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Abstract

The first two chapters of this thesis are devoted to a question of Vitali Milman about the
existence of well-complemented almost Euclidean subspaces of spaces uniformly isomorphic
to ℓn2 . First, we show that there exist constants α, ϵ > 0 such that for every positive integer
n there is a continuous odd function ψ : Sm → Sn, with m ≥ αn, such that the ϵ-expansion
of the image of ψ does not contain a great circle. We also show how this result is connected
to the aforementioned conjecture, more precisely that it allows to build a counterexample
to a variation of the question.

We then, in the second chapter, present an example of a normed space X of arbitrarily
high dimension that is strongly 2-Euclidean but contains no 2-dimensional subspace that is
strongly (1 + ϵ)-Euclidean and strongly (1 + ϵ)-complemented, where ϵ > 0 is an absolute
constant. This is a counterexample to the “strong” Milman problem.

The second part of this thesis involves topics related to optimal transport theory. The
third chapter focuses on cost induced transforms. In particular, a family of order reversing
isomorphisms At, which are related to the polarity transform A, is discussed. We prove
that At is the unique, up to linear terms, order-reversing isomorphism on its image class.

In the last chapter, we give a new proof of the Rockafellar-Rüschendorf theorem about
the existence of a potential for a given c-cyclically monotone set with a real-valued cost
function. We then generalize the theorem to non-traditional cost functions, i.e. those which
may also take the value +∞, and prove that a necessary and sufficient condition for the
existence of a potential is that of c-path-boundedness. Finally, we apply our theorem to
show that for a continuous cost function and a compact, c-cyclically monotone set which is
“bounded away from infinity” one gets a potential.
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Chapter 1

High-dimensional tennis balls

This chapter is based on joint work with W. T. Gowers and it is organised as follows.
The first section serves as an introduction to some classical notions and results regarding
geometry of finite-dimensional Banach spaces, which lays the ground for formulating a
conjecture of V. Milman. We then consider a variant of the question which asks for a
stronger conclusion. Other reformulations of the question are also considered.

In the second section, we relate the above mentioned question with our main result,
which is the existence of a high-dimensional tennis ball, i.e. we prove the existence of
constants α, ϵ > 0 such that for every large enough natural number n there is a continuous
odd function ψ : Sm → Sn, with m = αn, such that the ϵ-expansion of the image of ψ does
not contain a great circle.

In the third section a construction of a tennis ball map ψ is presented and an explanation
of the main steps of the proof are outlined. We then, in sections four and five, present the
full argument.

The final section is the summary of the proof and some final comments on the link
between our construction and Milman’s question.

1.1 Background and Introduction
In 1961, Dvoretzky [7] proved, answering an important question posed by Grothendieck
[9], that there exists N = N(k, ϵ) such that for every normed space (X, ∥ · ∥) of dimension
n ≥ N one can find a k-dimensional subspace Y of X such that dBM (Y, ℓk2) ≤ 1 + ϵ, where
dBM denotes the Banach-Mazur distance:
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Definition 1.1.1. Banach-Mazur distance between two Banach spaces X and Y is defined
by

dBM(X, Y ) = inf{∥T∥∥T−1∥ : T ∈ GL(X,Y)}.

The sharp dependence of N on k was established in 1971 by Milman [13], who also
showed that the conclusion of Dvoretzky’s theorem in fact holds for a random subspace (of
appropriate dimension) with probability close to 1.

Let us call a normed space X = (Rn, ∥ · ∥) C-Euclidean if d(X, ℓn2 ) ≤ C. A fairly
straightforward use of Milman’s method yields the following statement.

Theorem 1.1.2. For every C > 1 and every ϵ > 0 there exists c > 0 such that for every
n ∈ N, every n-dimensional C-Euclidean normed space X has a subspace Y of dimension
at least cn which is (1 + ϵ)-Euclidean.

In other words, under the additional hypothesis that X is C-Euclidean, one can obtain a
linear dependence between the dimension of Y and the dimension of X.

Milman’s proof of Dvoretzky’s theorem exploited measure concentration and led to
an explosion of activity in the theory of finite-dimensional normed spaces and to many
striking results about the subspace structure of a normed space, often with surprisingly
weak hypotheses on the space. Most of these results concerned the subspaces and not their
relationship with the space itself. However, a desirable property for a subspace Y ⊂ X

is that it should be complemented. In an infinite-dimensional context, one says that Y is
complemented if Y = PX for a continuous projection P on X. In a finite-dimensional
context, we need a more quantitative definition:

Definition 1.1.3. Let (X, ∥ · ∥) be an n-dimensional normed space. A subspace Y of X is
called α-complemented if there exists a projection P such that Y = PX and the operator
norm of P is at most α, i.e.

∥Px∥ ≤ α∥x∥ for all x ∈ X.

There are several open problems about the existence of complemented subspaces. For
example, it is not known whether there is a constant C and a function f : N → N that tends
to infinity such that every n-dimensional normed space has a C-complemented subspace of
dimension and codimension at least f(n). (For a partial result in this direction, see [21].)

The results presented in the first and second chapter of this thesis originate from
considering the following question of Milman.
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Question 1.1.4. Let k ∈ N, C ∈ R, and ϵ > 0. Does there exist N = N(C, k, ϵ) ∈ N such
that every C-Euclidean normed space X of dimension n ≥ N has a k-dimensional subspace
Y which is both (1 + ϵ)-Euclidean and (1 + ϵ)-complemented?

We do not quite answer this question, but we give a negative answer to a question that
is sufficiently close to Milman’s that it seems highly unlikely that Milman’s question has a
positive answer. To describe our result, we introduce two further definitions.

Definition 1.1.5. A normed space X = (Rn, ∥ · ∥) is called strongly C-Euclidean if there
is a constant t > 0 such that t|x| ≤ ∥x∥ ≤ tC|x| for every x ∈ X, where | · | denotes the
standard Euclidean norm on Rn.

Definition 1.1.6. A subspace Y of X = (Rn, ∥ · ∥) is called strongly α-complemented if the
orthogonal projection PY : X → Y has norm at most α, i.e. ∥PY x∥ ≤ α∥x∥ for all x ∈ X.

Let us note that the first definition is stronger than just being C-Euclidean, because
instead of merely asking for any linear map T such that |x| ≤ ∥Tx∥ ≤ C|x|, we ask for
T to be a multiple of the identity. Clearly, the second definition is also stronger than its
previously defined counterpart 1.1.3 as we require that the projection is orthogonal.

These are natural strengthenings to consider, since Milman’s proof of Theorem 1.1.2 in
fact yields strongly (1 + ϵ)-Euclidean subspaces. Moreover, it seems quite unlikely that the
Question 1.1.4 would have a positive answer unless the following question, which appears
to be a little more approachable, also has a positive answer.

Question 1.1.7. Let k ∈ N, let C ∈ R, and let ϵ > 0. Does there exist n ∈ N such that
every strongly C-Euclidean normed space X of dimension at least n has a k-dimensional
subspace Y that is strongly (1 + ϵ)-Euclidean and strongly (1 + ϵ)-complemented?

In the next chapter we will show that this question has a negative answer. However, we
begin with an earlier result which is linked to the above question, but is also interesting in
itself. In order to do so, we introduce a notion of ϵ-good point.

1.1.1 Reformulation of the problem

We shall now introduce a crucial definition that allows us to reformulate, in a convenient
way, the condition that a subspace is both strongly (1 + ϵ)-Euclidean and strongly (1 + ϵ)-
complemented. By ⟨· , ·⟩ we denote the standard inner product.



4 High-dimensional tennis balls

Definition 1.1.8. Let X = (Rn, ∥ · ∥) be a normed space and let x ∈ X. We say that x is
ϵ-good if

⟨x, z⟩ ≤ (1 + ϵ)∥z∥
∥x∥

|x|2,

for every vector z ∈ Rn.

To see what this means geometrically, consider the orthogonal projection Px onto the
1-dimensional subspace of Rn generated by x. Writing x′ for the normalized vector x/|x|,
this has the formula

Pxz = ⟨x′, z⟩x′.

Hence, the operator norm of Px (as a map from X to X) is the maximum of the quantity

|⟨x′, z⟩|∥x′∥
∥z∥

= |⟨x, z⟩|∥x∥
|x|2 ∥z∥

over all z ∈ Rn. It follows that x is ϵ-good if and only if the orthogonal projection Px

has norm at most 1 + ϵ in the space L(X) of linear operators from X to X. Clearly, the
definition of ϵ-good point does not depend on the norm of the vector and hence it is enough
to consider unit vectors. Let us write Sn = {x ∈ Rn+1 : |x| = 1}.

We now show that a subspace Y of a space X is strongly (1 + ϵ)-Euclidean and strongly
(1 + ϵ)-complemented for some small ϵ if and only if every y ∈ Y is δ-good for some small δ.

Lemma 1.1.9. Let X = (Rn, ∥ · ∥) be a normed space and let Y ⊂ X be a subspace. Then

(i) if Y is strongly (1 + ϵ)-complemented and strongly (1 + ϵ)-Euclidean, then every y ∈ Y

is (2ϵ+ ϵ2)-good.

(ii) if ϵ ≤ 1/9π2 and every point in Y is ϵ-good, then Y is strongly (1 + ϵ)-complemented
and strongly (1 + 3π

√
ϵ)-Euclidean.

Before we prove the statement, let us note that this characterization is a reason why
Question 1.1.7 is easier to attempt than the original one. Clearly, Question 1.1.7 is equivalent
to

Question 1.1.10. Let ϵ > 0, C ≥ 1 and k ∈ N. Does there exist n such that if ∥ · ∥ is a
norm on Rn such that |x| ≤ ∥x∥ ≤ C|x| for every x ∈ Rn, then the space (Rn, ∥ · ∥) has a
subspace Y of dimension k such that every y ∈ Y is ϵ-good?

Proof of Lemma 1.1.9. Let PY be the orthogonal projection onto Y . If Y is strongly (1+ ϵ)-
Euclidean and strongly (1 + ϵ)-complemented, then ∥PY x∥ ≤ (1 + ϵ)∥x∥ for every x ∈ X
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and there exists λ ∈ R such that λ|y| ≤ ∥y∥ ≤ (1 + ϵ)λ|y| for every y ∈ Y . From this it
follows that for every y ∈ Y and every x ∈ X we have

⟨y, x⟩ = ⟨y, PY x⟩ ≤ |y| |PY x| ≤ |y| 1
λ

∥PY x∥ ≤ (1 + ϵ)λ |y|2

∥y∥
1
λ

(1 + ϵ)∥x∥ = (1 + ϵ)2 ∥x∥
∥y∥

|y|2,

which implies that every point y in Y is (2ϵ+ ϵ2)-good, as claimed.
Conversely, assume that every point in Y is ϵ-good, so that for every y ∈ Y and every

x ∈ X we have the inequality

⟨y, x⟩ ≤ (1 + ϵ)∥x∥
∥y∥

|y|2.

Choose x ∈ X. Then PY x ∈ Y , so

|PY x|2 = ⟨PY x, PY x⟩ = ⟨PY x, x⟩ ≤ (1 + ϵ) ∥x∥
∥PY x∥

|PY x|2,

and therefore ∥PY x∥ ≤ (1 + ϵ)∥x∥. It follows that Y is strongly (1 + ϵ)-complemented.
Now assume for a contradiction that the subspace Y is not strongly (1 + a)-Euclidean

with 0 < a. In particular, this means that we can find two unit vectors y, w ∈ Y such that
∥y∥ = ∥w∥(1 + a). Without loss of generality we may assume that a ≤ 1/2, because if we
can find unit vectors y, w ∈ Y such that ∥y∥ = ∥w∥(1 + a) then we can find y′ such that
∥y′∥ = ∥w∥(1 + a′) for any a′ ≤ a.

Let us consider a sequence of unit vectors w = x0, x1, . . . , xm−1, xm = y that are equally
spaced along the shortest arc that joins w to y (which is unique, since w cannot equal −y).
By the pigeonhole principle there exists i such that

∥xi∥(1 + a)1/m ≤ ∥xi+1∥.

We shall choose m in a way which ensures that xi is a witness for xi+1 not being ϵ-good.
Indeed, if we assume that m is at least 3π2/a then since the angle between xi and xi+1 is
at most π/m we get that

⟨xi+1, xi⟩
∥xi+1∥

∥xi∥ |xi+1|2
≥ cos(∠xixi+1)(1 + a)1/m ≥

(
1 − π2

2m2

)(
1 + a

m
− a2

2m

)

≥ 1 + a

m
− a2m2 + π2m+ π2a

2m3 ≥ 1 + a

2m.
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We used the fact that for 0 < k < 1 and a > 0 we have that (1 + a)k ≥ 1 + ak − a2 k(1−k)
2 ≥

1 + ak − a2k
2 , and assumptions that 0 < a ≤ 1/2 and m ≥ 3π2/a.

It follows that the point xi+1 is not a
2m -good. Therefore, if every point is ϵ-good, we

must have that a
⌈6π2/a⌉ ≤ ϵ, which implies that a ≤ 3π

√
ϵ. Thus, we find that Y is strongly

(1 + 3π
√
ϵ)-Euclidean, which completes the proof.

We now reformulate the definition of an ϵ-good point so that it can be applied not just
to norms but to more general functions, with the aim of finding a generalization of Question
1.1.7 that does not rely on convexity.

Before we state the result, let us recall that a support functional of a norm ∥ · ∥ at x is
any non-zero linear functional f such that for every y with ∥y∥ ≤ ∥x∥ we have f(y) ≤ f(x).
Note that if the norm is differentiable, then writing f(x) for ∥x∥, we have that any multiple
of f ′(x) is a support functional at x.

Proposition 1.1.11. Let (X, ∥ · ∥) be a normed space and suppose that |x| ≤ ∥x∥ ≤ C|x|
for every x ∈ X. For every δ > 0 there exists ϵ > 0 such that if x ∈ X is any ϵ-good point,
then there exist y, z such that |x| = |y|, |x− y| < δ|x|, z is a support functional for y, and
|y − z| < δ|x|. Conversely, for every ϵ > 0 there exists δ > 0 such that x is an ϵ-good point
if there exist y, z such that |x− y| < δ|x|, z is a support functional for y, and |y− z| < δ|x|.

Proof. We shall do the second part first. Let 0 < ϵ ≤ 1 and suppose that there exist y, z
such that z is a support functional for y, and |y − x| and |z − y| are both at most δ|x|.

Now let w ∈ X. Then

⟨w, x⟩ ≤ ⟨w, y⟩ + δ|w||x| ≤ ⟨w, z⟩ + 2δ|w||x|.

But z is a support functional for y, so

⟨w, z⟩ ≤ ∥w∥ ∥z∥∗ = ∥w∥⟨y, z⟩
∥y∥

We also have that

∥y∥ ≥ ∥x∥ − C|x− y| ≥ ∥x∥ − Cδ|x| ≥ (1 − Cδ)∥x∥.

Finally, since |x− z| ≤ 2δ|x| we have

⟨y, z⟩ ≤ ⟨x, z⟩ + δ|x||z| ≤ |x|2 + 2δ|x|2 + δ|x|2(1 + 2δ) ≤ (1 + δ)(1 + 2δ)|x|2.
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Putting all this together, we find that

⟨w, x⟩ ≤ (1 + δ)(1 + 2δ)
1 − Cδ

∥w∥
∥x∥

|x|2 + 2δ|w||x| ≤
((1 + δ)(1 + 2δ)

1 − Cδ
+ 2Cδ

)∥w∥
∥x∥

|x|2.

It can be checked that if we set δ = ϵ/5C, then the factor in brackets is at most 1 + ϵ.
For the other direction, assume that for all y such that |y| = |x| and |x− y| < δ|x| we

have that |y − z| > δ|x|, where z is the support functional at y. We will choose z such that
|z| = |y|.

We can assume that |x| = 1 and that for every unit vector y with |y − x| < δ, we
have that |y − z| ≥ δ. It follows that the component of z orthogonal to y has size at
least δ/2, which comes from the fact that we chose z with |z| = |y| = 1 and hence
⟨z, y⟩ = 1 − |z − y|2/2 ≤ 1 − δ2/2 and |z − ⟨y, z⟩y|2 = 1 − ⟨y, z⟩2. Further, we have that
|z| ≥ 1 for every y (since ∥y + w∥ = ∥y∥ + ∥w∥ ≥ ∥y∥ + |w| when w is a positive multiple
of y), so for every unit vector y in the δ-neighborhood of x, the component of z orthogonal
to y also has size at least δ/2.

It follows that for any γ < δ we can find a path on the unit sphere that starts at x and
ends at a point at distance at least γ from x such that the norm ∥ · ∥ decreases at a rate of
at least δ/2 along the path. This gives us a unit vector ȳ such that |ȳ − x| ≤ γ and

∥ȳ∥ ≤ ∥x∥ − γδ/2 ≤ ∥x∥(1 − γδ/2C).

It follows that ⟨x, ȳ⟩ > 1 − γ2/2, so

⟨x, ȳ⟩ > (1 − γ2/2)
(1 − γδ/2C)

∥ȳ∥
∥x∥

|x|2.

Setting γ = δ/2C, we deduce that x is not δ2/8C2-good.

As mentioned before, if f(x) = ∥x∥ is a differentiable function then f ′(x) is a multiple
of the support functional at x ∈ Sn. A byproduct of the second part of the proof is that
we may take z = f ′(y)

|f ′(y)| . Therefore, up to the dependence between ϵ and δ, we have that
x ∈ Sn is ϵ-good if and only if there exists y ∈ Sn with |x− y| < δ and |y − f ′(y)

|f ′(y)| | < δ.
Note that the latter condition is equivalent to |f ′(y)|(1 − δ2

2 ) < ⟨y, f ′(y)⟩ and since we
have that 1 ≤ |f ′(x)| ≤ C, we get

|Py⊥f ′(y)| = |f ′(y) − ⟨y, f ′(y)⟩y| ≤ C(δ2 − δ4

4 )1/2 ≤ Cδ,
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where Py⊥ denotes the orthogonal projection onto the hyperplane orthogonal to y. Similarly
one can easily find that the condition on |Py⊥f ′(y)| being small implies that |y − f ′(y)

|f ′(y)| |
is small (with some slightly changed constants). Therefore we get that for every δ there
exists ϵ, such that if a point x ∈ Sn is ϵ-good then there exists y ∈ Sn with |x− y| < δ and
|Py⊥f ′(y)| < δ.

Since it is enough to look only at unit vectors, if we consider a restriction of f , which
is the function from the sphere (and call it again f : Sn → R), then the above condition
means that the norm of the gradient of f at y must be small. For simplicity, instead of
∇Snf , we will write f ′ for the gradient of a function from the sphere.

This motivates the following definition of a good∗ point for any differentiable function:

Definition 1.1.12. Let f : Sn → R be a differentiable function. We shall say that x ∈ Sn

is δ-good∗ if there exists y ∈ Sn with |x− y| < δ and |f ′(y)| < δ.

Clearly, due to Lemma 1.1.11 and the above remarks, we get that if f is a restriction of
a norm, then definitions 1.1.12 and 1.1.8 are equivalent (up to the dependence between ϵ

and δ).
We now note a simple fact about δ-good∗ points.

Lemma 1.1.13. Let f : Sn → R be a differentiable function and let x ∈ Sn be a δ-good∗

point for f . Then if ψ : Sn → Sn is an invertible differentiable function such that both ψ
and ψ−1 have Lipschitz constant at most α, then ψ−1(x) is an αδ-good∗ point for f ◦ ψ.

Proof. Assume that ψ−1(x) is not αδ-good∗ for f ◦ψ. For every y ∈ Sn such that d(x, y) < δ

we have that d(ψ−1(x), ψ−1(y)) ≤ αδ and it follows that |(f ◦ ψ)′(ψ−1(y))| ≥ αδ. But
(f ◦ ψ)′(ψ−1(y)) = ψ′(ψ−1(y))∗(f ′(y)), and by the bi-Lipschitz property of ψ, this has
magnitude at most α|f ′(y)|. Hence, we get that |f ′(y)| ≥ δ, which means that x is not
δ-good∗ and the result follows.

We conclude this section with a further question related to Milman’s question.

Question 1.1.14. Let δ > 0 and let k ∈ N. Does there exist n such that if f : Sn → [0, 1]
is any differentiable even function, then there exists a subsphere SY of Sn of dimension k

that consists only of δ-good∗ points?

Note that when analyzing the connection between the above question and Question
1.1.7 one needs to take into account the dependence of δ and ϵ explained in Proposition
1.1.11. Nevertheless, if the answer to the Question 1.1.14 is yes (or if it is yes under the
additional assumption that f is a Lipschitz function), then also the answer to the “strong”
Milman’s question 1.1.7 is yes.
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1.2 Concentration of measure and tennis balls
Concentration of measure is a phenomenon extending an idea going back to the work of
Lévy [12] concerning isoperimetric inequality on the sphere. It appears that the surface
area of the ϵ-expansion of a set A ⊂ Sn, defined by Aϵ = {x ∈ Sn : d(x,A) < ϵ}, is
minimized for a given measure of A, when A is a spherical cap. Then a straightforward
calculation shows that in high dimensions the mass of σ concentrates around the equator.
More generally, for any measurable set A with σ(A) ≥ 1/2, almost all points (in the sense
of the measure σ) on Sn are within geodesic distance n−1/2 from A.

Now, suppose we wish to find a counterexample to Question 1.1.7. As noted before, we
may as well ask for the norm to be differentiable, and then from Proposition 1.1.11 follows
that a point x will be ϵ-good if it is close to a point where the derivative is small. This
implies that the set of points with small derivative must have very small measure, since
otherwise by measure concentration its expansion will have measure very close to 1 and
hence with high probability it will contain a random k-dimensional subspace.

This kind of observation already rules out many potential methods of constructing
counterexamples. For instance, if one chooses a random collection of N unit vectors
u1, . . . , uN for appropriate N and defines ∥x∥ to be maxi |⟨x, ui⟩|, then for almost all x ∈ Sn

the value of ∥x∥ will be close to its minimum, which implies that x is ϵ-good.
However, there do exist norms that are C-equivalent to the Euclidean norm and have

the property that the set of ϵ-good points has small measure. A simple example of such a
norm is the weighted ℓ2-norm given by the formula

∥x∥2 =
∑
i≤n/2

2x2
i +

∑
i>n/2

x2
i .

Letting A be the diagonal matrix with the first n/2 entries equal to 2 and the rest equal to
1, we can write the right-hand side as ⟨x,Ax⟩. When x ̸= 0, the derivative of this norm at
x is Ax/∥x∥, or if we regard the norm as a function defined on Sn−1, it is the projection of
Ax/∥x∥ on to the subspace orthogonal to x. Thus, a point x is 0-good if and only if x is an
eigenvector of A, which is the case if and only if it belongs to one of the two eigenspaces
⟨e1, . . . , en/2⟩ or ⟨en/2+1, . . . , en⟩. It is a straightforward exercise to prove the more precise
result that for every η > 0 there exists ϵ > 0 such that x is ϵ-good only if the distance from
x to one of these two subspaces is at most η. Since the set of such x has exponentially
small measure, we have an example of a norm where it is not the case that almost all points
are ϵ-good.
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From the perspective of Milman’s question, this may seem a dubious example, since the
space is isometric to a Euclidean space, and therefore as far from a counterexample as it is
possible to be. However, one can find examples (see Appendix A) to which this criticism
does not apply.

The main point we wish to make here is that even this example gives us a strategy for
building a counterexample to Question 1.1.14. Let S1 and S2 be the unit spheres of the
two eigenspaces above, and suppose that we can find a function ψ satisfying the conditions
of Lemma 1.1.13 and such that for some ϵ, the sets ψ(S1)ϵ and ψ(S2)ϵ do not contain the
sphere of any 2-dimensional subspace. Then again by Lemma 1.1.13 there will exist η > 0
independent of n such that every point that is at least η away from ψ(S1) ∪ ψ(S2) is not
η-good*. Also, if any 2-dimensional sphere contains a point close to ψ(S1) and a point close
to ψ(S2), then since those sets are far apart (by the bi-Lipschitz property of ψ), it must
also contain points far from both sets. Therefore, the function given by the composition
x 7→ ∥ψ−1(x)∥ is a counterexample.

The main result of this chapter is the following theorem

Theorem 1.2.1. There exist constants α, ϵ > 0 and a bi-Lipschitz map ψ : Sn → Sn such
that ψ preserves antipodal points and if X is a random linear subsphere of dimension ⌊αn⌋
then with positive probability ψ(X)ϵ does not contain a great circle.

Since it will appear that α provided by the theorem is significantly smaller than 1/2,
we replace the diagonal map A in the example above by a map that has roughly α−1

eigenspaces of dimension roughly αn with well-separated eigenvalues. In that way, we do
indeed obtain a counterexample to Question 1.1.14.

We informally call the map ψ a tennis ball map and its image a tennis ball because in
low dimensions it brings to mind the seam of a genuine tennis ball (though the resemblance
is not perfect, since the seam of a genuine tennis ball is not centrally symmetric). More
generally, we may want to call a subset of the sphere a tennis ball without referring to a
function so let us introduce some useful terminology.

Definition 1.2.2. An m-dimensional topological subsphere of Sn is the image of a con-
tinuous function f : Sm → Sn that preserves antipodal points.

If an m-dimensional topological subsphere of Sn is the unit sphere of an (m+1)-dimensional
subspace of Rn, then we shall call it linear. We shall also refer to 1-dimensional linear
subspheres as great circles.

Note that an m-dimensional topological subsphere is in a certain sense “genuinely m-
dimensional”, because it must intersect every (n−m)-dimensional linear subsphere. Indeed,
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assume that f : Sm → Sn is a continuous odd function whose image is the topological
subsphere. Without loss of generality we can assume that the subspace is of the form
{x : x1 = . . . = xm = 0} and let Pm be the projection to the first m coordinates. It follows
by the Borsuk-Ulam theorem that we can find x ∈ Sm such that Pmf(x) = Pmf(−x), and
since f is odd it follows that Pmf(x) = 0.

As a corollary from Theorem 1.2.1 we get the following

Theorem 1.2.3. There exist constants α, ϵ > 0 such that for every n there is an ⌊αn⌋-
dimensional topological subsphere X of Sn such that Xϵ does not contain a great circle.

1.3 Constructing tennis balls
Throughout this section it will be convenient to define the “standard” Euclidean norm on
Rn by the formula

|x|22 = n−1
n∑
i=1

x2
i . (1.1)

The advantage of the factor n−1 on the right-hand side is that a typical coordinate of a
random vector of norm 1 has order of magnitude 1 rather than order of magnitude n−1/2.
This norm is often called the L2 norm on Rn, and we write Ln2 = (Rn, | · |2). It is the
Euclidean norm most commonly used in additive combinatorics. Following the standard
terminology in that field, we shall sometimes write the right-hand side of the formula above
as Eix2

i . Moreover, from this point on Sn−1 will denote a unit sphere in Ln2 .

1.3.1 The definition of the tennis ball map

We are aiming to prove Theorem 1.2.1, or in other words to prove that there exists a
continuous map (in fact it will be bi-Lipschitz) ψ : Sn−1 → Sn−1 that preserves antipodal
points, with the property that if X is a random ⌊αn⌋-dimensional subsphere of Sn−1, then
with high probability ψ(X)ϵ contains no linear subsphere of dimension 1. We shall achieve
this by identifying a set Γ ⊂ Sn−1 such that with high probability ψ(X ∩ Sn−1) ⊂ Γ, or
equivalently X ∩ Sn−1 ⊂ ψ−1(Γ), and such that every great circle contains a point that
does not belong to Γϵ.

These properties are clearly in tension with each other: we need Γ to have small measure,
or else its expansion Γϵ will contain a great circle, but on the other hand we also need ψ−1(Γ)
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to have measure very close to 1, or else it will not contain almost all ⌊αn⌋-dimensional
linear subspheres.

In order to resolve this tension, we define a map that takes “typical” vectors to highly
“atypical” vectors. Let k be a large positive integer to be chosen later, let λ > 1, and
define s = λ1/2k. (The parameter λ will later be chosen to be 4, but we write most of the
arguments in a slightly greater generality in order to emphasize certain flexibility in our
construction and make the role of this parameter more explicit.)

Definition 1.3.1. Let φ : R → R be a strictly increasing continuous odd function such that
for every integer m we have

φ(s2mk−1) = s2mk+1 and φ(s2mk+1) = s2(m+1)k−1.

Moreover, assume that φ(s2kx) = s2kφ(x) holds for every real number x.
Abusing notation, we shall also, for a vector x = (x1, . . . , xn) in Rn, write φ(x) to denote

the vector (φ(x1), . . . , φ(xn)). Finally, the tennis ball map is a function ψ : Rn → Rn, which
is a normalized version of φ given by the formula

ψ(x) = φ(x)
|φ(x)| |x|.

Note that the property φ(s2kx) = s2kφ(x) is there for cosmetic reasons only. As for the
first, it tells us that the graph of φ has a kind of staircase shape with steps of sizes that grow
exponentially (see Figure 1.1). Indeed, as x increases from s2mk−1 to s2mk+1, which is only
a small change proportionately speaking, φ(x) increases from s2mk+1 to s2(m+1)k−1, which
is an increase by a factor of almost λ. Similarly, as x increases from s2mk+1 to s2(m+1)k−1,
which is about λ times as big, φ(x) increases from s2(m+1)k−1 to s2(m+1)k+1, which is only a
small increase.

In particular, writing Am for the “wide” interval and Bm for the “narrow” interval, i.e.

Am = [s2mk+1, s2(m+1)k−1] and Bm = [s2mk−1, s2mk+1] (1.2)

we have that
φ(Am) = Bm+1

for every m. Moreover, if by A we denote the union ⋃m(Am ∪ (−Am)) and by B the union⋃
m(Bm ∪ (−Bm)), then we also have that φ(A) = B.
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x

y

A

B

Fig. 1.1 An example of what the function φ may look like.

Note that if x, y ∈ B, then xy−1 belongs to an interval of the form [s2mk−2, s2mk+2], or
minus such an interval. In other words, we ensure that B is a “geometric-progression-like”
set in the sense that BB−1 is not much larger than B itself. It follows that B2B−2 consists
of all points that belong to an interval of the form [s2mk−4, s2mk+4]. This fact will be useful
later on. Another observation we shall use is that

|x| ≤ |φ(x)| ≤ λ|x| (1.3)

for every x. This implies that ψ is a Lipschitz function. Similarly, we observe that the
inverse of ϕ satisfies 1

λ
|x| ≤ |φ−1(x)| ≤ |x|, and hence we get that ψ−1 is Lipschitz as well.

This shows that the tennis ball map ψ is indeed bi-Lipschitz as claimed.
In what follows we shall show, that the tennis ball map ψ takes random linear subspheres

of appropriate dimension to tennis balls.

1.3.2 The definition of the set Γ
Now that we have defined the tennis ball map, let us discuss the set Γ. The rough idea is
that Γ is the set of x ∈ Sn−1 with almost all their coordinates in B. Since A has a small
complement, one would expect almost all coordinates of a random vector to belong to A,
and indeed this is the case. It forms the basis of a probabilistic argument that shows that
with high probability every x ∈ Sn−1 ∩X has the property that almost every coordinate of
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x belongs to A, which implies that almost every coordinate of φ(x) belongs to B. Thus a
“typical” vector (one with almost all coordinates in the large set A) is mapped to a highly
“atypical” vector (one with almost all coordinates in the small set B).

This is a slight oversimplification, because of the normalization that replaces φ by ψ.
The actual definition of Γ concerns the ratios of the coordinates rather than their actual
values.

Now let us give some more details. For the purposes of this problem, it is more natural,
when talking about a unit vector x, to attach a weight of x2

i to the ith coordinate. For
example, the statement “almost every ratio xix−1

j belongs to BB−1” should be interpreted
as meaning that

∑
i,j

x2
ix

2
j 1{xix

−1
j ∈BB−1}(i, j) ≥ (1 − ϵ)

∑
i,j

x2
ix

2
j

for some small ϵ, and similarly for other statements about coordinates. More precisely, with
every vector x we define an associated probability measure.

Definition 1.3.2. For any x ∈ Rn \ {0} define its associated probability measure µx on
{1, 2, . . . , n} by the formula

µx(J) = |PJx|2

|x|2
,

where PJ is the coordinate projection to the set J .

Let us now fix some useful notation. For a function f : {1, 2, . . . , n} → R we write

Exi f(i) = |x|−2∑
i

x2
i f(i) and Exi,jf(i, j) = |x|−4∑

i,j

x2
ix

2
jf(i, j),

while Ei or Eθ, as mentioned before, will be the usual average.
Then, given a property Q of integers in the set {1, 2, . . . , n} we define

Pxi [Q(i)] = Exi 1Q(i) = µx{i : Q(i)}.

Similarly, we shall write

Pxi,j[Q(i, j)] = Exi,j1Q(i, j) = (µx × µx){(i, j) : Q(i, j)},

where µx × µx is the product measure.
We are now ready to define the set Γ.
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Definition 1.3.3. Let Γ ⊂ Sn−1 be a set given by

Γ = {y ∈ Sn−1 : Pyi,j[yi/yj ∈ BB−1] ≥ 1 − 2λ2β}, (1.4)

for a suitable choice of the parameter β.

Of no less importance will be a set ∆ defined by

∆ = {x ∈ Sn−1 : Pxi [xi ∈ A] < 1 − β}. (1.5)

In this section we will be interested in its complement

∆c = Sn−1 \ ∆ = {x ∈ Sn−1 : Pxi [xi ∈ A] ≥ 1 − β}

and this choice of notation was made for simplicity in further sections.

Proposition 1.3.4. The image of the set ∆c under the tennis ball map ψ is a subset of Γ,
i.e. we have ψ(∆c) ⊂ Γ.

Proof. Let x ∈ ∆c and note that if Pxi [xi ∈ A] ≥ 1 − β, then Pxi [φ(xi) ∈ B] ≥ 1 − β

by the definition of the function φ. Moreover, from (1.3) it follows that the function
has the property that φ(x)2 always lies between |x|2 and λ2|x|2 and hence we have that
µφ(x)(E) ≤ λ2µx(E) for every vector x ∈ Rn and every set E ⊂ {1, 2, . . . , n}, from which it
follows (considering complements) that

Pφ(x)
i [φ(xi) ∈ B] > 1 − λ2β.

Since this is true for every x ∈ ∆c we get that

φ(∆c) ⊂ {y : Pyi [yi ∈ B] > 1 − λ2β}. (1.6)

In order to show the inclusion for ψ, which is essentially a normalised function φ, note that
if we have y as above then

Pyi,j[yi ∈ B and yj ∈ B] ≥ 1 − 2λ2β,

which in turn gives us
Pyi,j[yi/yj ∈ BB−1] ≥ 1 − 2λ2β.
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From this follows that such y belongs to Γ and since Γ is invariant under positive scalar
multiples, using (1.6) we conclude that ψ(∆c) ⊂ Γ.

In the next section we shall prove that the expansion Γϵ contains no 1-dimensional linear
subsphere, or great circle, and in the following one we shall prove that for suitable constant
α > 0, a random linear subsphere of dimension ⌊αn⌋ will be contained in ∆c with high
probability.

1.4 Proving that no great circle is contained in Γϵ
We begin with a couple of lemmas that help us to describe the set Γϵ. Recall that | · |2 is
the L2 norm defined in (1.1).

Lemma 1.4.1. Let y, z be unit vectors in Ln2 . Assume that |y − z|2 ≤ ϵ, and let E be a
subset of {1, 2, . . . , n}. Then

∣∣∣Pyi [E] − Pzi [E]
∣∣∣ ≤ 2ϵ.

Proof. The left-hand side is equal to 1
n
||PEy|2 − |PEz|2| = |Ei(y2

i − z2
i )1E(i)| ≤ Ei|y2

i − z2
i |.

Then by Cauchy-Schwarz inequality it follows that

Ei|y2
i − z2

i | = Ei|yi − zi| |yi + zi|
≤ |y − z|2 |y + z|2
≤ 2ϵ,

which proves the result.

Recall from §1.3.1 that BB−1 is the union of all intervals of the form [s2mk−2, s2mk+2],
and B2B−2 is the union of all intervals of the form [s2mk−4, s2mk+4], where s = λ1/2k was one
of the parameters used to define the “staircase function” φ. It follows that if t ∈ BB−1 and
u /∈ B2B−2, then |t/u| /∈ [s−2, s2], which implies in particular that |t/u− 1| ≥ 1 − s−2 =: τ .

Lemma 1.4.2. Let τ = 1 − s−2 and ϵ < τ 2. Then for z ∈ Γϵ we have

Pzi,j[zi/zj ∈ B2B−2] ≥ 1 − 2λ2β − 6ϵ.

Proof. Let y ∈ Γ with |y|2 = 1 be such that |y−z|2 ≤ ϵ. Then Pyi,j [yi/yj ∈ BB−1] ≥ 1−2λ2β,
or equivalently

Ei,jy2
i y

2
j1[yi/yj∈BB−1] ≥ 1 − 2λ2β.
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By Lemma 1.4.1 (and recalling that Eiy2
i = 1), it follows that

Ei,j(y2
i − z2

i )y2
j1[yi/yj∈BB−1] ≤ 2ϵ

and hence combining both inequalities gives

Ei,jz2
i y

2
j1[yi/yj∈BB−1] ≥ 1 − 2λ2β − 2ϵ. (1.7)

If the conclusion that Pzi,j[zi/zj ∈ B2B−2] ≥ 1 − 2λ2β − 6ϵ is not true, then we would
have

Ei,jz2
i z

2
j1[zi/zj /∈B2B−2] ≥ 2λ2β + 6ϵ,

and by again Lemma 1.4.1 in the same way, it follows that

Ei,jz2
i y

2
j1[zi/zj /∈B2B−2] ≥ 2λ2β + 4ϵ. (1.8)

By summing (1.7) and (1.8), and estimating trivially the probability of the union of the
events by 1, we deduce that

Ei,jz2
i y

2
j1[yi/yj∈BB−1 and zi/zj /∈B2B−2] ≥ 2ϵ.

As remarked before the lemma, if yi/yj ∈ BB−1 and zi/zj /∈ B2B−2, then |yizj

yjzi
− 1| > τ .

It follows that
Ei,jz2

i y
2
j

(yizj
yjzi

− 1
)2
> 2τ 2ϵ.

But since Eiy2
i = Eiz2

i = 1 we have

Ei,jz2
i y

2
j

(yizj
yjzi

− 1
)2

= Ei,j(yizj − ziyj)2

= Ei,j(y2
i z

2
j + y2

j z
2
i − 2yiyjzizj)

= 2 − 2⟨y, z⟩2.

Furthermore, if 2 − 2⟨y, z⟩2 > 2τ 2ϵ, then ⟨y, z⟩2 < 1 − τ 2ϵ, which implies that ⟨y, z⟩ <
1 − τ 2ϵ/2, which in turn means that

|y − z|22 = 2 − 2⟨y, z⟩ > τ 2ϵ,

and therefore that |y − z|2 > τ
√
ϵ. However, since by assumption we have τ >

√
ϵ, this is a

contradiction.
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Corollary 1.4.3. It follows directly from Lemma 1.4.2 that

Γϵ ⊂ {z : Pzi,j[zi/zj ∈ B2B−2] ≥ 1 − 2λ2β − 6ϵ}.

This bigger set resembles Γ but is defined using slightly different parameters. We now
turn to the proof that every great circle contains a point that does not belong to this
slightly expanded Γ-like set.

1.4.1 Analysis of the points in a 2-dimensional subspace

Let Y be a 2-dimensional subspace of Ln2 and let {u, v} be an orthonormal basis for Y .
Then the unit sphere of Y consists of vectors u cos θ + v sin θ. The ith coordinate of such a
vector, ui cos θ + vi sin θ can be rewritten as ai sin(θ + ϕi), where ai =

√
u2
i + v2

i and ϕi is
chosen such that ai sinϕi = ui and ai cosϕi = vi. By a denote the vector (a1, . . . , an) and
note that |a|2 = 2.

We would now like to prove that there are plenty of pairs (i, j) such that ϕi is not close
to ϕj or −ϕj.

Lemma 1.4.4. With a1, . . . , an and ϕ1, . . . , ϕn as above, we have the inequality

Pai,j[cos(2(ϕi − ϕj)) ≤ 1/2] ≥ 1/3.

Proof. Since u, v are fixed unit vectors (in Ln2 ) we have that |a|2 = ∑
i(u2

i + v2
i ) = 2n and

hence Eai sin2(θ + ϕi) = |a|−2∑
i a

2
i sin2(θ + ϕi) = 1

2 for every θ. Therefore, we find on
differentiating with respect to θ that

2Eai sin(θ + ϕi) cos(θ + ϕi) = Eai sin(2θ + 2ϕi) = 0

for every θ, and hence, on differentiating again, that

Eai cos(2θ + 2ϕi) = 0

for every θ as well.
From that it follows that

Eai,j
(

cos(2θ + 2ϕi) cos(2θ + 2ϕj) + sin(2θ + 2ϕi) sin(2θ + 2ϕj)
)

= Eai,j cos(2(ϕi − ϕj)) = 0.
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Let F be the event that cos(2(ϕi − ϕj)) ≤ 1/2. We have seen that Eai,j cos(2(ϕi − ϕj)) = 0,
and we also know that cos(2(ϕi − ϕj)) ∈ [−1, 1]. So, using the total probability formula we
get

0 = Eai,j cos(2(ϕi − ϕj)) ≥ 1
2P

a
i,j[F c] − Pai,j[F ] = 1

2 − 3
2P

a
i,j[F ],

from which the desired inequality follows.

Next, we need a technical lemma that will help us to show that if ϕi is not approximately
±ϕj, then sin(θ + ϕi)/ sin(θ + ϕj) is not often close to an element of some given geometric
progression.

Lemma 1.4.5. Let θ be chosen randomly from [−π, π] and let 0 < a < b. Then

P [a ≤ cot θ ≤ b] ≤ b− a

π(1 + a2) ,

and the same bound holds for the probability that cot θ ∈ [−b,−a].

Proof. Since cot is periodic with period π and is decreasing in the interval (0, π), the
probability in question is (cot−1 a−cot−1 b)/π. By the mean value theorem, cot−1 a−cot−1 b

is at most |a−b| times the absolute value of the derivative of cot−1 at a. Since that derivative
is −1/(1 + a2), the first result follows. The second then holds by symmetry.

Recall once again that B2B−2 is the set of all real numbers x such that

|x| ∈ [λm(1 − τ)2, λm(1 − τ)−2]

for some positive integer m and 1 − τ = s−2.
The main point about the bound in the next lemma is not its exact form, but simply

that it is O(ξ) except when ϕi is close to ϕj or ϕj + π.

Lemma 1.4.6. Let ξ = (1 − τ)−4 − 1 and let θ ∈ [0, 2π] be chosen uniformly at random.
Then

P
[
ai sin(θ + ϕi)
aj sin(θ + ϕj)

∈ B2B−2
]

≤ 4ξλ
π(λ− 1)(4 + | cot(ϕi − ϕj)|).

Proof. The distribution of ai sin(θ+ϕi)
aj sin(θ+ϕj) is the same as the distribution of

ai sin(θ + ϕi − ϕj)
aj sin(θ) = ai

aj

(
cos(ϕi − ϕj) + sin(ϕi − ϕj) cot θ

)
.

Therefore, we are interested in the probability that cot θ ∈ aj

ai sin(ϕi−ϕj)B
2B−2 − cot(ϕi − ϕj).
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Let t = | aj(1−τ)2

ai sin(ϕi−ϕj) |. Then

aj
ai sin(ϕi − ϕj)

B2B−2 =
⋃
m

(
[tλm, tλm(1 − τ)−4] ∪ [−tλm(1 − τ)−4,−tλm]

)
.

By Lemma 1.4.5, we get the bound

P
[
cot θ ∈

[
tλm − cot(ϕi − ϕj), tλm(1 − τ)−4 − cot(ϕi − ϕj)

]]
≤ ξtλm

π

for all m, and in addition if tλm ≥ 2 cot(ϕi − ϕj), then since 1 − τ < 1 we have an upper
bound of

ξtλm

π(1 + t2λ2m/4) ≤ 4ξ
πtλm

.

If cot(ϕi − ϕj) ≥ 0, then the probability that cot θ + cot(ϕi − ϕj) lies in the positive
part of aj

ai sin(ϕi−ϕj)B
2B−2 is therefore at most ξ/π multiplied by the sum

∑
tλm≤S

tλm + 4
∑

tλm>S

1
tλm

,

where S = max{2 cot(ϕi − ϕj), 1}. By the formula for the sum of a geometric progression,
and recalling that λ ≥ 3

2 , the first sum can be estimated by

∑
tλm≤S

tλm = t
m0∑

m=−∞

(1
λ

)m
= t

(1/λ)−m0

1 − λ−1 ≤ S
λ

λ− 1 ,

and similarly the second sum is at most S−1 λ
λ−1 . Therefore, the total is at most

(S + 4S−1)λ
λ− 1 ≤ (5 + 2 cot(ϕi − ϕj))λ

λ− 1 .

Therefore, we obtain an answer of at most ξλ(5 + 2 cot(ϕi − ϕj))/π(λ− 1).
If cot(ϕi − ϕj) < 0, then in the same way we get that the probability that cot θ ∈[

tλm − cot(ϕi − ϕj), tλm(1 − τ)−4 − cot(ϕi − ϕj)
]

is at most ξtλm/π for all m but now it is
also at most ξ/πtλm for all m. Using the first bound when tλm ≤ 1 and the second when
tλm > 1, we obtain an upper bound of at most

2ξλ
π(λ− 1) .
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Considering the negative part of B as well and combining these two estimates, we obtain
the result stated.

Corollary 1.4.7. If τ ≤ 10−4 and λ ≥ 3/2, then in every 2-dimensional subspace of Ln2
there is a vector y such that

Pyi,j[yi/yj /∈ B2B−2] ≥ 1/8.

Proof. Let a typical unit vector y in the subspace have ith coordinate yi = ai sin (θ + ϕi).
We will bound the desired probability from below by adding an additional constraint. We
will consider the probability that { yi

yj
/∈ B2B−2 and | cot(ϕi −ϕj)| ≤ 2}, which can be found

by calculating the expected probability that {| cot(ϕi − ϕj)| ≤ 2} and subtracting from it
Pyi,j

[
yi

yj
∈ B2B−2 and | cot(ϕi − ϕj)| ≤ 2

]
. This is exactly what follows.

We have for each i, j that

Eθ sin2(θ + ϕi) sin2(θ + ϕj) = 1
4Eθ

(
cos(ϕi − ϕj) − cos(2θ + ϕi + ϕj)

)2

= 1
4

(
cos2(ϕi − ϕj) + Eθ cos2(2θ + ϕi + ϕj)

)
= 1

4

(
cos2(ϕi − ϕj) + 1

2

)
≥ 1

8 .

Here Eθ is just the usual average. Recall that y is such that |y| = 1 and yi = ai sin(θ + ϕi)
for some θ ∈ [0, 2π]. For any event Q that depends on two coordinates i, j, we get

EyPyi,j[Q] = EθEi,ja2
i a

2
j sin2(θ + ϕi) sin2(θ + ϕj)1Q(i, j)

≥ 1
8 Ei,ja2

i a
2
j1Q(i, j)

= |a|4

8 Eai,j1Q(i, j)

= 1
2P

a
i,j[Q],

where we used that |a|2 = 2.
It is easy to check the identity cot2 α = 2 cos2 α

1−cos(2α) , so if cos(2(ϕi − ϕj)) ≤ 1/2, then
| cot(ϕi − ϕj)| ≤ 2. Therefore,

EyPyi,j[| cot(ϕi − ϕj)| ≤ 2] ≥ EyPyi,j[cos(2(ϕi − ϕj)) ≤ 1/2]

≥ 1
2 Pai,j[cos(2(ϕi − ϕj)) ≤ 1/2] ≥ 1

6 ,
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where the last inequality follows from Lemma 1.4.4.
Now, by Lemma 1.4.6, if y is a random such vector, then for each i, j the probability that

yi/yj ∈ B2B−2 is at most 4ξλ
π(λ−1)

(
4+ | cot(ϕi−ϕj)|

)
≤ 4ξ

(
4+ | cot(ϕi−ϕj)|

)
, where we used

the fact that λ ≥ 3/2. Note also that since y2
i ≤ a2

i for each i, and Eiy2
i = 1

2Eia
2
i , we have

that Pyi,j [Q(i, j)] ≤ 4Pai,j [Q(i, j)] for every event Q(i, j) that depends on two coordinates i, j.
It follows that

EyPyi,j[| cot(ϕi − ϕj)| ≤ 2 and yi/yj ∈ B2B−2] ≤
≤ 4EyPai,j[| cot(ϕi − ϕj)| ≤ 2 and yi/yj ∈ B2B−2]
≤ 16ξ(4 + 2)
= 96ξ.

Together with the estimate in the previous paragraph, this implies that

Pyi,j[| cot(ϕi − ϕj)| ≤ 2 and yi/yj /∈ B] ≥ 1/6 − 96ξ.

Since, ξ was defined as (1 − τ)−4 − 1, it is straightforward to check that if τ ≤ 10−4,
then this is at least 1/8, and the result follows.

Corollary 1.4.8. Provided that 2λ2β + 6ϵ < 1/8, every great circle contains a point that
does not belong to Γϵ.

Proof. The previous Corollary 1.4.8, applied to the subspace whose unit sphere is the great
circle, gives us a point y such that Pyi,j[yi/yj /∈ B2B−2] ≥ 1/8. Since the event in square
brackets is invariant under positive scalar multiples, we may assume that y is a unit vector
and thus that it belongs to the great circle.

We showed earlier that if z ∈ Γϵ, then Pzi,j[zi/zj ∈ B2B−2] ≥ 1 − 2λ2β − 6ϵ. Hence, if
2λ2β + 6ϵ < 1/8, this implies that y /∈ Γϵ, and we are done.

1.5 Almost every point has an “atypical” image
In this section we want to show that there exists a subspace X of linear dimension such that
X ∩Sn−1 ⊂ ∆c = {x ∈ Sn−1 : Pxi [xi ∈ A] ≥ 1−β}, so that ψ(X ∩Sn−1) ⊂ ψ(∆c) ⊂ Γ, and
indeed that for an appropriate constant α > 0, almost all subspaces of dimension at most
αn have this property. To this end, it will be sufficient to show that ∆ has exponentially



1.5 Almost every point has an “atypical” image 23

small measure. Note that

P[x ∈ ∆] = P[Pxi [xi ∈ A] < 1 − β] = P[Pxi [xi ∈ B] ≥ β],

where B is, as before, the set ⋃
m

(Bm ∪ (−Bm)),

and Bm = [s2mk−1, s2mk+1] for each integer m. Let η = s− 1 > 0 and as before let λ = s2k.
Then Bm = [(1 + η)−1λm, (1 + η)λm].

Let us say that a positive real number t is an η-approximate power of λ if there exists
an integer m such that

(1 + η)−1λm ≤ t ≤ (1 + η)λm.

For γ ∈ [0, 1] and ξ ≥ 0 define ∆ξ
γ by

∆ξ
γ =

{
x ∈ Rn : Pxi [|xi| is a ξ-approximate power of λ] ≥ γ

}
. (1.9)

As mentioned before, we shall end up taking λ = 4. For this reason, although ∆ξ
γ depends

on λ, we suppress this dependence in the notation. We shall be particularly interested in
the set ∆η

β, which restricted to Sn−1 is equal to the set ∆ defined in (1.5).
However, we shall also be interested in the set ∆0

β, which we shall write simply as ∆β.
That is,

∆β =
{
x ∈ Rn : Pxi [|xi| is a power of λ] ≥ β

}
. (1.10)

Lemma 1.5.1. If y ∈ ∆η
β then there exists x ∈ ∆β(1−2η) such that |x− y| ≤ η|y|.

Proof. We are given that Pyi [|yi| is an η-approximate power of λ] ≥ β. Let J be the set of
all i such that |yi| is an η-approximate power of λ. For each i ∈ J let |xi| be the nearest
power of λ to |yi| and let xi have the same sign as yi. For each i /∈ J let xi = yi. Then
|xi − yi| ≤ η|yi| for i ∈ J , so, writing PJ for the coordinate projection to J , we have that

|x− y|22 = 1
n

∑
i∈J

|xi − yi|2 ≤ η2 1
n

∑
i∈J

|yi|2 = η2|PJy|22 ≤ η2|y|22.

We now need a lower bound for |PJx|2/|x|2. We know that |PJy|2 ≥ β|y|2, and also that
|PJx|2 −|PJy|2 = |x|2 −|y|2. We also have for each i ∈ J that (1+η)−2y2

i ≤ x2
i ≤ (1+η)2y2

i ,
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which implies that (1 + η)−2|PJy|2 ≤ |PJx|2 ≤ (1 + η)2|PJy|2. Therefore,

|PJx|2

|x|2
= ζ|PJy|2

|y − PJy|2 + ζ|PJy|2

for some ζ ∈ [(1 + η)−2, (1 + η)2]. The right-hand side is minimized when ζ = (1 + η)−2,
and then it is at least ζβ ≥ (1 − 2η)β, which finishes the proof of the lemma.

Our next aim is to prove an upper bound for the volume of the η-expansion of ∆β(1−2η),
which by the above lemma contains ∆η

β. We shall do this in a series of simple steps.

Lemma 1.5.2. For every constant C > 1, the number of sequences (a1, . . . , am) of positive
integers that add up to at most Cm is at most (Ce)m.

Proof. For each sequence a = (a1, . . . , am) let Ca be the unit cube of points x ∈ Rn such
that ai − 1 ≤ xi < ai for every i. Then if a ̸= b, the unit cubes Ca and Cb are disjoint.
Also, if a consists of positive integers and ∑i ai ≤ Cm, then the cube Ca is contained in the
convex hull of the points 0 and Cmei, where e1, . . . , em is the standard basis of Rm. But
this simplex has volume (Cm)m/m! ≤ (Ce)m. This proves the result.

Corollary 1.5.3. Let λ,C > 1 be real numbers and let m be a positive integer. Then the
number of positive integer sequences (a1, . . . , am) such that λa1 + · · · +λam ≤ Cm is at most
(e logλC)m.

Proof. If λa1 + · · · + λam ≤ λam, then by Jensen’s inequality λ(a1+···+am)/m ≤ λa, and hence
a1 + · · · + am ≤ am. Therefore, by Lemma 1.5.2 the number of such sequences is at most
(ea)m. By the hypothesis we have a = logλC, and the result follows.

Corollary 1.5.4. Let λ > 1 be a real number, let m be a positive integer, and let η > 0.
Let Ω be the set of all sequences (x1, . . . , xm) such that x2

1 + · · · + x2
m ≤ C2m and each |xi|

is a power of λ. Then there is an η-net of Ω of cardinality at most (2e logλ(λ2C/η))m.

Proof. Let x ∈ Ω. For each i such that |xi| ≤ η/λ, replace xi by λ−t sign(xi), where t
is chosen in such a way that η/λ ≤ λ−t < η, and let the resulting vector be y. Then
|xi − yi| ≤ η for every i, so |x− y|2 ≤ η. Now let Ω′ consist of all vectors x ∈ Ω such that
each |xi| is equal to λai for some integer ai with ai ≥ −t. We have just shown that Ω′ is an
η-net of Ω.

The number of points in Ω′ with positive coordinates is the number of integer sequences
(a1, . . . , am) such that each ai is at least −t and λ2a1 + · · · + λ2am ≤ C2m. Rescaling,
we see that is equal to the number of positive-integer sequences (a1, . . . , am) such that
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λ2a1 + · · · + λ2am ≤ λ2(t+1)C2m, which by Corollary 1.5.3 is at most (e(t+ 1 + logλC))m.
Since there are 2m possible choices of signs, the size of Ω′ is at most (2e(t+ 1 + logλC))m.
Noting that t ≤ logλ(λ/η) = 1 + logλ(1/η), we obtain the result.

The important thing about the bound above is that the number we raise to the power
m depends logarithmically on η. This shows that an η-net of Ω is much smaller than an
η-net of the full sphere of radius C.

We shall need a lemma concerning the sizes of nets of unit balls. It is standard, but
the version we give is less commonly used, so for convenience we include a proof. (The
argument is essentially due to Rogers [17].)

Lemma 1.5.5. Let X be an n-dimensional normed space with unit ball BX and let δ > 0. If
n is sufficiently large, then X contains a δ-net of BX of cardinality at most 2en log(n)(1+ 1

δ
)n.

Proof. Let ρ > 0 be a small real number to be chosen later. (It will in fact depend on n.)
Then a standard volume estimate shows that there is an ρ-net of BX of size at most (3/ρ)n.
We shall now cover every point of this net with a union of balls of radius δ − ρ in order to
obtain our δ-net, and then we will optimize over ρ.

To do this, let ζ = δ−ρ and pick points x1, . . . , xN uniformly at random from (1+ ζ)BX .
If y is a point in the ρ-net, then the probability that y is not within any of the balls of
radius ζ about the xi is (1 − ( ζ

1+ζ )
n)N ≤ exp(−N( ζ

1+ζ )
n). Therefore, we are done as long as

(3
ρ

)n
exp

(
−N

(
ζ

1 + ζ

)n)
< 1,

which is satisfied if N > n log(3
ρ
)(1 + 1

δ−ρ)
n.

It can be checked that 1 + 1
δ−ρ = (1 + 1

n
)(1 + 1

δ
) when ρ = δ( δ+1

n+δ+1). For this value of
ρ and for n is sufficiently large, we have that log(3

ρ
) < log(3n

δ
), which is at most 3

2 log n.
We also have that (1 + 1

n
)n < 4e

3 when n is sufficiently large, and putting these estimates
together we find that we can take N to be 2en log n(1 + 1

δ
)n, as claimed.

Next, we need a simple technical lemma about the largest proportion of the unit sphere
of Ln2 that can be covered by a ball of radius δ.

Lemma 1.5.6. Let Bδ(x) be a closed ball of radius δ about a point x in Ln2 . If n is
sufficiently large, then the probability that a random point of the unit sphere of Ln2 lies in
Bδ(x) is at most 2δn.

Proof. The intersection of Bδ(x) with the unit sphere is a spherical cap, and the measure
of the spherical cap is maximized when the centre x of Bδ(x) is a vector of norm

√
1 − δ2.
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Define C to be the set of all y such that |y|2 ≤ 1 and
∣∣∣x− y

|y|2

∣∣∣
2

≤ δ. This is a convex
hull of the spherical cap and the origin, and the proportion of its volume to the volume of
the entire unit ball, is equal to the probability we are trying to estimate.

We are going to show that Bδ(x) contains the set C \ (1 − 2δ2)C. Indeed, we claim now
that Bδ(x) contains all points y such that

∣∣∣x − y
|y|2

∣∣∣
2

≤ δ and 1 ≥ |y|2 ≥ 1 − 2δ2. By the
convexity of Bδ(x) it is sufficient to prove this when |y|2 = 1 − 2δ2. The first assumption
on y implies that

|x|2 − 2⟨x, y⟩
|y|2

+ n ≤ δ2n,

and therefore, since |x|2 = (1 − δ2)n, that

⟨x, y⟩ ≥ (1 − δ2)n|y|2.

This implies that

|x− y|22 = 1
n

(|x|2 + |y|2 − 2⟨x, y⟩)

≤ 1 − δ2 + (1 − 2δ2)2 − 2(1 − δ2)(1 − 2δ2)
= δ2,

which proves the claim.
We have therefore shown that Bδ(x) contains the set C \ (1 − 2δ2)C. Now, since

(1 − 2δ2)C has volume (1 − 2δ2)n times that of C, if n is sufficiently large, then Bδ(x)
contains at least half of C. The result follows, since the volume of Bδ(x) is δn times that of
the unit sphere of Ln2 .

Now let y be a vector in Ln2 supported on J ⊂ {1, . . . , n} of cardinality m and satisfying
the inequality |y|22 ≥ β(1 − 2η). Again let PJ be the coordinate projection to the set J and
define

Vy = {x ∈ Sn−1 : PJx = y}.

We will next obtain an upper bound for the spherical volume of (Vy)ϵ, which is the
ϵ-expansion of Vy.

Lemma 1.5.7. Let δ > η > 0. Then when n is sufficiently large, the probability that a
random unit vector belongs to (Vy)η is at most 4eδnn log n

(
1 +

√
1−β(1−2η)
δ−η

)n−m
.

Proof. If we cover Vy by N balls of radius δ − η, then the balls of radius δ with the
same centres cover (Vy)η, so by Lemma 1.5.6 the probability that a random unit vector
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lies in (Vy)η is at most 2Nδn. But Vy is an (n − m)-dimensional sphere of radius at
most

√
1 − β(1 − 2η), hence Lemma 1.5.5 implies that it can be covered by at most

N = 2en log n
(

1 +
√

1−β(1−2η)
δ−η

)n−m
balls of radius δ − η. This implies the result.

Theorem 1.5.8. The probability that a random unit vector belongs to (∆β(1−2η))η is expo-
nentially small.

Proof. Lemma 1.5.1 tells us that the set ∆β(1−2η) is an η-net of the set of unit vectors in
∆η
β. Moreover, the same is true if we restrict to vectors of norm at most 1 + η ≤ 2. For

each x ∈ ∆β(1−2η) there is a set J ⊂ {1, 2, . . . , n} such that µx(J) ≥ β(1 − 2η) and |xi| is a
power of λ for every i ∈ J . If |J | = m, then Corollary 1.5.4 implies that there is an η-net
of size at most

(
2e logλ

(√
2n
m
λ2

η

))m
of the set of vectors y such that |yi| is a power of λ for

every i ∈ J , yi = 0 for i /∈ J , and ∑i y
2
i ≤ 2n.

Every unit vector in ∆β(1−2η) lies in Vy for some such J and y. Therefore, summing
over all J and all y in an η-net for each J and applying Lemma 1.5.7, we find that the
probability that a random unit vector belongs to (∆β(1−2η))η is at most

n∑
m=1

(
n

m

)(
2e logλ

(√2n
m

λ2

η

))m
4eδnn log n

(
1 +

√
1 − β(1 − 2η)

δ − η

)n−m
.

Now let us set λ = 4. Using the upper bound
(
n
m

)
≤ (en/m)m and setting θ = m/n, we

can bound the previous expression above by

4en log n
n∑

m=1

(
2e2δ

1
θ

log4

(16
√

2
η
√
θ

))θn(
δ +

δ
√

1 − β(1 − 2η)
δ − η

)(1−θ)n
.

To prove that this is exponentially small, it is sufficient to show that

( 2e2

log 4
δ

θ
log
(16

√
2

η
√
θ

))θ(
δ +

δ
√

1 − β(1 − 2η)
δ − η

)1−θ
(1.11)

is bounded above by a constant less than 1 as θ varies. First of all, note that in §1.4
we obtain the following bounds on parameters: η ≤ 10−5 (since η = s − 1 and we need
τ = 1 − s−2 ≤ 10−4), ϵ ≤ τ 2 and β < 1

32

(
1
8 − 6ϵ

)
. We need moreover, that δ > η. Let us

note that the above expression is a decreasing function of β and since ϵ ≤ 10−8 we can take
β = 1

257 .
To begin with, we shall show that there exist constants for which the result holds and

then we shall choose some particular values to obtain an upper bound for the maximum.
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Let us consider the condition δ + δ
√

1−β(1−2η)
δ−η < 1. For η = cδ this becomes

δ +

√
1 − β(1 − 2η)

1 − c
< 1,

and we can choose c such that
√

1−β(1−2η)
1−c is less than 1 − β/4, and then if δ ≤ β/8 the

inequality holds. For the first part of expression (1.11), if we assume that θ ≥
√
δ (and

again take η = cδ) we have that

( 2e2

log 4
δ

θ
log
(16

√
2

η
√
θ

))θ
≤
(

2e2
√
δ
(

log(16
√

2) + log 1
cδ

+ 1
4 log 1

δ

))θ
≤ 2e2

√
δ
(
C1 + 5

4 log 1
δ

)θ
,

where C1 is an absolute constant. Hence, we can choose δ small enough such that
2e2

√
δ
(
C1 + 5

4 log 1
δ

)
≤ 9

10 .
If θ <

√
δ, then we need to consider the whole expression (1.11). To begin with note

that

( 2e2

log 4
δ

θ
log
(16

√
2

η
√
θ

))θ
≤
(

2e2 δ

θ
(C1 + 5

2 log 1
θ

)
)θ

≤
(
C2δ log 1

θ

θ

)θ

≤ (C2δ)θ
( 1
θ2

)θ
≤
( 1
θ2

)θ
,

for δ < 1/C2. Moreover, we have that log
(
(1
θ
)2θ
)

= 2θ log 1
θ

≤ 2
√
θ ≤ 2δ1/4. Therefore we

can estimate
(

1
θ2

)θ
by 1 + 4δ1/4. Recalling that the right hand side part in (1.11) is at most

(1 − β
8 )1−θ ≤ (1 − β

8 )1−
√
δ, we deduce that the expression (1.11) is less than 1 if we choose δ

such that (1 + 4δ1/4)(1 − β
8 )1−

√
δ < 1. Finally we choose the smallest δ, so that it fulfils all

the inequalities and hence the result follows.
One can check that if we choose η = 10−12, δ = 10−6 and β = 1

257 , then the maximum is
at most 0.9982. Therefore, the desired probability is at most 4en2 log n(0.9982)n.

Recall the set ∆ = ∆η
β defined in (1.5). It follows that

Corollary 1.5.9. There exists α > 0 such that if n is sufficiently large, then the probability
that a random subspace X of dimension at most αn contains a vector x ∈ ∆, is exponentially
small.
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Proof. Let σ < 1 be such that the probability that a random unit vector belongs to
(∆β(1−2η))η is at most σn when n is sufficiently large. Now choose α > 0 such that
(1 + 1

η
)α < σ−1. Then for sufficiently large n, the unit sphere of any subspace of dimension

at most αn has an η-net of size τ−n for some τ with τ−1 < σ−1. If we take such a net
and rotate it randomly, then the probability that any element of the net lands within η of
∆β(1−2η) is exponentially small.

By Lemma 1.5.1 we have that ∆η
β ⊂ (∆β(1−2η))η and hence it follows that the probability

that a random subspace intersects ∆ is exponentially small.

Remark 1.5.10. For the particular choice of constants made in the proof of Corollary
1.5.8, the condition we obtain in Corollary 1.5.9 is

0.9982(4en2 log n)1/n < σ.

The left hand side is a decreasing function of n with limit 0.9982, so for n large enough
the left hand side is less than 0.999. We then have that

α <
− ln(0.999)
ln(1 + 1010) ≈ 4.345 × 10−5.

Hence, for n large enough we can take α = 4.3 × 10−5 in the construction.

1.6 Summary
We have now proved our main theorem, Theorem 1.2.1, but since the steps of the argument
are somewhat scattered, let us briefly recall them. We defined a continuous odd bijection
φ : Rn → Rn and a normalized version ψ : Sn−1 → Sn−1. In (1.5) we defined a set ∆ and
in the last section §1.5 we proved that a random ⌊αn⌋-dimensional subspace lies in ∆c with
exponentially high probability.

We also defined a set Γ ⊂ Sn−1, see (1.4), and observed that ψ(∆c) ⊂ Γ. Section 1.4
was devoted to the proof that no great circle is contained in the expansion Γϵ.

Therefore, if we pick a random ⌊αn⌋-dimensional subsphere X, then with exponentially
high probability we have that X∩Sn−1 ⊂ ∆c, and therefore that ψ(X∩Sn−1) ⊂ ψ(∆c) ⊂ Γ,
from which it follows that ψ(X)ϵ contains no great circle. This gives Theorem 1.2.1.

As explained at the end of the introduction, this also gives a counterexample to Question
1.1.14. However, there is a small technical issue in that our scalar function φ : R → R used
in the construction is not differentiable at zero, and hence the function ψ : Sn−1 → Sn−1 is
not differentiable at any point with a coordinate equal to zero.
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This can be dealt with in the obvious way – by approximating φ by a function that
is differentiable everywhere and equal to φ except inside a very small interval about 0.
Unfortunately, there does not seem to be a quick and easy argument that this change
does not give rise to a great circle that consists entirely of δ-good∗ points. However, it is
straightforward to make small adjustments to our construction, the main one of which is to
enlarge very slightly the set B so that it contains an interval about 0, and to show that the
final result is indeed robust in the appropriate sense.

Thus, a question that can be thought of as a suitable Lipschitz version of Milman’s
original question has a negative answer. However, because the derivatives of the function ψ
at two points x and y can be very different even when x and y are close, when we compose
it with a weighted ℓ2 norm as described in §1.2, we obtain a function that is not a norm,
so we do not obtain a counterexample to Question 1.1.7 (or equivalently Question 1.1.10).
To obtain such a counterexample, one would need much better control over the second
derivative of ψ.



Chapter 2

A counterexample to a strengthening
of Milman’s question

In this chapter we describe further progress made towards answering Milman’s Question 1.1.4,
which was introduced in the first chapter of this thesis. We prove that the strengthening
of the question, i.e. Question 1.1.7, has a negative answer. This clearly implies that also
Question 1.1.14 has a negative answer. This is joint work with W. T. Gowers.

2.1 Definition of the norm and initial observations
This chapter will be devoted to proving the following theorem.

Theorem 2.1.1. Let P ∈ L(Rn) be a random orthogonal projection of rank n/2 and let
A = I + P . Define a norm on Rn by

∥x∥ = ⟨x,Ax⟩1/2 + ηn−1/2∥x∥1, (2.1)

where η is an absolute constant. Then there exists η > 0 such that the normed space
(Rn, ∥ · ∥) is 2-Euclidean and with positive probability, for n large enough, does not contain
any 2-dimensional subspace that is both strongly (1 + ϵ)-Euclidean and strongly (1 + ϵ)-
complemented.

Clearly, the normed space (Rn, ∥ · ∥) defined in the above theorem constitutes a coun-
terexample to Question 1.1.7, and hence also to Question 1.1.14.

Let us begin by some straightforward observations about the norm defined in (2.1). The
first part of this norm is a weighted ℓ2 norm with respect to a random orthonormal basis,
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where half the weights are 2 and half are 1, and the second is a multiple of the standard ℓ1

norm. Note that |x| ≤ ∥x∥ ≤ (
√

2 + η)|x| holds for every x, where | · | denotes the standard
Euclidean norm. Hence, as long as η ≤ 2 −

√
2, the norm defined in (2.1) is indeed strongly

2-Euclidean.
We will prove that with probability greater than zero (and in fact close to 1) there is no

2-dimensional subspace in (Rn, ∥ · ∥) that consists entirely of ϵ-good points (recall Definition
1.1.8 in the previous chapter, and its equivalence to the statement of the theorem captured
in Lemma 1.1.9), for some absolute constant ϵ > 0.

2.1.1 Characterization of ϵ-good points

The next lemma tells us what the support functionals are at a vector x. Let us use the
notation sign(t) for the multivalued function from R to R that takes t to 1 if t > 0, to -1 if
t < 0, and to any element of [−1, 1] if t = 0. Then if x ∈ Rn we write sign(x) for the result
of applying the multivalued function sign pointwise. Let us also write ∥x∥A for ⟨x,Ax⟩1/2.

Recall from the previous chapter that a support functional of a norm ∥ · ∥ at x is any
non-zero linear functional f such that for every y with ∥y∥ ≤ ∥x∥ we have f(y) ≤ f(x).

Lemma 2.1.2. The support functionals at x are multiples of Ax
∥x∥A

+ ηn−1/2 sign(x).

Proof. Essentially this is just a question of calculating the derivative of the norm, except
that where the derivative is not defined we may have to give it several values (just as one
might say that the derivative of |x| at zero is any element of [−1, 1]).

Let y be a sufficiently small vector. Then for any possible choice of sign(x), we have
that

∥x+ y∥ ≥ ∥x∥ + ⟨Ax, y⟩
∥x∥A

+ ηn−1/2⟨sign(x), y⟩ + o(y).

Therefore, if y is orthogonal to any value of Ax
∥x∥A

+ ηn−1/2 sign(x), we have that ∥x+ y∥ ≥
∥x∥ + o(y), from which it follows easily that Ax

∥x∥A
+ ηn−1/2 sign(x) is a support functional

at x.

From this and Proposition 1.1.11, introduced in the previous chapter, it follows that if a
unit vector x is ϵ-good, then there exists a unit vector y and a scalar λ such that |y−x| < δ

and ∣∣∣∣ Ay∥y∥A
+ ηn−1/2 sign(y) − λy

∣∣∣∣ < δ,

where δ > 0 depends on ϵ only.
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Speaking more qualitatively, this implies that sign(y) is close to the subspace generated
by Py and Qy, where Q = I − P . Indeed, recalling that A = I + P , we get that the above
inequality is the same as

2 − λ

∥y∥A
Py + 1 − λ

∥y∥A
Qy ≈δ ηn

−1/2 sign(y),

where we write u ≈δ v to mean that |u − v| ≤ δ. We will use this convenient notation
throughout the chapter.

It follows that if we have a 2-dimensional subspace Y that consists entirely of ϵ-good
points, then every unit vector x ∈ Y is close to a vector y such that sign(y) is close to the
subspace PY +QY , which has dimension at most 4. The main part of the proof will be
based on this observation.

It will also be useful to note that all ϵ-good points must be close to PX or QX.

Lemma 2.1.3. Let x be an ϵ-good vector in (X, ∥ · ∥), such that |x| = 1. Then either
d(x, PX) ≤ 3δ + 2η or d(x,QX) ≤ 3δ + 2η, where δ is given by Proposition 1.1.11.

Proof. As we have seen, there exists a unit vector y and λ > 0 such that |x− y| ≤ δ and
such that

Ay

∥y∥A
+ ηn−1/2 sign(y) ≈δ λy.

We have that

d(x, PX) ≤ d(x, y) + d(y, PX) ≤ δ + |y − Py| = δ + |Qy|

and similarly for d(x,QX). Hence, our goal is to bound min{|Py|, |Qy|}.
But |Ay| ≥ ∥y∥A, and ηn−1/2| sign(y)| ≤ η, so λ ≥ 1 − η − δ and

|Ay − λ∥y∥Ay| < (δ + η)∥y∥A ≤
√

2(δ + η).

Thus, y is an approximate eigenvector of A and it remains to prove that an approximate
eigenvector of A must be close to an eigenvector. (This is of course false for general linear
maps.)

Since P +Q = I, we have y = Py +Qy and Ay = 2Py +Qy, so if ν is any scalar, then

|Ay − νy|2 = (2 − ν)2|Py|2 + (1 − ν)2|Qy|2.



34 A counterexample to a strengthening of Milman’s question

Writing 2 − ν = a+ 1/2 and 1 − ν = a− 1/2, one can rewrite the right-hand side as

(
a+ |Py|2 − |Qy|2

2

)2
+ 1

4

(
1 − (|Py|2 − |Qy|2)2

)
,

from which we see that if |Ay − νy|2 ≤ τ then

(|Py|2 − |Qy|2)2 ≥ 1 − 4τ,

which implies that either |Py|2 ≤ 2τ or |Qy|2 ≤ 2τ . Since we may set τ = 2(δ + η)2 the
result follows.

2.2 Outline of the proof of Theorem 2.1.1
Let us call a non-zero vector a sign vector if all its coordinates have the same absolute
value. As before, we write X for (Rn, ∥ · ∥), though sometimes we abuse notation and use
X to refer simply to Rn.

In order to show that the norm defined in (2.1) indeed constitutes a counterexample to
Question 1.1.7, i.e. there is no two-dimensional subspace of (Rn, ∥ · ∥) that consists entirely
of ϵ-good points, we shall obtain a contradiction using statements of the following kind:

1. Every ϵ-good point is close to PX or QX.

2. With high probability, every point that is close to PX or QX has coordinates that
take several different values.

3. If Y is a 2-dimensional subspace that consists entirely of ϵ-good points, then for every
x ∈ Y there exists x′ close to x such that sign(x′) is close to the subspace PY +QY .

4. The vectors sign(x′) are not approximately contained in a 4-dimensional subspace.
(This uses the fact that no vector in Y can be approximated by a vector with only
few distinct coordinates.)

We have already proved statements 1 and 3 above. Next, we formulate and prove
statement 2. We begin with a crude upper bound for the volume of the γ-expansion of the
unit sphere of a subspace of dimension cn. (Much more accurate estimates exist, but for us
a simple argument suffices.)
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Lemma 2.2.1. Let γ > 0 and assume that n ≥ 1 − log(8γ)
log(2) . Then the probability that a

random unit vector in Rn has distance at most γ from a given subspace Y ⊂ X of dimension
m is at most 24nγn−m.

Proof. A spherical cap in Sn−1 of Euclidean radius 2γ has volume at most (4γ)n−1. Hence,
for n ≥ 1 + log(1/(8γ))

log(2) , the volume of the cap is at most (8γ)n. We can also find a γ-net of
Y of cardinality at most (3/γ)m. But every point of Sn−1 that is within γ of Y is within
2γ of a point in the γ-net, and from this the result follows.

Lemma 2.2.2. Let k be a positive integer, let γ > 0, and let Y be a random subspace of
ℓn2 of dimension m. Then the probability that Yγ contains a unit vector x with at most k
distinct coordinates is at most (3/γ)k(48k)nγn−m.

Proof. The number of partitions of {1, 2, . . . , n} into k sets is at most kn, and for each
partition E1, . . . , Ek the set of vectors that are constant on each Ei is a k-dimensional
subspace, so there is a γ-net of the unit sphere of this subspace of size at most (3/γ)k.

The probability that Yγ contains a vector with at most k distinct coordinates is at most
the probability that Y2γ contains a point in one of these γ-nets, which is at most

(3/γ)k(24k)n(2γ)n−m ≤ (3/γ)k(48k)nγn−m

by Lemma 2.2.1 and a union bound.

We present one more technical lemma that is similar to Lemma 2.2.2, and which will be
an important part of the argument. Again we make no attempt to optimize bounds.

Lemma 2.2.3. Let Z be a random subspace of ℓn2 of dimension m. Then the probability
that Zγ contains a point with support size at most r is at most 288nγn−m−r

Proof. The number of sets of size at most r is
(
n
r

)
≤ 2n. For each such set E the size of a

γ-net of the unit sphere of the space of vectors supported on E is at most (3/γ)r, and for
each point in such a net the probability that it is in Z2γ is at most 24n(2γ)n−m. Therefore,
the probability we wish to bound is at most

2n(3/γ)r24n(2γ)n−m ≤ 288nγn−m−r,

which proves the lemma.

The key point we shall need from the above lemma is that for any c > 0 there exists
γ > 0 such that if n−m− r ≥ cn, then the probability that Zγ contains a point with small
support is small. In particular, we have that
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Corollary 2.2.4. Let X = ℓn2 with n ≥ 2, and let P : X → X be a random orthogonal
projection of rank n/2. Denoting Q = I − P , we have that if γ = 2−37 then the probability
that either PX2γ or QX2γ contains a vector of support size at most n/4 is at most

(
2
3

)n
.

Proof. Applying Lemma 2.2.3, we find that the probability that PX2γ contains a vector of
support size at most n/4 is at most 288n(2γ)n/4 = (288/512)n. The same is true of QX2γ

and the result follows with room to spare.

For the remainder of this chapter, we shall assume that P has been chosen in such a
way that neither PX2γ nor QX2γ contains a vector of support size at most n/4, and neither
PXγ nor QXγ contains a vector with at most five distinct coordinates. By Lemma 2.2.2
and Corollary 2.2.4 such a P exists.

2.3 The set of sign vectors cannot be squeezed into a
4-dimensional subspace

Before we move to the heart of the argument, let us remark that as we move forward we
will be dealing with many parameters. Since we do not wish to choose them straight away
we make sure that it is easy to keep track of all the dependencies by having them labeled.

Recall that if Y is a 2-dimensional subspace that consists entirely of ϵ-good points, then
for every unit vector x ∈ Y there exists a unit vector y such that |x− y| ≤ δ, and

ηn−1/2 sign(y) ≈δ λy + Ay

∥y∥A
.

From this it follows that

n−1/2 sign(y) ≈δ/η αyPy + βyQy

for some constants αy and βy. Note that |Ay| ≤
√

2∥y∥A, so from the first approximation
and the triangle inequality we find that |λ| ≤

√
2 + δ + η. Therefore, provided that

δ + η ≤ 2 −
√

2 (2.2)

it follows that |λ| ≤ 2. Since ∥y∥A ≥ 1, it follows that |αy| and |βy| are at most 4η−1. This
bound will be important later.
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Suppose now that

3δ + 2η ≤ γ. (2.3)

If x ∈ Y , then by Lemma 2.1.3, either d(x, PX) or d(x,QX) is at most 3δ + 2η. Therefore,
for every y ∈ Yγ, either d(y, PX) or d(y,QX) is at most 3δ + 2η + γ ≤ 2γ, so by he
assumption made at the end of the previous section, y has support size at least n/4. That
is, every vector in Yγ has support size at least n/4. We shall use this property frequently in
the rest of the section.

Now let us choose non-negative real numbers r1, . . . , rn and phases ϕ1, . . . , ϕn ∈ [0, 2π)
such that each unit vector in Y is equal to

xθ = (r1 sin(θ + ϕ1), . . . , rn sin(θ + ϕn))

for some θ ∈ [0, 2π). Note that by looking at Eθ|xθ|2 we find that ∑i r
2
i = 2.

We begin with a couple of simple technical lemmas.

Lemma 2.3.1. Let δ, ξ > 0, let x and y be two vectors in Rn such that |x− y| ≤ δ. Then
the number of i such that |xi| ≥ ξn−1/2 and sign(xi) ̸= sign(yi) is at most ξ−2δ2n.

Proof. For every i such that |xi| ≥ ξn−1/2 and sign(xi) ̸= sign(yi), we have that |xi − yi|2 ≥
ξ2n−1. Since we also have that ∑i |xi − yi|2 ≤ δ2, the claim follows.

Let α > 0 be a constant to be chosen later, and let

E = {i : ri ≥ αn−1/2}.

Further define E0 = {1, 2, . . . , n} \ E, and let us write PE for the coordinate projection
onto E.

Lemma 2.3.2. Let 0 < c, ξ < 1 and let θ be chosen uniformly at random from [0, 2π).
Then with probability at least 1 − 4ξ

απc
, the number of i ∈ E such that |(xθ)i| < ξn−1/2 is less

than c|E|.

Proof. Since ri ≥ αn−1/2 for every i ∈ E, and (xθ)i = ri sin(θ + ϕi), we have that for each
i ∈ E,

P
[
|(xθ)i| < ξn−1/2

]
≤ P

[
| sin(θ + ϕi)| < ξ/α

]
<

4ξ
απ

.

Therefore, the expected number of i ∈ E such that |(xθ)i| < ξn−1/2 is less than 4ξ|E|/απ.
The result now follows from Markov’s inequality.
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For choices of parameters that we shall make later, let us call θ and xθ typical if

(i) the conclusion of Lemma 2.3.2 holds, and

(ii) there is no i ∈ E with θ + ϕi ∈ {0, π}.

The second condition, which is there for convenience, holds with probability 1 and ensures
that sign(xθ)i ∈ {−1, 1} for every i ∈ E. Later we shall want to be sure that typical vectors
exist, for which Lemma 2.3.2 tells us that a sufficient condition is the inequality

4ξ
απc

< 1. (2.4)

Let us now define Σ to be the set of all vectors of the form n−1/2PE sign(xθ) such that
xθ is a typical element of Y . Let β > 0 be another parameter to be chosen later, and
let V ⊂ Σ be the maximal centrally symmetric β-separated subset of Σ. Assume that V
consists of 2k vectors (that is k antipodal pairs) and note that V is a β-net of Σ.

Recall that every vector in Y , and even in Yγ , has support size at least n/4. It follows that
|E| ≥ n/4, and therefore that Σ consists of vectors in a sphere of radius n−1/2|E|1/2 ≥ 1/2.
Therefore, as long as

β ≤ 1 (2.5)

we can choose any typical vector xθ, and letting v = n−1/2PE sign(xθ) thereby obtain a
β-separated subset {v,−v} of Σ. This proves that k ≥ 1.

We now consider three cases depending on the size of V .

2.3.1 Case 1: k = 1
Let ζ = 4ξ/απc and let V = {v,−v}. Since θ is typical with probability at least 1−ζ, every
closed interval of length greater than 2πζ contains a typical θ. If n−1/2PE sign(xθ) ≈β v,
then n−1/2PE sign(−xθ) ≈β −v, so there is at least one θ such that n−1/2PE sign(xθ) ≈β

v and one such that n−1/2PE sign(xθ) ≈β −v. It follows that there exist typical unit
vectors x, y ∈ Y such that |x − y| ≤ 2πζ and such that d(n−1/2PE sign(x), v) ≤ β, and
d(n−1/2PE sign(y),−v) ≤ β.

It follows that n−1/2PE sign(x) differs from v in at most β2n/4 coordinates, and
n−1/2PE sign(y) differs from −v in at most β2n/4 coordinates. Therefore, PE sign(x) and
PE sign(y) are equal in at most β2n/2 coordinates. Moreover, by Lemma 2.3.1, the number
of i for which sign(xi) ̸= sign(yi) and |xi| ≥ ρn−1/2 is at most ρ−2(2πζ)2n = ρ−2

(
8ξ
αc

)2
n.
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From these two facts it follows that the number of coordinates i ∈ E for which
|xi| ≥ ρn−1/2 is at most (ρ−2

(
8ξ
αc

)2
+ β2/2)n. Therefore, we find that x has distance at

most ρ from a vector of support size at most
(
ρ−2

(
8ξ
αc

)2
+ β2/2

)
n.

If we choose parameters in such a way that

ρ ≤ γ (2.6)

and

ρ−2
(

8ξ
αc

)2

+ β2/2 < 1/4 (2.7)

we obtain a contradiction with the fact that Yγ does not contain a vector of support size
less than n/4.

2.3.2 Case 2: 2 ≤ k ≤ 4
Let V = {±v1, . . . ,±vk}. Since each vi is of the form n−1/2PE sign(xθ) for some typical
vector xθ ∈ Y , it takes values ±n−1/2 in E.

We now show that either this case can be reduced to the case k = 1 with β replaced by
48β or there is a subset V ′ of V consisting of at least two antipodal pairs such that V ′ is a
3κ-separated κ-net of Σ and κ ≤ 16β.

Since V is a β-net of Σ, then if it is 3β-separated then we are done. If not, we can find
i ̸= j such that |vi − vj| ≤ 3β. Then we can remove ±vj from V and we will still have a
4β-net. Similarly, if V ′ = V \ {±vj} is 12β-separated we are done, but if it contains two
distinct elements vi, vj such that |vi − vj| ≤ 12β, then again we can remove ±vj and we will
still have a 16β-net. Finally, if there are two distinct elements vi, vj with |vi − vj| ≤ 48β,
then we may remove ±vj and end up with V ′ of the form {v,−v} and we are back in case
k = 1. However, now β is replaced by 48β, which we must allow for when choosing our
parameters, so we need

β ≤ 1/48. (2.8)

If the process stops before we reach k = 1, then we have a 3κ-separated κ-net V ′ =
{±v1, . . . ,±vm} of Σ such that 2 ≤ m ≤ 4 and κ ≤ 16β as claimed.
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Recall that every interval of length greater than 2πζ contains a typical θ, and hence for
every τ > 0 there must exist θ, ϕ, and vi ̸= ±vj such that

|θ − ϕ| ≤ 2πζ + τ,

|n−1/2PE sign(xθ) − vi| ≤ κ,

and
|n−1/2PE sign(xϕ) − vj| ≤ κ.

Since |vi ± vj| ≥ 3κ, it follows that n−1/2|PE sign(xθ) −PE sign(xϕ)| and n−1/2|PE sign(xθ) +
PE sign(xϕ)| are both at least κ. Now recall that for every x ∈ Y we can find y with
|x− y| ≤ δ and such that

n−1/2 sign(y) ≈δ/η αyPy + βyQy

for some constants αy and βy. Let us choose yθ and yϕ that have this relationship with xθ

and xϕ, respectively.
By Lemma 2.3.1 and the assumption that x is typical, the number of coordinates in E

such that sign(xθ) and sign(yθ) differ is at most c|E| + ξ−2δ2n ≤ (c+ ξ−2δ2)n, so

n−1/2|PE sign(xθ) − PE sign(yθ)| ≤ 2(c+ ξ−2δ2)1/2,

and similarly for ϕ. If we choose parameters in such a way that

c+ ξ−2δ2 ≤ β4/256, (2.9)

it follows that these distances are both at most β2/8.
Let us write αθ instead of αyθ

, and similarly for ϕ. Then

n−1/2 sign(yθ) ≈δ/η αθPyθ + βθQyθ,

and
n−1/2 sign(yϕ) ≈δ/η αϕPyϕ + βϕQyϕ.

Also, since |θ − ϕ| ≤ 2πζ + τ , for a τ > 0 that we are free to choose, we have
|xθ − xϕ| ≤ 2πζ (because |xθ − xϕ| < |θ− ϕ|), and therefore |yθ − yϕ| ≤ 2πζ + 2δ. It follows
that

|αϕPyϕ + βϕQyϕ − (αϕPyθ + βϕQyθ)| ≤ 2(πζ + δ)(|αϕ| + |βϕ|).
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Now recall that |αϕ| and |βϕ| are both at most 4η−1. We therefore obtain the approximation

n−1/2 sign(yϕ) ≈σ αϕPyθ + βϕQyθ,

where σ = δ/η + 16(πζ + δ)/η = (16πζ + 17δ)/η.
It is convenient to encapsulate our knowledge so far as an approximate matrix equationαθ βθ

αϕ βϕ

Pyθ
Qyθ

 ≈σ n
−1/2

sign(yθ)
sign(yϕ)


where by ≈σ in this context we mean that the approximation holds coordinatewise.

The rough idea of what we shall now do is as follows. Because sign(yθ) and sign(yϕ)

are not roughly proportional to each other, the matrix
αθ βθ

αϕ βϕ

 is well-invertible, which

allows us to deduce from the approximate matrix equation that Pyθ and Qyθ can both be
approximated by linear combinations of n−1/2 sign(yθ) and n−1/2 sign(yϕ), with coefficients
that are not too large. Therefore, yθ can as well, which in turn implies that xθ also can be
approximated in such a way. But sign(yθ) and sign(yϕ) take at most two values each on
almost all of E, and xθ is small outside E, so xθ can be approximated by a vector whose
coordinates have at most five distinct values. Then we can obtain a contradiction from
Lemma 2.2.2.

To carry out this argument we begin by making precise the statement that sign(yθ) and
sign(yϕ) are not roughly proportional.

Lemma 2.3.3. Let u and v be vectors in Rn that take values ±n−1/2 in a set E of size m.
Suppose that there are r values in E with ui = vi and s values with ui ̸= vi. Then for every
λ ∈ R, |u− λv| ≥ 2(rs/mn)1/2.

Proof. We have that

n|u− λv|2 ≥ r(1 − λ)2 + s(1 + λ)2

= (1 + λ2)m+ 2λ(s− r).

This is minimized when λ = (r − s)/m, and the minimum works out to be 4rs/m. The
lemma follows on dividing both sides by n and taking the square root.

We showed earlier that the distance between n−1/2PE sign(xθ) and ±n−1/2PE sign(xϕ)
is at least κ, which by assumption is at least β. It follows further that the conditions of
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Lemma 2.3.3 apply to n−1/2 sign(xθ) and n−1/2 sign(xϕ) with both r and s at least β2n/4.
Therefore, using the trivial bound |E| ≤ n, we deduce that

n−1/2| sign(xθ) − λ sign(xϕ)| ≥ β2/2.

Therefore, using the fact that

n−1/2| sign(xθ) − sign(yθ)| ≤ β2/8

and
n−1/2| sign(xϕ) − sign(yϕ)| ≤ β2/8,

we find that
n−1/2| sign(yθ) − λ sign(yϕ)| ≥ β2

2 − β2

8 (|λ| + 1) ≥ β2/8

when |λ| ≤ 2. In case |λ| ≥ 2 we can instead use the bound

(1 + λ2)m+ 2λ(s− r) ≥ (|λ| − 1)2m

and the fact that m ≥ β2n/2 ≥ β4n/4 to deduce that

n−1/2| sign(xθ) − λ sign(xϕ)| ≥ β2

2 (|λ| − 1),

from which it follows that

n−1/2| sign(yθ) − λ sign(yϕ)| ≥ β2

2 (|λ| − 1) − β2

8 (|λ| + 1),

which is again at least β2/8.
Now that we have shown in a precise sense that n−1/2 sign(yθ) and n−1/2 sign(yϕ) are not

approximately proportional to each other, we turn to deducing that the matrix
αθ βθ

αϕ βϕ


is well-invertible, by which we simply mean that its determinant is not too small.

Lemma 2.3.4. Let A =
a b

c d

 be a 2×2 real matrix, let x and y be vectors in a Euclidean

space such that ⟨x, y⟩ = 0, and let
u
v

 =
a b

c d

x
y

 .
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Then there exists λ such that |u− λv| ≤ |x| |y| | det(A)|
|v|

Proof. Consider first the case where x and y are unit vectors. Then

|u− λv|2 = (a− λc)2 + (b− λd)2

= (c2 + d2)λ2 − 2(ac+ bd)λ+ a2 + b2.

This is minimized when λ = ac+bd
c2+d2 , and the minimum is

a2 + b2 − (ac+ bd)2

c2 + d2 = (ad− bc)2

c2 + d2 ,

which proves the result.
In the general case, we have thata b

c d

x
y

 =
a|x| b|y|
c|x| d|y|

x/|x|
y/|y|

 .

Using the case for unit vectors, we deduce that there exists λ such that

|u− λv|2 ≤ |x|2|y|2 det(A)2

c2|x|2 + d2|y|2
,

and again the result is proved.

Let us now apply this lemma with A =
αθ βθ

αϕ βϕ

 , x = Pyθ and y = Qyθ. Letu′

v′

 = A

x
y

 and let u = n−1/2 sign(yθ), v = n−1/2 sign(yϕ). The approximate matrix

equation proved earlier states that |u− u′| ≤ σ and |v − v′| ≤ σ. It follows from the lemma
that there exists λ such that

|Pyθ| |Qyθ| | det(A)|
|v′|

≥ |u′ − λv′| ≥ |u− λv| − (1 + |λ|)σ.

But we have shown that n−1/2| sign(yθ) − λ sign(yϕ)| ≥ β2/8 for every λ. Since we also
know that |Pyθ| ≤ 1 and |Qyθ| ≤ 1, it follows that

| det(A)| ≥ (β2/8 − (1 + |λ|)σ)|v′|.
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From the proof of the last lemma it follows that the minimum distance is achieved when
λ = αϕαθ|x|2+βϕβθ|y|2

|v′|2 . Recall also from the beginning of the section that αϕ, αθ, βϕ, βθ ≤ 4η−1.
Since |v′ − v| ≤ σ, v = n−1/2 sign(yϕ), and every yϕ has support size at least n/4, we get
that |v′| ≥ 1/2 − σ. Hence

|λ| ≤ 16
η2(1/2 − σ)2 .

Assuming that

σ ≤ 2−12β2η2 (2.10)

we may deduce that σ(1 + |λ|) ≤ β2/16 and hence that | detA| ≥ (1/2 − σ)β2/16 ≥ β2/64.
Let us rewrite the approximate matrix equation asαθ βθ

αϕ βϕ

Pyθ
Qyθ

 =
u′

v′

 ≈σ n
−1/2

sign(yθ)
sign(yϕ)

 .
Then Pyθ

Qyθ

 = det(A)−1

 βϕ −βθ
−αϕ αθ

u′

v′

 .
Since the coefficients of A have absolute value at most 4η−1, it follows that both Pyθ

and Qyθ are linear combinations of u′ and v′ with coefficients of absolute value at most
256η−1β−2. Using again the fact that |u′ − n−1/2 sign(yθ)| and |v′ − n−1/2 sign(yϕ)| are both
at most σ, it follows that both Pyθ and Qyθ can be approximated to within 512η−1β−2σ by
the corresponding linear combinations of n−1/2 sign(yθ) and n−1/2 sign(yϕ), and hence that
yθ can be approximated to within 1024η−1β−2σ by a linear combination of n−1/2 sign(yθ)
and n−1/2 sign(yϕ) with coefficients of absolute value at most 512η−1β−2.

Now recall that

n−1/2|PE sign(xθ) − PE sign(yθ)| ≤ 2(c+ ξ−2δ2)1/2,

and similarly for ϕ, which implies in particular that n−1/2PE sign(yθ) and n−1/2PE sign(yϕ)
can be approximated to within 2(c+ ξ−2δ2)1/2 by vectors whose coordinates take just the
values ±n−1/2 on E. This is because xθ and xϕ are typical and that E is the set of indices
i ∈ {1, . . . , n} for which ri ≥ αn−1/2 and hence all coordinates of PE sign(xθ), PE sign(xϕ)
are ±1.

Putting together the bounds obtained in the last two paragraphs we get that PEyθ
can be approximated by a linear combination of n−1/2PE sign(xθ) and n−1/2PE sign(xϕ) to
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within 1024η−1β−2σ+2048η−1β−2(c+ ξ−2δ2)1/2. In other words, PEyθ can be approximated
by a vector with at most 4 distinct coordinates.

This in turn implies that PExθ can be approximated to within δ + 1024η−1β−2σ +
2048η−1β−2(c + ξ−2δ2)1/2 by such a vector. But |xθ − PExθ| ≤ α, so we end up with the
conclusion that xθ can be approximated to within α + δ + 1024η−1β−2σ + 2048η−1β−2(c+
ξ−2δ2)1/2 by a vector that takes at most five distinct values (the fifth value being zero).
Provided we have chosen our parameters in such a way that

α + δ + 1024η−1β−2σ + 2048η−1β−2(c+ ξ−2δ2)1/2 ≤ γ (2.11)

and since with our choice of γ (see Corollary 2.2.4) the expression (3/γ)5(240)nγn/2 is small,
we obtain a contradiction to Lemma 2.2.2.

2.3.3 Case 3: k ≥ 5
We begin with a simple lemma to estimate how well we can simultaneously approximate k
orthonormal vectors by a (k − 1)-dimensional subspace.

Lemma 2.3.5. Let W be a (k − 1)-dimensional subspace of Rn and let u1, . . . , uk be an
orthonormal sequence. Then there exists i such that d(ui,W ) ≥ k−1/2.

Proof. Without loss of generality k = n. Now let v be a unit vector orthogonal to W . Then
the orthogonal projection PW to W is given by the formula PW (x) = x − ⟨x, v⟩v, from
which it follows that d(x,W ) = |⟨x, v⟩|. But ∑i⟨ui, v⟩2 = 1, so there must exist i such that
|⟨ui, v⟩| ≥ k−1/2, which proves the lemma.

Now, with the help of the assumption that k ≥ 5, we prove that we cannot find a
4-dimensional subspace that approximately contains all the vectors in Σ. For convenience,
let us reorder the coordinates in such a way that E = {1, 2, . . . ,m} and 0 ≤ ϕ1 ≤ ϕ2 ≤
· · · ≤ ϕm < 2π. Then for every typical vector xθ, the set of i such that (xθ)i > 0 is an
interval mod m.

Lemma 2.3.6. Let W be a 4-dimensional subspace of X. Then there is a vector u =
n−1/2PE sign(xθ) ∈ Σ such that d(u,W ) ≥ β/2

√
5.

Proof. Let 0 ≤ θ1 < · · · < θ5 < π be such that n−1/2PE sign(xθj
) ∈ Σ for j = 1, 2, . . . , 5

and write uj for n−1/2PE sign(xθj
). For j = 1, . . . , 5, let [aj, bj] be the interval mod m of i

such that (uj)i = n−1/2.
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Note that a1 ≥ · · · ≥ a5 and b1 ≥ · · · ≥ b5, where here we refer to the cyclic ordering
on the integers mod m. It follows that for each j, (uj+1 − uj)i = 2n−1/2 on the interval
[aj+1, aj), −2n−1/2 on the interval (bj+1, bj], and zero everywhere else. In particular, the
vectors of the form uj+1 − uj for j = 1, 2, 3, 4 and u1 + u5, are pairwise orthogonal.

By assumption Σ contains a β-separated set, so |ui ± uj| ≥ β for every i ̸= j. Setting
vj = uj+1−uj

|uj+1−uj | for j = 1, . . . , 4 and v5 = u1+u5
|u1+u5| , we may deduce from Lemma 2.3.5 that

d(vj,W ) ≥ 1/
√

5 for some j. If j = 1, . . . , 4 then this implies that d(uj+1 −uj,W ) ≥ β/
√

5,
which implies that either d(uj+1,W ) ≥ β/2

√
5 or d(uj,W ) ≥ β/2

√
5. Similarly, if j = 5 we

get that either d(u1,W ) ≥ β/2
√

5 or d(u5,W ) ≥ β/2
√

5. This proves the lemma.

Recall that (assuming appropriate choices of parameters (2.11))

n−1/2|PE sign(xθ) − PE sign(yθ)| ≤ β2/8.

Recall also that
n−1/2 sign(yθ) ≈δ/η αθPyθ + βθQyθ

for some coefficients αθ, βθ that have absolute values at most 4η−1. We also know that
|yθ − xθ| ≤ δ. It follows that

n−1/2PE sign(xθ) ≈β2/8+δ/η+8δ/η αθPEPxθ + βθPEQxθ.

It follows that the distance from PE sign(xθ) to the subspace PE(PY +QY ), which has
dimension at most 4, is at most β2/8 + 9δη−1. If we pick parameters in such a way that

9δη−1 <
β

40(4
√

5 − 5β), (2.12)

then this contradicts Lemma 2.3.6.

2.3.4 Choosing parameters

We conclude by showing that there exists a choice of parameters which fulfills all the
conditions.

First, recall that we have already chosen γ in the Corollary 2.2.4 to be 2−37. Further
we see that β = 2−6 satisfies (2.5) and (2.8). We can further choose η = 2−40, α = 2−40,
ρ = 2−40 and then c = 2−205, ξ = 2−403 and finally δ = 2−506. It is easy to check that these
parameters meet all the conditions.



2.3 The set of sign vectors cannot be squeezed into a 4-dimensional subspace 47

This finishes the proof that the 2-Euclidean norm defined in (2.1), for n ≥ 34, contains
no two dimensional subspace which is both strongly (1 + ϵ)-complemented and strongly
(1 + ϵ)-Euclidean with ϵ = δ2/8C2 = 2−1017. The dependence of ϵ on δ was established in
the proof of Lemma 1.1.11, while the condition on n comes from Lemma 2.2.1 and the fact
that we use a 2γ-expansion.

Finally, we conclude that the Question 1.1.7 has a negative answer.





Chapter 3

Cost functions and order reversing
involutions

This chapter is based on joint work with S. Artstein-Avidan and S. Sadovsky and is organised
as follows. The first section will serve as an introduction to the basic notions in optimal
transport theory. Mass transport problems are a classical object of study in mathematics,
with a vast array of applications. The case when the cost function c is real-valued, namely
c(x, y) ̸= +∞ for any two points, is well understood. However, non real-valued cost
functions arise in a wide class of applications. They correspond to the case where some
transportation schemes are simply prohibited. Infinite-valued costs appear naturally even
in discrete settings, e.g. matchings.

The second section will mainly be concerned with a very specific one-parameter family
of non real-valued cost functions, given by

pt(x, y) = − ln(⟨x, y⟩ − 1)t,

where for a function f we define (f(x))t to be f(x) if f(x) ≥ t and 0 otherwise. For the
special value of the parameter t = 0, the cost is related to the important polarity transform,
studied in for example [3] and [5]. The advantage in considering t > 0 is the boundedness of
the corresponding cost function on the domain where it is finite (unlike in the case t = 0),
which for instance allows one to use pre-existing theorems and show the existence of optimal
transport plans.

Section 3 is devoted to the study of an order-reversing isomorphism At, which we call
the truncated polarity transform and which is associated with the cost pt. Following [5],
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we show that on the induced pt-class of functions, At is the unique (up to linear terms)
order-reversing isomorphism.

In the final section of this chapter the notion of the c-subgradient mapping is introduced.
It is an important concept in optimal transport theory and proving the existence of a
function whose c-subgradient is the transport map will be the central question of the next
chapter. Here, we present some general facts about the c-subgradient, and then develop
further theory for the family pt.

3.1 Introduction and background

3.1.1 Cost induced transforms and their function classes

In what follows, c(x, y) will stand for a cost function which is allowed to attain the value
+∞ but not −∞. We shall generally write c : X × Y → (−∞,∞], but in this note it will
always be the case that X = Y = Rn.

Admissible pairs

A pair of functions φ : X → [−∞,+∞], ψ : Y → [−∞,+∞] will be called admissible
if φ(x) + ψ(y) ≤ c(x, y) for all x ∈ X and y ∈ Y . In the case where φ(x) and ψ(y) are
infinities of opposite signs, we shall use the convention −∞ + ∞ = −∞, so that there is no
restriction on the cost in this case.

The cost induced transform

Given a function φ : X → [−∞,+∞], we may associate with it the largest ψ such that the
two constitute an admissible pair. This defines a transform which is called the c-transform

Definition 3.1.1 (The c-transform). For φ : X → [−∞,+∞], its c-transform is defined
to be the function φc : Y → R given by

φc(y) = inf
x

(c(x, y) − φ(x)) .

Similarly for ψ : Y → [−∞,+∞], its c-transform is defined to be the function ψc : X → R
given by

ψc(x) = inf
y

(c(x, y) − ψ(y)) .

Here if on the right hand side are infinities of opposite signs, which may occur (as
c ̸= −∞) only if ψ(y) = ∞, we use the opposite convention, namely −∞ + ∞ = +∞, since
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when the cost c(x, y) is infinite there is no restriction on the sum φ(x) + ψ(y). In general
one must be very careful with sums of opposite side infinities, as there is no obvious “rule
of thumb” that can apply everywhere. To avoid arithmetic manipulations with infinite
numbers, one may instead consider the infimum in the definition of φc to be taken only
over those points x for which c(x, y) < ∞, and similarly for ψc.

Note that when X = Y and c(x, y) = c(y, x), the c-transforms in the Definition 3.1.1
amount to the same transform. We abuse notation slightly by using the same symbol for
both transforms. This is because we usually assume that X = Y = Rn and that the cost is
symmetric.

The following two facts follow directly from the definition.

Fact 3.1.2. If φ and ψ are admissible then φc ≥ ψ.

Fact 3.1.3. If φ1 ≤ φ2 then φc1 ≥ φc2.

A third simple fact is that on the image of the transform, that is, for functions of the
form ψ = φc, the transform is an involution. In other words, we have

Fact 3.1.4. For any φ we have that φccc = φc.

Proof. Indeed, the pair φ, φc is admissible and thus by Fact 3.1.2 we see that φ ≤ φcc. We
may now insert into this inequality the function φc, getting φc ≤ φccc. We may, instead,
take the c transform of both side of this inequality, and by Fact 3.1.3 get that φc ≥ φccc.

The c-class

Fact 3.1.4 implies that to each cost function there corresponds a natural class of functions
on which the cost-induced transform is an order-reversing involution.

Definition 3.1.5 (The c-class). Given a cost function c(x, y), the corresponding c-class is
the image of the mapping φ 7→ φc on the class of all functions.

It readily follows from the above facts and definition that

Fact 3.1.6. A function φ is in the c-class if and only if φ = φcc.

Among functions in the c-class, there is a subfamily which is of special importance, as
in a sense it generates the class.

Definition 3.1.7 (Basic functions). A function of the form φ(x) = c(x, y0) + β, for a fixed
y0 ∈ Y and a constant β ∈ R, is called a basic function. When c is not a symmetric cost
and X is different from Y , one must distinguish between X-basic functions of the form
φ(x) = c(x, y0) + β, and Y -basic functions of the form ψ(y) = c(x0, y) + β.
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Fact 3.1.8. The family of basic functions generated by a cost c belongs to the c-class.

Proof. Consider the function ψy0,β : Y → [−∞,∞] given by ψy0,β(y) = −∞ for y ≠ y0 and
ψy0,β(y0) = −β. Then we have

ψcy0,β(x) = inf
y

(c(x, y) − ψy0,β(y)) = c(x, y0) + β.

Therefore, the function φ(x) = c(x, y0) + β is in the c-class. (One may also check directly
that φ = φcc).

Note that we used the fact that c(x, y) ̸= −∞. Otherwise, under our convention,
−∞ + ∞ = −∞ and the infimum could become −∞ everywhere.

It is useful to notice that the c-class is always closed under the operation of pointwise
infimum.

Fact 3.1.9. Assume (φα)α∈I is some family of functions which belong to the c-class, where
I is some indexing set. Then the pointwise infimum

φ(x) = inf
α∈I

φα(x)

is also in the c-class.

Proof. Indeed, by assumption there are functions ψα such that φα = ψcα. Consider the
function ψ : Y → [−∞,∞]

ψ(y) = sup
α
ψα(y).

Even if ψα were in the c-class, we no longer claim this is the case for ψ. However, we may
still consider its c-transform and we see that

ψc(x) = inf
y

(c(x, y) − ψ(y)) = inf
y

(
c(x, y) − sup

α
ψα(y)

)
= inf

α
inf
y

(c(x, y) − ψα(y)) = inf
α
ψc(x) = inf

α
φα(x) = φ(x).

It follows that the basic functions generate the c-class.

Fact 3.1.10. Any function φ in the c-class is the infimum of basic functions.

Whenever one encounters a class which is closed under pointwise infimum, one may
define within this class the operation of ˆsup which is a replacement for the usual supremum,
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under which the class is not closed. For example, the class of convex bodies is closed under
intersection, and the convex hull is the replacement for the union operation, which does
not preserve convexity. The general definition is as follows:

Definition 3.1.11 (The operation ˆsup). Let S be a class of functions which is closed under
the operation of infimum. Given a family of functions (φα)α∈I ∈ S for some index set I
define

ˆsup(φα : α ∈ I) = inf{φ ∈ S : φ ≥ φα ∀α}

This operation will prove itself important and we will come back to it after introducing
order-reversing isomorphisms.

3.1.2 Connection with order-reversing isomorphisms

Duality is a classical notion in both geometry and analysis, and as it was pointed out in [4],
it is derived from two abstract properties, namely the operation needs to be an involution
and order-reversing. This allows one to define “duality” for functions.

Definition 3.1.12 (Order-reversing isomorphism). Let S be a class of functions. An
order-reversing isomorphism is a bijective map T : S → S such that for every φ, ψ ∈ S we
have

(i) TTφ = φ,

(ii) φ ≤ ψ if and only if Tφ ≥ Tψ.

Before we move on to the connection between order-reversing isomorphisms and the
c-transform let us state a general fact on the earlier defined ˆsup and order-isomorphisms.

Fact 3.1.13. Let S be a class of functions which is closed under the operation of pointwise
infimum. Let T : S → S be an order-reversing isomorphism. Then for (φα)α∈I ⊂ S we
have that

T (inf φα) = ˆsup(Tφα), T ( ˆsupφα) = inf(Tφα).

Proof. Indeed, by order reversal we know that since inf φα ≤ φα for all α, we have that
T (inf φα) ≥ T (φα) for all α and it belongs the class S. Hence, by the definition of ˆsup,
T (inf φα) ≥ ˆsupT (φα). On the other hand, as T is a bijection, there must be some function
η ∈ S for which Tη = ˆsupT (φα). This means that Tη ≥ Tφα for all α and by the fact
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that T is an order-reversing isomorphism this implies η ≤ φα for all α and in particular
η ≤ infα φα. We get that

Tη ≥ T (inf
α
φα) ≥ ˆsupT (φα) = Tη,

which implies that this is a line of equalities, and using injectivity, η = infα φα as claimed.

In a series of papers ([3],[4],[5]) S. Artstein-Avidan and V. Milman studied this concept
of duality in two special classes of functions. They showed that on the class of lower-
semicontinuous convex functions, which we will denote as Cvx(Rn), any order-reversing
involution must be, up to linear terms, the well known and important Legendre transform
L. They further considered the subclass Cvx0(Rn) of so-called geometric convex functions,
which consists of non-negative lower-semicontinuous convex functions which take the value
0 at 0, and proved that on this subclass there are precisely two essentially different order-
reversing isomorphisms, the Legendre transform L (for which Cvx0(Rn) is an invariant
subclass) and the Polarity transform A. Let us now demonstrate how these two transforms
are connected to cost functions via cost induced transforms.

The Legendre transform

The Legendre transform is an extremely useful operation on functions, used throughout
many areas in mathematics, see e.g. [16]. It is defined by

Lφ(y) = sup
x∈Rn

(⟨x, y⟩ − φ(x)) .

One may recover it by using one of the two following possibilities for cost functions:
c(x, y) = −⟨x, y⟩ or c̃(x, y) = |x−y|2

2 . Indeed,

φc(y) = inf
x

(−⟨x, y⟩ − φ(x)) = − sup
x

(⟨x, y⟩ − (−φ(x))) = −L(−φ)(y).

One may easily check that the corresponding c-class is the class of upper-semicontinuous
concave functions (which are allowed to attain the value −∞). This also follows from the
classical fact from convex geometry that L is an order-reversing involution on the class of
lower-semicontinuous convex functions φ : Rn → (−∞,∞].

Regarding the cost function c̃, we note that

φc̃(y) = inf
x

(|x|2/2 − ⟨x, y⟩ + |y|2/2 − φ(x)) = |y|2/2 + inf
x

(−⟨x, y⟩ − (φ(x) − |x|2/2))
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so that
φc̃(y) − |y|2/2 = inf

x
(−⟨x, y⟩ − (φ(x) − |x|2/2)) = (φ− |x|2/2)c.

This means that the c̃-class are simply functions in c-class with an added fixed function
−|x|2/2, and the induced transform is, up to this “change of appearance”, the same.

Polarity transform

The A-transform, which has recently received much attention [5, 6], is defined by

Aφ(y) = sup
x

(⟨x, y⟩ − 1)+

φ(x) ,

where f(x)+ = max{f(x), 0}. It must be specified here that division by 0 of a positive
number gives +∞ whereas the fraction 0

0 gives 0 (this corresponds, after taking a logarithm,
to the fact that −∞ + ∞ = −∞ in this setting).

One may easily verify that the image of A is the set of previously mentioned geometric
convex functions Cvx0(Rn), i.e. non-negative lower-semicontinuous convex functions which
vanish at the origin (and are allowed to attain the value +∞).

It turns out that A is induced by the cost function

p(x, y) = − ln(⟨x, y⟩ − 1)+.

Indeed, computing the p-transform we get that

φp(y) = inf
x

(− ln(⟨x, y⟩ − 1)+ − φ(x)) = − ln
(

sup
x

(⟨x, y⟩ − 1)+

e−φ(x)

)
= − ln

(
A(e−φ(·))(y)

)
.

Since the A transform is an order-reversing involution on the class of geometric convex
functions, the p-class consists of − ln f , where f ∈ Cvx0(Rn).

3.2 One parameter family of costs pt
The Legendre transform and its associated cost function c(x, y) = −⟨x, y⟩ have been
thoroughly studied and are well understood (see [16] for an exposition). On the other hand,
the cost function p(x, y) = − ln(⟨x, y⟩ − 1)+ associated with the Polarity transform does not
fall into the standard setting because unlike most well studied cost functions it is not real
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valued. Therefore, many of the classical theorems from the optimal transport framework,
which will be discussed in the next chapter, do not apply. Moreover, the region of finite cost
{(x, y) ∈ Rn × Rn : p(x, y) < ∞} is an open set in R2n, which further complicates proving
the existence of a transport plan with finite p cost.

For this reason we introduce a family of costs pt with t ≥ 0, defined as

pt(x, y) = − ln(⟨x, y⟩ − 1)t,

where f(x)t = f(x) when f(x) ≥ t and 0 otherwise. It is clear that p = p0 and that for
t > 0 the finite cost region is now a closed set (but it still is not real valued).

In this case the pt-transform takes a form

φpt(y) = inf
x

(− ln(⟨x, y⟩ − 1)t − φ(x)) = − ln
(

sup
x

(⟨x, y⟩ − 1)t
e−φ(x)

)

= − ln
(

sup
{x:⟨x,y⟩≥1+t}

⟨x, y⟩ − 1
e−φ(x)

)
.

This motivates defining the following definition for a “t-truncated polarity” transform At.

Definition 3.2.1. Let t ≥ 0 and let φ : Rn → [0,∞]. We define

(Atφ)(y) = sup
{x:⟨x,y⟩≥1+t}

⟨x, y⟩ − 1
φ(x) .

Similarly to the case t = 0 we see that

e−φpt = Ate
−φ.

From this point onward we shall move back and forth between the logarithmic “cost
level” and the multiplicative level. The main reason for this is that we already have some
intuition for convex and geometric convex functions, but at the same time we have the
general theory well developed for additive costs. We should thus keep a flexible mind in
moving between these two levels: in one the functions are φ : Rn → [−∞,∞] and in the
other they are f = e−φ : Rn → [0,∞].
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Useful examples

To provide some intuition about the properties of the transform At, we include a few simple
examples here, and give the computations along with slightly more elaborate examples in
Appendix B.

Example 3.2.2. Let t > 0. For the convex indicator function 1∞,s
K which attains the value

0 on the interior of the convex body K, which is assumed to include the origin 0, the value
s ∈ [0,∞] on its boundary, and the value +∞ outside of K, we have that

At1∞,s
K = 1∞,t/s

(1+t)K◦

where t/0 = ∞ and t/∞ = 0.

In particular we see that convex indicators of open convex sets are At functions as well.

Example 3.2.3. For the truncated linear function ℓy0(x) = ⟨x, y0⟩+ we have that

Atℓy0 = ℓ∞
y0/|y0|2 , and ℓy0 = Atℓ

∞
y0/|y0|2

where ℓ∞
z0 denotes the function which is ℓz0 on the ray R+z0 and +∞ elsewhere. For the

proof see Appendix B.

We have said in the general case that the basic functions for a given cost are functions of
the form φ(x) = c(x, y0) + β. In our particular case we will thus be dealing with functions

φ(x) = − ln(β(⟨x, y⟩ − 1)t),

where β is a non-negative constant. Correspondingly, in the multiplicative level, the basic
functions are of the form fy0,β(x) = β(⟨x, y0⟩ − 1)t, and based on their appearance we call
these “escalator” functions. Let us fix the notation for this family of functions and define
the escalator function sa,b, where a ∈ Rn and b ≥ 0, as

sa,b(x) = b(⟨x, a⟩ − 1)t.

In accordance with Fact 3.1.10, every function in the image of At can be expressed as a
supremum of such escalator functions. Since the image of the transform At, namely e−φ for
φ in the pt-class, will be one of our main objects to of study in this chapter, we give it a
name and notation.
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Definition 3.2.4. We denote by St the class of functions which are in the image of At.
We call this class of functions the At-class.

We will also make use of the following special functions, which we call “knife”-functions:
The knife function ka,b, where a ∈ Rn and b > 0, is defined to be ∞ outside of the segment
[0, a] = conv{0, a}, and on the segment it is given by ka,b(x) = b|x|. In other words,

ka,b(x) = max(1∞
[0,a](x), b|x|),

where the function 1∞
[0,a](x) is equal 0 if x ∈ [0, a] and ∞ otherwise.

The following fact tells us that escalator functions and knife functions are dual in the
At setting.

Fact 3.2.5. The function ka,b is in At-class, and it is the image (and pre-image) under At

of the escalator function sa,(|a|b)−1(y) = (⟨y,a⟩−1)t

|a|b . In particular, AtAtka,b = ka,b.

Proof. Let us compute Atsa,(|a|b)−1 . It follows from the definitions that

(Atsa,(|a|b)−1)(y) = sup
x

(⟨x, y⟩ − 1)t
sa,(|a|b)−1(x) .

So that if there is some x with sa,(|a|b)−1(x) = 0 and ⟨x, y⟩ − 1 ≥ t, then Atsa,(|a|b)−1 = ∞.
Since sa,(|a|b)−1(x) = 0 on the half-space ⟨x, a⟩ < 1 + t, the only possibility for the two
halfspaces not to intersect is if y is parallel to a and, furthermore, is in the segment [0, a].
Therefore, on the complement of this segment Atsa,(|a|b)−1 is +∞. On the segment we have,
for y = ξa with ξ ∈ [0, 1], that

(Atsa,(|a|b)−1)(ξa) = sup
x

|a|b(⟨ξa, x⟩ − 1)t
(⟨a, x⟩ − 1)t

.

Clearly the expression is at most |a|bξ = b|y| (by replacing the numerator with ξ(⟨a, x⟩−1)t),
and by taking x = Ra for R → ∞ we get that the supremum is precisely |a|bξ = b|y|, as
claimed). This already implies that Atsa,(|a|b)−1 = ka,b and so ka,b is in the image, and as
escalator functions are the basic functions in the At-class. This completes the proof.

For convenience we include the computation of Atka,b as well. It follows from the
definitions that

(Atka,b)(y) = sup
x∈[0,a]

(⟨x, y⟩ − 1)t
|x|b

.
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In the case where ⟨a, y⟩ < 1 + t the supremum will be 0. On the half-space ⟨a, y⟩ ≥ 1 + t

the supremum will be attained when x = a, in which case it is equal to (⟨a,y⟩−1)t

|a|b , in other
words, we get precisely sa,(|a|b)−1 .

The ˆinf operation

In the multiplicative level we know that St is closed under supremum, and therefore,
analogously to Definition 3.1.11, we define the operation ˆinf.

Definition 3.2.6 (The operation ˆinf). Let (fα)α∈I be a family of At-functions, for some
index set I. Then their regularized infimum is defined by

ˆinf(fα : α ∈ I) = sup{g ∈ St : g ≤ fα ∀α}

It follows from Fact 3.1.13 that

Fact 3.2.7. For any family of At-functions (fα)α∈I , it holds that

ˆinf(fα : α ∈ I) = At(sup
α

Atfα) = AtAt(inf
α
fα).

For the case t = 0, the operation ˆinf(fα : α ∈ I) is the operation of taking the convex
hull of the unions of the epi-graphs of the fα’s. The same is true for the Legendre transform
(whereas for L, the epi-graphs do not have to lie in the upper half-space and include
the origin). Indeed, this is what occurs when one performs A0A0 on any (non-negative,
vanishing at the origin) function. For At this is geometrically a different operation, and
unfortunately does not have such a clear geometric illustration.

The function class

To understand better what is the class St of At-functions, we establish a few other properties
of this class. It has already been shown above that

Fact 3.2.8. On St, the transform At is an order-reversing involution. In general, At is
order-reversing and AtAtφ ≤ φ.

Fact 3.2.9. The functions in St are precisely those functions which can be written as the
supremum of escalator functions.

Fact 3.2.10. The class St is closed under max (and sup). Moreover, one has that

At(inf
α∈I

(φα)) = sup
α∈I

(Atφα) and At(sup
α∈I

(φα)) = ˆinfα∈I(Atφα)
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The first new structural fact about At functions we would like to explain is that while
they are not necessarily convex, the whole segment joining the point and the origin must
also be in the epi-graph. In other words, we prove:

Lemma 3.2.11. Any function in St can be written as the infimum of knife functions.
In particular, an At-function must be non-decreasing on every ray, and moreover, as a
one-dimensional function on the ray, not only is the map t 7→ φ(tx) non-decreasing, but so
is the map t 7→ φ(tx)/t.

Proof. It follows from Fact 3.2.5, 3.2.9 and 3.2.10 that any function φ ∈ St can be written
as ˆinf of knife functions. It remains to show that for any z such that φ(z) < ∞, we have
kz,φ(z) ≥ φ. In other words, we need to show that for λ ∈ [0, 1] if y = λz then φ(y) ≤ λφ(z).
Since the function φ belongs to the class, we may write that φ = Atψ, and our claim is that

sup
{x:⟨x,y⟩≥1+t}

⟨x, y⟩ − 1
ψ(x) ≤ λ sup

{x:⟨x,z⟩≥1+t}

⟨x, z⟩ − 1
ψ(x) .

Note that {x : ⟨x, y⟩ ≥ 1 + t} = {x : λ⟨x, z⟩ ≥ 1 + t} ⊂ {x : ⟨x, z⟩ ≥ 1 + t}, hence

sup
{x:⟨x,y⟩≥1+t}

⟨x, y⟩ − 1
ψ(x) ≤ sup

{x:⟨x,z⟩≥1+t}

⟨x, y⟩ − 1
ψ(x) ≤ sup

{x:⟨x,z⟩≥1+t}
λ

⟨x, z⟩ − 1
ψ(x) ,

which translates to the desired inequality.

It is useful to know that while the class St clearly contains functions which are not
geometric convex, it does contain all geometric convex functions. In fact, we show that

Lemma 3.2.12. Let 0 ≤ t1 ≤ t2 < ∞. Then

St1 ⊂ St2 .

In particular, Cvx0(Rn) ⊂ St for any t ≥ 0.

Proof. It is enough to consider the case t1 < t2 as the equality case is trivial. By Facts
3.2.5 and 3.2.9 it suffices to show that all the functions of the form φ(y) = (At1ka,b)(y),
which is ⟨a,y⟩−1

|a|b for ⟨a, y⟩ ≥ 1 + t1 and 0 otherwise, are in St2 . To see this we will find a
family of “t2-escalator” functions ψα ∈ St2 such that φ(y) = supα∈I ψα(y) is a pointwise
supremum, which by Fact 3.2.10 belongs to St2 .
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Define ψα(y) = At2kAα,Bα , where Aα = 1+t2
α(1+t1)a and Bα = (1+t1)t2α

(1+t2)((1+t1)α−1)b with a
parameter α ≥ 1. Again, using Fact 3.2.5 we see that

ψα(y) =
1+t2

α(1+t1)⟨a, y⟩ − 1
t2

(1+t1)α−1 |a|b
, when ⟨a, y⟩ ≥ (1 + t1)α

and 0 otherwise. Note that for yα such that ⟨a, yα⟩ = (1 + t1)α we have

φ(yα) = (1 + t1)α− 1
|a|b

= ψα(yα).

If 1 ≤ α ≤ 1+t2
1+t1 then we have that ψα(y) ≤ φ(y) for all y. We have already shown that

if y is such that ⟨a, y⟩ < (1 + t1)α then ψα(y) = 0 ≤ φ(y), and that if ⟨a, y⟩ = (1 + t1)α
then we have ψα(y) = φ(y). Finally, for y with ⟨a, y⟩ > (1 + t1)α, one can easily check that
since α ≤ 1+t2

1+t1 the gradient of ψα(y) has magnitude at most that of the gradient of φ(y).
Moreover, note that for α′ = 1+t2

1+t1 we have that ψα′(y) = φ(y) for all y with ⟨a, y⟩ ≥ 1 + t2.
It follows that

φ(y) = sup
{1≤α≤ 1+t2

1+t1
}
ψα(y),

and hence the proof is finished.

We have thus showed that for every t ≥ 0 the class of functions St includes Cvx0(Rn). It
turns out that for small positive t, these classes are not very different, in a sense explained
in the next lemma.

Lemma 3.2.13. Let φ ∈ St. Then the sub-level-sets of φ are convex sets, and there exists
some ψ ∈ Cvx0(Rn) such that for all y,

(t+ 1)ψ
(

y

t+ 1

)
≤ φ(y) ≤ ψ(y).

Proof. Note that the r-sub-level-set of ψ = supα∈I ψα is simply the intersection

Kr(ψ) = {x : ψ(x) ≤ r} = {x : ∀α , ψα(x) ≤ r} =
⋂
α∈I

Kr(ψα).

Combining this with Fact 3.2.9 and the fact that the level sets of functions of the form
Atka,b are half-spaces (which can be open or closed), we get that the level sets are convex.
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For the second assertion let us notice that

(Atφ)(y) = sup
{x:⟨x,y⟩≥1+t}

⟨x, y⟩ − 1
φ(x)

= sup
{x:⟨x,y⟩≥1}

⟨(1 + t)x, y⟩ − 1
φ((1 + t)x)

= sup
{x:⟨x,y⟩≥1}

(
⟨x, y⟩ − 1

1
1+tφ((1 + t)x) + t

φ((1 + t)x)

)
.

Now let φt(x) = 1
1+tφ((1 + t)x) and note that the above computation shows that

Atφ ≥ Aφt.

Moreover, we have that

Aφt(y) = sup
{x:⟨x,y⟩≥1}

⟨x, y⟩ − 1
1

1+tφ((1 + t)x) = (1 + t)Aφ
(

y

1 + t

)
.

Finally, as we are taking the supremum over a smaller set, it is clear that

Atφ ≤ Aφ.

It follows that
(1 + t)Aφ

(
y

1 + t

)
≤ Atφ(y) ≤ Aφ(y),

which, since the image space of At and A are respectively St and Cvx0(Rn), concludes the
proof.

3.3 Uniqueness of At on St
In this section we determine all order-isomorphisms on the class St. We show that up to
linear variants, for t > 0, the only order-reversing transform on the function class St is At.
The case t = 0, which was investigated in [5], is different as there are, up to linear variants,
two order-reversing isomorphisms, one is A0 and the other is the Legendre transform, under
which the class S0 is invariant.

Following [5] we will prove that
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Theorem 3.3.1. Let t > 0. Any order-reversing bijection T : St(Rn) → St(Rn) with n ≥ 1
is of the form

Tf = c(Atf) ◦B

where B ∈ GLn(R) and c > 0.

As we already know that At is an order-reversing isomorphism, determining all order-
reversing isomorphisms is equivalent to determining all order-preserving ones, since an
order-reversing isomorphism can be composed with At to form an order-preserving one.
Thus, we may deduce Theorem 3.3.1 from the following:

Theorem 3.3.2. Let t > 0. Any order-preserving bijection T : St(Rn) → St(Rn) with
n ≥ 1 is of the form

Tf = cf ◦B

where B ∈ GLn(R) and c > 0.

We recall the definition of an order-preserving isomorphism on a class S: it is a bijection
T : S → S which satisfies that f ≤ g if and only if Tf ≤ Tg. We begin with an observation
regarding the action of an order-preserving map on linear functions and indicators.

Lemma 3.3.3. Let T : St(Rn) → St(Rn) be an order-preserving isomorphism. Then the
zero function l0(x) ≡ 0 and the infinity function 1∞

{0} (which is 0 at the origin and +∞
elsewhere) are fixed points of T .

Proof. These are the maximal and minimal functions in the class.

We will first consider the case of dimension 1, and in fact only consider functions defined
on a ray emanating from the origin (as any function in St(R) is simply the concatenation
of a function on R+ and a function on R−). The result for general dimension n will follow
from this case in a similar way to the one used in the paper [5].

3.3.1 Proof for the class St(R+)
By f ̸≥ g let us denote the fact that f and g are not comparable, i.e. there exist x, y such
that f(x) > g(x) and f(y) < g(y). It will be useful to introduce a property (P) which was
used also in the original [5] paper about the polarity transform A.

Definition 3.3.4. Let S be a partially ordered class of functions which is closed under the
operation of pointwise maximum. We say a function f ∈ S satisfies property (P) if for any
functions g, h ∈ S such that h ̸≥ f and g ̸≥ f , we have that max(h, g) ̸≥ f .
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This definition is useful in understanding order-isomorphisms, and the next lemma
explains how. It is Lemma 11 form [5] but we provide with the proof for completeness.

Lemma 3.3.5 (Lemma 11, [5]). Let T : S → S be an order-preserving isomorphism. Then
a function satisfying property (P) must be mapped to a function satisfying property (P).

Proof. It follows in the same way as Fact 3.1.13 that for an order-preserving isomorphism
on S we have that T max(h, g) = max(Th, Tg). Assume that f satisfies (P), and let us
show that so does Tf . Indeed, consider two functions, which we denote Tg and Th (which
we may, as T is a bijection) and assume that they satisfy Tg ̸≥ Tf and Th ̸≥ Tf . As T
is an order-preserving we have that g ̸≥ f and h ̸≥ f , and as f satisfies (P) this implies
max(g, h) ̸≥ f . Using again that T is order-preserving, it follows that T max(g, h) ̸≥ Tf

and as T max(h, g) = max(Th, Tg), the proof is complete.

Our first step is thus determining the functions in St(R+) which satisfy (P), and this is
the object of the next lemma.

Lemma 3.3.6. The only functions in St(R+) which satisfy (P) are linear functions la(x) =
ax (for a ≥ 0) and indicator functions 1∞

[0,b](x) and 1∞
[0,b)(x).

Proof. We start by showing that these function indeed satisfy (P).
(1) Assume g ̸≥ la, then there is some x1 > 0 for which g(x1) < ax1. By Lemma 3.2.11, this
implies that g(y) < ay for all y ≤ x1. Similarly if h ̸≥ la there is some x2 > 0 for which
h(x2) < ax2 and h(y) < ay for all y ≤ x2. Therefore for all y ≤ min(x1, x2) we have that
max(g(y), h(y)) < ay = la(y) and so max(g, h) ̸≥ la as needed.
(2) Assume g ̸≥ 1∞

[0,a]. Then there is some x1 > a for which g(x1) < ∞. Therefore, as
functions in St are increasing on rays, for all y ≤ x1 we have g(y) < ∞. Similarly for
h ̸≥ 1∞

[0,a] there is some x2 > a with h(y) < ∞ for all y ≤ x2. Therefore for all y ≤ min(x1, x2)
(which is > a) we have max(g(y), h(y)) < ∞ and in particular max(g, h) ̸≥ 1∞

[0,a], as needed.
(3) Assume g ̸≥ 1∞

[0,a). Then g(a) < ∞. Similarly if h ̸≥ 1∞
[0,a) then h(a) < ∞ and thus

max(g(a), h(a)) < ∞ and so max(g, h) ̸≥ 1∞
[0,a).

Next, we would like to explain why a function satisfying (P) must be one of these three.
Let f satisfy (P) and assume f attains some non-zero finite value. We claim that in such a
case f must be linear. This will complete the proof as the only functions which attain only
the values 0 and +∞ in St are the two types of convex indicators mentioned above.

Assume that 0 < f(x1) < ∞. Denote a = f(x1)/x1, so that f(x1) = ax1. By Lemma
3.2.11 we know that the knife function kx1,a ≥ f and we have that kx1,a = max(1∞

[0,x1], la).
Since f(x1) > 0 we know that 1∞

[0,x1] ̸≥ f . Therefore, as f satisfies (P), it must be that
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la ≥ f . However, as these two function intersect at (x1, f(x1)), by Lemma 3.2.11, for any
x > x1 we must also have that f(x) = la(x) otherwise the knife function kx,f(x) would not
be above the point (x1, f(x1)) on the epi-graph of f .

Next we need to explain why also in the segment [0, x1] the function must be linear. To
this end, assume there is some point 0 < x2 < x1 for which 0 < f(x2) < ax2 (recall we
have already shown that la ≥ f , so this is the only other option). Using once again Lemma
3.2.11 we know that kx2,f(x2) ≥ f so by the same argument as above, applied this time to
x2 and a′ = f(x2)/x2, we get that la′ ≥ f but this is clearly not true at the point x1, which
is a contradiction. Therefore on the segment [0, x1] we must have that either f(x) = ax, or
f(x) = 0.

All we are left with is the option that f vanishes on some segment [0, x] (or [0, x)) for
x > 0 and is then linear. However, these functions are not in the class St. Indeed, such a
function is the pointwise minimum of 1∞

[0,b] and ℓa (or 1[0,b) and ℓa, for which computations
are analogous) and for it to be in the class St it would need to be the case that

min(1∞
[0,b], ℓa) = At

(
At

(
min(1∞

[0,b], ℓa)
))
.

But, using Fact 3.2.10 and Examples 3.2.2 and 3.2.3 we see that

At

(
At

(
min(1∞

[0,b], ℓa)
))

= At

(
max(At1∞

[0,b],Atℓa)
)

= At(max(1∞
[0,(1+t)/b), ℓ1/a)

and it can be easily computed that this is equal to0 for x ∈ [0, b]
ax− ab

1+t for x > b.

As this is clearly a different function, it follows that f cannot vanish on any segment [0, x]
for x > 0, which completes the proof of the Lemma.

Lemma 3.3.7. Let T : St(R+) → St(R+) be an order-preserving isomorphism. Then
all linear functions ℓb(x) := bx (where b > 0) are mapped to linear functions, all convex
closed-interval indicators 1∞

[0,a] are mapped to convex closed-interval indicators, and all
convex half-open-interval indicators 1∞

[0,a) are mapped to convex half-open-interval indicators.
In particular, there exist u,w : R+ → R+ increasing bijections, such that T (1∞

[0,a]) = 1∞
[0,u(a)]

and T (ℓb) = ℓw(b).

Proof. By Lemma 3.3.5 and Lemma 3.3.6 we know that the class of all linear functions and
all convex indicators (both closed and half-open) is invariant. Note that this class is in



66 Cost functions and order reversing involutions

fact the union of two chains (with respect to the partial order). Indeed, the set of linear
functions is ordered (according to the usual order of their slopes) and the set of indicators
is ordered in that if a < b then 1∞

[0,a] ≤ 1∞
[0,b) ≤ 1∞

[0,b]. Moreover, no function in this class is
between 1∞

[0,b) and 1∞
[0,b]. Moreover, for a > 0, b > 0, ℓa and 1[0,b] are not comparable, and

neither are ℓa and 1[0,b).
Note that an order-preserving isomorphism maps these chains to themselves. Indeed,

since the chain of (ℓa)a>0 has the property that between any two elements there is a third
one, it cannot be mapped to the chain of convex indicators. Thus it is invariant. Moreover,
the chain of convex indicators is invariant. Finally, if a convex half-open-interval indicator
1∞

[0,b) was mapped to a closed one 1∞
[0,c], the image of 1∞

[0,b] would have to be an element φ of
this class such that above 1∞

[0,c] and below φ there are no other elements, but no such element
φ exists. Therefore, half-open-interval indicators are mapped to half-open-interval indicators
and closed-interval indicators are mapped to closed-interval indicators, as claimed.

The functions u,w : R+ → R+ defined by T (1∞
[0,a]) = 1∞

[0,u(a)] and T (ℓb) = ℓw(b) are
increasing, by the order-preserving property of T . As their image is all of R+ (since T is an
isomorophism) it is a bijection.

Lemma 3.3.8. Let T : St(R+) → St(R+) be an order-preserving isomorphism. Then knife
functions are mapped to knife functions and escalators to escalators. Moreover, if we denote
by u,w : R+ → R+ the functions defined by

T (1∞
[0,a]) = 1∞

[0,u(a)] and T (ℓb) = ℓw(b),

then T (1∞
[0,a)) = 1∞

[0,u(a)), T (ka,b) = ku(a),w(b) and T (sa,b) = sα,β with α = 1+t
u((1+t)a−1) and

β = w(ab)u((1+t)a−1)
1+t .

Proof. By the same argument as above T (1∞
[0,a)) is the largest element in the invariant class

of (P) property which is below T (1∞
[0,a]) = 1∞

[0,u(a)], and this element is 1∞
[0,u(a)).

Observe that ka,b = max(1∞
[0,a], ℓb) and using that T is order-preserving it maps

max(1∞
[0,a], ℓb) to max(T1∞

[0,a], T ℓb) = max(1∞
[0,u(a)], ℓw(b)).

Finally, Facts 3.2.5 and 3.2.10 show that the escalator function can be written as
sa,b = At(ka,(ab)−1) = At(max(1∞

[0,a], ℓ(ab)−1) = ˆinf{1[0, 1+t
a

), ℓab}. Then as before we see that
T maps ˆinf(1∞

(0, (1+t)
a

)
, ℓab) to

ˆinf(1∞
(0,u( (1+t)

a
)), ℓw(ab)) = s 1+t

u((1+t)a−1)
,

w(ab)u((1+t)a−1)
1+t

.
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We next claim that the maps u and w given in Lemma 3.3.8 are of a special linear form.

Lemma 3.3.9. Let T : St(R+) → St(R+) be an order-preserving isomorphism, and assume
that T (1∞

[0,a]) = 1∞
[0,u(a)] and T (lb) = lw(b) for some increasing bijections u,w : R+ → R+.

Then there exist α, β ∈ R+ such that u(a) = αa and w(b) = βb, in particular, T (ka,b) =
kαa,βb.

Proof. Let ka,b be some knife function with a, b > 0, and note that any escalator function
of the form

sλ(x) := s 1+t
λa

, λab
1+t−λ

(x) = λab

1 + t− λ

(1 + t

λa
· x− 1

)
t

where 0 < λ ≤ 1, is strictly below ka,b, i.e. sλ ≤ ka,b. Indeed, sλ(x) = 0 for all x < λa and
for x ≥ λa it is an increasing function with sλ(a) = ab = ka,b(a).

Since T is order-preserving we must have Tsλ ≤ Tka,b and as the two functions intersected
at a point (a, ab) we must have that for any λ ∈ (0, 1],

Tsλ(u(a)) = Tka,b(u(a)).

Now, using Lemma 3.3.8, we get that Tka,b(u(a)) = ku(a),w(b)(u(a)) = u(a)w(b) and

Tsλ(u(a)) = s
1+t

u(λa) (u(a)),
u(λa)w( (1+t)b

1+t−λ)
1+t

(u(a)) =
w
(

(1+t)b
1+t−λ

)
1 + t

((1 + t)u(a) − u(λa)) .

As a result the equality Tsλ(u(a)) = Tka,b(u(a)) can be written as
(
u(a) − u(λa)

1 + t

)
w

(
(1 + t)b

1 + t− λ

)
= u(a)w(b).

Since u(a)w(b) ̸= 0 (as ka,b is not the function 1∞
{0}), after rearranging we see that the

ratio w(b)/w( b
1− λ

1+t

) does not depend on b and similarly u(λa)/u(a) does not depend on a.
Indeed, we get that equality

1 − u(λa)
(1 + t)u(a) = w(b)

w
(

b

1− λ
1+t

) (3.1)

needs to hold for all a, b and hence be constant. Note that neither w(1) or u(1) is equal
zero, so we may write
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w

(
b

1 − λ
1+t

)
= w(b)

w
(

1
1− λ

1+t

)
w(1) and u(λa) = u(a)u(λ)

u(1) .

Note, that these equalities formally hold for λ ∈ (0, 1] but can be extended. In the case of
u, for λ > 1 let a′ = λa then

u(λa)
u(a) =

(
u((1/λ)a′)
u(a′)

)−1

=
(
u(1/λ)
u(1)

)−1

= u((1/λ)λ)
u(1/λ) = u(λ)

u(1) ,

where we used the previous identity twice, with 1
λ

∈ (0, 1). Hence, we can allow all
λ ∈ (0,+∞). In the case of w, we see that the parameter η := 1

1− λ
1+t

belongs to the interval
(1, 1 + 1

t
] and also that the equality holds trivially for η = 1. Moreover, arguing in the same

way as for u, we see that in fact the equality holds for all η ∈ [ t
1+t ,

1+t
t

].
Let U(x) = u(x)/u(1) and W (x) = w(x)/w(1). Clearly they are non-negative monotone

and continuous functions (as u and w are increasing bijections from R+ to R+), and we see
that

∀x ∈ R+ ∀y ∈ (0,∞) U(xy) = U(x)U(y)
∀x ∈ R+ ∀y ∈ [ t

1+t ,
1+t
t

] W (xy) = W (x)W (y).

These are multiplicative Cauchy functional equations, where the first one is classical and
the second has restricted domain. We include a proof for this kind of restricted domain
in the appendix (Lemma B.0.3). It follows that there exist constants c, d ∈ R such that
U(x) = xc and W (x) = xd. Thus, letting u(1) = α,w(1) = β with α, β > 0 we have

u(x) = αxc, w(x) = βxd.

Plugging this into the equation (3.1) gives for all λ ∈ (0, 1] that

1 − λc

1 + t
=
(

1 − λ

1 + t

)d
.

This equation can hold for all 0 < λ ≤ 1 only if c = d = 1, and so u(a) = αa and
w(b) = βb.
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Theorem 3.3.10. An order-preserving isomorphism T : St(R+) → St(R+) must behave
like the identity, i.e. for any function f ∈ St(R+) there exist α, β ∈ R+ such that

Tf(x) = βf
(
x

α

)
.

Proof. It is clear from the Lemma 3.2.11 that every function in St can be written as the
infimum of knife functions and that indeed, f(x) = infy(ky,f(y)/y)(x). Then by Lemma 3.3.9
we get

Tf(x) = T
(

inf
y

(ky,f(y)/y)
)
(x) = inf

y

(
Tky,f(y)/y

)
(x)

= inf
y

(
kαy,βf(y)/y

)
(x) = inf

z

(
kz,βf( z

a
)/ z

a

)
(x)

= βf
(
x
α

)
as claimed.

Corollary 3.3.11. The only order-reversing isomorphism on the class St(R+) is, up to a
linear transformation, At.

3.3.2 Generalization to St(Rn)
Having understood how an order-preserving involution behaves on St(R+) we are ready
to consider higher dimensions. Let us first recall a result from [5, Lemma 9] about order-
preserving isomorphisms on the class S0. One may check that, as the proof only uses the
properties of the map T and the support of functions in the class, it is enough to use Lemma
3.2.13 to see that the exact same result extends to the functions in St for t > 0.

Lemma 3.3.12. If T : St(Rn) → St(Rn) is an order-preserving isomorphism, then there
is a bijection Φ : Sn−1 → Sn−1 such that any function supported on R+y is mapped to a
function supported on R+z for z = Φ(y). Moreover, the function 1∞

R+y is mapped to the
function 1∞

R+z.

Therefore we know that any order-preserving bijection must act ray-wise, and in this
subsection we will determine how all the rays fit together. This proof again follows almost
identically [5, Subsection 6.7.].

Proof of Theorem 3.3.2. Let T be an order-preserving isomorphism on Rn, n ≥ 2. From
Lemma 3.3.12 we have a function Φ : Sn−1 → Sn−1 such that the function supported on
R+y is mapped to the function supported on R+z for z = Φ(y) and 1∞

R+y is mapped to
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the function 1∞
R+z. Hence, for each y ∈ Sn−1 we have a mapping from St(R+y) (which is

isometric, say via I1, to St(R+)) to St(R+Φ(y)) (again isometric, say via I2, to St(R+)).
Hence, from Theorem 3.3.10 we find that for each ray R+y there are constants αy, βy such
that if x ∈ R+y then (

(I2 ◦ T ◦ I−1
1 )(f)

)
(x) = βyf

(
x

αy

)
.

Using this, let us now check how T acts on indicator functions in St(Rn). To this end,
define a function φ : Rn → Rn by T (1∞

[0,x]) = 1∞
[0,φ(x)], and it is well defined due to its

connection to Φ. This means that for any convex set 0 ∈ K ⊂ Rn we have

T1∞
K = T

( ˆinfx∈K(1∞
[0,x])) = ˆinfx∈K(T1∞

[0,x]) = ˆinfx∈K(1∞
[0,φ(x)]) = 1∞

φ(K).

Therefore, since T preserves convexity as a bijective interval preserving map, it follows that
also φ preserves convexity (see [2]). Hence, by well known result due to Schneider [19], we
conclude that φ is linear, i.e. φ(x) = Bx for B ∈ GLn(R).

Now let us consider a function f = ˆinf(kx,b, kx′,b′) ∈ St. We have that f |[0,x] = kx,b

and f |[0,x′] = kx′,b′ for x ̸= x′. Then by Lemma 3.2.13 follows, that f needs to be finite
on the whole set conv{0, x, x′}, as it is contained in the max(xb, x′b′)-level set, but it
will be infinite otherwise. Moreover, we can find a linear function ℓ which coincides
with kx,b and kx′,b′ on their domains and hence on conv{0, x, x′} can be expressed as
ℓ(t(λx+ (1 − λ)x′)) = t(λb+ (1 − λ)b′) for λ, t ∈ [0, 1]. Since the class St is closed under
supremum, we get that ˆinf(kx,b, kx′,b′) = max{ℓ, 1∞

conv{0,x,x′}}.
Therefore the largest knife function with domain [0, λx+ (1 − λ)x′], which is smaller

than ˆinf(kx,b, kx′,b′) (and in this case is equal to it) is kλx+(1−λ)x′,λb+(1−λ)b′ and we have that

kλx+(1−λ)x′,λb+(1−λ)b′ = λkx,b + (1 − λ)kx′,b′ . (3.2)

The three knife functions kx,b, kx′,b′ , kλx+(1−λ)x′,λb+(1−λ)b′ are mapped by T to knife
functions with bases [0, Bx], [0, Bx′] and [0, λBx+ (1 − λ)Bx′] and slopes which a priori
depend on the base, hence we denote them by u(x, b), u(x′, b′) and u(λx+ (1 − λ)x′, λb+
(1 − λ)b′), respectively. Then the equality 3.2 gives us

u(λ(x, b) + (1 − λ)(x′, b′)) = λu(x, b) + (1 − λ)u(x′, b′),

which means that u is linear. Noting that u(x, 0) = 0 for all x we get that u(x, b) = β0b.
This yields that the the function f is mapped to β0f ◦B, and the result can be extended
to all St class functions due to Lemma 3.2.11.
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3.4 The associated subgradient mapping
It will be useful, before we consider some special cases, to recall and study a notion of
a c-subgradient mapping for a general cost function c : X × Y → (−∞,∞]. As we have
seen already, a cost function induces an order-reversing transformation φ → φc and a class
of functions which we called the c-class, namely all functions which are images of this
mapping, on which the mapping is an order-reversing isomorphism. No less important
is the c-subgradient mapping, which is induced by the cost function and is a set valued
mapping from X to Y (or vice versa).

Definition 3.4.1 (c-subgradient). Given φ : X → [−∞,∞] which is a c-class function,
we consider the subset ∂cφ ⊂ X × Y , and its sections ∂cφ(x) = {y ∈ Y : (x, y) ∈ ∂cφ} and
∂cφc(y) = {x ∈ X : (x, y) ∈ ∂cφ}, where

∂cφ = {(x, y) : φ(x) + φc(y) = c(x, y) < ∞}.

We call the section ∂cφ(x) the c-subgradient of φ at x ∈ X, and analogously ∂cφc(y) the
c-subgradient of φc at y ∈ Y .

By the symmetry of the definition, we see that

x ∈ ∂cφc(y) ⇔ y ∈ ∂cφ(x).

Some examples are in order here, in particular for c(x, y) = −⟨x, y⟩ it is clear that
∂cφ is the classical superdifferential of a concave function φ. Indeed, by the definition of
the c-transform, φ(x) + φc(y) = −⟨x, y⟩ holds if and only if for all z ∈ X we have that
−⟨x, y⟩ ≤ φ(x) − φ(z) − ⟨z, y⟩.

For p0, the polar cost, the c-subgradient is the polar-subgradient of the geometric convex
function e−φ which was discussed in [6]. We shall get back to this case when we discuss the
c-subgradient for the class of costs pt below.

First, let us establish some general properties of c-subgradients.

Lemma 3.4.2. Let c : X × Y → (−∞,∞] be a cost function and consider a basic function
φ(x) = c(x, y0) + β for some y0 ∈ Y . Then, if c(x, y0) < ∞, the c-subgradient of φ at x
contains y0, i.e. y0 ∈ ∂cφ(x).

Proof. Indeed, let φ be as in the statement. From the definition it follows that y ∈ ∂cφ(x)
is and only if c(x, y) < ∞ and

c(x, y) − φ(x) = φc(y) = inf
z

(c(z, y) − φ(z)).
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Plugging in the definition of φ we see that y = y0 always satisfies the equality.

Since all functions in the c-class can be built using basic functions, we can see that in
fact the c-subgradient of a function φ at a point x has a very simple geometric meaning:
As the function φ is in the c-class, it is the image, under the c-transform, of another c-class
function ψ = φc. Therefore, it can be written as an infimum over basic functions as follows:

φ(x) = inf
y

(c(x, y) − φc(y)) .

All the functions on the right hand side lie above φ. If any one of the basic functions
(indexed by y) on the right hand side is tangent to φ at the point x, then the pair (x, y)
belongs to ∂cφ, and y ∈ ∂cφ(x). In other words

Lemma 3.4.3. Let φ be a c-class function, and x ∈ X and assume that φ(x) < ∞. Then
y0 ∈ ∂cφ(x) if and only if c(x, y0) < ∞ and the function ℓ(z) = c(z, y0) − c(x, y0) + φ(x)
satisfies

ℓ(z) ≥ φ(z) for all z ∈ X.

Proof. By the definition we have that y0 ∈ ∂cφ(x) if and only if

φ(x) + φc(y0) = c(x, y0) < ∞.

Using the definition of the c-transform we see that

φ(x) = c(x, y0) − φc(y0) = sup
z

(c(x, y0) − c(z, y0) + φ(z)),

which holds if and only if for all z we have c(z, y0) − c(x, y0) + φ(x) ≥ φ(z).

Looking again at Lemma 3.4.3 we see that if we are after finding all y ∈ ∂cφ(x) we are
in fact trying to find all y for which z 7→ c(z, y) − φ(z) has a minimum which is attained at
x.

3.4.1 A geometric interpretation for pt

In the case of pt it is convenient to consider the multiplicative setting, in which the role
of the transform At is more apparent. Therefore, let us note that the definition of the
pt-subgradient can be rewritten, for φ ∈ St, as

∂tφ = {(x, y) : φ(x)Atφ(y) = ⟨x, y⟩ − 1 ≥ t}.
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For simplicity we write ∂t rather than ∂pt , and in the case t = 0 we denote the polar
subgradient by ∂◦. Note that we are slightly abusing notation as here φ ∈ St while in
Definition 3.4.1 we have a pt-subgradient for a pt-class function, i.e. minus the logarithm of
a St function. However, it should be clear from the context whether we are dealing with
the additive or multiplicative level.

We can rewrite Lemma 3.4.3, using the following notation Zφ = {x : φ(x) = 0} and
dom(φ) = {x : φ(x) < ∞}, as

Lemma 3.4.4. Fix t ≥ 0. Let φ = Atψ and ψ = Atφ, and let x ∈ dom(φ) \ Zφ. Then
y0 ∈ ∂tφ(x) if and only if the function ℓ(z) = 1

ψ(y0) (⟨z, y0⟩ − 1)t satisfies ℓ(z) ≤ φ(z) for
all z and ℓ(x) = φ(x) ̸= 0.

Even though this lemma is a corollary, let us provide a direct proof.

Proof. Let φ ∈ St and assume that the function ℓ(z) = 1
ψ(y0) (⟨z, y0⟩ − 1)t with ψ = Atφ,

is such that ℓ(z) ≤ φ(z) for all z and that the equality holds at x. In order to prove that
y0 ∈ ∂tφ(x) it is enough to show that φ(x)(Atφ)(y0) = (⟨x, y0⟩ − 1)t. Note that since
φ(x) ̸= 0 we have that ⟨x, y0⟩ ≥ 1 + t. Writing out the definition of At we see that this is
equivalent to

sup
{z:⟨z,y0⟩≥1+t}

1
φ(z)(⟨z, y0⟩ − 1) = 1

φ(x)(⟨x, y0⟩ − 1).

The inequality "≥" always holds, as x participates in the supremum, and therefore it remains
to show that for every z with ⟨z, y0⟩ ≥ 1 + t we have

1
φ(z)(⟨z, y0⟩ − 1) ≤ 1

φ(x)(⟨x, y0⟩ − 1).

But since ℓ(x) = φ(x), we know that 1
ψ(y0)(⟨x, y0⟩ − 1) = φ(x) or, in other words, that

ψ(y0) = ⟨x,y0⟩−1
φ(x) . So, rearranging the inequality above, we see that we need to show that

1
ψ(y0)

(⟨z, y0⟩ − 1)t ≤ φ(z)

which is always true by the assumption that ℓ(z) ≤ φ(z). It follows that y0 ∈ ∂tφ(x) as
claimed.
For the other direction, assume that y0 ∈ ∂tφ(x), which means that ⟨x, y0⟩ ≥ 1 + t and that
φ(x)ψ(y0) = ⟨x, y0⟩ − 1 ≥ t. From this follows that

φ(x) = 1
ψ(y0)

(⟨x, y0⟩ − 1)t = ℓ(x).
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To show that ℓ(z) ≤ φ(z), we use the definition of At and we get that

φ(z) = (Atψ)(z) ≥ 1
ψ(y0)

(⟨z, y0⟩ − 1)t = ℓ(z).

In case of the polar cost p0 and the associated polarity transform A, there is a straight-
forward connection between the polar subgradient and the classical subgradient. This is
captured by the following lemma, which is a version of [6, Lemma 3.3].

Lemma 3.4.5. Let φ ∈ Cvx0(Rn) and let x ∈ dom(φ) \ Zφ. Then

(i) for any z ∈ ∂φ(x) such that ⟨x, z⟩ ≠ φ(x), we have that y = z
⟨x,z⟩−φ(x) ∈ ∂◦φ(x),

(ii) for any y ∈ ∂◦φ(x) there exists some z ∈ ∂φ(x) such that ⟨x, z⟩ ≠ φ(x) and such that
y = z

⟨x,z⟩−φ(x) .

Proof. (i) To show that a point y lies in the polar gradient at x we need that φ(x)(Aφ)(y) =
⟨x, y⟩ − 1 > 0, which is equivalent to ⟨x, y⟩ − 1 > 0 together with the fact that for every w
with ⟨w, y⟩ > 1 and φ(w) > 0, we have

⟨w, y⟩ − 1
φ(w) ≤ ⟨x, y⟩ − 1

φ(x) .

Recall that our y is z
⟨x,z⟩−φ(x) for some z ∈ ∂φ and that it is well defined as φ(x) ̸= ⟨x, z⟩.

We rearrange the inequality we wish to prove, plugging in the definition of y, to get

⟨w, z
⟨x,z⟩−φ(x)⟩ − 1
φ(w) ≤

⟨x, z
⟨x,z⟩−φ(x)⟩ − 1
φ(x) = 1

⟨x, z⟩ − φ(x)
which is the same as

φ(x) + ⟨w − x, z⟩ ≤ φ(w)

and the latter is clearly true as z ∈ ∂φ(x).
(ii) Given y ∈ ∂◦φ(x) it follows from the definition that ⟨x, y⟩ > 1. Consider

z = yφ(x)
⟨y, x⟩ − 1 ,

which is well defined, and also implies that y = z
⟨x,z⟩−φ(x) . We need to show that z ∈ ∂φ(x)

and ⟨z, x⟩ ≠ φ(x).
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The latter follows easily since ⟨z, x⟩ = φ(x)
(
1 + 1

⟨x,y⟩−1

)
and once again that ⟨x, y⟩ > 1.

For the former, we use as before that y ∈ ∂◦φ(x) to conclude that for any w with ⟨w, y⟩ > 1
and φ(w) > 0 we have

⟨w, y⟩ − 1
φ(w) ≤ ⟨x, y⟩ − 1

φ(x) .

Plugging in y and rearranging, we get that

φ(x) + ⟨w − x, z⟩ ≤ φ(w)

for any w such that ⟨w, z⟩ > ⟨x, z⟩ − φ(x) and φ(w) > 0. In the case when w is such
that ⟨w, z⟩ ≤ ⟨x, z⟩ − φ(x) , this actually means that φ(x) + ⟨w − x, z⟩ ≤ 0 and since the
geometric convex functions are non-negative the desired inequality trivially follows.

It remains to consider the case when w ∈ Zφ, i.e. when φ(w) = 0. But then, plugging
in the previously defined z, we have that the inequality defining the subgradient of φ at x
becomes just

⟨w, y⟩ ≤ 1.

That is, we need to show that ∂◦φ(x) is contained in the polar set of Zφ. Indeed,
y ∈ ∂◦φ(x) implies in particular that y ∈ dom(Aφ) (since the value of Aφ(y) = ⟨x,y⟩−1

φ(x) < ∞)
and it follows from the definition of A that dom(Aφ) ⊂ Z◦

φ, which completes the proof.

The next proposition shows, rather surprisingly, that even though the polar subgradient
at any point x is a convex set in Y , this is not true for the pt-subgradient with t > 0.

Proposition 3.4.6. Let φ : Rn → [0,∞] be an At-class function and let x ∈ dom(φ) \ Zφ
such that ∂tφ(x) is non-empty. If t = 0, then the set ∂◦φ(x) is convex. Furthermore, if
n = 1 then for any t > 0 the set ∂tφ(x) is convex. However, for n ≥ 2 and t > 0, there exists
s ∈ (0, 1) and an At-class function φ such that y0 ̸= y1 ∈ ∂tφ(x) but (1−s)y0 +sy1 /∈ ∂tφ(x).

Proof. For t ≥ 0, let φ ∈ St and let ψ = Atφ. Assume that y0 ̸= y1 and that yi ∈ ∂tφ(x)
for i = 0, 1. We will check when, for all s ∈ (0, 1) we have that (1 − s)y0 + sy1 ∈ ∂tφ(x).

Without loss of generality we can assume that ⟨x, y0⟩ ≤ ⟨x, y1⟩. It follows from the
definition of the subgradient that ⟨x, yi⟩ ≥ 1 + t for i = 0, 1. By Lemma 3.4.4 there exist
functions

ℓi(z) = 1
ψ(yi)

(⟨z, yi⟩ − 1)t

such that ℓi(z) ≤ φ(z) for all z and ℓi(x) = φ(x).



76 Cost functions and order reversing involutions

For s ∈ (0, 1) define ys = (1 − s)y0 + sy1 and consider the functions

ℓs(z) = 1
ψ(ys)

(⟨z, ys⟩ − 1)t.

If for all 0 < s < 1, we have that ℓs(z) ≤ φ(z) for all z and ℓs(x) = φ(x), then ∂tφ(x) is a
convex set.

Let us first note that

ψ(ys) = Atφ(ys) = sup
{z:⟨z,ys⟩≥1+t}

(
(1 − s)⟨z, y0⟩ − 1

φ(z) + s
⟨z, y1⟩ − 1
φ(z)

)
.

Since both of the functions on the right hand side achieve the supremum at x (this follows
from the fact that y0, y1 ∈ ∂tφ(x) and ⟨x, ys⟩ = (1 − s)⟨x, y0⟩ + s⟨x, y1⟩ ≥ 1 + t), we get
that

ψ(ys) = (1 − s)ψ(y0) + sψ(y1).

Now note that since both ℓi are below φ we have that max(ℓ0(z), ℓ1(z)) ≤ φ(z) for all z.
Since the St class is closed under maximum, and therefore a priori φ could be equal to the
maxi(ℓi), we need to show that ℓs(z) ≤ max(ℓ0(z), ℓ1(z)). We need to consider four cases
(i) Assume that z is such that max(⟨z, y0⟩, ⟨z, y1⟩) < 1 + t. It is clear that then also
⟨z, ys⟩ < 1 + t and hence ℓs(z) = ℓ0(z) = ℓ1(z) = 0.
(ii) Assume that z is such that min(⟨z, y0⟩, ⟨z, y1⟩) ≥ 1 + t. Then consider a function

ℓλ(z) = (1 − λ)ℓ0(z) + λℓ1(z).

It is clear that for all λ ∈ (0, 1) we have that ℓλ(z) ≤ max(ℓ0(z), ℓ1(z)). For our z, plugging
in the definitions of ℓi we get that

ℓλ(z) =
(

(1 − λ)
ψ(y0)

+ λ

ψ(y1)

)
·

⟨z,
(1−λ)y0
ψ(y0) + λy1

ψ(y1)
(1−λ)
ψ(y0) + λ

ψ(y1)

⟩ − 1


Hence, taking s = sλ = λψ(y0)
(1−λ)ψ(y1)+λψ(y0) (considering all λ ∈ (0, 1) this is just a reparametriza-

tion) we see that ℓs(z) = ℓλ(z) and the claim follows.
(iii) Assume that z is such that ⟨z, y0⟩ ≥ 1+t and ⟨z, y1⟩ < 1+t. Then the maxi=0,1(ℓi) = ℓ0.
As in the previous case, let s = λψ(y0)

(1−λ)ψ(y1)+λψ(y0) . Then ℓ0(z) − ℓs(z) is equal to

1
ψ(y0)(⟨z, y0⟩ − 1) − (1−λ)ψ(y1)+λψ(y0)

ψ(y0)ψ(y1)

(
⟨z, (1−λ)ψ(y1)

(1−λ)ψ(y1)+λψ(y0)y0 + λψ(y0)
(1−λ)ψ(y1)+λψ(y0)y1⟩ − 1

)
,
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which is the same as

⟨z, ( 1
ψ(y0) − 1−λ

ψ(y0))y0⟩ − ⟨z, λ
ψ(y1)y1⟩ + (1−λ)ψ(y1)+λψ(y0)

ψ(y0)ψ(y1) − 1
ψ(y0)

= λ
ψ(y0)(⟨z, y0⟩ − 1) − λ

ψ(y1)(⟨z, y1⟩ − 1).

This expression is non-negative if and only if ψ(y1)
ψ(y0) ≥ ⟨z,y1⟩−1

⟨z,y0⟩−1 . But ψ(yi) = ⟨x,yi⟩−1
φ(x) , since

yi ∈ ∂tφ(x). Therefore, we get that ℓ0(z) ≥ ℓs(z) for z such that ⟨z, y0⟩ ≥ 1 + t and
⟨z, y1⟩ < 1 + t, if and only if

⟨x, y1⟩ − 1
⟨x, y0⟩ − 1 ≥ ⟨z, y1⟩ − 1

⟨z, y0⟩ − 1 .

But by the restriction on z, it follows that ⟨z,y1⟩−1
⟨z,y0⟩−1 <

t
t

= 1 and since ⟨x, y0⟩ ≤ ⟨x, y1⟩ we
get that ⟨x,y1⟩−1

⟨x,y0⟩−1 ≥ 1. Hence indeed ℓ0(z) ≥ ℓs(z).
(iv) Finally, if z is such that ⟨z, y0⟩ < 1 + t and ⟨z, y1⟩ ≥ 1 + t. Similarly, we consider the
difference ℓ1(z) − ℓs(z) which turns out to be equal to

1−λ
ψ(y1)(⟨z, y1⟩ − 1) − 1−λ

ψ(y0)(⟨z, y0⟩ − 1).

This expression is non-negative if and only if ψ(y0)
ψ(y1) ≥ ⟨z,y0⟩−1

⟨z,y1⟩−1 , which is the same as ⟨x,y0⟩−1
⟨x,y1⟩−1 ≥

⟨z,y0⟩−1
⟨z,y1⟩−1 . Since the denominators are non-negative, it turns out that this condition is
equivalent to

⟨z, y1 − y0⟩(⟨x, y0⟩ − 1) + ⟨x, y1 − y0⟩(1 − ⟨z, y0⟩) ≥ 0. (3.3)

Note that the first component is non-negative since ⟨z, y1 − y0⟩ ≥ 0 and the expression
in the bracket is at least t ≥ 0. Moreover, it is true that ⟨x, y1 − y0⟩ ≥ 0. However, the
expression 1−⟨z, y0⟩, since we have that ⟨z, y0⟩ < 1+ t, is greater or equal to −t. Therefore,
if t = 0 then the claim follows and ∂◦φ(x) is convex. Moreover, it can be easily checked
that in R the same is true for any t > 0.

However, in Rn with n ≥ 2 one can choose x, y0, y1 and z such that the inequality (3.3)
is violated. In other words, there exists a function φ(z) = max{ℓ0, ℓ1}, whose pt-subgradient
at x is not convex. Indeed, it is enough to choose x, y0, y1, z in such a way that the
following inequalities hold: ⟨x, y1⟩ ≥ ⟨x, y0⟩ ≥ 1 + t, ⟨z, y1⟩ ≥ 1 + t, ⟨z, y0⟩ < 1 + t and
⟨z, y1 − y0⟩(⟨x, y0⟩ − 1) + ⟨x, y1 − y0⟩(1 − ⟨z, y0⟩) < 0, and if the dimension is greater than
or equal 2 then there are enough degrees of freedom to do so.





Chapter 4

Existence of a potential for
non-traditional costs

In this chapter, we focus on finding conditions which guarantee the existence of a potential
for non-traditional cost functions, i.e. costs that may assume the value +∞. We are
motivated by the example of the polar cost

p(x, y) = − ln(⟨x, y⟩ − 1)+

introduced in the previous chapter (where (f(x))+ = max(f(x), 0)).
We show that the classical assumption of c-cyclic monotonicity, which is sufficient to

guarantee the existence of a potential in the case of real-valued costs, is not enough for
non-traditional costs. We prove that in this case, the necessary and sufficient condition
is that of c-path-boundedness. The results presented in this chapter are joint work with S.
Artstein-Avidan and S. Sadovsky.

In the first section we formulate the problem and present the classical Rockafellar-
Rüschendorf theorem for real-valued cost functions. We provide the well known proof for
comparison with our new method.

We will then, in the second section, undertake a new approach by assuming strong
regularity conditions on the c-cyclically monotone set. This approach is motivated by
features of the family of costs pt introduced in the previous chapter.

The third section contains a new proof of the Rockafellar-Rüschendorf theorem based
on our result on the solvability of a particular system of (infinitely many) linear inequalities.
In the fourth section we present our main result:
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Theorem. Let c : X × Y → (−∞,+∞] be a cost function, and let G ⊂ X × Y . Then
there exists a c-class function φ : X → [−∞,+∞] such that G ⊂ ∂cφ if and only if
G is c-path-bounded, i.e. for any (xs, ys), (xf , yf) ∈ G there exists some constant M =
M((xs, ys), (xf , yf )) such that for any m ∈ N and any (xi, yi) ∈ G, i = 2, . . . ,m− 1, letting
(xs, ys) = (x1, y1) and (xf , yf ) = (xm, ym), we have

m−1∑
i=1

(
c(xi, yi) − c(xi+1, yi)

)
≤ M.

We then apply this theorem to continuous cost functions, and give a more geometric
characterization of the necessary conditions on the set G for a potential to exist.

4.1 Introduction

When considering a mass transportation problems, given a cost function one is interested in
the existence of transport plans with finite cost, and in particular the optimal one. Given
two probability measures µ, ν on X and Y respectively, a transport plan is a measure
π ∈ P (X × Y ) with marginals µ, ν respectively, i.e. such that for every ν-measurable set
A and µ-measurable set B we have that π(X × A) = ν(A), π(B × Y ) = µ(B). Necessary
conditions for the existence of transport plans with finite cost were characterised by Strassen
[20].

We say that the transport plan π0 is optimal with respect to a cost function c if

inf
π∈P (X×Y )

∫
X×Y

c(x, y)dπ(x, y)

is achieved at π0. Finding optimal transport plans is called the Monge-Kantorovitch problem
(for an overview see e.g. [23]). It has been shown by Pratelli [14], that if the cost function
is continuous but possibly +∞ valued then a transport plan is optimal if and only if it is
concentrated in a c-cyclically monotone set. In the same paper, it was further shown that
the same is true for an arbitrary lower semi-continuous cost function in the case of atomic
measures. Let us introduce the relevant definition.

Definition 4.1.1. (c-cyclic monotonicity) Let c : X × Y → (−∞,+∞] be a cost function.
The set G ⊆ X × Y is called c-cyclically monotone if for any (x, y) ∈ G we have that
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c(x, y) < ∞, and for any N ∈ N and any {(xi, yi)}Ni=1 ⊂ G we have that

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yσ(i)),

holds for any permutation σ ∈ SN .

This notion was first introduced by Rockafellar [15] as a generalization of monotonicity
in dimension one. The author was concerned with the cost c(x, y) = |x−y|2

2 , or equivalently
c(x, y) = −⟨x, y⟩, which is why we refer to both of them as quadratic cost. The two costs are
equivalent in the sense that the c-cyclic monotonicity condition, as well as the optimality of
a plan, are the same for both of them. Indeed, plugging them into the definition, it is easy
to see that terms |x|2

2 , |y|2
2 cancel and the remaining ones are precisely the mixing terms

−⟨x, y⟩.
In what follows, when we refer to c-cyclic monotonicity with respect to the quadratic

cost we will just say cyclic monotonicity, and if we refer to the cyclic monotonicity induced
by the polar cost p, we will say polar cyclic monotonicity.

Knowing that optimal plans are concentrated on c-cyclically monotone sets, it is natural
to ask when such plans can be expressed by a point map T : X → Y . The condition
that T transports µ to ν becomes µ(T−1(A)) = ν(A) for all ν-measurable sets A ⊂ Y . In
particular, a transport map is a transport plan concentrated on the graph of a mapping
T : X → Y . Moreover, similarly to that of a transport plan, the optimality of a transport
map means that it minimizes the expression∫

X
c(x, Tx)dµ(x).

Turns out that there is a connection between such a map T and a so-called potential.
Recall from the previous chapter the notion of the c-subgradient mapping. We will be
interested in

Definition 4.1.2. A function φ : X → [−∞,+∞] in the c-class is called a potential of
the set {(xi, yi)}i∈I ⊂ X × Y , with respect to the cost c, if

yi ∈ ∂cφ(xi) ∀i ∈ I.

The main question addressed in this chapter is to determine when, for a given set
G = {(xi, yi) : i ∈ I}, there exists a potential φ such that G ⊂ ∂cφ. First note that
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Fact 4.1.3. For any cost function c and any function φ in the c-class the set

∂cφ = {(x, ∂cφ(x)) : x ∈ X} ⊂ X × Y

is c-cyclically monotone.

Proof. Indeed, if yi ∈ ∂cφ(xi) then for all z we have φ(z) ≤ c(z, yi) − c(xi, yi) + φ(xi).
Having chosen any permutation σ on the set of the indices {1, . . . , N} we get

N∑
i=1

(
c(xi, yi) − c(xσ(i), yi)

)
≤

N∑
i=1

(
φ(xi) − φ(xσ(i))

)
= 0.

It was shown by Rockafellar in the case of quadratic cost [15], and Rüschendorf [18]
in the case of a general but real-valued cost, that the reverse implication is also true. We
shall present the proof in order to draw attention to the fact that it relies on the cost being
finite valued, and therefore one cannot apply it to, for example, the polar cost.

Theorem 4.1.4 (Rockafellar-Rüschendorf). Let c : X × Y → R be a real-valued cost
function and G ⊂ X × Y a c-cyclically monotone set. Then there exists a c-class function
φ : X → [−∞,+∞] such that G ⊂ (x, ∂cφ(x)).

Proof. Fix some element (x0, y0) ∈ G. We will make sure φ(x0) = 0. Define

φ(x) = inf{c(x, ym) − c(x0, y0) +
m∑
i=1

(c(xi, yi−1) − c(xi, yi))}.

Here the infimum runs over all m ∈ N ∪ {0} and all m-tuples (xi, yi) ∈ G, i = 1, . . . ,m.
The first observation is that the function φ is in the c-class. Indeed, it follows from the

fact that the c-class is closed under infimum, and that each of the functions over which we
infimize is simply of the form c(x, ym) + β and therefore in the c-class.

The second observation for φ is that φ(x0) = 0. By picking m = 0 it is clear that
φ(x0) ≤ 0. On the other hand, the c-cyclic monotonicity implies that

m∑
i=0

c(xi, yi) ≤ c(x0, ym) +
m∑
i=1

c(xi, yi−1)

for any choice of (xi, yi)mi=1 ⊂ G, hence the expression in the infimum evaluated at x0, is at
least 0. It is in this step, where we cannot omit the assumption that c(x, y) < ∞.
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It remains to show that if (x, y) ∈ G then φ(x) +φc(y) = c(x, y) < ∞. By the definition
of the c-transform it is enough to prove that for (x, y) ∈ G we have that φ(x) ∈ R and that
for any z ∈ X we have

c(x, y) − φ(x) ≤ c(z, y) − φ(z). (4.1)

Clearly, φ(x) ≤ c(x, y0) − c(x0, y0) and hence finite. Moreover, if φ satisfies the above
inequality then in particular c(x, y) −φ(x) ≤ c(x0, y) −φ(x0) and therefore we get c(x, y) −
c(x0, y) ≤ φ(x), which again is finite.

It remains to show (4.1). To this end take some t > φ(x) and note that since φ(x) is
defined as an infimum we can find some m ∈ N and some (xi, yi)mi=1 ⊂ G such that

t > c(x, ym) − c(x0, y0) +
m∑
i=1

(c(xi, yi−1) − c(xi, yi)). (4.2)

Let us add (x, y) ∈ G to the previously chosen collection (xi, yi)mi=1 ⊂ G and use the new
(m+ 1)-tuple for an upper bound of φ(z). This means that for every z ∈ X we get

φ(z) ≤ c(z, y) − c(x0, y0) +
m∑
i=1

(
c(xi, yi−1) − c(xi, yi)

)
+ c(x, ym) − c(x, y).

Using (4.2) it follows that
φ(z) − c(z, y) < t− c(x, y)

and since this is true for any t > φ(x), we arrive at

φ(z) − c(z, y) ≤ φ(x) − c(x, y),

as claimed. This means that indeed (x, y) ∈ ∂cφ.

Interestingly, there is only one place in the proof where the c-cyclic monotonicity is
used, and that is to show that at x0 the function φ is finite.

Turns out that in the case of non-traditional cost functions the c-cyclic monotonicity is
no longer a sufficient condition for the existence of a potential, and the function defined in
the above proof may be infinite for x ∈ PXG, where PX denotes the orthogonal projection
onto X. One can easily construct an example of a polar cyclically monotone set A, for
which there is no function φ such that A ⊂ ∂◦φ (see Example C.0.1 in Appendix C).
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4.2 The existence of a potential assuming regularity
In what follows we shall adopt the idea that for the quadratic cost the c-class consists
of all upper-semicontinuous concave functions and that we have a differentiable way of
characterizing them. Similarly, in the case of the polar cost the c-class consists of all the
functions that are (minus logarithm of) geometric convex functions and hence a similar
characterization will be exploited. Let us recall that the class Cvx0(Rn) of geometric convex
functions consists of all non-negative lower-semicontinuous convex functions which vanish
at the origin.

We subsequently found that Rockafellar wrote the following in [15]:

“The cyclic monotonicity condition can be viewed heuristically as a discrete
substitute for two classical conditions: that a smooth convex function has a
positive semi-definite second differential, and that all circuit integrals of an
integrable vector field must vanish.”

Of course this statement is specific to the quadratic cost, but as mentioned above, we can
use a version of it to understand better the polar cost.

We shall show that indeed when considering a polar cyclically monotone set G =
{(xi, y(xi))}i∈I with a differentiable function y : Rn → Rn such that for some ϵ > 0 it holds
that ⟨xi, y(xi)⟩ ≥ 1 + ϵ for all i ∈ I, then if in addition the set {x ∈ Rn : x ∈ PXG} is a
finite union of contractible open sets, it follows that a potential exists.

4.2.1 Polar cost

In the rest of this section we shall focus solely on the polar cost and the polar subgradient.
As we shall see, the method used in this special case leads us to a very general method.

Recall that the cost function we are primarily interested in is defined by

p(x, y) = − ln(⟨x, y⟩ − 1)+

and that the main question is, when, for a given p-cyclically monotone set G = {(xi, yi)}i∈I
there exists a potential φ ∈ Cvx0(Rn) such that for every xi ∈ PXG we have

yi ∈ ∂◦φ(xi).

We will consider the case when G is a graph of some function, that is G = (x, y(x)) for
x ∈ PXG. Assuming further regularity on y(x) we will make use of the connection between
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the polar gradient and the classical gradient, which was obtained in [6] and which we
presented as Lemma 3.4.5. It states that if φ is a differentiable function and y(x) = ∇◦φ(x)
then defining z(x) = ∇φ(x) we have that

y(x) = z(x)
⟨z(x), x⟩ − φ(x) . (4.3)

We write ∇ and ∇◦ instead of ∂, ∂◦ to emphasize the assumption that φ is differentiable,
and in that case the notions of gradient and subgradient coincide.

Rearranging and substituting in the definition of z(x) we see that (4.3) is equivalent to

∇φ(x) = (⟨∇φ(x), x⟩ − φ(x))y(x).

By taking a scalar product of both sides of this equality with x and rearranging again we
get that

∇φ(x) = φ(x)
⟨y(x), x⟩ − 1y(x),

which can also be written as

∇ lnφ(x) = y(x)
⟨y(x), x⟩ − 1 . (4.4)

Note that this is a system of first order linear partial differential equations.
Let us assume that a solution φ exists and is twice differentiable. Then the condition

for it to be convex is that its Hessian, which we denote as D∇φ, is a positive semi-definite
matrix. To establish this let ψ = lnφ. Then

∇φ = eψ∇ψ

and

D∇φ = eψ(D∇ψ + ∇ψ ⊗ ∇ψ), (4.5)

where v ⊗ w denotes the tensor product. On the other hand, by the definition of ψ and
using (4.4), we get

D∇ψ = Dy(x)
⟨y(x), x⟩ − 1 − y(x) ⊗ (xTDy(x) + y(x))

(⟨y(x), x⟩ − 1)2 .
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Plugging this into (4.5) and using that ∇ψ = y(x)
⟨y(x),x⟩−1 , we can rewrite the condition

D∇φ ≥ 0, which is our notation for a matrix being positive semi-definite, in an equivalent
way as

1
(⟨x, y(x)⟩ − 1)2

(
(⟨x, y(x)⟩ − 1)I − y(x) ⊗ x

)
Dy(x) ≥ 0.

Simplifying the expression we get

M :=
(
I − y(x) ⊗ x

⟨x, y(x)⟩ − 1

)
Dy(x) ≥ 0 (4.6)

4.2.2 The existence of a potential

Convex domain

We next show that the condition (4.6) is also sufficient to recover a potential in the case of
a convex domain.

Proposition 4.2.1. Let U ⊂ Rn be a contractible open set, y(x) : U → Rn a continuously
differentiable function such that the set G = (x, y(x)) is polar cyclically monotone. Assume
further that the matrix M =

(
I − y(x)⊗x

⟨x,y(x)⟩−1

)
Dy(x) is symmetric. Then there exists a

function φ(x) such that ∇ lnφ(x) = y(x)
⟨y(x),x⟩−1 for all x ∈ U . Moreover, if M is positive

semi-definite and U is convex, then the function φ ∈ Cvx0(Rn).

Proof. Given y(x) for all x ∈ U , define

z(x) = y(x)
⟨x, y(x)⟩ − 1 .

Note that by polar cyclic monotonicity of the set G = (x, y(x)) we know that ⟨x, y(x)⟩−1 > 0
for all x ∈ U . Therefore z(x) is well defined and is a C1 function on U . We now show that
the Jacobian Dz(x) is a symmetric matrix. We check that

Dz(x) = Dy(x)
⟨x, y(x)⟩ − 1 − y(x) ⊗ (xTDy(x) + y(x))

(⟨x, y(x)⟩ − 1)2 ,

which is the same as

1
⟨x, y(x)⟩ − 1

(
I − y(x) ⊗ x

⟨x, y(x)⟩ − 1

)
Dy − z(x) ⊗ z(x).
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By assumption the first term is symmetric and so, clearly, is the second. Hence, Dz(x)
is symmetric and as such it corresponds to a closed 1-form. Indeed, consider

dω =
n∑
i=1

zi(x)dxi =
∑
i,j

∂zi(x)
∂xj

dxj ∧ dxi =
∑
i<j

(
∂zi(x)
∂xj

− ∂zj(x)
∂xi

)
dxj ∧ dxi = 0,

where the last equality follows from symmetry of Dz and means that dω is a closed form.
Further, it is a classical fact (the Poincaré Lemma, see e.g. [11]) that on a contractible
subset of Rn every closed 1-form is exact. This implies that there exists a function ψ such
that z(x) = ∇ψ(x).

Now assume that U is convex. Let φ(x) = eψ(x), and note that then ∇ lnφ(x) =
∇ψ(x) = z(x) as required. Moreover, D∇φ = eψ(∇ψ ⊗ ∇ψ +D∇ψ) which is exactly the
matrix we assumed to be positive definite (up to multiplying by a positive number), so φ is
a convex function.

In order to see that φ ∈ Cvx0(Rn) let us recall that z(x) = y(x)
⟨y(x),x⟩−1 . Taking a scalar

product with x on both sides we get that ⟨z(x), x⟩ = ⟨y(x),x⟩
⟨y(x),x⟩−1 > 1. Since we also have that

z = ∇ψ = ∇φ
φ

we can conclude that

⟨∇φ(x), x⟩ ≥ φ(x)

for all x ∈ U . Moreover, since φ = eψ it is a non-negative function. Then the fact that φ
can be extended to a function in Cvx0(Rn) follows from the next Lemma 4.2.2.

Lemma 4.2.2. Let φ be a non-negative convex function defined on a convex set U ⊂ Rn.
Assume that ⟨∇φ(x), x⟩ ≥ φ(x) for all x ∈ U . Then there exist a geometric convex function
Φ ∈ Cvx0(Rn) defined for every x ∈ Rn and such that Φ|U = φ.

Proof. For any x ∈ Rn let us define the function

Φ(x) = max{sup
u∈U

{⟨∇φ(u), x− u⟩ + φ(u)}, 0}.

It is clearly non-negative and as a supremum of linear functions Φ is convex. Moreover,
since φ was convex we indeed have that Φ|U = φ, and by the assumption that ⟨∇φ(u), u⟩ ≥
φ(u) for all u ∈ U , the expression supu∈U{⟨∇φ(u), x− u⟩ +φ(u)} evaluated at x = 0 is less
than or equal to 0. It follows that the function Φ(x) is the geometric convex function we
needed.

Let us now show that the regularity and the polar cyclic monotonicity of a set G =
{(x, y(x)) : x ∈ U} indeed imply that M is positive semi-definite.
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Lemma 4.2.3. Let G = (x, y(x)) ⊂ Rn × Rn be a polar cyclically monotone set defined
for all x ∈ U , where U ⊂ Rn is an open set. Assume further that at the point x0 the
function y(x) is differentiable. Then the matrix in (4.6) at x = x0 is symmetric and positive
semi-definite. That is,

wT
(
I − y(x0) ⊗ x0

⟨x0, y(x0)⟩ − 1

)
Dy(x0)w ≥ 0

for all w ∈ Rn.

Proof. For x0 ∈ U let us define a family of points xi = x0 + hvi for all 1 ≤ i ≤ m, where
vi ∈ Rn and h ∈ R is small enough such that xi ∈ U for all i = 1, . . . ,m. Then from polar
cyclic monotonicity follows that ⟨xi, y(xi)⟩ > 1, and we have that

y(xi) = y(x0) + h
∂y

∂vi
(x0) + ξi,

where ξi = o(h). Since all the partial derivatives are at x0 we will suppress it in the notation,
and we will write yi instead of y(xi). Fix t > 0 such that for all 1 ≤ i ≤ m we have that
⟨xi, yi⟩ > 1 + t and we can assume that h ≪ t so that all the terms in the polar cyclic
monotone condition

m∏
i=1

(⟨xi, yi⟩ − 1) ≥
m∏
i=1

(⟨xi, yi+1⟩ − 1)

are positive (where we identify ym+1 with y1). Substituting in the definitions of xi, yi we get

m∏
i=1

(
(⟨x0, y0⟩ − 1) + ⟨x0, ξi⟩ + ⟨hvi, ξi⟩ + ⟨x0, h

∂y

∂vi
⟩ + ⟨hvi, y0⟩ + ⟨hvi, h

∂y

∂vi
⟩
)

≥

m∏
i=1

(
(⟨x0, y0⟩ − 1) + ⟨x0, ξi+1⟩ + ⟨hvi, ξi+1⟩ + ⟨x0, h

∂y

∂vi+1
⟩ + ⟨hvi, y0⟩ + ⟨hvi, h

∂y

∂vi+1
⟩
)
.

Let us multiply both sides of the above inequality by h−2 and check what the limit is as
h → 0. First note that the terms with h to the power less than two cancel out. Then even
more terms vanish when taking the limit and we arrive at

(⟨x0, y0⟩ − 1)
m∑
i=1

⟨vi,
∂y

∂vi
⟩ +

m∑
i=1

∑
j ̸=i

⟨vi, y0⟩⟨x0,
∂y

∂vj
⟩ ≥

(⟨x0, y0⟩ − 1)
m∑
i=1

⟨vi,
∂y

∂vi+1
⟩ +

m∑
i=1

∑
j ̸=i

⟨vi, y0⟩⟨x0,
∂y

∂vj+1
⟩.
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If the double sum on the right was on all indices, not just i ̸= j, we would have a
cancellation, so we may instead write

(⟨x0, y0⟩ − 1)
m∑
i=1

⟨vi,
∂y

∂vi
⟩ −

m∑
i=1

⟨vi, y0⟩⟨x0,
∂y

∂vi
⟩ ≥

(⟨x0, y0⟩ − 1)
m∑
i=1

⟨vi,
∂y

∂vi+1
⟩ −

m∑
i=1

⟨vi, y0⟩⟨x0,
∂y

∂vi+1
⟩

(4.7)

On the other hand, to prove that the matrix M = (I− yxT

⟨x,y⟩−1)Dy is positive semi-definite
it is enough to show that the linear map v 7→ Mv is cyclically monotone, namely

∑
⟨vi,Mvi⟩ ≥

∑
⟨vi,Mvi+1⟩.

Indeed, it then follows from the Rockafellar’s theorem 4.1.4 and the fact that v 7→ Mx is a
linear function, that the potential is a convex quadratic, and a convex quadratic is exactly
a symmetric positive semi definite matrix.

To show that the map v 7→ Mv is cyclically monotone note that by the definition (4.6)
of the matrix M we have

⟨vi,Mvi⟩ = ⟨vi,
∂y

∂vi
⟩ − ⟨vi, y0⟩⟨x0,

∂y

∂vi
⟩ · 1

⟨x0, y0⟩ − 1 ,

and similarly for the second term. But putting those terms into the inequality above we
see that this is exactly the same as (4.7), which finishes the proof.

Contractible domain

Next, we relax the assumption that the domain is convex and prove the result for a
contractible domain. It turns out that we can show convexity of the recovered function
(and its extension) just by using c-cyclic monotonicity.

Note that since the domain we are going to consider is open and contractible, it follows
that it is polygonally path-connected. This will be important, when we make use of the
next proposition. Recall that (f(x))+ = max(f(x), 0).

Proposition 4.2.4. Let G be a polar cyclically monotone set, and assume that for some
continuously differentiable function φ : U → Rn, we have (u,∇◦φ(u)) = (u, y(u)) = G.
Assume that there exists ϵ > 0 such that ⟨u, y(u)⟩ ≥ 1 + ϵ, for all u ∈ U . Assume
further that for any two points ui, vi ∈ U there are polygonal paths γi : [a, b] → U with
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γi(a) = ui, γi(b) = vi, for i = 1, . . . ,m. Then

φ(u1)
φ(v1)

· ⟨y(v1), v1⟩ − 1
(⟨y(v1), u1⟩ − 1)+

≥ 1,

φ(u1)
φ(v1)

· φ(u2)
φ(v2)

· ⟨y(v1), v1⟩ − 1
(⟨y(v1), u2⟩ − 1)+

· ⟨y(v2), v2⟩ − 1
(⟨y(v2), u1⟩ − 1)+

≥ 1,

and, generally,
m∏
i=1

φ(ui)
φ(vi)

·
m∏
i=1

⟨y(vi), vi⟩ − 1
(⟨y(vi), ui+1⟩ − 1)+

≥ 1,

where we let um+1 = u1.

Before we prove the above proposition, we need a technical lemma.

Lemma 4.2.5. Let G = (x, y(x)) be a polar cyclically monotone set such that PXG = U .
Assume that y : U → Rn is continuous and fix u ∈ U . Let w be a vector such that for
every t ∈ [0, 1] we have u + tw ∈ U . Moreover, assume that there is ϵ > 0 such that
⟨y(u+ tw), u+ tw⟩ ≥ 1 + ϵ for all t ∈ [0, 1]. Then

∫ 1

0

⟨y(u+ tw), w⟩
⟨y(u+ tw), u+ tw⟩ − 1dt = lim

n→∞

n∑
i=1

ln
(

⟨y(u+ i
n
w), u+ i

n
w⟩ − 1

⟨y(u+ i
n
w), u+ i−1

n
w⟩ − 1

)
.

Proof. By the definition of Riemann integral, the left hand side (which by the assumption
that for all t ∈ [0, 1] we have ⟨y(u+ tw), u+ tw⟩ ≥ 1 + ϵ is real valued and continuous, and
hence Riemann integrable) is equal to

lim
n→∞

n∑
i=1

⟨y(u+ i
n
w, 1

n
w⟩

⟨y(u+ i
n
w), u+ i

n
w⟩ − 1

.

Our goal is to show that the absolute value of the difference of the partial sums tends to zero
as n tends to infinity. Note that since y is continuous and we have ⟨y(u+tw), u+tw⟩ ≥ 1+ϵ
for all t ∈ [0, 1], there exists n0 such that for all n ≥ n0 we have that ⟨y(u+ i

n
w), u+ i−1

n
w⟩ ≥

1 + ϵ/2. Furthermore, we have

ln
(

⟨y(u+ i
n
w), u+ i

n
w⟩ − 1

⟨y(u+ i
n
w), u+ i−1

n
w⟩ − 1

)
= ln

(
1 +

⟨y(u+ i
n
w), 1

n
w⟩

⟨y(u+ i
n
w), u+ i−1

n
w⟩ − 1

)

and that ⟨y(u+ i
n
w), 1

n
w⟩

⟨y(u+ i
n
w),u+ i−1

n
w⟩−1 = O (n−1), since as we mentioned the denominator is bounded

below by ϵ/2 > 0. Therefore, using Taylor expansion of ln(1 + x) = x−O(x2) it is enough
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to show that∣∣∣∣∣
n∑
i=1

(
⟨y(u+ i

n
w), 1

n
w⟩

⟨y(u+ i
n
w), u+ i−1

n
w⟩ − 1

+O
(
n−2

)
−

⟨y(u+ i
n
)w, 1

n
w⟩

⟨y(u+ i
n
w), u+ i

n
w⟩ − 1

)∣∣∣∣∣ → 0

as n → ∞. Putting the terms together we see that we are summing the following expressions

⟨y(u+ i
n
w), 1

n
w⟩2

(⟨y(u+ i
n
w), u+ i−1

n
w⟩ − 1)(⟨y(u2 + i

n
w), u2 + i

n
w⟩ − 1)

+O(n−2)

and that these are also O(n−2). Therefore, we have that ∑n
i=1 O (n−2) = O(n−1) → 0,

which completes the proof.

Proof of Proposition 4.2.4. By assumption there is a polygonal path γ connecting u1 and
v1. Moreover, we can assume that there is m ∈ N and v1 = z0, z1, . . . , zm = u1 in U ,
such that γ decomposes into m linear segments γi, say defined on [0, 1] and such that
γi(t) = (1 − t)zi−1 + tzi for i = 1, . . . ,m. Hence γi(1) = zi = γi+1(0) and we can define γ on
[0,m], i.e. for k ∈ {1, . . . ,m} and s ∈ [k − 1, k) let γ(s) = γk(s− (k − 1)) and γ(m) = u1.

Note that by the fundamental theorem of multivariate calculus we have that

ln(φ(v1)) − ln(φ(u1)) =
m∑
i=1

ln(φ(zi−1)) − ln(φ(zi))

=
m∑
i=1

∫ 1

0
⟨∇(ln(φ(zi−1 + t(zi − zi−1))), zi − zi−1⟩dt

=
m∑
i=1

∫ 1

0

⟨y(zi−1 + t(zi − zi−1)), zi − zi−1⟩
⟨zi−1 + t(zi − zi−1)), zi−1 + t(zi − zi−1)⟩ − 1dt

Applying Lemma 4.2.5 with wi = zi − zi−1 and after summing all the components the first
claim follows by polar cyclic monotonicity as the terms ln(⟨y(v1), u1⟩−1)− ln(⟨y(v1), v1⟩−1)
complete the cycle.

Similarly, we see that one can extend the cycle and go through the other points and the
remaining claims follow.

We are now ready to show that on a contractible open domain there exists a potential.

Proposition 4.2.6. Let U ⊂ Rn be contractible and open, y : U → Rn be a continuously
differentiable function and such that G = (x, y(x)) is polar cyclically monotone. Moreover,
assume that there exists ϵ > 0 such that ⟨x, y(x)⟩ ≥ 1 + ϵ for all x ∈ U . Then there exists a
geometric convex function Φ : Rn → R such that ∇◦Φ(x) = y(x) for all x ∈ U .
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Proof. Since U is a contractible and open set, the existence of a function φ : U → R follows
from Lemma 4.2.1 and 4.2.3. It remains to show that despite U not being convex we can
find a geometric convex extension of φ to Rn. To this end, for any x ∈ Rn define

Φ(x) = sup
u∈U

(
φ(u)

⟨y(u), u⟩ − 1(⟨y(u), x⟩ − 1)+

)
.

Since (y(u), u) ∈ G we know that ⟨y(u), u⟩ > 1 and hence the function is well defined.
Also, note that instead of writing the extension as the supremum of the hyperplanes
φ(u) + ⟨∇φ(u), x − u⟩ (and then taking the maximum with 0), we just write it as the
supremum over all basic functions and the resulting function is the same.

Clearly we have that Φ ∈ Cvx0(Rn). It remains to show that Φ(u) = φ(u) for all u ∈ U .
This means that if we take x = u ∈ U then the supremum is achieved at the same u. In
other words, it is enough to show, since the functions are non-negative, that

φ(u)
(

φ(v)
⟨y(v), v⟩ − 1(⟨y(v), u⟩ − 1)+

)−1

≥ 1

holds for any pair of points u, v ∈ U . First note that if ⟨y(v), u⟩ < 1 then the left hand side
becomes +∞ and the inequality is satisfied. Otherwise we can rewrite this inequality as

φ(u)
φ(v) · ⟨y(v), v⟩ − 1

⟨y(v), u⟩ − 1 ≥ 1,

which holds by the first inequality in the statement of Proposition 4.2.4 (which we may use
as any contractible set is polygonally path-connected), and finishes the proof.

A domain is a union of two contractible sets

Having seen that the polar cyclic monotonicity implies that the recovered function is indeed
geometric convex it is natural to try to use it in a similar way in the case where the domain
is a union of contractible open sets. We illustrate this in the case of two domains, and then
the case of more than two domains will be solved in a similar manner.

Proposition 4.2.7. Let U1, U2 be two contractible open subsets of Rn such that U1 ∩ U2 = ∅.
Let y : U1 ∪ U2 → Rn be continuously differentiable on its domain. Moreover, assume
that G = (x, y(x)) is polar cyclically monotone and that there exists ϵ > 0 such that
⟨x, y(x)⟩ ≥ 1 + ϵ for all x ∈ U1 ∪ U2. Then there exist a geometric convex function
Φ : Rn → R such that ∇◦Φ|U1∪ U2 = y(x).
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Proof. By Proposition 4.2.6 we know that there exist functions φ1 of U1 and φ2 on U2 such
that their polar gradient is equal to y on U1 and U2 respectively. These two functions are
chosen up to a multiplicative constant, which before was not relevant, but here will allow
us to “fit” those two functions together.

Fix φ1 arbitrarily and let the second function be ηφ2 for some η > 0 to be chosen later.
From the proof of Proposition 4.2.6 we know that each of φ1, φ2 can be extended to a

geometric convex function on the whole Rn; for i = 1, 2 define

Φi(x) = sup
u∈Ui

(
φi(u)

⟨y(u), u⟩ − 1(⟨y(u), x⟩ − 1)+

)
.

We next show that there exist a constant η > 0 such that the function

Φ(x) = max
(
Φ1(x), ηΦ2(x)

)
is the required potential. Since Φ clearly belongs to Cvx0(Rn), it is enough to show that
Φ1(x)
ηΦ2(x) ≥ 1 for all x ∈ U1 and Φ1(x)

ηΦ2(x) ≤ 1 for all x ∈ U2. This means that we need to show
that for every u1, u2 ∈ U1 and v1, v2 ∈ U2 we have

φ1(u1)
ηφ2(v1)

⟨y(v1),v1⟩−1(⟨y(v1), u1⟩ − 1)
≥ 1 and 1 ≥

φ1(u2)
⟨y(u2),u2⟩−1(⟨y(u2), v2⟩ − 1)

ηφ2(v2)
.

This is the same as

φ1(u1)(⟨y(v1), v1⟩ − 1)
φ2(v1)(⟨y(v1), u1⟩ − 1) ≥ η and η ≥ φ1(u2)(⟨y(u2), v2⟩ − 1)

φ2(v2)(⟨y(u2), u2⟩ − 1) .

Since we only need to show that there is some constant η fulfilling the above inequalities,
it is enough to show that

φ1(u1)
φ1(u2)

· φ2(v2)
φ2(v1)

· ⟨y(v1), v1⟩ − 1
⟨y(v1), u1⟩ − 1 · ⟨y(u2), u2⟩ − 1

⟨y(u2), v2⟩ − 1 ≥ 1.

This follows from Proposition 4.2.4. Hence a required constant η can be found.

A domain is a union of m contractible sets

It is clear from the above proof that in order to generalize Lemma 4.2.7 to the domain
which is a union of m contractible open sets, we will need to show that there exists a joint
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solution to a family of inequalities. This will guarantee that the function Φ is indeed a
potential, i.e. that the supremum is achieved on the relevant function.

So far it has been convenient to favour the multiplicative setting but from here onwards
we switch to the additive level where the role of the cost function p(x, y) = − ln(⟨x, y⟩ − 1)+

is prominent. Given m contractible open sets Ui, we use Proposition 4.2.6 to find φi ∈
Cvx0(Rn) which are defined up to a multiplicative constant. We then define functions
fi = − ln(φi), which now belong to the p-class and are defined up to an additive constant,
say ηi. Hence, the condition for joining any two functions fi and fj for i ̸= j becomes

fi(ui) + ηi ≤ fj(uj) + ηj + ln(⟨y(uj), uj⟩ − 1) − ln(⟨y(uj), ui⟩ − 1)+

for all ui ∈ Ui and uj ∈ Uj, and the second inequality with exchanged i, j. Therefore, in
order to connect m such functions in a way that gives us a potential, one needs to find a
simultaneous solution η ∈ Rm of m(m− 1) inequalities of the form

fi(ui) − fj(uj) + p(uj, y(uj)) − p(ui, y(uj)) ≤ ηj − ηi.

Note, that the cost function p takes values in (−∞,+∞] and that since we have (uj, y(uj)) ∈
G it follows that p(uj, y(uj)) ∈ R. However, for i ̸= j we may have that p(ui, y(uj)) = +∞
and hence the left hand side can attain values in R ∪ {−∞}.

The next lemma explains when such systems of linear inequalities have a solution, and
is of at most importance for understanding the role of c-cyclic monotonicity for general
costs, which we study in the next section.

Lemma 4.2.8. Let αi,j ∈ [−∞,+∞) for i ̸= j and i, j ∈ {1, . . . ,m}. Then the following
are equivalent:

(i) There exists a vector η ∈ Rm such that for all i, j we have αi,j ≤ ηi − ηj.

(ii) For any any permutation σ of {1, . . . ,m} we have that ∑m
i=1 αi,σ(i) ≤ 0, where we let

αi,i = 0.

Proof. Clearly (a) implies (b), by summing over the pairs (i, σ(i)), as explained above we
have that

m∑
i=1

αi,σ(i) ≤
m∑
i=1

ηi − ησ(i) = 0.

For the other direction, we shall use induction. Note that we are given a set of at most
m(m− 1) inequalities and we would like to show they have a joint solution. Without loss
of generality we may assume that ∑ ηi = 0, so in fact the m(m− 1) inequalities are on a
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vector which is essentially in Rm−1. By Helly’s theorem [10], it is enough to make sure that
any m of these inequalities have a joint solution.

To use induction on m, first note that in the case when m = 1 there is no condition.
We may now assume that the implication is true for (m− 1). Then, given a subset P of m
pairs {(i, j)}, if there is an index within {1, . . . ,m} which does not appear in any of the
pairs, we can discard it from the collection and by induction we know that the intersection
of the corresponding half-spaces in not empty. We may thus assume that the family of m
inequalities which we are trying to simultaneously satisfy include each of the integers in
{1, . . . ,m} at least once.

Further, we argue that if one of these integers, say k, appears only once then the
constraint on ηk is one sided. In particular, we may consider the vector η without its k-th
coordinate, solve the system on inequalities using the induction assumption and then solve
the single remaining inequality for ηk, which as a single inequality in a single variable always
has a solution. Moreover, the same argument applies if one of the integers appears any
number of times but only as the first (resp. only as the second) in any pair (i, j) ∈ P .

We may thus assume, without loss of generality, that each of the indices in {1, . . . ,m}
appears at least once as a first index and at least once as a second index in P . But P
is a set of m pairs, and so there are precisely m appearances as a first index and m as a
second, which means that each integer appears once as a left and once as a right index.
In other words, the pairs in P form a permutation of {1, . . . ,m}. We may decompose the
permutation into its disjoint cycles. If there are more than one, then again by induction we
have a solution. If not, then we have a cyclic permutation σ on {1, . . . ,m} and we want to
find a joint solution to the inequalities

αi,σ(i) ≤ ηi − ησ(i).

Fix η1 arbitrarily, and define recursively ησn(1) = ησn−1(1) − ασn−1(1),σn(1). Since σm(1) = 1,
we have that after m steps the vector η is defined and all inequalities are satisfied (as
equalities, in fact) except possibly the last one:

ασm−1(1),1 ≤ ησm−1(1) − η1. (4.8)
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Let k = σm−1(1) and note that since we have defined everything explicitly, we have

ηk − η1 = ησ−1(k) − ασ−1(k),k − η1 = ησ−i(k) −
i−1∑
j=0

ασ−(j+1)(k),σ−j(k) − η1

= η1 −
m−2∑
j=0

ασ−(j+1)(k),σ−j(k) − η1.

Canceling η1 and noting that ασm−1(1),1 = αk,σ−(m−1)(k), the condition (4.8) becomes

m∑
i=1

αi,σ(i) ≤ 0

and holds by our assumption (b). Therefore any m inequalities can be satisfied simultane-
ously and since the problem is essentially (m− 1)-dimensional (the condition that the sum
is 0 can be satisfied simply by adding a constant to all coordinates of the vector), it follows
from Helly’s theorem that if (b) holds then the system of inequalities (a) has a solution.

Using this, we prove that indeed the theorem holds for unions of finitely many contractible
open sets.

Theorem 4.2.9. Let U = ∪m
i=1Ui where Ui are pairwise disjoint, contractible and open

subsets of Rn and let y : U → Rn be a continuously differentiable function such that the
graph G = (x, y(x)) is polar cyclically monotone. Assume that there exists ϵ > 0 such
that ⟨x, y(x)⟩ ≥ 1 + ϵ for all x ∈ ⋃m

i=1 Ui. Then there exists a geometric convex function
Φ : Rn → R such that ∇◦Φ(x)|⋃m

i=1 Ui
= y(x) for all x ∈ U .

Proof. As mentioned before, we use Proposition 4.2.6 to find functions φi defined on Ui
such that ∇◦φ|Ui

= y|Ui
, which are defined up to a multiplicative constant. Define functions

fi(x) = − ln(φi(x)) + ηi

for x ∈ Ui and note that now ∇◦fi(x) = y(x). Define

− ln(Φ(x)) = inf
u∈Ui

(fi(u) + ηi + ln(⟨y(u), u⟩ − 1) − ln(⟨y(u), x⟩ − 1)+) .

Then ∇◦(− ln Φ(x)) = y(x) if and only if for any i, j, any ui ∈ Ui and vj ∈ Uj , we have that

fj(vj) + ηj ≤ fi(ui) + ηi − ln
(

⟨vj, y(ui⟩ − 1
⟨ui, y(ui)⟩ − 1

)
+
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Rewriting, this is equivalent to proving that there exists some {ηi}mi=1 ∈ Rm such that for
all i ̸= j, we have

sup
ui∈Ui,vj∈Uj

fj(vj) − fi(ui) + ln
(

⟨vj, y(ui⟩ − 1
⟨ui, y(ui)⟩ − 1

)
+

≤ ηi − ηj.

In the case of m = 2 this amounted to an inequality from above and from below on η1 − η2

(and we assumed one of them to be 0 without loss of generality). Now we have m(m− 1)
inequalities, and the way we have wrote them corresponds to Lemma 4.2.8, with

αi,j = sup
ui∈Ui,vj∈Uj

fj(vj) − fi(ui) + ln
(

⟨vj, y(ui⟩ − 1
⟨ui, y(ui)⟩ − 1

)
+
.

The lemma implies that a solution η = {ηi}mi=1 exists if and only if for any permutation σ

of {1, . . . ,m} we have ∑m
i=1 αi,σ(i) ≤ 0.

To show this, consider a permutation σ, which without loss of generality (by renaming
the indices) is given by 1 → 2 → 3 → · · · → k → 1. Hence, we need to show that∑k−1
i=1 αi,i+1 + αk,1 ≤ 0, which after substituting in the definition of αi,j becomes

k∑
i=1

sup
ui∈Ui,vi+1∈Ui+1

fi+1(vi+1) − fi(ui) + ln
(

⟨vi+1, y(ui⟩ − 1
⟨ui, y(ui)⟩ − 1

)
+

≤ 0

where we let vk+1 = v1.
To show the correspondence with Proposition 4.2.4, we go back to the multiplicative

setting. Note that clearly the above assertion is satisfied if and only if for any ui ∈ Ui and
vi ∈ Ui we have

k∏
i=1

φ(vi+1)
φ(ui)

⟨ui, y(ui)⟩ − 1
(⟨vi+1, y(ui⟩ − 1)+

≥ 1,

where vk+1 = v1 and we let φ stand for any of the φi when applied to a point in Ui. Up to
slightly changed notation this is precisely the conclusion of Proposition 4.2.4 and the proof
is complete.

4.3 A new proof of the Rockafellar-Rüschendorf the-
orem

The observation about how to “patch” functions defined on any finite number of regions
has led us to a very general observation. When, for a given c-cyclically monotone set
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G = {(xi, yi)}mi=1, one looks for a potential, i.e. a c-class function φ : X → [−∞,+∞] such
that for all i = 1, . . . ,m satisfies

yi ∈ ∂cφ(xi),

it is very natural to consider a function

φη(x) = min
j∈{1,...,m}

{c(x, yj) − ηj},

depending on the vector η ∈ Rm. It is clear that such a function, as a pointwise minimum
of basic functions, belongs to the c-class. Then the question becomes whether there exists
a choice of η such that

arg min
j∈[m]

{c(xi, yj) − ηj} = i

for i = 1, . . . ,m. In other words, finding a potential for the finite cyclically monotone set
G = {(xi, yi)}i∈I amounts to showing there exists a solution η to a family of inequalities

c(xi, yi) − ηi ≤ c(xi, yj) − ηj.

We rewrite them as
c(xi, yi) − c(xi, yj) ≤ ηi − ηj.

As we have pointed out already, since (xi, yi) ∈ G is c-cyclically monotone, the left hand
side is never +∞. However, it may be that c(xi, yj) = +∞ in which case the left hand side
is −∞ and the inequality holds trivially. This seemingly technical point will be of huge
significance when we consider infinite families of inequalities.

More formally we have the following theorem (where in fact we solve for xi ∈ ∂cφc(yi),
rather than the equivalent yi ∈ ∂cφ(xi) as in the example above, as it turned out to be
more convenient).

Theorem 4.3.1. Let c : X × Y → (−∞,+∞] be a cost function and let G = {(xi, yi) : i ∈
I} ⊂ X × Y . There exists a potential φ : X → [−∞,∞] with G ⊂ ∂cφ if and only if the
following system of inequalities

c(x, y) − c(z, y) ≤ φ(x) − φ(z),

has a solution φ : PXG → R, where (x, y) ∈ G and z ∈ PXG.

Proof. Assume that there exists a potential φ : X → [−∞,∞] such that G ⊂ ∂cφ. We
may restrict φ to PXG, and there φ must attain only finite values because G ⊂ (x, ∂cφ(x))
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means in particular that φ(x) + φc(y) = c(x, y) < ∞. For every z ∈ PXG we have

φ(z) = inf
w∈Y

(
c(z, w) − φc(w)

)
≤ c(z, y) − φc(y),

and at the same time, since (x, y) ∈ ∂cφ,

φ(x) = inf
w∈Y

(
c(x,w) − φc(w)

)
= c(x, y) − φc(y).

Taking the difference of the two equations we get

c(x, y) − c(z, y) ≤ φ(x) − φ(z).

For the other direction, assume we have a solution to the system of inequalities. We
would like to extend it into some c-class function defined on X. To this end we take

Φ(z) = inf{c(z, y) − c(x, y) + φ(x)},

where the infimum runs over all pairs (x, y) ∈ G. We need to show that the function Φ,
which is clearly in the c-class, is indeed an extension of the original function φ : PXG → R
and that it is a potential, namely G ⊂ ∂cΦ.

Since φ is a solution of the system of inequalities it follows that for any z ∈ PXG we
have

φ(z) ≤ φ(x) + c(z, y) − c(x, y)

and so the arg inf of Φ is attained at z itself. In particular, we get that Φ is indeed an
extension of the original solution, and that if (z, w) ∈ G then w ∈ ∂cΦ(z), as required.

The above theorem, while very simple in nature, reduces the question of finding a
potential to the question of determining when a set of linear inequalities has a solution.
The index set for the inequalities are pairs ((x, y), z) ∈ G × PXG (or, equivalently, pairs
((x, y), (z, w)) ∈ G×G, where we ignore w as it does not appear in the inequalities). The
vector we are looking for is indexed by PXG, and we denote it (φ(x))x∈PXG. Even though
it might seem that we want to have (φ(x, y))(x,y)∈G, such notation may be misleading as
while this seems to allow multi-valued φ, note that if (x, y) and (x, y′) are both in G then

c(x, y) − c(x, y) ≤ φ(x, y) − φ(x, y′)
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and
c(x, y′) − c(x, y′) ≤ φ(x, y′) − φ(x, y)

which means
φ(x, y) = φ(x, y′).

In other words, even if we do index the vector by (x, y) ∈ G and not x ∈ PXG, we still get
that the solution vector depends only on the first coordinate.

Having solved the finite case (Lemma 4.2.8), it is natural to see how this method
works when dealing with an infinite set G. Rockafellar’s theorem and its extension by
Rüschendorf works very well in sets of arbitrary cardinality, but fails when the cost can
assume infinite values. Indeed, as we shall explore in depth below - when the cost can be
infinite there is a compactness which is lost, and extra conditions must be added for the
mere existence of a potential. However, before considering these additional conditions, it
will be instructive to see how the above technique can be used to give an alternative proof
of the Rockafellar-Rüschendorf theorem.

Proposition 4.3.2. Let αi,j ∈ R, where i, j ∈ I, for some index set I. The system of
inequalities

αi,j ≤ ηi − ηj

has a solution if and only if for any finite subset J ⊂ I and any permutation σ on J we
have ∑

i∈J
αi,σ(i) ≤ 0.

Proof. One direction is trivial and follows from Lemma 4.2.8. For the other direction, fix
some i0 ∈ I and let ηi0 = 0. If the family of inequalities has a solution then it must belong
to the space

X =
∏

i∈I\{i0}
[αi,i0 ,−αi0,i] =

∏
i∈I
Xi,

since among the inequalities we will have αi,i0 ≤ ηi − ηi0 ≤ −αi0,i. Note that X is non-
empty since for every i ∈ I \ {i0} the corresponding interval is non-empty, which follows by
assumption of solvability for any finite subset applied to {i0, i}.

From Tychonoff’s theorem [22], which states that the product of any collection of
compact topological spaces is compact with respect to the product topology, it follows that
X is compact with respect to the product topology. Recall that the base for the open sets
is the set of Cartesian products ∏i∈I Ui, where Ui is an open set in Xi and Ui = Xi for all
but finitely many i.
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The set of elements v ∈ X for which a certain inequality αi,j ≤ ηi − ηj is not satisfied is
clearly an open set, as it is an open set in the two participating coordinates and it is the
full interval in all the other components, call it Vi,j.

Towards a contradiction, assume that there is no solution to the system of inequalities.
This means that for every point in the product space X at least one of the inequalities is
not satisfied and hence every point in X lies in at least one of the open sets (Vi,j)i,j∈I×I . We
thus have a cover of the space X, and by compactness there exists a finite subcover. This
means that only a finite number of indices participate in the corresponding inequalities.
But by assumption, again using Lemma 4.2.8, we get that for every finite subset of the
inequalities there exists a solution and we get a contradiction to the covering property of
the finite subcover. We conclude that the original collection was not a cover, which means
that in fact there is a solution to the infinite family of inequalities.

As a corollary we have a new and simple proof for the Rockafellar-Rüschendorf theorem
4.1.4 for real valued costs. An advantage, as we shall see below, of having such a simple
proof is that one can see what goes wrong in the case of general costs, and what needs to
be added for the theorem to work.

4.4 Non-traditional cost functions
Let us examine what fails in the proof when the cost function is allowed to attain the value
+∞ (we never allow −∞). Recall that if G = {(xi, yi) : i ∈ I} is c-cyclically monotone
then c(xi, yi) < ∞, but now we may get infinite values for “mixed pairs”, i.e. it may be that
c(xi, yj) = +∞. If this is the case then the pair (i, j) does not give an actual inequality,
that is the corresponding αi,j is equal to −∞ and so there is no constraint. In such a case
Proposition 4.3.2 fails, owing to the lost compactness, and one may easily construct an
infinite family of inequalities such that any finite sub-family has a solution but there is no
joint solution for the entire family.

We note that there is an obvious necessary condition for the existence of a joint solution
to such an infinite set of inequalities, which does not follow merely from the condition of
the existence of a solution for any finite subset (for example consider: ηi − η1 ≥ i and
η2 − ηi ≥ 0). It is also not enough to assume αi,j are uniformly bounded, as one may
construct a counterexample satisfying that as well.
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In fact, examining the counterexamples one sees that if

αi,j ≤ ηi − ηj,

is a family of inequalities that has a solution, then we must have that for any i, j ∈ I there
exists some M = M(i, j) such that for any m and any {ik}mk=1,

αi,i1 +
m−1∑
k=1

αik,ik+1 + αim,j ≤ M. (4.9)

Indeed, the existence of a joint solution implies that

ηi − ηj = ηi − ηi1 +
m−1∑
k=1

(
ηik − ηik+1

)
+ ηim − ηj ≥ αi,i1 +

m−1∑
k=1

αik,ik+1 + αim,j.

Our main observation is that the condition (4.9) is sufficient for the existence of a joint
solution to the infinite family of inequalities. First, however, note that

Remark 4.4.1. The condition (4.9) implies that for any finite subset J ⊂ I and any
permutation σ on J we have that ∑i∈J αi,σ(i) ≤ 0. Indeed, if this was not true, then by
summing multiple times over the same cycle one could get an arbitrarily large sum, i.e.
contradict condition (4.9).

Our main theorem is the following

Theorem 4.4.2. Let αi,j ∈ [−∞,∞) for i, j ∈ I. Then the system of inequalities

αi,j ≤ ηi − ηj, i, j ∈ I (4.10)

has a solution if and only if for any i, j ∈ I there exists some constant M = M(i, j)
such that for any m ∈ N and any i2, . . . , im−1, letting i = i1 and j = im, we have that∑m−1

k=1 αik,ik+1 ≤ M.

Instead of proving Theorem 4.4.2 directly, we shall use the following seemingly weaker
result.

Theorem 4.4.3. Let ai,j ∈ [−∞,∞) for i, j ∈ I. Assume further that for any m ∈ N and
any i1, . . . , im we have ai1,im ≥ ∑m−1

k=1 aik,ik+1. Then the system of inequalities

ai,j ≤ ηi − ηj, i, j ∈ I

has a solution.
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We begin by assuming that Theorem 4.4.3 holds and show that it implies Theorem 4.4.2.
After this reduction, we prove Theorem 4.4.3.

Proof of Theorem 4.4.2. The “only if” part is easy. Indeed if the solution to the whole
family exists, then condition (4.9) follows by summing the relevant inequalities and we get
that M(i, j) = ηi − ηj provides the bound.

For the other direction we shall assume that for any i, j ∈ I there exists some M(i, j)
such that for any m and any {ik}m−1

k=2 , letting i = i1 and j = im, we have

m−1∑
k=1

αik,ik+1 ≤ M(i, j).

Using this condition, we get that the numbers

ai,j = ai1,im := sup
(
m−1∑
k=1

αik,ik+1 : m ≥ 2, i2, . . . , im−1 ∈ I

)
,

are finite.
Clearly, we have that ai,j ≥ αi,j so if the family of inequalities

ai,j ≤ ηi − ηj (4.11)

has a solution, then so does (4.10). On the other hand, since (4.11) is obtained by summing
inequalities from (4.10), we get that the two systems are equivalent, i.e. each is solvable if
and only if the other one is.

Now, in order to use Theorem 4.4.3 to conclude that (4.11) has a solution it remains
to show that for any m ≥ 2 and any set of indices i1, i2, . . . , im ∈ I we have that ai1,im ≥∑m−1
k=1 aik,ik+1 .

To this end fix ϵ > 0. Then for any k ∈ {1, . . . ,m−1} there exists mk and i(k)
2 , . . . , i

(k)
mk−1

such that, letting ik = i
(k)
1 and ik+1 = i(k)

mk
, we have

aik,ik+1 ≤
mk−1∑
l=1

α
i
(k)
l
,i

(k)
l+1

+ ϵ/m.

Thus, we identified a finite set of indices J ⊂ I, given by

J = {i(k)
1 , i

(k)
2 . . . , i(k)

mk
: k ∈ {1, . . . ,m− 1}, m ≥ 2},
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which is naturally arranged as a path from i1 = i to im = j. Using the definition of ai,j,
and since this path participates in the supremum, we get that

m−1∑
k=1

aik,ik+1 ≤ ai1,im + ϵ.

As this holds for an arbitrary ϵ, we get the claim and the proof of the reduction is
complete.

4.4.1 First proof of Theorem 4.4.3, assuming countability of the
index set

We will give two proofs of Theorem 4.4.3, and they will be presented in chronological order.
The first proof requires an assumption that the set of indices I is countable, and it uses

the following result of Ky Fan [8]:

Theorem 4.4.4 (Ky Fan). Let E be a locally convex, real Hausdorff vector space. Let
xν ∈ E be an indexed set of vectors with indices ν ∈ I, and αν ∈ R. Then there exists
f ∈ E∗, i.e. f is a continuous linear functional on E, such that the system of inequalities

f(xν) ≥ αν for ν ∈ I

is satisfied if and only if the point (0, 1) ∈ E × R does not belong to the closed convex cone
C ⊂ E × R spanned by the elements {(xν , αν)}ν∈I .

We shall be using it for the space RI with the box topology. It is clearly Hausdorff
and locally convex, hence it remains to show that the point (0, 1) has a neighborhood
separated from the cone generated by the vectors (ei − ej, ai,j). In the box topology, open
neighborhoods of (0, 1) are of the form ∏

i∈I(−ϵi, ϵi) × (1 − ϵ, 1 + ϵ).
The neighborhood we pick will be of the form ∏

i∈I(−ϵi, ϵi) × (1/2,∞), where the
sequence ϵi will be chosen in a way which depends only on {ai,j}i,j∈I .

However, before we move on to that, we include the proof.

Proof of Ky Fan’s Theorem [8]. Assume that for some f ∈ E∗ the system of inequalities
f(xν) ≥ αν for ν ∈ I, is satisfied. Then we may define a continuous linear functional φ on
E × R by

φ(x, α) = f(x) − α.
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It follows that φ(xν , αν) ≥ 0 for every (xν , αν) ∈ E × R, ν ∈ I.
Let C be the closed convex cone in E × R spanned by {(xν , αν)}ν∈I . This means that

for every λ > 0 we have that λC ⊂ C. From this and the previous paragraph it follows that

φ(x, α) ≥ 0 for all (x, α) ∈ C.

But φ(0, 1) = f(0) − 1 = −1 which implies that (0, 1) /∈ C.
For the other direction, assume that C is the cone defined above and that (0, 1) /∈ C.

By the Hahn-Banach separation theorem, in the locally convex topological vector space
E × R, there is a hyperplane which strictly separates the closed convex cone C and the
point (0, 1). This means that there exists φ = (f, a) ∈ E∗ × R and a real number b such
that

φ(x, α) = f(x) + aα > b for all (x, α) ∈ C

and
φ(0, 1) = f(0) + a = a < b.

Again, using the fact that for every λ > 0, λC ⊂ C, the first inequality implies that

f(x) + aα ≥ 0 for all (x, α) ∈ C.

Since clearly (0, 0) ∈ C, using again the first inequality we get that b < 0. Then the second
inequality implies that a < 0. This in turn implies that we may rewrite the system above as

−1
a
f(x) − α ≥ 0 for all (x, α) ∈ C,

and hence we conclude that the family of inequalities − 1
a
f(xν) ≥ αν , has a solution.

Graph theoretical component of the proof

In a way which will become clear in the next sections, we shall make use of a decomposition
of a nearly balanced weighted acyclic directed graph into weighted paths. A directed graph
is called acyclic if there are no directed cycles in the graph. We call a weighted graph nearly
balanced if we have some control over the difference between the in-coming and out-going
total weight in each vertex. We assume that all the weights are non-negative.
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Proposition 4.4.5. Let Γ = (V,E, (we)e∈E) be a finite directed weighted acyclic graph.
Assume that it is almost balanced in the following sense: for some fixed vector (ϵv)v∈V with
non-negative entries, we have for every vertex v ∈ V that

∑
(x,v)∈E

w(x,v) −
∑

(v,y)∈E
w(v,y) ∈ [−ϵv, ϵv].

Then there exists a weighted decomposition of Γ into paths Pk = v
(k)
1 → v

(k)
2 → · · · → v(k)

mk

with equal weights µk for each edge in Pk, such that for any e ∈ E we have

we =
∑

k: e∈Pk

µk and
∑
k

µk ≤ 1
2
∑
v∈V

ϵv. (4.12)

Moreover, it holds individually for each v ∈ V that

∑
{k: v=sk or v=fk}

µk ≤ ϵv. (4.13)

Here we let sk = v
(k)
1 denote the starting vertex of the path Pk and fk = v(k)

mk
denote

its end point. In fact, if ∑(x,v)∈E w(x,v) ≤ ∑
(v,y)∈E w(v,y) then v ̸= fk for any k and if∑

(x,v)∈E w(x,v) ≥ ∑
(v,y)∈E w(v,y) then v ̸= sk for any k.

Remark 4.4.6. Note that (4.13) implies the second part of (4.12), which can be seen by
summing the inequalities in (4.13) over all v ∈ V . Then the right hand side becomes ∑v ϵv,
while the left hand side is ∑

v

∑
{k:sk=v orfk=v}

µk,

and since every path has precisely one starting point sk and one final point fk, we get that
each µk was summed twice, that is we get exactly 2∑µk.

Proof of Proposition 4.4.5. Note that if |V | = 2 then the claim is trivial as we can use just
one path. We then have that ϵ1 = ϵ2 = w(1,2) = µ1, where we used 1 and 2 as labels of the
vertices, and assumed the only edge is (1, 2).

We shall use induction on the number of edges. If V is any set and |E| = 1 then the
situation is exactly as in the first case we considered, and there is nothing to prove.

Assume we know the claim for |E| < k and we are given Γ with |E| = k. Consider
the edge e∗ = (x, y) with smallest weight w∗ and pick a maximal path P which includes it
(maximal in the sense that it cannot be extended to a longer path), say s = v1 → v2 →
· · · → vm = f . Maximality implies that there is no outgoing edge from its end vertex
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f = vm, and no edge going into its start vertex s = v1. In particular, the “almost balanced”
restriction on s reads ∑(s,y)∈E w(s,y) ≤ ϵs and on f reads ∑(x,f)∈E w(x,f) ≤ ϵf . Moreover,
since w∗ was a minimal weight in the whole graph it follows that ϵs ≥ w∗ and ϵf ≥ w∗.

Define Γ′ to be a graph with the same vertices V and edges e ∈ E, whose weights are
defined as

w′
e =

we − w∗ if e ∈ P ,
we otherwise.

Since w∗ was chosen as the minimal weight, we see that all new weights remain non-negative.
Note that the edge e∗ = (x, y) now has weight zero and thus can be omitted. Therefore,
the graph Γ′ is a directed weighted acyclic graph with k − 1 edges. It also satisfies the
almost-balanced condition, with the new vector ϵ′

v given by

ϵ′
s = ϵs − w∗, ϵ

′
f = ϵf − w∗, and ϵ′

v = ϵv for v ∈ V \ {s, f}.

Note that ∑v∈V ϵ
′
v = ∑

v∈V ϵv − 2w∗.
By the induction assumption, the new graph Γ′ has a weighted decomposition: that is,

we can find paths (Pk)k∈S and weights µk such that ∑{k: e∈Pk} µk = w′
e and for every v ∈ V ,

we have ∑
{k: sk=v or fk=v}

µk ≤ ϵ′
v.

We add to the collection the path P with a weight w∗ on each edge. We claim that this
constitutes the desired weighted decomposition of Γ.

Indeed, if we compute ∑{k: sk=v or fk=v} µk for a vertex which is neither s nor f , i.e. not
an end point of P , we get the same result as in Γ′ and hence it is at most ϵ′

v = ϵv. If we
compute the sum for v = s or v = f , we get the sum in Γ′ with added w∗, which is thus
bounded by ϵ′

v + w∗ = ϵv, as needed.
Finally, by construction, a vertex can be chosen as a starting vertex sk for some path Pk

only if, after equal weights were removed from its in-going and out-going edges, there was no
weight left in the in-going edges. In other words, only if∑(x,v)∈E w(x,v) ≤ ∑

(v,y)∈E w(v,y). Sim-
ilarly, a vertex can be chosen as fk for some path Pk only if ∑(x,v)∈E w(x,v) ≥ ∑

(v,y)∈E w(v,y),
which completes the proof.

We are now ready to prove our main theorem.
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Proof of Theorem 4.4.3. We begin by defining the neighborhood. Using that I is countable,
we fix an ordering of it, and for every i ∈ I we define

ϵi = 1
52−i 1

max{|ak,j| < ∞ : k, j ≤ i} + 1 .

Note that ϵi > 0 for every i.
Then, towards a contradiction, assume that the set ∏i∈I(−ϵi, ϵi) × (1/2,∞), which is

an open neighborhood of (0, 1) ∈ RI × R in the box topology, intersects with the closed
convex cone generated by the vectors (ei − ej, ai,j). This means that there is some finite
J ⊂ I, and a positive combination ∑i,j∈J λi,j(ei − ej, ai,j) which is inside this neighborhood.
This condition amounts to

∑
j∈J

λi,j − λj,i ∈ (−ϵi, ϵi) ∀i ∈ J and
∑
i,j∈J

λi,jai,j ≥ 1/2. (4.14)

Let Λ be the matrix with entries λi,j. Note that subtracting any positive multiple of
a permutation matrix from the matrix Λ has no effect on the sum on the left and only
increases the sum on the right (by c-cyclic monotonicity). Thus we may assume without
loss of generality that the matrix Λ contains no positive multiple of a permutation matrix.

Choose an order on the elements of J and consider them as vertices of a weighted
directed graph Γ, where we define the weights to be w(i,j) = λi,j. The assumption that Λ
contains no positive multiple of a permutation matrix implies that the graph Γ is acyclic.
Moreover, the first condition in (4.14) means that the graph Γ is almost balanced, up to
the weights (ϵi). Using Proposition 4.4.5 we find paths Pk = v

(k)
i1 → v

(k)
i2 → · · · → v

(k)
imk

and
weights µk that cover the graph Γ and satisfy for every vertex vi that

∑
{k: v(k)

i1
=vi or v(k)

imk
= vi}

µk ≤ ϵi.

Denote by Ak the adjacency matrix of the path Pk, so that Λ = ∑
µkAk. Then

∑
i,j∈J

λi,jai,j =
∑
k

µk
∑
i,j∈J

(Ak)i,jai,j.

Moreover, by the assumption on ai,j and since (Ak)i,j ∈ {0, 1} and are indicating a path we
get that ∑

i,j∈J
(Ak)i,jai,j ≤ a

v
(k)
i1
,v

(k)
imk
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where we used v
(k)
i1 , v

(k)
imk

to denote the first and last element in the path Pk. Therefore,

∑
i,j∈J

λi,jai,j ≤
∑
k

µkav(k)
i1
,v

(k)
imk

=: S.

Let us now decompose the sum S according to the start and end vector of the path Pk in
the following way.

S =
∞∑
l=1

∑
{k: max(v(k)

i1
,v

(k)
imk

)=l}

µkav(k)
i1
,v

(k)
imk

.

Indeed, each path is summed exactly once, according to the quantity l = max(v(k)
i1 , v

(k)
imk

)
and the earlier fixed order of elements in J . Note that in fact the first sum is finite since J
is finite.

From the definition of ϵi, it follows that

ak,j ≤ 1
5ϵmax{j,k}

2−max{j,k}.

Using this estimate for the sum S, we get

S ≤
∞∑
l=1

1
5ϵl

2−l ∑
{k: max(v(k)

i1
,v

(k)
imk

)=l}

µk.

Recall that the set {k : max(v(k)
i1 , v

(k)
imk

) = l} is the set of all paths which either start or
terminate at l, but their other endpoint (start or end point) is below l. From Proposition
4.4.5 we know that ∑

{k: v(k)
i1

=l or v(k)
imk

=l}

µk ≤ ϵl,

so in particular ∑
{k: max(v(k)

i1
,v

(k)
imk

)=l}

µk ≤ ϵl.

We thus may conclude that

S ≤
∞∑
l=1

1
5ϵl

2−lϵl = 1/5 < 1/2

which is a contradiction to the assumption and the proof is complete.
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4.4.2 Second proof of Theorem 4.4.3

The second proof is very different in nature and it does not require any information about
the index set I. It uses Zorn’s Lemma [24].

Proof. Assume that for given ai,j ∈ [−∞,+∞) with i, j ∈ I, for any m and any i1, i2, . . . , im
it holds that ai1,im ≥ ∑m−1

k=1 aik,ik+1 . We want to show that then the system of inequalities

ai,j ≤ ηi − ηj, i, j ∈ I

has a solution.
Define a partially ordered set as all pairs (J, fJ), where J ⊂ I and fJ : J → R are such

that for any i, j ∈ J we have ai,j ≤ fJ(i) − fJ(j). The set defined in this way is non-empty,
which follows from Lemma 4.2.8 by considering any finite subset J . We use the standard
partial order, i.e. we say that (J, fJ) ≤ (K, fK) if J ⊂ K and fK |J = fJ .

First, let us notice that every chain has an upper bound. Assume that (Jα, fJα) is a
chain (namely any two elements are comparable). Consider J = ∪αJα and fJ = ∪αfJα . This
function is well defined because of the chain properties, and it belongs to the chain because
if i, j ∈ J then for some α we have (i, j) ∈ Jα and hence fJ |Jα satisfies the inequality on
(i, j) and so does fJ . Finally, (J, fJ) is clearly an upper bound for the chain. Therefore, we
have shown that every chain has an upper bound, and it follows from Zorn’s lemma that
there is a maximal element. Denote the maximal element by (J∗, f∗).

Assume towards a contradiction that J∗ ≠ I, that is, there exists some element i0 ∈ I

such that i0 /∈ J∗. If f∗ can be extended to be defined on i0, in such a way that all
inequalities with indices of the form (i0, j) and (j, i0) with j ∈ J∗ hold, we will contradict
maximality and complete the proof. Note that the inequalities that need to be satisfied are

ai0,j ≤ f(i0) − f∗(j) and aj,i0 ≤ f∗(j) − f(i0).

That is, f is to be defined in such a way that f |J∗ = f∗ and for f(i0) we have

sup
j∈J∗

(ai0,j + f∗(j)) ≤ f(i0) ≤ inf
j∈J∗

(f∗(j) − aj,i0).

For such an element to exist, we must show that

sup
j∈J∗

(ai0,j + f∗(j)) ≤ inf
j∈J∗

(f∗(j) − aj,i0), (4.15)
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or, in other words, that for any j, k ∈ J∗ we have

ai0,j + f∗(j) ≤ f∗(k) − ak,i0 .

We can rewrite the condition as ai0,j + ak,i0 ≤ f∗(k) − f∗(j). Under our assumptions
ak,j ≥ ak,i0 + ai0,j. Since f∗ already satisfies the inequality ak,j ≤ f∗(k) − f∗(j), we know
the above inequality holds for any j, k ∈ J∗, and so the inequality (4.15) holds and we may
extend the function f∗. This is a contradiction to maximality, and we conclude that J∗ = I,
and hence we have found a solution to the full system of inequalities.

4.4.3 Summary

Let us recap, in the language of our original question, what we have shown so far. Before we
present the theorem, let us recall that αi,j in Theorem 4.4.2, in the transportation setting,
correspond to c(xi, yi) − c(xj, yi). We then make the following definition

Definition 4.4.7. The set G ⊂ X × Y is called c-path-bounded if it satisfies that for any
(x, y), (z, w) ∈ G there exists some constant M = M((x, y), (z, w)) such that for any m ∈ N
and any {(xi, yi)}m−1

i=2 ∈ G, letting (x, y) = (x1, y1) and (z, w) = (xm, ym), we have

m−1∑
i=1

(
c(xi, yi) − c(xi+1, yi)

)
≤ M.

Note that in light of Remark 4.4.1, a c-path-bounded set G is c-cyclically monotone.
Hence, with this definition the Theorem 4.4.2 reads

Theorem 4.4.8. Let c : X×Y → (−∞,+∞] be a cost function, and let G ⊂ X×Y . Then
there exists a potential φ : X → [−∞,∞] with G ⊂ ∂cφ if and only if G is c-path-bounded.

4.5 Geometric conditions for continuous cost functions
In order to make use of Theorem 4.4.8, one needs to show that the condition regarding the
existence of M in the definition of c-path-boundedness is satisfied. In what follows, we will
only consider continuous cost functions, one example of which is the polar cost p(x, y).

Let c : Rn × Rn → (−∞,+∞] be a continuous cost function. For T < ∞ define

ST = {(x, y) ∈ Rn × Rn : c(x, y) ≤ T}.

We prove the following:
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Theorem 4.5.1. Let G ⊂ Rn ×Rn be a bounded and c-cyclically monotone set with respect
to a continuous cost function c. Moreover, assume that there is T > 0 such that G ⊂ ST ,
namely c(x, y) ≤ T for all (x, y) ∈ G. Then there exists a potential φ such that G ⊂ ∂cφ.

Proof. By Theorem 4.4.8 it is enough to show that G is c-path-bounded. To do so, we
consider a directed graph with vertex set G, in which there is an edge from (x, y) to (z, w)
if c(z, y) < ∞. On the vertex set of this graph we define an equivalence relation, where
two points are equivalent if there exists a directed cycle passing through both of them (or,
equivalently, if there is a directed path from each of the points to the other). This is clearly
an equivalence relation.

If the points (xs, ys) and (xf , yf) are in the same equivalence class, then we see that
there is a constant M as required above, since we may complete any path from (xs, ys) to
(xf , yf) to a cycle using some fixed path from (xf , yf) to (xs, ys), say (z1, w1), . . . (zk, wk),
and using c-cyclic monotonicity we have for any m and any (xi, yi)mi=1 ⊂ G that

c(xs, ys) − c(x1, ys) +
m−1∑
i=1

(
c(xi, yi) − c(xi+1, yi)

)
+ c(xm, ym) − c(xf , ym)

≤ −
[
c(xf , yf ) − c(z1, yf ) +

k−1∑
i=1

(
c(zi, wi) − c(zi+1, wi)

)
+ c(zk, wk) − c(xs, wk)

]
.

We thus only need to address pairs that lie in different equivalence classes.
Let us first observe that under the assumptions we have made, there are only finitely many

equivalence classes. Indeed, by continuity of c on the compact set G ⊂ ST , we can find some
δ > 0 such that if ∥(z, w) − (x, y)∥ < δ and (x, y), (z, w) ∈ G then c(x,w), c(z, y) < T + 1.
In particular, any two points in G in distance less than δ belong to the same equivalence
class. Using compactness of G again, we see there can be no more than a finite number
of different equivalence classes. So, from here onwards we assume there are at most k0

equivalence classes.
Next, we claim that within one equivalence class, call it [v], there exists a uniform bound

M such that for any two points (xs, ys) and (xf , yf) in this class, M(s, f) ≤ M . To see
this define the function Ψ : [v] × [v] → R to be the supremum over any path from the first
given point to the second one. In other words, for any m and any (zi, wi)mi=1 ∈ G we define
a function ψ((xs, ys), (xf , yf )) by

sup
{
c(xs, ys) − c(x1, ys) +

m−1∑
k=1

(c(xk, yk) − c(xk+1, yk)) + c(xm, ym) − c(xf , ym)
}
.
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We have already shown, using c-cyclic monotonicity, that ψ is finite and now we claim that
it is bounded. To this end, it will suffice to show that ψ is uniformly continuous, and in
particular, can be extended continuously to the closure of the equivalence class [v].

Assume that ∥(xs, ys)−(x′
s, y

′
s)∥ ≤ δ and ∥(xf , yf )−(x′

f , y
′
f )∥ ≤ δ. Let ψ((xs, ys), (xf , yf )) =

M1. This means that any path between (xs, ys) and (xf , yf) has “total cost” at most M1.
Given some path (xi, yi) joining (x′

s, y
′
s) and (x′

f , y
′
f), we may add to it the two points

(xs, ys) and (xf , yf) as the first and last points, getting a new path, between (xs, ys) and
(xf , yf ), and hence its total cost is bounded by M1. We thus see that

ψ((x′
s, y

′
s), (x′

f , y
′
f )) + c(xs, ys) − c(x′

s, ys) + c(x′
f , y

′
f ) − c(xf , y′

f ) ≤ M1.

Since c is continuous, on a compact set it is uniformly continuous and hence there exists a
small enough δ = δ(ϵ) such that |c(xs, ys) − c(x′

s, ys)| < ϵ/2 and
∣∣∣c(x′

f , y
′
f ) − c(xf , y′

f )
∣∣∣ < ϵ/2

and we get

ψ((x′
s, y

′
s), (x′

f , y
′
f )) − ψ((xs, ys), (xf , yf )) ≤ ϵ.

By symmetry, the claim follows, and we get that within one equivalence class, the “total
cost” of any path is bounded from above with a uniform bound.

Finally, when considering points in different equivalence classes, observe that any path
joining these points can be split into at most k0 paths, each within one of the equivalence
classes, and at most k0 − 1 extra “single steps”, each joining a pair of equivalence classes.
This is because between equivalence classes there are “finite valued paths” only in one
direction.

For example, if k0 = 2 then every path between (xs, ys) ∈ [v1] and (xf , yf) ∈ [v2] can
be separated into three components: the first lies only in [v1], the second is just one edge,
joining a point in [v1] to a point in [v2], and the third lies in [v2]. More precisely, letting
(z, w) be the last vertex of the path lying in [v1] and (z′, w′) be the first vertex of the path
lying in [v2], we have

c(xs, ys) − c(x2, ys) +
m−1∑
i=2

(
c(xi, yi) − c(xi+1, yi)

)
+ c(xm, ym) − c(xf , ym)

≤
[
c(xs, ys) − c(x2, ys) +

m1−1∑
i=2

(
c(xi, yi) − c(xi+1, yi)

)
+ c(xm1 , ym1) − c(z, ym1)

]
+ c(z, w)

− c(z′, w) +
c(z′, w′) − c(xm1+3, w) +

m−1∑
i=m1+3

(
c(xi, yi) − c(xi+1, yi)

)
+ c(xm, ym) − c(xf , ym)

 .
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Note that each of the “single steps” joining two different equivalence classes is bounded
by

c(z, w) − c(z′, w) ≤ T − inf{c(x,w) : (x, y) ∈ G, (z, w) ∈ G} =: M2,

where the infimum is bounded by continuity of c and compactness of G. To sum up, any
path in G ⊂ ST has an upper bound on total cost given by ∑k0

i=1 M([vi]) + (k0 − 1)M2,
which are the uniform bounds on the finite number of equivalence classes and the steps
between classes. As a result we have a uniform bound for any path with any beginning and
end point in G. Thus, Theorem 4.4.8 yields the existence of a c-class function φ such that
G ⊂ ∂cφ.

Remark 4.5.2. Let us note that we have also shown that if all the points in G are in one
equivalence class then, even if G is not a subset of ST – i.e. there may be a sequence of
points (xi, yi) ∈ G such that c(xi, yi) → ∞ – there exists a potential. In particular, this will
be the case if PXG is a contractible set.
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Appendix A

Norm with ‘few’ good points

The example we gave earlier of a norm such that the set of ϵ-good points has small measure
was just the Euclidean norm in a non-standard position. From the perspective of Milman’s
question, this is an unsatisfactory example, since it is isometric to the usual Euclidean norm.
In particular, we have not ruled out that for any norm that is C-Euclidean, there is some
position (that is, invertible linear transformation of the norm) such that almost all points
are ϵ-good, which would straightforwardly imply a positive answer to Milman’s question.

We present here strong evidence that such a result cannot be obtained, by giving an
example of a C-Euclidean norm such that the standard basis is 1-symmetric and the measure
of ϵ-good points is exponentially small. We do not prove that the same is true for all norms
that are equivalent to this one, but it seems highly unlikely that a non-standard position of
a highly symmetric unit ball would have far more good points than the standard one.

The norm we take is the mixed ℓ2/ℓ∞ norm on Rn defined by the formula

∥x∥ = max
|I|=m

|PIx|,

where PI is the coordinate projection to the set of indices I. If m = cn, then it is simple to
see that |x| ≥ ∥x∥ ≥ c1/2|x| for every x, so this norm is c−1/2-Euclidean.

Lemma A.0.1. The measure of the set of ϵ-good points x ∈ Sn with respect to the norm
∥ · ∥ is at most (12ϵ 1−λ

2 )n 1
(1−

√
ϵ−λ)

√
n
, where λ = m+1

n
.

Proof. Let x be an ϵ-good point and suppose that x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. Let y be the
vector with coordinates (x1, x2, . . . , xm, xm, . . . , xm), and note that ∥y∥ = ∥x∥. Since x is
ϵ-good, y is not a witness for x being ϵ-bad, and therefore

⟨x, y⟩ ≤ (1 + ϵ)|x|2.
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Expanding both sides, we find that

∑
i≤m

x2
i +

∑
i>m

xixm ≤ (1 + ϵ)
∑
i

x2
i

and therefore that ∑
i>m

xi(xm − xi) ≤ ϵ
∑
i

x2
i .

Let A = {i > m : xi ≥ xm/2} and let u = PAy. In other words, ui = xm if xi ≥ xm/2
and 0 otherwise. Then (xi − ui)2 ≤ xi(xi − ui) for every i. If we also let v be the
coordinate projection of x to the set of coordinates greater than m, then this implies that
|v − u|2 ≤ ϵ|x|2 = ϵ.

Hence, for every ϵ-good unit vector x we can find a set J that consists of n−m coordinates,
a positive real number λ, and a vector y such that |x − y| ≤

√
ϵ and yi ∈ {0, λ,−λ} for

every i ∈ J .
It is therefore sufficient to prove that the

√
ϵ-expansion of the set of such y intersects

the unit sphere in a set of small measure.
To do this, let us first fix a set J and a subset A ⊂ J and a set of signs ϵi = ±1, one

for each i ∈ A, and consider the set of all y such that ϵiyi is constant on A and yi = 0 on
J \ A. This is a subspace of Rn of dimension m+ 1, so by standard estimates (see e.g. [1])
its

√
ϵ-expansion intersects the unit sphere in a set of measure at most

µ((Em+1)√
ϵ) ≃ 1√

nπ

√
λ(1 − λ)

(1 − λ) − sin2(
√
ϵ)e

− n
2 u(λ,ϵ) ≤ 1√

nπ

1
cos2(

√
ϵ) − λ

e− n
2 u(λ,ϵ),

where λ = m+1
n

and u(λ, ϵ) = (1 − λ) log 1−λ
sin2(

√
ϵ) + λ log λ

cos2(
√
ϵ) . This function can be

estimated from below by

u(λ, ϵ) = log
1 − λ

ϵ

(
λ

1 − λ

)λ
(tan

√
ϵ)2λ

 ≥ log
(
ϵλ−1 λλ

(1 − λ)λ−1

)
.

As a result we get

µ((Em+1)√
ϵ) ≤ 1√

n(1 −
√
ϵ− λ)

(
ϵλ−1 λλ

(1 − λ)λ−1

)−n/2

≤ 1√
n(1 −

√
ϵ− λ)

(
ϵ1−λ

(1 − λ)1−λλλ

)n/2

.
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The number of ways of choosing A, J and the signs is
(
n
λn

)
3(1−λ)n. Therefore, for a fixed

λ = (m+ 1)/n we get that the measure of good points is at most

(
n

λn

)
3(1−λ)n 1√

n(1 −
√
ϵ− λ)

(
ϵ1−λ

(1 − λ)1−λλλ

)n/2

≤
(
e

λ

)λn 1√
n(1 −

√
ϵ− λ)

(
ϵ1−λ

(1 − λ)1−λλλ

)n/2

3(1−λ)n

≤ 1√
n(1 −

√
ϵ− λ)12nϵ(1−λ)n/2,

since the function x3x/2(1 − x)(1−x)/2 is bounded below for all x ∈ [0, 1]. Hence, the
measure of ϵ-good points is at most (12ϵ 1−λ

2 )n 1
(1−

√
ϵ−λ)

√
n
, and for a fixed epsilon and

λ < min{1 − 2
√
ϵ, 1 − 2 log 12

log 1
ϵ

}, this tends to 0 as the dimension increases.
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Proof of Example 3.2.2. We want to show that At1∞,s
K = 1∞,t/s

(1+t)K◦ for a convex set K ⊂ Rn

and such that 0 ∈ int(K). To this end let φ = 1∞,s
K , then by the definition of the transform

we have

Atφ(y) = sup
{x:⟨x,y⟩≥1+t}

⟨x, y⟩ − 1
1∞,s
K (x) .

Note that 1∞,s
K can only attain three different values 0, s,+∞. It follows that if for all

x ∈ int(K) we have that ⟨x, y⟩ < 1+t then we must have y ∈ int((1+t)K◦) and Atφ(y) = 0.
On the other hand, if y is such that there exists x ∈ int(K) such that ⟨x, y⟩ ≥ 1 + t then
y ∈ Rn \ (1 + t)K◦ and the supremum becomes +∞. In the case when y is on the boundary
of K, i.e. y ∈ ∂(1 + t)K◦, there is at least one x ∈ ∂K for which ⟨x, y⟩ = 1 + t, therefore
the numerator becomes t and the denominator s, as claimed.

Proof of Example 3.2.3. We want to prove that Atℓy0 = ℓ∞
y0/|y0|2 holds for a truncated linear

function ℓy0(x) = ⟨x, y0⟩+. Indeed,

(Atφ)(y) = sup
{x:⟨x,y⟩≥1+t}

⟨x, y⟩ − 1
⟨x, y0⟩+

= sup
{x:⟨x,y⟩≥1+t}

⟨ x

⟨x, y0⟩+
, y⟩ − 1

⟨x, y0⟩+

If y is not on the line Ry0, then choose x to be M(y − ⟨y,y0⟩
|y0|2 y0) which is non-zero and M is

large, in particular so that ⟨x, y⟩ ≥ 1 + t. Note that such chosen x is orthogonal to y0 and
hence the denominator vanishes. It follows that Atℓy0 = +∞ for any y /∈ Ry0. If y belongs
to R+y0, i.e. there exists s > 0 such that y = sy0 we have that

(Atφ)(y) = sup
{x:s⟨x,y0⟩≥1+t}

s
⟨x, y0⟩ − 1

s

⟨x, y0⟩+
.
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Clearly the supremum is at most s, but by taking x = My0 for M → ∞ one gets that
indeed Atφ(sy0) = s. If y = sy0 for s < 0 we get that the denominator is 0, as we supremize
over all x such that ⟨x, y0⟩ ≤ 1+t

s
< 0, hence the supremum is again +∞.

For the reverse direction, i.e. to show that ℓy0(x) is equal to

Atℓ
∞
y0/|y0|2(x) = sup

{z:⟨z,x⟩≥1+t}

⟨x, z⟩ − 1
ℓ∞
y0/|y0|2(z) ,

note that if x is such that for all z = s y0
|y0|2 with s > 0 we have that ⟨x, z⟩ < 1 + t, then

⟨x, y0
|y0|2 ⟩ ≤ 0 and the denominator becomes +∞ and hence Atℓ

∞
y0/|y0|2(x) = 0. If however,

⟨x, y0
|y0|2 ⟩ > 0 then we can choose z to be s y0

|y0|2 for any s > 0. This means that the supremum
is in fact over all s > 0 and we get

sup
s>0

s⟨x, y0
|y0|2 ⟩ − 1

s⟨ y0
|y0|2 ,

y0
|y0|2 ⟩

= ⟨x, y0⟩,

which precisely means that ℓy0 is the At image of ℓ∞
y0/|y0|2 .

Example B.0.1. Let φ(x) = ∥x∥K, be a norm. Then

(At∥ · ∥K)(y) = A(∥ · ∥K)(y) = hK(y),

where hK is a support function of K.

Proof. From the definition, for every t ≥ 0 we have that

(At∥ · ∥K)(y) = sup
{⟨x,y⟩≥1+t}

⟨x, y⟩ − 1
∥x∥

= sup
u∈Sn−1

sup
{s>0: ⟨u,y⟩≥ 1+t

s
}

s⟨u, y⟩ − 1
s∥u∥K

= sup
u∈Sn−1

⟨u, y⟩
∥u∥K

= hK(y).

Example B.0.2. For p > 1 define φ(x) = ∥x∥p
K

p
, where ∥ · ∥K is a norm. Then

Atφ(y) =


(
p−1
p

)p−1
hpK(y) when 1

p−1 ≥ t

pt
(1+t)ph

p
K(y) otherwise.

In particular, for p = 2 and the ℓ2 norm we get that At

(
|·|2
2

)
(y) is equal to A

(
|·|2
2

)
(y)

for t ≤ 1 and is different otherwise.
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Proof. By the definition we have

Atφ(y) = sup
{x:⟨x,y⟩≥1+t}

p
⟨x, y⟩ − 1

∥x∥pK
= sup

u∈Sn−1
sup

{s>0: ⟨u,y⟩≥ 1+t
s

}

p
s⟨u, y⟩ − 1
sp∥u∥pK

.

Define f(s) = s1−p⟨u, y⟩ − s−p. Then, f ′(s0) = 0 if and only if s0 = p
(p−1)⟨u,y⟩ and it is easy

to check that since p > 1 we have that f ′′(s0) ≤ 0. Clearly, since we need ⟨u, y⟩ ≥ 1+t
s

,
we will only consider u with ⟨u, y⟩ > 0 hence we see that s0 > 0 and that the condition
⟨u, y⟩ ≥ 1+t

s0
becomes 1

p−1 ≥ t.
Therefore, if 1

p−1 ≥ t we plug in s0 and since supu∈Sn−1
⟨u,y⟩p

∥u∥p
K

= hpK(y), we indeed get(
p−1
p

)p−1
hpK(y). If t > 1

p−1 then by monotonicity of f , instead of s0, we take the smallest
value s which fulfills the condition, i.e. s1 = 1+t

⟨u,y⟩ and by plugging it in the supremum we
get the desired result.

Lemma B.0.3 (A restricted Cauchy functional equation). Assume that a continuous
function φ : R+ → R+ satisfies

φ(xy) = φ(x)φ(y)

for all x ∈ R+ and for all y ∈ [α, β] with 0 < α < 1 < β. Then, φ(x) = xc for some c ∈ R.

Proof. Let f(x) = ln(φ(ex)), we must show that given the condition

f(x+ y) = f(x) + f(y)

for all x ∈ R, y ∈ [lnα, ln β] = [a, b], we must have f(x) = cx for some c ∈ R. Note that
a < 0 < b, and also that since φ is a continuous function, so is f and it is enough to prove
the result for x ∈ Q and y ∈ [a, b] ∩ Q := A and use the fact that rational numbers are
dense.

Consider y = 0 ∈ A and note that for any x we have f(x) = f(x) + f(0), and hence
f(0) = 0. Moreover, for any n ∈ N and y ∈ [a, b], we have that f(ny) = f((n− 1)y + y) =
nf(y). Now, for any n ∈ N we have that if y ∈ A then so is y

n
, hence substituting and

multiplying the previous equality by m
n

, for some m ∈ N, we get

m

n
f(y) = mf

(
y

n

)
= f

(
m

n
y
)
,

where the last equality follows from the previously established one. Now, for any x ∈ Q+

we can find m,n ∈ N and p
q

= y ∈ [0, b] ∩ Q with p, q ∈ N, such that x = m
n
y. It follows
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that
f(x) = f

(
m

n
y
)

= m

n
f(y) = m

n

p

q
f

(
q

p
y

)
= xf(1).

If x < 0 then choose y ∈ [0, b] ∩ Q and k ∈ N such that x+ ky = 0. Then

0 = f(0) = f(x+ ky) = f(x) + kf(y) = f(x) + f(ky) = f(x) + f(−x).

Combining this with the previous identity we get for x ∈ Q− that

f(x) = −f(−x) = −(−xf(1)) = xf(1).

Setting c = f(1), this finishes the proof.



Appendix C

Example C.0.1. Consider the set

A = {(x, y) : x ∈ (1
2 , 2), y = 5

2 − x} ∪ {(3, 1
2)} ⊂ R × R.

This is a p0-cyclically monotone set since for every point (x, y) ∈ A we have ⟨x, y⟩ > 1 and
it is a graph of non-increasing function on its domain (for the characterization of polar
cyclically monotone sets in R, see the subsection below in the Appendix C).

However, there is no potential, i.e. φ ∈ Cvx0(R) such that A ⊂ ∂◦φ. First consider
x ∈ (1

2 , 2). By Lemma 3.4.5 follows that if φ ∈ Cvx0, such that y ∈ ∂◦φ(x), exists then
there is z ∈ ∂φ(x) such that z

xz−φ(x) = y. This gives us the equation 5
2 − x = z

xz−φ(x) , which
in turn due to the continuity of y for 1

2 < x < 2, is equal to

φ′(x)
φ(x) = 5/2 − x

(2 − x)(x− 1/2) .

Finally, we get φ(x) =
(

(1−2x)4

2−x

)1/3
. But note that this function, which is well defined

on (1
2 , 2), does not have a finite extension, for x > 2, which remains a geometric convex

function. Indeed, as x → 2− the function tends to +∞. But this means that φ has to be
+∞ for all x > 2 and hence there is no function ψ ∈ Cvx0 such that ψ|(1/2,2) = φ|(1/2,2) and
such that the point (3, 1/2) belongs to ∂◦ψ.

Polar cyclically monotone sets in R

We claim that in dimension 1 it is very easy to characterize polar cyclically monotone sets.
We first reduce the question to two separate questions in quadrants:

Lemma C.0.2. A set A ⊆ R×R is polar cyclically monotone if and only if A1 = A∩R+×R+

and A2 = A ∩ R− × R− are both polar cyclically monotone and A = A1 ∪ A2.
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Proof. Since for every pair (x, y) ∈ A we must have c(x, y) < ∞, we get that A ⊂ {(x, y) ∈
R2 : xy > 1}. Hence, we may write that A = A1 ∪ A2 where A1 = A ∩ (R+ × R+) and
A2 = A ∩ (R− × R−). Clearly if A is c-cyclically monotone then by the definition so are
A1 and A2. On the other hand, if both A1 and A2 are c-cyclically monotone then for any
permutation for which xiyσ(i) < 0 the total cost will be infinite and the desired inequality
will hold. We thus only need to consider permutations for which the sets {i : xi < 0} and
{i : xi > 0} are invariant, and then the condition on A is the sum of the conditions on A1

and A2.

Lemma C.0.3. A set A ⊆ R+ ×R+ is polar cyclically monotone if and only if A lies on a
graph of non-increasing function.

Proof. It is easy to see that the c-cyclic monotonicity condition with respect to the polar
cost is equivalent to

N∏
i=1

(xiyi − 1) ≥
N∏
i=1

(xiyσ(i) − 1).

First, we show that this is true for x1 ≤ x2 ≤ . . . ≤ xN if y1 ≥ y2 ≥ . . . ≥ yN . We will
show it by induction on N . Let N = 2 and (x1, y1), (x2, y2) ∈ A with x1 ≤ x2. Then the
following condition needs to be fulfilled

(x1y1 − 1)(x2y2 − 1) ≥ (x1y2 − 1)(x2y1 − 1).

After rearranging one can see that this is equivalent to

(x2 − x1)(y1 − y2) ≥ 0,

and since first bracket is non-negative we get y1 ≥ y2.
Now assume that the claim is true for N = k and we will show it for k + 1. If

σ(k+1) = k+1 then we are done. If not and σ(k+1) = j ̸= k+1, then assume σ(i) = k+1.
We then know that i < k + 1 and j < k + 1 and therefore

xi ≤ xk+1, and yj ≥ yk+1.

By the base case it follows that

(xiyj − 1)(xk+1yk+1 − 1) ≥ (xiyk+1 − 1)(xk+1yj − 1).
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Now, define a permutation σ∗ on the first k elements by σ∗(x) = σ(x) if x ̸= i and
σ∗(i) = j. We then have

k∏
i=1

(xiyi − 1) ≥
k∏
i=1

(x1yσ∗(i) − 1).

Multiplying both sides of this inequality by (xk+1yk+1 − 1) and using the previous one,
proves the claim.

Finally, there is just one c-cyclically monotone set for given {xi}Ni=1, {yi}Ni=1 and also
there is just one decreasing rearrangement, so they must coincide.
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