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Abstract 

We consider the state of knowledge on pathogen evolution of novel virulence activities, 

broadly defined as anything that increases pathogen fitness with the consequence of 

causing disease in either the qualitative or quantitative senses, including adaptation 

of pathogens to host immunity and physiology, host species, genotypes, or tissues, or 

the environment. The evolution of novel virulence activities as an adaptive trait is 

based on the selection exerted by hosts on variants that have been generated de novo 

or arrived from elsewhere. In addition, the biotic and abiotic environment a pathogen 

experiences beyond the host may influence pathogen virulence activities. We consider 

pathogen evolution in the context of host-pathogen evolution, host range expansion, 

and external factors that can mediate pathogen evolution. We then discuss the 

mechanisms by which pathogens generate and recombine the genetic variation that 

leads to novel virulence activities, including DNA point mutation, transposable element 

activity, gene duplication and neofunctionalization, and genetic exchange. In 

summary, if there is an (epi)genetic mechanism that can create variation in the 

genome, it will be used by pathogens to evolve virulence factors. Our knowledge of 

virulence evolution has been biased by pathogen evolution in response to major gene 

resistance, leaving other virulence activities underexplored. Understanding the key 

driving forces that give rise to novel virulence activities, and the integration of 

evolutionary concepts and methods with mechanistic research on plant–microbe 

interactions, can help inform crop protection.  
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Box 1: Definitions of terms. 

Effector: secreted protein or other molecule that contributes to pathogen fitness in its 

host(s). 

Virulence activities: anything that enables pathogens to infect and multiply (i.e. 

increases pathogen fitness), with the consequence of causing disease in either the 

qualitative or quantitative senses. 

Virulence factors: genes that directly contribute to a pathogen's ability to infect and 

multiply within the host 

Virulence-related factors: genes that indirectly contribute to pathogen fitness. 
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Introduction 

When the IS-MPMI community voted on the Top 10 questions in Molecular Plant-

Microbe Interactions in 2019, the 9th ranked question was, “How do pathogens evolve 

novel virulence activities?” (Harris et al. 2020). Virulence, as defined below, is 

fundamental to plant-pathogen interactions, and the study of mechanisms of virulence 

is a central research theme in the MPMI community. The evolution of novel virulence 

activities is also critical to the application of foundational MPMI research because 

pathogen evolution often triggers the emergence and re-emergence of economically 

and ecologically damaging plant diseases. This review comes at a time when we have 

access to affordable, and portable, genome and/or transcriptome sequencing for any 

pathogen. Thus, we are on the cusp of feasibly exploring this question across many 

pathosystems, and potentially in near-real time. The era of big data and new 

innovations in artificial intelligence will also contribute to new understanding of known 

virulence mechanisms and will likely reveal novel virulence activities. In this review, 

we consider how far we have come in answering this question, compelling open 

unknowns and directions for future research.  

What are virulence activities and how do they evolve? 

What is virulence? There has been confusion around the term virulence among plant 

pathologists since van der Plank (van der Plank 1968) used it to describe the capacity 

of a pathogen to infect a particular host genotype, while in animal pathology and 

evolutionary biology virulence is usually related to the harm that infection causes to 

the host (Sacristán and García-Arenal 2008). The American Phytopathological Society 

(D’Arcy, Eastburn, and Schumann 2001) adopted the conventions of using 

pathogenicity as a qualitative description of the ability of a pathogen to cause disease 

https://paperpile.com/c/gzAhfc/j21iu
https://paperpile.com/c/gzAhfc/L906Q
https://paperpile.com/c/gzAhfc/OP1ep
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(similar to van der Planck), and virulence as a quantitative measure of the degree of 

pathogenicity (similar to the meaning of virulence in other disciplines). Causing 

disease is a definitive property of pathogens, and it is frequently assumed to be a 

consequence of pathogen fitness. In this review, we consider virulence activities to 

be anything that enables pathogens to infect and multiply (i.e. increases pathogen 

fitness), with the consequence of causing disease in either the qualitative or 

quantitative senses (Figure 1). Therefore, novel virulence activities can include the 

adaptation of pathogens to: host immunity and physiology; host species, genotypes, 

or tissues; the environment; and may include production of more efficient reproductive 

structures or competing/cooperating better with other microorganisms in the 

ecosystem (Figure 1). These novel virulence activities may evolve by acquisition or 

adaptation of virulence factors (i.e. genes that contribute to a pathogen's ability to 

infect and multiply within the host) or virulence-related factors (i.e. genes indirectly 

involved in virulence activities). The evolution of novel virulence activities as an 

adaptive trait is based on the selection exerted on variants that have been generated 

de novo or arrived from elsewhere. In this review we will first address the selective 

factors that affect virulence activities and then the mechanisms that generate diversity 

in pathogen populations. 
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Figure 1. A spectrum of novel virulence activities. Novel virulence activities can 

include adaptations that alter how pathogens interact with the host immune system 

(dark purple) or with host physiology and development (orange), the ability to 

multiply/spread within the host (light purple), how they disperse and are transmitted to 

other hosts (turquoise), their host range (including host expansions s and host jumps, 

green), how they interact with the environment (blue), and how they interact with other 

pathogenic and non-pathogenic microorganisms (red). 

  

Selective factors for virulence activities 

Pathogens fitness relies on the ability to multiply in a host and transmit to other hosts. 

Therefore, the host is certainly the main driver for the evolution of virulence activities. 

Pathogens virulence activities are continually evolving to retain  the ability to infect and 

multiply  in the host, which in turn evolves  new ways (or is bred) to detect and combat 
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pathogen attack. Moreover, novel virulence activities may allow the pathogen to 

acquire new hosts, expanding its host range, or change host specificity leading to host 

jumps. Besides the host, environmental factors a pathogen experiences during its life 

cycle may influence the direction of evolution and thus lead to new virulence activities. 

Non-host factors may be abiotic and biotic. They can condition the capacity of the 

pathogen to survive outside the host and transmit to other hosts, and also modulate 

the ability of the pathogen to interact with the host.  

Host-pathogen coevolution: the gene-for-gene interaction and beyond 

Plants impose physical and biological barriers that pathogens must breach to infect 

and multiply. For example, plants recognize Microbe-Associated Molecular Patterns 

(MAMPS) and trigger immune responses that pathogens must overcome by the use 

of effectors: secreted proteins or other molecules that contribute to pathogen fitness 

in the host (J. D. G. Jones and Dangl 2006). A plant resistance gene (R gene) may 

recognise an effector (termed then an avirulence gene or avr gene), often on a gene-

for-gene basis, and trigger localised cell death and thereby blocking the in planta 

spread of the pathogen. In such a case, resistance is dominant, and the host selects 

for pathogen alleles that avoid this response, including “loss-of-function” (Dodds and 

Rathjen 2010). It should be emphasised that in this context “loss-of-function” mutations 

in avr genes refers to alleles that evade immune receptors, although may maintain 

their virulence function. Novel virulence activities can also be “gain-of-function” events, 

for example another effector that subverts this response, or alters plant physiology in 

some other way that benefits the pathogen. Plants in turn can evolve novel R gene 

specificities in a co-evolutionary process that can be tracked by patterns of variation 

generated by diversifying or balancing selection in pathogen and plant genomes (Van 

https://paperpile.com/c/gzAhfc/pjLpz
https://paperpile.com/c/gzAhfc/vb6q6
https://paperpile.com/c/gzAhfc/vb6q6
https://paperpile.com/c/gzAhfc/cLnio
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der Hoorn, De Wit, and Joosten 2002).Screening genomes for signatures of selection 

has revealed previously unidentified effectors (Vries, Stukenbrock, and Rose 2020), 

and population studies of gene or allele frequencies have uncovered virulence factors 

with important but quantitative effects (Abrahamian et al. 2018; Cooke et al. 2012). 

The gene for gene model of interaction (J. D. G. Jones 2019) has greatly contributed 

to the understanding of the evolution of pathogenicity of biotrophs and hemibiotrophs 

(M. C. McDonald and Solomon 2018). Maintenance of allelic variation under this model 

assumes a cost of virulence activities in the absence of selection, although the impact 

of the costs, and how to measure them, are not yet fully resolved (Milgroom 2015; 

Brown and Tellier 2011). 

Beyond suppressing the plant immune system, pathogens manipulate plant biology 

for their growth and transmission. For example, hemi/biotrophic pathogens may deliver 

effectors to alter the function of non-immunity related host genes (so called S genes 

(Cox et al. 2017)). In Potyvirus and Sobemovirus, the virus-encoded protein covalently 

linked to the 5′ terminus of the genomic RNA (VPg) must interact correctly with host 

eukaryotic translation initiation factor (eIF) (Hébrard et al. 2010; Robaglia and Caranta 

2006). Resistance is attained by recessive alleles of the host target that are not 

recognised by the pathogen virulence factors. In this case, host-pathogen coevolution 

follows the Matching-Allele or inverted gene-for-gene model, in which different variants 

in pathogen virulence factors evolve to match the corresponding host alleles 

(Sacristán and García-Arenal 2008). This model is also applicable to the evolution of 

some necrotrophic pathogens, whereby cell death favours the pathogen, and is 

stimulated either by triggering R gene mediated reactions or by the gain-of-function of 

a secreted toxin (Stukenbrock and McDonald 2009). 

https://paperpile.com/c/gzAhfc/cLnio
https://paperpile.com/c/gzAhfc/T6lSM
https://paperpile.com/c/gzAhfc/TRR0+v3KLW
https://paperpile.com/c/gzAhfc/IRGks
https://paperpile.com/c/gzAhfc/mIvPN
https://paperpile.com/c/gzAhfc/pkWvs+KGjo
https://paperpile.com/c/gzAhfc/pkWvs+KGjo
https://paperpile.com/c/gzAhfc/cyYIm
https://paperpile.com/c/gzAhfc/cyD5r+Taab9
https://paperpile.com/c/gzAhfc/cyD5r+Taab9
https://paperpile.com/c/gzAhfc/L906Q
https://paperpile.com/c/gzAhfc/xlFzC
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There are thus two main drivers of effector evolution: evasion of host immunity and 

adaptation to newly evolved or existing host factors. While much of our knowledge has 

been directed to understanding the former, there is still much to unveil about the later. 

Also, while gene for gene and matching allele interactions are reasonably numerous 

and well characterized because they are relatively simple, increasing evidence points 

to interactions being more complex than previously described (Petit-Houdenot and 

Fudal 2017). Furthermore, the precise function of effectors and their host targets are 

still unknown in many cases (Büttner 2016; Camborde et al. 2019; P. Li and Day 2019; 

Lo Presti et al. 2015). It is also not clear the extent to which non-proteinaceous 

molecules (nucleic acids, pathogen-derived small molecules, metabolites, and lipids) 

contribute to virulence activities and whether they are encompassed by these 

evolutionary models (Leisner and Schoelz 2018; Frantzeskakis et al. 2020). 

The infection cycle and its trade-offs 

Most of the knowledge about the pathogen interaction with the plant is based on the 

first steps that lead to infection and have the relatively simple models of single gene 

interactions explained above. However, the process of pathogen multiplication in the 

host is complex and the host may exert selection for different pathogen alleles, or 

combinations thereof, at various stages of infection, growth, replication, and 

transmission. For example, comparison of different strains of the oat crown rust fungus 

on different varieties of its host revealed that both pathogen and host genotype 

significantly affected total spore production, with pathogen genotype having the 

strongest effect on the early stage of infection efficiency, and host genotype most 

strongly affecting the later life-history stages of latent period and sporulation capacity 

(Bruns et al., 2012). The virulence activities across a pathogen life cycle, far from being 

https://paperpile.com/c/gzAhfc/cAxUm
https://paperpile.com/c/gzAhfc/cAxUm
https://paperpile.com/c/gzAhfc/K1OQU+8hg94+FYZ51+4VmbZ
https://paperpile.com/c/gzAhfc/K1OQU+8hg94+FYZ51+4VmbZ
https://paperpile.com/c/gzAhfc/YQIvk+6j1N1
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independent of each other, are frequently interconnected. There are several examples 

that show the links between virulence factors that promote pathogens growth within 

the plant and its transmission to other hosts. Pth effectors in the citrus canker 

pathogen, Xanthomonas citri, cause rapid growth of the bacteria upon infection and 

are responsible for producing pustules that facilitate transmission by wind and rain 

(Brunings and Gabriel 2003; Graham et al. 2004). In Xylella fastidiosa, biofilm 

formation increases virulence by restricting water flow in the xylem and is also required 

for insect transmission (Killiny et al. 2013). Virulence activities may also be a by-

product of selection for pathogen survival outside of its host(s) (e.g. biofilm and toxin 

production (Morris et al. 2009; Kettles et al. 2018)) or a combination of factors. For 

example, melanin protects fungi from environmental stress and is also required for 

appressoria to penetrate the host in some pathogenic fungi (Henson, Butler, and Day 

1999), while the transcription factor Amr1, which induces melanin biosynthesis in 

Alternaria brassicicola, negatively affects virulence (Cho et al. 2012). Thus, the 

complex relationships among traits affecting different stages in the infection cycle may 

result in trade-offs between virulence activities, and  these can vary among pathogen 

genotypes and ecological/host contexts (Bruns, Carson, and May 2012; Kirchner and 

Roy 2000; Meyer, Stewart, and Clement 2010; Pariaud et al. 2009).  

One of the most generally assumed of such trade-offs is that between pathogen 

virulence and transmission (Anderson and May 1982; Ewald 1983). Examples above 

illustrate how pathogens may need to attain a within host multiplication level that allows 

successful transmission, but abundant multiplication can cause so much host harm 

that it limits available time for transmission. Therefore, models of virulence evolution 

predict an optimal virulence level that maximizes pathogen growth and transmission 

(Anderson and May 1982; Ewald 1983). Thus, the tradeoffs in virulence activities 

https://paperpile.com/c/gzAhfc/b3YT2+97WU2
https://paperpile.com/c/gzAhfc/NC759
https://paperpile.com/c/gzAhfc/1i3mT+cIlqY
https://paperpile.com/c/gzAhfc/6jhfG
https://paperpile.com/c/gzAhfc/6jhfG
https://paperpile.com/c/gzAhfc/6jElm
https://paperpile.com/c/gzAhfc/8z5UQ+oMDqp+CVKqH+2pow1
https://paperpile.com/c/gzAhfc/8z5UQ+oMDqp+CVKqH+2pow1
https://paperpile.com/c/gzAhfc/BEjk3+pMxCJ
https://paperpile.com/c/toSKTv/wElEQ+7vo5E
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within and outside the host may result in virulence (ie. host harm) not being maximized 

when pathogen fitness is maximized (Alizon et al. 2009). In an extreme case, virulence 

is reduced in pathogens that are vertically transmitted through the seed to allow the 

plant to complete the reproductive cycle. Cucumber mosaic virus (CMV) virulence was 

significantly reduced after five generations of vertical transmission through seeds in a 

serial-passage experiment in Arabidopsis thaliana, whereas virulence did not change 

in viruses transmitted horizontally by mechanical transmission (Cobos et al. 2019; 

Pagán et al. 2014). Some fungal endophytes of the genera Epichloe and 

Neotyphodium that lack sexual reproduction transmit mostly vertically through seed 

without any harm to the plant, in contrast with sexually reproducing strains that castrate 

plant flowers with their reproductive structures (Schardl 1996). Adaptation to different 

hosts may also impose trade offs in the evolution of virulence activities (Bera, Fraile, 

and García-Arenal 2018; Dutta et al. 2020; Huang et al. 2019; Sacristán et al. 2005). 

It is assumed that the ability of generalist pathogens to exploit multiple different hosts 

entails costs, and host specialization may result in more fecund pathogen phenotypes 

(Barrett and Heil 2012; Elena, Fraile, and García-Arenal 2014). Thus, trade-offs in the 

adaptation to different hosts may force generalist pathogens towards host 

specialization, and it is generally assumed that this is the fate of host pathogen 

coevolution (Burdon and Thrall 2009; Brown and Tellier 2011). However, the molecular 

mechanisms associated with adaptive evolution of host-specific lineages of a multihost 

plant pathogen remain mostly poorly understood (Bedhomme, Hillung, and Elena 

2015). Trade-offs between virulence and transmission, or in the breadth of host 

adaptation, may have consequences in the severity of diseases in agroecosystems 

(Milgroom 2015; B. A. McDonald and Stukenbrock 2016). Agricultural conditions may 

increase the probabilities of between-host transmission and host specialization 

https://paperpile.com/c/toSKTv/tJp2E
https://paperpile.com/c/gzAhfc/UgHLZ+Ur9Cv
https://paperpile.com/c/gzAhfc/UgHLZ+Ur9Cv
https://paperpile.com/c/gzAhfc/sbEM8
https://paperpile.com/c/gzAhfc/Hrfmh+xVpd2+zY8f6+k4snA
https://paperpile.com/c/gzAhfc/Hrfmh+xVpd2+zY8f6+k4snA
https://paperpile.com/c/gzAhfc/7eSBl+sMaJW
https://paperpile.com/c/gzAhfc/cPj1+KGjo
https://paperpile.com/c/gzAhfc/ld3C
https://paperpile.com/c/gzAhfc/ld3C
https://paperpile.com/c/gzAhfc/pkWvs+tnrW8
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because of large, dense and genetically uniform monocultures, favouring pathogens 

that reproduce quickly and, thus, selecting for higher virulence. However, experimental 

data about trade-offs in the evolution of virulence activities are often contradictory 

(Sacristán and García-Arenal 2008; Remold 2012). Also, there is little known about 

the molecular mechanisms that hold back pathogen virulence (Sanfaçon 2020; 

Tanaka et al. 2006). 

Adaptation to new hosts 

One of the most relevant consequences of novel virulence activities is the ability to 

infect new hosts, which ultimately leads to the emergence of new diseases (M. 

McLeish et al. 2017; Woolhouse and Gowtage-Sequeria 2005). We have some 

knowledge about the mechanisms for overcoming the defences and exploiting host 

resources by pathogens, but we still do not know the key mechanisms that lead to the 

adaptation to a new host and, thus, determine pathogen host range (R. A. C. Jones 

2009; Morris and Moury 2019). Pathogen host range may vary from one or very few 

to several hundreds of different plant species (specialists vs. generalists pathogens), 

although this may be difficult to determine, depending on the definition of host and 

adaptation to host (Morris and Moury 2019; Sacristán and García-Arenal 2008). 

Determinants of host range may be both intrinsic (availability of virulence factors that 

allow the interaction with different hosts) and extrinsic (e.g., exposure of plants to 

microorganisms and environmental conditions favourable for infection) (M. McLeish et 

al. 2017; Morris and Moury 2019). Extrinsic determinants include ecological factors 

such as host population structure and diversity, epidemiological such as vector 

availability and dynamics, or even stochastic events (Brown and Tellier 2011; M. J. 

McLeish, Fraile, and García-Arenal 2018). Host range evolution has mostly been 

https://paperpile.com/c/gzAhfc/L906Q+9sv1X
https://paperpile.com/c/gzAhfc/sDdPK+c2oiq
https://paperpile.com/c/gzAhfc/sDdPK+c2oiq
https://paperpile.com/c/gzAhfc/FDZ6p+L1ph
https://paperpile.com/c/gzAhfc/FDZ6p+L1ph
https://paperpile.com/c/gzAhfc/AOCr+3QtfK
https://paperpile.com/c/gzAhfc/AOCr+3QtfK
https://paperpile.com/c/gzAhfc/3QtfK+L906Q
https://paperpile.com/c/gzAhfc/FDZ6p+3QtfK
https://paperpile.com/c/gzAhfc/FDZ6p+3QtfK
https://paperpile.com/c/gzAhfc/KGjo+cTgK
https://paperpile.com/c/gzAhfc/KGjo+cTgK
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studied by focusing on the intrinsic, genetic factors, but studies on the role of extrinsic 

factors are starting to gain importance (M. McLeish et al. 2017).  

Adaptation of pathogens to new hosts may lead to host range expansions and host 

jumps, the last when the ability to infect a new host leads to genetic differentiation of 

pathogen populations on different hosts and finally pathogen speciation (Thines 2019). 

It is broadly observed that pathogens tend to infect plants that are closely related, 

rendering the phylogenetic distance between plant taxa as an important predictor of 

the risk of a new host acquisition (Gilbert et al. 2012; Schulze-Lefert and Panstruga 

2011). However, there are also many examples of related plant pathogens that are 

able to infect distant hosts, so other factors such as host geographical, ecological or 

physiological distance may play a role (M. McLeish et al. 2017; Morris and Moury 2019; 

Thines 2019). This is the case of new host acquisitions by indigenous pathogens when 

a host is introduced in a new area, such as the case of Cocoa swollen shoot virus, 

which was a pathogen of the native forest tree Cola chlamydantha before cocoa was 

introduced in West Africa (Thresh 1982). Also important is the role of bridge hosts in 

facilitating host jumps and range expansions. For example, widespread deployment 

of rwt3 wheat in Brasil, followed by the loss of function of PWT3, is proposed to be at 

the origin of the host jump to common wheat of Lolium pathotypes of Magnaporthe 

oryzae (Inoue et al. 2017). 

The first step in the ability to infect a new host should be overcoming so-called nonhost 

resistance (i.e., resistance shown by an entire plant species against all known genetic 

variants (or isolates) of a specific parasite or pathogen (Antonovics et al. 2013). This 

type of broad and durable resistance is one of the most aspired aims in crop protection, 

and indeed MPMI top 10 question #6 is about its molecular basis (Panstruga and 

https://paperpile.com/c/gzAhfc/FDZ6p
https://paperpile.com/c/gzAhfc/6dLhz
https://paperpile.com/c/gzAhfc/gLyP+bdao
https://paperpile.com/c/gzAhfc/gLyP+bdao
https://paperpile.com/c/gzAhfc/FDZ6p+3QtfK+6dLhz
https://paperpile.com/c/gzAhfc/FDZ6p+3QtfK+6dLhz
https://paperpile.com/c/gzAhfc/bXSE
https://paperpile.com/c/gzAhfc/eHBrG
https://paperpile.com/c/gzAhfc/UiYz
https://paperpile.com/c/gzAhfc/ee1O+v0LS
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Moscou 2020; Harris et al. 2020). Since nonhost resistance is mechanistically 

indistinguishable from other types of plant immunity, virulence factors for the 

adaptation to new hosts may not be very different from those deployed against host 

resistance (Panstruga and Moscou 2020). Indeed, there is convincing evidence 

pointing to the role of effectors in shaping host range and leading to new host 

acquisitions both by gain or loss of functions (J. Li, Cornelissen, and Rep 2020; Morris 

and Moury 2019; Frantzeskakis et al. 2020). However, nonhost resistance may be one 

of several hurdles that microorganisms need to overcome to infect and cause disease 

in a new host, so mechanisms to acquire novel host virulence activities should 

frequently be more complicated than just acquiring one or few virulence factors (Morris 

and Moury, 2019; Thordal-Christensen, 2003). For example, Fusarium oxysporum f. 

sp. radicis-cucumerinum (Forc) causes disease in cucurbits whereas F. oxysporum f. 

sp. melonis (Fom) is limited to melon. Li et al (J. Li et al. 2020) found that Fom can 

colonize root xylem of other cucurbits but cannot reach the stem like Forc. A roughly 

300 kb region in a pathogenicity chromosome appears to be responsible for this ability 

to colonise the stem of cucurbits. In phytopathogenic bacteria, such as Pseudomonas 

and Xanthomonas, host jumps are associated with acquisition of new genes and 

alleles, but generally require more than the transfer of single effectors (Timilsina et al. 

2020; Dillon et al. 2019). Which genes are important and why, and why some effectors 

make a relatively greater contribution to overcome nonhost resistance and exploit a 

new host are open questions.  

Selection beyond the host 

Abiotic and biotic factors other than the host also affect pathogen virulence activities 

and thereby fitness (Morris and Moury 2019). Temperature, for example, is a key driver 

https://paperpile.com/c/gzAhfc/ee1O+v0LS
https://paperpile.com/c/gzAhfc/ee1O
https://paperpile.com/c/gzAhfc/rXjf+3QtfK+6j1N1
https://paperpile.com/c/gzAhfc/rXjf+3QtfK+6j1N1
https://paperpile.com/c/toSKTv/Dkav3
https://paperpile.com/c/gzAhfc/ibpCg+3NZ9
https://paperpile.com/c/gzAhfc/ibpCg+3NZ9
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of ecological specialization of pathogens (Chaloner, Gurr, and Bebber 2020) and can 

entail trade-offs with components of pathogen fitness (Chen et al. 2017; L. Yang et al. 

2018). Ecological complexity also affects evolutionary trajectories of pathogens, and 

more research using multihost and multipathogen systems is needed to understand 

the consequences for virulence activities (M. McLeish et al. 2017). Next generation 

sequencing studies have revealed the enormous diversity of microorganisms that 

coexist within a plant, showing that co-infection is the rule, rather than the exception, 

and highlighting the relevance of microbe-microbe interactions in the phytobiome 

(Hassani, Durán, and Hacquard 2018; Snelders et al. 2018; Teixeira et al. 2019). 

Indeed, plant pathogens do not exist, or infect, in isolation: they are consumed by 

animals, are hosts to other pathogens and parasites, and may cooperate (Wheeler et 

al. 2019) or compete (Snelders et al. 2018) with the many other microbes in their hosts 

(Tollenaere, Susi, and Laine 2016). These synergistic or antagonistic interactions can 

increase or decrease disease severity (Mascia and Gallitelli 2016). For example, 

Rhizoctonia solani AG 2-2IIIB hosts an Enterobacter sp. that is required for virulence 

and toxin production on turfgrass (Obasa et al. 2017), while Cryphonectria parasitica 

shows hypovirulence when infected by a mycovirus (Choi and Nuss 1992). Complex 

biotic interactions may also confuse identification of the “causal” agent (Wheeler et al. 

2019). Both biotic and abiotic factors are of considerable importance to understanding 

pathogen evolution and disease emergence in light of climate change, globalization 

and other anthropogenic habitat modifications (Bebber 2015; Velásquez, Castroverde, 

and He 2018). Other Top 10 Questions in MPMI: How does abiotic stress, such as 

climate change, influence plant-microbe interactions? (Question #2), How do microbe-

microbe interactions affect plant-microbe interactions? (Question #4) and How do 
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observations of binary plant-microbe interactions hold in an ecological context? 

(Question #10), bring forth these important points (Harris et al., 2020). 

Genetic mechanisms underpinning the evolution of novel virulence activities 

Selection acts on genetic variation. The ultimate source of epi/genetic variation is DNA 

mutation that generates novel coding sequences or changes gene regulation. Sexual 

or asexual genetic exchange between closely or distantly related individuals shuffles 

genetic variation, resulting in further novel phenotypes. This section reviews the 

various mechanisms by which pathogens generate and recombine variants, and the 

virulence activities that result. 

Mutation and mutation rate bias 

Mutation is defined as any heritable change in the genome of an organism that can 

occur at the level of one or a few nucleotides up to larger scales of genes or segments 

of chromosomes. Depending on the mechanism of pathogenesis and host resistance, 

a single nucleotide mutation can give rise to a virulent pathogen genotype (Bartoli, 

Roux, and Lamichhane 2016; Grandaubert, Dutheil, and Stukenbrock 2019; Rouxel 

and Balesdent 2017; Pagán and García-Arenal 2019). Allelic series at effector loci can 

also give rise to qualitative differences in direct recognition specificity by the 

corresponding host R genes (e.g the AvrL567 locus in flax rust (Dodds et al. 2006; 

Ravensdale et al. 2012)). Loss-of-function mutations such as premature stop codons 

or deletions impair recognition by host surveillance systems of effector functions 

(Möller and Stukenbrock 2017). Avoiding recognition may also allow pathogens to 

overcome non-host resistance (Thines 2019) and acquire the ability to infect new hosts 
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(e.g. loss of PWT3 Avr enabled the emergence of the rice blast fungus as a novel 

pathogen of wheat (Inoue et al. 2017)). 

Although mutation rate is generally thought of as an intrinsic property of each organism 

(Drake et al., 1998), evidence is emerging that mutation rate bias may be adaptive 

(Grey Monroe et al. 2020), with some regions of the genome more prone to mutations 

than others. In M. grisea, gain or loss of effector genes is often associated with the 

unstable telomeric regions of the chromosome (Yoshida et al. 2009). Genomes may 

be compartmentalized into gene-rich, slow-evolving regions and repeat-rich, gene-

sparse regions that exhibit high variability, such as the so-called two-speed genomes 

of Phytophthora spp. (Raffaele et al. 2010; Dong, Raffaele, and Kamoun 2015). 

Compartmentalisation of virulence factors in the genome stands to increase adaptive 

potential by allowing rapid evolution while minimizing deleterious effects of mutation 

on housekeeping genes in gene rich regions. Although by no means universal, similar 

patterns of compartmentalising effectors to relatively gene-sparse regions of the 

genome were found in plant-pathogenic fungi (Leptosphaeria maculans (Rouxel et al. 

2011)), Zymoseptoria tritici (Stukenbrock et al. 2010) and Colletotrichum higginsianum 

(Tsushima et al. 2019), bacteria (Rohmer, Guttman, and Dangl 2004), and nematodes 

(Eves-van den Akker et al. 2016). It is not clear in all cases that mutation rates are 

higher in these compartments, rather their evolution may be the result of the absence 

of purifying selection. This pattern is not evident in viruses where mutations in 

overlapping coding regions and multifunctional proteins may have pleiotropic effects 

that lead to costs of virulence (García-Arenal and McDonald 2003). In general, 

empirical estimates of mutation rate for most pathogens remain scarce and the 

underlying mechanisms unclear (Baer, Miyamoto, and Denver 2007; Tenaillon, 

Denamur, and Matic 2004). 
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Transposable elements 

Gene sparse regions of the genome are often occupied by transposable elements. 

Transposable elements are powerful mutators in prokaryotic and eukaryotic genomes 

(Möller and Stukenbrock 2017), and may have consequences in surrounding genes 

such as deletion, epigenetic silencing, duplication, and recombination that may provide 

variation on which natural selection can act (Gijzen, Ishmael, and Shrestha 2014; Seidl 

and Thomma 2017). For example, the insertion of TEs in the sequences of avirulence 

genes resulted in gain of virulence due to the lack of recognition by the host in 

Magnaporthe grisea (Fudal et al. 2005; P. K. Singh et al. 2019), and gain and loss of 

genes linked to transposable elements has been related with the ability to infect 

different hosts (M. C. McDonald et al. 2019; Yoshida et al. 2016). Indeed, 

“pathogenicity islands” described in prokaryotes (Kim and Alfano 2002) and some 

eukaryotes (Eves-van den Akker et al. 2016) are groups of clustered genes involved 

in pathogenicity (e.g. effectors) that can undergo rapid changes and are frequently 

flanked by transposable elements. In some fungi, close proximity of virulence factors 

to transposable elements can increase the local mutation rate through repeat-induced 

point (RIP) mutations. In L. maculans, effector alleles with premature stop codons or 

non-synonymous RIP mutations evolved to evade plant resistance mediated by 

immune receptors in just a few years (Rouxel et al. 2011). Finally, in some cases, 

transposable elements have also been neofunctionalized as virulence factors 

themselves. Botrytis cinerea uses TE derived sRNA to hijack host RNA interference 

pathways and suppress plant immunity (Weiberg et al. 2013). In barley powdery 

mildew, Nottenstainer et al. (Nottensteiner et al. 2018) demonstrated that the ROPIP1 

effector protein derives from a SINE-related transposable element. In most cases, we 

do not know why some genomes have many more transposable elements than others. 
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In powdery mildew fungi, extraordinary proliferation of transposable elements result in 

some of the largest genomes in the ascomycete fungi, perhaps due to the absence of 

the Repeat-Induced Point mutation (RIP) pathway that is otherwise conserved in all 

related ascomycetes (Spanu et al. 2010). 

Duplication and neofunctionalization 

Duplication and neofunctionalization play important roles in shaping plant-pathogen 

genomes in general, and effector repertoires in particular. The effector repertoires of 

plant pathogens can number in the hundreds or thousands, yet their evolutionary 

origins are often unclear (Badet and Croll 2020). Exceptions include horizontal gene 

transfer (discussed below), and effector gene birth by gene duplication and 

neofunctionalization. This includes the “weaponization” of transposable elements 

(discussed above) and endogenous housekeeping functions as effectors. For 

example, two large-scale gene multiplication events of the housekeeping glutathione 

synthetase (GS) resulted in the GS-like effectors of plant-parasitic nematodes. New 

GS-like paralogues acquired canonical features of an effector (e.g. DOG box promoter 

motif, dorsal gland cell expression, and signal peptide), and the encoded proteins are 

translocated into host cells (Lilley et al. 2018). Remarkably, the crystal structures of 

GS-like effectors suggest novel GS paralogues were not just redeployed, but also 

repurposed to carry out a novel biochemical reaction in planta. In addition to explaining 

the origins of some effectors, the process of gene duplication and neofunctionalization 

contributes to expansion of certain effectors families, regardless of origin. There are 

several examples of large effector families, with a diversity of functions, linked to a 

single origin. For example the WY fold of RXLR effectors is conserved across plant 

pathogenic oomycete species (Win et al. 2012), the repeat variable di-residues are 
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characteristic of TAL effectors in Xanthomonas bacterial pathogens (Timilsina et al. 

2020), and the SPRY domain containing proteins, which are linked to a single origin 

in animals but deployed as effectors by pathogenic nematodes and ultimately 

recognized by plants (Sacco et al. 2009). 

Beyond the duplication of single effectors or effector gene families, fungal and 

oomycete pathogens have outstanding chromosome plasticity, with frequent 

chromosomal aberrations such as aneuploidy or copy number variations resulting from 

chromosome loss or gain (Covo 2020). Strains of the needle blight pathogen 

Dothistroma septosporum are aneuploids, with chromosome duplications that result in 

increased gene copy numbers, which correlate with increased production of the toxin 

dothistromin (Bradshaw et al. 2019). Host induced aneuploidy has been proposed for 

the oomycete Phytophthora ramorum, the causal agent of Sudden Oak Death (Kasuga 

et al. 2016) and successful strains of the late blight pathogen P. infestans exhibit 

triploidy and aneuploidy (Knaus et al. 2020), although the mechanisms underlying this 

chromosomal variation, and the specific impact on virulence, remain unclear. 

  

Genetic exchange within species and kingdoms 

Genetic exchange (sexual and parasexual) and recombination can give rise to novel 

virulence activities. Recombination can generate novel combinations of virulence 

factors and purge deleterious alleles, and thus, has the potential to produce novel 

virulent phenotypes more rapidly than mutation alone (Milgroom 2015; Grandaubert, 

Dutheil, and Stukenbrock 2019). For example, the virulent blue13 lineage of P. 

infestans emerged from a sexually recombining population in northern Europe (Cooke 
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et al. 2012). Recombination can also occur in the absence of sex. Although less 

common, evidence for mitotic crossing over has been shown among clonal lineages 

in fungi and oomycetes (Milgroom 2015). Mitotic recombination has been associated 

with genotypic diversity in P. ramorum and P. capsici (Dale et al. 2019; Lamour et al. 

2012). Parasexuality in ascomycetes (due to hyphal fusion or anastomosis) and 

somatic hybridization in dikaryotic basidiomycetes (asexual karyogamy) are 

mechanisms of asexual exchange of nuclei and recombination (Glass and Dementhon 

2006; Park and Wellings 2012). Both phenomena have been demonstrated in the 

laboratory for many species, but its relevance in nature remains unclear. Anastomosis 

is the most likely mechanism behind the transfer of accessory chromosomes and 

horizontal gene transfer (HGT) between different fungal lineages or species (Soanes 

and Richards 2014). Presence/absence of accessory/dispensable chromosomes have 

been associated with host specialization (Mirocha et al. 1992; Temporini and VanEtten 

2004). Indeed, the transfer of accessory chromosomes to non-pathogenic isolates can 

be sufficient to generate a virulent pathogen (J. Li et al. 2020). The acquisition of novel 

virulence activities through HGT has been documented in several cases (Soanes and 

Richards 2014).  

Hybridization, defined here as the combining of two phylogenetically distinct genomes, 

can result in novel genotypes. Hybrids may be reproductively isolated, or continued 

backcrossing with parental genotypes can result in the introgression of regions of one 

parental genome into the other parental genome. Multiple examples are found in fungi, 

oomycetes, and nematodes (Eves-van den Akker and Jones 2018; Feurtey and 

Stukenbrock 2018). For example, analysis of Z. tritici genomes showed evidence of 

repeated introgression from other Zymoseptoria species, including regions containing 

effectors (Feurtey et al. 2019). A similar pattern of introgression was found among 
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host-specific races of the oomycete Albugo candida (McMullan et al. 2015). By 

contrast, Z. pseudotritici appears to have originated from a single hybridization event 

and has remained reproductively isolated from its parental species, as evidenced by 

its clonal population and the mosaic structure of its genome (Stukenbrock et al. 2012). 

Intra-and interspecific hybridization events can expand the host range of hybrid 

offspring and therefore must confer novel virulence activities. Several Phytophthora 

hybrids show enhanced virulence (Brasier et al. 2004) or expanded host range (Jafari 

et al. 2020). Blumeria graminis f. sp. triticale is a hybrid of wheat pathogen B. graminis 

f. sp tritici and rye pathogen B. graminis f. sp secalis (Menardo et al. 2016). The hybrid 

B. g. triticale can infect the artificial wheat-rye hybrid triticale, whereas the parental 

pathogens cannot. It is not yet clear how hybridization changed this host-pathogen 

interaction. Wheat stem rust caused by Puccinia graminis f. sp. tritici was controlled 

for more than 30 years thanks to wheat varieties carrying stem rust resistance gene 

Sr31, until Ug99 overcame Sr31 resistance and rapidly expanded in East and South 

Africa and the Near East (R. P. Singh et al. 2011). Genomic evidence suggests that 

Ug99 emerged by somatic hybridization and nuclear exchange between two dikaryons 

followed by the loss of function of an effector (F. Li et al. 2019). Some plant-parasitic 

nematodes in the genus Meloidogyne have a polyploid origin consistent with 

hybridisation (allopolyploidy (Trudgill and Blok 2001)), with a further study suggesting 

some species (e.g. M. incognita) result from multiple, additive, hybridization events 

(Lunt et al. 2014). These hybrids are parthenogenetic, yet can overcome host 

resistance in the absence of sex (Castagnone-Sereno 2006), and have a broader host 

range, wider geographical distribution, and greater agricultural impact than their sexual 

relatives (Blanc-Mathieu et al. 2017). The extraordinarily broad host range of the 

asexual hybrid M. incognita (several thousand hosts) includes representatives from 
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most orders of flowering plants (Eves-van den Akker and Jones 2018). While there 

are now numerous examples of hybrid plant pathogens (Depotter et al. 2016), the 

specific genetic mechanisms that increase virulence or host range of hybrids are 

largely unknown. Gain of effector function, or at least gain of genetic capital for 

neofunctionalization (as discussed above), is plausible but by no means a satisfactory 

explanation for some of the more dramatic increases in host range. 

Recombination in virus populations (ie. the exchange of genomic fragments between 

genotypes) can occur between genotypes of the same or of different virus species 

(Pagán and García-Arenal 2019), and the emergence of new viral lineages with 

enhanced virulence and enlarged/different host ranges is in many cases explained by 

recombination events (Monci et al. 2002; Ruiz et al. 2018; van der Walt et al. 2009). 

The contribution of recombination to the generation of virus genetic diversity is 

comparable to that of mutation, despite the exclusive clonal multiplication of these 

pathogens. In RNA viruses, recombination is due to copy choice template switching 

during RNA replication, while in DNA viruses the mechanisms are less understood and 

may involve double-strand break repair events on dsDNA intermediates using host cell 

factors. In all viral types, recombination breakpoints within coding regions are rare, 

probably because these are selected against (Lefeuvre et al. 2009). Genetic exchange 

in virus populations may also result from reassortment of genomic segments in viruses 

with segmented or multipartite genomes, in a process that is also known as 

pseudorecombination (Varsani et al. 2018). Multipartite genomes are frequent among 

plant viruses, despite the cost for transmission if most segments must be transmitted 

between hosts to cause new infections (Zwart and Elena 2020). Reassortment is 

strongly related with virus evolution and speciation and it is seen as an advantage for 

multipartite viruses because of the possibilities of generating fitter variants (Roossinck 

https://paperpile.com/c/gzAhfc/iCI6D
https://paperpile.com/c/gzAhfc/Cno04
https://paperpile.com/c/gzAhfc/Ttsgh
https://paperpile.com/c/gzAhfc/66haB+mba0b+fRZxr
https://paperpile.com/c/gzAhfc/k5maE
https://paperpile.com/c/gzAhfc/5HWJl
https://paperpile.com/c/gzAhfc/Mj65r
https://paperpile.com/c/gzAhfc/1JEZv


25   Soledad Sacristan 

MPMI 
 

2005). However, there are constraints in the generation of reassortants during co-

infection, such as incompatible RNA–RNA or protein–RNA interactions from different 

viral strains, that may prevent them from prevailing in the population (Bonnet et al. 

2005; S. M. McDonald et al. 2016). 

Bacterial plant pathogens are efficient in acquiring existing virulence factors via HGT. 

Emerging strains of Pseudomonas syringae on cucurbits show convergent acquisition 

of hrp/hrc genes and effectors, among other genes, across phylogenetically distinct 

groups (Newberry et al. 2019). These genes appear to have been horizontally 

transferred in integrated conjugative elements and on plasmids. Similar patterns of 

convergent host specificity in phylogenetically distinct lineages via horizontal gene 

transfer of hrp/hrc gene clusters have been reported for Acidovorax avenae (Zeng et 

al. 2017). In Xanthomonas, host range expansion of X. perforans from tomato to 

pepper is associated with extensive recombination from sister taxon and pepper 

pathogen X. euvesicatoria (Schwartz et al. 2015; Timilsina et al. 2020; Newberry et al. 

2019), both members of the X. euvesicatoria species complex (Barak et al. 2016). I 

Genetic exchange between kingdoms 

Since the first discovery of a cellulase in an animal (Smant et al. 1998), HGT events 

from bacteria and fungi to plant-parasitic nematodes have been recognized as 

surprisingly numerous ((conservatively 0.6% of genes (Eves-van den Akker et al. 

2016)) and an important catalyst for the evolution of parasitism (reviewed in 

(Haegeman, Jones, and Danchin 2011)). Interesting examples include pseudo-

convergent transfer of specific functions, for example a GH45 cellulase from fungi to 

Bursaphelenchus xylophilus (Kikuchi et al. 2004) and the GH5 cellulase from a 

bacteria to various Heteroderidae (Danchin et al. 2010; Eves-van den Akker et al. 
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2016; Cotton et al. 2014). Genome wide analyses have expanded the complement 

beyond “effector proteins” to metabolism, vitamin biosynthesis, etc (e.g. (Eves-van den 

Akker et al. 2016; Moran and Jarvik 2010)). Despite apparent widespread transfer from 

bacteria and some eukaryotes to nematodes, there is a conspicuous absence of 

transfer from oomycetes, viruses, and plants (although examples of the latter exist in 

plant-parasitic plants (Z. Yang et al. 2019)). 

Fungi and oomycetes are similarly recipients of horizontal transferred genes from 

other kingdoms that are involved in virulence activities, such as a subtilisin serine 

protease–encoding gene from a plant donor to an ancestor of Colletotrichum fungi 

(Jaramillo et al. 2013), a glucan glucosyltransferase–encoding gene from bacteria that 

probably allows vascular fungi to survive in the high osmotic conditions of plant’s xylem 

(Klosterman et al. 2011) and the necrosis- and ethylene inducing peptide 1 (NEP1)-

like proteins (NLPs) that oomycetes have probably acquired from ascomycetes 

(Richards et al. 2011). In general, we have well characterised examples of genetic 

transfer events that give rise to virulence activities but it's not clear how often these 

phenomena occur in the field, and whether novel virulence more often evolves de novo 

or via the transfer of existing virulence factors from some other system. 

Concluding remarks 

We return to the question “How do pathogens evolve novel virulence activities?” This 

review tells us that if there is an epigenetic/genetic mechanism that can create 

variation in the genome (characterised or otherwise) it will be used by pathogens to 

evolve virulence factors. We may think that we know quite a lot about how pathogens 

evolve virulence but there are many unexplored areas/questions (Box 2). It seems the 

most common form of evolution of virulence is the classical loss of an avr, but this may 
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be due to a bias in research rather than a reflection of reality. There are many other 

virulence activities during the life stages of the pathogen that are underexplored, as 

well as the effects of actors other than the host (ie. biotic and abiotic factors in the 

ecosystem) on the evolution of pathogen virulence activities. More studies are needed 

to disentangle the involvement of virulence factors in pathogen life-stages other than 

infection, and the implications in coevolutionary processes and adaptation to new 

hosts (Morris and Moury 2019).   

Understanding the key driving forces that give rise to novel virulence activities in 

agricultural and wild settings may help inform crop protection. For example, given the 

diversity of mechanisms, and the veritable certainly of the evolution of pathogens, 

perhaps the focus should be on not just the stacking of several arbitrary sources of 

resistance, but rather the stacking of sources of resistance that require very different 

mechanisms of evolution to overcome? In order to approach these strategies, the 

integration of evolutionary concepts and methods with mechanistic research on plant–

microbe interactions is necessary (Upson et al. 2018). 

Virulence activities are just one of the many strategies microorganisms deploy to 

maximize fitness in their interaction with plants. The range of interactions between 

plants and microorganisms extends from pathogenic to beneficial with multiple forms 

in between (Hardoim et al., 2015). Quite often, genotypes exhibit phenotypic plasticity 

or evolutionary tradeoffs mediated by the biotic interactions, the abiotic environment, 

or a combination thereof (Hacquard et al. 2016; Muñoz-Barrios et al. 2020; Hardoim 

et al. 2015; Brader et al. 2017). Pathogens and beneficial microorganisms share many 

of the tools and mechanisms in their interaction with the host ((Paszkowski 2006) and 

see also Top 10 MPMI Question #1 “How do plants engage with beneficial 
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microorganisms while at the same time restricting pathogens? (Harris et al. 2020). The 

question “how do pathogens evolve novel virulence activities” leads to the more 

general “why do microorganisms evolve virulence activities”? There are probably as 

many answers to these questions as there are evolutionary pathways for 

microorganisms to become virulent.  
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Box 2. Some outstanding questions/topics in relation to how pathogens evolve novel 
virulence activities. 

Effectors 

● While much of our knowledge has been directed to understanding effector 
evolution to evade host immunity, there is still much to learn about effector 
adaptation to newly evolved or existing host factors. 

● The precise function of effectors and their host targets are still unknown in many 
cases. Why do some effectors make a relatively greater contribution to novel 
virulence activities? 

● To what extent do non-proteinaceous molecules (nucleic acids, pathogen-
derived small molecules, metabolites, and lipids) contribute to virulence 
activities and are they encompassed by existing evolutionary models? 

Models of plant-pathogen interaction 

● It is generally assumed that there is a cost of virulence activities in the absence 
of selection, although the impact of the costs, and how to measure them, are 
not yet fully resolved. 

● While gene for gene and matching allele interactions are reasonably numerous 
and well characterized because they are relatively simple, increasing evidence 
points to interactions being more complex than previously described. 
 

Pathogenic traits, life cycle, and trade-offs 

● What is the involvement of virulence factors in pathogen life-stages other than 
infection? 

● Experimental data about trade-offs in the evolution of virulence activities are 
often contradictory.  

● Little is known about the molecular mechanisms that restrict pathogen 
virulence.  

● The molecular mechanisms associated with adaptive evolution of host-specific 
lineages of a multihost plant pathogen remain mostly poorly understood. We 
still do not know most of the key steps that lead to the adaptation to a new host 
and, thus, determine pathogen host range. 

● Ecological complexity also affects evolutionary trajectories of pathogens, and 
more research using multihost and multipathogen systems is needed to 
understand the consequences for virulence activities. 

 
Mechanisms for acquiring novel virulence activities 

● In general, empirical estimates of mutation rate for most pathogens remain 
scarce and the underlying mechanisms unclear.  

● What are the mechanisms underlying chromosomal variation and what is its 
specific impact on virulence? 

● What is the relevance in nature of parasexuality and how often do genetic 
transfer events that give rise to novel virulence activities occur in the field? 

● The underlying mechanisms of HGT between different species and kingdoms 
and are mostly unknown. 

● What are the specific genetic mechanisms that increase virulence or host range 
of hybrids? 
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● Does novel virulence more often evolve de novo or via the transfer of existing 
virulence factors from some other system? 
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