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iMag+: An Accurate and Rapidly Deployable
Inertial Magneto-Inductive SLAM System

Bo Wei, Niki Trigoni, Member, IEEE, Andrew Markham

Abstract—Localisation is an important part of many applica-
tions. Our motivating scenarios are short-term construction work
and emergency rescue. These scenarios also require rapid setup
and robustness to environmental conditions additional to local-
isation accuracy. These requirements preclude the use of many
traditional high-performance methods, e.g. vision-based, laser-
based, Ultra-wide band (UWB) and Global Positioning System
(GPS)-based localisation systems. To overcome these challenges,
we introduce iMag+, an accurate and rapidly deployable inertial
magneto-inductive (MI) mapping and localisation system, which
only requires monitored workers to carry a single MI transmitter
and an inertial measurement unit in order to localise themselves
with minimal setup effort. However, one major challenge is to use
distorted and ambiguous MI location estimates for localisation.
To solve this challenge, we propose a novel method to use
MI devices for sensing environmental distortions for accurate
closing inertial loops. We also suggest a robust and efficient first
quadrant estimator to sanitise the ambiguous MI estimates. By
applying robust simultaneous localisation and mapping (SLAM),
our proposed localisation method achieves excellent tracking ac-
curacy and can improve performance significantly compared with
only using a Magneto-inductive device or inertial measurement
unit (IMU) for localisation.

Index Terms—Magneto-inductive device; Inertial measure-
ments; Localisation; SLAM

I. INTRODUCTION

This paper proposes iMag+, an accurate, robust and rapidly
deployable Simultaneous Localisation and Mapping (SLAM)
system. We aim to estimate the location of monitored people in
challenging environments, i.e. areas where traditional wireless
radio or vision based systems fail or are not sufficiently
robust. Personal localisation systems have a broad range of
applications, such as emergency response [1], indoor location-
based service [2], [3] or construction site safety [4]. iMag+
uses inertial measurements for pedestrian dead reckoning and
Magneto-Inductive (MI) measurements for loop closure and
correcting accumulated drift from inertial sensors. A key
feature of our proposed method is the ability to deploy a
single transmitter in the area of interest and immediately start
tracking. This is in stark contrast to other approaches, e.g.
Ultra-wideband (UWB), which need a large number of non-
colocated anchors to be surveyed in place.

Motivating Scenario: short-term construction work. Of-
ficial government reports indicate that workforce fatalities or
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Fig. 1. Motivating scenario: short-term construction work (a) near a rail track
(b) on road.

injuries to railway workers often occur due to insufficient
warnings when plant machinery or a train approaches [5], [6].
Here is an example scenario. Ten workers arrive at a railway
construction site within a tunnel at 8:00 am. A localisation sys-
tem needs to be set up to warn workers when they enter a static
danger zone or when their working area becomes a danger
zone due to an oncoming train. The plan is to commence work
by 8:15 am, after a short site inspection. Many localisation
techniques can achieve sub-metre accuracy, such as those using
Global Positioning System (GPS) [7] , laser [8], camera [9] or
UWB [10]. However, these techniques either require extensive
site surveys and map-construction (e.g. UWB, camera, laser)
or do not work well within enclosed areas like tunnels (e.g.
GPS). The traditional method of ensuring track-worker safety
is mainly manual, through protection officers acting as a look-
out and using the Autoprowa warning system [11], i.e. a light
and horn, to warn construction workers. This needs additional
labour, and more importantly, lookouts need to be alert for
an entire shift. Furthermore, bad weather like fog and rain
also severely affects the lookout range of protection officers.
GPS is also popular for outdoor localisation applications [12],
[13], [14], but its positioning is only relatively accurate in
a very clear sky view. UWB is a promising technology for
localisation with centimetre-level accuracy, but it is time-
consuming to deploy infrastructure. The basic principle behind
UWB localisation is a trilateration method using estimated
distances from receivers to transmitters. In other words, it
requires multiple transmitters deployed in the area (at least
three transmitters for 2D localisation or four transmitters
for 3D localisation). In short-term construction work, it is
time-consuming and tedious to install and configure a UWB
localisation system. Obstacles, such as vegetation and ma-
chinery, can also easily attenuate UWB signals, limiting their
use in our motivating scenarios. Many SLAM systems also
fuse various types of measurements. Among them, camera-
inertial and laser-inertial methods are popular and able to
attain superior performance. However, both of them still have
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drawbacks. Bad weather (e.g. fog, rain and snow), low visual
texture/features in the surrounding environment (e.g. dust and
muddy ground) and poor lighting condition contrive to impact
even the most sophisticated vision-based localisation methods.
Furthermore, dynamic environments, e.g. moving workers, can
create difficulties for laser-based applications.

Magneto-Induction (MI) uses very low frequency (e.g.
2.5 kHz) fields that are generated at a transmitter. They
have many key advantages over electromagnetic (Radio fre-
quency (RF), vision, laser) based techniques in that they allow
through-obstacle localisation without requiring a line-of-sight
connection [15]. In addition, as we use a triaxial transmitter
and receiver, only a pair of devices is required to determine 3-
D position and orientation. However, MI localisation systems
are still challenging due to their difficulties in obtaining an
accurate localisation estimate, especially at longer ranges.
One localisation system [16] has been proposed based on MI
and inertial measurements, and it uses a particle filter for
data fusion. However, it requires determining environmental
specific parameters, i.e. time-consuming configuration for each
MI transmitter/receiver pair and each specific environment.
It is infeasible to exploit this method for rapidly deployable
localisation. In our previous paper [17], we propose an
alternative method iMag for using MI devices for localisation.
In our proposed method, we no longer conduct environ-
mental surveying. Instead, we leverage MI devices to sense
environmental distortions and create unique spatially linked
signatures. These unique spatial features are used for loop
closure and calibrating biased pedestrian navigation trajecto-
ries derived from inertial measurements. To further improve
the localisation performance, we propose an innovative iMag+
SLAM system in this paper, which applies an efficient first
quadrant estimator to sanitise the ambiguous MI estimates. A
robust SLAM framework is also employed in order to improve
localisation accuracy.

To summarise, the contributions of this paper are:
• We first propose an innovative method to enable MI

devices to sense environmentally induced distortions.
Spatial signatures are created by MI measurements to
enable minimal effort for configuring MI devices. We
take advantage of these features for loop closure and
calibrating biased navigation trajectories.

• We study the performance of MI estimates in typical
outdoor and indoor environments, and demonstrate that
MI measurements are highly jeopardised by ambiguity is-
sues and distortion. We propose an efficient first quadrant
estimator to mitigate severe MI ambiguity issues, which
is further used for data fusion.

• We propose the iMag+ SLAM system, which performs
data fusion using MI and inertial measurements to achieve
robust localisation with high accuracy.

• A prototype SLAM system has been implemented. Only
one MI transmitter is deployed in the area of interest,
which enables the rapid setup. Extensive experiments are
performed at our campus and in one multi-storey building
to evaluate our proposed method and show the advantage
of the MI signal compared with other wireless signals for
localisation.

The rest of this paper is organised as follows. Related work
is demonstrated in Section II. Section III presents the system
overview of our proposed localisation method. Section IV
shows the details of the method using MI and inertial measure-
ments for sensing environments and localisation. Evaluations
are shown in Section V. Finally, we conclude this paper and
present the future work in Section VI.

II. RELATED WORK

In this section, we outline related research in three main ar-
eas: MI applications, high-resolution sensor based localisation,
and wireless signal based localisation methods.

A. Magneto-Inductive Localisation and Communication

Recently, a number of MI-based devices have been designed
for localisation. [18] designs a magnetic device for proximity
detection for indoor applications. [19] uses MI-based signal to
monitor the locations of underground animals. As the magnetic
signal can penetrate soil and water, it achieves good accuracy
and outperforms all other existing methods. [20], [21] obtain
an MI-based range estimate first and then uses multilateration
to estimate the location of monitored people.

We are not the first to consider fusing inertial measurements
with MI. [16] implements a 3-D inertial-MI system and
performs data fusion using a simple particle filter model. They
use inertial measurements along with the absolute positioning
from the MI signal, which needs careful calibration for each
receiver-transmitter pair. On the contrary, our method takes ad-
vantage of unique spatial features, so there is no need to have
prior knowledge of a device and its operating environment.

Benefitting from the absence of multipath effect and the
perpetration of a non-metal material, MI-based devices are
also designed for communication in extreme environments.
[22], [23], [24], [25] propose to use MI devices for commu-
nication undersea, underground and in district heating system,
respectively.

B. High-resolution Sensor based Localisation Methods

There are many localisation systems based on high-
resolution sensors, e.g. camera [9] and laser [8]. They can
achieve centimetre accuracy in ideal conditions, but they have
some key disadvantages that make them not particularly well
suited to our motivating application scenario. Camera-based
localisation is extremely sensitive to poor lighting conditions,
occlusions and dust. Similarly, laser-based localisation is
costly and can struggle with highly dynamic environments.
Our motivating application scenario is short term construction
work with a poor lighting condition and a dynamic surround-
ing environment, which makes our proposed MI-based solution
a better candidate for the application scenario.

C. Wireless Signal Based Localisation Methods

WiFi signals are widely available in office and residential
environments, and as a result, many solutions have been
proposed for fusing WiFi and inertial measurements, such
as [26], [27], [28]. However, WiFi is highly affected by
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multipath and would require a number of transmitters to be
installed in the operating area. In addition, the accuracy of
WiFi-based systems is typically in the 3-5 m region, due to
variance in RSSI measurements and sensitivity to orientation
and obstacles.

As an alternative spatially varying signal, the earth’s mag-
netic field has been explored as a positioning modality. This is
because it is influenced by ferrous objects in the surrounding
environment, such as reinforcing steel inside buildings that
distorts the earth’s magnetic field. [29], [30], [31], [32], [33]
combine these spatial features and inertial measurements for
positioning. However, it is difficult to exploit these signatures
in an outdoor environment, where motion is less constrained,
and the spatial signatures are less informative due to a lack of
metal.

UWB is an emerging state-of-the-art localisation infrastruc-
ture. It can achieve centimetre-level accuracy. With inertial
measurements, it can track activity and gesture as well as lo-
calisation [34]. UWB does require a good transmitter geometry
to be installed in the operating area and have a good line-of-
sight. Furthermore, the weak UWB signals are easily blocked
by obstacles and vegetation, which impacts its robustness.

III. SYSTEM OVERVIEW

To address the key challenges faced by teams of construc-
tion workers, the proposed system must satisfy the following
three requirements:
• Localisation accuracy: workers must be positioned with

metre level accuracy in any environment.
• Robustness: the system must be immune to non-line-of

sight conditions and changes in the operating environ-
ment.

• Rapid deployment: the system must be easy to initialise
to ensure compliance and adoption through low operator
effort.

A system flow chart of our proposed localisation method is
shown in Figure 2. Inertial measurements (i.e. acceleration
and angular rate measurements) and MI measurements are
first collected. Acceleration and angular rate measurements
come from a foot-mounted inertial measurement unit (IMU).

A standard zero velocity update (ZUPT) [35] based tracker
generates an inertial trajectory subject to accumulative drift.

A single MI transmitter is placed in the Area of Interest,
with each worker wearing a small MI receiver. The received
MI signals are first cross-correlated with a reference template
to extract the channel matrix. From the channel matrix and a
standard physical model, a user’s position is estimated. Note,
however, that this is typically incorrect due to distortions in
the MI field. Furthermore, due to the long integration time
(approximately 1 second in this case), user motion induces
random quadrant ambiguities, i.e. x and y co-ordinates can
be rotated by multiples of 90 degrees. It is clearly impossible
to move from one side of the transmitter to the other in the
matter of a second because of the dynamics of human motion,
and thus these are first corrected with our suggested coordi-
nate ambiguity removal method. This distorted trajectory is
metrically compromised, but temporally stable and thus can
serve as an indicator of loop closure. The loop closures from
MI and the drifting inertial odometry are then passed into a
Robust SLAM estimator to determine an accurate trajectory.

To summarise, the algorithmetic contributions in this paper
are (R1) an effective methods for obtaining high-quality loop
closure constraints (described in Sections IV-A and IV-B) and
(R2) an efficient method for closing loops using MI measure-
ments (described in Section IV-C). The main challenges for the
research question (R1) are that of the localisation failure due to
distorted MI and its impaired measurements in complex indoor
environments due to ferrous influence. The research question
(R2) also faces the challenge of a heavy computational burden.

IV. INERTIAL MAGNETO-INDUCTIVE LOCALISATION

In this section, we present the details of our proposed
inertial magneto-inductive SLAM system, iMag+.

A SLAM system aims to achieve an optimal trajectory J∗

for the following formula,

argmin
J

∑
i∈C(J)

uT
i Θiui (1)

where J is the estimated trajectory, C(J) is the constraint set
including motion and loop closure constraints, u and Θ are
relevant error terms and information matrix1. In our system,
the SLAM optimiser considers constraints from two sources,
motion constraints from the IMU trajectory and loop closures
from MI devices.

iMag+ uses a foot-mounted IMU to derive an trajectory,
processed by the ZUPT algorithm. Overall, the performance
of the foot-mounted inertial navigation is generally good, but
due to sensor noise and bias, the trajectory will inevitably
slowly drift over time.

To overcome this accumulative drift, iMag+ uses spatially
unique features from MI measurements to detect loop closures
and hence correct long-term errors in inertial odometry. An MI
transmitter consists of three orthogonal coils which are tuned
to resonance and driven with a coded binary phase shift keying
(BPSK) message. This code is chosen to have desirable cross-
correlation properties to increase the range of detectability.

1More details about SLAM can be found in [36], [37], [38]
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The MI receiver similarly consists of three orthogonal sensors
(again coils in our case), which are connected to low noise
amplifiers and a wide dynamic range ADC. The wide dynamic
range is necessary to handle the high path-loss exponent due
to the near-field coupling - the field roll-off is 60 dB/decade,
rather than the more typically encountered 40 dB/decade
for electromagnetic propagation. The triaxial signals are then
cross-correlated with the template code in order to estimate
the channel matrix.

Once we have the channel estimates, we use the theory in
[15], [16] to obtain 3-D position estimates2. Note, however,
that these position estimates are distorted by nearby ferrous
objects. The distortions mainly cause arbitrary rotations of the
position estimates. However, we note that these distortions are
constant over time, i.e. if the same point is revisited, then the
same distorted position estimate will be obtained. It is this
property that we aim to exploit to close loops and provide
accurate long-term tracking.

However, before we use MI estimates for localisation or
sensing environment, three issues have to be addressed: (1)
location distortion, (2) coordinate ambiguity, and (3) MI data
association failure. These arise mainly because of environmen-
tal noise, the motion of the user, and the configuration of the
MI system. Previous research [16] requires labour-expensive
calibration of MI transmitter-receiver pairs to solve these
issues for each environment. Rather than explicit calibration,
we are the first to study the feasibility of exploiting these
distortions to indirectly sense the operating environment and
create spatially linked MI features.

We conduct an outdoor experiment to demonstrate the issues
faced by MI observations. We put one MI transmitter about 10
m away from the MI receiver, with a ground truth location of
(5.5,9.1), as shown in Figure 3(a). Using the data processing
described in [16], we find MI estimates are ambiguous, i.e.
locations are estimated in different quadrants (shown in Figure
3(b)) instead of one.

Our previous research [17] proposed a coordinate ambiguity
remover to sanitise the MI estimates, which gauges the current
MI estimate based on the previous one and the user motion.
This mechanism helps remove the coordinate ambiguity and
improve the efficacy of loop closure. However, this will raise
issues when the system is used in one indoor environment.
Complex indoor environments with ferrous objects can result
in the reduction of the sensing range. The packet loss caused
by the range reduction introduces long-term intervals between
two MI estimates. When using the coordinate ambiguity
remover, the long-term intervals introduce errors, resulting
in additional false negatives for loop closure. Therefore, we
extend the localisation architecture and propose a simple
technique to remove quadrant ambiguity, as detailed below,
to improve its efficiency and the localisation performance.

A. Coordinate Ambiguity Removal: First Quadrant Estimator

One issue for the application of MI measurements is a
quadrant coordinate ambiguity as shown in Figure 3(b). The-

2The magnetic dipole equations are introduced in [15] and applied in [16]
for 3-D localisation.

oretically, MI measurements should only be impacted by a
hemispherical ambiguity. However, due to noise impacting the
channel matrix pseudo-inverse, MI devices may still create
ambiguous observations, especially when the height above
ground is small. These quadrant ambiguities manifest as flips
across the x-axis or/and y-axis.

Instead of trying to estimate the quadrant of each MI
location as previously used in our previously proposed iMag
[17], we assume they are all located in one quadrant (the
first quadrant in our case). Specifically, the initial i-th MI
estimate is mi = (xi,yi), so the sanitised i-th MI estimate
is m̂i = (|xi|, |yi|). We denote this method as First Quadrant
Estimator. Please note, the mechanism will bring a large
number of false positives for loop closure, and this will be
resolved by using the robust SLAM optimiser which will be
later introduced in the section.

B. Exploiting Distorted Locations

Instead of trying to overcome distortions and restore abso-
lute MI positions, we simply accept that MI locations are not
directly related to real-world coordinates through a pre-defined
physical model. We consider sanitised MI estimates as obser-
vations in specific positions, termed as “MI observations”, i.e.
spatial features.

However, this perspective also indicates another important
fact, i.e. even though MI estimates cannot determine the
correct global locations, they are unique to a specific loca-
tion. In other words, they have good discriminative power
to indicate when a monitored person returns to the same
point. Therefore, a single MI transmitter-receiver pair along
with motion updates from inertial measurements can be used
for accurate localisation, meeting the requirements of rapid
deployment.

C. Loop-closure Extraction

When a monitored person re-enters a known area, the
current spatial features match previous ones stored in a map.
The repeated MI observations can close an estimated trajectory
loop and adjust the biased inertial trajectory.

Our MI devices have an update rate of approximately 1.4
Hz, which means it can obtain an estimate every approximately
0.7 second. The disadvantage of low sampling rate is two-fold.
Firstly, the device rotation over this period can result in an
incorrect MI channel estimation, due to the signal smearing
between the axes, corrupting the channel matrix. Secondly, the
collection density of the MI spatial features is low, i.e. we have
sparse features to use as loop-closure key points. However, we
note that the MI distortions lie on a smooth surface, i.e. it is
only large ferrous objects in the environment that can distort
the MI field. The resultant field is an additive contribution
from the MI source and the distorters.

Due to the smoothness of the location distortions, MI
estimates can be interpolated by a linear model. A simple
approach would be to upsample MI measurements into a
denser grid, which would allow for more frequent loop-closure
detection, as shown in Figure 5(a). Since the MI estimation
rate is lower than inertial measurements, we can conduct linear
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Fig. 5. (a) Loop closure using interpolation method. (b) Loop closure using
cross-point method

interpolation for MI estimation, using the inertial measurement
interval to distribute the points. A Euclidean distance threshold
can be set to determine whether two points are in the same
location or not, to detect potential loop-closures.

However, we propose a more computationally efficient
method, which detects intersections of two line segments
whose endpoints are neighbouring MI estimates, and we
call this “cross-point” method. We use a curve intersection
detection method in [39], as shown in Figure 5(b) .

Here we present the details of this method. We have two
line segments Mi and M j (obtained from inertial trajectories)
with end points which are neighbouring MI estimates. The end
points of Mi and M j are (mi(1),mi(2)), (mi+1(1),mi+1(2))
and (m j(1),m j(2)), (m j+1(1),m j+1(2)), respectively. There
are four unknowns here d1, d2, x0 and y0. (x0,y0) is the
intersection point. d1 and d2 are the distance between starting
points and intersection points relative to the length of two
segments. The relation among these variables are shown in

the simultaneous equations in Equation (2).
(mi+1(1)−mi(1))×d1 = x0−mi(1)
(mi+1(2)−mi(2))×d1 = y0−mi(2)
(m j+1(1)−m j(1))×d2 = x0−m j(1)
(m j+1(2)−m j(2))×d2 = y0−m j(2)

(2)

In matrix form, we have A×U = B, where A, U and B are
shown in Equation (3), Equation (4) and Equation (5). U is
the unknown matrix, and can be solved by U = B\A.

A =


mi+1(1)−mi(1) 0 −1 0

0 mi+1(2)−mi(2) −1 0
m j+1(1)−m j(1) 0 0 −1

0 m j+1(2)−m j(2) 0 −1

 (3)

U =
[
d1 d2 x0 y0

]T (4)

B =
[
−mi(1) −mi(2) −m j(1) −m j(2)

]T (5)

After solving the equation, we need to check d1 and d2 to
find if these two line segments have an intersection or not. If
both d1 and d2 are between 0 and 1, it means these two line
segments intersect, and (x0,y0) is the intersection point.

We denote simu and smi as the sampling rate of the motion
sensor and the MI device, respectively. The sampling rate
of the motion sensor is greater than that of MI devices, so
simu = ksmi,where k > 1. The number of samples are computed
as n j = s j × t, j ∈ {imu,mi}, where t is the data collection
duration. The computation complexity of the linear interpo-
lation and cross-point methods are both O(n2). However, the
number of samples n used by the linear interpolation method
is nimu, while that used by the cross-point method is nmi. In
other words, the calculation complexity decreases by a scale
factor of 1/k2 when using the cross-point method, which
makes it approximately an order of magnitude faster than
dense interpolation. This is of key importance for a real-
time localisation system, especially when a large number of
candidate loop-closure points are being searched and k is
large3.

3Using our devices shown in Section V, k is approximately 70.
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D. Robust Map Building

Even with the use of state-of-the-art MI devices and our
proposed method, it is still difficult to have perfect outlier-free
loop closures. Therefore, our proposed system uses a robust
GraphSLAM optimiser [40], [38]. The original GraphSLAM
optimiser [41] considers all the constraints from odometry and
loop closures with equal weights, as shown in Equation 1. On
the contrary, in the robust map optimiser, the optimal trajectory
J∗ will be derived using the following optimiser instead [38],

argmin
J

∑
i∈O(J)

uT
i Θiui︸ ︷︷ ︸

P1: Odometry constraints

+ ∑
i∈L(J)

w2
i uT

i Θiui︸ ︷︷ ︸
P2: Loop closure constraints

(6)

Note that the robust optimiser considers two joint parts, i.e. P1
and P2, for optimisation from odometry constraints O(J) and
loop closure constraints L(J), respectively. Similar as Equation
1, u and Θ are the error terms and information matrix in
Equation 6. Scaling factors wi for information matrices are
added to the loop closure constraints to increase robustness
to outliers. The scaling factors w can be calculated using the
following equation4:

wi = min(1,2ϒ/(ϒ+E2
i )) (7)

where ϒ is a free parameter and E = uT
i Θiui in P2 from

Equation 6. The use of the scaling factors w can effectively
reduce the impact of false positive loop closures. With the new
coordinate ambiguity removal method, many false positive
loop closures will be detected. This issue can be handled by the
robust GraphSLAM optimiser by calibrating scaling factors w
and increasing the confidence of inertial measurements (P1)
during the optimisation.

V. EVALUATION

In this section, to show the advantage of MI measure-
ments for indoor localisation, we firstly conduct experiments
to compare the performance of MI measurements with that
of WiFi and UWB in the lab (Experiment 1). We further
evaluate the performance of our proposed iMag+ in both
an outdoor environment with little vegetation (Experiments
2 and 3 shown in Figure 6(a)) and a multi-storey indoor
environment (Experiment 4).

All of the experimental areas are a 40 m × 40 m space.
We use the RTK GPS [7] and Tango [42] to record ground
truth when conducting experiments at our campus and the
building, respectively. RTK GPS and Tango can achieve good
precision for their usage environment but fail to work in the
opposite environment. The RTK GPS requires a clear sky
view in an outdoor environment to obtain the signal for its
usage, and Tango fails to work in the outdoor environment
with few exploitable visual features. These facts also confirm
the advantage of our proposed system as it is capable of being
readily employed in both outdoor and indoor environments.
The goal of our experiments 2-4 is to localise the monitored
person and evaluate the accuracy of our proposed methods. We
compare our proposed iMag+ with localisation methods only

4The detailed derivation process and analysis can be found in [38]

MI Tx

(a) Campus

RTK GPS 
antennas

MI 
Rx

Foot-
mounted 

IMU

Laptop and Piksi 
RTK GPS Rx 

in a survey bag

RTK GPS 
antennas

Piksi 
RTK GPS 

Tx
MI Tx

40 cm

(b) Hardware (Tx and Rx are short for transmitter and
receiver respectively)

Fig. 6. Experimental Setup

using IMU and MI as well as our previous proposed iMag
localisation method [17]. 5.

The following metrics are used in the experiments 2-4:
(1) Cumulative distribution function (CDF): The CDF of
an error is a function whose value is the possibility that a
corresponding estimate is less than or equal to the argument
of that error; (2) Root Mean Square Error (RMSE): (erms) is
the mean localisation error over the entire trajectory, defined
as erms =

√
1

te−ts
Σ

te
t=ts ê(t)

2. ê(t) is the localisation error for

time t, expressed as ê(t) = ‖l̂(t)− lg(t)‖, where l̂(t) and lg(t)
are estimates and ground truth, respectively. CDF of standard
deviations is also used in experiment 1 to show the signal
variety level and compare the performances among MI, UWB
and WiFi in terms of spatial features.

A. Hardware for Localisation

In this section, we describe the hardware we use for exper-
iments. Our prototype includes a laptop, an MI transmitter, an
MI receiver and an IMU as shown in Figure 6(b). An RTK
GPS is used for recording ground truth in the outdoor envi-
ronment, which can achieve 10 cm accuracy with a clear sky
view. In the indoor environment without RTK GPS signal, we
exploit visual odometry based Tango to record groundtruth6.
In our prototype, a laptop is carried by the monitored person
to collect and process measurements. It has an Intel Core i7

5The localisation results only using MI are from our previous research work
[17] that sanitises the MI measurements and derives an MI-only trajectory.

6The long-term localisation shift still exists when using Tango, and we
close loops manually to obtain good quality ground truth.
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with 2.8 GHz processor and 16 GB Memory. The operating
system is Ubuntu 14.04.

The MI transmitter includes a 40 cm plastic cube former
which has three mutually orthogonal coils. Each coil is 25
turns of 1 mm diameter enamelled copper wire. Powered by
a 1.2 Ah 12 V battery, three H-bridges amplify the modulated
BPSK signals generated by an STM32F4 microcontroller. The
message is modulated at a rate of 31.25 bps. The transmitter
operates at a nominal centre frequency of 2.5 kHz. Similar
to the MI transmitter, the MI receiver consists of a 10 cm
plastic cube former wrapped by three mutually orthogonal
coils of 150 turns/0.5 mm diameter enamelled copper wire. An
ADS1274I 24 bit ADC is used for digitising received signals
that are amplified by a transimpedance LNA. An STM32F4
micro-controller then processes the digital signals, dropping
them down to baseband and performing carrier wiping and
phase recovery. A USB cable is used to connect the MI
receiver to the laptop in order to transfer collected data and
power the MI receiver.

The IMU we employ is the development board Xsens MTi-
3-8A7G6-DK [43]. In our system, it continuously supplies
inertial measurements, i.e. acceleration and angular rate, both
at 100 Hz. The IMU is firmly mounted on one foot of a
monitored person, and the inertial measurements are ported
to the laptop through a USB cable for further processing.

B. Experiment 1: Comparison with WiFi and UWB
In this experiment, we compare the stability and robustness

of MI signals with WiFi and UWB in various scenarios. A
wireless signal’s temporal stability and robustness to environ-
mental changes play an essential role in robust loop closure
using the similarity of signals’ spatial features. WiFi and
UWB are two types of popular wireless signals for indoor
localisation[27], [26], [28], [31], [10].

Due to the different units of each signal, we calculate the
standard deviations of measurements for each type of signal
in this experiment and show them in a standardised CDF. The
origin of the CDF is the mean for each signal. We placed the
MI, WiFi and UWB transmitters of MI, WiFi and UWB in
close proximity to one another (within 10 cm) so that they
have the same surrounding environment. We use a pair of
UWB transceivers from Decawave TREK1000 evaluation kit
[44]. One of the UWB transceivers acts as the transmitter,
and the other one is the receiver. In terms the WiFi setup, we
use one WiFi router as the transmitter and one laptop as the
receiver. The measurements for MI for this experiment are MI
observations, and the measurements for WiFi and UWB are
RSS values and the distance measurements respectively. In this
experiment, we will show the advantages of MI observations
as unique spatial features in the following four scenarios.

Experiment 1(a) Temporal Stability: It is a prerequisite
that wireless signal measurements are relatively constant when
revisiting the same location after a certain period. Therefore,
firstly, we evaluate the temporal stability of MI, WiFi and
UWB measurements, respectively. We placed MI, WiFi and
UWB receivers in one location, which is 2 m away from their
transmitters. Figure 7(a) shows the CDF of standard devia-
tions. Almost 100% of all the measurements from these three

(a) Temporal Robustness

(b) Robustness to Moving People

(c) Robustness to Moving Furniture

(d) Robustness to Various Heights

Fig. 7. Experiment 1: Comparison between MI, WiFi and UWB to environ-
mental distortions.

types of signals are within 3 standard deviations. Furthermore,
85% of MI measurements are within 1 standard deviation,
which is 5% and 15% better than UWB and WiFi measure-
ments respectively. This experiment confirms the advantage of
MI measurements in the aspect of temporal stability.

Experiment 1(b) Robustness to Moving People: It is
unavoidable that people work around in the motivating applica-
tion scenarios, such as construction work, emergency response,
etc. Therefore, it is important to choose a type of wireless
signal for localisation that is robust to moving people. In
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this experiment, we use the same deployment as Experiment
1(a), but one person walks across the line-of-the-sight between
transmitters and receivers several times. Figure 7(a) shows the
CDF of standard deviations of these three types of signals.
For the MI signal, nearly 100% of the measurements are still
within 3 standard deviations. However, the performance of
WiFi and UWB drop dramatically. Only 80% and 62% of WiFi
and UWB measurements respectively are within 3 standard de-
viations. Furthermore, 88% and 60% of MI measurements are
within 2 and 1 standard deviations, which performs 27% and
23% better than WiFi measurements respectively, and more
than 40% better than UWB measurements in both aspects. This
again confirms the fact that the MI signal can penetrate the
people thanks to the low carrier frequency and demonstrates
its feasibility for our motivating application scenarios. By
contrast, interference to UWB and WiFi caused by moving
people unfortunately raises critical issues when these two type
of signals are used as spatial features in localisation systems.

Experiment 1(c) Robustness to Moving Objects: Addi-
tional to the robustness to moving people, another important
requirement for the use of spatial features for loop closure
detection methods is the robustness to moving objects. We
also use the same deployment as Experiment 1(a) but move
an office chair between the-line-of-sight multiple times. Figure
7(c) shows the performance of these three signals. 98% ,
95% and 69% of MI observations changes within 3, 2 and
1 standard deviations, respectively, which outperforms WiFi
and UWB measurements significantly. Only 51% of WiFi
measurements and 36% of UWB measurements vary within
3 standard deviations, 48% of WiFi measurements and 18%
of UWB measurements vary within 2 standard deviations, and
17% of WiFi measurements and 2% of UWB measurements
vary within 1 standard deviation.

Experiment 1(d) Robustness to Various Deployed
Heights: Because we consider 2D localisation when design-
ing the system, spatial features need to be robust to various
heights. In this experiment, we deploy the receivers in the same
location as Experiment 1(a), but in three different heights,
i.e. 0 m, 0.5 m and 1 m. Figure 7(d) shows the CDF of
standard deviations of these three types of wireless signals.
90% of MI measurements are within 3 standard deviations,
and 76% and 36% of MI measurement vary within 2 and
1 standard deviations respectively. Using WiFi receivers in
different heights, the percentages of the variations within 3, 2
and 1 standard deviations are 70%, 32% and 12%, respectively,
which is not as stable as MI measurements. In terms of
UWB, a significant variation occurs with changing heights,
because UWB devices measure distance using time of flight.
The deployment of the receivers in different heights results in
massively different UWB measurements. This also confirms
that a pair of UWB devices is not feasible for a localisation
system and instead multiple devices need to be deployed in
around the perimeter of the area, with good geometry.

C. Experiment 2: Loop Closure Robustness

The goal of this experiment is to evaluate the robustness
of MI observations to determine loop-closure points. The path

TABLE I
LOCALISATION ERROR OF EXPERIMENT 2

Method IMU MI iMag iMag+
erms (m) 4.527 4.247 0.752 0.752

includes numerous repeated MI observations that will lead to a
large number of loop closures as shown in Figure 8(a). During
this experiment, the monitored person is walking in a square,
which leads a 233.13 m path.

Figure 8(b), Figure 8(c) and Figure 8(d) demonstrate the
IMU, MI and iMag trajectories. Figure 8(e) shows the re-
covered trajectory after using the iMag+ method, which is
virtually identical to the ground-truth and has corrected the
odometry drift.

Table I shows that the eRMS of IMU, MI, iMag and iMag+
methods are 4.527 m, 4.247 m, 0.752m and 0.752 m, respec-
tively. Fusing measurements from MI and IMU, iMag+ can
achieve 83.4% and 82.3% improvement compared with only
using IMU and MI methods. Because the monitored person
only walks in one quadrant in the coordinate system of the MI
transmitter 7 in the experiment, the performances of iMag and
iMag+ are the same. Figure 8(f) shows the CDF of errors using
different methods. The results show that the 90th percentile
localisation errors for IMU, MI and iMag+ are 7.24 m, 5.88
m and 1.129 m. In this metric, iMag+ achieves 84.4% and
80% improvements compared with the IMU and MI methods.

D. Experiment 3: Random Walking

The goal of this experiment is to show the performance of
our proposed method with a more realistic motion trace. This
ground truth of this experiment is shown in Figure 9(a). The
monitored person walks randomly, which leads to a 311.95 m
path.

Figure 9(b), Figure 9(c) and Figure 9(d) demonstrate the
IMU, MI and iMag trajectories. Figure 9(e) shows the trajec-
tory using iMag+ method. Table II shows that the eRMS of
IMU, MI, iMag and iMag+ method are 3.498 m, 4.564 m,
2.456 m and 1.908 m respectively. Fusing measurements from
MI and IMU, it can achieve 45.5%, 58.2%, 22.3% improve-
ments compared with IMU, MI and iMag based localisation
methods. Figure 9(f) shows the CDF of errors using different
methods. The results show that the 90th percentile localisation
errors for IMU, MI, iMag and iMag+ methods are 4.9 m, 6.8
m, 4.0 m and 3.3 m. With this metric, iMag+ achieves 32.7%,
51.5% and 17.5% improvements compared with the IMU, MI
and iMag methods.

This experiment demonstrates that even with long trajec-
tories and sparse loop-closure points, iMag+ can accurately
track users.

E. Experiment 4: Indoor Environment

In this section, we conduct experiments in a multi-storey
build to show the performance of our proposed methods in

7The coordinate system of the MI transmitter is different from that in figures
which show the performances of MI only methods. Those figures use the
coordinates system of the ground truth recorded by the RTK GPS or Tango.
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(a) Ground Truth (b) IMU (c) MI

(d) iMag (e) iMag+ (f) cdf

Fig. 8. Experiment 2: Trajectories and CDF of walking in a regular path in an open outdoor environment

(a) Ground Truth (b) IMU (c) MI

(d) iMag (e) iMag+ (f) cdf

Fig. 9. Experiment 3: Trajectories and CDF for random walking

TABLE II
LOCALISATION ERROR OF EXPERIMENT 3

Method IMU MI iMag iMag+
erms (m) 3.4981 4.564 2.4562 1.9075

indoor environments. Figure 10(a) and Figure 10(b) show the
ground truth and trajectory on two floors obtained from our
proposed method iMag+. Since our proposed method aims for
2D localisation, we will discuss the localisation results on two
floors in the following sections respectively. We perform this
experiment to show the feasibility and efficacy of our proposed
cross-point loop closure method using MI observations in an
indoor environment. This experiment is conducted in a modern
office building, where large quantities of reinforcing steel are
within the building structure. This experiment also aims to

(a) Ground Truth (b) iMag+

Fig. 10. Experiment 4: Trajectories and CDF for indoor localisation.

show the ability to find unique MI spatial signatures in an
indoor environment.

1) Experiment 4-1: Indoor environment 1: The MI trans-
mitter is deployed on the same floor of the experiment space.
We collect MI signals with the monitored person walking
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(a) Ground Truth (b) IMU (c) MI

(d) iMag (e) iMag+ (f) cdf

Fig. 11. Experiment 4: Trajectories and CDF for indoor localization.

TABLE III
LOCALISATION ERROR OF EXPERIMENT 4

Method IMU MI iMag iMag+
erms (m) 9.2635 8.9879 6.4332 1.2947

TABLE IV
LOCALISATION ERROR OF EXPERIMENT 5

Method IMU MI iMag iMag+
erms (m) 7.8838 24.8931 1.7768 1.3110

in this floor as shown in Figure 11(a). The path length is
390.77 m. When the user re-enters a previous place, the
MI observations are correctly able to extract loop-closures,
resulting in the corrected SLAM trajectory in Figure 11(e).
There are multiple false negatives in the loop closure detection
when using the loop closure method in the previously proposed
iMag method, which cannot restore the trajectory correctly
as shown in Figure 11(d). This indicates the importance of
loop closure for localisation performance. Table III shows that
the eRMS of IMU, MI, iMag and iMag+ methods are 9.2635
m, 8.9879 m, 6.4332 m and 1.2947 m, respectively. Fusing
measurement from MI and IMU, iMag+ can achieve 86.02%,
85.0%, 79.87% improvements compared with the IMU only,
MI only and the iMag localisation method. Figure 11(f) shows
the CDF of errors using different methods. The results show
that the 90th percentile localisation errors for IMU, MI, iMag
and iMag+ methods are 20.2 m, 24.6 m, 9.3 m and 2.2 m.
In this metric, iMag+ achieves 89.11%, 91.06% and 76.34%
improvements compared with the IMU, MI and iMag method.

This demonstrates that distorted MI observations are stable
and unique in an indoor environment with metal structure, and
have excellent discriminative power for loop-closure with the
usage of our proposed first quadrant estimator.

2) Experiment 4-2: Indoor environment 2: The MI trans-
mitter is left in the same location as Experiment 4-1, but the
user walks one floor below the one where the MI transmitter

is deployed as shown in Figure 12(a).
The corrected SLAM trajectory is shown in Figure 12(e).

The path length is 333.17 m in this experiment. Table IV
shows that the eRMS of IMU, MI, iMag and iMag+ methods are
7.8838 m, 24.8931 m, 1.7768 m and 1.3110 m, respectively.
Fusing measurement from MI and IMU, iMag+ can achieve
83.37%, 94.73%, 26.22% improvement compared with the
IMU-based, MI-based and iMag localisation method.

Figure 11(f) shows the CDF of errors using MI only, IMU
only and iMag, and iMag+. The results show that the 90th
percentile localisation errors for IMU, MI, iMag and iMag+
methods are 10.3 m, 14.6 m, 2.7 m and 1.9 m. In this met-
ric, iMag+ achieves 81.55%, 86.99%, 29.63% improvements
compared with the IMU, MI and iMag methods.

As introduced, the resultant trajectory in this experiment
along with that in Experiment 4-1 is derived using robust
SLAM optimiser together to show the potential of localisation
in the multi-storey building. This experiment demonstrates that
our systems can be rapidly deployed and localise the user in
a multi-storey building with only one transmitter. Note that
our method assumes planar (2-D) motion, but level changes
can easily be detected by using accelerometer data (e.g.
stairs/elevator detection) or additional sensors, e.g. barometer,
to make iMag+ function as a 2.5D location system.

F. Summary of Evaluation

Extensive evaluations show our proposed iMag+ is able to
improve the localisation performance significantly. Due to the
fact that only one MI transmitter is required, the deployment is
very rapid. The localisation accuracy can achieve the localisa-
tion accuracy within no more than 1.9 m. The safety distance
for big moving machinery is more than 2 m[45]. Therefore,
our proposed method is sufficiently accurate for our motivating
scenarios.
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(a) Ground Truth (b) IMU (c) MI

(d) iMag (e) iMag+ (f) cdf

Fig. 12. Experiment 5: Trajectories and CDF for indoor localization. Note that the transmitter was placed on a different floor to the user, demonstrating the
ability of MI to penetrate through solid concrete.

VI. CONCLUSIONS

In this paper, we proposed the iMag+ SLAM system and
investigated its performance to meet the requirements of
accurate localisation and rapid setup in both outdoor and
indoor environments. A novel method of using low-frequency
magneto-inductive based positioning coupled with inertial
measurements demonstrates excellent accuracy, irrespective of
the operating environment. Our prototype only needs one MI
transmitter deployed in the area of interest, which allows for
fast and easy setup, without any survey or calibration. Our
evaluations show that our proposed method can achieve up to
90% improvement compared with using only an IMU or MI
device for localisation. It is capable of operating equivalently
well both indoor and outdoor environments.

ACKNOWLEDGMENT

This work was supported by Innovate UK Tracksafe (Project
102033) and in part by the NIST under Grant 70NANB17H185
and by UKRI under ACE-OPS EP/S030832/1.

REFERENCES

[1] K. Lorincz, D. J. Malan, T. R. Fulford-Jones, A. Nawoj, A. Clavel,
V. Shnayder, G. Mainland, M. Welsh, and S. Moulton, “Sensor net-
works for emergency response: challenges and opportunities,” Pervasive
Computing, IEEE, vol. 3, no. 4, pp. 16–23, 2004.

[2] Z. Xiao, H. Wen, A. Markham, and N. Trigoni, Lightweight map
matching for indoor localisation using conditional random fields, 2014.

[3] L. Klingbeil and T. Wark, “A wireless sensor network for real-time
indoor localisation and motion monitoring,” in Information Processing
in Sensor Networks, 2008. IPSN’08. International Conference on. IEEE,
2008, pp. 39–50.

[4] S. Papaioannou, H. Wen, Z. Xiao, A. Markham, and N. Trigoni,
“Accurate Positioning via Cross-Modality Training,” in Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems
- SenSys ’15. New York, New York, USA: ACM Press, 2015,
pp. 239–251. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2809695.2809712

[5] “Rail Safety and Standards Board Annual Safety Per-
formance Report 2013/14,” http://www.rssb.co.uk/Library/
risk-analysis-and-safety-reporting/2014-07-aspr-2013-14-full-report.
pdf, accessed: 2016-03-29.

[6] “Rail Safety and Standards Board Annual Safety Per-
formance Report 2014/15,” http://www.rssb.co.uk/Library/
risk-analysis-and-safety-reporting/2015-07-aspr-full-report-2014-15.
pdf, accessed: 2016-03-29.

[7] D. Bouvet and G. Garcia, “Improving the accuracy of dynamic
localization systems using RTK GPS by identifying the GPS
latency,” in 2000 IEEE International Conference on Robotics and
Automation., vol. 3. IEEE, pp. 2525–2530. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=846408

[8] “A Laser-Aided Inertial Navigation System (L-INS) for human local-
ization in unknown indoor environments,” Proceedings - IEEE Interna-
tional Conference on Robotics and Automation, pp. 5376–5382, 2010.

[9] E. S. Jones and S. Soatto, “Visual-inertial navigation, mapping and
localization: A scalable real-time causal approach,” The International
Journal of Robotics Research, jan 2011. [Online]. Available: http:
//ijr.sagepub.com/cgi/doi/10.1177/0278364910388963

[10] G. Bellusci, D. Roetenberg, F. Dijkstra, H. Luinge, and P. Slycke,
“Xsens MVN MotionGrid : Drift-free human motion tracking using
tightly coupled ultra-wideband and miniature inertial sensors,” Xsens
Technologies White Paper, pp. 1–10, 2011.

[11] “Autoprowa Warning System,” http://www.zoellner.de/en/, accessed:
2016-03-29.

[12] “ALARP Track Warining Project,” http://www.transport-research.
info/project/railway-automatic-track-warning-system
-based-distributed-personal-mobile-terminals, accessed: 2016-03-
29.

[13] “GPS Accuracy,” http://www.gps.gov/systems/gps/performance/
accuracy/, accessed: 2016-04-05.

[14] T. Takasu and A. Yasuda, “Development of the low-cost RTK-
GPS receiver with an open source program package RTKLIB,”
International symposium on GPS/GNSS, 2009. [Online]. Available:
http://gpspp.sakura.ne.jp/paper2005/isgps{\ }2009{\ }rklib.pdf

[15] R. P. Feynman, R. B. Leighton, and M. Sands, The feynman lectures on
physics. American Journal of Physics, 1965.

[16] T. E. Abrudan, Z. Xiao, A. Markham, and N. Trigoni, “Distortion Re-
jecting Magneto-Inductive Three-Dimensional Localization (MagLoc),”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 11,
pp. 2404–2417, 2015.

[17] B. Wei, N. Trigoni, and A. Markham, “imag: Accurate and rapidly
deployable inertial magneto-inductive localisation,” in 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 99–106.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[18] X. Jiang, C.-J. M. Liang, K. Chen, B. Zhang, J. Hsu, J. Liu, B. Cao, and
F. Zhao, Design and evaluation of a wireless magnetic-based proximity
detection platform for indoor applications. New York, New York, USA:
ACM, Apr. 2012.

[19] A. Markham, N. Trigoni, S. a. Ellwood, and D. W. Macdonald,
“Revealing the hidden lives of underground animals using magneto-
inductive tracking,” Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems - SenSys ’10, no. September, p.
281, 2010. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1869983.1870011

[20] V. Pasku, A. De Angelis, M. Dionigi, G. De Angelis, A. Moschitta,
and P. Carbone, “A Positioning System Based on Low Frequency
Magnetic Fields,” IEEE Transactions on Industrial Electronics,
vol. 0046, 2015. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7323819

[21] G. Pirkl and P. Lukowicz, “Robust, low cost indoor positioning
using magnetic resonant coupling,” in Proceedings of the 2012 ACM
Conference on Ubiquitous Computing - UbiComp ’12. New York,
New York, USA: ACM Press, 2012, p. 431. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2370216.2370281

[22] J. Sojdehei, P. Wrathall, and D. Dinn, “Magneto-inductive (MI)
communications,” in MTS/IEEE Oceans 2001. An Ocean Odyssey.
Conference Proceedings (IEEE Cat. No.01CH37295), vol. 1. Marine
Technol. Soc, pp. 513–519. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=968775

[23] I. F. Akyildiz and E. P. Stuntebeck, “Wireless underground sensor
networks: Research challenges,” Ad Hoc Networks, vol. 4, no. 6, pp.
669–686, 2006.

[24] A. Markham and N. Trigoni, “Magneto-Inductive NEtworked Rescue
System (MINERS): Taking sensor networks underground,” 2012
ACM/IEEE 11th International Conference on Information Processing
in Sensor Networks (IPSN), pp. 1–11, 2012. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6920946

[25] S. A. Meybodi, J. Nielsen, J. Bendtsen, and M. Dohler, “Magneto-
Inductive Underground Communications in a District Heating System,”
in 2011 IEEE International Conference on Communications (ICC).
IEEE, jun 2011, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=5963067

[26] F. Evennou and F. Marx, “Advanced Integration of WiFi and Inertial
Navigation Systems for Indoor Mobile Positioning,” EURASIP Journal
on Advances in Signal Processing, vol. 2006, pp. 1–12, 2006. [Online].
Available: http://asp.eurasipjournals.com/content/2006/1/086706

[27] B. Ferris, D. Fox, and N. Lawrence, “WiFi-SLAM using Gaussian
process latent variable models,” pp. 2480–2485, 2007.

[28] J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Ag-
garwal, “Efficient, generalized indoor WiFi GraphSLAM,” Proceedings
- IEEE International Conference on Robotics and Automation, pp. 1038–
1043, 2011.

[29] H. Wang, A. Elgohary, and R. R. Choudhury, “No Need to War-
Drive : Unsupervised Indoor Localization,” Proceedings of the 10th
international conference on Mobile systems, applications, and services
(MobiSys ’12), pp. 197–210, 2012.

[30] Chao Gao and R. Harle, “Sequence-based magnetic loop closures
for automated signal surveying,” in 2015 International Conference on
Indoor Positioning and Indoor Navigation (IPIN). IEEE, oct 2015,
pp. 1–12. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=7346765

[31] P. Mirowski, T. K. Ho, Saehoon Yi, and M. MacDonald, “SignalSLAM:
Simultaneous localization and mapping with mixed WiFi, Bluetooth,
LTE and magnetic signals,” in International Conference on Indoor
Positioning and Indoor Navigation. IEEE, oct 2013, pp. 1–
10. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6817853

[32] J. Jung, T. Oh, and H. Myung, “Magnetic field constraints and sequence-
based matching for indoor pose graph slam,” Robotics and Autonomous
Systems, vol. 70, pp. 92–105, 2015.

[33] I. Vallivaara, J. Haverinen, A. Kemppainen, and J. Röning, “Simul-
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