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Abstract
Big Data will be an integral part of the next generation of technological developments—allowing us to gain new insights
from the vast quantities of data being produced by modern life. There is significant potential for the application of Big Data
to healthcare, but there are still some impediments to overcome, such as fragmentation, high costs, and questions around data
ownership. Envisioning a future role for Big Data within the digital healthcare context means balancing the benefits of
improving patient outcomes with the potential pitfalls of increasing physician burnout due to poor implementation leading to
added complexity. Oncology, the field where Big Data collection and utilization got a heard start with programs like TCGA
and the Cancer Moon Shot, provides an instructive example as we see different perspectives provided by the United States
(US), the United Kingdom (UK) and other nations in the implementation of Big Data in patient care with regards to their
centralization and regulatory approach to data. By drawing upon global approaches, we propose recommendations for
guidelines and regulations of data use in healthcare centering on the creation of a unique global patient ID that can integrate
data from a variety of healthcare providers. In addition, we expand upon the topic by discussing potential pitfalls to Big Data
such as the lack of diversity in Big Data research, and the security and transparency risks posed by machine learning
algorithms.

Introduction

The advent of Next Generation Sequencing promises to
revolutionize medicine as it has become possible to cheaply
and reliably sequence entire genomes, transcriptomes, pro-
teomes, metabolomes, etc. (Shendure and Ji 2008; Topol
2019a). “Genomical” data alone is predicted to be in the
range of 2–40 Exabytes by 2025—eclipsing the amount of

data acquired by all other technological platforms (Stephens
et al. 2015). In 2018, the price for the research-grade
sequencing of the human genome had dropped to under
$1000 (Wetterstrand 2019). Other “omics” techniques such
as Proteomics have also become accessible and cheap, and
have added depth to our knowledge of biology (Hasin et al.
2017; Madhavan et al. 2018). Consumer device develop-
ment has also led to significant advances in clinical data
collection, as it becomes possible to continuously collect
patient vitals and analyze them in real-time. In addition to
the reductions in cost of sequencing strategies, computa-
tional power, and storage have become extremely cheap.
All these developments have brought enormous advances in
disease diagnosis and treatments, they have also introduced
new challenges as large-scale information becomes
increasingly difficult to store, analyze, and interpret (Adi-
buzzaman et al. 2018). This problem has given way to a
new era of “Big Data” in which scientists across a variety of
fields are exploring new ways to understand the large
amounts of unstructured and unlinked data generated by
modern technologies, and leveraging it to discover new
knowledge (Krumholz 2014; Fessele 2018). Successful
scientific applications of Big Data have already been
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demonstrated in Biology, as initiatives such as the
Genotype-Expression Project are producing enormous
quantities of data to better understand genetic regulation
(Aguet et al. 2017). Yet, despite these advances, we see few
examples of Big Data being leveraged in healthcare despite
the opportunities it presents for creating personalized and
effective treatments.

Effective use of Big Data in Healthcare is enabled by the
development and deployment of machine learning (ML)
approaches. ML approaches are often interchangeably used
with artificial intelligence (AI) approaches. ML and AI only
now make it possible to unravel the patterns, associations,
correlations and causations in complex, unstructured, non-
normalized, and unscaled datasets that the Big Data era
brings (Camacho et al. 2018). This allows it to provide
actionable analysis on datasets as varied as sequences of
images (applicable in Radiology) or narratives (patient
records) using Natural Language Processing (Deng et al.
2018; Esteva et al. 2019) and bringing all these datasets
together to generate prediction models, such as response of
a patient to a treatment regimen. Application of ML tools is
also supplemented by the now widespread adoption of
Electronic Health Records (EHRs) after the passage of the
Affordable Care Act (2010) and Health Information Tech-
nology for Economic and Clinical Health Act (2009) in the
US, and recent limited adoption in the National Health
Service (NHS) (Garber et al. 2014). EHRs allow patient
data to become more accessible to both patients and a
variety of physicians, but also researchers by allowing for
remote electronic access and easy data manipulation.
Oncology care specifically is instructive as to how Big Data
can make a direct impact on patient care. Integrating EHRs
and diagnostic tests such as MRIs, genomic sequencing, and
other technologies is the big opportunity for Big Data as it
will allow physicians to better understand the genetic causes
behind cancers, and therefore design more effective treat-
ment regimens while also improving prevention and
screening measures (Raghupathi and Raghupathi 2014;
Norgeot et al. 2019). Here, we survey the current challenges
in Big Data in healthcare and use oncology as an instructive
vignette, highlighting issues of data ownership, sharing, and
privacy. Our review builds on findings from the US, UK,
and other global healthcare systems to propose a funda-
mental reorganization of EHRs around unique patient
identifiers and ML.

Current successes of Big Data in healthcare

The UK and the US are both global leaders in healthcare
that will play important roles in the adoption of Big Data.
We see this global leadership already in oncology (The
Cancer Genome Atlas (TCGA), Pan-Cancer Analysis of

Whole Genomes (PCAWG)) and neuropsychiatric diseases
(PsychENCODE) (Tomczak et al. 2015; Akbarian et al.
2015; Campbell et al. 2020). These Big Data generation and
open-access models have resulted in hundreds of applica-
tions and scientific publications. The success of these
initiatives in convincing the scientific and healthcare com-
munities of the advantages of sharing clinical and molecular
data have led to major Big Data generation initiatives in a
variety of fields across the world such as the “All of Us”
project in the US (Denny et al. 2019). The UK has now
established a clear national strategy that has resulted in the
likes of the UK Biobank and 100,000 Genomes projects
(Topol 2019b). These projects dovetail with a national
strategy for the implementation of genomic medicine with
the opening of multiple genome-sequencing sites, and the
introduction of genome sequencing as a standard part of
care for the NHS (Marx 2015). The US has no such national
strategy, and while it has started its own large genomic
study—“All of Us”—it does not have any plans for
implementation in its own healthcare system (Topol 2019b).
In this review, we have focussed our discussion on devel-
opments in Big Data in Oncology as a method to understand
this complex and fast moving field, and to develop general
guidelines for healthcare at large.

Big Data initiatives in the United Kingdom

The UK Biobank is a prospective cohort initiative that is
composed of individuals between the ages of 40 and 69
before disease onset (Allen et al. 2012; Elliott et al. 2018).
The project has collected rich data on 500,000 individuals,
collating together biological samples, physical measures of
patient health, and sociological information such as lifestyle
and demographics (Allen et al. 2012). In addition to its size,
the UK Biobank offers an unparalleled link to outcomes
through integration with the NHS. This unified healthcare
system allows researchers to link initial baseline measures
with disease outcomes, and with multiple sources of med-
ical information from hospital admission to clinical visits.
This allows researchers to be better positioned to minimize
error in disease classification and diagnosis. The UK Bio-
bank will also be conducting routine follow-up trials to
continue to provide information regarding activity and
further expanded biological testing to improve disease and
risk factor association.

Beyond the UK Biobank, Public Health England laun-
ched the 100,000 Genomes project with the intent to
understand the genetic origins behind common cancers
(Turnbull et al. 2018). The massive effort consists of NHS
patients consenting to have their genome sequenced and
linked to their health records. Without the significant phe-
notypic information collected in the UK Biobank—the
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project holds limited use as a prospective epidemiological
study—but as a great tool for researchers interested in
identifying disease causing single-nucleotide polymorph-
isms (SNPs). The size of the dataset itself is its main
advance—as it provides the statistical power to discover the
associated SNPs even for rare diseases. Furthermore, the
100,000 Genomes Project’s ancillary aim is to stimulate
private sector growth in the genomics industry within
England.

Big Data initiatives in the United States and
abroad

In the United States, the “All of Us” project is expanding
upon the UK Biobank model by creating a direct link
between patient genome data and their phenotypes by
integrating EHRs, behavioral, and family data into a unique
patient profile (Denny et al. 2019). By creating a standar-
dized and linked database for all patients—“All of Us” will
allow researchers greater scope than the UK BioBank to
understand cancers and discover the associated genetic
causes. In addition, “All of Us” succeeds in focusing on
minority populations and health, an area of focus that sets it
apart and gives it greater clinical significance. The UK
should learn from this effort by expanding the UK Biobank
project to further include minority populations and integrate
it with ancillary patient data such as from wearables—the
current UK Biobank has ~500,000 patients that identify as
white versus ~12,000 (i.e., just <2.5%) that identified as
non-white (Cohn et al. 2017). Meanwhile, individuals of
Asian ethnicities made up over 7.5% of the UK population
as per the 2011 UK Census, with the proportion of mino-
rities projected to rise in the coming years (O’Brien and
Potter-Collins 2015; Cohn et al. 2017).

Sweden too provides an informative example of the
power of investment in rich electronic research registries
(Webster 2014). The Swedish government has committed
over $70 million dollars in funding per annum to expand a
variety of cancer registries that would allow researchers
insight into risk factors for oncogenesis. In addition, its data
sources are particularly valuable for scientists, as each
patient’s entries are linked to unique identity numbers that
can be cross references with over 90 other registries to give
a more complete understanding of a patient’s health and
social circumstances. These registries are not limited to
disease states and treatments, but also encompass extensive
public administrative records that can provide researchers
considerable insight into social indicators of health such as
income, occupation, and marital status (Connelly et al.
2016). These data sources become even more valuable to
Swedish researchers as they have been in place for decades
with commendable consistency—increasing the power of

long-term analysis (Connelly et al. 2016). Other nations can
learn from the Swedish example by paying particular
attention to the use of unique patient identifiers that can map
onto a number of datasets collected by government and
academia—an idea that was first mentioned in the US
Health Insurance Portability and Accountability Act of 1996
(HIPAA) but has not yet been implemented (Davis 2019).

China has recently become a leader in implementation
and development of new digital technologies, and it has
begun to approach healthcare with an emphasis on data
standardization and volume. Already, the central govern-
ment in China has initiated several funding initiatives aimed
at pushing Big Data into healthcare use cases, with a par-
ticular eye on linking together administrative data, regional
claims data from the national health insurance program, and
electronic medical records (Zhang et al. 2018). China hopes
to do this through leveraging its existing personal identifi-
cation system that covers all Chinese nationals—similar to
the Swedish model of maintaining a variety of regional and
national registries linked by personal identification num-
bers. This is particularly relevant to cancer research as
China has established a new cancer registry (National
Central Cancer Registry of China) that will take advantage
of the nation’s population size to give unique insight into
otherwise rare oncogenesis. Major concerns regarding this
initiative are data quality and time. China has only relatively
recently adopted the International Classification of Diseases
(ICD) revision ten coding system, a standardized method
for recording disease states alongside prescribed treatments.
China is also still implementing standardized record keep-
ing terminologies at the regional level. This creates con-
siderable heterogeneity in data quality—as well as
inoperability between regions—a major obstacle in any
national registry effort (Zhang et al. 2018). The recency of
these efforts also mean that some time is required until
researchers will be able to take advantage of longitudinal
analysis—vital for oncology research that aims to spot
recurrences or track patient survival. In the future we can
expect significant findings to come out of China’s efforts to
bring hundreds of millions of patient files available to
researchers, but significant advances in standards of care
and interoperability must be first surpassed.

The large variety of “Big Data” research projects being
undertaken around the world are proposing different
approaches to the future of patient records. The UK is
broadly leveraging the centralization of the NHS to link
genomic data with clinical care records, and opening up the
disease endpoints to researchers through a patient ID.
Sweden and China are also adopting this model—lever-
aging unique identity numbers issued to citizens to link
otherwise disconnected datasets from administrative and
healthcare records (Connelly et al. 2016; Cnudde et al.
2016; Zhang et al. 2018). In this way, tests, technologies
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and methods will be integrated in a way that is specific to
the patient but not necessarily to the hospital or clinic. This
allows for significant flexibility in the seamless transfer of
information between sites and for physicians to take full
advantage of all the data generated. The US’ “All of Us”
program is similar in integrating a variety of patient records
into a single-patient file that is stored in the cloud (Denny
et al. 2019). However, it does not significantly link to public
administrative data sources, and thus is limited in its use-
fulness for long-term analysis of the effects of social con-
tributors to cancer progression and risk. This foretells
greater problems with the current ecosystem of clinical data
—where lack of integration, misguided design, and
ambiguous data ownership make research and clinical care
more difficult rather than easier.

Survey of problems in clinical data use

Fragmentation

Fragmentation is the primary problem that needs to be
addressed if EHRs have any hope of being used in any
serious clinical capacity. Fragmentation arises when EHRs
are unable to communicate effectively between each other
—effectively locking patient information into a proprietary
system. While there are major players in the US EHR space
such as Epic and General Electric, there are also dozens of
minor and niche companies that also produce their own
products—many of which are not able to communicate
effectively or easily with one another (DeMartino and
Larsen 2013). The Clinical Oncology Requirements for the
EHR and the National Community Cancer Centers Program
have both spoken out about the need for interoperability
requirements for EHRs and even published guidelines
(Miller 2011). In addition, the Certification Commission for
Health Information Technology was created to issue
guidelines and standards for interoperability of EHRs
(Miller 2011). Fast Healthcare Interoperability Resources
(FHIR) is the current new standard for data exchange for
healthcare published by Health Level 7 (HL7). It builds
upon past standards from both HL7 and a variety of other
standards such as the Reference Information Model. FHIR
offers new principles on which data sharing can take place
through RESTful APIs—and projects such as Argonaut are
working to expand adoption to EHRs (Chambers et al.
2019). Even with the introduction of the HL7 Ambulatory
Oncology EHR Functional Profile, EHRs have not
improved and have actually become pain points for clin-
icians as they struggle to integrate the diagnostics from
separate labs or hospitals, and can even leave physicians in
the dark about clinical history if the patient has moved
providers (Reisman 2017; Blobel 2018). Even in integrated

care providers such as Kaiser Permanente there are inter-
operability issues that make EHRs unpopular among clin-
icians as they struggle to receive outside test results or the
narratives of patients who have recently moved (Leonard
and Tozzi 2012).

The UK provides an informative contrast in its NHS, a
single government-run enterprise that provides free health-
care at the point of service. Currently, the NHS is able to
successfully integrate a variety of health records—a step
ahead of the US—but relies on outdated technology with
security vulnerabilities such as fax machines (Macaulay
2016). The NHS has recently also begun the process of
digitizing its health service, with separate NHS Trusts
adopting American EHR solutions, such as the Cam-
bridgeshire NHS trust’s recent agreement with Epic (Hon-
eyman et al. 2016). However, the NHS still lags behind the
US in broad use and uptake across all of its services
(Wallace 2016). Furthermore, it will need to force the
variety of EHRs being adopted to conform to centralized
standards and interoperability requirements that allow ser-
vices as far afield as genome sequencing to be added to a
patient record.

Misguided EHR design

Another issue often identified with the modern incarnation
of EHRs is that they are often not helpful for doctors in
diagnosis—and have been identified by leading clinicians as
a hindrance to patient care (Lenzer 2017; Gawande 2018).
A common denominator among the current generation of
EHRs is their focus on billing codes, a set of numbers
assigned to every task, service, and drug dispensed by a
healthcare professional that is used to determine the level of
reimbursement the provider will receive. This focus on
billing codes is a necessity of the insurance system in the
US, which reimburses providers on a service-rendered basis
(Essin 2012; Lenzer 2017). Due to the need for every part of
the care process to be billed to insurers (of which there are
many) and sometimes to multiple insurers simultaneously,
EHRs in the US are designed foremost with insurance needs
in mind. As a result, EHRs are hampered by government
regulations around billing codes, the requirements of
insurance companies, and only then are able to consider the
needs of providers or researchers (Bang and Baik 2019).
And because purchasing decisions for EHRs are not made
by physicians, the priority given to patient care outcomes
falls behind other needs. The American Medical Associa-
tion has cited the difficulty of EHRs as a contributing factor
in physician burnout and as a waste of valuable time
(Lenzer 2017; Gardner et al. 2019). The NHS, due to its
reliance on American manufacturers of EHRs, must suffer
through the same problems despite its fundamentally dif-
ferent structure.
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Related to the problem of EHRs being optimized for
billing, not patient care, is their lack of development beyond
repositories of patient information into diagnostic aids. A
study of modern day EHR use in the clinic notes many pain
points for physicians and healthcare teams (Assis-Hassid
et al. 2019). Foremost was the variance in EHR use within
the clinic—in part because these programs are often not
designed with provider workflows in mind (Assis-Hassid
et al. 2019). In addition, EHRs were found to distract from
interpersonal communication and did not integrate the many
different types of data being created by nurses, physician
assistants, laboratories, and other providers into usable
information for physicians (Assis-Hassid et al. 2019).

Data ownership

One of the major challenges of current implementations of
Big Data are the lack of regulations, incentives, and systems
to manage ownership and responsibilities for data. In the
clinical space, in the US, this takes the form of compliance
with HIPAA, a now decade-old law that aimed to set rules
for patient privacy and control for data (Adibuzzaman et al.
2018). As more types of data are generated for patients and
uploaded to electronic platforms, HIPAA becomes a major
roadblock to data sharing as it creates significant privacy
concerns that hamper research. Today, if a researcher is to
search for even simple demographic and disease states—
they can rapidly identify an otherwise de-identified patient
(Adibuzzaman et al. 2018). Concerns around breaking
HIPAA prevent complete and open data sharing agreements
—blocking a path to the specificity needed for the next
generation of research from being achieved, and also throws
a wrench into clinical application of these technologies as
data sharing becomes bogged down by nebulousness sur-
rounding old regulations on patient privacy. Furthermore,
compliance with the General Data Protection Regulation
(GDPR) in the EU has hampered international collabora-
tions as compliance with both HIPAA and GDPR is not yet
standardized (Rabesandratana 2019).

Data sharing is further complicated by the need to
develop new technologies to integrate across a variety of
providers. Taking from the example of the Informatics for
Integrating Biology and the Bedside (i2b2) program funded
by the NIH with Partners Healthcare, it is difficult and
enormously expensive to overlay programs on top of
existing EHRs (Adibuzzaman et al. 2018). Rather, a new
approach needs to be developed to solve the solution of data
sharing. Blockchain provides an innovative approach and
has been recently explored in the literature as a solution that
centers patient control of their data, and also promotes safe
and secure data sharing through data transfer transactions
secured by encryption (Gordon and Catalini 2018). Com-
panies exploring this mechanism for data sharing include

Nebula Genomics, a firm founded by George Church, that is
aimed at securing genomic data in blockchain in a way that
scales commercially, and can be used for research purposes
with permission only from data owners—the patients
themselves. Other firms are exploring using a variety of data
types stored in blockchain to create predictive models of
disease—such as Doc.Ai—but all are centrally based on the
idea of a blockchain to secure patient data and ensure pri-
vate accurate transfer between sites (Agbo et al. 2019).
Advantages of blockchain for healthcare data transfer and
storage lie in its security and privacy, but the approach has
yet to gain widespread use.

Recommendations for clinical application

Design a new generation of EHRs

It is conceivable that physicians in the near future will be
faced with terabytes of data—patients coming to their
clinics with years of continuous data monitoring their heart
rate, blood sugar, and a variety of other factors (Topol
2019a). Gaining clinical insight from such a large quantity
of data is an impossible expectation to place upon physi-
cians. In order to solve this problem of the exploding
numbers of tests, assays, and results, EHRs will need to be
extended from simply being records of patient–physician
interactions and digital folders, to being diagnostic aids
(Fig. 1). Companies such as Roche–Flatiron are already
moving towards this model by building predictive and
analytical tools into their EHRs when they provide them to
providers. However, broader adoption across a variety of
providers—and the transparency and portability of the

Drug UsePatient HistoryHistologySNP Array

Lung Cancer

Screening

EHR Model

ProteomicsLow Activity

Fig. 1 The promise of Big Data is in its ability to prevent disease
not just help doctors diagnose them. In this example we demonstrate
how many possible factors may come together to better target patients
for early screening measures, which can lower aggregate costs for the
healthcare system.
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models generated will also be vital. AI-based clinical
decision-making support will need to be auditable in order
to avoid racial bias, and other potential pitfalls (Char et al.
2018). Patients will soon request to have permanent access
to the models and predictions being generated by ML
models to gain greater clarity into how clinical decisions
were made, and to guard against malpractice.

Designing this next generation of EHRs will require
collaboration between physicians, patients, providers, and
insurers in order to ensure ease of use and efficacy. In terms
of specific recommendations for the NHS, the Veterans
Administration provides a fruitful approach as it was able to
develop its own EHR that compares extremely favorably
with the privately produced Epic EHR (Garber et al. 2014).
Its solution was open access, public-domain, and won the
loyalty of physicians in improving patient care (Garber et al.
2014). However, the VA’s solution was not actively
adopted due to lack of support for continuous maintenance
and limited support for billing (Garber et al. 2014). While
the NHS does not need to consider the insurance industry’s
input, it does need to take note that private EHRs were able
to gain market prominence in part because they provided a
hand to hold for providers, and were far more responsive to
personalized concerns raised (Garber et al. 2014). Evidence
from Denmark suggests that EHR implementation in the
UK would benefit from private competitors implementing
solutions at the regional rather than national level in order to
balance the need for competition and standardization
(Kierkegaard 2013).

Develop new EHR workflows

Already, researchers and enterprise are developing pre-
dictive models that can better diagnose cancers based on
imaging data (Bibault et al. 2016). While these products and
tools are not yet market ready and are far off from clinical
approval—they portend things to come. We envision a
future where the job of an Oncologist becomes increasingly
interpretive rather than diagnostic. But to get to that future,
we will need to train our algorithms much like we train our
future doctors—with millions of examples. In order to build
this corpus of data, we will need to create a digital infra-
structure around Big Data that can both handle the demands
of researchers and enterprise as they continuously improve
their models—with those of patients and physicians who
must continue their important work using existing tools and
knowledge. In Fig. 2, we demonstrate a hypothetical
workflow based on models provided by other researchers in
the field (Bibault et al. 2016; Topol 2019a). This simplified
workflow posits EHRs as an integrative tool that can
facilitate the capture of a large variety of data sources and
can transform them into a standardized format to be stored
in a secure cloud storage facility (Osong et al. 2019).

Current limitations in HIPAA in the US have prevented
innovation in this field, so reform will need to both guar-
antee the protection of private patient data and the open
access to patient histories for the next generation of diag-
nostic tools. The introduction of accurate predictive models
for patient treatment will mean that cancer diagnosis will
fundamentally change. We will see the job of oncologists
transforming itself as they balance recommendations pro-
vided by digital tools that can instantly integrate literature
and electronic records from past patients, and their own best
clinical judgment.

Use a global patient ID

While we are already seeing the fruits of decades of
research into ML methods, there is a whole new set of
techniques that will soon be leaving research labs and being
applied to the clinic. This set of “omics”—often used to
refer to proteomics, genomics, metabolomics, and others—
will reveal even more specificity about a patient’s cancer at
lower cost (Cho 2015). However, they like other technol-
ogies, will create petabytes of data that will need to be
stored and integrated to help physicians.

As the number of tests and healthcare providers diversify
—EHRs will need to address the question of extensibility
and flexibility. Providers as disparate as counseling offices
and MRI imaging centers cannot be expected to use the
same software—or even similar software. As specific
solutions for diverse providers are created—they will need
to interface in a standard format with existing EHRs. The
UK Biobank creates a model for these types of interactions
in its use of a singular patient ID to link a variety of data
types—allowing for extensibility as future iterations and
improvements add data sources for the project. Also,

Molecular

Imaging

Patient History

EHR Cloud

Physician

Enterprise

Research

Fig. 2 General model of care envisioned. Here, various hetero-
geneous data types are fed into a centralized EHR system that will be
uploaded to a secure digital cloud where it can be de-identified and
used by research and enterprise, but primarily by physicians and
patients.
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Sweden and China are informative examples in their usage
of national citizen identification numbers as a method of
linking clinical and administrative datasets together
(Cnudde et al. 2016; Zhang et al. 2018). Singular patient
identification numbers do not yet exist in the US despite
their inclusion in HIPAA due to subsequent Congressional
action preventing their creation (Davis 2019). Instead pri-
vate providers have stepped in to bridge the gap, but have
also called on the US government to create an official
patient ID system (Davis 2019). Not only would a singular
patient ID allow for researchers to link US administrative
data together with clinical outcomes, but also provide a
solution to the questions of data ownership and fragmen-
tation that plague the current system.

Outlook

Healthcare future will build on the Big Data projects cur-
rently being pioneered around the world. The models of
data integration being pioneered by the “All of Us” trial and
analytics championed by P4 medicine will come to define
the patient experience (Flores et al. 2013). However, in this
piece we have demonstrated a series of hurdles that the field
must overcome to avoid imposing additional burdens on
physicians and to deliver significant value. We recommend
a set of proposals built upon an examination of the NHS and
other publicly administered healthcare models and the US
multi-payer system to bridge the gap between the market
competition needed to develop these new technologies and
effective patient care.

Access to patient data must be a paramount guiding
principle as regulators begin to approach the problem of
wrangling the many streams of data that are already being
generated. Data must both be accessible to physicians and
patients, but must also be secured and de-identified for the
benefit of research. A pathway taken by the UK Biobank to
guarantee data integration and universal access has been
through the creation of a single database and protocol for
accessing its contents (Allen et al. 2012). It is then feasible
to suggest a similar system for the NHS which is already
centralized with a single funding source. However, this
system will necessarily also be a security concern due to its
centralized nature, even if patient data is encrypted (Fig. 3).
Another approach is to follow in the footsteps of the US’
HIPAA, which suggested the creation of unique patient IDs
over 20 years ago. With a single patient identifier, EHRs
would then be allowed to communicate with heterogeneous
systems especially designed for labs or imaging centers or
counseling services and more (Fig. 4). However, this design
presupposes a standardized format and protocol for com-
munication across a variety of databases—similar to the
HL7 standards that already exist (Bender and Sartipi 2013).

In place of a centralized authority building out a digital
infrastructure to house and communicate patient data,
mandating protocols and security standards will allow for
the development of specialized EHR solutions for an ever
diversifying set of healthcare providers and encourage the
market needed for continual development and support of
these systems. Avoiding data fragmentation as seen already
in the US then becomes an exercise in mandating data
sharing in law.

The next problem then becomes the inevitable applica-
tion of AI to healthcare. Any such tool created will have to
stand up to the scrutiny not just of being asked to outclass

Wearables

EncryptionPharmaceuticals

Patient History

Database

Fig. 3 The need for patient data protection is of great concern.
Future implementations of Big Data will need to not only integrate
data, but also encrypt and de-identify it for secure storage.

Lab

Hospital Imaging
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IDPatient ID
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Fig. 4 Our recommended healthcare system model. Hypothetical
healthcare system design based on unique patient identifiers that
function across a variety of systems and providers—linking together
disparate datasets into a complete patient profile.
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human diagnoses, but to also reveal its methods. Because of
the opacity of ML models, the “black box” effect means that
diagnoses cannot be scrutinized or understood by outside
observers (Fig. 5). This makes clinical use extremely lim-
ited, unless further techniques are developed to deconvolute
the decision-making process of these models. Until then, we
expect that AI models will only provide support for
diagnoses.

Furthermore, many times AI models simply replicate
biases in existing datasets. Cohn et al. 2017 demonstrated
clear areas of deficiency in the minority representation of
patients in the UK Biobank. Any research conducted on
these datasets will necessarily only be able to create models
that generalize to the population in them (a largely homo-
genous white-British group) (Fig. 6). In order to protect
against algorithmic bias and the black box of current models
hiding their decision-making, regulators must enforce rules
that expose the decision-making of future predictive
healthcare models to public and physician scrutiny. Similar
to the existing FDA regulatory framework for medical
devices, algorithms too must be put up to regulatory scru-
tiny to prevent discrimination, while also ensuring trans-
parency of care.

The future of healthcare will increasingly live on server
racks and be built in glass office buildings by teams of
programmers. The US must take seriously the benefits of
centralized regulations and protocols that have allowed
the NHS to be enormously successful in preventing the
problem of data fragmentation—while the NHS must
approach the possibility of freer markets for healthcare
devices and technologies as a necessary condition for
entering the next generation of healthcare delivery which
will require constant reinvention and improvement to
deliver accurate care.

Overall, we are entering a transition in how we think
about caring for patients and the role of a physician. Rather
than creating a reactive healthcare system that finds cancers
once they have advanced to a serious stage—Big Data
offers us the opportunity to fine tune screening and pre-
vention protocols to significantly reduce the burden of
diseases such as advanced stage cancers and metastasis.
This development allows physicians to think more about a
patient individually in their treatment plan as they leverage
information beyond rough demographic indicators such as
genomic sequencing of their tumor. Healthcare is not yet
prepared for this shift, so it is the job of governments
around the world to pay attention to how each other have
implemented Big Data in healthcare to write the regulatory
structure of the future. Ensuring competition, data security,
and algorithmic transparency will be the hallmarks of how
we think about guaranteeing better patient care.
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