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Supplementary notes 
Package architecture 

The ROSETTA framework comes in a GUI version for Windows systems and a command line 
version for UNIX-based systems. The R.ROSETTA package is a cross-platform application 
that uses command line ROSETTA. However, UNIX-based systems require installation of the 
compatibility layer software Wine (https://www.winehq.org/). For more information we 
recommend to read the original ROSETTA articles [1-3] and the technical reference manual 
[4]. Detailed instructions for the R.ROSETTA installation, functions and a sample code are 
available in the package manual or on the official R.ROSETTA website 
(https://komorowskilab.github.io/R.ROSETTA/). 
Benchmarking 
We compared R.ROSETTA with three other R packages designed for rule-based modelling. 
Herein, we excluded algorithms that focus on fuzzy rule-based learning, operate on continuous 
decision classes and/or include fixed internal discretization methods. In addition, we compared 
R.ROSETTA with four popular decision tree-based methods. The parameters of each methods 
were either set to default or tuned for more exhaustive search. We standardized the learning 
procedure for all methods so that each was performed with 10-fold CV and equal frequency 
discretization. In the discretization part, cuts were estimated based on a training set and further 
applied to discretize the test set. Each method was repeated 20 times with a different seed level. 
The runtime of each method was measured as a time between inputting a data to the function 
and obtaining a rule-based or tree-based model. Number of rules and runtime were calculated 
as an average value from 20 repetitions. The calculations were performed with macOS High 
Sierra with the following parameters: processor 2,2 GHz Intel Core i7 and memory 8GB 
1600MHz DDR3. All the benchmarking methods were run with autism-control data that 
contains preselected set of features. 
Data preprocessing 
The so-called autism-control dataset was loaded and processed using the getGEO function from 
the GEOquery R library [5]. The data was normalized with the Robust Multi-array Average 
(RMA) functions ReadAffy and rma from the affy R package [6]. Gene names were retrieved 
using AnnotationDbi [7] and hgu133plus2.db [8] R packages. To identify unknown probe 
names, the annotation table HG-U133_Plus_2.na36 downloaded from 
http://www.affymetrix.com/site/mainPage.affx was processed and the probe coordinates were 
intersected with the unknown probes using the GenomicRanges [9] R package. For one probe 
the gene name could not be identified due to the lack of coordinates. The clinical data was 
investigated for potential batch effects using the Pearson correlation with the rcorr function 
from the Hmisc R library [10]. The age of the samples was highly correlated to the outcome. 
The sva R package [11] was used to correct the data for the age effect.  
Feature selection 
Dimensionality reduction of the autism-control dataset was performed with the Fast 
Correlation-Based Filter (FCBF) method [12] available as a function in the Biocomb R package 
[13]. The feature selection method utilized the predominant correlation of the features and 
decision along with the redundancy. We chose FCBF as the method that selected the highest 
number of important features among the tested software. The other advantage of using FCBF 
was the compatibility of the discretization method with R.ROSETTA. The FCBF function was 
set to Equal Frequency discretization for three levels. The method selected 35 features with 
Information Gain above 0. This step could be alternatively performed with other dimensionality 
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reduction methods such as Monte Carlo Feature Selection [14, 15], Boruta [16], Student's t-test, 
caret R package [17] and many others. 
Classification 
The final decision table was constructed using the most informative 35 genes, 146 
objects/samples and the decision class (autism or control). The models were created using 10-
fold cross validation (CV) for the standard voter method, equal frequency discretization into 
three levels, discernibility of the objects option and Bonferroni method to adjust rule P values 
for multiple testing. We choose to use Bonferroni correction in order to rigorously adjust large 
numbers of generated rules, especially in case of Genetic algorithm. However, type of P value 
correction can be easily changed in the R.ROSETTA parameters. Moreover, in some cases, 
undersampling was applied to remove a slight imbalance between the proportions of decision 
classes. Herein, the paper focuses on Johnson and Genetic reduction methods. However, for 
simplicity of the model and rule significance reasons most of the interpretations were based on 
the rules estimated from the Johnson reducer. 
Feature validation 
We described sample genes that were likely associated with autism in the results section of the 
main article. Additionally, we depicted genes that had been earlier linked to the brain or the 
nervous system such as: migraine, headache – PPOX [18], smell perception – OR51B5 [19] and 
ataxia – ATXN8OS [20]. We found that NCKAP5L is a gene likely to be involved in 
neurodevelopmental dysfunction in autism [21]. We showed that expression of NCKAP5L gene 
was down-regulated in non-autistic patients. Among the most relevant features, we discovered 
a group of zinc fingers [22] such as ZSCAN18/ZNF447, ZFP36L2, and KLF8/ZNF741 and a 
group of genes related to calcium homeostasis control [23] such as SCIN, NCS1, and CAPS2. 
Moreover, we found co-prediction mechanisms among the genes that were not previously 
reported as autism-related genes e.g. proteasome assembly chaperone 4 (PSMG4) or bromo 
adjacent homology domain containing 1 (BAHD1) (see Fig. 3b).   
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Supplementary figures 

  
Fig. S1. Rule-based model evaluation for the autism-control dataset performed with with the 
Genetic reduction method. Discretization levels were obtained from the equal frequency 
method by categorizing the features into three bins. a Area under the ROC curve (AUC) for the 
model. Sensitivity that is as a true positive rate (TPR) and 1-specificity that is a false positive 
rate (FPR). b VisuNet network of co-predictive features for the autism class. Connection values 
represent the strength of node or edge. These values were estimated based on the rule support 
and accuracy. Rules were selected based on their statistical significance (Bonferroni-adjusted 
P ≤ 0.05). c Distribution of the significance of rules in the model. Bonferroni-adjusted P values 
were marked as ns(P > 0.05), *(P ≤ 0.05), **(P ≤ 0.01) and ***(P ≤ 0.001). d Distribution of 
support sets for the top-ranked rule from the recalculated model. Support sets represent sets of 
objects that fulfil the RHS of the rule (THEN-part). Boxplots display scaled gene expression 
values for objects supporting and non-supporting the given rule. 
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Fig. S2. A rule-oriented graphic representation of its corresponding continuous values from the 
decision table. A given rule comes from the recalculated autism-control model. a The most 
significant co-predictors for the control class. b The most significant co-predictors for the 
autism class 
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Fig. S3. Benchmarking the autism-control dataset with the R packages for decision trees 
methods. The packages were evaluated with regression trees, random forest, bagging and 
generalized boosted regression models (GBM). Several methods were tuned for number of 
bootstrap replications (nbagg) and number of trees (ntree and n.trees). Other methods were 
evaluated with default parameters. The results of benchmarking are presented for a accuracy 
distribution of classifiers, b area under the ROC curve (AUCs) distribution of classifiers, c 
number of estimated rules (logarithmic scale) and d average runtime of the algorithms 
(logarithmic scale). Two standard deviations were marked above each bar. The time was 
measured from inputting a decision table to receiving a model. 
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Fig. S4. a Pearson correlation r values derived from the clinical data. Stars represent the P value 
significance level of the correlation values, denoted by non-significant: ns(P > 0.05) and 
significant: *(P ≤ 0.05), **(P ≤ 0.01), ***(P ≤ 0.001). The decision column is detached with 
dark blue lines to illustrate the effect of the clinical data on the decision. b Relationship between 
outcome and subject age (in years) c Relationship between the outcome and maternal age (in 
years). d A relationship between outcome and paternal age (in years). The Student’s t-test was 
used to test for a difference in subject, maternal or paternal age between cases and controls in 
b, c and d with P values indicated in the figure. 
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Fig. S5. Permutation tests for rule-based models of the autism-control performed with the (a, 
b) Johnson and (c, d) Genetic reduction method. Each histogram represents 100 permutations. 
Dashed line indicates quality measures of non-permuted models. Accuracy and area under the 
ROC curve (AUC) were used to compare the performance of classifiers. 
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Fig. S6. The density of rule P values for the reduction methods. Histograms display the 
comparison of the P value adjustment and the model recalculation between reducers. A dotted 
line marks the 0.05 significance threshold. a Autism-control basic model generated with the 
Johnson reducer method. b Autism-control basic model generated with the Genetic reducer 
method. c autism-control recalculated model with the Johnson reducer method. d Autism-
control recalculated model with the Genetic reducer method.  
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Fig. S7. The impact of number of features (a-c) and objects (d-f) on the rule-based model 
quality. The tests were performed with the Johnson reduction algorithm on the synthetic data 
with a feature-feature correlation, rf = 0.4 and feature-decision correlation, rd = 0.6.  
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Fig. S8. An undersampling application for various class imbalance proportions. The tests were 
performed with the Johnson reduction algorithm on the synthetic data with a random correlation 
to the outome (expected accuracy and AUC are 0.5). The synthetic data consisted of 50 features 
and 100 objects. The class imbalance proportion was established from 0.05 to 0.95 with a 0.05 
step. a The relation between the class imbalance with/without undersampling and model 
accuracy b The relation between the class imbalance with/without undersampling and the area 
under the ROC curve (AUC).  
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Supplementary tables 

Table S1. A comparison of the efficiency of the Johnson and Genetic reducers for basic (not 
recalculated) and recalculated rules. The data was discretized using the Equal Frequency 
method and the model was constructed with 10-fold CV of the standard voter classification 
method. The model was balanced using undersampling due to slightly imbalanced distribution 
of classes. The obtained P values were Bonferroni-adjusted. 
reducer type Johnson Genetic 

mean accuracy 82% 90% 
mean AUC 0.85 0.98 

the total number of rules 401 156650 

 basic 

number of rules ns(P > 0.05) 123 156645 

number of rules *(P ≤ 0.05) 278 5 
number of rules **(P ≤ 0.01) 182 3 

number of rules ***(P ≤ 0.001) 104 2 

 recalculated 

number of rules ns(P > 0.05) 218 156641 
number of rules *(P ≤ 0.05) 183 9 

number of rules **(P ≤ 0.01) 111 1 
number of rules ***(P ≤ 0.001) 39 0 
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Table S2. Performance evaluation of rules for the Genetic reduction method with 
undersampling. The average statistic values of rule support and accuracy are presented in the 
table. For the rule statistics, the most significant co-predictors (Bonferroni-adjusted P ≤ 0.05) 
were selected. 

 
  

class control autism 
total number of 
rules 75530 81120 

rule statistics basic recalculated basic recalculated 
number of rules 
(P ≤ 0.05) 2 8 3 1 

LHS support 4 6 5 6 
RHS support 4 5 4 4 
accuracy 0.81 0.80 0.86 0.74 
top co-predictors MAP7, 

NCKAP5L 
MAP7, 

NCKAP5L 
MAP7, 
COX2 

TCP11L1,CLDN17 
RHPN1,PPOX 
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Table S3. The performance evaluation of vote normalization methods in reclassifying the autism-control dataset. Bonferroni-adjusted P value ≤ 
0.05 based filtration was investigated for the Johnson and Genetic reducers. The vote counts were normalized by different factors: median, mean, 
maximum (max), square root of the sum of squares (srss) or rule number (rulnum). The values represent accuracy (ACC) and AUC measures.  
method none median mean max srss rulnum 

rules basic recalculated basic recalculated basic recalculated basic recalculated basic recalculated basic recalculated 

quality ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

Johnson 95% 0.95 96% 0.96 95% 0.95 92% 0.93 96% 0.96 96% 0.96 96% 0.96 96% 0.96 96% 0.96 96% 0.96 90% 0.91 96% 0.95 

Genetic 71% 0.73 49% 0.55 71% 0.71 67% 0.70 72% 0.73 67% 0.70 72% 0.73 67% 0.70 72% 0.73 67% 0.70 70% 0.70 49% 0.55 
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Table S4. A comparison of the R.ROSETTA package to other R packages that enable rule-based classification modelling. The average accuracy, 
AUC, number of rules and time was calculated from the models with 20 repetitions of 10-fold CV without undersampling. The tests were performed 
on the autism-control dataset. The time was measured with tictoc library [24] as a time required for building a model to calculate the model quality 
measures. 

R package C50 RoughSets R.ROSETTA RWeka 

package 
author 

Kuhn, M. et 
al. (2018) Riza, L. S. et al. (2014) Garbulowski, M. et al. 

(2021) 
Hornik, K., Buchta, C. and Zeileis, 

A. (2009) 
algorithm 

abbreviation C50 AQ CN2 LEM2 GenR JohnR JRip OneR PART 

detailed name 
of the 

algorithm 
C5.0 

quasi-
optimal 
covering 

CN2 rule 
induction 

Learning 
from 

Examples 
Module – 
version 2 

Genetic 
reducer 

Johnson 
reducer 

Repeated 
Incrementa
l Pruning to 

Produce 
Error 

Reduction 
– RIPPER 

1R 
classifier 

partial 
decision  

trees 

algorithm 
author 

Quinlan, J.R. 
(1992) 

Michalski, 
R.S. et al. 

(1991) 

Clark, P.E. 
and Niblett, 
T. (1989) 

Grzymala-
Busse J.W.  

(1997) 

Wroblewski, 
J. (1995) 

Johnson, 
D.S. 

(1974) 

Cohen, 
W.W. 
(1995) 

Holte, 
R.C. 

(1993) 

Frank, 
E. and 
Witten, 

I.H. 
(1998) 

function 
name C5.0.default AQRules.R

ST 
RI.CN2Rul

es.RST 
RI.LEM2Rul

es.RST rosetta Jrip OneR PART 

discretization equal frequency 
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Table S5. A correlation between the outcome and clinical data of the autism-control dataset. 
The P values were estimated with the Student's t-test. Non-significant differences are shown 
between batches and parental ages. The highly significant correlation for the age of subjects 
and outcome is shown. 

  

decision class control autism P value 

number of samples 64 82 - 
subject age 7.9±2.1 5.5±2.1 4.26´10-9 
maternal age 29.7±5 30.1±5.6 0.71 

paternal age 30.3±5.3 31.5±6.3 0.27 

batch B1(32), B2(32) B1(36), B2(46) 0.46 
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Table S6. A comparison of the performance of four dimensionality reduction methods applied 
to the autism-control dataset. For Boruta and Student’s t-test the P value ≤ 0.05 threshold was 
established. The FCBF method selected genes with the Information Gain (IG) greater than 0. 
Monte Carlo Feature Selection (MCFS) estimated a Relative Importance (RI) threshold with a 
critical angle method.  
 
feature selection method Boruta FCBF MCFS Student’s t-test 

R package Boruta Biocomb rmcfs stats 

threshold P < 0.05 IG > 0 RI > 0.036 P < 0.05 

number of features 12 35 16 13 

discretization No Yes No No 
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Table S7. The result of the FCBF method applied on the autism-control dataset. The list is 
decreasingly sorted from the features with the highest Information Gain (IG). The position of 
each feature in a ranking is given in the first column. The translation between microarray probe 
ID and gene ID is shown in the last two columns.  

position IG gene ID probe ID 
1 1.09e-01 MAP7 202890_at 
2 9.95e-02 COX2 1553569_at 
3 9.45e-02 NCKAP5L 1562457_at 
4 8.57e-02 ZSCAN18 217593_at 
5 8.39e-02 RHPN1 235998_at 
6 7.77e-02 PPOX 238118_s_at 
7 7.63e-02 NPR2 204310_s_at 
8 7.61e-02 NCS1 222570_at 
9 7.13e-02 PSMG4 233443_at 
10 6.79e-02 SCIN 1552367_a_at 
11 6.56e-02 CSTB 236449_at 
12 6.24e-02 TSPOAP1 205839_s_at 
13 6.22e-02 TCP11L1 205796_at 
14 6.19e-02 234817_at 234817_at 
15 6.12e-02 TMLHE-AS1 1560797_s_at 
16 6.06e-02 PSMD4 200882_s_at 
17 5.98e-02 ZFP36L2 201367_s_at 
18 5.94e-02 B3GNT7 1555962_at 
19 5.75e-02 MSI2 225238_at 
20 5.73e-02 CAPS2 224370_s_at 
21 5.70e-02 MIR646HG 1562051_at 
22 5.58e-02 CLDN17 221328_at 
23 5.51e-02 BAHD1 203051_at 
24 5.29e-02 OR51B5 1570516_s_at 
25 5.08e-02 C11orf95 218641_at 
26 4.91e-02 ATXN8OS 216404_at 
27 4.74e-02 NRG2 242303_at 
28 4.69e-02 LOC400655 216703_at 
29 4.69e-02 GJA9 221415_s_at 
30 4.47e-02 VPS8 234028_at 
31 4.34e-02 FLRT2 240259_at 
32 3.89e-02 C1QTNF7 239349_at 
33 3.61e-02 KLF8 219930_at 
34 3.57e-02 CWF19L2 1566515_at 
35 3.12e-02 DEPDC1 222958_s_at 
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Table S8. Set of rules and their statistics from autism-control model estimated with Johnson 
reducer. Rules were selected from undersampled and recalculated model with Bonferroni-
adjusted P value < 0.001. Discretization bins were estimated with equal frequency method and 
represent low, medium and high gene expression. 

no rule length accuracy RHS 
support P value 

1 IF MAP7=high AND NCKAP5L=low THEN control 2 0,95 21 1.99e-05 
2 IF ZSCAN18=low AND NPR2=medium THEN control 2 1 18 3.03e-05 
3 IF PPOX=low AND OR51B5=medium THEN control 2 1 18 3.03e-05 
4 IF NCS1=medium AND CSTB=low THEN autism 2 1 25 3.24e-05 
5 IF NCKAP5L=low AND NCS1=low THEN control 2 0,92 22 5.84e-05 
6 IF COX2=high THEN autism 1 0,87 40 6.07e-05 
7 IF PSMG4=high AND TSPOAP1=high THEN autism 2 1 24 6.82e-05 
8 IF NPR2=medium AND CAPS2=high THEN control 2 1 17 8.33e-05 
9 IF MAP7=high AND ATXN8OS=low THEN control 2 1 17 8.33e-05 
10 IF NCKAP5L=low AND MSI2=high THEN control 2 1 17 8.33e-05 
11 IF NCKAP5L=low AND B3GNT7=low THEN control 2 1 17 8.33e-05 
12 IF PPOX=low AND NCS1=low THEN control 2 0,88 23 1.28e-04 
13 IF ZSCAN18=low AND C11orf95=low THEN control 2 0,95 19 1.45e-04 
14 IF MAP7=high AND PPOX=low THEN control 2 0,91 21 1.54e-04 
15 IF NCKAP5L=low AND PPOX=low THEN control 2 0,91 21 1.54e-04 
16 IF NPR2=medium AND NCS1=low THEN control 2 0,91 21 1.54e-04 
17 IF PSMG4=medium AND MSI2=high THEN control 2 1 16 2.26e-04 
18 IF NCKAP5L=low AND OR51B5=medium THEN control 2 1 16 2.26e-04 
19 IF MAP7=medium AND COX2=high THEN autism 2 0,96 26 2.27e-04 
20 IF NPR2=medium THEN control 1 0,74 34 2.74e-04 
21 IF TCP11L1=low AND CLDN17=high THEN autism 2 1 22 2.94e-04 
22 IF RHPN1=high AND PPOX=medium THEN autism 2 1 22 2.94e-04 
23 IF PPOX=low AND LOC400655=medium THEN control 2 0,95 18 3.80e-04 
24 IF RHPN1=high AND DEPDC1=low THEN autism 2 0,96 25 4.61e-04 
25 IF MAP7=medium AND NCS1=medium THEN autism 2 1 21 6.02e-04 
26 IF RHPN1=high AND FLRT2=high THEN autism 2 1 21 6.02e-04 
27 IF SCIN=medium AND TCP11L1=low THEN autism 2 1 21 6.02e-04 
28 IF ZSCAN18=high AND NPR2=high THEN autism 2 1 21 6.02e-04 
29 IF COX2=high AND ZFP36L2=low THEN autism 2 1 21 6.02e-04 
30 IF NCKAP5L=low THEN control 1 0,72 34 7.05e-04 
31 IF PPOX=low AND MSI2=high THEN control 2 0,88 21 8.20e-04 
32 IF RHPN1=high AND PSMG4=high THEN autism 2 0,93 27 8.84e-04 
33 IF TMLHE-AS1=low AND C1QTNF7=medium THEN autism 2 0,96 24 9.26e-04 
34 IF RHPN1=high AND BAHD1=high THEN autism 2 0,96 24 9.26e-04 
35 IF COX2=high AND NCS1=medium THEN autism 2 0,96 24 9.26e-04 
36 IF 234817_at=low AND TMLHE-AS1=high THEN control 2 0,94 17 9.83e-04 
37 IF MAP7=high AND TSPOAP1=medium THEN control 2 0,94 17 9.83e-04 
38 IF PPOX=low AND KLF8=medium THEN control 2 0,94 17 9.83e-04 
39 IF NCKAP5L=low AND 234817_at=low THEN control 2 0,94 17 9.83e-04 
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