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Abstract. The motion of the aerodynamic tether system includes two stages – the deployment 

and the motion of the deployed system.  The initial condition for the deployment model is that 

of a spacecraft with a rigidly connected second body in a circular orbit about the planet.  The 

deployment process is based on the aerodynamic forces acting on bodies.  After the separation 

of the rigid connection, further motions of the bodies are then controlled by the tether release 

mechanism which unreels the tether and controls the rate at which the tether is unreeled.  The 

motion of the system is described by the multi-point model, splitting the tether into a number of 

parts and using the series of separations of material points from the spacecraft, thus forming a 

mathematical model of the system with distributed parameters.  The aerodynamic forces acting 

on the tether are taken into consideration.  This model makes it possible to calculate numerically 

elastic deformations and curvature of the tether and provides more accurate modelling if 

compared with the two-point model. 

1.  Introduction 

The aerodynamic space tether system is a system of two rigid bodies connected by a long thin stretchable 

tether where the aerodynamic forces has a major influence on the motion of the system.  The orientation, 

or attitude, is the part of the description of the placement that the rigid body occupies in space.  The 

other component of placement is its linear position.  The attitude is defined by the angles between the 

longitudinal axis of the spacecraft and some reference line or plane [1] such as the vector of velocity of 

the air flow.  Therefore, stabilization means the process of maintaining attitude during motion or tending 

to restore the original attitude after receiving a displacement or perturbation.  For a spacecraft, attitude 

control is the process of achieving and maintaining a desired orientation in space by a corrective action.  

Aerodynamic space tether systems can be used for a wide number of applications and purposes.  The 

most obvious application is to provide the appropriate orientation of a spacecraft during descent.  This 

method does not require energy expense, works based on aerodynamic forces, and requires only the 

presence of the atmosphere.  Therefore, the aerodynamic stabilization, using the tether system, can be 

used not only during descent to Earth, but to stabilize the motion before landing onto the surface of other 

planets.  

The aerodynamic tether system is applicable for returning payloads from outer space to the surface 

of the planet, especially using small landing modules from the space station. The payload in small 

modules can include, but is not limited to, materials manufactured in the absence of gravity, devices for 

service and maintenance, or examples of space objects.  In this case, the tether system is helpful in 

lowering the orbit of the landing module before descent and enabling stable motion during the second 
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stage of descent.  Tethered aerodynamic stabilization can be used to target the detachable stages of 

rocket launchers after their separation from the launcher with greater accuracy towards the desired 

landing site area.  The problem of reducing the search area over which detachable parts of the launchers 

might land has a great economic and ecological significance, because without aerodynamic stabilization 

these areas can cover up to thousands of square kilometres.  

The most comprehensive investigations of tether systems were associated with National Aeronautics 

and Space Administration (NASA) [2], where the models of motion and deployment are described, as 

well as results of experiments on tether systems.  Estimates of heating and deformation of the tether 

under the influence of gravity forces are included.  

Tether systems are applicable to investigations of the higher layers of the atmosphere, where the 

flight of traditional aircraft is not possible [3, 4], to stabilize the motion of spacecraft [5], for removing 

space debris [6, 7] and for deep space investigations [8].  A tether system with an atmospheric probe is 

a perspective technology for gathering important information about higher layers of the atmosphere of 

Earth, at altitudes about 100 to 150 km.  The density of the atmosphere at these heights is too low for 

normal aircraft operation, while on the other hand, traditional spacecraft would meet comparatively high 

aerodynamic drag.  This problem can be solved by using an atmosphere probe, connected by tether to a 

spacecraft operating at an altitude of about 200 km [9]. It is necessary to mention that direct current can 

lead to motion instability in the tether system, and that, by changing the amperage in the tether, it is 

possible to stabilize the motion of the tether system on the electrodynamic basis [10, 11].  A tether 

system can provide deceleration of a spacecraft before landing [12], but it should be noted that in this 

case the tether tension force is significantly higher than for upper atmospheric use [13]. 

2.  Mathematical models of the tether system 

The tether system is a complex non-linear dynamic system where parameters are distributed.  In general, 

the tether is a flexible mechanical connection which has a distributed mass along its length.  Within the 

tether, there are complex longitudinal, bending and torsion oscillations.  The investigations of tether 

systems focus on two major processes. Firstly, it is the motion of the deployed tether system [14], and 

secondly, the process of deployment of a tether system [15]. 

Five types of tether mathematical models were considered here:  

1. The Rigid Rod Model is a simple model of the tether that ignores its extensibility and flexibility. 

In other words, the tether has in infinite rigidity.  This model was used for an evaluation of the 

possibility to use tether system for atmosphere investigations [16] and to model the motion of a 

tether system with a relatively short tether in the atmosphere [13].  

2. The Elastic Rod Model.  Like in the previous model, the tether is a straight rod, but it can be 

stretched axially.  This model ignores the flexibility of the tether, but the extensibility is taken 

into consideration [17-18]. 

3. The Billiard Model takes into consideration both the axial stretch and bending flexibility of the 

tether.  The tether in this model is a weightless flexible spring.  The model allows the bending 

oscillations to be described and enables limitations on transversal displacements of the tether to 

be made [19].  This model is inappropriate to describe the dynamics of parts of the tether but 

makes it possible to research the motion of the tether system in gravity field of the planet.  

4. The model of Rigid Rods with Swivel Joints was used in [20] to find the parameters for the 

optimal deployment of the tether.  This model has zero torsion stiffness, does not take into 

consideration the longitudinal oscillations and encounters difficulties in describing the sag of 

the tether.  

5. The Multi-point Model describes the tether as a series of material points, also called nodes.  The 

nodes have masses but are connected to neighbouring nodes by weightless springs.  The number 

of points is defined during the mathematical modelling.  The more intermediate points included 

into the mathematical model, the more accurate the model; however, increasing the number of 

nodes leads to increase in number of degrees of freedom thus greatly increasing the number of 
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equations and time required for calculations.  Therefore, this model commonly used to validate 

other models [21-23].  

Mathematical models of the tether system can be obtained using different but equivalents methods, 

including the Lagrange Equations, Newton’s Laws [24] and Kane’s method, originally called 

Lagrange’s form of the D’Alembert principle [25].  The complexity of mathematical models of the tether 

systems leads to the time-consuming calculations.  These time expenses can be unreasonably high during 

optimization tasks, and can be reduced by using various numerical schemes, such as the artificial 

increase of periods of fast oscillations in the mathematical model [26]. 

On modelling a deployed tether system motion in the atmosphere, it can be shown that by changing 

the parameters of the stabilizer it is possible to obtain a stable tether system motion [14]. In general, the 

tension of the tether depends most significantly on the geometrical dimensions of the bodies, while 

length of the tether has only a slight influence on this force.  The increase of the tether length during the 

descent always leads to increased stability of the tether system motion.  This leads to a reduction in the 

amplitudes of the angle of attack oscillations for the bodies and the tether.  Therefore, the deployment 

of a tether during descent can increase the stability of the system. 

3.  Modelling the motion of the aerodynamic tether system 

3.1.  Definitions 

Stable motion is defined as the pre-defined orientation of the tether system such that the angles between 

the longitudinal axis of bodies and tether do not exceed 90°. The angles of attack of the bodies and the 

tether should also be less than 90°.  The initial condition for the mathematical model is that the tether 

system is in a circular orbit at an altitude of about 250 km prior to the separation of the Spacecraft (first 

body) and the second body, called here the Stabilizer. 

The parameters for the body moving through the air of the upper atmosphere include the mass, the 

reference area and the drag coefficient.  It is possible to define the ballistic coefficient of the rigid body 

as the combinations of these parameters, 𝜎 = 𝐶𝑥𝑣𝑆 𝑚⁄ , where 𝐶𝑥𝑣 is the drag coefficient, 𝑆 is the 

reference area, and 𝑚 is mass.  Thus, through the design of the tether system, the stabilizer has a 

significantly higher ballistic coefficient in comparison with the spacecraft.  The mathematical model 

takes into consideration the extensibility of the tether so that the influence of deployment method on the 

motion of the system can be estimated.  The mass and geometrical asymmetries of the spacecraft and 

the stabilizer, which are modelled as rigid bodies, are also taken into consideration.  The aerodynamic 

deceleration during the descent from planetary orbit is included within the mathematical model.  

The separation of bodies starts with a comparatively low relative velocity �⃗� 𝑟.  After the separation of 

the rigid connection between the spacecraft and stabilizer, their further motion is then controlled by the 

tether release mechanism.  The tether release mechanism unreels the tether but is not able to pull the 

tether back in, therefore the equations of motion of the system include a monotonic deceleration term 

representing the tether release mechanism.  Specific features of regulation system such as discrete work, 

design tolerances, etc., are not taken into consideration.  The tether itself works in tension only.  The 

deployment of the stabilizer body is controlled through the deceleration of the tether.  The deceleration 

control device is situated on the spacecraft.  

3.2.  Geometry and Equations of Motion 

The mathematical model describes the process of deployment as well as further motion of the tethered 

system and includes a perturbation analysis.  The aerodynamic resistance of the tether and its mass 

characteristics are both taken into consideration in the calculation.  The mathematical model of the 

motion during deployment uses the geocentric coordinate system 𝑂𝑥𝑦𝑧, which is bound to the plane of 

the orbit of the centre of mass of the tether system.  The plane of the orbit is defined at the moment of 

the separation of the stabilizer from the spacecraft.  The 𝑂𝑥 axis is directed to the ascending node of the 

orbit, the 𝑂𝑧 axis is parallel to the vector of total angular momentum of the centre of mass of the system.  

The spacecraft and stabilizer are rigid bodies of finite length, which are connected by the tether 
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(figure 1).  The coordinate systems associated with the bodies 𝐶𝑥𝑖𝑦𝑖𝑧𝑖 are used to define the moments 

of inertia for each of the bodies (figure 2). 

 

  

Figure 1. Tether system. Figure 2. Coordinates system. 

 

The stability is considered lost when the angles ψ𝑖 between longitudinal axis 𝐶𝑖𝑥𝑖 and vector 𝑟 𝑎𝑏 or 

when the angles of attack α𝑖  become higher than 𝜋 2⁄ .  The ideal orientation of the tether system means 

that the longitudinal axes 𝐶𝑖𝑥𝑖 and the tether are co-linear with the vector of the velocity of the centre of 

mass of the tether system.  Thus, the angle between the vector of the tether and the vector of velocity of 

the centre of mass defines the orientation of the spacecraft. 

The equations of motion of this system include the equations for the motion of the centres of mass  

 

𝑚𝑖

𝑑2𝑟 𝑖
𝑑𝑡2

= 𝑔 𝑒(𝑟𝑖) + �⃗� 𝑖 + �⃗� 𝑖 (1) 

 

and the equations of rotational motion of the bodies 

 

𝐼𝑥𝑖

𝑑𝜔𝑥𝑖

𝑑𝑡
+ 𝜔𝑦𝑖𝜔𝑧𝑖(𝐼𝑧𝑖 − 𝐼𝑦𝑖) = 𝑙𝑥𝑖, 

 

𝐼𝑦𝑖

𝑑𝜔𝑦𝑖

𝑑𝑡
+ 𝜔𝑥𝑖𝜔𝑧𝑖(𝐼𝑥𝑖 − 𝐼𝑧𝑖) = 𝑙𝑦𝑖, (2) 

𝐼𝑧𝑖
𝑑𝜔𝑧𝑖

𝑑𝑡
+ 𝜔𝑥𝑖𝜔𝑦𝑖(𝐼𝑦𝑖 − 𝐼𝑥𝑖) = 𝑙𝑧𝑖 , 

 

 

where indexes 𝑖 = 1 and 𝑖 = 2 refer to the spacecraft and the stabilizer respectively, 𝑚𝑖  are masses and 

𝑟𝑖 are radius-vectors of centres of masses for both bodies, 𝑔 𝑒(𝑟𝑖) and �⃗� 𝑖 are gravitational and 

aerodynamic forces, 𝑡 is the elapsed time during tether deployment starting from the instant of 

separation, �⃗� 𝑖 is the tension force of the tether, �⃗� 1 = −�⃗� 2, 𝐼𝑥𝑖, 𝐼𝑦𝑖, and 𝐼𝑧𝑖 are the moments of inertia in 

associated with the coordinate systems 𝐶𝑥𝑖𝑦𝑖𝑧𝑖 of the bodies, 𝜔𝑥𝑖, 𝜔𝑦𝑖, 𝜔𝑧𝑖 are components of angular 

velocities of the bodies, and 𝑙𝑥𝑖, 𝑙𝑦𝑖, 𝑙𝑧𝑖 are components of the net total angular momentum that act on 

each of the bodies. 

3.3.  Forces applied to the Tether System 

In the modelling of the motion of the system, the torques from aerodynamic forces and torques arising 

from the tension forces are taken into consideration.  The torques from gravity forces have not been 
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included because they can be shown to be negligibly small.  The tension force is defined by Hooke’s 

law for one-side mechanical connection. 

 

�⃗� 2 = 𝑇
𝑟 𝑎𝑏

𝑟𝑎𝑏
,  

 

where 𝑟 𝑎𝑏 = 𝑟 𝑎 − 𝑟 𝑏 (as shown in figure 1), 𝑟 𝑎 and 𝑟 𝑏 are radius vectors for the tether attachment points. 

The value of 𝑇 is equal to zero when 𝑟𝑎𝑏 is less than the length 𝐿ND of non-deformed tether, and  

𝑇 = 𝑘 (rab − 𝐿ND) 𝐿ND⁄  when rab ≥ 𝐿ND, where 𝑘 is the spring constant of the tether. 

If the tether is not strained, both bodies move freely under the action of aerodynamic forces.  For 

modelling purposes, it is presumed that the motion takes place in low density gas and the hypothesis of 

diffuse reflection of gas molecules is applicable.  Based on this hypothesis, vectors of the aerodynamic 

forces are co-linear with the vectors of velocities of the bodies defined relative to the atmosphere 

 

�⃗� 𝑖 = −
𝐶𝑖𝑆𝑖𝜌𝑉𝑖�⃗� 𝑖

2
, (3) 

 

where 𝐶𝑖 are drag coefficients, 𝜌 = 𝜌(ℎ) is the density of the atmosphere and is function of the altitude 

ℎ, 𝑆𝑖 = 𝑆𝑖(𝛼𝑖) is the square of projection of the body onto the plane which is perpendicular to the 

velocity vector �⃗� 𝑖, 𝛼𝑖 is the angle of attack during the spatial motion, 𝑖 = 1, 2.  If the bodies are spherical, 

𝑆𝑖 is constant. 

The velocities �⃗� 𝑖, calculated relative to the atmosphere, can be found using the equation 

 

�⃗� 𝑖 =
𝑑𝑟 𝑖
𝑑𝑡

− �⃗⃗� Earth × 𝑟 𝑖,  

 

where �⃗⃗� Earth is the angular velocity of rotation of the Earth. 

The gravity forces are defined by Newton’s law  

 

𝑔 𝑒(𝑟𝑖) =  −𝐺
𝑀𝐸𝑚𝑖

|𝑟𝑖|
2

𝑟 𝑖,  

 

where G is the gravity constant, 𝑀𝐸 is the mass of the Earth. 

The dynamics of the tether regulating mechanism are taken into account in the modelling of the 

deployment process, as follows  

 

𝑚𝑢

𝑑2𝑟3
𝑑𝑡2

= 𝑇 − 𝐹control(𝑡), (4) 

 

where 𝑟3 is the length of the tether, the constant coefficient 𝑚𝑢 describes the inertness of the mechanism, 

𝐹control(𝑡) is the control force.  Then the release of the tether is unguided, the control decelerating force 

is constant, positive and close to zero.  For the guided deployment, the tether release mechanism works 

on deceleration only, 𝑑𝑟3 𝑑𝑡 ≥ 0⁄ .  The control force is also greater than zero, 𝐹control(𝑡) ≥ 𝐹min > 0, 

where 𝐹min is the minimum deceleration force that the tether release mechanism can provide. 

3.4.  The Kinematic Equations 

The equations of motion of the system should be supplemented by kinematic equations.  Here, the Euler 

angles are used for both bodies in the coordinate systems associated with vectors 𝑉𝑖⃗⃗  and 𝑟𝑖⃗⃗ .  The unit 

vectors for these systems of coordinates are 
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𝑒 1𝑖 = �⃗� 𝑖 𝑉𝑖⁄  𝑒 3𝑖 = �⃗� 𝑖 × 𝑟 𝑖 |�⃗� 𝑖 × 𝑟 𝑖|⁄  𝑒 2𝑖 = 𝑒 3𝑖 × 𝑒 1𝑖 . (5) 

 

The kinematics equations for Euler angles are 

 

𝜔𝑥𝑖 = �̇�𝑖 + �̇�𝑖cos𝛼𝑖 + ∆𝜔𝑥𝑖,  

𝜔𝑦𝑖 = �̇�𝑖sin𝜑𝑖 − �̇�𝑖sin𝛼𝑖cos𝜑𝑖 + ∆𝜔𝑦𝑖,  

𝜔𝑧𝑖 = �̇�𝑖cos𝜑𝑖 + �̇�𝑖sin𝛼𝑖sin𝜑𝑖 + ∆𝜔𝑧𝑖,  

 

where, ∆𝜔𝑥𝑖, ∆𝜔𝑦𝑖, and ∆𝜔𝑧𝑖 are the corrections to the angular velocities due to the rotation of 

coordinate systems (5), 

 

(

∆𝜔𝑥𝑖

∆𝜔𝑦𝑖

∆𝜔𝑧𝑖

) = 𝐿𝑖
𝑇 (

0
0

𝜔𝑣𝑖

) where 

𝜔𝑣𝑖 = 𝑉𝑖 𝑟𝑖⁄ 𝑠𝑖𝑛𝜗𝑖 

𝜗𝑖 = acos (
𝑟 𝑖 ∙ �⃗� 𝑖
𝑟𝑖𝑉𝑖

) , 

𝐿𝑖 = 𝐿𝜑𝑖𝐿𝛼𝑖𝐿𝛾𝑖, 

 

𝐿𝜑𝑖 = (
1 0 0
0 cos𝜑𝑖 sin𝜑𝑖

0 − sin𝜑𝑖 cos𝜑𝑖

), 𝐿𝛼𝑖 = (
cos𝛼𝑖 sin 𝛼𝑖 0

− sin𝛼𝑖 cos 𝛼𝑖 0
0 0 1

), 𝐿𝛾𝑖 = (
1 0 0
0 cos 𝛾𝑖 sin 𝛾𝑖

0 − sin𝛾𝑖 cos 𝛾𝑖

). 

 

After the separation of the stabilizer from the spacecraft, it is necessary to recalculate their velocities 

using the conservation of linear momentum law 

 

�⃗� 1 = �⃗� 𝐶 −
𝑚2

𝑚1 + 𝑚2
�⃗� 2, �⃗� 2 = �⃗� 𝐶 + �⃗� 𝑟, (6) 

 

where �⃗� 𝐶 is the velocity of the centre of mass of the tether system, �⃗� 1 and �⃗� 2 are velocities of the 

spacecraft and the stabilizer after the separation in geocentric coordinate system. 

3.5.  Deployments Models 

The implementations of space tether systems require a method for the control of the deployment process.  

Tether systems with non-electrical tethers use rocket engines for centre of mass motion correction, and 

special devices to control the unreeling the tether [27].  The control of the unreeling can be with or 

without feedback.  The simplest non-feedback method of the deployment is release of the tether with a 

minimal decelerating force until the tether is completely unreeled.  The deployment can be realized with 

a decreasing rate of change of tether length basing on the continuous deceleration or basing on the 

Length rate of change control.  A dynamic deployment method with constant decelerating force can be 

improved by mitigating the limitations of the final tether length and by using the program dynamic 

method, which includes regions of both acceleration and deceleration. 

A dynamic method with constant decelerating force and a programmable change of control force can 

be improved by making use of the feedback principle.  In this instance, the following form of regulating 

force can be applied  

 

𝐹control = 𝐹𝑛(𝑡) + 𝑝𝐿[𝐿 − 𝐿𝑝(𝑡)] + 𝑝𝑉[�̇� − �̇�𝑝(𝑡)] (7) 

 

where 𝐿𝑝(𝑡) and �̇�𝑝(𝑡) are pre-defined program dependencies of tether length and the rate of change of 

length with respect to time; 𝑝𝐿, 𝑝𝑉 are feedback coefficients; 𝐿 and �̇� are perturbed length and the rate 

of change of length of the tether, which meets the condition (4); 𝐹𝑛(𝑡) is the decelerating force. 
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This principle of regulating the length and the rate of its change (7) was used during the real orbital 

tether experiment “YES2” and in other research [18, 22, 28].  Here and below the modelling uses more 

simple principle based on kinematic control method, which is defined as  

 

�̇�𝑝(𝜏) = 𝑉max cos2(𝜔𝜏 + ) (8) 

 

where 𝑉𝑚𝑎𝑥, 𝜔,  are parameters.  Boundary conditions are imposed by the solution of the system of 

non-linear equations  

 

�̇�𝑝(𝑡𝑓𝑖𝑛) = 0,
𝑑�̇�𝑝

𝑑𝜏
(𝑡fin) = 0, �̇�𝑝(0) = 𝑉𝑟 , ∫ �̇�𝑝(𝑡)𝑑𝑡

𝑡𝑓𝑖𝑛

0

= 𝐿fin. (9) 

 

Parameters 𝑡fin, 𝑉max, 𝜔,   are found by solving the system of equations (9).  Due to the periodicity of 

equation (8), the system of equations (9) has more than one solution.  Consider the solution where �̇�𝑝(𝜏) 

illustrates the method of deployment with areas of both acceleration and deceleration.  The comparison 

of different methods of deployment has shown the effectiveness of the kinematic control method [29]. 

3.6.  Numerical Calculation Results 

The model of the tether system described above uses the model of elastic rod for the tether.  This model 

provides with the basic knowledge of the motion of the aerodynamic tether system during its 

deployment.  The following results are obtained for modelling a deployment of a tether system where 

the mass of the spacecraft is equal to 200 kg, the mass of the stabilizer is 12 kg, the initial altitude 𝐻 =
250 km, Young’s modulus for the tether material is 2.5 ∙ 1010 Pa, and the diameter of the tether is 0.6 ∙
10−3 m. The characteristics of the tether refer to the Dyneema® fibre [30].  The initial velocity of the 

separation 𝑉𝑟 = 2 m/s.  For the tether system with final length of the tether equal to 15 km, the kinematic 

deployment method parameters are 𝑉max = 3.5 m/s, 𝜔 = 0.000325,  = 2.43, 𝑡fin = 7040 s. 

The tension force oscillates during the first seconds of deployment due to shock loads caused by the 

control force.  These oscillations are shown in figure 3.  The value of tension force reached here (7.09 

N) is the maximum tension during further deployment process for the systems with specified length of 

the tether and for the systems with a shorter tether as well.  

 

 

Figure 3. Tension force during the beginning of the deployment. 
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Figure 4 illustrates the trajectories of relative motion of spacecraft and the stabilizer during the 

deployment.  The values of feedback coefficient are chosen under the condition of non-periodic process 

while the task of finding optimal values for the coefficients was not considered here. 

Both bodies of the tether system may have static and dynamic asymmetry. The static asymmetry is 

the distance from the centre of mass of the body to the longitudinal axis of the body. The dynamic 

asymmetry is the difference between the moments of inertia 𝐼𝑦𝑖 and 𝐼𝑧𝑖. The relative value of static 

asymmetry is defined using the diameters of the bodies and the relative value of dynamic asymmetry is 

the arithmetic mean of 𝐼𝑦𝑖 and 𝐼𝑧𝑖. It was found that small static or dynamic asymmetry of the bodies 

does not have a significant influence on the motion of the system but there is a dependence of the angle 

of attack of the tether on the ballistic coefficient of the stabilizer. The higher the ballistic coefficient of 

the stabilizer, the lower the maximal values of angle of attack of the tether. 

 

 

Figure 4. Trajectories of the bodies. 

 

The model described above represents the tether as an inflexible rod – a one-dimensional stretchable 

mechanical connection without mass.  This model does not take the mass of the tether into consideration, 

and since the tether is assumed to be straight, the elastic deformation and flexure of the tether itself 

cannot be taken into consideration.  For more accurate modelling, it is necessary to use more complex 

multi-point model. 

4.  Modelling the tether as a multi-point system 

4.1.  Model Construction 

To model the flexure of the tether it is necessary to split the tether into a number of parts.  The higher 

the number of tether parts, the better the resolution of the model solution.  Such a result would show the 

flexure of the tether system as a set of material points, or nodes, along the length of the tether.  The 

anticipated non-straight line of nodes would indicate the tether response to constant or slow-time varying 

forces such as the gravity field and the aerodynamic forces.  Therefore, the multi-point representation 

of the deployed tether system consists of 𝑛 nodes, including two nodes for description of rigid bodies, 

the spacecraft and the stabilizer, and 𝑛 − 2 intermediate nodes defining the tether.  

For modelling purposes, the full length of the tether is divided into parts according to the number of 

intermediate nodes on the tether. Starting from the beginning of deployment, as the tether unreels and 

the length of the tether reaches 𝑙full (𝑛 − 1)⁄ , where 𝑙full is the full length of the non-stretched tether, 
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the new intermediate material point (node) is inserted into the mathematical model of the system 

(figure 5).  The 10-node mathematical model of the tether system includes the following nodes: the 

spacecraft, 8 intermediate nodes and the stabilizer.  The tether for this example is represented by 9 parts, 

and the lengths of the parts of the tether are equal under the condition that they are not stretched 

elastically.  In other words, the tether is represented numerically, specifying a discretization of the tether 

into a series of material points (nodes) with elastic connections. 

 

 

Figure 5. The multi-point 

model of the tether system. 

 

For every intermediate node, the value of the tether tension is equal on both sides, and at the moment 

during the deployment that the node was created this value should have been equal to the tension of the 

tether in this point just before the node was inserted.  The vector of velocity of the new node is defined 

based on the velocities of the neighbouring nodes using proportions.  The velocity of the spacecraft after 

inserting the new node is corrected using of the law of conservation of momentum.  It is assumed that 

the tether does not have internal dissipative forces like friction.  

 

 Figure 6. New node on the tether. 

 

The multi-point model of tether describes a series of separations of material points from the 

spacecraft.  These material points describe the stabilizer and the nodes on the tether.  As the length of 

the non-stretched tether coming from the unreeling device reaches a pre-defined value equal to the 

distance between nodes on the tether, the next material point separates from the spacecraft.  This new 

material point is added between spacecraft and previous node on the tether, or, if this were the first node 

on the tether, between spacecraft and stabilizer.  The scheme of adding each new node is shown in 

figure 6.  It is necessary to take into consideration that before the beginning of the deployment the tether 
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is situated on the spacecraft, and the mass of the spacecraft decreases during the deployment as the tether 

unreels.  The mass of the second body remains the same as in the beginning of the deployment process.  

When a new node is inserted into the mathematical model of the tether system, the mass of the spacecraft 

is reduced by the mass of the section of the tether. 

4.2.  Numerical Calculation Results 

The advantage of the multi-point model is that it allows the elastic deformations and curvature of the 

tether to be calculated numerically.  The following calculations are made for the tether system with the 

following parameters: mass of the spacecraft is equal to 200 kg, mass of the stabilizer is equal to 2 kg, 

radius of the spacecraft is 0.5 m, radius of the stabilizer is 2 m. drag coefficient for both bodies is equal 

to 2.4, Young’s modulus for the tether material is equal to 2.5 ∙ 1010 Pa, diameter of the tether is 0.6 ∙
10−3 m, the initial altitude is 250 km, and the full length of the tether is equal to 30 km. The deployment 

starts with initial velocity of separation Vr =  6 m/s.  The parameters of the deployment process are 

defined by numerical solution of (9), and deployment ends at tk = 11555 seconds. The multi-point 

modelling predicts angles having slightly smaller values than calculated using the two-point model 

because the aerodynamic forces acting on the tether are now included in the model.  Therefore, the 

aerodynamic forces acting on the tether also have a stabilizing effect.  Figure 7 depicts the change of the 

tension of the tether during deployment.  The shock loads seen in the first 200 seconds are non-physical 

shocks and related only to numerical effects in the node adding algorithm.  Ideally, the node adding 

algorithm should be modified to avoid this. 

 

 Figure 7.  Tension of the tether, N. 

 

The trajectory of the stabilizer relative to the spacecraft is shown in Figure 8.  The solid line depicts 

the motion calculated using the two-point model, and the dashed line represents the motion predicted by 

the multi-point model.  The spacecraft is placed in the upper right corner of the graph, and the stabilizer, 

affected by the aerodynamic and gravitational forces, moves away from the spacecraft as the tether is 

being deployed.  The difference compared with the relative trajectory shown in figure 4 is based on the 

big difference in ballistic coefficients of the bodies in the second case. 

The shape of the tether during the motion is of great interest.  Figure 9 illustrates how the shape of 

the tether changes during deployment.  Each circle on the tether depicts an intermediate node, and 

different lines show the state of the tether system at the moment of inserting each new node.  The tether 

is almost straight at every moment of deployment, and only when the tether is almost fully deployed 

and is, therefore, long, is there is a slight curvature near the stabilizer end.  A similar analysis was also 

made for a simpler model, with fewer intermediate points.  By increasing the number of intermediate 

points from 5 to 8 it was found that, for this shape of the tether and specified deployment model, there 

is no significant difference in results of modelling parameters of the motion of the system.  From this it 
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can be concluded that further increase in the number of nodes is not advisable.  Figure 9 also confirms 

that the altitude of the spacecraft decreases as a result of the influence of the atmosphere.  The spacecraft 

is shown by the dot at the right-hand end of each line describing the tether, and its position goes down 

as the tether length is increased. 

 

  

Figure 8.  The trajectory of the stabilizer relative 

to spacecraft, length is indicated in kilometres. 

Figure 9.  Shape of the tether, length is 

indicated in kilometres. 

5.  Peculiarities of multi-point modelling 

A comparison of the results of modelling tether system deployment, for different tether lengths, using 

both the previous two-point model and the multi-point model was made.  There is a difference in the 

motion parameters obtained by these two models.  The tension of the tether calculated using the multi-

point model is approximately twice that calculated using the two-point model, and the angles defining 

orientation of the tether system are also lower in this case.  This is explained by the fact that the multi-

point model represents the aerodynamic forces as acting not only on the stabilizer, but also on the tether, 

thus predicting a higher tension force than predicted by the two-point model, where only the stabilizer 

aerodynamic forces were modelled.  According to the properties of material from which the tether is 

made, the value of tension force is admissible in both cases. 

The multi-point model is more computationally expensive than the two-point model.  As the results 

obtained by the more complex method agree with those obtained by two-point model, it can be 

concluded that the two-point model can be relied on, not only for the particular modelling of the 

deployment of the tether system, but also for automated calculations and selection of parameters of the 

tether system at the design stage.  On the other hand, the multi-point model does show the motion of the 

tether and the tether system as the system with distributed parameters.  When the shape of the tether is 

close to the straight line, it is possible to reduce the number of intermediate nodes used.  

During the real process of the deployment, there can be emergency situations such as a breakage of 

the tether or jamming in the unreeling device.  In these cases, the multi-point model would allow the 

parameters for the resulting motion of the system to be calculated: the two-point model would not be 

capable of providing this information about the flight. 

6.  Discussion 

The descent of a tether system from orbit includes two stages.  During the first stage the tether system 

is deployed, and the second stage describes the motion of the deployed system in the atmosphere.  There 

are similar problems in the modelling of the tether motion in both of these stages.  The first group of 



Advanced Materials & Demanding Applications 2020 (AMDA 2020)
IOP Conf. Series: Materials Science and Engineering 1060  (2021) 012016

IOP Publishing
doi:10.1088/1757-899X/1060/1/012016

12

 

 

 

 

 

 

problems refer to the manufacture process, the second group to the perturbations arising from the effects 

of the surrounding medium, and the third to perturbations not taken into consideration in the 

mathematical model of the motion.  In the manufacture of any product it must be assumed that there can 

be design deviations arising from inaccuracy, lack of quality control or comparatively high 

manufacturing tolerances.  Examples of such deviations include mass and shape asymmetry of the 

spacecraft, flaws in the unreeling mechanism or non-uniformity of the tether material. These deviations 

lead to the perturbations in parameters of the tether system.  Simplifications made in the modelling of 

the atmosphere account for the surrounding medium effects.  Existing models of the atmosphere do not 

include the chaotic character of local flows.  The most vivid example of atmosphere perturbations is 

wind.  Wind is a natural phenomenon and takes place in every location on Earth, but it is highly 

problematic to take it into consideration.  There are also differences in the properties of the atmosphere 

resulting from, for example, time of day, season, and solar activity.  

These influences can lead to perturbations during the deployment process or in the motion of the 

deployed system.  For example, there can be errors in the absolute value or direction of the velocity of 

separation at the beginning of the deployment, and so the intention is that the model of deployment 

overcome such perturbations, by making use of stabilization methods.  Methods such as spinning, or the 

use of a tether system provide the means of achieving the conditions of stable motion. 

The magnetic field of the Earth was not taken into consideration in this research but depending on 

the materials the spacecraft is made from there can be an influence from appropriate forces.  There are 

other forces acting on the spacecraft during its motion in the atmosphere, including the pressure from 

the sunlight, gravity forces from space objects and so on.  The magnitudes of these forces are small and 

are usually not included in the mathematical models.  It is also necessary to consider the mutual influence 

of the spacecraft and stabilizer bodies on each other.  The perturbations in airflow caused by the presence 

of one body changes the regime of airflow on the body downstream, thus changing the values and 

directions of the aerodynamic forces. 

Every real system has dissipative forces acting on or within the system, and damping is of great 

importance during the motion.  Damping reduces the amplitudes of oscillations thus tending to make 

motion more stable.  The dissipative forces cannot destroy the stability of motion of the system, but it is 

important to include damping to get the mathematical model closer to the real system.  The problem 

here is the damping is one of the most complex processes for mathematical modelling, and the 

appropriate choice of damping model for use in the modelling of space tether systems is the subject for 

ongoing research [8, 31]. 

Another important consideration in the tether system design is the cross-sectional shape of the tether.  

The Dyneema® fibre considered here has a circular cross-section; however, the choice of a tape cross-

section would make the tether less vulnerable to micrometeorites attack [8].  Other advantages of a non-

circular cross-section could include aerodynamic characteristics that are dependent on the angle between 

the tether surface and oncoming airflow.  In such circumstances it would be necessary to include the 

localized rotation of the tether with respect to its longitudinal axis. 

7.  Conclusions 

The multi-point model of the tether system allows the examination of the deformation and flexure of the 

tether during and after the deployment.  Compared to the two-point model, the multi-point model takes 

into consideration the mass of the tether and the aerodynamic forces acting on the tether.  For modelling 

purposes, these forces were treated above as acting on the nodes.  

The tether can be used as an aerodynamic stabilizer itself, and the small spacecraft can be stabilized 

by using a tether represented for modelling purposes by number of nodes during its motion in the 

atmosphere.  Compared to the two-point model, the multi-point model predicts more accurate values for 

the parameters of the tether system during the motion through the atmosphere.  The number of 

intermediate nodes during the modelling was set to eight: increasing the number of nodes leads to 

significantly higher model complexity without giving any noticeable improvement in the result accuracy 

compared to the model with fewer intermediate nodes.  
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The comparison of results obtained from the two-point and multi-point models show that the change 

in mass after adding each node and the influence of aerodynamic forces acting on the tether leads to 

differences in values of the tension force and angles describing the orientation of the bodies.  Therefore, 

the multi-point model has noticeably higher accuracy compared to the models of the rigid and elastic 

rods.  In addition to modelling the motion of the deployed system, the multi-point model also enables 

the modelling of the deployment process taking into consideration the curvature of the tether. 
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