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Resilient Delayed Impulsive Control for
Consensus of Multiagent Networks

Subject to Malicious Agents
Yang Zhai , Zhi-Wei Liu , Member, IEEE, Zhi-Hong Guan , and Zhiwei Gao , Senior Member, IEEE

Abstract—Impulsive control is widely applied to achieve the
consensus of multiagent networks (MANs). It is noticed that mali-
cious agents may have adverse effects on the global behaviors,
which, however, are not taken into account in the literature. In
this study, a novel delayed impulsive control strategy based on
sampled data is proposed to achieve the resilient consensus of
MANs subject to malicious agents. It is worth pointing out that
the proposed control strategy does not require any information
on the number of malicious agents, which is usually required
in the existing works on resilient consensus. Under appropriate
control gains and sampling period, a necessary and sufficient
graphic condition is derived to achieve the resilient consensus
of the considered MAN. Finally, the effectiveness of the resilient
delayed impulsive control is well demonstrated via simulation
studies.

Index Terms—Communication delays, impulsive control,
multiagent network (MAN), resilient consensus, trusted agent.

I. INTRODUCTION

DURING the past decades, the studies on multiagent
networks (MANs) have raised much attention due to

the practical applications in robot navigation and task plan-
ning [1], [2]; cyber-physical systems [3], [4]; distributed
online optimization [5], [6]; and other aspects. The MAN
is a complex dynamic network that can produce macroco-
operative behaviors through the interactions between agents
and the environment. In the studies on MANs, the consen-
sus is one of the most significant problems. A wide variety
of results on the consensus has been obtained by using differ-
ent control methods, including event-triggered control [7], [8];
sampled-data control [9], [10]; impulsive control [11]–[14];
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model-based predictive control [15], [16]; and adaptive con-
trol [17], [18]. Among these control methods, the impulsive
control is a discontinuous control, which is widely used in
the real-world applications [19], such as biological control
of pesticide, fuel-optimal control of satellites, and control
of robot manipulators. More recently, the impulsive control
has been explored in the consensus of MANs in different
contexts, such as double-integrator dynamics [20], [21]; com-
munication delays [21]–[25]; switching topologies [21], [26];
asynchronous networks [27]; and event-triggered communi-
cations [8]. However, all the impulsive controls mentioned
above are implemented under the situation where there are no
attacks. The MANs working in a complex environment have
many vulnerable points for attacks. For example, multiarmy
vehicles on the battlefield face attacks from hidden enemies
and unknown explosions. The attacks may make some agents
become uncontrolled. Such agents are called malicious agents.
For the MANs with malicious agents, the existing impulsive
consensus control algorithms may become invalid. Thus, it is
essential to design a novel impulsive consensus algorithm for
the MANs with malicious agents.

Great progresses [28]–[36] have been made in the study
of consensus of MANs with malicious agents, which is
called resilient consensus. Resilient consensus requires that
an agreement is achieved among the agents behaving nor-
mally for any possible malicious agents. Moreover, the value
of agreement is confined within a bounded range determined
by the initial conditions of the agents behaving normally.
One of the earliest works on resilient consensus can go
back to [32], which is based on the f -total/f -local assump-
tion (i.e., there are at most f malicious agents in the entire
network/each neighborhood). The authors proposed a classi-
cal resilient consensus algorithm by filtering out the largest
f and smallest f values from neighbors. It was proved that
the resilient consensus can be ensured if the communica-
tion topology satisfies a newly proposed graphic condition
(f + 1, f + 1)-robustness/(2f + 1, 1)-robustness. From then on,
the resilient consensus problem has been explored in different
contexts, including double-integrator dynamics [30], com-
munication delays [28], time-varying topologies [34], asyn-
chronous networks [33], event-triggered communications [35],
quantization [29], and differential privacy requirements [36].
All of the above-mentioned works on resilient consensus
require the same graphic conditions as [32], where the highly
connected communication topology is required. In order to

https://orcid.org/0000-0002-5624-144X
https://orcid.org/0000-0003-3005-1792
https://orcid.org/0000-0001-7997-0314
https://orcid.org/0000-0001-5464-3288


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

relax the connectivity requirements, Abbas et al. [31] intro-
duced trusted agents for the first-order discrete-time MAN
under the f -total/f -local assumption. The trusted agents can
resist attacks to avoid becoming the uncontrolled malicious
agents by increasing the safety investments. The result in [31]
shows that the resilient consensus can be ensured if the
communication topology satisfies the condition (f + 1, f + 1)-
robustness/(2f + 1, 1)-robustness with trusted nodes. One
common feature in the above works [28]–[36] on resilient con-
sensus is that an upper bound f on the number of malicious
agents is required to be known. However, the upper bound
f on the number of the malicious agents may be difficult to
obtain, especially in the context of distributed control. Thus,
how to design a resilient consensus algorithm without using
any information on the number of malicious agents is still
unsolved.

In addition, the coordination of MANs is dependent on the
digital communication among agents. Thus, the communica-
tion delays are usually inevitable. There have been lots of
results [21]–[26] on designing the consensus algorithms for
MANs based on delayed information. Instead of the whole
spectrum of delayed information, only the sampled position
data is used to design the resilient consensus algorithm for
double-integrator MANs in this article. The advantages of
using only sampled position data are to utilize less information
and save energy.

Motivated by the above observations, this article aims
to utilize the impulsive control strategy with only sampled
position data to solve the resilient consensus problem of
double-integrator MANs in the presence of communication
delays. More challenging, we consider the situation where any
information on the number of the malicious agents is unknown.
The main contributions are summarized as follows.

1) Based on the impulsive control, we propose a novel algo-
rithm to mitigate the adverse effects of malicious agents
on the considered MAN. The advantage of the proposed
algorithm is that it does not require any information
on the number of the malicious agents. However, the
existing resilient consensus algorithms [28]–[36] usu-
ally need to know an upper bound on the number of
the malicious agents.

2) Under the proposed resilient delayed impulsive control
algorithm, a necessary and sufficient graphic condi-
tion is obtained to ensure resilient consensus of MANs
with communication delays. Compared with the existing
results based on graph robustness [28]–[36], the obtained
graphic condition is more intuitive and easier to verify.

3) To the best of our knowledge, the existing works on
the impulsive consensus do not consider the presence
of malicious agents. The resilient consensus problem is
solved by using the impulsive control for the first time.

The remainder part of this article is as follows. In Section II,
necessary preliminaries on the graph theory are provided and
the problem is formulated. The convergence analysis of the
resilient delayed impulsive control is presented in Section III.
In Section IV, simulation studies are performed to demon-
strate the results. Finally, the conclusions are summarized in
Section V.

Notation: Let R, N, and Z+ represent the sets of real
numbers, natural numbers, and positive integers, respectively.
Symbols R

n×m and R
n are the sets of n × m real matri-

ces and n-dimensional real column vectors, respectively. Let
diag(a1, . . . , an) denote the diagonal matrix with ai as its ith
diagonal entries. In particular, if ai = 1 for all i = 1, . . . , n,
the diagonal matrix is called the identity matrix of dimension
n, denoted by In. Let �1n represent the n-dimensional column
vector with all entries being 1. The matrix inequality A ≥ 0
means that each entry in A is greater than or equal to 0. |H|
represents the number of elements in set H. Let co{x1, . . . , xn}
represent the set {x|x = μ1x1 + · · · + μnxn, μ1 + · · · + μn =
1, μ1, . . . , μn ≥ 0}. Symbols max{·} and min{·} are used to
denote, respectively, the maximum and minimum values of all
entries of the vectors. rand(t)[a,b] is the function that randomly
takes value within interval [a, b].

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Theory

In this subsection, some necessary notions and preliminaries
on graph theory are introduced.

Let G(V, E) be a directed graph (digraph) with node set V =
{1, . . . , n} and edge set E ⊆ V ×V . The edge (j, i) ∈ E means
that node i can obtain information from node j, where node j
is called a neighbor of node i. The set of all neighbors of node
i is denoted by Ni. The adjacency matrix A = [aij] ∈ R

n×n

associated with digraph G is defined by aij > 0 if (j, i) ∈ E ,
otherwise, aij = 0. Self-loops are not allowed, that is, aii = 0.
The Laplacian matrix L = [lij] ∈ R

n×n is defined by lij = −aij

for j �= i, and lii = ∑n
j=1 aij.

An in-neighbor of a nonempty set of nodes VS is the node
j ∈ V\VS for which there exists a directed edge (j, i) ∈ E for
some node i ∈ VS . In a digraph G, if there exists one node,
called root, which has a directed path to all other nodes, then
this digraph G is said to contain a directed spanning tree. A
digraph GS(VS , ES) is called a subgraph of G(V, E) if VS ⊆ V
and ES ⊆ E . Furthermore, if ES = {(j, i):(j, i) ∈ E, i, j ∈ VS},
then GS(VS , ES) is called the subgraph induced by VS .

Next, we will give several lemmas, which play crucial roles
in the proof of the obtained theorems in this article.

Lemma 1 [2]: Given a digraph G(V, E), the following two
conditions are equivalent:

i) G(V, E) contains a directed spanning tree;
ii) For any pair of nonempty disjoint subsets V1, V2 ⊂ V ,

either V1 has an in-neighbor or V2 has an in-neighbor.
Based on Lemma 1, it is easy to obtain the following lemma.
Lemma 2: If G(V, E) does not contain a directed spanning

tree, then there exists a pair of nonempty disjoint subsets V1,
V2 ⊂ V such that for any i ∈ V1, j ∈ V2, there hold that
Ni ∩ (V\V1) = ∅ and Nj ∩ (V\V2) = ∅.

Remark 1: Lemma 2 will be used to prove that an
interconnected structure among trusted agents is necessary for
achieving resilient consensus under the proposed algorithm.

Lemma 3: For any pair of nonempty disjoint subsets
Z1,Z2 ⊂ V , if a subgraph GS(VS , ES) ⊆ G satisfies the
following two conditions:
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i) GS contains a directed spanning tree;
ii) For each node i ∈ V , either i ∈ VS or Ni ∩ VS �= ∅,

then there holds that XVS
Z1

∪ XVS
Z2

�= ∅, where XVS
Zi

=
{j ∈ Zi:Nj ∩ (VS\Zi) �= ∅}, i = 1, 2.

Proof: For any pair of nonempty disjoint subsets Z1,Z2 ⊂
V , we discuss the following three cases:

1) Z1 ∩ VS = ∅: According to condition 2), each node
in Z1 has at least a neighbor in VS\Z1. Hence, it is
obtained that XVS

Z1
�= ∅.

2) Z1 ∩ VS �= ∅, Z2 ∩ VS = ∅: Similar to the above case,
it is obtained that XVS

Z2
�= ∅.

3) Z1 ∩ VS �= ∅, Z2 ∩ VS �= ∅: According to condition
1), there exists a node i having a directed path to all
other nodes in VS . If i ∈ Z1, then there exists a node in
Z2 ∩ VS which has a neighbor in VS\Z2. Hence, there
holds that XVS

Z2
�= ∅. If i /∈ Z1, then there exists a node

in Z1∩VS which has a neighbor in VS\Z1. Hence, there
holds that XVS

Z1
�= ∅.

Remark 2: In Theorem 1, we will prove that if the subgraph
induced by trusted agents satisfies the conditions i) and ii) in
Lemma 3, the resilient consensus can be guaranteed under the
proposed algorithm.

B. Problem Formulation

Consider a MAN with time-varying communication delays,
in which there exist the unknown number of the malicious
agents. The communications among agents are described by
the digraph G(V, E). The agents are governed by the following
dynamics:

{
ẋi(t) = vi(t), v̇i(t) = ui(t), i ∈ VN
xi(t):arbitrary, i ∈ VM

(1)

where xi(t), vi(t), and ui(t) ∈ R represent the position, velocity,
and control input of agent i ∈ V , respectively. V = VN ∪VM,
VN and VM denote the sets of normal agents and malicious
agents, respectively. A small subset of normal agents is trusted
agents, which behave normally even under attacks. The set of
trusted agents is denoted by VT (VT ⊆ VN ). Assume that
each normal agent knows which information packets are from
trusted agents.

The control input ui(t) of normal agent i ∈ VN is depen-
dent on the received information from its neighbor set Ni. In
order to save energy and utilize less information, each agent
measures its own position state xi(t) and sends it to other
agents through the communication links only at the discrete
instant tk = kT , where T is the sampling period and k ∈ N.
Because of the presence of the communication delays, each
agent i may only receive the delayed position state xj(tk−τij[k])
from neighbor j at the sampling instant tk, where τij[k] is the
corresponding communication delay. Assume that the commu-
nication delays are bounded. Thus, there exists a positive real
number τ such that the communication delay τij[k] ≤ τ for
i, j ∈ V , k ∈ N. Since the information is only measured and
sent at the sampling instants, there exists dij[k] ∈ N such that
tk − τij[k] = tk−dij[k] for any k ∈ N. In particular, we assume

that each agent i can acquire its own information xi(t), vi(t)
immediately at each sampling instant tk.

The objective of this article is to design ui(t) to make
MAN (1) achieve the resilient consensus. Inspired by
[28]–[36], the definition of the resilient consensus is given
as follows.

Definition 1: Resilient consensus of MAN (1) is said to be
achieved if for any possible set of malicious agents VM ⊆
V\VT , any initial positions and initial velocities, the following
conditions are satisfied:

i) Agreement Condition: For some constant c ∈ R, it holds
that limt→∞ xi(t) = c for any i ∈ VN .

ii) Safety Condition: There exists a bounded interval �,
called safety interval, determined by the initial positions
and initial velocities of normal agents such that xi(t) ∈ �

for any i ∈ VN , t ∈ [0,∞).
Remark 3: Except for trusted agents, all other agents may

become malicious agents under attacks. The control objective
is to ensure consensus under any possible set of malicious
agents VM ⊆ V\VT . If there exists a set of malicious
agents such that the agreement condition or safety condition
is not satisfied, then resilient consensus cannot be said to be
achieved.

C. Resilient Delayed Impulsive Control

How to eliminate or mitigate the impacts of malicious
agents is a central problem for achieving resilient consensus
of MAN (1). A trusted region is proposed to filter the received
information. Based on the filtering method, we propose a novel
resilient delayed impulsive control, which is given as the fol-
lowing three steps:

Step 1: At each sampling instant tk = kT , each normal
agent i obtains the delayed information from its neighbor
set Ni. The trusted region of agent i at tk is defined as
Ri[k] = [xi

min(tk), xi
max(tk)], where

xi
max(tk) = max{xj(tk−dij[k]):j ∈ (VT ∩ Ni) ∪ {i}},

xi
min(tk) = min{xj(tk−dij[k]):j ∈ (VT ∩ Ni) ∪ {i}}.

Step 2: For agent i ∈ VN , if the obtained information
xj(tk−dij[k]) ∈ Ri[k], let aij[k] = aij. Otherwise, let aij[k] = 0.
For j /∈ Ni, let aij[k] = 0.

Step 3: The control input ui(t) of agent i ∈ VN is designed
as follows:

ui(t) =
∞∑

k=0

⎡

⎣−p1

∑

j∈Ni

aij[k]
(
xi(tk) − xj

(
tk−dij[k]

))

− p2vi(tk)

⎤

⎦δ(t − tk) (2)

where δ(·) is the Dirac impulsive function, that is, δ(t) = 0
for t �= 0 and

∫ +∞
−∞ δ(t)dt = 1, p1, p2 > 0 are the control

gains.
Remark 4: To utilize less information and save energy, only

sampled position data with delays from neighbors is used to
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design ui(t). The control input ui(t) only changes the velocity
to some constant instantaneously at the sampling instants, the
execution time of which is much smaller than the impulsive
interval.

Remark 5: The resilient delayed impulsive control does not
require any information on the number of the malicious agents.
However, the existing works [28]–[36] on resilient consensus
require the prior knowledge of an upper bound f on the number
of the malicious agents, which may be hard to obtain in some
cases, such as the real-time death toll in military wars, and the
number of damaged sensors in large-scale sensor networks in
cold weather.

III. CONVERGENCE ANALYSIS

Since the communication delays are bounded, there exists
d ∈ Z+ such that dij[k] ≤ d for i, j ∈ V , k ∈ N. We denote the
number of normal agents |VN | in MAN (1) by n1. Assume
that VN = {1, . . . , n1} and VM = {n1 + 1, . . . , n}. Let

x(t) = [x1(t), . . . , xn(t)]
T

xN(t) = [x1(t), . . . , xn1(t)]
T

v(t) = [v1(t), . . . , vn(t)]
T

vN(t) = [v1(t), . . . , vn1(t)]
T

z(tk) = [x(tk)
T , x(tk−1)

T , . . . , x(tk−d)
T ]T

and

zN(tk) = [xN(tk)
T , xN(tk−1)

T , . . . , xN(tk−d)
T ]T .

From (1) and (2), the evolution of agent i ∈ VN is written
equivalently as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi(t) = vi(t),
v̇i(t) = 0,

t ∈ (tk, tk+1
]
,

�vi(tk) = −p1

n∑

j=1

lij[k]xj(tk−dij[k]) − p2vi(tk),
(3)

where �vi(tk) = limt→t+k
vi(t) − vi(tk), lij[k] = −aij[k] for

j �= i, and lii[k] = ∑
j�=i aij[k]. vi(t) is left continuous at tk and

invariable at (tk, tk+1]. Thus, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(tk+1) = xi(tk) +
⎡

⎣−p1

n∑

j=1

lij[k]xj
(
tk−dij[k]

)

+ (1 − p2)vi(tk)

⎤

⎦T

vi(tk+1) = −p1

n∑

j=1

lij[k]xj
(
tk−dij[k]

)

+ (1 − p2)vi(tk).

(4)

Let

(Aα[k])ij =
{

aij[k], if dij[k] = α and j ∈ Ni

0, otherwise.

D[k] =
[

diag

( n∑

j=1

a1j[k], . . . ,
n∑

j=1

an1,j[k]

)

0n1×(n−n1)

]

,

L[k] = [D[k] − A0[k],−A1[k], . . . ,−Ad[k]].

Thus, (4) can be written into the matrix form
⎧
⎪⎨

⎪⎩

xN(tk+1) = ([
In1 0

] − p1TL[k]
)
z(tk)

+ (1 − p2)TvN(tk),

vN(tk+1) = −p1L[k]z(tk) + (1 − p2)v
N(tk).

(5)

Furthermore, for k ∈ Z+, we have

xN(tk+1) = [
W1[k] W2[k]

]
[

z(tk)
z(tk−1)

]

= [
W3[k] W4[k]

]
[

z(tk)
xN(tk−1)

]

(6)

where

W1[k] = W3[k] = (2 − p2)
[
In1 0

] − p1TL[k],

W2[k] = (p2 − 1)
[
In1 0

]
,

and

W4[k] = (p2 − 1)In1 .

Assumption 1: The sampling period T and the control gains
p1 and p2 satisfy the following inequalities:

⎧
⎪⎨

⎪⎩

p1 > 0
1 ≤ p2 < 2
0 < T < (2 − p2)/(p1 max

1≤i≤n
lii).

(7)

The inequalities (7) ensure that [ W3[k] W4[k] ] ≥ 0, which
plays a vital role in achieving resilient consensus.

Lemma 4: Assume that the inequalities (7) are satisfied,
then it is established that

xi(tk+1) ∈ co{x1(tk), . . . , xn(tk),

x1(tk−1), . . . , xn(tk−1),

...
...

x1(tk−d), . . . , xn(tk−d)}
for any i ∈ VN and k ∈ Z+.

Proof: From the definition of L[k], the row sums of L[k]
are all equal to zero. Therefore, based on (6), the row sums
of [ W3[k] W4[k] ] are all equal to one, that is

[
W3[k] W4[k]

]�1n1+n(d+1) = �1n1 .

Moreover, it holds that [W3[k] W4[k]] ≥ 0 under the inequal-
ities (7). Based on the definitions of z(tk) and xN(tk−1), we
can conclude that

xi(tk+1) ∈ co{x1(tk), . . . , xn(tk)

x1(tk−1), . . . , xn(tk−1)

...
...

x1(tk−d), . . . , xn(tk−d)}
for any i ∈ VN and k ∈ Z+.

In the following, the main theoretical results of this article
will be presented.

Theorem 1: Assume that the inequalities (7) are satisfied,
then the resilient consensus of MAN (1) can be achieved under
the resilient delayed impulsive control (2) if and only if the
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subgraph GT (VT , ET ) induced by trusted agents satisfies the
following two conditions:

i) GT contains a directed spanning tree;
ii) For each node i ∈ V , either i ∈ VT or Ni ∩ VT �= ∅.

Moreover, the safety interval is given by

� = [
min{zN(0)} + (1 − p2)T max{0, vN(0)}

max{zN(0)} + (1 − p2)T min{0, vN(0)}]. (8)

Proof: (Sufficiency) First, we prove the agreement condi-
tion. Let

x(tk) = max{zN(tk)}, x(tk) = min{zN(tk)}, k ∈ N.

For any i ∈ VN , if its neighbor j ∈ VM satisfies xj(tk−dij[k]) /∈
[ min{zN(tk)}, max{zN(tk)}], then there holds that

xj
(
tk−dij[k]

)
/∈ Ri[k]

based on the resilient delayed impulsive control algorithm.
Thus, we have aij[k] = 0, which means that xj(tk−dij[k]) is
filtered out. As a result, it is derived from (6) and Lemma 4
that

max{xN(tk+1)} ≤ max
{
zN(tk), xN(tk−1)

}

= max{zN(tk)} = x(tk). (9)

Note that

max{xN(tk)} ≤ max{zN(tk)} = x(tk)

max{xN(tk−1)} ≤ max{zN(tk)} = x(tk)
...

max{xN(tk+1−d)} ≤ max{zN(tk)} = x(tk)

combining these with (9) yields

x(tk+1) = max{zN(tk+1)}
= max{xN(tk+1), xN(tk), . . . , xN(tk+1−d)}
≤ x(tk).

Therefore, {x(tk)} is a nonincreasing sequence. Similarly, it
can be proved that {x(tk)} is a nondecreasing sequence. Then,
{x(tk)} and {x(tk)} are both bounded by [x(0), x(0)]. Based
on the monotone convergence theorem, the limits of {x(tk)}
and {x(tk)} exist, denoted, respectively, by a and b. As long
as we prove a = b, the agreement condition can be guaran-
teed. It obviously holds that a ≥ b. We next prove a = b by
contradiction.

Assume that a > b. The minimum positive entry of
[ W3[k] W4[k] ] is denoted by θ for all k ∈ N. Under
Assumption 1, one has θ ∈ (0, 1). From a > b, there exists
ε0 > 0 such that b+ε0 < a−ε0. Randomly choose ε satisfying

0 < ε < θ(d+1)n1ε0/(1 − θ(d+1)n1).

Subsequently, we construct a sequence {εl} defined by
εl+1 = θεl − (1 − θ)ε, l = 0, 1, . . . , (d + 1)n1 − 1.

Obviously, {εl} is a strictly decreasing sequence. Moreover,
there holds that

ε(d+1)n1 = θ(d+1)n1ε0 − (1 − θ(d+1)n1)ε > 0.

The convergence of {x(tk)} and {x(tk)} indicates that there
exists K(ε) ∈ Z+ such that x(tk) < a + ε and x(tk) > b − ε

for k ≥ K(ε). Define

H1[K(ε) + l] := {
j ∈ VN :xj

(
tK(ε)+l

)
> a − εl

}

H2[K(ε) + l] := {
j ∈ VN :xj

(
tK(ε)+l

)
< b + εl

}

where l = 0, 1, . . . , (d + 1)n1. Since there holds that a − εl >

b + εl, we obtain

H1[K(ε) + l] ∩ H2[K(ε) + l] = ∅. (10)

Next, we prove that at least one of the following conditions
is satisfied:

1) H1[K(ε) + n1(d + 1) − l] = ∅, l = 0, 1, . . . , d + 1

(11)

2) H2[K(ε) + n1(d + 1) − l] = ∅, l = 0, 1, . . . , d + 1

(12)

Because {x(tk)} is a nonincreasing sequence with the limit a,
we obtain

x(tK(ε)+d) = max{zN(tK(ε)+d)}
= max{xN(tK(ε)+d), . . . , xN(tK(ε))} ≥ a.

Therefore, there exists i ∈ VN such that at least one of the
following conditions is satisfied:

1) xi(tK(ε)+d) ≥ a > a − εd;
2) xi(tK(ε)+d−1) ≥ a > a − εd−1;

...

d + 1)xi(tK(ε)) ≥ a > a − ε0.

As a result, we have
⋃d

l=0
H1[K(ε) + l] �= ∅. (13)

For H1[K(ε)], we can prove that it is nonempty by con-
tradiction. Assume that H1[K(ε)] = ∅, which means that
xj(tK(ε)) ≤ a − ε0 for all j ∈ VN . Furthermore, it follows
from (6) and Lemma 4 that:

xj
(
tK(ε)+1

) ≤ (1 − θ)x
(
tK(ε)

) + θ(a − ε0)

≤ (1 − θ)(a + ε) + θ(a − ε0)

= a − ε1 (14)

for all j ∈ VN . Therefore, we have H1[K(ε) + 1] = ∅.
Similarly, it can be proved that H1[K(ε) + l] = ∅ for
l = 2, . . . , d. Then, we obtain

⋃d

l=0
H1[K(ε) + l] = ∅

which is contrary to (13). Therefore, one has H1[K(ε)] �= ∅.
Similarly, it is established that H2[K(ε)] �= ∅. As a result,
it follows from (10) that H1[K(ε)] and H2[K(ε)] are a pair
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of nonempty and disjoint subsets. From Lemma 3, since
GT (VT , ET ) satisfies the conditions i) and ii), we have

XVT
H1[K(ε)] ∪ XVT

H2[K(ε)] �= ∅. (15)

If XVT
H1[K(ε)] �= ∅, then for any h ∈ XVT

H1[K(ε)] ⊆ H1[K(ε)],
there exists a trusted agent e ∈ Nh∩(VT \H1[K(ε)]) satisfying
xe(tK(ε)) ≤ a − ε0. Based on the discussion above, one has
e /∈ H1[K(ε) + l] for 0 ≤ l ≤ d. Therefore, we can obtain the
following results:

xe(tK(ε)) ≤ a − ε0 < a − εd,

xe(tK(ε)+1) ≤ a − ε1 < a − εd,

...

xe(tK(ε)+d−1) ≤ a − εd−1 < a − εd,

xe(tK(ε)+d) ≤ a − εd.

From (6) and Lemma 4, at least one of the above results is
used in the update process at tK(ε)+d+1, it is derived that

xh(tK(ε)+d+1) ≤ (1 − θ)x(tK(ε)+d) + θ(a − εd)

≤ (1 − θ)(a + ε) + θ(a − εd)

= a − εd+1.

Therefore, one has h /∈ H1[K(ε) + d + 1]. In addition, if a
normal agent j /∈ H1[K(ε)], then it can be easily obtained
that j /∈ H1[K(ε) + d + 1]. We have |H1[K(ε) + d + 1]| <

|H1[K(ε)]|. Similarly, we have |H2[K(ε) + d + 1]| <

|H2[K(ε)]| if XVT
H2[K(ε)] �= ∅. As a result, we conclude that

|H1[K(ε) + d + 1]| + |H2[K(ε) + d + 1]|
< |H1[K(ε)]| + |H2[K(ε)]|.

If at least one of H1[K(ε) + d + 1] and H2[K(ε) + d + 1]
is the empty set, correspondingly, we can easily prove that
H1[K(ε) + l] = ∅ or H2[K(ε) + l] = ∅ for all l ∈ {d +
1, . . . , n1(d + 1)}. Therefore, at least one of (11) and (12) is
satisfied. If both H1[K(ε) + d + 1] and H2[K(ε) + d + 1] are
nonempty, we can similarly prove that

|H1[K(ε) + 2(d + 1)]| + |H2[K(ε) + 2(d + 1)]|
< |H1[K(ε) + d + 1]| + |H2[K(ε) + d + 1]|.

Due to the fact that |H1[K(ε)]|+|H2[K(ε)]| ≤ n1, by analogy,
at least one of (11) and (12) is satisfied. Assume that (11) is
satisfied. That is to say, for any i ∈ VN , the following results
are established:

xi(tK(ε)+n1(d+1)) ≤ a − εn1(d+1) < a

xi(tK(ε)+n1(d+1)−1) ≤ a − εn1(d+1)−1 < a
...

xi(tK(ε)+n1(d+1)−d) ≤ a − εn1(d+1)−d < a.

Therefore, we have

max{zN(tK(ε)+n1(d+1))} = x(tK(ε)+n1(d+1)) < a.

However, {x(tk)} is a nonincreasing sequence with the limit a,
which means that x(tK(ε)+n1(d+1)) ≥ a. It is a contradiction.

The assumption a > b does not hold. We have a = b. The
agreement condition is proved.

Next, we prove the safety condition.
1) When t = tk: From p2 ≥ 1, it is easy to know that

[ min{zN(0)}, max{zN(0)}] ⊆ �. Therefore, we have
x(0) ∈ � and x(0) ∈ �. From the monotonicity and
the definition of {x(tk)} and {x(tk)}, one has xi(tk) ∈ �

for any i ∈ VN and k ∈ N.
2) When t �= tk: Based on the resilient delayed impulsive

control (2), vi(t) is constant at each sampling interval.
Therefore, xi(t) is monotonous at each sampling interval.
From the above result that xi(tk) ∈ �, we obtain xi(t) ∈
� for any i ∈ VN and t ∈ (tk, tk+1).

In summary, we have xi(t) ∈ � for any i ∈ VN and t ∈
[0,∞). The safety condition is proved.

(Necessity) We prove it by contradiction. The following two
cases should be taken into consideration.

1) Assume that the subgraph GT does not satisfy the condi-
tion i): From Lemma 2, there exists a pair of nonempty
disjoint subsets VT1 , VT2 ⊂ VT such that for any i ∈ VT1 ,
j ∈ VT2 , there hold that Ni ∩ (VT \VT1) = ∅ and
Nj ∩ (VT \VT2) = ∅. Let dij[k] = 0 for i, j ∈ V, k ∈ N.
We consider the following initial condition:

{
xj(0) = c1, vj(0) = 0, j ∈ VT1

xj(0) = c2, vj(0) = 0, j ∈ V\VT1

where c1 and c2 are the arbitrary real numbers not equal
to each other. For any i ∈ VT1 , from the resilient delayed
impulsive control algorithm, one has Ri[0] = {c1}.
Therefore, we have ui(t) = 0 for t ∈ [0, t1). Then, it is
derived that vi(t1) = vi(0) = 0 and xi(t1) = xi(0) = c1
for any i ∈ VT1 . Similarly, we have

xi(tk) = xi(tk−1) = . . . = xi(t1) = xi(0) = c1

for k ∈ Z+. The same is true for any j ∈ VT2 , we obtain
xj(tk) = c2 for k ∈ Z+. Due to the fact that c1 �= c2,
resilient consensus is not achieved.

2) Assume that the subgraph GT does not satisfy the con-
dition ii): According to the condition ii), there exists a
nontrusted agent i such that Ni ∩ VT = ∅. Assume that
the nontrusted agent i ∈ VN \VT and Ni ⊆ VM. Let
dij[k] = 0 for i, j ∈ V, k ∈ N. Consider the following
initial condition:

{
xj(0) > r1, vj(0) = 0, j ∈ Ni ∪ {i}
xj(0) < r1, vj(0) = 0, j /∈ Ni ∪ {i}

where r1 is the arbitrary real number. For the nontrusted
agent i ∈ VN \VT , from the resilient delayed impulsive
control algorithm, one has Ri[0] = {xi(0)}. Therefore,
we have ui(t) = 0 for t ∈ [0, t1). Then, it is derived that
vi(t1) = vi(0) = 0 and xi(t1) = xi(0) > r1. Similarly,
we have

xi(tk) = xi(tk−1) = . . . = xi(t1) = xi(0) > r1

for k ∈ Z+. For any q ∈ VN \{i}, from the fact that

xN(t1) = ([
In1 0

] − p1TL[0]
)
x(0)
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we have xq(t1) ∈ co{x1(0), x2(0), . . . , xn(0)}. Based on
the resilient delayed impulsive control algorithm, the
positions of the neighbors of agent q greater than or
equal to r1 will be filtered out. Therefore, one has
xq(t1) < r1. From (6), we have

xN(t2) = [
W3[1] W4[1]

]
[

x(t1)
xN(0)

]

. (16)

Based on the resilient delayed impulsive control algo-
rithm, it is obtained that xq(t2) < r1 for q ∈ VN \{i}.
Similarly, it is derived that xq(tk) < r1 for k ∈ Z+.
However, we have xi(tk) > r1 for k ∈ Z+. Therefore,
resilient consensus is not achieved.

Corollary 1: Assume that the inequalities (7) are satisfied,
then the resilient consensus of MAN (1) without communi-
cation delays can be achieved if and only if the subgraph
GT (VT , ET ) induced by trusted agents satisfies the condi-
tions i) and ii) in Theorem 1. Moreover, the safety interval
is given by

� = [
min{xN(0)} + (1 − p2)T max{0, vN(0)},

max{xN(0)} + (1 − p2)T min{0, vN(0)}].
Remark 6: Based on Theorem 1 and Corollary 1, the

proposed resilient delayed impulsive control can ensure the
resilient consensus no matter what the number of the malicious
agents is. However, in the previous results [28]–[36], the com-
munication topologies have to be constructed according to the
upper bound f on the number of the malicious agents. In other
words, the MANs only can resist a limited number of mali-
cious agents for the given communication topology. Actually,
except for trusted agents, all other agents may become mali-
cious agents under attacks. Once the number of malicious
agents is greater than the pre-set parameter f , the resilient
consensus cannot be guaranteed.

Remark 7: Compared with the traditional graphic condi-
tions based on graph robustness in [28]–[36], the graphic
conditions established in Theorem 1 and Corollary 1 are more
intuitive and easier to check and verify.

IV. SIMULATION STUDIES

In this section, simulation examples are given to confirm
the results in this article.

Consider MAN (1), respectively, cooperating on the
digraphs G1 and G2, which are shown in Fig. 1(a) and (b).
The green nodes represent trusted agents. Except for trusted
agents, all other agents may become malicious agents under
attacks. It is easy to verify that the subgraphs GT1 and GT2

induced by trusted agents both satisfy the conditions i) and
ii) in Theorem 1. Throughout the simulation studies, for the
adjacency matrix A, we take aij = 1/|Ni| if j ∈ Ni, otherwise,
let aij = 0. The control gains p1 and p2 and the sampling
period T are taken as 1, 1.5, and 0.25s, respectively. Since the
information is only measured and sent at the sampling instant
tk = kT, k ∈ N, the communication delays are assumed to
choose randomly from {0.25s, 0.5s, 0.75s, 1s}.

First, we confirm the sufficiency of Theorem 1. We assume
that node 5 in Fig. 1(a) is the malicious agent evolving with

Fig. 1. (a) Digraph G1, where the subgraph GT1
induced by the set of

trusted agents VT1
= {1, 2} satisfies the conditions i) and ii) in Theorem 1.

(b) Digraph G2, where the subgraph GT2
induced by the set of trusted agents

VT2
= {1, 2, 3} satisfies the conditions i) and ii) in Theorem 1.

x5(t) = 10. The initial condition of normal agents is assumed
to be [x1(t), x2(t), x3(t), x4(t); v1(t), v2(t), v3(t), v4(t)] =
[8, 2, 0, 9; 3, 4, 1, 6], t ∈ [ − 1, 0] s. Based on (8), the safety
interval � = [ − 0.75, 9]. Under the proposed resilient delayed
impulsive control, the corresponding trajectories are shown
in Fig. 2(a). We can see that the agreement condition and
safety condition in Definition 1 are both satisfied in this
case. Furthermore, we consider the case that nodes 4 and 5
in Fig. 1(a) are the malicious agents evolving with x4(t) =
2 cos t + 6 and x5(t) = 1 + |t − 6|/3. The initial condi-
tion of normal agents [x1(t), x2(t), x3(t); v1(t), v2(t), v3(t)] =
[5, 10, 0; 3, 4, 1], t ∈ [ − 1, 0]s. Thus, it is obtained that the
safety interval � = [ − 0.5, 10]. From Fig. 2(b), it is obvious
that the agreement condition and safety condition are also both
satisfied.

In order to further confirm the correctness of the suf-
ficiency. The digraph G2 shown in Fig. 1(b) is consid-
ered as the communication topology of MAN (1). Node
10 is assumed to be the malicious agent evolving with
x10(t) = 5 + 4 sin t. The initial condition of normal agents
is [8, 4.5, 3, 1, 7, 2, 10, 1, 3;−6,−1, 1, 2, 1.5, 3, 0, 0, 0], t ∈
[ − 1, 0]s. By calculation, we have � = [0.625, 10.75].
The trajectories in Fig. 3(a) illustrate that the agreement
condition and safety condition are both satisfied. Next, we
assume that nodes 7–10 in Fig. 1(b) are the malicious
agents. It is assumed that they, respectively, evolve with
x7(t) = 7, x8(t) = rand(t)[1, 3], x9(t) = 5 + cos t, and
x10(t) = rand(t)[7, 10]. The initial condition of normal agents
is [8, 4.5, 3, 1, 7, 2;−6,−1, 1, 2, 1.5, 3], t ∈ [ − 1, 0]s. Thus,
we have � = [0.625, 8.75] from (8). Under the resilient
delayed impulsive control, the trajectories of MAN (1) are
shown in Fig. 3(b). As expected, the agreement condition and
safety condition are also both satisfied.

Next, we confirm the necessity of the conditions i) and ii) in
Theorem 1 for achieving resilient consensus. For the digraph
G2 in Fig. 1(b), we assume that node 10 is the malicious agent
evolving with x10(t) = 5+4 sin t. If the directed edge (2, 3) in
digraph G2 is removed, then only condition ii) in Theorem 1 is
satisfied. In this case, the trajectories of MAN (1) are shown
in Fig. 4(a). Obviously, the agreement condition is not sat-
isfied. Therefore, condition i) in Theorem 1 is necessary for
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(b)(a)

Fig. 2. (a) Trajectories of MAN (1) cooperating on Fig. 1(a), where node 5 is assumed to be the malicious agent evolving with x5(t) = 10. (b) Trajectories
of MAN (1) cooperating on Fig. 1(a), where nodes 4 and 5 are assumed to be the malicious agents evolving with x4(t) = 2 cos t + 6, x5(t) = 1 + |t − 6|/3.

Fig. 3. (a) Trajectories of MAN (1) cooperating on Fig. 1(b), where node 10 is assumed to be the malicious agent evolving with x10(t) = 5 + 4 sin t.
(b) Trajectories of MAN (1) cooperating on Fig. 1(b), where nodes 7–10 are assumed to be the malicious agents evolving with x7(t) = 7, x8(t) = rand(t)[1, 3],
x9(t) = 5 + cos t, and x10(t) = rand(t)[7, 10].

Fig. 4. (a) Trajectories of MAN (1) cooperating on the digraph, where GT only satisfies the condition ii) in Theorem 1. (b) Trajectories of MAN (1)
cooperating on the digraph, where GT only satisfies the condition i) in Theorem 1.

achieving resilient consensus of MAN (1). If we remove the
directed edge (3, 6) in digraph G2, then only the condition i)
in Theorem 1 is satisfied. After applying the resilient delayed

impulsive control, we can see that the agreement condition is
also not satisfied from Fig. 4(b). Therefore, condition ii) in
Theorem 1 is also necessary for achieving resilient consensus.
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In summary, the sufficiency and necessity of Theorem 1 are
confirmed by the above simulation studies.

V. CONCLUSION

In this article, we have designed a novel resilient delayed
impulsive control to achieve the resilient consensus of
MAN (1), in which the number of the unexpected mali-
cious agents is unknown. It has been proved that the resilient
consensus can be achieved if and only if certain graphic con-
ditions are satisfied. By introducing trusted agents, we have
shown that the resilient consensus can be achieved even in the
sparse communication topology. Simulation studies have been
presented to validate the resilient delayed impulsive control.

Compared with the traditional resilient consensus algo-
rithms, the proposed resilient delayed impulsive control algo-
rithm does not require any information on the number of
the malicious agents. However, the resilient delayed impul-
sive control also has some cons. For details, all agents are
not treated equally. The received information from the trusted
agents requires to be labeled, namely, whether an agent is
trusted or not needs to be previously known. This deficiency
needs to be overcome in the future.

It is of interest to further develop the proposed resilient
consensus control algorithm, such as switching topologies,
event-triggered communications, and quantization.
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