP carriage in our settings might also be attributed
to the lack of pneumococcal vaccination.

Table 4 Univariate and multivariate analysis of factors associated with sputum S. pneumoniae and S. aureus colonisation (Continued)

Variable No.
observations
(n = 400) §

Streptococcus pneumoniae Staphylococcus aureus

No. isolates
(n = 100)φ

OR [95%
CI]

p Adjusted OR
[95% CI]

p No. isolates
(n = 114)λ

OR [95%
CI]

p Adjusted OR
[95% CI]

p

regimen -1st line 1.5] 1.7]

Ever treated for TB

No 74% (294) 65% (65) Reference Reference 72% (82) Reference Reference

Yes 26% (104) 35% (35) 1.8 [1.1–
2.9]

0.02 1.8 [1.0–3.2] 0.04 28% (32) 1.2 [0.7–
1.9]

0.58 1.0 [0.6–1.8] 0.92

Enrolment weight- for-age- z-score

Not underweight 54% (217) 61% (61) Reference 54% (61) Reference

Underweight 46% (183) 39% (39) 0.7 [0.4–
1.1]

0.12 46% (53) 1.0 [0.7–
1.6]

0.85

Enrolment height-for-age- z-score -

Not stunted 55% (218) 59% (59) Reference Reference 58% (66) Reference Reference

Stunted 46% (182) 41% (41) 0.8 [0.5–
1.2]

0.3 0.9 [0.5–1.5] 0.64 42% (48) 0.8 [0.5–
1.3]

0.39 0.8 [0.5–1.3] 0.46

Ever repeated a grade

No 46% (180) 49% (49) Reference 47% (54) Reference

Yes 54% (211) 51% (50) 0.8 [0.5–
1.3]

0.43 53% (60) 0.9 [0.6–
1.4]

0.74

MRC dyspnoea score

1 or 0 60% (240) 68% (67) Reference Reference 65% (73) Reference Reference

> 1 40% (159) 32% (32) 0.7 [0.4–
1.0]

0.079 0.9 [0.5–1.7] 0.86 35% (40) 0.8 [0.5–
1.2]

0.25 1.1 [0.6–2.0] 0.67

§ Missing values: Number of years on ART (7), CD4 count (1), Ever treated for TB (2), Ever repeated a grade (9) and MRC dyspnoea score (1). φ n = 99 for the
number of years on ART, ever repeated a grade, MRC dyspnoea score. λn = 113 for the number of years on ART and MRC dyspnoea score. Variables with two
levels where a level is less than 10% of total observations were not tested for associations. These included current school attendance and taking cotrimoxazole.
Variables that have values in the adjusted odd ratios column were included in the multivariate model for that bacteria. Variables with p values <0.25 were
included in the multivariate model except where they were colinear with another variable within the model. Weight-for-age was colinear with height-for-age and
hence excluded from the model. Ever repeated a grade was excluded because of co-linearity with MRC score. CD4 count is colinear with viral load suppression.
Clinically relevant variables (a priori-defined) that were included in the multivariate model regardless of significance were group, age, sex, site, season of sample
collection, number of years on ART, enrolment viral load, ART regimen, ever treated for TB, enrolment height-for-age z-score and MRC dyspnoea score
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Table 5 Univariate and multivariate analysis of factors associated with nasopharyngeal H. influenzae and M. catarrhalis colonisation

Variable No.
observations
(n = 410) §

Haemophilus influenzae Moraxella catarrhalis

No. isolates
(n = 44)σ

OR [95%
CI]

p Adjusted OR
[95% CI]

p No. isolates
(n = 51)ξ

OR [95%
CI]

p Adjusted OR
[95% CI]

p

Group

CLD- 18% (74) 9% (4) Reference Reference 4% (2) Reference Reference

CLD+ 82% (336) 91% (40) 2.4 [0.9–
8.1]

0.11 1.5 [0.5–5.7] 0.49 96% (49) 6.2 [1.9–
38.2]

0.01 4.0 [1.1–26.2] 0.08

Study site

Malawi 28% (114) 23% (10) Reference Reference 49% (25) Reference Reference

Zimbabwe 72% (296) 77% (34) 1.4 [0.7–
3.0]

0.43 3.9 [1.5–11.7] 0.01 51% (26) 0.3 [0.2–
0.6]

<0.001 0.6 [0.3–1.4] 0.27

Sex

Female 52% (212) 61% (27) Reference Reference 51% (26) Reference Reference

Male 48% (198) 39% (17) 0.6 [0.3–
1.2]

0.18 0.6 [0.3–1.2] 0.13 49% (25) 1.0 [0.6–
1.9]

0.91 1.0 [0.5–1.9] 0.90

Season of sample collection

Dec–April - Rainy
season

36% (149) 30% (13) Reference Reference 20% (10) Reference Reference

May–Aug - Cool
season

39% (160) 50% (22) 1.7 [0.8–
3.5]

0.29 1.9 [0.8–4.4] 0.24 47% (24) 2.5 [1.2–
5.6]

0.03 2.7 [1.2–6.7] 0.04

Sep–Nov - Hot
season

25% (101) 20% (9) 1.0 [0.4–
2.5]

1.0 [0.4–2.7] 33% (17) 2.8 [1.3–
6.7]

3.1 [1.3–8.1]

Enrolment age category

17-19y 32% (131) 16% (7) Reference Reference 10% (5) Reference Reference

13-16y 41% (168) 61% (27) 3.4 [1.5–
8.7]

0.01 3.6 [1.5–10.2] 0.03 55% (28) 5.0 [2.1–
15.2]

0.004 3.5 [1.3–11.1] 0.04

6-12y 27% (111) 23% (10) 1.8 [0.7–
5.0]

2.4 [0.8–7.7] 35% (18) 4.9 [1.9–
15.2]

4.0 [1.4–13.2]

Number of years on ART

6 m- < 2y 9% (35) 15% (6) Reference Reference 22% (11) Reference Reference

2- < 4y 18% (72) 22% (9) 0.7 [0.2–
2.2]

0.40 0.6 [0.2–2] 0.22 12% (6) 0.2 [0.1–
0.6]

0.01 0.3 [0.1–0.8] 0.09

4y- < 6y 20% (81) 20% (8) 0.5 [0.2–
1.7]

0.4 [0.1–1.4] 16% (8) 0.2 [0.1–
0.7]

0.3 [0.1–0.9]

6y+ 53% (214) 44% (18) 0.4 [0.2–
1.3]

0.3 [0.1–1.0] 50% (25) 0.3 [0.1–
0.7]

0.3 [0.1–0.9]

CD4 count

> 500 63% (257) 55% (24) Reference 55% (28) Reference

200–500 27% (112) 20% (9) 0.9 [0.4–
1.8]

0.003 31% (16) 1.4 [0.7–
2.6]

0.4

< 200 10% (40) 25% (11) 3.7 [1.6–
8.2]

14% (7) 1.7 [0.7–
4.1]

Enrolment viral load

Unsuppressed 42% (174) 50% (22) Reference Reference 47% (24) Reference Reference

Suppressed 58% (236) 50% (22) 0.7 [0.4–
1.3]

0.28 0.6 [0.3–1.2] 0.13 53% (27) 0.8 [0.5–
1.5]

0.48 0.6 [0.3–1.2] 0.14

ART regimen

PI-based
regimen - 2nd
line

24% (98) 27% (12) Reference Reference 29% (15) Reference Reference
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The prevalence of SA in NP of CLD+ CLWH (23%) is
comparable to similar studies conducted among CLWH
in Ethiopia (29–31%) [26, 33] and India (24%) [34].
However, the prevalence in CLD- participants (12%) was
lower in our study. These discrepancies in bacterial
prevalence between studies may be explained by the
differences in sampling sites (NP vs nasal) or age.
The anterior nares are the natural niche for SA and
may be expected to be more frequently colonised
than the NP [35].
Zambian [27] and Indian [34] studies of CLWH re-

ported a much higher prevalence of HI (29 and 26%
respectively) than either of our groups [12%(CLD+)
and 5% (CLD-)]. This higher prevalence may be due
to the younger age of the study participants (median
ages were 5.1 years and 6.5 years for the Zambian and
Indian studies respectively, compared to median 15
years for our study. NP HI carriage declines with in-
creasing age [29, 36].

The prevalence of MC in the NP of CLD- CLWH (3%)
was much lower than similar studies conducted among
CLWH in Ethiopia (12.3%, median age is 11 years) [26]
and Ghana (39.8%, median age is 5.8 years) [37], but
comparable to a Cambodian study (6%, median age is 7
years) [25]. Again, differences in age may explain these
findings. NP MC carriage declines with increasing age
from about 60% at 1–2 years to about 12% at 7–14 years
[36]. MC is implicated in acute exacerbations of chronic
bronchitis [38] and chronic obstructive pulmonary dis-
ease (COPD) [39], and therefore our finding of higher
NP carriage in CLD+ participants (14%) vs CLD- partici-
pants (3%) is of interest. Sputum MC carriage was also
higher in CLD+ (9%) vs CLD- CLWH (5%), but this dif-
ference was not statistically significant. Whether MC
carriage plays a role in the pathogenesis of CLD or is a
consequence of CLD requires further study.
The colonisation of the nasopharynx by multiple

bacterial species may have important clinical

Table 5 Univariate and multivariate analysis of factors associated with nasopharyngeal H. influenzae and M. catarrhalis colonisation
(Continued)

Variable No.
observations
(n = 410) §

Haemophilus influenzae Moraxella catarrhalis

No. isolates
(n = 44)σ

OR [95%
CI]

p Adjusted OR
[95% CI]

p No. isolates
(n = 51)ξ

OR [95%
CI]

p Adjusted OR
[95% CI]

p

NNRTI-based
regimen -1st line

76% (312) 73% (32) 0.8 [0.4–
1.9]

0.74 0.9 [0.4–2.2] 0.83 71% (36) 0.8 [0.4–
1.5]

0.43 0.6 [0.3–1.5] 0.27

Ever treated for TB

No 74% (302) 61% (27) Reference Reference 70% (35) Reference Reference

Yes 26% (106) 39% (17) 2.0 [1.0–
3.7]

0.05 2.1 [1.0–4.6] 0.06 30% (15) 1.3 [0.6–
2.4]

0.49 1.2 [0.5–2.6] 0.63

Enrolment weight- for-age- z-score

Not underweight 54% (220) 55% (24) Reference 37% (19) Reference

Underweight 46% (190) 45% (20) 1.0 [0.5–
1.8]

0.90 63% (32) 2.1 [1.2–
4]

0.01

Enrolment height-for-age- z-score -

Not stunted 54% (220) 57% (25) Reference Reference 37% (19) Reference Reference

Stunted 46% (190) 43% (19) 0.9 [0.5–
1.6]

0.66 0.7 [0.3–1.5] 0.40 63% (32) 2.1 [1.2–
4]

0.01 1.5 [0.8–3.0] 0.25

Ever repeated a grade

No 46% (183) 36% (15) Reference 28% (14) Reference

Yes 54% (218) 64% (27) 1.6 [0.8–
3.2]

0.18 72% (36) 2.4 [1.3–
4.7]

0.01

MRC dyspnoea score

1 or 0 60% (244) 50% (22) Reference Reference 33% (17) Reference Reference

> 1 40% (165) 50% (22) 1.6 [0.8–
2.9]

0.17 2.6 [1.2–5.8] 0.02 67% (34) 3.5 [1.9–
6.6]

<0.001 2.4 [1.1–5.4] 0.04

§ Missing values: Number of years on ART (8), CD4 count (1), Ever treated for TB (2), Ever repeated a grade (9) and MRC dyspnoea score (1). σ n = 41 and 42 for the
number of years on ART and Ever repeated a grade respectively ξ n = 50 for the number of years on ART, ever treated for TB & ever repeated a grade. Variables
with two levels where a level is less than 10% of total observations were not tested for associations. These included current school attendance and taking
cotrimoxazole. Variables that have values in the adjusted odd ratios column were included in the multivariate model for that bacteria. Variables with p values <
0.25 were included in the multivariate model except where they are colinear with another variable within the model. Weight-for-age was colinear with height-for-
age and hence excluded from the model. Ever repeated a grade was excluded because of co-linearity with MRC score. CD4 count is colinear with viral load
suppression. Clinically relevant variables (a priori-defined) that were included in the multivariate model regardless of significance were group, age, sex, site, season
of sample collection, number of years on ART, enrolment viral load, ART regimen, ever treated for TB, enrolment height-for-age z-score and MRC dyspnoea score
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Table 6 Univariate and multivariate analysis of factors associated with sputum H. influenzae and M. catarrhalis colonisation

Variable No.
observations
(n = 400) §

Haemophilus influenzae Moraxella catarrhalis

No. isolates
(n = 14)σ

OR [95%
CI]

p Adjusted OR
[95% CI]

p No. isolates
(n = 34)ξ

OR [95%
CI]

p Adjusted OR
[95% CI]

p

Group

CLD- 18% (74) 14% (2) Reference Reference 12% (4) Reference Reference

CLD+ 82% (326) 86% (12) 1.4 [0.4–
9.0]

0.68 0.8 [0.1–6.6] 0.82 88% (30) 1.8 [0.7–
6.1]

0.30 1.4 [0.5–5.0] 0.6

Study site

Malawi 27% (108) 43% (6) Reference Reference 38% (13) Reference Reference

Zimbabwe 73% (292) 57% (8) 0.5 [0.2–
1.5]

0.18 1.1 [0.2–7.7] 0.88 62% (21) 0.6 [0.3–
1.2]

0.13 0.6 [0.2–1.7] 0.36

Sex

Female 52% (207) 57% (8) Reference Reference 59% (20) Reference Reference

Male 48% (193) 43% (6) 0.8 [0.3–
2.3]

0.68 1.5 [0.4–5.8] 0.53 41% (14) 0.7 [0.4–
1.5]

0.39 0.6 [0.3–1.3] 0.18

Season of sample collection

Dec–Apr - Rainy 36% (143) 50% (7) Reference Reference 32% (11) Reference Reference

May–Aug - Cool 39% (157) 43% (6) 0.8 [0.2–
2.4]

0.32 0.9 [0.2–3.7] 0.42 38% (13) 1.1 [0.5–
2.6]

0.81 1.0 [0.4–2.6] 0.65

Sep–Nov - Hot 25% (100) 7% (1) 0.2 [0.01–
1.1]

0.2 [0.0–1.6] 29% (10) 1.3 [0.5–
3.3]

1.5 [0.6–3.9]

Enrolment age category

17-19y 33% (130) 14% (2) Reference Reference 24% (8) Reference Reference

13-16y 40% (161) 57% (8) 3.3 [0.8–
22.4]

0.32 6.1 [0.9–119.9] 0.24 56% (19) 2.0 [0.9–
5.1]

0.16 1.6 [0.6–4.0] 0.39

6-12y 27% (109) 29% (4) 2.4 [0.5–
17.8]

6.7 [0.9–140.2] 21% (7) 1.0 [0.4–
3.0]

0.9 [0.3–2.6]

Number of years on ART

6 m- < 2y 9% (35) 9% (1) Reference Reference 15% (5) Reference Reference

2- < 4y 18% (71) 9% (1) 0.5 [0.0–
12.5]

0.58 0.3 [0.0–8.6] 0.68 24% (8) 0.8 [0.2–
2.7]

0.38 0.8 [0.2–2.9] 0.39

4y- < 6y 20% (79) 36% (4) 1.8 [0.3–
36.2]

1.3 [0.1–27.4] 18% (6) 0.5 [0.1–
1.8]

0.5 [0.1–2.0]

6y+ 53% (208) 45% (5) 0.8 [0.1–
16.3]

0.8 [0.1–16.4] 42% (14) 0.4 [0.2–
1.4]

0.4 [0.1–1.4]

CD4 count

> 500 63% (251) 43% (6) Reference 62% (21) Reference

200–500 28% (110) 21% (3) 1.1 [0.2–
4.4]

0.01 26% (9) 1.0 [0.4–
2.1]

0.9

< 200 10% (38) 36% (5) 6.2 [1.7–
21.7]

12% (4) 1.3 [0.4–
3.6]

Enrolment viral load

Unsuppressed 42% (169) 64% (9) Reference Reference 47% (16) Reference Reference

Suppressed 58% (231) 36% (5) 0.4 [0.1–
1.2]

0.1 0.4 [0.1–1.3] 0.13 53% (18) 0.8 [0.4–
1.7]

0.55 0.8 [0.4–1.8] 0.64

ART regimen

PI-based
regimen - 2nd
line

24% (98) 14% (2) Reference Reference 29% (10) Reference Reference

NNRTI-based 76% (302) 86% (12) 3.9 [0.8– 0.19 3.9 [0.6–77.4] 0.23 71% (24) 0.8 [0.4– 0.66 0.7 [0.3–1.9] 0.49
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consequences including biofilm formation, polymicrobial
infections and antibiotic resistance [40, 41]. We found
strong positive associations between NP carriage of SP,
HI and MC. While some previous reports observed simi-
lar positive associations [34, 36, 42–45], others found
the opposite [46–48]. Possible reasons for the varying
observations include differences in age of participants
enrolled, vaccination schedules, year of study, host-
genetic background, antibiotic use and socio-economic
status of the countries of study (low income compared
to high-income status).
Interestingly, the differences we observed in NP

bacterial carriage between CLD+ and CLD- groups was
not mirrored in the sputum, despite the belief that the
source of bacteria in the lower respiratory tract is largely
from the upper airways through micro-aspiration [49].
Evidence from studies suggests that the oropharyngeal
samples rather than the nasopharyngeal mirrors the lung
microbiota (sputum) [50]. This may explain the discrep-
ancies in NP and sputa bacterial carriage we observed.

We also found that ART for more than two years
reduced the odds of pneumococcal carriage in both NP
and sputa. This is consistent with a report by Nicoletti
et al. [51] who found that consistent use of the same ART
for a year or more was negatively associated with risk of
NP pneumococcal colonisation in adults living with HIV.
Incomplete recovery of B cell function was noted in chil-
dren who were on ART for less than a year [52] and was
associated with high NP pneumococcal carriage [52].
Increased odds of NP pneumococcal carriage in hot, dry

seasons compared to rainy seasons is consistent with pre-
vious findings in Malawi [53] and other parts of Africa
(Kenya [54] and Gambia [55]). Similar observations have
also been made in Thailand [56] and the United States of
America [57]. One reason for this observation is increased
school attendance by children during the hot season,
which may increase transmission. Furthermore, a study in
Niger revealed that airborne dust and high temperatures
were risk factors for invasive pneumococcal disease [56].
Dust exposure attenuates phagocyte-mediated bacterial

Table 6 Univariate and multivariate analysis of factors associated with sputum H. influenzae and M. catarrhalis colonisation
(Continued)

Variable No.
observations
(n = 400) §

Haemophilus influenzae Moraxella catarrhalis

No. isolates
(n = 14)σ

OR [95%
CI]

p Adjusted OR
[95% CI]

p No. isolates
(n = 34)ξ

OR [95%
CI]

p Adjusted OR
[95% CI]

p

regimen -1st line 72.1] 2.0]

Ever treated for TB

No 74% (294) 64% (9) Reference Reference 76% (26) Reference Reference

Yes 26% (104) 36% (5) 1.6 [0.5–
4.7]

0.41 3.2 [0.8–12.3] 0.09 24% (8) 0.9 [0.4–
1.9]

0.72 0.8 [0.3–2.0] 0.68

Enrolment weight- for-age- z-score

Not underweight 54% (217) 50% (7) Reference 32% (11) Reference

Underweight 46% (183) 50% (7) 1.2 [0.4–
3.6]

0.75 68% (23) 2.7 [1.3–
5.9]

0.01

Enrolment height-for-age- z-score -

Not stunted 55% (218) 57% (8) Reference Reference 41% (14) Reference Reference

Stunted 46% (182) 43% (6) 0.9 [0.3–
2.6]

0.84 1.4 [0.4–5.3] 0.65 59% (20) 1.8 [0.9–
3.7]

0.11 1.7 [0.8–3.9] 0.17

Ever repeated a grade

No 46% (180) 50% (7) Reference 39% (13) Reference

Yes 54% (211) 50% (7) 0.9 [0.3–
2.5]

0.76 61% (20) 1.4 [0.7–
2.9]

0.43

MRC dyspnoea score

1 or 0 60% (240) 57% (8) Reference Reference 56% (19) Reference Reference

> 1 40% (159) 43% (6) 1.1 [0.4–
3.3]

0.82 0.8 [0.1–4.4] 0.80 44% (15) 1.2 [0.6–
2.5]

0.60 0.9 [0.3–2.2] 0.79

§ Missing values: Number of years on ART (7), CD4 count (1), Ever treated for TB (2), Ever repeated a grade (9) and MRC dyspnoea score (1). σ n = 11 for the
number of years on ART. ξ n = 33 for the number of years on ART & ever repeated a grade. Variables with two levels where a level is less than 10% of total
observations were not tested for associations. This included current school attendance and taking cotrimoxazole. Variables that have values in the adjusted odd
ratios column were included in the multivariate model for that bacteria. Variables with p values <0.25 were included in the multivariate model except where they
are colinear with another variable within the model. Weight-for-age was colinear with Height-for-age and hence excluded from the model. Ever repeated a grade
was excluded because of co-linearity with MRC score. CD4 count is colinear with viral load suppression. Clinically relevant variables (a priori-defined) that were
included in the multivariate model regardless of significance were group, age, sex, site, season of sample collection, number of years on ART, enrolment viral load,
ART regimen, ever treated for TB, enrolment height-for-age z-score and MRC dyspnoea score
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killing whilst the high temperatures promoted SP autoly-
sis, accompanied by the release of the toxin pneumolysin
[58]. Our finding that pneumococcal carriage was higher
in the hot, dry seasons may further explain the higher inci-
dence of invasive pneumococcal disease (IPD) among both
patients living with and without HIV irrespective of age in
Malawi during these seasons [59].
The reason for the association between male sex and SA

carriage, also reported previously [60], is incompletely
understood. Potential reasons include poor hand hygiene
and participation in contact sport by males [60]. Further-
more, physiological factors, including sex hormones, regu-
lation of the immune system and bacterial virulence have
also been suggested [60].
Our finding of higher prevalence of penicillin-non-

susceptible SP in CLD+ participants is unsurprising
since these participants were more likely to have
been previously treated with antibiotics for acute ex-
acerbations and were also more likely to have been
treated for tuberculosis. Indeed, previous tuberculosis
treatment was associated with increased odds of NP
SP carriage in our multivariate model. Recent expos-
ure to antibiotics is the strongest risk factor for NP
carriage and spread of resistant SP [61]. Again,
pneumococcal vaccination may be beneficial in this
population. This is because vaccine serotypes are
more likely to be resistant and therefore a reduction
in carriage of vaccine serotypes resulting from prior
immunisation can reduce antimicrobial resistance
[62].

All four bacterial species tested exhibited moderate to
high levels of resistance to cotrimoxazole. This was ex-
pected as 90% were receiving cotrimoxazole prophylaxis.
Cotrimoxazole has been shown to reduce morbidity and
mortality not only in patients living with HIV but also in
their family members who are living without the infec-
tion [63], despite high background resistance in respira-
tory pathogens [27]. This positive effect may result from
a reduction of systemic and intestinal inflammation via
the modulation of the gut microbiome and immune and
epithelial cell activation [64].
The strengths of our study include the enrolment of

age-matched CLD- participants from the same area as the
CLD+ group as a comparison group. We also included
participants from two sites, which increased generalisabil-
ity. Limitations of our study include the use of culture
alone, without PCR, which may be more sensitive for de-
tection of bacteria and would allow more precise quantita-
tion, and the relatively small sample size for the
comparator CLD- group which may have reduced statis-
tical power. Also, the definition of CLD used may inad-
vertently include participants who may have normal lung
function. However, our previous studies have shown that
FEV1 z-score is an objective measure that correlates well
with CLD based on radiological analysis (high-resolution
computed tomography) [5–7]. Also, within the main trial
under which this study was nested, we anticipated a re-
duced efficacy of azithromycin in participants with ad-
vanced disease, and therefore did not restrict enrolment
to more severely ill, symptomatic children.

Fig. 1 Bar plot comparing the percentage of antibiotic resistance of S. aureus [n = 85 for nasopharyngeal swab isolates, n = 110 for sputum
isolates] and S. pneumoniae [n = 165 nasopharyngeal swab isolates, n = 90 or sputum isolates] isolates recovered from the nasopharyngeal swabs
and sputa. Only the antibiotics tested for each bacterium are shown
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In conclusion, CLD+ CLWH were more likely to be
colonised by MC and SP, including penicillin-resistant
SP strains. The role of these bacteria in CLD pathogen-
esis, including the risk of acute exacerbations, should be
further investigated.
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