
ORIGINAL RESEARCH
published: 18 February 2021

doi: 10.3389/fpsyt.2021.615754

Frontiers in Psychiatry | www.frontiersin.org 1 February 2021 | Volume 12 | Article 615754

Edited by:

Christian Gaser,

Friedrich Schiller University

Jena, Germany

Reviewed by:

Iman Beheshti,

University of Manitoba, Canada

Hugo Schnack,

Utrecht University, Netherlands

*Correspondence:

Matthias S. Treder

trederm@cardiff.ac.uk

Specialty section:

This article was submitted to

Computational Psychiatry,

a section of the journal

Frontiers in Psychiatry

Received: 09 October 2020

Accepted: 04 January 2021

Published: 18 February 2021

Citation:

Treder MS, Shock JP, Stein DJ, du

Plessis S, Seedat S and Tsvetanov KA

(2021) Correlation Constraints for

Regression Models: Controlling Bias in

Brain Age Prediction.

Front. Psychiatry 12:615754.

doi: 10.3389/fpsyt.2021.615754

Correlation Constraints for
Regression Models: Controlling Bias
in Brain Age Prediction

Matthias S. Treder 1*, Jonathan P. Shock 2,3, Dan J. Stein 4, Stéfan du Plessis 5,

Soraya Seedat 5 and Kamen A. Tsvetanov 6,7

1 School of Computer Science & Informatics, Cardiff University, Cardiff, United Kingdom, 2Department of Mathematics and

Applied Mathematics, University of Cape Town, Cape Town, South Africa, 3National Institute for Theoretical Physics,

Matieland, South Africa, 4 SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and

Neuroscience Institute, University of Cape Town, Cape Town, South Africa, 5Department of Psychiatry, Faculty of Medicine

and Health Sciences, Stellenbosch University, Cape Town, South Africa, 6Department of Clinical Neurosciences, University of

Cambridge, Cambridge, United Kingdom, 7Department of Psychology, University of Cambridge, Cambridge, United Kingdom

In neuroimaging, the difference between chronological age and predicted brain age, also

known as brain age delta, has been proposed as a pathology marker linked to a range

of phenotypes. Brain age delta is estimated using regression, which involves a frequently

observed bias due to a negative correlation between chronological age and brain age

delta. In brain age prediction models, this correlation can manifest as an overprediction

of the age of young brains and an underprediction for elderly ones. We show that

this bias can be controlled for by adding correlation constraints to the model training

procedure. We develop an analytical solution to this constrained optimization problem for

Linear, Ridge, and Kernel Ridge regression. The solution is optimal in the least-squares

sense i.e., there is no other model that satisfies the correlation constraints and has a

better fit. Analyses on the PAC2019 competition data demonstrate that this approach

produces optimal unbiased predictive models with a number of advantages over existing

approaches. Finally, we introduce regression toolboxes for Python and MATLAB that

implement our algorithm.

Keywords: age, brain, optimization, prediction, correlation, regression

1. INTRODUCTION

As the world’s population ages, early detection and prevention of neurological aspects of aging,
such as cognitive decline and dementia, is a public health priority and challenge. Pathological aging
could be indicated by the level of deviation from the typical pattern of aging in healthy individuals
(1). There has been growing interest in developing statistical approaches in order to identify
individuals deviating from a healthy brain aging trajectory (2). To this end, a metric referred to
as brain age delta, defined as the difference between brain-predicted age and chronological age,
has been proposed as an index of the level of neuropathology in aging (2–4). Investigating the
association between this metric with demographics, and lifestyle and cognitive variables can deepen
the understanding of the processes that underpin healthy aging (5). In clinical research, brain age
delta has the potential to index the severity of premature aging in patients suffering from disease.
Among others, a higher delta has been associated with lower fluid intelligence and higher mortality
(1), risk for developing Alzheimer’s disease (6), severity of schizophrenia and depression (7).
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Establishing a good estimate of brain age delta is faced with
important methodological challenges. The first challenge relates
to the kinds of features (biomarkers) and predictive models
that are used to build a brain-age model. A number of brain
metrics have been considered as features for regression models;
for example, structural networks (8), cortical thickness (9),
functional connectivity patterns (10, 11), and raw T1-weighted
images (1, 2). Likewise, a variety of regression models has been
tested, from linear regression models such as lasso and support
vector regression (10, 11) to convolutional neural networks
[CNNs; (2, 8)]. The quest for more accurate brain-age models
lies at the heart of the Predictive Analytics Competition (PAC)
2019 upon which the eponymous Frontiers Research Topic is
founded1.

A more fundamental methodological challenge, and the
starting point for this paper, is the very operationalization of the
brain age delta. If we denote the chronological age for a set of
participants as a vector y, the ages predicted on the brain scans as
ŷ, and the residuals as e = y − ŷ, then the negative residual δ =

−e (i.e., predicted brain age minus chronological age) is usually
defined as the brain age delta. This metric has been shown to be
problematic. A predictive bias manifesting as an overprediction
of the age of young individuals and an underprediction for
elderly individuals has led to much speculation and investigation
(2, 3, 9, 12–15).

A useful quantification of this effect is the correlation between
chronological age and delta, corr(y, δ), which we will refer to
as age delta correlation (ADC) in the rest of the paper (see
Figures 1A,B). An analysis by (15) showed that negative ADC
is ubiquitous across a range of aging datasets and regression
models and independent of the age range included in the
dataset. A theoretical analysis by (14) showed that this effect
is an inevitable property of regression, further aggravated by
regression dilution (16, 17), and hence not limited to aging
data. The potential danger of non-zero ADC lies in spurious
associations with other covariates: brain age delta can be trivially
correlated with demographic or cognitive variables if the latter
are correlated with chronological age as well. Le et al. (14)
found that associations between residuals and variables obtained
from clinical interviews and neuropsychological testing largely
disappear when residuals are corrected for chronological age. To
avoid these spurious correlations, several authors have suggested
following up the regression analysis with a correction step
wherein the effect of age is removed from the residuals (1, 3, 12,
14). Brain age delta is then calculated by the following two-stage
approach:

1. Brain Age Prediction. Train a regression model to predict age
from neuroimaging data. The difference between predicted
age and chronological age reflects uncorrected brain age delta.

2. Correction of Brain Age Delta. Use simple linear regression
to regress delta against age. The resultant residuals are
uncorrelated with age and denoted as corrected brain age delta.

1www.frontiersin.org/research-topics/13501/predicting-chronological-age-from-

structural-neuroimaging-the-predictive-analytics-competition-2019

Despite the significant methodological progress that has been
made there are still concerns that warrant attention. First,
the correction approach is an ad hoc fix because the models’
predictions do not take ADC into account. Second, in a strictly
sequential two-stage approach it is not clear whether the resultant
brain age delta is optimal in terms of predictive accuracy. Both
issues can be addressed when prediction and correction are
unified within a model. Third, in predictive settings with training
and test set, zeroing ADC on the training set is not of primary
importance. Rather, it would be useful to have a model that is
able to finely control the trade-off between ADC and predictive
accuracy in order to optimize its performance on the test set.

The aim of this study was to address these points by
introducing modifications to three different regression models
(Linear, Ridge and Kernel Ridge regression). Our models
explicitly control for ADC on the training set without the need
for an additional correction after model training. This was
realized by formulating constrained optimization problems that
incorporate age delta correlation as additional constraints. Our
approach offers the following features:

• Predictive Model. In predictive modeling, all properties of
the estimation pipeline (including correction of the residuals)
should be derived from the training set and validated on a
separate test set. Some of the existing approaches conflate
training and test data because age prediction is based on
the training data but the correction is performed on the test
set. The latter introduces dependencies between test samples
because the correction applied to a test sample depends on the
other test samples.

• Arbitrary Test Set Size. An additional problem arising from
conflating training and test sets is that performing correction
on test data requires a sufficiently large test set. This is
especially problematic with smaller datasets because less data
is available for training. Since our approach estimates all
parameters from the training data, it can be applied with any
train/test split including leave-one-out cross-validation, when
appropriate.

• Prediction of Unlabeled Data. Our model corrects the
predictions not the residuals. Therefore, corrected predictions
can be obtained even on unlabeled data if necessary.

• Optimality. Formulating both model training and correction
as a single constrained optimization problem allowed us to
show that the resultant models are optimal in terms of mean-
squared error (MSE) on the training set. In other words, of
all potential solutions that control ADC, our solution has the
highest accuracy.

• Correlation Bound. Our models allow for “soft” control of
the ADC by defining a correlation bound that caps the
maximum permissible correlation, e.g., |corr(y, δ)| ≤ 0.1.
This is especially useful for predictive modeling, because
minimizing ADC on the training set is not vital. Rather, a low
bias and good predictive performance on the test set is desired.
Using a correlation bound, our models allow for fine-tuning of
the trade-off between ADC and predictive accuracy.

• Interpretability. An advantage of unifying prediction and
correction in a single model is better interpretability because
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FIGURE 1 | Investigating age delta correlation (ADC) with simulated data. (A) Simulated data (1,000 samples, 1 feature, linear function, Gaussian noise) using

Scikit-Learn’s make_regression function. Regression line fits for OLS and Ridge (λ = 1, 000) regression are shown. The small residual plots (plotting y vs. brain age

delta) show a significant negative ADC for both models. (B) Simulated data (1,000 samples, 1 feature, sigmoid function, Gaussian noise) with two Kernel Ridge

regression fits (RBF kernel, γ = 1) for two different regularization strengths λ. Again, residual plots show a high ADC. (C) For both Ridge and Kernel Ridge regression,

increasing the regularization hyperparameter λ leads to more negative ADC. This effect is more pronounced for Kernel Ridge than Ridge. (D) ADC density plot. We

sampled 100 random Gaussian and sigmoid datasets as specified before. We created random regression models by sampling slopes and intercepts from a uniform

distribution (the sampling space included the OLS coefficients). When calculating ADCs on random models, a clear bias toward large negative ADC values is evident.

Its distribution is more peaked for the Gaussian data. (E) ADC density plot. Simulated data (1,000 samples, 5 features, linear function, Gaussian noise) is split into

50% train, 50% test data. An OLS model is calculated on the train data and ADC is calculated on both train and test data. For the test data, the variability of the ADC

is larger than for train data, and its mode is slightly more negative.

the entire operation of the model is represented by its
regression coefficients and quantities derived from them
(18–20). Furthermore, we show in Section 2.7 that these
quantities are not affected by the choice of the correlation
bound (a hyperparameter in our model).

Some of the existing approaches share some of the listed
features. For instance, whereas in (14) test set residuals are
used for correction, Beheshti et al. (12) learns the correction
parameters from the training set and applies them to the test set,
in line with good practice for predictive models. However, to the
best of our knowledge, this is the first study to prove optimality
of the models and introduce “soft” correlation bounds for fine
control of ADC.

2. METHOD

The section 2 is organized as follows. In Section 2.2, we introduce
Linear regression, Ridge regression and Kernel Ridge regression.

In Section 2.3, we review existing ways to quantify brain age
delta. In Section 2.4, we revisit the mathematical basis for ADC
in the context of the three regression models. In Section 2.5 we
develop our approach by adding correlation constraints to the
model training stage that allow for a precise control of ADC. In
Section 2.6 it is shown that the brain age estimates obtained with
our models are closely related to existing correction approaches.
In Section 2.7, we investigate how to interpret the models. In
Section 2.8, we introduce corresponding toolboxes for Python
and MATLAB that implement them. Finally, in sections 2.9 and
2.10, we describe our analysis of the PAC2019 competition data.

2.1. Notation
Table 1 defines the most important mathematical symbols used
in the paper. Whenever the symbol represents a vector or
matrix, its dimensionality is given in the second column. In
general, matrices are denoted as uppercase boldface symbols
(e.g., X, H), vectors as lowercase boldface symbols (e.g., β ,
x̄), and scalars as lowercase normal face symbols (e.g., n, ȳ).
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TABLE 1 | Mathematical notation, dimensionality, and description for the main

quantities used in the regression models.

n N Number of samples

p N Number of features

β R
p+1 Coefficients for standard regression model

b R
p+1 Coefficients for correlation constrained model

X R
n×p Brain scans (features)

y R
n Chronological age (targets)

ŷ R
n Predicted age (ŷ = Xβ)

e R
n Residuals (e = y− ŷ)

δ R
n Uncorrected brain-age delta (negative residuals δ = −e)

ρ R Correlation bound (hyperparameter)

⊤ Transpose operator

1 R
n Vector of 1’s

x̄ R
p Column means of X given by 1

n
X⊤1

ȳ R Mean of y

Note that we use terminology common in the machine learning
literature. In particular, features are also known as predictors or
independent variables in the regression literature, the vector of
targets (chronological age) is also known as response vector or
dependent variable, and training is also known as fitting. For
standard regression models, regression coefficients are denoted
as β . If an intercept is included in the model, we assume that a
column of 1’s is added to the matrix of features X. Sometimes
we explicitly denote the intercept as β0 and the non-intercept
coefficients as β1 : p. For models with correlation constraints, we
use the notation b for the regression coefficients with b0 and b1 : p
defined analogously.

2.2. Regression Models
2.2.1. Ordinary Least-Squares (OLS) Regression
Ordinary least-squares regression, often just called linear
regression, can be formulated as a set of n equations of the form

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + ǫi i = 1, 2, ..., n

where yi is the i-th response, xij is the j − th predictor value
in the i-th sample, the β ’s are regression coefficients, and ǫ ∼

N (0, σ 2) is an error term. Using matrix notation, this set of
equations can be written more succinctly as:

y = Xβ + ǫ (1)

where y = [y1, y2, ..., yn]
⊤ comprises the responses,X ∈ R

n×(p+1)

is thematrix of features including a column of 1’s for the intercept
term, β ∈ R

p+1 is the vector of regression coefficients and
ǫ = [ǫ1, ǫ2, ..., ǫn]

⊤ collects all error terms. Training a model
implies finding an estimate for β such that y ≈ Xβ . In OLS
regression this is achieved by minimizing the sum of squared
errors ||y − Xβ||22. Denoting ŷ : = Xβ this can be formulated
as the unconstrained optimization problem

minimize ||y− ŷ||22. (2)

The solution is given by

βols = (X⊤X)−1 X⊤y.

2.2.2. Ridge Regression
OLS regression suffers from high variance and does not have
a unique solution if the number of the features p is larger
than the number of samples n (21, 22). Ridge regression is a
regularized version of OLS regression that is useful for data
that suffers from multicollinearity. The model is regularized by
adding an ℓ2 penalty that shrinks the weights toward zero. For a
given regularization parameter λ ≥ 0, Ridge regression can be
formulated as the unconstrained optimization problem

minimize ||y− ŷ||22 + λ||β1 : p||
2
2.

The first term is the least-squares term from Equation (2). The
second term penalizes elements of β from becoming too large.
For λ = 0 Ridge regression reduces to OLS regression. The
solution is given by

βridge = (X⊤X+ λI)−1 X⊤y (3)

where I ∈ R
(p+1)×(p+1) is an identity matrix. Since the

intercept term is not regularized, I is modified such that the 1
in the first row/column is replaced by a 0.

2.2.3. Other Linear Regression Models
Other variants of linear regression e.g., lasso (23) and elastic net
(24), do not have a closed form solution but rely on iterative
optimization, so they do not lend themselves to the analytical
approach developed in this paper.

2.2.4. Kernel Ridge Regression (KRR)
A non-linear version of Ridge regression can be developed by
applying a non-linear transformation to the features and then
performing Ridge regression on these transformed features (25).
Let this transformation be represented by a map φ :R

p → F

from input space to a higher-dimensional Reproducing Kernel
Hilbert Space and8(X) = [φ(x1),φ(x2), ...,φ(xn)]

⊤ (26, 27). The
solution is given by replacing X by 8(X) in Equation (3),

βkrr = (8(X)⊤8(X)+ λI)−1 8(X)⊤y.

This solution, also known as primal solution, is of limited
practical use, since the feature space is often too high-
dimensional to represent βkrr and 8(X). As an alternative, the
convex optimization problem can be rewritten into its dual
Lagrangian form first (28). The resultant dual solution is given by

βkrr = 8(X)⊤(8(X)8(X)⊤ + λI)−1 y. (4)

The equivalence between the primal and dual solution can be
verified by left-multiplying both solutions with (8(X)8(X)⊤ +
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λI). Since βkrr cannot be represented directly, we instead
calculate a vector of dual weights α ∈ R

n. To this end, define
K = 8(X)8(X)⊤ as the kernel matrix with Kij = k(xi, xj) for a
kernel function k. Then the vector of dual weights is given by the
latter part of Equation (4),

α = (K+ λI)−1 y. (5)

Using α the predicted response to a test sample x can be
rewritten in terms of kernel evaluations:

f (x) = β⊤
φ φ(x) = α⊤8(X)φ(x) =

n
∑

i=1

αi k(xi, x). (6)

2.3. Calculating the Brain-Age Delta
The regression of age on brain features often leads to a biased
model that manifests as an overprediction of the age of younger
individuals and an underprediction of the age of elderly ones.
This effect can be quantified as a negative age delta correlation
(ADC) denoted as corr(y, δ). In the literature, ADC has been
set to zero by adding a second stage to the analysis wherein the
regression predictions from the first stage are corrected. Hence,
brain-age delta prediction can be formulated as the following
two-stage approach:

(a) Brain Age Prediction. Train a regression model f to predict age
such that y ≈ f (X). The negative residuals, denoted as

δ = f (X)− y (7)

represent the uncorrected brain age delta.
(b) Correction of Brain Age Delta. A number of authors proposed

correction procedures to rid δ of ADC (1, 3, 4, 12, 14).
Many of these approaches are mathematically equivalent.
They boil down to two approaches that yield two differently
corrected residuals δ1 (approach 1) and δ2 (approach 2).
These two approaches are discussed in detail in the following
two subsections.

2.3.1. Approach 1: Scale Down y (Chronological age)
Approach 1 has been proposed by a number of authors (3, 12,
14) and boils down to the following operation: Train a simple
regression model δ ≈ yβ1 + β0 to remove the linear effect of age
from the delta estimate. The new estimate

δ1 = δ − yβ1 − β0 (8)

represents corrected brain age delta which is uncorrelated
with age. We can inspect the value of β1 by taking the simple
linear regression formula: β1 = rδy

sδ
sy
, where rδy is age delta

correlation (ADC) which is negative (Section 2.4). sδ is the
standard deviation of the residuals and unnormalized square
root of the residual sum of squares (RSS), sy is the standard
deviation of the responses and the unnormalized square root of
the total sum of squares (TSS). In OLS, Ridge, and Kernel Ridge

regression, we have TSS ≥ RSS. Hence, β1 ∈ [−1, 0]. Combining
Equations (8) and (7) the entire model can be written in one
equation as

δ1 = f (X)− y (1+ β1)− β0 (9)

where (1+β1) ∈ [0, 1]. From Equation (9), we can see that the
correction does not affect the predictions f (X). Instead, it implies
shrinking y.

This approach is invalid in a predictive modeling framework
because it corrects the data y, not the predictions f (X). Beheshti
et al. (12) report a lower error and a larger R2 value compared
to approach 2 introduced in the next section. However, since this
effect is obtained by shrinking the data it can be considered as an
artifact of this approach.

2.3.2. Approach 2: Scale up f(X) (Predicted age)
As an alternative approach, it has been suggested that ŷ instead
of δ should be used in the regression (1, 4). To this end, train a
simple regression model ŷ ≈ yβ1 + β0. Then define corrected
predictions ŷ2 as

ŷ2 = f (X)β−1
1 − β0 β−1

1 (10)

with corresponding brain age delta δ2 = ŷ2 − y. This modified
age delta estimate is again uncorrelated with age. As in approach
1, the correction is performed using simple linear regression and

we have β1 = rŷy
sŷ
sy
. sŷ is the standard deviation of the predictions

and the unnormalized square root of the explained sum of
squares (ESS). In OLS, Ridge, and Kernel Ridge regression, we
have TSS ≥ ESS and rŷy ∈ [0, 1]. This implies that β1 ∈ [0, 1].
Combining Equations (10) and (7) this can be written in one
equation as

δ2 = f (X)β−1
1 − y−

β0

β1
(11)

with β−1
1 ∈ [1,∞). Comparing Equations (9) and (11),

we see that in approach 1 the data vector y is scaled down
whereas in approach 2 the predictions f (X) are scaled up. In
Section 2.6, we show that the two types of corrected residuals are
actually identical up to scaling and therefore corr(δ1, δ2) = 1.
Consequently, they perform equally well on secondary analyses
e.g., relating brain age delta to cognition. They are further closely
related to our zero correlation constraint (Section 2.5.1). In
a predictive modeling framework, we consider approach 2 as
preferable since corrections should be applied to the model not
to the data.

2.4. Negative Age Delta Correlation (ADC)
The theoretical basis for negative ADC has already been
discussed in (14). In particular, the authors highlighted that ADC
≤ 0 for any sensible regression model. Here, we discuss ADC
more specifically for the three regression models introduced
above. We start with OLS regression. Let us expand the age delta
correlation term as
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corr(y, δ) =
y⊤(ŷ− y)

||y|| ||ŷ− y||
(12)

where to simplify the notation we assume that X and y have
been centered. The sign of the correlation is determined by the
numerator. Defining H = X(X⊤X)−1X⊤ and writing ŷ = Hy

we obtain

−y⊤y+ y⊤Hy = −y⊤(I−H) y ≤ 0 (13)

where the inequality follows from the fact that I − H is
symmetric and idempotent and therefore positive semi-definite
(29). This implies that the ADC is always non-positive in OLS
regression. Ridge regression coincides with OLS regression for
λ = 0. As λ increases, β tends to zero due to the shrinkage effect
of the regularization (21). This implies that ŷ → 0 and therefore
corr(y, δ) → −1 as λ increases. This is illustrated empirically in
Figure 1C. The same argumentation holds for Kernel Ridge, one
only has to replace X by 8(X). Often, Kernel Ridge models will
have a smaller prediction bias because their higher complexity
allows for a better fit to the data. Furthermore, Figure 1D shows
a clear bias toward large negative ADC values when regression
coefficients are randomly sampled. Figure 1E shows that the bias
persists in both train and test sets. Together, these results suggest
that a negative ADC is inevitable and that regularization further
exacerbates this effect, in line with previous work (3, 14).

2.5. Correlation Constraints for Regression
The regression problems defined in Section 2.2 can be cast as
unconstrained optimization problems. The optimization involves
the minimization of a loss functionLwhich measures the amount
of discrepancy between the true responses y and the model
predictions ŷ:

minimize L(y, ŷ). (14)

In OLS regression the loss function is the squared loss
L(y, ŷ) = ||y − ŷ||22 whereas it is L(y, ŷ) = ||y − ŷ||22 +

λ||β1 : p||
2
2 in Ridge and Kernel Ridge regression. To control for

age delta correlation in the training data, we can add a correlation
constraint that caps the permitted magnitude of correlation
between the brain age delta and age. To this end, consider the
constrained optimization problem

minimize L(y, ŷ)

subject to |corr(y, δ)| ≤ ρ.
(15)

The same loss function as before is minimized. However, the
set of feasible solutions is limited to solutions for which the
absolute value of the correlation does not exceed ρ, where ρ ≥ 0
is the correlation bound selected by the user. As a special case
of Equation (15), we can consider the case ρ = 0, that is, the
responses have to be perfectly uncorrelated with the residuals:

minimize L(y, ŷ)

subject to corr(y, δ) = 0.
(16)

We will address the latter case first and see that it leads to a
simple solution. In the following, we will assume that X and y

have been centered and themodel contains no intercept since this
simplifies the equations. This does not limit the generality of our
results. As shown in the Supplementary Material (Section 1),
a model with centered data and without intercept yields the
same regression coefficients as a model with intercept. In other
words, we can first calculate β1 : p on the centered data and
subsequently calculate the intercept β0 to obtain the model for
non-centered data.

2.5.1. Zero Correlation Constraint
A hard correlation constraint can be set that requires
the correlation between the residuals and the response
values to be zero, that is |corr(y, δ)| = 0. In the
Supplementary Material (Section 2) the optimal solution,
b, is derived for OLS, Ridge, and Kernel Ridge regression. It is
given as a scaled version of the standard, unconstrained solution

b1 : p = θ0 β1 : p (17)

where β is the standard OLS, Ridge, or Kernel Ridge solution
and it is assumed that X and y have been centered. Using
Equation (6), we can see that for Kernel Ridge regression this
translates into a scaling of the dual weights

αρ = θ0 α. (18)

The scaling factor θ0 is given by

θ0 =
||y||2

y⊤Hy
(19)

with model-specific hat matricesH:

H = X (X⊤X)−1 X⊤ (OLS)

H = X (X⊤X+ λI)−1 X⊤ (Ridge)

H = K (K+ λI)−1 (Kernel Ridge).

Intercept term: If the data has not been centered and the model
includes an intercept term, y and y⊤Hy need to be centered
before calculating θ . The intercept b0 can be obtained from
the equation

(y− 1 ȳ) = (X− 1 x̄⊤) b1 : p

⇔ y = Xb1 : p + 1 (ȳ− x̄⊤b1 : p)

from which it follows that b0 = ȳ − x̄⊤b1 : p. The full
correlation constrained model with intercept term is then given
by the concatenation of the coefficients b = [b0, b1 : p].
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2.5.2. Bounded Correlation Constraint
The zero correlation solution successfully removes the
correlation between residuals and responses. However, it
does so at the cost of goodness of fit to the training data.
Furthermore, in predictive modeling, perfect control of ADC
on the training set is less important than good predictive
performance and low bias on the test set. This suggests the
need for a softer constrained optimization solution wherein the
equality constraint is replaced by an inequality constraint. In
the Supplementary Material (Section 3) it is shown that the
optimal solution is again given by scaling, b1 : p = θρ β1 : p, where
there are now two possible solutions for the scaling factor,

θ1,2 = ||y||2 y⊤ŷ (1− ρ2)/c

±
||y||2

|c|

√

ρ2 (1− ρ2) (||y||2 ||ŷ||2 − (y⊤ŷ)2)

where c = (y⊤ŷ)2 − ρ2||y||2||ŷ||2 and ŷ is the predictions
under the unconstrained OLS, Ridge, or Kernel Ridge model. The
two solutions define an interval [θ1, θ2]. Setting θ to any value
within this interval will guarantee −ρ ≤ corr(y, δcc) ≤ ρ,
where δcc is the brain age delta under the correlation constrained
models. Setting θ = θ1 or θ = θ2 will set corr(y, δcc) = −ρ

or corr(y, δcc) = ρ, respectively. From this we can derive the
following algorithm for correlation constrained models with an
inequality constraint:

1. Calculate the standard, unconstrained solution for the model
(OLS, Ridge, or Kernel Ridge). If |corr(y, δ)| ≤ ρ, the
unconstrained solution does not violate the correlation
constraints so we are done.

2. If |corr(y, δ)| > ρ, calculate θ1,2 and set θ to the value that
smaller in absolute value. This will assure that corr(y, δcc) =

−ρ if corr(y, δ) < −ρ.

Figure 2 depicts the geometrical intuition underlying the
correlation constraints. Without constraints, the solution is the
minimum of a quadratic function (Figure 2A). For a zero
correlation constraint, the set of feasible solutions is reduced to
a line within this space (Figure 2B). For a bounded correlation
constraint, the set of feasible solutions is the space between
two paraboloids (Figure 2C). In both cases, the correlation
constraints lead to a larger slope for the regression coefficients
as compared to the unconstrained model (Figure 2D).

2.6. Relationship Between Zero Correlation
Constraint and Existing Correction
Approaches
In Section 2.3, we reviewed the two main approaches for
correcting brain age delta used in the literature. Here, we
investigate their mutual relationship as well as their relationship
to our approach. Without loss of generality we assume that y and
X have been centered (see Supplementary Material, Section 1).
Let us start from Equation (8) corresponding to approach 1.
The regression slope β1 for a simple linear regression model is
given by

β1 = corr(δ, y)
||δ||

||y||
.

Writing δ = ŷ − y and expanding the correlation term as in
Equation (S5) (Supplementary Material), we find that

β1 =
y⊤Hy

||y||2
− 1 = θ−1

0 − 1

with θ0 as defined in Equation (19). Therefore, the solution to
Equation (8) is given by

δ1 = ŷ− θ−1
0 y. (20)

Alternatively, using approach 2 (correction of predictions)
and starting from Equation (10) we perform a regression of ŷ on
y. Again, this is a simple linear regression model whose slope is
given by

β1 = corr(ŷ, y)
||ŷ||

||y||
= θ−1

0

yielding the corrected predictions ŷ2 = ŷ/β1 = θ0 ŷ with
corresponding brain age delta

δ2 = θ0 ŷ− y. (21)

This solution uses a scaling of ŷ by θ0 and is thus equivalent
to our zero correlation solution when an OLS model is used.
Furthermore, comparing Equations (20) and (21) we see that
both solutions are proportional to each other. Their relationship
is given by

δ2 = θ0 δ1 (22)

and therefore corr(δ1, δ2) = 1. In other words, the brain age
delta estimates from the two approaches used in the literature are
identical up to a scaling factor of θ0.

2.7. Interpretability
Maximizing predictive performance is the primary objective
when optimizing statistical models. To empirical researchers,
understanding what the regression model learns from the data
is useful, too. Linear regression models such as OLS and
Ridge can be interpreted in terms of their β coefficients. To
keep the notation simple, we will assume that the data has
been demeaned and the model contains no intercept term.
If the data is standardized, large components of the β can
be interpreted as features that are relevant to the regression
task. Since our models combine prediction and correction
into a single task, the β ’s capture the entire operation of
the model. Importantly, the choice of the correlation bound
ρ does not change the interpretation. Since the regression
coefficients in our models are just scaled versions of the
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FIGURE 2 | Geometrical intuition of optimization of an OLS model with correlation constraints. For illustrative purposes, simulated data is used with a model with two

regression coefficients and without intercept. (A) x and y axes represents different combinations of regression coefficients, whereas the z-axis represents the residual

sum of squares. The standard unconstrained OLS fit corresponds to the minimum of the quadratic surface (blue ball). (B) Zero correlation constraint. The solution

space is restricted to a hyperplane (red line on the surface). The blue dot represents the optimal constrained solution. (C) Bounded correlation. The solution space is

restricted to the space between two paraboloids (red band on the surface). The inset depicts a “top down” view on the surface. (D) Corresponding regression slopes.

The OLS solution is depicted as a black line. The correlation bound allows for a set of solutions (red shaded area) limited by ρ = −0.1 and ρ = 0.1 (red solid lines).

The zero ADC solution is depicted as a red dashed line. All constrained solutions have a larger slope than the OLS solution.

original regression coefficients, b = θ β for some θ ∈ R,
the choice of ρ does not affect the ratio between any pair
of coefficients.

For collinear data, coefficients can become uninterpretable
with large weights for features that are not related to the target
variable. In this case, structure coefficients (18) and activation
patterns (19) have been proposed as alternatives metrics. An
activation pattern is given by

aρ = 6 b

where aρ ∈ R
p is the activation pattern and 6 is the data

covariance matrix. Let aβ = 6 β be the activation pattern for

the standard (uncorrected) model. Then setting ρ merely scales

the activation pattern by θρ since aρ = 6 b = 6 θρβ = θρ aβ .

An example for an activation pattern is depicted in Figure 5 and

discussed in Section 3.3.
Structure coefficients are given by the vector of Pearson

correlations between ŷ = Xb and each column of X, where the

i-th column is denoted as Xi. Since the correlation coefficient

is invariant to constant shifts and scaling, we have corr(Xi,Xb)
= corr(Xi,Xβ), that is, structure coefficients are invariant to the
choice of ρ.

For kernel methods, these coefficients are generally not
available. As an alternative, we considered the vector of partial

Frontiers in Psychiatry | www.frontiersin.org 8 February 2021 | Volume 12 | Article 615754

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Treder et al. Correlation Constrained Regression

derivatives of regression model with the respect to each of
the features,

∂if (x) = (∂ik(x))
⊤α,

where k is a kernel function (20) and i refers to the index of
the feature. Using Equation (18), we see that for a correlation
constrained Kernel Ridge model fρ these partial derivatives are
again just scaled versions of the unconstrained version ∂ifρ(x) =
θρ ∂if (x).

To summarize, our models are interpretable because the
regression coefficients capture the whole operation of the model.
Furthermore, the choice of the correlation bound does not
affect the interpretation of the model: structure coefficients are
invariant to the choice of ρ, whereas regression coefficients,
activation patterns and partial derivatives are merely scaled by
a constant factor.

2.8. Toolbox
The Linear, Ridge, and Kernel Ridge regression models with
correlation constraints presented in this paper have been
implemented in Python and MATLAB. For Python, the
models are available on GitHub (github.com/treder/correlation-
constrained-regression). They inherit from and are fully
compatible with the Scikit-Learn framework (30). The models
extend Scikit-Learn’s LinearRegression, Ridge, and KernelRidge
models with an additional parameter correlation_bound
that corresponds to ρ in Equations (15) and (16). Setting the
parameter to 0 enforces a zero correlation constraint whereas
setting it to a positive value bounds the correlation accordingly.
For MATLAB, the models have been integrated into MVPA-
Light (31), an open-source machine learning toolbox. By setting
the hyperparameter correlation_bound, ADC can be
controlled in the same way as for the Python-based models. Code
examples for both Python and MATLAB can be found on the
GitHub page.

2.9. Neuroimaging Data
Neuroimaging data supplied within the Predictive Analytics
Competition were fully pre-processed T1-weighted MRI scans
from 2,640 training set and 660 validation set subjects as
described previously (2). All normalized 3D maps of gray matter
(GM) and white matter (WM) volume were used to create group
GM and WM masks. Each GM and WM image was smoothed
using an 8-mmGaussian kernel, masked and concatenated into a
vector of 153,237 and 86,143 voxels, respectively.

Concatenated GM andWM images were intensity normalized
and submitted to Independent Component Analysis using the
Group ICA of fMRI toolbox [https://trendscenter.org/software/
gift/; (32)]. The optimal number of components of the ICA
decomposition (72 and 99 for GM andWM images, respectively)
was determined using Principal Component Analysis (PCA)
with minimum description length (MDL) model order selection
criteria (33). Normalized features in the training model, based
on 2,640 participants, included scores for all GM and WM
components (N = 171). Additional covariates included total GM,
total WM, gender and dummy coding for 17 scanning sites.

We also included low-order interaction terms (such as bivariate
interaction) between total GM, total WM, gender, PC1 and
PC2 scores.

2.10. Brain Age Prediction
We performed brain age prediction using Python with Scikit-
Learn and our custom extensions. The models were tested in
three different conditions: Unconstrained (using Scikit-Learn’s
models without correlation constraints), zero correlation (ρ =

0) (using our extensions with a correlation constraint of 0),
bounded correlation (ρ = 0.1, 0.2, 0.3) (using our extensions with
a correlation bound of 0.1, 0.2, 0.3), and approaches 1 and 2
from the literature introduced in Section 2.3. To obtain both in-
sample and out-of-sample statistics, models were applied to both
training and test data. To estimate the variability of predictive
performance, we performed 100 iterations. In every iteration,
training data was randomly sampled from the training set using
bootstrapping. The 171 Independent Components were used
as features.

Three regression models were considered, OLS, Ridge
regression, and Kernel Ridge regression with a RBF kernel. For
both Ridge and Kernel Ridge regression, hyperparameters were
tuned using a grid search with Scikit-Learn’s GridSearchCV
and five-fold cross-validation. For Ridge regression, the
regularization parameter was tuned using candidate values
α = (10−3, 10−2, 10−1, 1, 10). For Kernel Ridge with
a RBF kernel, kernel width γ = (100, 10, 1, 10−1) and
α = (10−3, 10−2, 10−1, 1, 10) were tuned. The resultant
best model was used to calculate in- and out-of-sample metrics.
Mean absolute error (MAE) and age delta correlation (ADC)
served as metrics. Denoting train and test sets as T R and T E ,
MAE was estimated as

MAEtrain =
1

|T R|

∑

i∈T R

|yi − f (xi)|

MAEtest =
1

|T E|

∑

i∈T E

|yi − f (xi)|

(23)

where f is a regression model trained on the training data and
|T R| and |T E| are the sizes of the train and test sets, respectively.
Similarly, ADC was calculated separately for the predictions in
the train and test sets. All analyses were performed on a Desktop
computer with an Intel Core i7-6700@ 3.40 GHz x 8 CPUwith 64
GB RAM running onUbuntu 18.04. The analysis code is available
as part of the toolbox2.

3. RESULTS

3.1. Brain Age Prediction
Figure 3 depicts the MAE and ADC results on the PAC data
for train and test sets separately, comparing the three regression
models (OLS, Ridge, and Kernel Ridge regression) and different
constraints on the age delta correlation (ADC): unconstrained

2https://github.com/treder/correlation-constrained-regression/blob/main/run_

regression_analysis.py
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FIGURE 3 | Analysis of PAC data using OLS, Ridge, and Kernel Ridge regression models. In Table 2, this data is show in tabular form. First row: Mean absolute

error (MAE) is depicted for the three regression models and different constraints: unconstrained (standard regression model), bounded correlation (ρ = 0.1, 0.2, 0.3),

zero correlation (ρ = 0), and approaches 1 and 2 from the literature (see Section 2.3). In terms of MAE, the best model on both train and test sets is Kernel Ridge

regression. Second row: Age delta correlation (ADC) for different models and correlation constraints. Our models exactly control ADC on the training data and also

reduce ADC on test data.

(standard regression model), bounded correlation constraint
(ρ = 0.1, 0.2, 0.3), zero correlation constraint (ρ = 0), and
approaches 1 and 2 from the literature introduced in Section 2.3.
The same data is presented in tabular form inTable 2. Bonferroni
correction was used in case of multiple comparisons.

With respect to mean absolute error (MAE), a significantly
lower error was found on the train data compared to test data
(Wilcoxon signed-rank test, W = 62, 449, p < 0.0001). For
the constrained models, we performed a regression analysis of
MAE on ρ. We found significant negative slopes for all models
and train and test sets separately (all p < 0.0001), indicating
that MAE decreases significantly as ρ increases. On the test
data, we used Wilcoxon signed-rank tests to compare MAE for
the unconstrained model with MAE for each of the constrained
models. A significantly higher MAE was obtained for most
unconstrained models (all p < 0.0001). The only exception was
approach 1 (“scale down y”) wherein the relationship is reversed:
MAE decreases after correction. This is an artifact of the fact
that the correction is applied to the data, not the predictions (see
Section 2.3).

With respect to age delta correlation (ADC), our models
perfectly controlled for ADC on the training data. ADC was
significantly larger in magnitude for the test data compared to
the train data (W = 877, 894, p < 0.0001). Linear regression of
ADC on ρ showed a significant negative slope for all models on
both train and test sets (all p < 0.001). On the test set, ADC was
significantly larger in magnitude for the unconstrained model
than for the constrained models (all p < 0.0001), suggesting that
the constrained models also control ADC on the test set.

3.2. ADC-MAE Trade-Off
To better characterize how the choice of ρ mediates the trade-
off between ADC and MAE, we repeated the prediction analysis.
This time the correlation bound was varied in small steps of 0.02.
Results averaged across 100 bootstrap iterations are depicted in
Figure 4. In line with the results above, MAE generally decreases
with increasing ρ and eventually flattens off. ADC decreases

roughly linearly with ρ. It flattens off at a value of ρ that
corresponds to the ADC value of the uncorrectedmodel, since no
correction needs to be applied when ρ > |ADC|. Furthermore,
MAE and ADC change similarly for train and test set, albeit with
different slopes. This is a useful observation since it suggests that
the hyperparameter ρ can be optimized on the training set alone,
in line with good practice in predictive modeling.

3.3. Interpretability via Activation Patterns
Figure 5 shows an activation pattern for an OLS model with
ρ = 0 trained on the whole training set, using gray matter
Independent Components (ICs) only. To create the maps, a
vector of activation patterns a was calculated for the gray matter
ICs (see Section 3.3). Since each IC corresponds to a brain map,
we multiplied each entry of a with its corresponding map and
added up the maps. The figure depicts the resultant summed
map indicating an age-related decrease in intensity values in deep
cortical areas. An age-related increase in intensity values was
observed at the boundaries between gray matter and other tissue
types, likely reflecting CSF signals in older adults (34). Crucially,
the map is independent of the choice of ρ, only its scaling is
affected by ρ. This illustrates that the interpretation of the models
is not affected by a change of ρ.

4. DISCUSSION

A predictive bias manifesting as an overprediction of the age
of young individuals and an underprediction of the age of
elderly individuals has been consistently reported in the brain
age literature (2, 3, 14, 15). It can be quantified as age delta
correlation (ADC), that is, the correlation between brain age delta
(predicted age minus chronological age) and chronological age.
We introducedmodifications to three popular regressionmodels,
OLS, Ridge and Kernel Ridge regression, that effectively control
ADC. To this end, we introduced a hyperparameter ρ that can be
set by the user. It represents a correlation bound that controls the
maximum permissible ADC. The resultant models are optimal
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TABLE 2 | Mean absolute error (MAE) and age delta correlation (ADC) for different types of correlation constraints and regression models.

Data Constraint OLS Ridge Kernel ridge

MAE (Train) Unconstrained 4.91 ± 0.09 5.1 ± 0.08 1.65 ± 0.04

ρ = 0.3 4.93 ± 0.09 5.09 ± 0.08 1.65 ± 0.03

ρ = 0.2 5.0 ± 0.09 5.16 ± 0.1 1.7 ± 0.04

ρ = 0.1 5.12 ± 0.1 5.29 ± 0.1 1.89 ± 0.05

ρ = 0 5.3 ± 0.11 5.48 ± 0.11 2.17 ± 0.06

Approach 1 4.52 ± 0.08 4.43 ± 0.07 1.59 ± 0.03

Approach 2 5.3 ± 0.1 5.48 ± 0.11 1.67 ± 0.04

MAE (Test) Unconstrained 5.31 ± 0.09 5.18 ± 0.06 5.16 ± 0.09

ρ = 0.3 5.35 ± 0.09 5.19 ± 0.07 5.16 ± 0.09

ρ = 0.2 5.44 ± 0.1 5.27 ± 0.07 5.19 ± 0.09

ρ = 0.1 5.59 ± 0.1 5.42 ± 0.08 5.26 ± 0.1

ρ = 0 5.79 ± 0.11 5.62 ± 0.09 5.37 ± 0.11

Approach 1 4.95 ± 0.07 4.99 ± 0.09 4.54 ± 0.06

Approach 2 5.82 ± 0.09 5.22 ± 0.1 5.64 ± 0.08

ADC (Train) Unconstrained −0.384 ± 0.007 −0.486 ± 0.007 −0.305 ± 0.006

ρ = 0.3 −0.3 ± 0.0 −0.3 ± 0.0 −0.299 ± 0.002

ρ = 0.2 −0.2 ± 0.0 −0.2 ± 0.0 −0.2 ± 0.0

ρ = 0.1 −0.1 ± 0.0 −0.1 ± 0.0 −0.1 ± 0.0

ρ = 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Approach 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Approach 2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ADC (Test) Unconstrained −0.341 ± 0.021 −0.464 ± 0.018 −0.325 ± 0.022

ρ = 0.3 −0.263 ± 0.021 −0.284 ± 0.021 −0.324 ± 0.023

ρ = 0.2 −0.173 ± 0.022 −0.19 ± 0.022 −0.291 ± 0.023

ρ = 0.1 −0.083 ± 0.023 −0.095 ± 0.022 −0.26 ± 0.024

ρ = 0 0.005 ± 0.023 −0.001 ± 0.022 −0.228 ± 0.024

Approach 1 0.005 ± 0.023 −0.001 ± 0.022 −0.228 ± 0.024

Approach 2 0.005 ± 0.023 −0.001 ± 0.022 −0.228 ± 0.024

In Figure 3, this data is depicted as bar graphs.

in that they give the lowest mean-squared error on the training
set (among all models from the same class) while controlling
for ADC.

Our models were tested on the PAC competition data using
different values for ρ. The models not only perfectly controlled
ADC on the training data, they also approximately controlled
ADC on unseen test data (see Figure 3). For all constrained
models, ADC on the test set was lower than for the unconstrained
models. The flip side of this was an increase of mean absolute
error (MAE) for our constrained models as compared to the
unconstrained model, but often this increase was modest. For
instance, for an OLS model MAE increased from 5.31 for the
unconstrained model to 5.35 for the model with ρ = 0.3, an
increase of only 0.8%. Across all models in the test set, we found
that an increase in ρ led to a decrease in MAE. This suggests that
ρ can be used as a lever to finely control the trade-off between
predictive performance (MAE) and age delta correlation (ADC).

In the same analysis, we included the two existing correction
methods used in the literature, denoted as approach 1 (3, 12, 14)
and approach 2 (1, 4) discussed in detail in Section 2.3. For

the special case of using a OLS model with a zero correlation
constraint, ρ = 0, our models’ brain age deltas are equivalent
to approach 2. In Section 2.6, we furthermore show that the
brain age deltas in approaches 1 and 2 are actually identical up
to scaling. They differ only by the scaling factor θ0 defined in
Equation (19). In particular, in approach 1 chronological age is
scaled down by this factor before calculating brain age delta,
whereas in approach 2 f (X) (predicted age) is scaled up by the
same amount. The downscaling in approach 1 leads to a lower
MAE which is even smaller than for an uncorrected model. We
would like to stress that this is because approach 1 corrects the
data, not the predictions. This is not permissible in predictive
modeling and approach 2 should be preferred.

The hyperparameter ρ controlling ADC has to be selected by
the user. Figure 4 shows how the choice of ρ affects both MAE
and ADC. A possible selection criterion would involve defining
a maximum permissible MAE or ADC value and choosing ρ

accordingly. A more comprehensive analysis would take into
account any follow-up analyses. For instance, brain age delta is
often correlated with cognitive variables in a second step. An
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FIGURE 4 | Trade-off between MAE (row 1) and ADC (row 2) as a function of the hyperparameter ρ that represents the correlation bound in our models. The shaded

area around the lines represents standard deviation. Increasing ρ leads to a lower MAE but this comes at the expense of ADC increasing in magnitude. MAE and ADC

change in a similar way on training and test sets, suggesting that the training set is a good proxy for test set performance.

FIGURE 5 | Activation pattern for an OLS model trained on the gray matter Independent Components (ICs). Warms colors correspond to positive values and cold

colors to negative values. The brain map has been produced by multiplying each entry of the activation pattern with the map corresponding to each IC, and then

summing up all the maps. The choice of ρ does not affect the map in relative terms, it only affects its scaling.

optimal selection of ρ could involve e.g., the regression slope or p-
value of the association on the training set. A detailed exploration
of how the choice of ρ affects follow-up analyses requires a
dataset including cognitive test scores and is left for future work.

In terms of interpretability, our models offer a greater degree
of transparency than the traditional two approaches because the
model coefficients capture the entire brain age prediction pipeline
(i.e., both prediction and correction). Moreover, in Section 2.7
we show that the interpretation is not affected by changes in ρ,
a hyperparameter in our models. Structure coefficients (18) are
invariant to changes in ρ, whereas the other metrics are simply
scaled by a constant value.

A limitation of our study is that it only covers OLS, Ridge,
and Kernel Ridge regression. In the age of deep neural networks,
the focus on linear and kernel methods may seem very limiting.
Therefore, we would like to emphasize that linear regression
models lie at the heart of many non-linear approaches including
Convolutional Neural Networks. As illustrated in Figure 6, non-
linear approaches can often be conceived of as linear regression

operating on non-linearly extracted features. Linear models
can uniquely combine predictive power with computational
efficiency and interpretability. In line with this, (35) found that
kernel regression was as performant as deep neural networks
when predicting phenotypes from functional connectivity data.
Nevertheless, future work could address the incorporation of
correlation constraints into other models classes such as Lasso
(36), Support Vector Regression (37) or CNNs. Since these
models use iterative optimization, a possible approach could
be adding the correlation term −corr2(y, δ) directly to the loss
function. Alternatively, since y is constant this can be simplified
to the quantity y⊤ŷ/||δ||2.

On a more speculative note, future development of the
brain age delta metric might benefit from work on errors-in-
variables models (38–40) or measurement error models (16).
Standard linear regression models assume that chronological
age has been measured with an error whereas the brain
data is noisefree. It is more likely that the opposite is true:
chronological age can be measured with high accuracy but
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FIGURE 6 | Coupled with non-linear feature extraction techniques, linear regression becomes a powerful model that is implicitly a part of many regression models. (A)

Linear regression using three features to predict age. (B) Kernel regression can be conceived of as a projection of the data into a higher-dimensional, Reproducing

Kernel Hilbert Space (RKHS), followed by linear regression in this space. (C) MRIs can be transformed into components using ICA. For each MRI, its loadings on the

different Independent Components can be used as features for linear regression. (D) In Convolutional Neural Networks (CNN) for regression, the last layer is typically

linear. The preceding layers can be conceived of as feature extraction layers, and the last layer performs linear regression on non-linear features.

there is noise and individual variability in the brain scans.
Not accounting for measurement error in the features leads to
regression dilution which in OLS regression manifests as an
underestimation of the regression coefficients. This phenomenon
is known in the brain age literature (3, 14). Our scaling factor
θ inflates the regression coefficients and therefore un-dilutes
the model, but it is not clear to the authors whether there is
a more formal relationship between correction of the residuals
and measurement error. Unfortunately, estimating measurement
error in brain scans requires repeated sampling which is often
not available.

Concluding, without accurate control for ADC, the use
of brain age delta can lead to false associations with other
phenotypes and limit our understanding of the processes
that underpin brain aging. We highlighted the importance
of estimating brain age delta and controlling for age delta
correlation within a given model, as we introduced a novel
class of regression models that allow for fine control of
ADC. Our solution is optimal on the training set and shows
approximate control of ADC on the test set. In an era of
“big data” predictive modeling, this approach nicely dovetails
with strategies to develop reliable models that generalize to
independent test sets for use in personalized and precision
medicine (41).
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